Wya Historice & Too USN

Fifth Semester B.E. Degree Examination, Feb./Mar. 2022 **Signals and Systems**

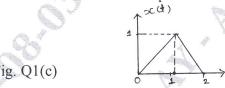
Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

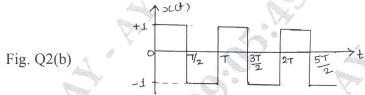
Module-1

- Distinguish between: 1
 - Continuous and Discrete time signal


iii) Periodic and Non periodic signal

Even and Odd signal ii)

Energy and Power signal.


(08 Marks)

- Find the Even and Odd component of the signal.
 - i) $x(t) = (1 + t^3) \cos^3 10t$
- ii) $x(t) = 1 + t + 3t^2 + 5t^3 + 9t^4$.
- (06 Marks)
- Determine and sketch the Even and Odd part of the signal shown in Fig. Q1(c). (06 Marks)

- OR
- Determine whether the following Signals are periodic, if periodic determine fundamental period: i) $x(t) = \cos 2t + \sin 3t$ ii) $x(n) = \cos(n\pi/5) \sin(n\pi/5)$. (08 Marks)
 - What is the Average power of Square wave shown in Fig. Q2(b)?

(06 Marks)

- - Determine whether the system $y(t) = e^{x(t)}$ i) Linear
 - ii) Time invariant iii) Memory
- Causal

iv)

- Stable.
- (06 Marks)

Module-2

Consider the input signal x(n) and the impulse response h(n) given below: 3

$$\mathbf{x}(\mathbf{n}) = \begin{cases} 1 & 0 \le \mathbf{n} \le 4 \\ 0 & \text{Elsewhere} \end{cases}$$

$$h(n) = \begin{cases} \alpha^n & 0 \le n \le 6 \\ 0 & \text{Elsewhere} \end{cases}$$

Compute the output signal y(n).

(08 Marks)

b. Find the forced response for the system described by

$$d^2 \frac{y(t)}{dt^2} + 5 \frac{dy(t)}{dt} + 6y(t) = 2x(t) + \frac{dx(t)}{dt}$$
 with input $x(t) = 2e^{-t} u(t)$.

(06 Marks)

c. Sketch direct form I and direct form II implementation for the difference equation.

$$y(n) + \frac{1}{2}y(n-1) - y(n-3) = 3x(n-1) + 2x(n-2).$$

(06 Marks)

Evaluate the Continuous time convolution integral given below:

$$y(t) = e^{-2t} u(t) \times u(t + 2).$$

(08 Marks)

b. Find the natural response for the system describe by the following Difference equation.

$$y(n) = \frac{-9}{16}y(n-2) = x(n-1)$$
 with $y(-1) = 1$ and $y(-2) = -1$.

(08 Marks)

Explain the following properties of Impulse response representation of LTI system: i) Distributive ii) Associative iii) Causal. (04 Marks) Module-3 a. Describe the following properties of C T F T: ii) Time shift iii) Linearity. (06 Marks) i) Frequency shift b. Obtain the Fourier transform of the signal $x(t) = e^{-at} u(t)$ a > 0. Draw its Magnitude and Phase spectrum. (08 Marks) Find the Fourier transform of the signal $x(t) = e^{-3|t|} \sin 2t$ using Appropriate properties. (06 Marks) a. Find the Inverse Fourier transform $X(jw) = \frac{-jw}{(jw)^2 + 3jw + 2}$. (06 Marks) b. Find the Impulse response of continuous time LTI system given by $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. Find the Frequency response and plot magnitude and phase response. (08 Marks) Find the frequency response and the impulse response of the system describe by Differential equation. $\frac{d^{2}y(t)}{dt^{2}} + 5\frac{dy(t)}{dt} + 6y(t) = -\frac{dx(t)}{dt}.$ (06 Marks) a. Discuss the properties of DTFT: i) Linearity ii) Time shift iii) Convolution. Find the DTFT of the signal: i) $x(n) = \alpha^n u(n) |\alpha| < 1$. Draw the Magnitude Spectrum. ii) $x(n) = (-1)^n u(n)$. (08 Marks) Find the DTFT of the signal $x(n) = a^{|n|} \cdot |a| < 1$. (06 Marks) OR a. State and prove the following properties of Discrete Time Fourier transform: i) Parseval's theorem ii) Scaling. (08 Marks) Using the Appropriate properties, find the DTFT of the following signal: i) $x(n) = (\frac{1}{2})^n u(n-2)$ ii) $x(n) = Sin(\frac{\pi}{4}^n)(\frac{1}{2})^n u(n-1)$. (12 Marks) a. Describe the following properties of Z transform: i) Linearity ii) Differentiation in the Z Domain iii) Time shift. (06 Marks) b. Find the Z transform of $x(n) = \alpha^n u(n)$. (08 Marks) c. Find the Z transform of the signal $x(n) = 3.2^n \text{ u}(-n)$ using Appropriate properties. (06 Marks) OR Explain the properties of Region of Convergence. (06 Marks)

5

6

8

10

$$X(z) = \frac{-1 + 5z^{-1}}{(1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2})} \text{ with ROC} |z| > 1.$$
 (08 Marks)

c. A causal system has input x(n) and output y(n). Find the Impulse Response of the system , if $x(n) = \delta(n) + \frac{1}{4} \delta(n-1) - \frac{1}{8} \delta(n-2)$; $y(n) = \delta(n) - \frac{3}{4} \delta(n-1)$. (06 Marks)

* * * * * ; 2 of 2

b. Find the Discrete Time Sequence x(n) which has Z transform: