ourth Semester B.E. Degree Examination, Jan./Feb. 2021 **Microprocessors and Microcontrollers**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

100	M	od	ul	e-	1

a. Explain architecture of 8086, with neat diagram.

(08 Marks)

b. Explain following Assembler directives with example:

ORG, EQU, DUP, DD, SEGMENT & ENDS

(05 Marks)

c. Assume that SP = FF2EH, AX = 3291H, BX = F43CH, CX = 09. Show the contents of stack and SP after execution of the following instructions:

PUSH AX

PUSH BX

PUSH CX

(03 Marks)

- Identify the addressing modes in the following instructions:
 - i) MOV [SI], AL
 - MOV Arr [SI], AX ii)
 - MOV [BX + 6], AXiii)
 - MOV [BP] [SI] + 10, BX
 - MOV [3600], AX V)

(05 Marks)

Explain IBM PC memory map, with neat diagram.

(05 Marks)

Explain the process of executing assembling ALP with steps and neat diagram. (06 Marks)

Module-2

Write an assembly code to multiply 2378H with 2F79H and store the result in RES. 3 a.

(04 Marks)

Write an assembly program to convert packed BCD to ASCII value.

(06 Marks)

Explain rotate instructions with example.

(06 Marks)

Write a program to read a string from keyboard and convert it to upper case.

(06 Marks)

Explain difference between INT and CALL instructions.

(04 Marks) iii) Display

Write a program to i) Clear screen ii) Set cursor at row-20 column 50 message "Mircroprocessor and Microcontroller".

(06 Marks)

Module-3

- Explain the following instructions with example:
 - i) SCASB ii) CMPSB iii) CBW

iv) IMUL v) XLAT (08 Marks)

- Assume that we have 4 bytes of hexadecimal data: 25H, 62H, 3FH and 52H.
 - i) Find the check sum byte
 - Perform the checksum operation to ensure data integrity ii)
 - If the second byte 62H had been changed to 22H. Show how checksum detects the error. (08 Marks)

1 of 2

OR

6 a. Explain control word format of 8255 with neat diagram.

(06 Marks)

b. 8255 is configured as follows: (Refer Fig.Q.6(b))

Fig.Q.6(b)

- i) Find control word for port A as input, B as output all bits of port C as output.
- ii) Find the port addresses assigned to A, B, C and control byte for this configuration.
- iii) Program the ports to input data from port A and send it to both ports B and C.

(10 Marks)

Module-4

- 7 a. Differentiate between Microcontroller and Microprocessor. (04 Marks)
 b. Explain ARM core data flow model with neat diagram. (06 Marks)
 - c. Explain interrupt handling in ARM processor. (04 Marks)
 - OR
- 8 a. Explain ARM processors execution modes along with complete register set.
 b. Explain pipelining mechanism of ARM architecture.
 (08 Marks)
 (04 Marks)
 - c. Explain RISC design principle. (04 Marks)
 - Module-5
- 9 a. Explain the use of barrel shifter in ARM processor with diagram. (06 Marks)
 - b. Explain the following instruction with suitable example:
 - i) BIC ii) QADD iii) BLX iv) SMULL v) SWI (10 Marks)
 - OR
- 10 a. Write an ALP to copy a block of data (BLOCK1) to another block (BLOCK2) using ARM instruction. (08 Marks)
 - b. What are the salient features of ARM instruction set? (05 Marks)
 - c. If $r_5 = 5$, $r_7 = 8$ and using the following instruction, write values of r_5 , r_7 after execution MOV r_7 , r_5 , LSL # 2. (03 Marks)

* * * * *