

17AE753

Seventh Semester B.E. Degree Examination, July/August 2021 Numerical Methods

Time: 3 hrs.

NGALORY

Max. Marks: 100

Note: Answer any FIVE full questions.

- 1 a. Explain the terms: (i) Absolute and Relative errors
- (ii) Inherent errors

- (iii) Round off errors
- (iv) Truncation error.

(06 Marks)

b. Use Taylor series expansion (zero through fourth order) to predict f(2) for $f(x) = \ln(x)$ with a base point at x = 1. Determine the true percentage relative error for each approximation.

(07 Marks)

c. What are the pitfalls of Gauss-elimination method? Solve the following system of equation using Gauss Elimination method.

$$2x + y + z = 10$$

 $3x + 2y + 3z = 18$
 $x + 4y + 9z = 16$

(07 Marks)

a. Solve the system of equation by LU factorization method,

$$2x + 3y + z = 9$$
$$x + 2y + 3z = 6$$
$$3x + y + 2z = 8$$

Take all the diagonal elements of L as 1

(10 Marks)

b. Solve the following equations by Gauss-Seidel method,

$$8x + 2y - 2z = 8$$

 $x - 8y + 3z = -4$
 $2x + y + 9z = 12$

(10 Marks)

3 a. Find the form of the function f(x) under suitable assumption from the following data.

	Derroot	TO WDG	arrip tre
X	0	1 2	5
f(x)	2	3 12	147

Hence find f(3).

(10 Marks)

b. Find the dominant eigen value and the corresponding eigen vector of the matrix by power method. Given

$$A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 (10 Marks)

4 a. Using the Jacobi method find all the eigen values and the corresponding eigen vectors of the matrix,

$$A = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$$
 (10 Marks)

b. Reduce the matrix into a tridiagonal matrix using the House Holder's method,

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}. \tag{10 Marks}$$

5 a. From the table of values below compute $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for x = 1.

v	1	2	3	4	5	6
A	1	0	27	61	125	216
У	1_	0	41	04	123	210

(10 Marks)

- b. Evaluate the integral $I = \int_{1}^{2} \frac{2x}{1+x^4} dx$ using the Gauss Legendre 2 point and 3 point quadrature rule. (10 Marks)
- a. A rod is rotating in a plane about one of its ends. If the following table gives the angle θ radians through which the rod has turned for different values of time t seconds. Find its angular velocity and angular acceleration at t = 7 secs.

t secs	0.0	0.2	0.4	0.6	0.8	1.0
θ radians	0.0	0.12	0.48	0.10	2.0	3.20

b. Evaluate $I = \int_{0}^{1} \int_{0}^{1} e^{x+y} dxdy$ using the Trapezoidal and Simpson's rule with h = k = 0.5

(10 Marks)

7 a. Given the data points:

X	1	2	3	4 🔏	4 5	
У	13	15	12	9	13	

Find the natural cubic spline interpolation at x = 3.4

(10 Marks)

b. The following data for a function f(x, y) is given,

X	0	1
у		
0	1	1.414214
1	1.732051	2

Construct the bivariate polynomial and hence find f(0.25,0.75).

(10 Marks)

- 8 a. Find the cubic polynomial which takes the following values y(0) = 1, y(1) = 0, y(2) = 1, y(3) = 10. Hence or otherwise obtain y(4).
 - b. We are given the following values of a function of the variable t.

	0					
t	0.1	0.2	0.3	0.4		
f	0.76	0.56	0.44	0.35		

Obtain a least squares fit of the form $f = ae^{-3t} + be^{-2t}$

(10 Marks)

- 9 a. Determine a root of the equation $\sin x + 3\cos x 2 = 0$ using the secant method. The initial approximation are (0, 1.5). Carry out the iteration upto five decimal place accuracy.

 (10 Marks)
 - b. Perform three iterations of the Muller's method to find the smallest positive root of the equation in the interval (0, 1), $f(x) = x^3 5x + 1 = 0$. (10 Marks)
- 10 a. Perform three iterations of the Newton Raphson method to solve the system of equations,

$$x^{2} + xy + y^{2} = 7$$

 $x^{3} + y^{3} = 9$ (10 Marks)

b. Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$

Starting from the point $x_1 = \begin{cases} 0 \\ 0 \end{cases}$ using conjugate gradient method. (10 Marks)

* * * * *