

18EC33

Third Semester B.E. Degree Examination, Jan./Feb. 2021 **Electronic Devices**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Write the figures of the resulting orbitals when isolated atoms brought together and explain the characteristics.
 - Obtain the relationship between mobility and hall coefficient in a p-type bar placed in a magnetic field in the Z-direction. (10 Marks)

OR

- Derive the equation which relates current density and mobility in a semiconductor in an 2 applied electric field.
 - A silicon bar $2\mu m$ long and $200\mu m^2$ in cross sectional area is doped with $1.5 \times 10^{17} / cm^3$ phosphorus. Find the current at 300K with 30V applied voltage. How long does it take an average electron to drift 2µm in pure silicon at an electric field of 80V/cm? Also calculate the time required at 10⁵V/cm. Assume mobility of electrons is 0.1350m²/Vsec. Also assume that saturation of electron drift velocity for silicon is 10⁷ cm/s for the electric field above 10⁵ V/cm.

- Show the effect of bias at a pn junction on transition region width, electric field, electrostatic potential, energy band diagram partic flow and current direction under the following conditions:
 - Equilibrium ii) Forward bias
 - iii) Reverse bias.
- (10 Marks)
- Illustrate the care and issues to be considered in the design of solar cells.
- (10 Marks)

- Explain Avalanche break down and obtain equation for the electron multiplication factor.
 - Derive the relationship between the open circuit voltage and optic generation rate starting from the expression for the optically generated illuminated pn junction. (10 Marks)

Module-3

- Show the hole and electron flow in a pnp transistor with proper biasing. (08 Marks)
 - For the circuit shown in Fig.Q.5(b) calculate β , I_B and I_C . Given that τ_p =18 μ s, and τ_t = 0.2 μs . What happens to the output current when I_B increases and β increases?

(06 Marks)

Explain the concept of base narrowing in a $p^+ - n - p^+$ transistor.

(06 Marks)

OR

Obtain the Ebers-Moll equations and represent the same in the model form. (12 Marks) Describe the switching effects in a CE transistor circuit. (08 Marks)

Module-4

- Analyze the effect on gate-to-channel-space charge region and IV characteristics for the following conditions in a JFET:
 - Zero gate voltage of a small drain voltage
 - Zero gate voltage of a large drain voltage ii)
 - Small V_{DS} value and small reverse-biased gate voltage. iii) (10 Marks)
 - Draw the energy band diagram in an MOS capacitor structure for the following cases:
 - i) p-type substrate for a positive gate bias
 - ii) p-type substrate for a large positive gate bias
 - n-type substrate for a positive gate bias. iii)

(10 Marks)

OR

- Write the small signal equivalent circuit of a JFET, ideal low frequency small signal equivalent circuit and ideal equivalent circuit including r_s. (10 Marks)
 - Show the channel formation in the MOS structure and I_D versus V_{DS} curve for the following cases:
 - $V_{gs} > V_t$ and small V_{DS} value i)
 - ii)
 - $V_{gs}^{S} > V_{t}$ and large V_{DS} value $V_{gs} > V_{t}$ and $V_{DS} = V_{DS}$ (sat)

(10 Marks)

Module-5

- What are the fabrication steps used in the fabrication of pn junctions? (10 Marks) (10 Marks)
 - With figures, describe the complementary MOS structure.

- Illustrate the evolution of integrated circuits. (10 Marks) (10 Marks)
 - Explain the formation of resistors in integrated circuits