

18ELN14/24

First/Second Semester B.E. Degree Examination, Jan./Feb. 2021 Basic Electronics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain the operation of p-n junction diode under forward and reverse biased condition.

 (08 Marks)
 - o. Write a short note on:
 - i) Light emitting diode
 - ii) Photo coupler.

(06 Marks)

c. Explain the operation of 7805 fixed IC voltage regulator.

(06 Marks)

OF

- 2 a. With neat circuit diagram and waveform explain the working of a centre tapped full wave rectifier. (08 Marks)
 - b. Explain briefly the operation of a capacitor filter circuit.

(06 Marks)

c. For the diode circuit shown in Fig.Q2(c), determine V₀ and I_D.

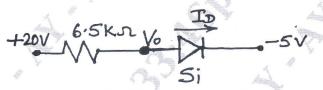


Fig.Q2(c)

(06 Marks)

Module-2

a. Explain the characteristics of N-channel JFET.

(08 Marks)

b. With neat circuit diagram, explain the working of CMOS inverter.

(08 Marks)

c. A certain JFET has an I_{GSS} of -2nA for $V_{GS} = -20V$. Determine the input resistance.

(04 Marks)

OR

4 a. Draw and explain the operations of SCR using 2 – transistor equivalent circuit.

(08 Marks)

b. Explain phase controlled application of SCR.

(06 Marks)

c. Explain the construction and working of P - channel enhancement type MOSFET. (06 Marks)

Module-3

- 5 a. For an op-amp:
 - i) List the characteristics of an ideal ap-amp
 - ii) Draw the three input inverting summer circuit and derive the expression for its output voltage. (08 Marks)
 - b. Define the terms:
 - i) Slew rate
 - ii) CMRR
 - iii) Common mode gain AC of op-amp.

(06 Marks)

c. Design an adder circuit using an op-amp to obtain an output voltage of $-[2V_1 + 3V_2 + 5V_3]$.

(06 Marks)

1	1	٦	
•	D	1	ĸ

- a. Derive an expression for the output voltage of a non-inverting amplifier. (06 Marks)
 b. With a neat diagram, explain how an op-amp can be used as a integrator. (06 Marks)
 c. A non-inverting amplifier circuit has an input resistance of 10KΩ and feedback resistance
 - c. A non-inverting amplifier circuit has an input resistance of $10 \text{K}\Omega$ and feedback resistance 60Ω with load resistance of $47 \text{K}\Omega$. Draw the circuit. Calculate the output voltage, voltage gain, load current when the input voltage is 1.5V. (08 Marks)

Module-4

- 7 a. Briefly explain how a transistor used as an electronic switch. (06 Marks)
 b. Explain how 555 timer can be used as an oscillator. (06 Marks)
 - c. Define an oscillator. Derive the equation for Wien bridge oscillator. (08 Marks)

OR

- 8 a. Explain the Barkhausens criteria for oscillations. (06 Marks)
 - b. Draw and explain the operation of a voltage series feedback amplifier and derive an expression for its voltage gain with feedback. (06 Marks)
 - c. Explain the operation of an RC phase shift oscillator. (08 Marks)

Module-5

- 9 a. Convert the following:
 - i) $(867)_{10} = (?)_2 = (?)_{16}$
 - ii) $(110111101.01)_2 = (?)_{10} = (?)_{16}$. (08 Marks)
 - b. Simplify the following expressions and draw the logic circuit using basic gates.
 - i) $Y = \overline{AB} + \overline{AC} + A\overline{B}\overline{C} + (\overline{AB} + \overline{C})$
 - ii) $Y = A(\overline{ABC} + ABC)$. (06 Marks)
 - c. Realize a full adder circuit using 2 half adders. (06 Marks)

OR

- 10 a. Perform the following:
 - i) Convert $(ABCD)_{16} = (?)_2 = (?)_8$
 - ii) Convert $(4477.85)_{10} = (?)_{16} = (?)_8$. (08 Marks)
 - b. Draw and explain 4-bit shift register. (06 Marks)
 - c. With a neat block diagram, explain the working of a communication system. (06 Marks)

* * * * :