Seventh Semester B.E. Degree Examination, Jan./Feb.2021 **Digital Image Processing**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- With a neat block diagram, explain the fundamental steps involved in "Digital Image 1 (10 Marks) Processing".
 - b. Explain brightness adaptation with the help of suitable diagram.

(10 Marks)

- With block diagram, explain the components of a general purpose image processing system. (10 Marks)
 - With a neat sketch, explain the structure of human eye.

(10 Marks)

Module-2

Consider the image segment given in Fig. Q3 (a). Let $V = \{0, 1\}$. Compute the lengths of the (06 Marks) shortest 4, 8 and m path between p and q.

- Let p and q are the two pixels at coordinates (100, 120) and (130, 160) respectively. (04 Marks) Compute (i) Euclidian distance (ii) Chess board distance.
- Explain the sampling and quantization and representation of digital image.

(10 Marks)

OR

- Explain the following terms between pixels
 - Neighbors of a pixel.
 - Adjacency (ii)
 - Connectivity. (iii) Region.

(10 Marks)

(iv) With a neat diagram, explain image acquisition using single sensor, linear sensor strip and (10 Marks) circular sensor strip.

Module-3

For a 2×2 transform A and the image $u = A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $u = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$,

Calculate the transformed image V and the bias images. Also reconstruct the original image (10 Marks) u by inverse transform.

b. Discuss any three properties of 2D Discrete Fourier transform.

(10 Marks)

OR

6 a. Compute the Haar Basis for N = 2.

(10 Marks)

b. Write the expression for 2D discrete cosine transformation pair. Also compute DCT matrix for N = 4. (10 Marks)

Module-2

- 7 a. Explain the following image enhancement techniques,
 - (i) Contrast stretching.
 - (ii) Intensity level slicing.
 - (iii) Bit-plane slicing.

(10 Marks)

b. A 3 bit image of size 64×64 has intensity distribution as shown in table. Implement histogram equalization and plot the same.

Gray level	0	1	2	3	4	5	6	7
Number of pixels	790	1023	850	656	329	245	122	81

(10 Marks)

OR

8 a. Briefly explain homomorphic filtering and its implementation.

(10 Marks)

- b. Write the functions for the below smoothing frequency domain filters:
 - (i) Ideal low pass filter.
 - (ii) Butterworth low pass filter.
 - (iii) Gaussian low pass filter.

(10 Marks)

Module-5

9 a. Write the functions and characteristics for different noise models.

(10 Marks)

b. Derive the equation for Wiener filtering.

(10 Marks)

OR

10 a. Write a note on RGB colour model with neat diagram.

(10 Marks)

b. What is pseudo colour image processing? Explain intensity slicing with neat sketches.

(10 Marks)

* * * * *