

18EE45

## Fourth Semester B.E. Degree Examination, July/August 2021 Electromagnetic Field Theory

Time: 3 hrs.

AAH0,

Max. Marks: 100

## Note: Answer any FIVE full questions.

- 1 a. Given three points in Cartesian co-ordinate system as A(3, -2, 1), B(-3, -3, 5) and C(2, 6, -4) Find:
  - i) The vector from A to C
  - ii) The unit vector from B to A
  - iii) The vector from 'A' to the mid point of the straight line joining B to C. (06 Marks)
  - b. Derive the relationship between rectangular and cylindrical co-ordinates. (06 Marks)
  - c. State and explain Gauss law. Find the electric field intensity at a distance 'r' from an infinite line charge using Gauss's law. (08 Marks)
- 2 a. State and explain Coulomb's law in vector form. (06 Marks)
  - b. A charge  $Q_2 = 121 \times 10^{-9}$ C is located in vaccum at  $P_2$  (-0.03, 0.01, 0.04)m. Find the force on  $Q_2$  due to  $Q_1 = 110\mu$ C at  $P_1(0.03, 0.08, -0.02)$ m. (08 Marks)
  - c. Find  $\overline{H}$  in Cartesian coordinates of the vector field  $\overline{H} = 20\overline{a}_r 10\overline{a}_\phi + 3\overline{a}_z$  at point P(x = 5, y = 2, z = -1).
- 3 a. Prove that  $\overline{E} = -\nabla v$  in an electric field. (06 Marks)
  - b. Derive the expression for the capacitance of a parallel plate capacitor. (06 Marks)
  - c. Given the potential field  $V = 50x^2yz + 20y^2V$  in free space. Find: i) V at P(1, 2, 3) ii)  $E_p$  iii)  $\hat{a}_r$  at P. (08 Marks)
- 4 a. Derive the boundary conditions, the interface between a conductor and free space.

(06 Marks)

- b. With usual notations prove that  $\nabla . \bar{J} = \frac{-\partial \rho v}{\partial t}$ . (06 Marks)
- c. Point charges  $Q_1 = 1$ nc,  $Q_2 = -2$  nc,  $Q_3 = 3$ nc and  $Q_4 = -4$ nc are placed one by one in the same order at (0, 0, 0), (1, 0, 0), (0, 0, -1) and (0, 0, 1) respectively. Calculate the energy in the system when all charges are placed. (08 Marks)
- 5 a. State and prove uniqueness theorem. (06 Marks)
  - b. State and explain Biot-Savart's law and Ampere' circuital law. (06 Marks)
  - c. Let  $V = \frac{\cos 2\phi}{r}$  in free space
    - i) Find the volume charge density at a point A(0.5, 60°, 1)
  - ii) Find  $\overline{E}$  at B(2, 30°, 1). (08 Marks)
- 6 a. Derive Poisson's and Laplace equation. Write Laplace equation in all the coordinate systems. (06 Marks)
  - b. Discuss the concept of vector magnetic potential and arrive at expression for it. (08 Marks)
  - <sup>c.</sup> If the magnetic field intensity in a region is  $\overline{H} = (3y-2)\overline{a}_z + 2x\overline{a}_y$ . Find the current density (J) at the origin. (06 Marks)

## 18EE45

State and explain Lorentz force equation.

(06 Marks)

- Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical tube of length 60cm and of a diameter 6cm given that medium is air. Derive the expression used.
- Derive an equation for the magnetic force between the two differential current elements.

(06 Marks)

- Derive the boundary conditions at the interface between two magnetic materials of different 8 (08 Marks) permeabilities.
  - b. Find the force per meter length between two long parallel wires separated by 10cm in air and carrying a current of 10A in the same direction.
  - c. A point charge of Q = -1.2C has a velocity  $\overline{V} = (5\overline{a}_x + 2\overline{a}_y 3\overline{a}_z)m/s$ . Find the magnitude of the force exerted on a charge if
    - $\overline{E} = -18\overline{a}_x + 5\overline{a}_y 10\overline{a}_z v/m$
    - $\overline{B} = -4\overline{a}_x + 4\overline{a}_y 3\overline{a}_z T$ ii)

(06 Marks)

- Write Maxwell's equations in point form and in integral form for time varying fields. (06 Marks)
  - Find amplitude of displacement current density in a free space within a large power distribution transformer where  $\overline{H} = 10^6 \cos(377t + 1.2566 \times 10^{-6} z) \overline{a}_y \text{ A/m}$ . (06 Marks)
  - State and prove Poynting theorem.

(08 Marks)

State and explain Faraday's law. 10

(06 Marks)

- Derive the wave equations in  $\overline{E}$  and  $\overline{H}$  for a uniform plane wave travelling in free space.
- The magnetic field intensity of uniform plane wave in air is 20 (A/m) in ay direction. The wave is propagating in the  $\bar{a}_z$  direction at an angular frequency of  $2 \times 10^9$  (rad/sec). Find:
  - Phase shift constant i)
  - Wavelength ii)
  - Frequency iii)
  - Amplitude of electric field intensity.

(08 Marks)