

GBCS SCHEME

	ÜL	U	C

17MT35

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Analog and Digital Electronics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define filter. Give the classification of filters. Mention the advantages of Active filter over passive filter. Plot the frequency response of major active filters. (12 Marks)
 - b. With the neat circuit diagram derive the expression for gain of HPF, also plot the frequency response curve. (08 Marks)

OR

- Design a low pass filter at a cutoff frequency of 1KHz with a passband gain of 2. Using the frequency scaling technique, convert 1KHz cutoff frequency of 1.6KHz. (10 Marks)
 - b. With the neat sketch, explain the operation of All pass filters. Mention its application in the communication system. Also derive the expression for gain. For the all pass filter with $f_{in} = 1 \text{KHz}$ and $R = 1.5 \text{k}\Omega$ and $c = 0.01 \mu\text{F}$, find the phase angle ϕ . (10 Marks)

Module-2

3 a. Define Oscillator, with the neat block diagram, explain the principle of Oscillation.

(08 Marks)

b. With the neat sketch and relevant equations, explain the working of RC-phase shift oscillator circuit. Also design a RC phase shift oscillator with $f_0 = 200$ Hz (12 Marks)

OR

- 4 a. With the neat sketch and waveforms, explain the operation of Noninverting comparator circuit. (10 Marks)
 - b. Explain how Inverting comparator circuit can be used as Schmitt trigger.

(10 Marks)

Module-3

- 5 a. Explain how 555 timer can be used as mono-stable multivibrator with neat block diagram.
 (10 Marks)
 - b. Explain how mono-stable multivibrator can be used as divide by 2 network. Also Design a mono-stable multivibrator as divide by 2 network with the input frequency of 2KHz and $c = 0.01 \mu F$. (10 Marks)

OR

- 6 Explain Astable Multivibrator application as
 - i) Square wave oscillator
 - ii) Free running ramp generator.

(20 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Module-4

- 7 a. Simply the following Boolean function in i) Sum of products ii) Product of sums $F = (A, B, C, D) = \varepsilon (0, 1, 2, 5, 8, 9, 10)$ (10 Marks)
 - b. Implement a Half adder circuit and also implement a Full adder circuit using two half adders.

 (10 Marks)

OR

- 8 a. Define Multiplexer. Construct a 4:1 MUX using basic gates.
 b. Design a Full adder circuit using MUX.
 (06 Marks)
 (08 Marks)
 - b. Design a Full adder circuit using MUX.
 c. Implement a 4 × 16 decoder using two 3 × 8 decoder.
 (08 Marks)
 (06 Marks)

Module-5

- 9 a. With a neat circuit diagram and truth table derive the characteristic equation for i) Clocked SR Flip-Flop ii) Clocked J K Filp-Flop. (12 Marks)
 - Design a 3 bit binary ripple up counter. (08 Marks)

OR

- 10 a. Design a BCD ripple counter using JK flip-flop. (10 Marks)
 - b. Design a Synchronous 3 bit up counter. (10 Marks)