


15EC655

# Sixth Semester B.E. Degree Examination, Jan./Feb. 2021 Microelectronics

Time: 3 hrs.

Max. Marks: 80

Note: Answer FIVE full questions, choosing ONE full question from each module.

## Module-1

- a. Derive an expression for drain current of NMOS transistor operating in different regions.
  - b. Calculate the minimum value of  $V_{DS}$  needed for a 0.8 $\mu$ m process technology for which  $t_{ox}=15$ nm,  $\mu_n=550$ cm<sup>2</sup>/V.S.
    - i) Find  $C_{ox_1} K_n^1$
    - ii) Find the over drive voltage required to operate the transistor having (W/L) = 20 in saturation with  $I_D = 0.2$ mA. (08 Marks)

### OR

2 a. Analyse the circuit in Fig.Q2(a) to determine all voltage and currents. Let:

$$V_{t} = 1V, K_{n}^{1} \left(\frac{W}{I}\right) = 1mA/v^{2}$$

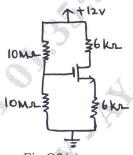



Fig.Q2(a)

(08 Marks)

b. Derive an expression for resistance between drain and source from the transfer characteristics. (08 Marks)

# Module-2

- a. Derive an expression for MOSFET transconductance using small signal operation. (08 Marks)
  - b. Differentiate between small signal equivalent model and T-equivalent model of MOSFET.

    (08 Marks)

#### OR

- 4 a. Derive an expression for R<sub>in</sub>, R<sub>0</sub> gain for a grounded gate amplifier. Justify why it is called as current followers. (08 Marks)
  - b. Briefly explain all the capacitances in MOSFET and draw its high frequency model.
    (08 Marks)

### Module-3

- Compare MOSFET and BJT based on the following parameters.
  - Current voltage equation
  - ii) Hybrid-π model
  - iii) Transition frequency
  - iv) Gain.

(08 Marks)

b. Draw the MOSFET constant current source and explain its operation.

(04 Marks)

c. For  $V_{DD}=3V$ ,  $I_{ref}=100\mu A$  design a constant current source if  $Q_1$  and  $Q_2$  are matched and have a channel length of 1  $\mu$ m, channel width of 10 $\mu$ m,  $V_t$  = 0.7 V,  $K_n^1$  = 200 $\mu$ A. $V^2$ .

(04 Marks)

#### OR

- Explain MOS current steering circuits with relevant current-voltage equations. (08 Marks)
  - Find the value of Z for the circuit shown in Fig.Q6(b) using Miller equivalent circuit when Z is : i)  $1 - M\Omega$  resistance ii) 1 - pF capacitance.

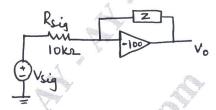



Fig.Q6(b)

(08 Marks)

# Module-4

Derive the 3-dB frequency expression for a common source amplifier.

(08 Marks)

b. A CMOS common source amplifier has  $W_L = \frac{7.2 \mu m}{0.36 \mu m}$  for all transistors,

$$\begin{split} \mu_{n}Co_{x} &= 387\mu\text{A}/v^{2}, \; \mu_{p}Co_{x} = 86\mu\text{A}/v^{2}, \; I_{ref} = 100\mu\text{A} \;, V_{A} = 5V/\mu\text{m}, C_{gs} = 20\text{fF}, C_{gd} = 5\text{fF}, \\ C_{L} &= 25\text{fF}, R_{sig} = 10K\Omega, \text{determine } F_{H}. \end{split} \tag{08 Marks}$$

- $\begin{array}{c} \textbf{OR} \\ \textbf{Explain an active loaded common gate amplifier and derive for its } R_{in}, \, R_0, \, \text{gain}. \end{array}$ 
  - b. Estimate  $A_{vo}$ ,  $R_{in}$ ,  $R_0$ ,  $G_v$ ,  $F_H$  for a common gate amplifier with  $(W_L) = \frac{7.2 \mu m}{0.36 \mu m}$

$$\begin{split} \mu n C_{ox} &= 387 \mu A/v^2, \ r_0 = 18 k \Omega, \ I_D = 100 \mu A, \ g_m = 1.25 m A/v, \ X = 0.2, \ R_S = 10 k \Omega, \\ R_L &= 100 k \Omega, C_{gs} = 20 fF, C_{gd} = 5 fF, C_L = 0. \end{split}$$

#### **Module-5**

- Explain the MOS differential pair operation with common mode and differential input (08 Marks)
  - Explain the effect of R<sub>D</sub> and g<sub>m</sub> mismatch on CMRR.

(08 Marks)

(08 Marks)

#### OR

- Determine the differential gain of an active loaded MOS pair. 10
  - With a neat circuit diagram, explain the operation of two stage CMOS opamp configuration. (08 Marks)