GBGS SCHEME

18MT35

# Third Semester B.E. Degree Examination, Jan./Feb. 2021 Analog and Digital Electronics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

## Module-1

1 a. Define clamper circuit. Explain the positive clamper circuits with output waveforms.

(05 Marks)

b. For the circuit shown, sketch the waveforms of  $i_R$  and  $v_0$ , assume  $S_i$  diodes.

(07 Marks)



Fig. Q1 (b)

c. Explain the operation of RC coupled BJT amplifier.

(08 Marks)

5.3V

#### OF

- 2 a. Explain the operation of second order High pass butterworth filter and draw its frequency response. (10 Marks)
  - b. Design a wide band-pass filter with  $f_L = 200 \, \text{Hz}$  and  $f_H = 1 \, \text{kHz}$  and a passband gain = 4. Draw the frequency response plot and calculate the value of 'Q' for the filter. (10 Marks)

# Module-2

3 a. With a neat circuit diagram, explain wein bridge oscillator.

(10 Marks)

b. Design the phase shift oscillator for frequency of oscillation,  $f_0 = 200$  Hz.

(05 Marks)

c. What is frequency stability? Explain its significance.

(05 Marks)

#### OR

4 a. Define Comparator. Explain the operation of inverting comparator.

(10 Marks)

b. With the help of input and output waveforms. Explain the operation of Schmitt trigger circuit. (10 Marks)

## Module-3

- 5 a. Explain the operation of 555 timer as monostable multivibrator and derive the expression for pulse width. (10 Marks)
  - b. Design a 555 astable multivibrator for an output frequency of 1 kHz and duty cycle 60%.

(10 Marks)

## OR

6 a. With a neat sketch, explain the architecture of 555 Timer.

(06 Marks)

b. List out the features and applications of 555 Timer.

(06 Marks)

c. Derive an expression for charging time  $(T_C)$  discharging time  $(T_d)$  frequency of oscillation and duty cycle for a astable multivibrator for 555 timer. (08 Marks)

1 of 2

## Module-4

7 a. State the rules for K-map simplification.

(04 Marks)

b. Simplify the following switching function using K-map:  $F(A,B,C,D) = \sum (0,5,7,8,9,10,11,14,15) + \phi(1,4,13)$ 

(06 Marks)

c. Explain the working of 8×1 MUX with operation table and logic diagram using 4:1 MUX.

(10 Marks)

## OR

- 8 a. Explain the full subtractor circuit with a truth table and logic diagram. (10 Marks)
  - b. What is Encoder? Realize Octal to binary Encoder using basic gates and write its truth table.
    (10 Marks)

## Module-5

- 9 a. Explain clocked D flip-flop with the following:
  - (i) Logic diagram.
  - (ii) Truth table.
  - (iii) Input and Output waveform.

(10 Marks)

b. Discuss BCD ripple counter using JK flip flop with state diagram, logic diagram and timing diagram. (10 Marks)

### OR

- 10 a. Explain clocked JK flip flop by the following:
  - (i) Logic diagram.
  - (ii) Characteristic table.
  - (iii) Characteristic equation.

(10 Marks)

b. Draw and explain the working of 4-bit up synchronous counter.

(10 Marks)

\* \* \* \* \*