Seventh Semester B.E. Degree Examination, July/August 2021 **Computational Fluid Dynamics**

Max. Marks: 80

Note: Answer any FIVE full questions.

- With usual notations and relevant sketches derive time rate of change following a moving
 - b. Considering an infinitesimally small moving fluid element, derive momentum equation for x-component and also write the y and z component equation. (10 Marks)
- Derive an expression for the divergence of the velocity and explain its physical meaning.
 - Considering an infinitesimally small moving fluid element derive energy equation with (10 Marks)
- Classify a simple system of quasi linear partial differential equations with relevant (08 Marks)
 - b. Describe the following with sketches:
 - Steady inviscid supersonic flow.
 - Steady boundary layer flow.

(08 Marks)

(08 Marks)

- With the help of relevant sketches, explain the general behavior of Hyperbolic equations.
 - Describe the following with sketches,
 - (i) Parabolised viscous flow.
 - (ii) Unsteady thermal conduction.

(08 Marks)

- With the help of relevant sketches, explain boundary fitted co-ordinate system. (08 Marks)
 - Describe the following:
 - (i) Surface Grid Generation.
 - Meshless grids. (ii)

(08 Marks)

- a. With the help of relevant sketches, explain adaptive grids. List its advantages. (08 Marks)
 - b. Describe structured grids. Explain the different methods of structured grid generation.

(08 Marks)

- Describe the Taylor Sever approach for the construction of finite difference equation. 7 Represent the graphical concept of finite difference methods. (08 Marks)
 - b. Explain Explicit and Implicit approaches. List their advantages and disadvantages. (08 Marks)
- Describe the following with relevant sketches: a.
 - (i) Up-wind scheme (ii) Numerical and artificial viscosity. (08 Marks)
 - With the help of relevant sketches and equations, explain the transformation of governing partial differential equations from physical domain to computational domain. (08 Marks)

- 9 a. With the help of a neat sketch, explain cell centered and cell vertex techniques. (08 Marks)
 - b. Describe the following with equations and sketches:
 - (i) Temporal descretization.
 - (ii) Spatial descretization.

(08 Marks)

10 a. Describe high resolution scheme with relevant sketches and equations.

(08 Marks)

b. Explain the following with relevant sketches and equations:

- (i) Flux vector splitting.
- (ii) Upwind biasing.

(08 Marks)

* * * * *