

17EC33

Third Semester B.E. Degree Examination, Jan./Feb. 2021 **Analog Electronics**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- What is BJT transistor modeling? Obtain the expression for voltage gain, Zin and Zo of CB 1 configuration using AC equivalent circuit with re model.
 - b. Derive the expression for A_i, A_v, Z_i and Z_o for a voltage divider bias circuit of BJT, with unbypassed RE, using re equivalent model of BJT. Show the phase relationship between input and output wave form.
 - State the characteristic features of Darlington connection. Calculate the DC bias voltages and currents in the circuit.

(05 Marks)

OR

- Give the relation between re parameters and h parameters. What are the advantages of h parameters?
 - Derive the expressions for current gain, voltage gain, input impedance and output impedance for an emitter follower circuit using approximate hybrid equivalent circuit. (Without the
 - c. For the network shown in Fig.Q2(c), determine re, Z_i , Z_o , A_v (with $r_o = \infty \Omega$) and A_v (with $r_o = 50 \text{ K}\Omega$

(05 Marks)

Module-2

- Explain the construction of N channel JFET. Also explain the drain and transfer 3 characteristics of the JFET. (06 Marks)
 - With equivalent circuit obtain the expression for Z_o and A_v for JFET self bias configuration.

c. The fixed bias configuration shown in Fig.Q3(c) has V_{GSQ} = -2V, I_{DQ} = 5.625 mA with I_{DSS} = 10 mA, V_P = -8V and Y_{OS} = 40 μ S. Determine g_m , r_d , Z_o and A_v .

(06 Marks)

OR

- 4 a. Differentiate between enhancement and depletion MOSFET. (05 Marks)
 - b. With necessary equivalent circuit, obtain the expression for A_v for a JFET source follower configuration. (05 Marks)
 - c. Calculate the DC bias, voltage gain, input impedance and output impedance and resulting output voltage for the cascade amplifier shown in Fig.Q4(c). Calculate the load voltage if a $10 \text{ K}\Omega$ load is connected across the output.

(10 Marks)

Module-3

5 a. Determine the lower cutoff frequency f_{LS} for the voltage divider bias network using the following parameters:

 $\begin{array}{l} C_S = 10 \ \mu f, \ C_E = 20 \ \mu f, \ C_C = 1 \ \mu f, \ R_S = 1 \ K\Omega, \ R_1 = 40 \ K\Omega, \ R_2 = 10 \ K\Omega, \ R_E = 2 \ K\Omega, \\ R_C = 4 \ K\Omega, \ R_L = 2.2 \ K\Omega, \ \beta = 100, \ r_o = \infty\Omega, \ V_{CC} = 20 \ V, \ re = 15.76 \ \Omega. \end{array} \tag{04 Marks}$

- b. Explain the following: (i) Logarithm (ii) Decibel. With respect to transistor amplifier calculate the overall lower 3 dB and upper 3 dB frequencies for a 3 stage amplifier having an individual $f_1 = 40$ Hz and $f_2 = 2$ MHz. (06 Marks)
- c. Discuss the low frequency response of BJT amplifier and give expression for lower cut off frequency due to C_C, C_E and C_S. (10 Marks)

OR

- 6 a. Draw the Hybrid π model for the transistor in CE configuration and explain the significance of each component. (06 Marks)
 - b. Describe the Miller effect and derive an equation for Miller input capacitance. (06 Marks)
 - c. Determine the high cutoff frequencies for the network shown in Fig.Q6(c).

Fig.Q6(c)

(08 Marks)

Module-4

- 7 a. With a block diagram, explain the concept of feedback amplifier and derive the expression for $A_f = \frac{A}{1 + A\beta}$. (06 Marks)
 - b. Derive the expression for Z_{if} and Z_{of} for current series feedback amplifier. (08 Marks)
 - c. Explain a practical voltage series feedback circuit.

(06 Marks)

OR

- 8 a. What is an oscillator? Discuss the concept of generating oscillations with the help of Barkhausen criteria. (05 Marks)
 - b. With a neat circuit diagram and necessary expressions, explain the Wein bridge oscillator.
 (10 Marks)
 - c. Design a unijuction transistor for a operation at 1 kHz and 150 kHz assuming $\eta = 0.58$.

 (05 Marks)

Module-5

- 9 a. Give the definition of power amplifiers and list the types of power amplifiers based on the location of Q point. (05 Marks)
 - b. Explain the working of class B complementary symmetry class B push pull amplifier.

 Obtain an expression for maximum conversion efficiency of this amplifier. (10 Marks)
 - c. Calculate the harmonic distortion components for an output signal having fundamental amplitude of 2.5 V, second harmonic amplitude of 0.25 V, third harmonic amplitude of 0.1 V and fourth harmonic amplitude of 0.05 V and also calculate the total harmonic distortion for the amplitude components given above.

 (05 Marks)

OR

- 10 a. With necessary circuit diagram and characteristic curve, explain the class-A transformer coupled amplifier. Show that the maximum efficiency can be expressed as 50%. (10 Marks)
 - b. Describe the block diagram of series and shunt type voltage regulators. (05 Marks)
 - c. Calculate the output voltage and Zener current un the regulator circuit of Fig.Q10(c) for $R_L = 5 \text{ K}\Omega$.

(05 Marks)