Bio-inspired synthesis of Y₂O₃:Eu³⁺ red nanophosphor for eco-friendly photocatalysis

J.B. Prasanna kumar^{1, 2}, G. Ramgopal³, Y.S. Vidya⁴, K.S. Anantharaju^{5*}, B. Daruka Prasad⁶, S.C. Sharma⁷, S.C. Prashantha⁵, H.B. Premkumar⁸, H. Nagabhushana^{9*}

¹Department of Physics, GFGC Tumkur, Tumkur-572 102, Karnataka, India

² Department of Physics, Sathyabama University, Jeppiaar Nagar, Chennai-600 119,

Tamilmadu, India

³Department of Physics, Maharani's science college, Palace Road, Bangalore-560 001, Karnataka, India

⁴Department of Physics, Lal Bahadur Shastry Government First Grade College, Bangalore 560 032, India

⁵Research Center, Department of Science, East West Institute of Technology, Bangalore 560 091, India.

⁶Department of Physics, B M S Institute of Technology, Yelahanka, Bangalore-560064, India.

⁷ Vice chancellor, Chattisgarh Swami Vivekananda Technical University, Bhilai (CG)-493441,

India.

⁸Department of Physics, Acharya Institute of Technology, Bangalore-560 090, India

⁹Prof. CNR Rao Centre for Advanced Materials, Tumkur University, Tumkur-572103, India

Abstract

We report the synthesis of Y_2O_3 : Eu³⁺ (1-11 mol %) nanoparticles (NPs) with different morphologies via eco- friendly, inexpensive and simple low temperature solution combustion method using *Aloe Vera* gel as fuel. The formation of different morphologies of Y_2O_3 : Eu³⁺ NPs were characterized by PXRD, SEM, TEM, HRTEM, UV-Visible and PL techniques. The PXRD data and Rietveld analysis confirms the formation of single phase Y2O3 with cubic crystal structure. The influence of Eu³⁺ ion concentration on the morphology, UV absorption, PL emission and photocatalytic activity of Y_2O_3 : Eu³⁺ nanostructures were investigated. Y_2O_3 : Eu³⁺ NPs exhibit intense red emission with CIE chromaticity coordinates (0.50, 0.47) and correlated color temperature values at different excitation ranges from 1868 to 2600 K. The control of Eu³⁺ ion on Y₂O₃ matrix influences the photocatalytic decolorization of methylene blue (MB) as a model compound was evaluated under UVA light. Enhanced photocatalytic activity of conical shaped Y_2O_3 : Eu³⁺ (1 mol %) was attributed to dopant concentration, crystallite size, textural properties and capability of reducing the electron-hole pair recombination. The trend of inhibitory effect in the presence of different radical scavengers followed the order $SO_4^{2^2} > Cl^2 >$ $C_2H_5OH > HCO_3^{-} > CO_3^{-2}$. These findings show great promise of Y_2O_3 : Eu³⁺ NPs as a red phosphor in warm white LEDs as well as eco-friendly heterogeneous photocatalysis.

Key words: Bio-inspired; *Aloe Vera* gel; Y₂O₃; Eu³⁺; Nanophosphors; Photocatalysis *Corresponding Author: E-mail address: <u>bhushanvlc@gmail.com</u>, <u>ananth.che@gmail.com</u>, vidyays.phy@gmail.com