cross lines on the remaining blank pages.

Important Note: 1. On completing your answers, compulsorily draw diagonal

Sixth Semester B.E. Degree Examination, Feb./Mar. 2022 Compiler Design

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. With the help of a neat diagram, explain the various phases of a compiler. (08 Marks)
 - b. What is input buffering? Explain the use of sentinels in recognizing the tokens in buffering.

 (08 Marks)
 - c. Write the regular definition for a decimal number. (04 Marks)
- 2 a. What is Predictive Parsing? Explain the predictive parsing algorithm. (08 Marks)
 - b. Explain ambiguous grammars with an example. (06 Marks)
 - c. Given the grammar : $S \rightarrow iCt S \mid iCt S \mid a$

 $C \rightarrow b$

- i) Compute FIRST() of FOLLOW() sets
- ii) Construct the predictive parsing table
- iii) Check whether the given grammar is LL (1) (06 Marks)
- 3 a. Explain the working of a shift reduce parser with a neat diagram. (06 Marks)
 - b. What is handle pruning? Indicate handles by performing bottom-up parsing for the input string 00001111 for given grammar:

 $S \rightarrow 0S1 \mid 01$.

(06 Marks)

c. Given the grammar:

$$E \rightarrow 5 + T \mid 3 - T$$

$$T \rightarrow V \mid V * V \mid V + V$$

$$V \rightarrow a \mid b$$

- i) Perform LL (1) parsing
- ii) Construct the predicative parsing table.

(08 Marks)

4 a. For the given grammar, construct SLR(1) parse table and parse the string "aa".

$$S \rightarrow SA|A$$

$$A \rightarrow a$$

(10 Marks)

b. Construct canonical parse table for the grammar:

$$S \rightarrow CC$$

$$C \rightarrow cC|d$$

(10 Marks)

PART - B

- 5 a. Write an SDD for simple desktop calculator. Show the annotated parse free for the expression (5*7) + (1*2). (10 Marks)
 - b. Explain parser stack implementation of postfix SDT with an example.

(10 Marks)

6 a. Construct DAG for the expression,

$$((x+y)-((x+y)*(x-y)))+((x+y)*(x-y))$$

Give the sequence of steps for the same.

(08 Marks)

b. Explain with examples quadruples, triples and indirect triples.

(12 Marks)

10IS662

- 7 a. What is an activation record? Explain all the fields in an activation record. (08 Marks)
 - b. Explain the following storage allocation strategies:
 - (i) Static allocation
 - (ii) Heap allocation.

(12 Marks)

- 8 a. Discuss the following terms:
 - (i) Basic blocks.
 - (ii) Next-use information.
 - (iii) Flow graph.

(10 Marks)

- b. Explain the following code optimization with example:
 - (i) Finding local common sub expression.
 - (ii) Dead code elimination.

(10 Marks)

*