CBCS SCHEME 18EC32 # Third Semester B.E. Degree Examination, Jan./Feb. 2021 **Network Theory** Time: 3 hrs. Max. Marks: 100 Note: Answer any FIVE full questions, choosing ONE full question from each module. ### Module-1 a. Using source transformation and source shifting techniques, find voltage across 2Ω resistor as shown in Fig.Q.1(a). (07 Marks) b. For the network shown in Fig.Q.1(b), find the equivalent resistance between A and B using Star-Delta transformation. (05 Marks) c. Determine the node voltages V₁ and V₂ by nodal analysis for the network in Fig.Q.1(c). (08 Marks) OR a. Find the potential difference between M and N using source transformation, for the network shown in Fig.Q.2(a). (05 Marks) b. Find V_x using nodal analysis for the network shown in Fig.Q.2(b). (08 Marks) c. Determine V₀ using mesh analysis for the network shown in Fig.Q.2(c). (07 Marks) Module-2 3 a. State and prove Millman's theorem. (06 Marks) b. Find the current through Z₃ using superposition theorem for the network shown in Fig.Q.3(b). (10 Marks) c. Find the value of Z_L for which maximum power transfer occurs in the network shown in Fig.Q.3(c). (04 Marks) OR 4 a. Obtain Thevenin's and Norton's equivalent circuit at terminals AB for the network shown in Fig.Q.4(a). Hence, find the current through 10Ω resistor across AB. (12 Marks) b. Find the value of R_L for which maximum power is delivered. Also find the maximum power that is delivered to the load R_L. Refer Fig.Q.4(b). (08 Marks) #### Module-3 5 a. In the given network Fig.Q.5(a), K is closed at t = 0, with zero current in the inductor. Find the values of i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at $t = 0^+$. (05 Marks) b. In the network Fig.Q.5(b), the switch is moved from position 1 to position 2 at t = 0. The steady-state has been reached before switching. Calculate i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at $t = 0^+$. (07 Marks) c. In the network Fig.Q.5(c), the switch K is opened at t = 0. At $t = 0^+$, solve for v, $\frac{dv}{dt}$ and OR 6 a. For the circuit shown in Fig.Q.6(a), steady state is reached with switch K open. The switch is closed at t = 0. Find i_1 , i_2 , $\frac{di_1}{dt}$ and $\frac{di_2}{dt}$ at $t = 0^+$. (10 Marks) - b. For the circuit in Fig.Q.6(b). Find: - i) $v(0^+)$ and $i(0^+)$ - ii) $\frac{dv(0^+)}{dt}$ and $\frac{di(0^+)}{dt}$ iii) $v(\infty)$ and $i(\infty)$. - dt $v(\infty)$ and $i(\infty)$. Fig.Q.6(b) (10 Marks) (10 Marks) #### Module-4 7 a. Determine the current $i_L(t)$ for $t \ge 0$ for the circuit in Fig.Q.7(a). (10 Marks) b. Find the Laplace transform of the function f(t) shown in Fig.Q.7(b). (10 Marks) 8 a. Determine the voltage $v_c(t)$ and the current $i_c(t)$ for $t \ge 0$ for the circuit shown in Fig.Q.8(a). (10 Marks) b. Find the Laplace transform of f(t) shown in Fig.Q.8(b) (10 Marks) Module-5 9 a. Express Y parameters in terms of h-parameters. (06 Marks) b. Find Z-parameters for the network shown in Fig.Q.9(b). (06 Marks) - Fig.Q.9(b) V₁ Fig. V₂ - c. The Z-parameters of a two port network are $z_{11} = 20\Omega$, $z_{22} = 30\Omega$, $z_{12} = z_{21} = 10\Omega$. Find Y and ABCD parameters of the network. (08 Marks) OR - a. Prove that the resonant frequency is the geometric mean of the two half power frequencies. (06 Marks) - b. A series RLC circuit has $R = 10\Omega$, L = 0.01H and $C = 0.01\mu F$ and it is connected across 10mv supply. Calculate: i) f_0 ii) Q_0 iii) bandwidth iv) f_1 and f_2 v) I_0 . (06 Marks) - c. Find the value of R_1 such that the circuit shown in Fig.Q.10(c) is resonant. (08 Marks)