

Sixth Semester B.E. Degree Examination, Jan./Feb.2021 Antenna and Propagation

Tin	ne: 3	hrs.	Max. Marks:100
	Note	: Answer FIVE full questions, selecting at least TWO question	ns from each part.
		PART – A	
1	a.	Explain the following parameters with respect to antenna systems:	
		(i) Directivity	
		(ii) Radiation intensity	
		(iii) Beam width	(09 Marks)
	b.	Show that maximum effective aperture of $\frac{\lambda}{2}$ dipole is $0.13\lambda^2$.	(06 Marks)
	c.	State and prove Frii's transmission formula.	(05 Marks)
2			
2	a.	Find the directivity for the source with unidirectional cosine squared p	oower pattern. (05 Marks)
	b.	Derive the expression for Array factor in case of linear array of 'n' iso	
		amplitude and spacing.	(10 Marks)
	c.	A linear array consists of 4 isotropic point sources. The distance between	ween adjacent elements
		is $\frac{\lambda}{2}$. The power is applied with equal magnitude and a phase difference of $\frac{\lambda}{2}$.	ence of -dr. Obtain the
		field pattern and find BWFN and HPBW.	(05 Marks)
3	a.	Derive an expression for radiation resistance of a short electric dipole	. (08 Marks)
	b.	Write short notes on folded dipole antennas.	(06 Marks)
	c.	For a short dipole $\frac{\lambda}{15}$ long, find the efficiency, radiation resistance in	f loss resistance is 1 Ω .
		Find also the effective aperture.	(06 Marks)
			,
4	4	Derive an expression for far field components of a small loop antenna	(08 Marks)
	b.	State and explain the Babinet's principle. Obtain the value of impedance of alst entering in terms of its compli-	(06 Marks)
	c.	Obtain the value of impedance of slot antenna in terms of its complining impedance Z_d .	(06 Marks)
	3	PART – B	(oo marks)
5	a.	Explain the features of an helical antenna and the practical design	considerations of the
		helical antenna.	(10 Marks)
	b.	Write short notes on:	
		(i) Yagi-Uda antenna(ii) Sleeve antenna.	/40 N/ - 1 - 1
		(ii) Sleeve antenna.	(10 Marks)

- 6 a. Explain different types of rectangular and circular horn antennas. Also derive the design equations for rectangular horn antennas. (10 Marks)
 - b. Explain: (i) Turnstile antenna
 - (ii) Ultra wide band antennas.

- 7 a. Draw and explain different ionized layers in ionospheric propagation. (10 Marks)
 - b. Explain duct wave propagation.

(05 Marks)

- c. Explain the phenomenon of Faraday Rotation and how measurement of total electron content is done for an ionospheric propagation. (05 Marks)
- 8 a. Define the terms with respect to wave propagation:
 - (i) Skip distance
 - (ii) Critical frequency.
 - (iii) Virtual height.
 - (iv) Maximum usable frequency.

(08 Marks)

b. Derive the expression for critical frequency in terms of maximum electron density N_{max} .

(09 Marks)

c. A HF radio link is established for a range of 2000 km. If the reflection region of the ionosphere is at a height of 200 km and has a critical frequency of 6 MHz. Calculate MUF.

(03 Marks)