15AE752

Seventh Semester B.E. Degree Examination, Feb./Mar. 2022 **Wind Tunnel Techniques**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- The Resisting force R of a supersonic Aircraft depends on the following properties. It 1 depends on length of the aircraft 'l', velocity 'v', dynamic viscosity '\mu', density of air '\rho' and bulk modules of air 'K'. Express the function for resisting force using Buckingham's π -theorem.
 - Write and explain about Geometric similarity, kinematic similarity and dynamic similarity. (08 Marks)

- Write and derive the expression for Reynold's number and Mach number.
 - The pressure drop in an aeroplane model of size 1/50 of its prototype is 4N/cm². The model is tested in water. Find the corresponding pressure drop in prototype. Take $\rho_{air} = 1.24 \text{ kg/m}^3$, (08 Marks) viscosity of water = 0.01 poise, viscosity of air = 0.00018 poise.

Module-2

- Write and explain about types of High speed wind tunnels. Explain any two types with 3 (08 Marks) sketch. (08 Marks)
 - Explain about problems of testing in supersonic and hypersonic tunnel.

- Explain about following with neat sketch: i) Hotshot tunnel ii) Shock tunnel. (08 Marks)
 - Explain types of low speed wind tunnel and also write differentiation between open and (08 Marks) closed circuit wind tunnel.

Module-3

Briefly explain about calibration of subsonic and supersonic wind tunnel. 5

(16 Marks)

- Explain about following with neat sketch:
 - Hot-wire anemometer i)
 - Turbulence sphere ii)
 - Yaw sphere iii)
 - Pressure sphere. iv)

(16 Marks)

Module-4

Explain about different methods of flow visualization techniques used for compressible 7 (16 Marks) flow.

OR

8		Explain the following neat sketch:	(03 Marks)
		Wire type balance	(03 Marks)
		Strut type balance	(03 Marks)
			(03 Marks)
		Yoke type balance	(04 Marks)
	e.	Strain-gauge balance.	1

Module-5

Design a supersonic wind tunnel for the test section size of 1m × 1m for the speed of Mach 9 number 2 in the test section. Also calculate maximum mass flow rate through wind tunnel. Take runtime of wind tunnel as 4 seconds. Settling chamber exit area = 2m², semi divergence and semi convergence angle of nozzle as 7° and 3° respectively. Assume tank volume as 20m³.

OR

Determine the running time for a Mach 2 blow down tunnel with test section area $300\text{mm} \times 300\text{mm}$. The storage tank volume is 20m^3 and the pressure and temperature of air 10 in the tank are 20atm and 25°C respectively. Take starting pressure ratio for Mach 2.0 as 3, the loss in pressure regulating valve to be 50% and polytropic index n = 1.0. Use isentropic (08 Marks) relation for calculating ratio properties.

b. Explain about various pressure measurement techniques available today. (08 Marks)