LOF TECHNOLOG	L	G363 SG		
USN	*			

18MEA21

Second Semester M.Tech. Degree Examination, July/August 2021
Finite Element Methods

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

1 a. Write a short notes on FEM, applications and limitations.

(10 Marks)

b. Explain the convergence criteria in FEM with requirements.

(10 Marks)

2 a. Briefly explain the steps involved in FEM.

(08 Marks)

b. The Fig.Q2(b) shows a bar fixed at both ends subjected to an axial load as indicated. Determine the displacement at loading point and the corresponding stress.

$$E=A=1$$
 wet a 1 1 $P=2N$ Fig.Q2(b)

(12 Marks)

a. Derive the stiffness matrix for bar element.

(06 Marks)

- b. A bar is loaded as shown in Fig.Q3(b), E = 200GPa by using penalty method find:
 - i) Nodal displacements
 - ii) Reactions at the supports
 - iii) Stresses in each element.

(14 Marks)

4 a. Derive the stiffness matrix to 3D truss element.

(10 Marks)

b. For a truss element shown in Fig.Q4(b) determine the nodal displacement, take $A = 200 \text{mm}^2$; E = 200 GPa.

(10 Marks)

5 a. Derive the shape function for 4 noded quadrilateral elements.

(10 Marks)

b. Explain isoparametric, subparametric and super parametric elements with examples.

(10 Marks)

18MEA21

(20 Marks)

6	a.	Drive the shape function of quadratic quadrilateral 9-noded 2D element.	(10 Marks)
U	b.	Derive the shape function for Hexa-8 3D element.	(10 Marks)
7	a. b.	Explain the FE formulation for triangular plate element. Explain classical thin plate theory for shell and plate elements.	(08 Marks) (12 Marks)
8	a. b.	Give the detail FE formulation of: Flat element Curved elements	
	c. d.	Cylindrical elements Conical shell elements.	(20 Marks)
9	a. b.	Derive the mass matrix for CST element. Derive the mass matrix for truss element.	(10 Marks) (10 Marks)

Find the eigen values and eigen vector for stepped bar when it is subjected to axial vibration with fixed free end condition as shown in Fig.Q10.

 $A_1 = 400 \text{mm}^2$ $A_2 = 200 \text{mm}^2$ E = 2006 Pa $Specific weight = 7850 \text{ kg/m}^3$ Fig.Q10

* * * * *