Libraria Learning Resou	UDU	
ÚSN	682 1011/07	

CBCS SCHEME

15AE46

Fourth Semester B.E. Degree Examination, July/August 2021 **Turbomachines**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions.

- a. Classify Turbomachines and explain the important components of Turbomachines. (06 Marks)
 - b. From Non Dimensional π -term, derive the Relation for specific speed of pump and turbine. (04 Marks)
 - c. The model of turbine built to a scale 1:4 is tested under a head of 10m. The prototype has to work under a head of 50m at 450rpm. Calculate:
 - i) Speed of the model if it develops 60kW using 0.9m³/s at this speed.
 - ii) Power obtained from prototype if the efficiency is 3% better than model. (06 Marks)
- 2 a. Derive Euler Turbine equation and show the condition for power generating and power Absorbing turbomachines. (06 Marks)
 - b. Define Degree of reaction and utilization factor. Also write the relation between them.

(04 Marks)

- c. For a steam turbine, Nozzle Exit has absolute steam velocity is 300m/s. The rotor speed is 150m/s at a point where nozzle angle is 18°. If the outlet rotor blade angle is 3.5 degree less than inlet blade angle, find:
 - i) Power outlet
 - ii) Utilization factor, Assume $V_{r1} = V_{r2}$ and mass flow rate of steam is 8.5kg/s. (06 Marks)
- 3 a. Draw the h-s diagram of a compressor and Derive i) Total Total Efficiency ii) Static static Efficiency. (06 Marks)
 - b. Derive polytropic efficiency relation for compressor using h-s diagram. (04 Marks)
 - c. An air compressor has six stages at equal pressure Ratio 1.4. The mass flow rate is 45kg/s. The overall Isentropic efficiency is 84%. Entry pressure is 1bar and temperature is 40°C. Find:
 - i) Polytropic efficiency
 - ii) Each stage efficiency
 - iii) Power required to drive compressor if overall efficiency is 0.9.

(06 Marks)

- 4 a. For a multistage Turbine. Draw h-s diagram with effect of re-heat and obtain the relation.
 (06 Marks)
 - b. For 3 stage turbine, overall pressure Ratio is 11 and its efficiency is 88%. If the pressure ratio of each stage is same and inlet temperature is 1500K. Take $C_p = 1.005 \text{kJ/Kg-K}$, $\gamma = 1.4$. Determine:
 - i) Pressure ratio in each stage
 - ii) Polytropic efficiency
 - iii) Stage efficiency and Re-heat factor
 - iv) Exit temperature
 - v) Power output.

For same work output from each stage, find i) Pressure Ratio and ii) Stage efficiency of each stage. (10 Marks)

15AE46

5	а	Explain the operation of centrifugal compressor with h-s diagram.	(06 Marks)
5	1	Obtain the relation for pressure co-efficient in terms of work done factor.	(04 Marks)
	Ь.	Obtain the relation for pressure co-chiletent in terms of work done factor.	7.
	C.	Explain the different types of diffuser and volute casing.	(06 Marks)

6 a. Derive the efficiency and pressure Ratio for an Axial flow compressor. (08 Marks)

- b. An air compressor has 8 stages of equal pressure ratio 1.35. The flow rate through the compressor is 50kg/s ad overall efficiency is 82%. If the conditions of air at entry are 1bar and 40°C overall efficiency is 90%, Find:
 - i) State of air at exit
 - ii) Polytropic Efficiency
 - iii) Stage efficiency
 - iv) Power required.

(08 Marks)

- a. Define Finite stage efficiency and explain Reheat effect.
 b. Derive polytropic efficiency and overall efficiency for multistage turbine.
 c. Explain the cooling methods used for turbine blades.
 (04 Marks)
- 8 a. Draw the 90° Inward flow radial turbine and explain the working procedure.

 b. Explain the stage losses occurs in the Radial flow turbines.

 (08 Marks)
- 9 a. Write the types of efficiencies for centrifugal pump and derive the relation for efficiencies.
 (08 Marks
 - b. A centrifugal pump handling water has backward curved vanes. The Impeller tip diameter is 0.5m. The tip angle is 45°. If the radial velocity of flow at the exit is 15m/s, the flow at inlet is radial and $\eta_{t-t} = 0.7$ when the head developed is 68m. Find :
 - i) Speed of Rotor in rpm
 - ii) Manometric head assuming 50% of K.E at Impeller exit is wasted and loss of head in the impeller is 5m.
 - iii) Minimum starting speed of pump if $U_1 = \frac{1}{2} U_2$. (08 Marks)
- 10 a. Write the classification of Hydraulic turbines.

(06 Marks)

b. Draw and explain working of Francis Turbine.

- (04 Marks)
- c. A Kaplan turbine working under a head of 15m developed 7350kW. The outer diameter of the runner is 4m and hub diameter = 2m. The guide blade angle at the extreme edge of runner is 30°. The hydraulic and the overall efficiency of the turbine are 90% and 85% respectively. If whirl velocity is zero at outlet. Determine:
 - i) Runner vane angle at inlet
 - ii) Runner vane angle at outlet
 - iii) Speed of the Turbine
 - iv) Specific speed of Turbine.

(06 Marks)

* * * * *