USN

17EE35

Third Semester B.E. Degree Examination, Feb./Mar. 2022 Digital System Design

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Convert the following Boolean function into their proper canonical form:
 - (i) $f = \overline{a}b + \overline{b}c$ (ii) f(x, y, z) = (x + y)(y + z)

(08 Marks)

- b. Simplify the following function using K-map:
 - i) $f(w, x, y, z) = \sum m(1, 3, 7, 11, 15) + \sum d(0, 2, 4)$
 - ii) $f(a, b, c, d) = \sum m(0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$

(12 Marks)

OR

2 a. Define combinational logic, canonical SOP, canonical POS and PI, with examples.

(08 Marks)

b. Simplify using Q-M method $y = f(w,x,y,z) = \sum m(0,2,8,10)$. Verify the answer with K-map. (12 Marks)

Module-2

3 a. What are Multiplexers? Implement the following using 8:1 multiplexers.

 $f(a, b, c, d) = \sum m(2, 3, 5, 6, 7)$

(08 Marks)

b. Design 2-bit comparator circuit, truth table, K-map and logic circuit.

(12 Marks)

OR

4 a. Explain the carry look ahead adder.

(10 Marks)

b. Design 16:1 multiplexer using 8:1 mux.

(05 Marks)

c. Write a short note on encoders.

(05 Marks)

Module-3

- 5 a. Explain the working of Master-Slave JK flip-flop with functional table and timing diagram.
 - b. Explain working of 3-bit binary ripple counter with the logic and timing diagram. (10 Marks)

OR

6 a. Explain the 4 modes of operation of universal shift register with suitable logic diagram.

(10 Marks)

b. Design mod-6 synchronous counter using JK-flipflop.

(10 Marks)

Module-4

7 a. With the help of block diagram, explain Mealy and Moore model.

(08 Marks)

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be the

(12 Marks)

b. Design a sequential circuit using D flip-flop. [Refer Fig.Q7(b)].

b.

OR

Write procedure for design of clocked synchronous sequential circuit. (08 Marks) Analyse the following sequential circuit and draw the state diagram. [Refer Fig.Q8(b)]

(12 Marks)

Module-5

- Explain briefly history of HDL and structure of HDL. (10 Marks)
 - List the classification of VHDL data types and explain with examples. (10 Marks)

OR

- Mention styles/types of HDL description. Explain behavioral type with Fulladder example in 10 (12 Marks) both VHDL and varilog.
 - (08 Marks) b. Explain varilog data types.