

CBCS SCHEME

18CS54

Fifth Semester B.E. Degree Examination, Jan./Feb. 2021 Automata Theory and Computability

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define the following with example:
 - i) String ii) Language
- iii) Alphabet iv) Sy

(04 Marks)

- b. Design a DFSM to accept each of the following language:
 - i) $L = \{w \in \{a, b\}^*; w \text{ has all strings that ends with sub string abb } \}$
 - ii) $L = \{w; \text{ where } | w | \text{ mod } 3 = 0 \text{ where } \Sigma = \{a\}\}$
 - iii) $L = \{w \in \{a, b\}^* \text{ every a region in } w \text{ is of even length.} \}$

(09 Marks)

c. Construct an equivalent DFA from the following given NFA using subset construction method. (Refer Fig.Q.1(c)) (07 Marks)

(

2 a. Construct a minimum state automation equivalent to the FA given table

States	0	1
$\rightarrow q_0$	q_1	q ₅
q_1	q 6	q_2
Q 2	qo	q_2
q ₃	q_2	q 6
q ₄	q ₇	q 5
q ₅	q_2	q 6
9q ₆	q ₆	q ₄
q ₇	q 6	q_2

(10 Marks)

b. Consider the following NFA with ∈-moves construct on equivalent DFA.

(10 Marks)

Fig.Q.2(b)

1 of 2

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

			100007
		Module-2	
3	a.	Define Regular expression. Write RE for the following languages:	
		i) $L = \{a^n b^m m + n \text{ is even}\}$	
		ii) $L = \{a^n b^m m \ge 1 \ n \ge 1 \ nm \ge 3\}$	
		iii) $L = \{a^{2n}b^{2m} n \ge 0, m \ge 0\}$	(10 Marks)
	b.	Construct an \in - NFA for the regular expression $0 + 01^*$	(05 Marks)
	c.	Construct on FA for the regular expression $10 + (0 + 11)0^*1$	(05 Marks)
		OR	
4	a.	State and prove pumping lemma theorem for regular languages.	(08 Marks)
	b.	Prove that $L = \{a^p p \text{ is a prime}\}\$ is not a regular.	(08 Marks)
	c.	List out closure properties of regular sets.	(04 Marks)
		Module-3	
5	a.	Define CFG. Write a CFG to specify	
		i) all string over {a, b} that are even and odd palindromes.	// O T # T X
	200	ii) $L = \{a^n b^{2n} \text{ over } \Sigma = \{a, b\} n \ge 1\}$	(10 Marks)
	b.	Write the procedure for removal of ∈-productions. Simplify the following gramm	iar.
		$S \rightarrow aA \mid aBB$	
		$A \rightarrow aAA \mid \in B \rightarrow bB \mid bbC$	
		$C \rightarrow B$	(10 Marks)
		OR	
6	a.	Define PDA. Design a PDA for the language that accepts the string with nat	
		where $w \in (a + b)^*$ and show the instantaneous description of the PDA on input a	abbab.
	b.	What is CNF and GNF? Convert the following grammar into GNF.	(10 Marks)
	0.	S \rightarrow AA a	
		$A \rightarrow SS b$	(10 Marks)
		Module-4	
7	a.	With a neat diagram, explain variant of turning machine.	(10 Marks)
	b.	Construct a Turning machine that accept the language 0^n , 1^n where $n > 1$ and dra	
		graph for Turning Machine.	(10 Marks)
		OR	(6)
8	a.	Define Turning Machine with its tuples. Explain the working principle of Turning Machine with diagram. Design a Turn	(04 Marks)
	b.	to accept strings formed on $\{0, 1\}$ and ending with 000. Write transition diagram	
	4	W = 101000.	
	1		(16 Marks)
		Module-5	
9	a.	Explain restricted turing machines.	(08 Marks)
	b.	Explain the following with example: i) Decidability ii) Decidable languages iii) Undecidable languages.	(12 Marks)
			(La Manta)
10		Write a short note on:	
10	a.	Post correspondence problem	

- b. Halting problems in Turning Machine
 c. Linear Bound Automation (LBA)
 d. Classes of P and NP

(20 Marks)