See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/280095207

HAMILTONIAN LACEABILITY IN CYCLIC PRODUCT AND BRICK PRODUCT OF CYCLES

Article • March 2013

Citations
0
0

1 author

Presidency University
7 PUBLICATIONS 5 CITATIONS
SEE PROFILE

P Dr Girish

READS
41

ISSN 2320-6543

Volume 1	Issue 1	February 2013	pp.32-40

HAMILTONIAN LACEABILITY IN CYCLIC PRODUCT AND BRICK PRODUCT OF CYCLES

Girisha. ${ }^{\text {a, },{ }^{\boldsymbol{*}}}$ and R.Murali ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Acharya Institute of Technology, Bangalore -560090, Karnataka, India
${ }^{\mathrm{b}}$ Department of Mathematics, Dr. Ambedkar Institute of Technology, Bangalore -560056, Karnataka, India
* Corresponding author: Girisha.A. Tel.: +91-9739760112; e-mail: girisha@acharya.ac.in [Received 21/12/2012 | Received in revised form 31/01/2013 | Accepted 01/02/2013]

Abstract

A connected graph G is said to be Hamiltonian-t-laceable if there exists a Hamiltonian path between every pair of distinct vertices at a distance 't' in G and Hamiltonian-t'-laceable if there exist at least one such pair, where t is a positive integer. In this paper we explore Hamiltonian-t*- Laceability properties of the cyclic product $C(2 n, m)$ and the Brick product $C(2 n+1,3,2)$ of cycles.

Keywords: Hamiltonian-t ${ }^{*}$-laceable graph; Cyclic product; Brick product; Laceability number. 2010 Mathematics Subject Classification: 05C45, 05C99.

1. INTRODUCTION

Let G be a finite, simple connected undirected graph. Let u and v be two vertices in G . The distance between u and v denoted by $d(u, v)$ is the length of a shortest u-v path in G. G is Hamiltonian-t-laceable if there exists a Hamiltonian path between every pair of vertices u and v with $\mathrm{d}(\mathrm{u}, \mathrm{v})=\mathrm{t}$ and Hamiltonian- t^{*}-laceable if there exists at least one such pair with $\mathrm{d}(\mathrm{u}, \mathrm{v})=\mathrm{t}$ where t is a positive integer such that $1 \leq \mathrm{t} \leq$ diamG. The concept of Hamiltonian laceability of brick products of even cycles was studied by B. Alspach, C.C. Chen and Kevin Mc Avaney in [1]. In [2], Leena Shenoy and R. Murali have discussed the Hamiltonian-t*-laceability of (m, r)-Brick Product of odd cycles $\mathrm{C}(2 \mathrm{n}+1, \mathrm{~m}, \mathrm{r})$ for $\mathrm{m}=2$ and $\mathrm{r}=2$ and cyclic product for $\mathrm{C}(2 \mathrm{n}, \mathrm{m})$ for $\mathrm{m}=1,2$.

First, we recall the following definitions.

Definition 1.1. Let m and n be positive integers. Let $C_{2 n}=a_{0} a_{1} a_{2} a_{3} a_{4} a_{5} \ldots \ldots a_{2 n-1} a_{0}$ denote a cycle of order $2 n(n>1)$. Then, the cyclic product of $\mathrm{C}_{2 \mathrm{n}}$ denoted by $\mathrm{C}(2 n, m)$ is defined as follows.

For $\mathrm{m}=1, \mathrm{C}(2 \mathrm{n}, 1)$ is obtained from $\mathrm{C}_{2 \mathrm{n}}$ by adding chords $a_{k}\left(a_{2 n-k}\right), 1 \leq \mathrm{k} \leq(\mathrm{n}-1)$ and $a_{k}\left(a_{2 n}\right)$, for $\mathrm{k}=\mathrm{n}$ where the computation is performed under modulo 2 n .

For $m>1, C(2 n, m)$ is obtained by first taking disjoint union of m copies of $\mathrm{C}_{2 \mathrm{n}}$ namely $\mathrm{C}_{2 \mathrm{n}}(1), \quad \mathrm{C}_{2 \mathrm{n}}(2), \quad \mathrm{C}_{2 \mathrm{n}}(3) \ldots \ldots \mathrm{C}_{2 \mathrm{n}}(\mathrm{m}) \quad$ where for each $\mathrm{i}=1,2,3, \ldots . \mathrm{m} \quad \mathrm{C}_{2 \mathrm{n}}(\mathrm{i}) \quad=$ $a_{i 1} a_{i 2} a_{i 3} a_{i 4} a_{i 5} a_{i 6} \ldots \ldots \ldots . a_{i(2 n-1)} a_{i 0}$. Further:

Case(i): If m is even, an edge is drawn to join $a_{i j}$ to $a_{(i+1) j}$ for both odd or both even $1 \leq \mathrm{i} \leq(\mathrm{m}-1), 1 \leq \mathrm{j} \leq 2 \mathrm{n}$ whereas for odd i and even $1 \leq \mathrm{j}<2 \mathrm{n}$ an edge is drawn to join $a_{i j}$ to $a_{m(j+1)}$. Finally an edge is drawn to join $a_{i(2 n)}$ to $a_{m 1}$.

Case(ii): If m is odd an edge is drawn to join $a_{i j}$ to $a_{(i+1) j}$ for both odd or both even $1 \leq \mathrm{i} \leq(\mathrm{m}-1), 1 \leq \mathrm{j} \leq 2 \mathrm{n}$ whereas for odd i and even $1 \leq \mathrm{j}<2 \mathrm{n}$ an edge is drawn to join $a_{i j}$ to $a_{m(j+2)}$. Finally an edge is drawn to join $a_{i(2 n)}$ to $a_{m 2}$.

The Cyclic products $C(8,4)$ and $C(8,5)$ are shown in Fig 1 and Fig 2 .

Fig. $1 \mathbf{C}(8,4)$

Fig. 2 C (8, 5)
Definition 1.2. Let m, n and r be positive integers. Let $\mathrm{C}_{2 \mathrm{n}+1}=a_{0} a_{1} a_{2} a_{3} a_{4} a_{5} \ldots \ldots \ldots . a_{2 n} a_{0}$ denote a cycle of order $2 \mathrm{n}+1(\mathrm{n}>1)$. The (m, r)-brick product of $\mathrm{C}_{2 \mathrm{n}+1}$, denoted by $\mathrm{C}(2 \mathrm{n}+1, \mathrm{~m}, \mathrm{r})$ is defined for $\mathrm{m}=1$, we require that $1<\mathrm{r}<2 \mathrm{n}$. Then $\mathrm{C}(2 \mathrm{n}+1, \mathrm{~m}, \mathrm{r})$ is obtained from $\mathrm{C}_{2 \mathrm{n}+1}$ by adding chords $a_{k}\left(a_{k+r}\right)$, $0 \leq \mathrm{k} \leq 2 \mathrm{n}$ where the computation is performed under modulo $2 \mathrm{n}+1$.

For $m>1, \mathrm{C}(2 \mathrm{n}+1, \mathrm{~m}, \mathrm{r})$ is obtained by first taking the disjoint union of m copies $\mathrm{C}_{2 \mathrm{n}+1}$ namely $\mathrm{C}_{2 \mathrm{n}+1}(1), \mathrm{C}_{2 \mathrm{n}+1}(2), \mathrm{C}_{2 \mathrm{n}+1}(3) \ldots \ldots . . \mathrm{C}_{2 \mathrm{n}+1}(\mathrm{~m})$ where for each $\mathrm{i}=1,2,3 \ldots \ldots \mathrm{~m} \mathrm{C}_{2 \mathrm{n}+1}(\mathrm{i})=$ $a_{i 1} a_{i 2} a_{i 3} a_{i 4} a_{i 5} a_{i 6} \ldots \ldots \ldots . . . a_{i(2 n)} a_{i 0}$. Further:

Case(i): If m is odd and $1<r<2 n$ where r is defined as $r=\{(2 n+1) j\}+2, j \geq 0$, an edge is drawn to join $a_{i j}$ to $a_{(i+1) j}$ for both odd or both even $1 \leq \mathrm{i} \leq(\mathrm{m}-1), 0 \leq \mathrm{j} \leq 2 \mathrm{n}$ whereas for each odd $1 \leq \mathrm{i} \leq(\mathrm{m}-1)$ and even $1 \leq \mathrm{j}<2 \mathrm{n}$ an edge is drawn to join $a_{i j}$ to $a_{m(j+1)}$. Finally an edge is drawn to join $a_{i(2 n)}$ to $a_{m(2 n+r)}$.

Case(ii): If m is even and $1<r<2 n$ where r is defined as $r=\{(2 n+1) j\}+3, j \geq 0$, an edge is drawn to join $a_{i j}$ to $a_{(i+1) j}$ for both odd or both even $1 \leq \mathrm{i} \leq(\mathrm{m}-1), 0 \leq \mathrm{j} \leq 2 \mathrm{n}$ whereas for each odd $1 \leq \mathrm{i} \leq(\mathrm{m}-1)$ and even $1 \leq \mathrm{j}<2 \mathrm{n}$ an edge is drawn to join $a_{i j}$ to $a_{m(j+2)}$. Finally an edge is drawn to join $a_{i(2 n)}$ to $a_{m(2 n+r)}$.

The brick product $\mathrm{C}(11,3,2)$ is shown in Fig 3.

Fig. 3 C(11, 3, 2)
Definition 1.3. Let u and v be two distinct vertices in a connected graph G. Then u and v are attainable in G if there exists a Hamiltonian path in G between u and v . We write (u, v) is attainable in G.

Definition 1.4. Let a_{i} and a_{j} be any two distinct vertices in a connected graph G. Let E ' be a minimal set of edges not in G and P be a path in G , such that $\mathrm{P} \cup \mathrm{E}$ ' is a Hamiltonian path in G from a_{i} to a_{j}. Then $|\mathrm{E}|$ is called the t^{*}-laceability number $\lambda^{*}{ }_{(\mathrm{t})}$ of $\left(a_{i}, a_{j}\right)$ and the edges in E are called the t^{*} - laceability edges with respect to $\left(a_{i}, a_{j}\right)$.

2. RESULTS

In [2], Leena N.Shenoy and R. Murali proved the following results.

Theorem 2.1. $\mathrm{C}(2 \mathrm{n}, 1)$ is Hamiltonian- t -laceable, $1 \leq \mathrm{t} \leq$ diamG.

Theorem 2.2. Let $\mathrm{G}=\mathrm{C}(2 \mathrm{n}, 2)$. Then
(i) G is Hamiltonian-t*-laceable for odd $\mathrm{t}, 1 \leq \mathrm{t} \leq(\mathrm{n}+1)$ with $\lambda^{*}{ }_{(\mathrm{t})}=1$
(ii) G is Hamiltonian-t*-laceable for even $\mathrm{t}, 1 \leq \mathrm{t} \leq(\mathrm{n}+1)$ with $\lambda^{*}{ }_{(\mathrm{t})}=2$.

We now prove the following results.

Theorem 2.3. Let $G=C(2 n, m)$. If $n>3$ and even, $m \geq 3$ and $(2 n-m) \geq 2$, then
(i) $\quad \mathrm{G}$ is Hamiltonian- t^{*}-laceable for $\mathrm{t}=1$.
(ii) G is Hamiltonian- t^{*}-laceable for all $2 \leq \mathrm{t} \leq \mathrm{n}$ with $\lambda^{*}(\mathrm{t})=1$.
(iii) G is Hamiltonian- t^{*}-laceable for $\mathrm{t}=\mathrm{n}+1$ with $\lambda^{*}(\mathrm{t})=2$.

Proof. Consider $\mathrm{G}=\mathrm{C}(2 \mathrm{n}, \mathrm{m})$ with vertices
$a_{11}, a_{12}, a_{13}, a_{14}, a_{15} \ldots \ldots \ldots . a_{1(2 n-1)}, a_{10}, a_{11}, a_{12}, \ldots \ldots \ldots . a_{2(2 n-1)}, a_{20}, a_{31}, a_{32} \ldots \ldots \ldots \ldots$
$. . a_{3(2 n-1)}, a_{30}, a_{41}, a_{42} \ldots \ldots \ldots . a_{4(2 n-1)}, a_{40}, a_{51}, a_{52}, a_{53} \ldots \ldots \ldots \ldots . a_{m(2 n-1)}, a_{m 0}$
Let $P_{s 1}: a_{11}-a_{12}-a_{13}-a_{14}-a_{15} \ldots \ldots \ldots . . a_{1(2 n-1)}-a_{10}$
$P_{s 2}: a_{21}-a_{22}-a_{23}-a_{24}-a_{25} \ldots \ldots \ldots \ldots a_{2(2 n-1)}-a_{20}$
$P_{s 3}: a_{31}-a_{32}-a_{33}-a_{34}-a_{35} \ldots \ldots \ldots \ldots a_{3(2 n-1)}-a_{30}$
$P_{s m}: a_{m 1}-a_{m 2}-a_{m 3}-a_{m 4}-a_{m 5} \ldots \ldots \ldots \ldots a_{m(2 n-1)}-a_{m 0} \quad$ be m sub paths in G.
Let diamG $=\mathrm{n}+1$ and let a_{11} and $a_{1 i}$ be the vertices in $P_{s 1}$. We have the following cases.
Case (i). For $t=1$.
Let i $=$ 2. Then $\left(a_{11}, a_{1 i}\right)$ is attainable and the path:
$P: a_{11}-a_{21}-a_{22}-a_{23}-a_{24} \ldots \ldots \ldots . . a_{2(2 n)}-a_{3(2 n)}-a_{3(2 n-1)}-a_{3(2 n-2)} \ldots \ldots \ldots \ldots . . a_{31}-a_{41} \ldots \ldots .$.
$\ldots a_{m 1}-a_{m(2 n)}-a_{m(2 n-1)}-a_{m(2 n-2)} \ldots \ldots \ldots \ldots . . a_{m 2}-a_{1(2 n)}-a_{1(2 n-1)}-a_{1(2 n-2)} \ldots \ldots \ldots \ldots a_{1 i}$
is a Hamiltonian path.

Fig. 4 Hamiltonian laceable path from a_{11} to a_{12} in $\mathbf{C}(8,4)$

Case (ii). For $2 \leq \mathrm{t} \leq \mathrm{n}$.
Let $2 \leq \mathrm{i} \leq(\mathrm{n}+1)$. Then $\left(a_{11}, a_{1 i}\right)$ is attainable for each and the path: $P: a_{11}-a_{21}-a_{22}-a_{23}-a_{24} \ldots \ldots \ldots \ldots a_{2(2 n)}-a_{3(2 n)}-a_{3(2 n-1)}-a_{3(2 n-2)} \ldots \ldots \ldots \ldots . . \ldots a_{31}-a_{41} \ldots \ldots \ldots . a_{m 1}$
$-a_{m(2 n)}-a_{m(2 n-1)}-a_{m(2 n-2)} \ldots \ldots \ldots \ldots a_{m 2}-a_{1(2 n)}-a_{1(2 n-1)}-a_{1(2 n-2)} \ldots \ldots \ldots . a_{1(i+1)}-a_{12}-a_{13}-a_{14} \ldots \ldots a_{1 i}$ is a Hamiltonian path with t^{*} laceability edge $\left(a_{1(i+1)}, a_{12}\right)$.
Case (iii). For $\mathrm{t}=\mathrm{n}+1$.
Let $\mathrm{i}=\mathrm{n}+2$ for $\mathrm{n} \geq 4$, consider a vertex $a_{m i}$ on $P_{s m}$ Then ($a_{11}, a_{m i}$) is attainable and the path $P: a_{11}-a_{21}-a_{22}-a_{23}-a_{24} \ldots \ldots \ldots . . a_{2(2 n)}-a_{3(2 n)}-a_{3(2 n-1)}-a_{3(2 n-2)} \ldots \ldots \ldots \ldots . . . a_{31}-a_{41}-a_{42}-a_{43} \ldots \ldots \ldots . . a_{4(2 n)}$ $-a_{5(2 n)}-a_{5(2 n-1)}-a_{5(2 n-2)} \ldots \ldots \ldots \ldots . . . a_{m 1}-a_{m 2}-a_{m 3}-a_{m 4}-a_{12}-a_{13}-a_{14}-a_{15} \ldots \ldots \ldots \ldots a_{1(2 n)}-a_{m(2 n)}-a_{m(2 n-1)}$ $-a_{m(2 n-2)} \ldots \ldots \ldots a_{m(1+i)}-a_{m 5}-a_{m 6} \ldots \ldots . . . a_{m i}$
is a Hamiltonian path with t^{*} laceability edge $\left(a_{1(2 n)}, a_{m(2 n)}\right)$ and $\left(a_{m(i+1)}, a_{m 5}\right)$.
Hence the proof.
For $\mathrm{n}=3$, we have the following result.

Theorem 2.4. Consider $G=C(2 n, m)$. If $n=3$ and even, $m \geq 3$ and $(2 n-m) \geq 2$ then G is Hamiltonian-t^{*}-laceable for $\mathrm{t}=4$ with $\lambda^{*}(\mathrm{t})=1$.
Proof. Let $\mathrm{G}=\mathrm{C}(6, \mathrm{~m})$. If $\mathrm{i}=\mathrm{n}+2$ for $\mathrm{n}=3$, consider a vertex $a_{m 5}$ on $P_{s m}$. Then $\left(a_{11}, a_{m i}\right)$ is attainable and
the
path:

$$
\begin{aligned}
& P: a_{11}-a_{12}-a_{13}-a_{14}-a_{15} \ldots \ldots \ldots . a_{20}-a_{30}-a_{35}-a_{34}-a_{33}-a_{31}-a_{41}-a_{42}-a_{43} \ldots \ldots \ldots \ldots . a_{46} \\
& -a_{56}-a_{55}-a_{54} \ldots \ldots \ldots . a_{m 1}-a_{m 2}-a_{m 3}-a_{m 4}-a_{12}-a_{13}-a_{14}-a_{15} \ldots \ldots \ldots \ldots . a_{10}-a_{m 5}-a_{m 0}
\end{aligned}
$$

is a Hamiltonian path with t^{*} laceability edge $\left(a_{10}, a_{m 5}\right)$.
Hence the proof.
Theorem 2.5. Let $G=C(2 n, m)$. If $n \geq 3$ and odd, $m \geq 3$ and $(2 n-m) \geq 3$ then
(i) $\quad \mathrm{G}$ is Hamiltonian- t^{*}-laceable for $\mathrm{t}=1$.
(ii) G is Hamiltonian- t^{*}-laceable for all $2 \leq \mathrm{t} \leq \mathrm{n}$ with $\lambda^{*}{ }_{(\mathrm{t})}=1$.
(iii) G is Hamiltonian- t^{*}-laceable for $\mathrm{t}=\mathrm{n}+1$ with $\lambda^{*}{ }_{(\mathrm{t})}=1$.

Proof. Consider $\mathrm{G}=\mathrm{C}(2 \mathrm{n}, \mathrm{m})$ with vertices:
$a_{11}, a_{12}, a_{13}, a_{14}, a_{15} \ldots \ldots \ldots . a_{1(2 n-1)}, a_{10}, a_{11}, a_{12}, \ldots \ldots \ldots . a_{2(2 n-1)}, a_{20}, a_{31}, a_{32} \ldots \ldots \ldots \ldots$
$. . a_{3(2 n-1)}, a_{30}, a_{41}, a_{42} \ldots \ldots \ldots . a_{4(2 n-1)}, a_{40}, a_{51}, a_{52}, a_{53} \ldots \ldots \ldots \ldots a_{m(2 n-1)}, a_{m 0}$

Let $P_{s 1}: a_{11}-a_{12}-a_{13}-a_{14}-a_{15} \ldots \ldots \ldots \ldots . . a_{1(2 n-1)}-a_{10}$
$P_{s 2}: a_{21}-a_{22}-a_{23}-a_{24}-a_{25} \ldots \ldots \ldots \ldots . . . a_{2(2 n-1)}-a_{20}$
$P_{s 3}: a_{31}-a_{32}-a_{33}-a_{34}-a_{35} \ldots \ldots \ldots \ldots . . a_{3(2 n-1)}-a_{30}$

$P_{s m}: a_{m 1}-a_{m 2}-a_{m 3}-a_{m 4}-a_{m 5} \cdots \ldots \ldots a_{m(2 n-1)}-a_{m 0} \quad$ be m sub paths in G.
Let diam $\mathrm{G}=\mathrm{n}+1$ and a_{11} and $a_{1 i}$ be the vertices in $P_{s 1}$. We have the following cases.
Case (i). For $t=1$.
Let i $=$ 2. Then $\left(a_{11}, a_{12}\right)$ is attainable and the path: $P: a_{11}-a_{21}-a_{22}-a_{23}-a_{24} \ldots \ldots \ldots . a_{2(2 n)}-a_{3(2 n)}-a_{3(2 n-1)}-a_{3(2 n-2)}-a_{3(2 n-3)}-a_{3(2 n-4)} \ldots \ldots \ldots \ldots \ldots$. $\ldots . a_{31}-a_{41}-a_{42} \ldots \ldots \ldots \ldots \ldots . . a_{4(2 n)}-a_{5(2 n)}-a_{5(2 n-1)}-a_{5(2 n-2)} \ldots \ldots \ldots \ldots . a_{m(2 n)}-a_{m(2 n-1)}-a_{m(2 n-2)} \ldots \ldots \ldots$ $\ldots \ldots . a_{m 1}-a_{1(2 n)}-a_{1(2 n-1)}-a_{1(2 n-2)} \ldots \ldots \ldots \ldots . . a_{1 i}$
is a Hamiltonian path.

Fig. 5 Hamiltonian Path from a_{11} to a_{12} in $\mathrm{C}(8,5)$
Case (ii). For $2 \leq \mathrm{t} \leq \mathrm{n}$.
Let $2 \leq \mathrm{i} \leq(\mathrm{n}+1)$. Then $\left(a_{11}, a_{1 i}\right)$ is attainable for each i and the path: $P: a_{11}-a_{21}-a_{22}-a_{23}-a_{24} \ldots \ldots \ldots . . a_{2(2 n)}-a_{3(2 n)}-a_{3(2 n-1)}-a_{3(2 n-2)}-a_{3(2 n-3)}-a_{3(2 n-4)} \ldots \ldots \ldots \ldots \ldots$ $\ldots . . a_{31}-a_{41}-a_{42} \ldots \ldots \ldots \ldots . . . a_{4(2 n)}-a_{5(2 n)}-a_{5(2 n-1)}-a_{5(2 n-2)} \ldots \ldots \ldots \ldots a_{m 1}-a_{1(2 n)}-a_{1(2 n-1)}-a_{1(2 n-2)} \ldots$. $\ldots \ldots \ldots \ldots . . . a_{1(i+1)}-a_{12}-a_{13}-a_{14} \ldots \ldots \ldots \ldots \ldots a_{1 i}$
is a Hamiltonian path with t^{*} laceability edge $\left(a_{1(i+1)}, a_{12}\right)$.
Case (iii). For $\mathrm{t}=\mathrm{n}+1$
Sub Case (i). Let $\mathrm{i}=\mathrm{n}+2$ for even $\mathrm{n} \geq 4$, consider a vertex $a_{m i}$ on $P_{s m}$. Then ($\left.a_{11}, a_{m i}\right)$ is attainable and the path:

$$
\begin{aligned}
P & : a_{11}-a_{12}-a_{13}-a_{14}-a_{15} \ldots \ldots \ldots \ldots . a_{1(i-2)}-a_{m(i-1)}-a_{m(i-2)}-a_{m(i-3)} \ldots \ldots \ldots \ldots \ldots a_{m 1}-a_{1(2 n)}-a_{1(2 n-1)} \\
& -a_{1(2 n-2)}-a_{1(i-1)}-a_{2(i-1)}-a_{2(i-2)}-a_{2(i-3)} \ldots \ldots \ldots \ldots \ldots \ldots a_{21}-a_{2(2 n)}-a_{2(2 n-1)}-a_{2(2 n-2)}-a_{2(2 n-3)} \ldots \ldots \ldots \ldots \\
& \ldots a_{2 i}-a_{3 i}-a_{3(i-1)}-a_{3(i-2)} \ldots \ldots \ldots \ldots a_{3(2 n)}-a_{3(2 n-1)}-a_{3(2 n-2)} \ldots \ldots \ldots \ldots a_{3(i+1)}-a_{4(i+1)}-a_{4 i}-a_{4(i-1)} \ldots \ldots \ldots . \\
& \ldots \ldots \ldots a_{41}-a_{4(2 n)} \ldots \ldots \ldots \ldots . a_{(m-1) 2 n}-a_{(m-1)(2 n-1)}-a_{(m-1)(2 n-2)} \ldots \ldots \ldots \ldots \ldots a_{(m-1) 2 n}-a_{(m-1)(2 n-1)}-a_{(m-1)(2 n-2)} \ldots \ldots .
\end{aligned}
$$

is a Hamiltonian path with t* laceability edge $\left(a_{(m-1)(m+i-3)}, a_{m(2 n)}\right)$.
Sub Case (ii). Let $\mathrm{i}=\mathrm{n}+2$ for odd $\mathrm{n} \geq 3$. Consider a vertex $a_{m i}$ on $P_{s m}$. Then ($a_{11}, a_{m i}$) is attainable and the path:

$$
\begin{aligned}
& P: a_{11}-a_{12}-a_{13}-a_{14}-a_{15} \ldots \ldots \ldots . . a_{1(2 n)}-a_{m 1}-a_{m 2}-a_{m 3} \ldots \ldots \ldots \ldots . a_{m(i-1)}-a_{(m-1)(i-1)}-a_{(m-1)(i-2)} \\
& -a_{(m-1)(i-3)}-a_{(m-1)(i-4)} \ldots \ldots \ldots \ldots \ldots a_{(m-1) 1}-a_{(m-2) 1}-a_{(m-2) 2}-a_{(m-2) 3} \ldots \ldots \ldots \ldots \ldots . . a_{(m-2)(2 n)}-a_{(m-3)(2 n)} \\
& -a_{(m-3)(2 n-1)}-a_{(m-3)(2 n-2)}-a_{(m-3)(2 n-3)} \ldots \ldots \ldots \ldots \ldots a_{21}-a_{(m-1) i}-a_{(m-1)(i+1)}-a_{(m-1)(i+2)} \ldots \ldots \ldots \ldots . a_{(m-1)(2 n)} \\
& -a_{m(2 n)}-a_{m(2 n-1)}-a_{m(2 n-2)} \ldots \ldots \ldots \ldots \ldots a_{m i}
\end{aligned}
$$

is a Hamiltonian path with t^{*} laceability edge $\left(a_{21}, a_{(m-1) i}\right)$.
Hence the Proof.

Theorem 2.6. Let $\mathrm{G}=\mathrm{C}(2 \mathrm{n}+1,3,2)$ for $\mathrm{n} \geq 3$, then
(i) G is Hamiltonian-t*- laceable for $\mathrm{t}=1$
(ii) G is Hamiltonian-t*- laceable for $2 \leq \mathrm{t} \leq(\mathrm{n}+1)$ with $\lambda^{*}{ }_{(\mathrm{t})}=1$

Proof. Consider $G=C(2 n+1, \quad 3, \quad 2)$ with vertices: $a_{11}, a_{12}, a_{13}, a_{14}, a_{15} \ldots \ldots \ldots . . a_{1(2 n-1)} a_{1(2 n)} a_{10}, a_{21}, a_{22}, a_{23} \ldots \ldots \ldots \ldots \ldots a_{2(2 n-1)}, a_{2(2 n)}, a_{20}, a_{31}, a_{32}, a_{33} \ldots \ldots$ $\ldots . . a_{3(2 n-1)}, a_{3(2 n)}, a_{30}$
under modulo $2 \mathrm{n}+1$.
Let $P_{s 1}: a_{11}-a_{12}-a_{13}-a_{14}-a_{15} \ldots \ldots \ldots \ldots . . . a_{1(2 n-1)}-a_{1(2 n)}-a_{10}$
$P_{s 2}: a_{21}-a_{22}-a_{23}-a_{24}-a_{25} \ldots \ldots \ldots \ldots . a_{2(2 n-1)}-a_{2(2 n)}-a_{20}$ $P_{s 3}: a_{31}-a_{32}-a_{33}-a_{34}-a_{35} \ldots \ldots \ldots \ldots . . a_{3(2 n-1)}-a_{3(2 n)}-a_{30}$ be three sub paths in G.

Let diam $\mathrm{G}=\mathrm{n}+1$ and a_{11} and $a_{1 i}$ be the vertices in $\mathrm{P}_{\mathrm{s} 1}$. We have the following cases.
Case (i). For $\mathrm{t}=1$.
Let $\mathrm{i}=2$. Then $\left(a_{11}, a_{12}\right)$ is attainable and the path:

$$
\begin{aligned}
& P: a_{11}-a_{10}-a_{1(10)}-a_{19}-a_{18} \ldots \ldots \ldots \ldots a_{13}-a_{23}-a_{22}-a_{21}-a_{20}-a_{2(10)}-a_{29}-a_{28} \ldots \ldots \ldots \ldots \ldots . . \\
& \ldots . . a_{24}-a_{34}-a_{35}-a_{36} \ldots \ldots \ldots \ldots \ldots . a_{30}-a_{31}-a_{32}-a_{33}-a_{12}
\end{aligned}
$$

is a Hamiltonian path.

Fig. 6 Hamiltonian Path from a_{11} to a_{12} in $\mathbf{C}(11,3,2)$
Case (ii). For $2 \leq \mathrm{t} \leq \mathrm{n}$
Sub Case (i). For each odd i, $2<\mathrm{i} \leq(\mathrm{n}+1),\left(a_{11}, a_{l i}\right)$ is attainable and the path $P: a_{11}-a_{10}-a_{1(2 n)}-a_{19}-a_{18} \ldots \ldots \ldots \ldots a_{1(i+1)}-a_{1(i+2)}-a_{2(i+2)}-a_{2(i+1)}-a_{2 i}-a_{2(i-1)} \ldots \ldots \ldots \ldots \ldots$
$\ldots . a_{21}-a_{20}-a_{2(2 n)}-a_{29}-a_{28} \ldots \ldots \ldots \ldots \ldots . . a_{2(i+3)}-a_{3(i+3)}-a_{3(i+4)}-a_{3(i+5)} \ldots \ldots \ldots \ldots a_{30}-a_{31}-a_{32}$
$-a_{33} \ldots \ldots \ldots \ldots . . a_{3(i+2)}-a_{1(i+1)}-a_{12}-a_{13}-a_{14} \cdots \ldots \ldots \ldots . . a_{1 i}$
is a Hamiltonian path with t^{*} laceability edge $\left(a_{1(i+1)}, a_{12}\right)$.
Sub Case (ii). For each even i between $2<\mathrm{i} \leq(\mathrm{n}+1),\left(a_{11}, a_{l i}\right)$ is attainable and the path: $P: a_{11}-a_{10}-a_{1(2 n)}-a_{19}-a_{18} \ldots \ldots \ldots . . a_{1(i+1)}-a_{2(i+1)}-a_{2 i}-a_{2(i-1)} \ldots \ldots \ldots \ldots \ldots \ldots . . a_{21}-a_{20}-a_{2(2 n)}-a_{29}$
$-a_{28} \cdots \ldots \ldots \ldots \ldots . . a_{2(i+2)}-a_{3(i+2)}-a_{3(i+3)}-a_{3(i+4)} \cdots \ldots \ldots \ldots . a_{30}-a_{31}-a_{32}-a_{33} \ldots \ldots \ldots \ldots . . a_{3(i+1)}-a_{12}$
$-a_{13}-a_{14} \ldots \ldots \ldots \ldots a_{1 i}$
is a Hamiltonian path with t^{*} laceability edge $\left(a_{3(i+1)}, a_{12}\right)$.
Case (iii). For $\mathrm{t}=\mathrm{n}+1$
Sub Case (i). Let $\mathrm{i}=\mathrm{n}+2$ for odd $\mathrm{n} \geq 3$, consider a vertex $a_{3 i}$ on $P_{s 3}$. Then ($a_{11}, a_{3 i}$) is attainable and the
path:
$P: a_{11}-a_{12}-a_{13}-a_{14}-a_{15} \ldots \ldots \ldots . . a_{10}-a_{20}-a_{21}-a_{22}-a_{23}-a_{24} \ldots \ldots \ldots \ldots \ldots \ldots . a_{2(i-1)}-a_{3(i-1)}-a_{3(i-2)}$
$-a_{3(i-3)}-a_{3(i-4)} \ldots \ldots \ldots \ldots \ldots . . a_{31}-a_{30}-a_{3(2 n)}-a_{2(2 n)}-a_{2(2 n-1)}-a_{2(2 n-2)} \ldots \ldots \ldots \ldots a_{2 i}-a_{3(2 n-1)}-a_{3(2 n-2)}$
$-a_{3(2 n-3)} \cdots \cdots \ldots \ldots a_{3 i}$
is a Hamiltonian path with t^{*} laceability edge $\left(a_{2 i}, a_{3(2 n-1)}\right)$.
Sub Case (ii). Let $\mathrm{i}=\mathrm{n}+2$ for even $\mathrm{n} \geq 4$, consider a vertex $a_{3 i}$ on $P_{s 3}$.
Then $\left(a_{11}, a_{3 i}\right)$ is attainable and the path:

$$
\begin{aligned}
& P: a_{11}-a_{12}-a_{13}-a_{14}-a_{15} \ldots \ldots \ldots . a_{10}-a_{20}-a_{21}-a_{22}-a_{23}-a_{24} \ldots \\
& \ldots . a_{2(2 n)}-a_{3(2 n)}-a_{30}-a_{31}-a_{32} \ldots \ldots \ldots \ldots \ldots . a_{3(i-1)}-a_{3(2 n-1)}-a_{3(2 n-2)} \\
& -a_{2(2 n-3)} \ldots \ldots \ldots a_{3 i}
\end{aligned}
$$

is a Hamiltonian path with t^{*} laceability edge $\left(a_{3(i-1)}, a_{3(2 n-1)}\right)$.
Hence the proof.

ACKNOWLEDGEMENTS

The first author is thankful to the Management and the staff of the Department of Mathematics, Acharya Institute of Technology, Bangalore for their support and encouragement. The authors are also thankful to the Management, Dr. Ambedkar Institute of Technology, Bangalore and R\&D centre, Department of Mathematics, Dr. Ambedkar Institute of Technology, Bangalore for their support.

REFERENCES

[1] Brain Alspach C.C. Chen and Kevin Mc Avaney "On a class of Hamiltonian laceable 3regular graphs", Journal of Discrete Mathematics, 151, pp.19-38, 1996.
[2] Leena N. shenoy and R.Murali, "Laceability on a class of Regular Graphs", International Journal of computational Science and Mathematics, volume 2, Number 3, pp.397-406, 2010
[3] Girisha.A, H. Mariswamy, R. Murali and G. Rajendra "Hamiltonian Laceability on a class of 4-regular graphs", ISOR Journal of Mathematics, volume 4, issue 1, pp.07-12, 2012.

