GBCS SCHEME

USN

18EE35

Third Semester B.E. Degree Examination, July/August 2021 Digital System Design

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

a. Which is the code used for naming the k-map and why?
b. Assuming that the inputs ABCD = 1001, 1010, 1011 and 1101 never occur, determine a simplified expression using k-map.

 $F = \overline{ABCD} + \overline{ABD} + \overline{ACD} + \overline{ABD} + \overline{ABC}$.

(07 Marks)

c. Simplify using Quine – McCluskey's technique $f(ABCD) = \sum m(6,7,9,10,13) + \sum d(1,4,5,11,15).$

(10 Marks)

2 a. What are don't cares? Explain with an example.

(03 Marks)

- b. Convert the following Boolean expression into max-term canonical formula and minimize using k-map. P = X + XY(Y + Z). (07 Marks)
- c. Simplify using k-map:

 $F(v, w, x, y, z) = \sum m(0, 2, 7, 8, 10, 15, 16, 18, 22, 24, 26, 30) + \sum d(6, 12, 14, 23, 31).$

(10 Marks)

- a. What is the necessity of carry look-ahead circuit? How will its use enhance the operation of a 4-bit parallel adder? (10 Marks)
 - b. Design and implement a single-bit comparator with G, E and L as outputs using a single 2-4 decoder. (04 Marks)
 - c. Implement the following Boolean function using a 8:1 MUX with a, b and d as select inputs $f(a,b,c,d) = \sum m(4,5,7,8,10,12,15)$. (06 Marks)
- 4 a. Implement a full subtractor using 2 4 decoder.

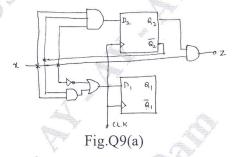
(06 Marks)

- b. Implement the following Boolean expression using 8 : 1 MUX with A, C and D as select inputs $F = \overline{BD} + A\overline{BC} + \overline{CD} + \overline{ABCD}$. (08 Marks)
- c. What is a BCD to 7 segment decoder? Explain the operation with the function table.

(06 Marks)

- 5 a. Explain the application of SR latch as a switch debouncer with waveforms. (06 Marks)
 - b. What is race around condition? Explain its elimination in MSJKFF through its working and timing diagram. (10 Marks)
 - c. Obtain the characteristic equation of a JKFF.

(04 Marks)


- 6 a. What is the necessity of converting SRFF into a JKFF? Explain the operating of a JKFF with timing diagram. (07 Marks)
 - b. Justify the operation of an edge triggered D-FF with a timing diagram. Also explain as to how transition occurs only on an edge and not during a level of clock signal. (10 Marks)
 - c. What is triggering? What are the different methods of triggering?

(03 Marks)

- 7 a. Write the circuit diagram of a 4-bit shift register with 4 DFFs and 4 2 : 1 MUX. Explain its operation in different modes. (10 Marks)
 - b. Design a synchronous counter for the counting sequence 3, 2, 5, 1, 0, 3 --- using JKFF.

(10 Marks)

- 8 a. With a neat diagram and mode table, explain the operation of a 4-bit universal shift register.
 (10 Marks)
 - Design an asynchronous mod-5 up counter using TFF with counting sequence: 7, 8, 9, 10, 11, 7---. (06 Marks)
 - c. Explain the operation of a 4-bit ring counter using shift register. (04 Marks)
- 9 a. Give a comparison between a Mealy and Moore model of synchronous sequential circuit through block diagram. (06 Marks)
 - b. Bring out a comparison between RAM and ROM memories. (04 Marks)
 - c. Analyse a synchronous sequential circuit by determing excitation equations, excitation table, state table and state diagram.

(10 Marks)

- 10 a. Compare combinational and sequential circuits. (02 Marks)
 - b. Give the structure and operation of flash memory. How is it different from EEPROM?
 (08 Marks)
 - c. Design a synchronous sequential circuit for the given state diagram. Also obtain transition table, state table and excitation table.

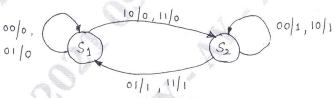


Fig.Q10(c)

Assume S₁ and S₂ as '0' and '1' respectively and use T-FF.

(10 Marks)

* * * * *