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Abstract. In this paper, we define power oscillatory mean and its dual form in n variables and prove their mono-

tonicity.
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1. Introduction

In the literature, arithmetic mean and geometric means are thoroughly studied by various

researchers.

For a, b > 0

A(a,b) = F1(a,b) =
a+b

2
,

G(a,b) = F2(a,b) =
√

ab,
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L(a,b) =

 a−b
lna−lnb a 6= b,

a a = b,

I(a,b) =

 e(
a lna−b lnb

a−b −1) a 6= b,

a a = b,

Mr(a,b) =


(

ar+br

2

) 1
r

r 6= 0,
√

ab r = 0,

H(a,b) =
a+
√

ab+b
3

,

Hk(a,b) =
(

ak +(ab)
k
2 +bk

3

) 1
k

are respectively called arithmetic mean, geometric mean. logarithmic mean, identric mean,

power mean, Heron mean and power type Heron mean.

All these means defined above have been studied and many remarkable inequalities with

some identities have been established. For more details the interested reader is referred to

[1, 2, 4, 5, 6, 7, 8, 9].

In [3, 10], the authors defined oscillatory mean, rth oscillatory mean and its dual’s and es-

tablished some new inequalities and the best possible values of these means with logarithmic

mean, identric mean and power mean are obtained.

Definition 1.1. [10] For a,b > 0 and α ∈ (0,1), Oscillatory mean and its dual form are as

follows;

O(a,b;α) = αG(a,b)+(1−α)A(a,b),

O(d)(a,b;α) = G(a,b)αA(a,b)1−α .

Definition 1.2. [3] For a,b > 0 and α ∈ (0,1), rth oscillatory mean and its dual form are as

follows;

O(a,b;α,r) = αMr(a,b)+(1−α)A(a,b),
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O(d)(a,b;α,r) = Mr(a,b)αA(a,b)1−α .

Enlightened from oscillatory mean and rth oscillatory mean, in the forthcoming sections, we

introduce power oscillatory mean and its dual. Also, establish monotonicity and some inter-

related inequalities. In concluding section, consequent examples are appended.

2. Preliminaries

In this section, the power type oscillatory mean and its dual are defined as follows.

Definition 2.1. For a,b > 0, a real number k ∈ [0,∞), and α ∈ (0,1) then power type oscillatory

mean is denoted by O(a,b;α,k) and defined as;

O(a,b;α,k) =



[
αG(ak,bk)+(1−α)A(ak,bk)

] 1
k

k 6= 0;

Hk(a,b) α = 1
3 ;

G(a,b) k = 0;

equivalently,

O(a,b;α,k) =



[
α(ab)

k
2 +(1−α)

(
ak+bk

2

)] 1
k

k 6= 0;(
ak+(ab)

k
2 +bk

3

) 1
k

α = 1
3 ;

√
ab k = 0.

Definition 2.2. For a real number k ∈ [0,∞), and α ∈ (0,1) then power type dual oscillatory

mean is denoted by O(d)(a,b;α,k) and is defined by

O(d)(a,b;α,k) =



[
Gα(ak,bk)A1−α(ak,bk)

] 1
k

k 6= 0;(
G

1
3 (ak,bk)A

2
3 (ak,bk)

) 1
k

α = 1
3 ;

G(a,b) k = 0;
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equivalently,

O(d)(a,b;α,k) =



(ab)
α

2

(
ak+bk

2

) 1−α

k

k 6= 0;

(
√

ab)
1
3

(
ak+bk

2

) 2
3k

α = 1
3 ;

√
ab k = 0.

Now, we state properties of power type oscillatory mean and its dual.

For a real number k ∈ [0,∞) and α ∈ (0,1) the power type oscillatory mean and its dual are

satisfies the following properties.

Property 2.3. The means O(a,b;α,k) and Od(a,b;α,k) are

(1) Symmetric :

O(a,b;α,k) = O(b,a;α,k) and O(d)(a,b;α,k) = O(d)(b,a;α,k).

(2) Homogeneous :

O(at,bt;α,k) = tO(a,b;α,k) and O(d)(at,bt;α,k) = tO(d)(a,b;α,k).

Property 2.4. According to Definition 2.1 and Definition 2.2, the following characteristic prop-

erties for O(a,b;α,k) and O(d)(a,b;α,k) are straightforward.

For a real number k ∈ [0,∞) and α ∈ (0,1) then

(1) O(a,b; 1
3 ,k) =

(
ak+(ab)

1
k +bk

3

)
= Hk(a,b).

(2) O(a,b;α,0) = G(a,b) = O(a,b;1,k).

(3) O(a,b;α,1) = O(a,b;α).

(4) O(a,b;0,k) = Mk(a,b) = O(d)(a,b;0,k).

(5) O(a,b; 1
2 ,k) = M k

2
(a,b).

(6) O(a,b; 1
2 ,2) = A(a,b).

(7) O(d)(a,b; 1
3 ,k) = [G(a,b)M k

2
(a,b)]

1
3 .

(8) O(d)(a,b; 1
3 ,1) = [G(a,b)M1

2
(a,b)]

1
3 .

(9) O(d)(a,b;α,1) = O(d)(a,b;α).

(10) O(d)(a,b;α,0) = G(a,b) = O(d)(a,b;1,k).

(11) O(d)(a,b; 1
2 ,k) = [G(a,b)Mk(a,b)]

1
2 .

(12) O(d)(a,b; 1
2 ,1) = [G(a,b)A(a,b)]

1
2 .
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(13) min(a,b)≤ O(d)(a,b;α,k)≤ O(a,b;α,k)≤ max(a,b).

3. Monotonic Results

In this section, the monotonicity and behavior of the power type oscillatory means in different

situations are studied.

Theorem 3.1. For α ∈ (0,1) and k ∈ [0,∞) a real number and for a,b > 0 , then

O(d)(a,b;α,k)≤ O(a,b;α,k).

Proof. The proof of Theorem 3.1 follows from well known power mean inequality.

Mr(a,b) =


(

ak +bk

2

) 1
k

, r 6= 0;

√
ab, r = 0.

Theorem 3.2. The power type oscillatory mean O(a,b;α,k) and the power type dual oscillatory

mean O(d)(a,b;α,k) are decreasing functions with α ∈ (0,1), for a,b > 0 and k ∈ [0,∞),

O(a,b;α,k)> O(a,b;α +1,k)

and

O(d)(a,b;α,k)> O(d)(a,b;α +1,k).

Proof. From Definition 2.1, we find that

O(a,b;α,k) =
[

αG(ak,bk)+(1−α)A(ak,bk)

] 1
k

=

[
α(akbk)

1
2 +(1−α)

(
ak +bk

2

)] 1
k

>

[
α

[
(akbk)

1
2 −
(

ak +bk

2

)]
+(akbk)

1
2

] 1
k

=

[
(1+α)(akbk)

1
2 −α

(
ak +bk

2

)] 1
k

=O(a,b;α +1,k).
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From Definition 2.2, we have

O(d)(a,b;α,k) =
[
(akbk)α/2

(
ak +bk

2

)(1−α)] 1
k

=

[[
(akbk)

1
2(

ak+bk

2

)]α(ak +bk

2

)] 1
k

>

[[
(akbk)

1
2(

ak+bk

2

)]α

(akbk)
1
2

] 1
k

=

[(
ak +bk

2

)−α

(akbk)
α+1

2

] 1
k

=O(d)(a,b;α +1,k).

This completes the proof of Theorem 3.2.

Theorem 3.3. For a,b > 0, α ∈ (0,1), k ∈ [−∞,∞) be a real number then the power type

oscillatory mean O(a,b;α,k) and the power type dual oscillatory mean O(d)(a,b;α,k) are

monotonically increasing with respect to k, for fixed α.

Proof. From Definition 2.1, we have

O(a,b;α,k) =
[

αG(ak,bk)+(1−α)A(ak,bk)

] 1
k

=

[
α(ab)

k
2 +(1−α)

(
ak +bk

2

)] 1
k

on differentiating with respect to k on both sides gives,

∂

∂k
[O(a,b;α,k)]

=
1
k

[
α(ab)

k
2 +(1−α)

(
ak +bk

2

)] 1
k−1[

α(ab)
k
2 log
√

ab+(1−α)
akloga+bklogb

2

]

=
1
k

[
α(ab)

k
2 +(1−α)

(
ak +bk

2

)] 1
k−1

log
[
(aak

bbk
)

1
2

(aakbbk
)

α

2
(
√

ab)α(
√

ab)k
]
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hence for all k > 0 and fixed α ,

O(d)(a,b;α,k) =[Gα(ak,bk)A1−α(ak,bk)]
1
k

=

[
(ab)

kα

2

(
ak +bk

2

)(1−α)] 1
k

=(ab)
α

2

[(
ak +bk

2

) 1
k
](1−α)

=Gα(a,b)M1−α

k (a,b).

Since Mk(a,b) is monotonically increasing for k and fixed α , hence O(d)(a,b;α,k) is also mono-

tonically increasing with respect to k. This completes the proof of the Theorem.

4. Some inequalities

By replacing a = t +1,b = 1, in definition 2.1 and 2.2, then the Taylor’s series expansion of

O(a,b;α,k) and O(d)(a,b;α,k) are as follows

O(t +1,1;α,k) = 1+
1
2

t +
(1−α)(k−1)

8
t2 + ...

O(d)(t +1,1;α,k) = 1+
1
2

t +
(1−α)(k−1)

8
t2 + ...,

L(a,b) = L(t +1,1) = 1+
t
2
− 1

12
t2 + ...,

I(a,b) = I(t +1,1) = 1+
t
2
− 1

24
t2 + ...,

Hp(a,b) = Hp(t +1,1) = 1+
t
2
+

2p−3
24

t2 + ...,

Mr(a,b) = Mr(t +1,1) = 1+
t
2
+

r−1
8

t2 + ...,

From Theorem 3.2 and Taylor’s series expansion of various means as above, we compute the

following inequalities.
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For a,b > 0, α ∈ (0,1), k1,k2 ∈ [0,∞) then,

Property 4.1. For k1 ≤ 2p
3(1−α) ≤ k2, following double inequality holds

(1) O(d)(a,b;α,k1)≤ Hp(a,b)≤ O(a,b;α,k2)

Further more k1 =
2p

3(1−α) = k2 is the best possible for (1).

Property 4.2. For k1 ≤ r
(1−α) ≤ k2, following double inequality holds

(2) O(d)(a,b;α,k1)≤Mr(a,b)≤ O(a,b;α,k2)

Further more k1 =
r

(1−α) = k2 is the best possible for (2).

Property 4.2. For k1 ≤ 2
3(1−α) ≤ k2, following double inequality holds

(3) O(d)(a,b;α,k1)≤ I(a,b)≤ O(a,b;α,k2)

Further more k1 =
2

3(1−α) = k2 is the best possible for (3).

Property 4.3. For k1 ≤ 1
3(1−α) ≤ k2, following double inequality holds

(4) O(d)(a,b;α,k1)≤ L(a,b)≤ O(a,b;α,k2)

Further more k1 =
1

3(1−α) = k2 is the best possible for (4).

Property 4.4. For α1 > 1− 2p
3k > α2, following double inequality holds

(5) O(d)(a,b;α1,k1)> Hp(a,b)> O(a,b;α2,k2)

Property 4.5. For α1 > 1− r
k > α2, following double inequality holds

(6) O(d)(a,b;α1,k1)> Mr(a,b)> O(a,b;α2,k2).

Property 4.6. For α1 > 1− 2
3k > α2, following double inequality holds

(7) O(d)(a,b;α1,k1)> I(a,b)> O(a,b;α2,k2).

Property 4.7. For α1 > 1− 1
3k > α2, following double inequality holds

(8) O(d)(a,b;α1,k1)> L(a,b)> O(a,b;α2,k2).
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5. Some examples

By theorem we establish the following two inequality chains.

Example 5.1. From Theorem O(a,b;α,k) is decreasing function with α, then

O(a,b;0,k)≥ O(a,b;
1
4
,k)≥ O(a,b;

1
3
,k)≥ O(a,b;

2
3
,k)

≥ O(a,b;
3
4
,k)≥ O(a,b;

1
2
,k)≥ O(a,b;1,k)

(
ak +bk

2

) 1
k

≥
(
(ab)

k
2 +3(ak+bk

2 )

4

) 1
k

≥ Hk(a,b)≥
(
(ab)

k
2 +(ak+bk

2 )

2

) 1
k

≥ (ab)
k
2 ≥

(
2(ab)

k
2 +(ak+bk

2 )

3

) 1
4

≥
(

3(ab)
k
2 +(ak+bk

2 )

4

) 1
2

for k=1: The following inequality is obtained

A≥ G+3A
4

≥ H ≥ G+A
2
≥ 2G+A

3
≥ 3G+A

4
≥ G.

Example 5.2. From Theorem O(d)(a,b;α,k) is decreasing function with α, then

O(d)(a,b;0,k)≥ O(d)(a,b;
1
4
,k)≥ O(d)(a,b;

1
3
,k)≥ O(d)(a,b;

2
3
,k)

≥ O(d)(a,b;
3
4
,k)≥ O(d)(a,b;

1
2
,k)≥ O(d)(a,b;1,k)

(
ak +bk

2

)
≥ (ab)

k
8

(
ak +bk

2

) 3
4

≥ (ab)
k
6

(
ak +bk

2

) 2
3

≥ (ab)
k
4

(
ak +bk

2

) 1
2

≥ (ab)
2k
6

(
ak +bk

2

) 1
3

≥ (ab)
3k
8

(
ak +bk

2

) 1
4

≥ (ab)
1
2

for k=1, the following inequality is obtained
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(9) A≥ G
1
4 A

3
4 ≥ G

1
3 A

2
3 ≥ G

1
2 A

1
2 ≥ G

2
3 A

1
3 ≥ G

3
4 A

1
4 ≥ G.
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