USN	
-----	--

15EC46

Fourth Semester B.E. Degree Examination, Feb./Mar. 2022 Linear Integrated Circuits

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain the basic op-amp circuit with necessary equations.

(08 Marks)

- b. Write a short note on:
 - i) CMRR ii) Slew Rate

(08 Marks)

OR

- 2 a. Explain the difference amplifier circuit. Discuss the common mode nulling. (08 Marks)
 - b. Using 741 op-amp, design non-inverting amplifier to have voltage gain of approximately 66. The signal amplitude is to be 15mV. (08 Marks)

Module-2

- 3 a. Explain the capacitor coupled voltage follower with circuit diagram and equations. Design capacitor coupled voltage follower using 741 op-amp. The lower cut-off frequency for the circuit is to be 50Hz and the load resistance R_L is $3.9K\Omega$. (10 Marks)
 - b. Explain how the cut-off frequency (Upper cut-off frequency) can be set for inverting amplifier with neat circuit diagram. (06 Marks)

OR

- 4 a. Write a short note on:
 - i) Low Resistance Voltage Sources
 - ii) Current sinks.

(08 Marks)

b. Design non-saturating precision half wave rectifier to produce 2V peak output from sine wave input with peak value of 0.5V and frequency of 1MHz. Use bipolar op-amp with supply voltage of ±15V. (08 Marks)

Module-3

5 a. Explain the peak clipper circuit with design equations.

(08 Marks)

b. Explain the working of phase shift oscillator with circuit diagram, waveforms and equations.
(08 Marks)

OR

- 6 a. Explain the operation of capacitor coupled zero crossing detector, with neat circuit diagram, waveforms and equations. (08 Marks)
 - b. Explain the antilog amplifier with neat circuit diagram and derive its output equation.

(08 Marks)

Module-4

- 7 a. Explain the operation of first order active low pass filter with neat circuit diagram, frequency response and design steps. Using 741 op-amp, design first order active low pass filter to have cut-off frequency of 1KHz.
 - b. Design single stage band pass filter to have voltage gain of 1 and passband from 300Hz to 30KHz. Assume $C_2 = 1000$ pf.
 - c. Explain how low pass filter and high pass filter are used as band-stop filter with block diagram and frequency response. (04 Marks)

OR

8 a. Explain:

- i) A regulated power supply using discrete components
- ii) Fixed regulator used as adjustable regulator

iii) With neat circuit diagrams. (08 Marks)

b. Explain the standard representation of 3 – terminal IC regulator with its characteristics. Also define line regulation and load regulation. (08 Marks)

Module-5

- 9 a. Explain digital phase detectors with necessary diagrams and waveforms. (08 Marks)
 - b. With neat block diagram, explain the operation of PLL. Define:
 - i) Lock in range ii) Capture range iii) pull in time.

(08 Marks)

OR

10 a. Explain the operation of monostable multivibrator using 555 timer with internal diagram.

(08 Marks)

- b. Explain R 2R ladder DAC with circuit diagram and equations. What output voltage would be produced by D/A converter whose output range is 0 to 10V and whose input binary number is
 - i) 10 (For 2 = bit D/A converter)
 - ii) 0110(For 4 bit D/A converter).

(08 Marks)