

between S_{VBE} and S_{ICO}.

USN						
			and the second of	 		

Third Semester B.E. Degree Examination, Feb./Mar. 2022 **Analog Electronic Circuits**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Explain the working of series positive clipper circuit which clipps off positive part of the 1 input above V_R. Draw the waveforms and transfer characteristics. Neglect V_r.
 - b. For the collector to base bias circuit $V_{CC} = 10 \text{ V}$, $R_C = 4.7 \text{ K}\Omega$, $R_B = 220 \text{ K}\Omega$ and $\beta = 100$. Calculate the location of Q-point. (05 Marks)
 - For the fixed bias circuit, derive expressions for S_{ICO} , S_{VBE} and S'_{β} . Also obtain the relations between S_{ICO} and S_{VBE} and S_{ICO} and S_{β} . (10 Marks)

Calculate the output voltage V₀ for the clamper circuit as shown in Fig.Q2(a). The input voltage V_i is also shown. Frequency $V_i = 1$ kHz.

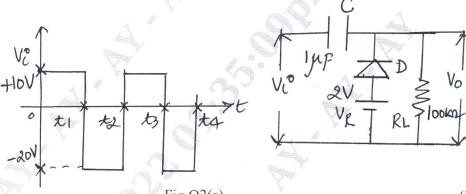
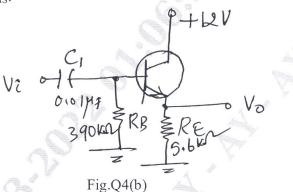


Fig.Q2(a) b. For the voltage divider bias circuit, derive expressions for SVBE. Also obtain the relation (10 Marks)

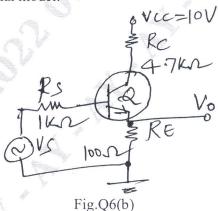

17EE34

Module-2

- For the transistor amplifier in general form, derive expressions for A_I, Z_i, A_V, A_{VS}, A_{IS} and 3 Z_o. Use h-parameter model.
 - b. A single stage common emitter amplifier has $R_S = 1 \text{ K}\Omega$, $R_L = 2 \text{ K}\Omega$, $R_1 = 50 \text{ K}\Omega$, $R_2 = 2 \ K\Omega, \ R_C = 2 \ K\Omega, \ h_{fe} = 50, \ h_{ie} = 1.1 \ K\Omega, \ h_{oe} = h_{re} = 0, \ V_{CC} = 10 \ V, \ R_E = 470 \ \Omega,$ $C_E = 47 \mu F$, $C_1 = C_2 = 0.01 \mu F$. Draw the circuit diagram and determine A_I , Z_i , A_V , A_{IS} and (10 Marks) A_{VS} and Z'_0 .

OR

Explain the working of common collector or emitter follower configuration. Develop expressions for A_I, Z_i, A_V and Y_o using approximate and exact hybrid model. (10 Marks) b. For the amplifier circuit as shown in Fig.Q4(b), $h_{fe} = 100$, $h_{ie} = 3.37$ K Ω , $h_{re} = h_{oe} = 0$. Determine A_I , Z_I , A_V , A_{IS} .


(10 Marks)

Module-3

- 5 a. Draw the circuit of cascode amplifier. State its merits. Develop h-parameter model using approximate model. (08 Marks)
 - b. Consider a 2-stage RC coupled CE-CE amplifier. The component values are $R_S=1~K\Omega$, $R_{C_1}=15~K\Omega$, $R_{E_1}=100~\Omega$, $R_1=200~K\Omega$, $R_2=20~K\Omega$, $C_{E_1}=47~\mu F$, $C_1=C_2=0.1~\mu F$ and for II stage $R_{C_2}=4~K\Omega$, $R_{E_2}=330~\Omega$, $C_{E_2}=47~\mu F$, $C_1'=C_2'=0.1~\mu F$, biasing resistors of II stage, $R_3=47~K\Omega$ and $R_4=4.7~K\Omega$, $h_{ie}=1.2~K\Omega$, $h_{fe}=50$, $h_{re}=2.5~\times10^{-4}$ and $h_{oe}=25~\mu A/V$. Determine the overall A_V , A_{VS} and Z_o . Draw the circuit diagram and small signal circuit.

OR

- 6 a. For the current series feedback topology, obtain expressions for R_{if} and R'_{of} . (10 Marks)
 - b. For the voltage series feedback circuit of Fig.Q6(b), calculate A_V , β , D, R_i , R_{of} and R'_{of} , $h_{fe} = 50$. Draw the small signal model.

(10 Marks)

Module-4

- 7 a. For the transformer coupled class-A amplifier, explain DC and AC operations, AC and DC, output and input power efficiency, maximum efficiency and power dissipation. (10 Marks)
 - b. The input signal V_S is given by $V_S = 1.75\sin(600 \, t)$ is fed to a power amplifier and regulating o/p current is $i_o = 15\sin 600 \, t + 1.5\sin 1200 t + 1.2\sin 1800 t + 0.5\sin 2400 t$. Determine percentage increase in power due to distortion. (05 Marks)
 - c. Explain cross-over distortion in class-B push pull amplifier.

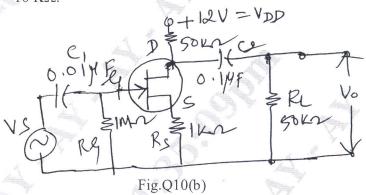
(05 Marks)

OR

- 8 a. Explain the expression for gain with feedback in oscillators. What is the value of Aβ to generate oscillations? Thus, explain principle of oscillations. (06 Marks)
 - b. State Barkhausen criteria for sustained oscillations.

(04 Marks)

c. Derive an expression for frequency of oscillations in Colpitt's oscillator and h_{fe} min required for transistor. (10 Marks)


Module-5

- 9 a. Explain construction of n-channel D-MOSFET. Draw and explain transfer characteristics and drain characteristics. (10 Marks)
 - b. Explain biasing for zero current drift and derive condition for zero drift.

(10 Marks)

OR

- 10 a. For the JFET with fixed bias circuit, obtain expressions for Z_i , Z_o , A_V . Compare the result for exact analysis and when $r_d >> R_D$. (10 Marks)
 - b. For the JFET amplifier as in Fig.Q10(b), determine A_V , Z_i , Z_o and Z_o' . For FET, $g_m=2\ mA/V$, $r_d=10\ K\Omega$.

(10 Marks)