L	ibranan	
Learning Acharya in	Resource Centre stitute & Technology	

CBCS SCHEME

USN										>
-----	--	--	--	--	--	--	--	--	--	---

18BT41

Fourth Semester B.E. Degree Examination, Feb./Mar. 2022 **Stoichiometry**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. How many moles of H₂SO₄ will contain 64kg of sulphur? (04 Marks)
 - b. 10g of caustic soda are dissolved in water to prepare 500ml of solution. Calculate the normality. (06 Marks)
 - c. A gas mixture is found to contain the following composition by volume. Ethylene 30.6%, benzene 24.5%, oxygen 1.3%, ethane 25%, nitrogen 3.1%, methane 15.5%. Calculate the
 - i) Composition in mole%
 - ii) Weight %
 - iii) Average molecular weight of gas sample
 - iv) Density of gas at NTP.

(10 Marks)

OR

- a. Calculate the equivalent moles of Na₂SO₄ in 1288g of Na₂SO₄ . 10H₂O crystals. (06 Marks)
 - b. Find the nitrogen content of 100kg urea sample containing 96.43% urea.

(04 Marks)

c. Explain the generalized material balance equations for extraction and crystallization with diagram. (10 Marks)

Module-2

- 3 a. A gas mixture containing 15 mole % A and 85 mole % inerts is fed to one absorption tower where it is contacted with liquid solvent B which absorbs A. The mole ratio of solvent to gas entering tower is 2:1. The gas leaving the absorber contains 2.5% A, 1.5% B and rest inerts on mole basis. Calculate:
 - i) The percentage recovery of solute 'A'
 - ii) The fraction of solvent 'B' fed to column lost in gas leaving the tower During the process, some solvent evaporates and gets added in gas leaving the tower.

(10 Marks)

- b. 2500kg of wet solids containing 70% solids by weight are fed to tray dryer where it is dryed by hot air. The product finally obtained is found to contain 1% moisture by weight. Calculate:
 - i) Amount (in kg) of water removed from wet solids.
 - ii) Amount (in kg) of product obtained.

(06 Marks)

C. It is required to make 100kg of 30% NaOH solution by mixing the following liquids: 20% NaOH solutions and 36% NaOH solution. Calculate the quantities of the two solutions to be mixed.

(04 Marks)

OR

4 a. Calculate the Gross and Net calorific value of the natural gas at 298K considering the data given:

Component	Molar compositions %	GCV (kJ/mol)	NCV (kJ/mol)
CH ₄	89.4	890.65	802.62
C ₂ H ₆	5	1560.69	1428.62
C ₃ H ₈	1.9	2219.17	2043.11
C ₄ H ₁₀	1	2877.40	2657.32
CO_2	0.7	_	4
N ₂	2	_	Alexander of the second

Specific volume at 298K and 101.3kPa in 24.465m³/kmol.

(10 Marks)

- b. The GCV of gaseous n-Butane is 2877.4kJ/mol at 298K. Calculate its NCV value (Net calorific value). (05 Marks)
- c. Crude oil in found to contain 87.1% carbon, 12.5% hydrogen and 0.4% sulphur by mass. Its GCV at 298.15K in 45071 kJ/kg oil. Calculate its NCV at 298.15K. (05 Marks)

Module-3

5 a. Ammonia in produced by the following reaction:

 $N_2 + 3H_2 \rightarrow 2NH_3$ calculate:

- i) The molal flow rate of hydrogen corresponding to nitrogen feed rate of 50kg mol/hr if they are fed in stoichiometric proportion.
- ii) The amount of ammonia produced per hour if percentage conversion is 30 and nitrogen feed rate is 50kg mol/hr. (10 Marks)
- b. Calcium oxide is formed by decomposing limestone pure CaCO₃. In kiln, the reaction goes to 70% completion.
 - i) What is the composition of the solid product withdrawn from the Kiln?
 - ii) What is the yield in kg of CO₂ produced per kg of limestone charged?

OR

- 6 a. Fresh juice contains 14% solids and 86% water by weight and it is to be concentrated to contain 42% solids by weight. In a single evaporator system, it is found that the volatile constituents of juice escape with water leaving the concentrated juice 56%, with flat taste to overcome this problem part of the fresh juice bypass the evaporator. Calculate:
 - i) The fraction of juice that bypass the evaporator.
 - ii) The concentrated juice produced containing 42% solids by weight. (12 Marks)
 - b. Metal phosphoric acid is obtained by dissolving phosphorous pentaoxide in cold water. What is yield in kg of metal phosphoric acid produced from 50kg of P₂O₅ charged in reactor? (08 Marks)

Module-4

7 a. Calculate the heat of formation of benzoic acid crystals at 298.15K using following data:

Standard heat of formation of $CO_2 = -3.93.5$ kJ/mol

Standard heat of formation of $H_2O = -285.83$ kJ/mol

Standard heat of formation of $C_7H_6O_2 = -3226.95$ kJ/mol.

(10 Marks)

(10 Marks)

b. Calculate the enthalpy change between reactants and products is both are at 298.15K and the reactants of the process given below.

 $2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$

Component $\Delta H_f (kJ/mol)$ C_4H_{10} -125.79

C₄H₁₀ -125.79 CO₂ -393.51 H₂O -285.83

(04 Marks)

- c. Define:
 - i) Standard heat of reaction
 - ii) Heat of formation
 - iii) Standard heat of combustion.

(06 Marks)

OR

8 a. Methane gas is heated from 303K to 523K at atmospheric pressure. Calculate the heat added per mole methane using C_p data given

$$C_p^{\circ} = 19.2494 + 52.11 \times 10^{-3} \,\mathrm{T} + 11.973 \times 10^{-6} \,\mathrm{T}^2 - 11.3173 \times 10^{-9} \,\mathrm{T}^3$$

(08 Marks)

b. Using the empirical expression relating the heat of reaction and the temperature of the reaction for the following reaction. Calculate the heat of reaction at 773K.

$$SO_2 + 1/2 O_2 \rightarrow SO_3$$

 ΔH_f° kJ/mol

SO₃ - 395720

SO₂ - 296810

$$Cp = a + bT + cT^2 + dT^2$$

Component	а	$b \times 10^{-3}$	$c \times 10^{-6}$	$d \times 10^{-9}$
SO ₃	22.036	121.624	-91.867	24.369
SO ₂	24.771	62.948	-44.258	11.122
O_2	26.026	11.75	-2.343	-0.562

(12 Marks)

Module-5

9 a. Outline the Bioprocess engineering and history of development of bioprocess technology.

(12 Marks)

b. Explain the production of ethanol with a neat flow diagram.

(08 Marks)

OR

10 a. Explain the production of Penicillin using flow diagram.

(12 Marks)

b. Explain the various unit operations involved in a bioprocess.

(08 Marks)

* * * * *