15AE72

Seventh Semester B.E. Degree Examination, Feb./Mar. 2022 Computational Fluid Dynamics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. With an example explain the role of computational Fluid dynamics as research tool in recent time. (08 Marks)
 - b. Derive governing equation for the physical principle i.e. F = ma (Newton's Second law).
 (08 Marks)

OR

- 2 a. Differentiate between shock fitting and shock capturing method. (03 Marks)
 - b. Derive an expression for divergence of velocity only its physical meaning. (05 Marks)
 - c. Derive governing equation for conservation of energy. (08 Marks)

Module-2

3 a. Using Crammer's rule and eigen value method. Illustrate the procedure for actual set of equations

$$(1 - M_{\infty}^{2}) \frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y} = 0 ,$$

$$\frac{\partial u'}{\partial y} - \frac{\partial v'}{\partial x} = 0$$
(10 Marks)

b. Classify Quasi-Linear PDE using Cramer Rule.

(06 Marks)

OR

- 4 a. Describe the general behavior of PDE in the form of Hyperbolic, parabolic and elliptic forms of equation. (10 Marks)
 - b. Comment on the Supersonic Blunt Body problem with the help of CFD.

(06 Marks)

Module-3

- 5 a. Briefly explain the importance of adaptive grids. (08 Marks)
 - b. Explain the features of Structured grids and Unstructured grids.

(08 Marks)

OR

- 6 a. Explain: (i) Multiblock grid generation
 - (ii) Advancing front method
 - (iii) Delaunay-Voronoi diagram.

(08 Marks)

b. Explain structured and unstructured grids adaptive methods.

(08 Marks)

Module-4

7 a. Explain Finite difference method and difference equations.

(10 Marks)

b. Explain second order Lax-Wendroff method.

(06 Marks)

OR

8	a. b.	Explain Boundary-fitted coordinate system for elliptic grid generation. Differentiate between Explicit and Implicit approach of finite difference equation	(10 Marks)
			(00 Marks)
		Module-5	
9	a.	Explain Cell Centered and Cell Vertex techniques.	(08 Marks)
	b.	Explain explicit and implicit time stepping techniques.	(05 Marks)
	c.	Explain the need of Finite Volume method.	
	-	2. plant the need of I little Volume incured.	(03 Marks)
		OR	
10	a.	Explain upwinding and high resolution scheme.	(10 Mayles)
	b.	Explain Artificial dissipation and Flux limiters.	(10 Marks)
		= Francisco dissipation and Frax miniters.	(06 Marks)

			i