

CBCS SCHEME

					 -	
- 1			1 /			1 1
		1	1		1	1 1
)		1		3	1 1
						1 1

17MN42

Fourth Semester B.E. Degree Examination, Jan./Feb. 2021 Thermodynamics and Fluid Mechanics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Define system, classify system. 1

(08 Marks)

Explain thermodynamic Equilibrium.

(04 Marks)

Explain the Quai-static process with a neat sketch.

(08 Marks)

OR

Explain the displacement work of a thermodynamic system with neat sketch.

(08 Marks)

Compare work and heat. b.

(06 Marks)

Classify Energy.

(06 Marks)

Module-2

3 a. Explain the second law of thermodynamics according to (i) Clausius (ii) Kelvin plank

(08 Marks)

State first law of thermodynamics. b.

A fluid system undergoes a non-flow frictionless process following the pressure-volume +1.5, where P is in bar and V in m³. During the process the volume changes from 0.15m^3 to 0.05m^3 and the system rejects 45 kJ of heat. Determine :

(i) Change in internal energy

(10 Marks)

(ii) Change in enthalpy.

OR

- Derive an expression for workdone in a single stage compressor without clearance volume.
 - A single state, double acting air compressor is required to deliver 14m³ of air per minute measured at 1.013 bar and 15°C. The delivery pressure is 7 bars and the speed is 300rpm. Take the clearance volume as 5% of the swept volume with a compression and expansion index n = 1.3. Calculate the swept volume of the cylinder, the delivery temperature and the indicated power. (10 Marks)

Module-3

- Define surface tension. Obtain an Expression for water droplet, liquid jet and Hollow 5 (10 Marks)
 - Derive an expression for Capillary rise and Capillary fall.

(10 Marks)

OR

With a neat sketch, derive an expression for discharge through orificemeter.

(10 Marks)

Derive Darcy-Weisbach equation.

(10 Marks)

Module-4

7 a. Explain the working of Bourdon's pressure gauge.

(10 Marks)

b. Derive an expression for total pressure and center of pressure for a inclined plane surface submerged in liquid. (10 Marks)

OF

8 a. Explain the conditions of Equilibrium for floating and submerged bodies.

(10 Marks)

- b. Define:
 - (i) Meta-centre and Meta-centric height
 - (ii) Buoyancy and center of buoyancy.

(04 Marks)

c. With a neat diagram, derive an expression for meta-centric height by experimental method.
(06 Marks)

Module-5

- 9 a. Derive an expression for Bernoulli's equation from Euler's equation of motion. (10 Marks)
 - b. The water is flowing through a tapering pipe having diameters 300mm and 150mm at section 1 and 2 respectively. The discharge through the pipe is 40 liter/sec. The section 1 is 10m above datum and section 2 is 6m above datum. Find the intensity of pressure at section 2 if that at section 1 is 400kN/m². (10 Marks)

OR

10 a. Explain the concept of hydraulic gradient line and total energy line with a neat sketch.

(08 Marks)

b. Determine the difference in the elevation between the water surface in the two tanks which are connected by a horizontal pipe of diameter 30cm and length 400m. The rate of flow of water through the pipe is 300 liters/second. Consider all losses and take the value of friction factor f = 0.032, also draw the TEL and HGL.

(12 Marks)

2 of 2