Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Derive the relation for momentum equation in Integral form for steady, Inviscid and Nobody forces. (10 Marks)
 - b. Explain about philosophy of CFD and application of CFD in Aeronautical and Aerospace Engineering. (10 Marks)

OR

- 2 a. Derive the relation for Energy equation in differential form for No heat addition and no body forces. (10 Marks)
 - b. Explain:
 - i) Shock capturing and shock fitting methods
 - ii) Dirichlet and Neumann Boundary conditions.

(10 Marks)

Module-2

- 3 a. How does a quasi-linear partial differential equation is classified? Explain it using Cramer's rule. (10 Marks)
 - b. Explain the following with relevant sketch.
 - i) Steday Inviscid Supersonic flow
 - ii) Steady Boundary layer flow.

(10 Marks)

OR

4 a. Discuss about Jacobean, Gauss seidal and SLDR Techniques.

(10 Marks)

b. Explain about stability properties of explicit Scheme on CFD.

(10 Marks)

Module-3

5 a. Explain briefly about surface grid generation and its applications.

(10 Marks)

b. Compare and differentiate between structured and unstructured grid generation.

(10 Marks)

OR

- 6 a. Write about structured grids and explain the different methods for structured grid generation.
 (10 Marks)
 - b. Explain about adaptive grids and write any two types of grid adaptive methods in detail.
 (10 Marks)

Module-4

- 7 a. Differentiate between explicit and Implicit approach of finite difference equations. (10 Marks)
 - b. Explain Time Marching and Space Marching Techniques.

(10 Marks)

OR

- 8 Explain about following:
 - i) Lax-Wendroff method
 - ii) Error and stability analysis.

(08 Marks)

b. With neat sketch, explain the general transformation of equation from a physical plane to a computational plane. (12 Marks)

- 9 Describe following with necessary equation and sketch:
 - Special discretization i)
 - ii) Temporal discretization.

(10 Marks)

Explain about Finite volume technique with neat diagram.

(10 Marks)

OR

- 10 Explain the following:
 - i) Upwind biasing
 - ii) Flux Vector Splitting.

(10 Marks)

Construct a Finite volume discretization scheme on one dimensional steady heat conduction +S=0, where 'K' is the thermal conductivity of material, T is the equation. K temperature and S is the source head. (10 Marks)