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ABSTRACT 

A connected graph G is said to be Hamiltonian-t-laceable if there exists a Hamiltonian path between 

every pair of distinct vertices at a distance‘t’ in G and Hamiltonian-t*-laceable if there exist at least 

one such pair, where t is a positive integer. In this paper we explore Hamiltonian-t*- Laceability 

properties of the cyclic product C(2n, m) and the Brick product C(2n+1, 3, 2) of cycles. 

 

Keywords:  Hamiltonian-t
*
-laceable graph; Cyclic product; Brick product; Laceability number. 

2010 Mathematics Subject Classification: 05C45, 05C99. 

 

1. INTRODUCTION 

 
Let G be a finite, simple connected undirected graph. Let u and v be two vertices in G. The 

distance between u and v denoted by d(u,v) is the length of a shortest u-v path in G. G is 

Hamiltonian-t-laceable if there exists a Hamiltonian path between every pair of vertices u and v with 

d(u,v)=t and Hamiltonian-t*-laceable if there exists at least one such pair with d(u,v)=t where t is a 

positive integer such that 1≤ t ≤ diamG. The concept of Hamiltonian laceability of brick products of 

even cycles was studied by B. Alspach, C.C. Chen and Kevin Mc Avaney in [1]. In [2],  Leena 

Shenoy and R. Murali have discussed the Hamiltonian -t*-laceabili ty of (m,r)-Brick 

Product of odd cycles C(2n+1,m,r) for m=2 and r=2 and cyclic product for C(2n,m) 

for m=1,2.  

 

First, we recall the following definitions. 

 

Definition 1.1. Let m and n be positive integers. Let C2n = 012543210 ........... aaaaaaaa n  denote a 

cycle of order 2n (n>1). Then, the cyclic product of C2n denoted by C(2n, m) is defined as follows. 
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For m=1, C(2n, 1) is obtained from C2n by adding chords ),( 2 knk aa  1≤ k ≤ (n-1) and

),( 2nk aa  for  k = n where the computation is performed under modulo 2n. 

For m>1, C(2n, m) is obtained by first taking disjoint union of m copies of C2n  namely 

C2n(1), C2n(2), C2n(3)……C2n(m) where for each i=1,2,3,…..m C2n(i) = 

............ 0)12(654321 iniiiiiii aaaaaaaa  Further: 

Case(i): If m is even, an edge is drawn to join 
jiij atoa )1(

for both odd or both even                 

1≤  i ≤ (m-1), 1 ≤ j ≤ 2n  whereas for odd i and  even 1≤  j < 2n an edge is drawn to join
)1( jmij atoa  . 

Finally an edge is drawn to join .1)2( mni atoa   

Case(ii): If m is odd an edge is drawn to join 
jiij atoa )1(
 for both odd or both even                       

1≤  i ≤ (m-1), 1 ≤ j ≤ 2n  whereas for odd i and  even 1≤  j < 2n an edge is drawn to join 

.)2( jmij atoa  Finally an edge is drawn to join  .2)2( mni atoa   

 

The Cyclic products C(8, 4) and C(8, 5) are shown in Fig 1 and Fig 2. 

 

 
Fig.1  C(8, 4) 

 

Fig.2  C(8, 5) 

Definition 1.2. Let m, n and r be positive integers. Let C2n+1= 02543210 ........... aaaaaaaa n  denote a 

cycle of order 2n+1 (n>1). The (m,r)-brick product of C2n+1, denoted by C(2n+1,m,r) is defined for 

m=1, we require that 1< r < 2n. Then C(2n+1,m,r) is obtained from C2n+1 by adding chords ),( rkk aa  

0 ≤ k ≤ 2n where the computation is performed  under modulo 2n+1. 
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For m > 1, C(2n+1, m, r) is obtained by first taking the disjoint union of m copies C2n+1 

namely  C2n+1 (1), C2n+1(2), C2n+1(3)…….. C2n+1(m) where for each i= 1,2,3……m  C2n+1(i) = 

............ 0)2(654321 iniiiiiii aaaaaaaa  Further: 

Case(i): If m is odd and 1< r <2n where r is defined as r={(2n+1) j} +2, j≥0, an edge is 

drawn to join aij to a(i+1)j for both odd or both even 1≤  i ≤ (m-1), 0 ≤ j ≤ 2n  whereas for each odd     

1≤  i ≤ (m-1) and even 1≤  j < 2n an edge is drawn to join .)1( jmij atoa  Finally an edge is drawn to 

join .)2()2( rnmni atoa  

Case(ii): If m is even and 1< r <2n where r is defined as r={(2n+1) j} +3, j≥0, an edge is 

drawn to join aij to a(i+1)j for both odd or both even 1≤  i ≤ (m-1), 0 ≤ j ≤ 2n  whereas for each odd    

1≤  i ≤ (m-1) and even 1≤  j < 2n an edge is drawn to join .)2( jmij atoa  Finally an edge is drawn to 

join
)2()2( rnmni atoa . 

 

The brick product C(11,3,2) is shown in Fig 3. 

 

 
 

Fig.3  C(11, 3, 2) 

 

Definition 1.3. Let u and v be two distinct vertices in a connected graph G. Then u and v are 

attainable in G if there exists a Hamiltonian path in G between u and v. We write (u,v) is attainable 

in G. 

 

Definition 1.4. Let ai and aj be any two distinct vertices in a connected graph G. Let E
’
 be a minimal 

set of edges not in G and P be a path in G, such that P  E
’ 
is a Hamiltonian path in G from ai to aj. 

Then | E
’
| is called the t*-laceability number *(t) of ),( ji aa  and the edges in E

’
 are called the                   

t
*
- laceability edges with respect to ),( ji aa . 

 

2. RESULTS 

 

In [2], Leena N.Shenoy and R. Murali proved the following results. 

 

Theorem 2.1. C(2n, 1) is Hamiltonian-t-laceable, 1 ≤ t ≤ diamG. 

 

Theorem 2.2. Let G= C(2n, 2). Then  
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(i) G is Hamiltonian-t*-laceable for odd t , 1≤ t ≤ (n+1) with  *(t) =1 

(ii) G is Hamiltonian-t*-laceable for even t, 1 ≤ t ≤ (n+1) with *(t) =2. 

 

We now prove the following results. 

 

Theorem 2.3. Let G=C(2n,m). If n > 3 and even, m ≥ 3 and (2n-m) ≥ 2, then  

(i) G is Hamiltonian-t*-laceable for t =1. 

(ii) G is Hamiltonian-t*-laceable for all 2 ≤ t ≤ n with *(t) =1. 

(iii) G is Hamiltonian-t*-laceable for t = n+1 with  *(t) =2. 

 

Proof.  Consider G = C (2n, m) with vertices 

0)12(53525140)12(4424130)12(3

323120)12(2121110)12(11514131211

,...............,,,,............,,,..

..............,,,.,.........,,,.............,,,,

mnmnn

nn

aaaaaaaaaaa

aaaaaaaaaaaaa

 
 

 

 

 

 

 

 

be m sub paths in G.  

Let diamG = n+1and let 11a  and ia1  be the vertices in 1sP .We have the following cases. 

Case (i). For  t=1.  

Let i = 2. Then ),( 111 iaa is attainable and the path: 

innnmnmnmnmm

nnnn

aaaaaaaaa

aaaaaaaaaaaP

1)22(1)12(1)2(12)22()12()2(1

4131)22(3)12(3)2(3)2(22423222111

..................................

.....................................:
  

is a Hamiltonian path. 

 
Fig.4  Hamiltonian laceable path from a11 to a12 in C(8,4) 

 

0)12(54321

30)12(335343332313

20)12(225242322212

10)12(115141312111

.............:

.............:

.............:

.............:

mnmmmmmmsm

ns

ns

ns

aaaaaaaP

aaaaaaaP

aaaaaaaP

aaaaaaaPLet
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Case (ii). For  2 ≤  t ≤ n. 

Let 2 ≤ i ≤ (n+1). Then ),( 111 iaa  is attainable for each and the path:  

iinnnmnmnmnm

mnnnn

aaaaaaaaaaaa

aaaaaaaaaaaaP

1141312)1(1)22(1)12(1)2(12)22()12()2(

14131)22(3)12(3)2(3)2(22423222111

......................................

........................................:

is a Hamiltonian path with t* laceability edge ),( 12)1(1 aa i
. 

Case (iii). For t=n+1. 

Let i = n+2 for n ≥ 4, consider a vertex m ia  on smP
 
Then ),( 11 miaa  is attainable and the path  

mimmimnm

nmnmnmmmmnnn

nnnnn

aaaaa

aaaaaaaaaaaaaa

aaaaaaaaaaaaaaP

.........................

...............................

........................................:

65)1()22(

)12()2()2(1151413124321)22(5)12(5)2(5

)2(443424131)22(3)12(3)2(3)2(22423222111

is a Hamiltonian  path with t* laceability edge ).,(),( 5)1()2()2(1 mimnmn aaandaa  

Hence the proof.                            □                                                                                                                                    

  

For n=3, we have the following result. 

 

Theorem 2.4. Consider G=C(2n,m). If n = 3 and even, m ≥ 3 and (2n-m) ≥ 2 then G is Hamiltonian-

t*-laceable for t = 4 with *(t) =1. 

Proof. Let G=C(6,m). If i = n+2 for n = 3, consider a vertex 5ma  on smP . Then ),( 11 miaa  is attainable 

and the path: 

0510151413124321545556

464342413133343530201514131211

...........................

............................:

mmmmmm aaaaaaaaaaaaaa

aaaaaaaaaaaaaaaP
 

is a Hamiltonian path with t* laceability edge ).,( 510 maa   

Hence the proof.                                                                                                                                     □   

  

Theorem 2.5. Let G=C(2n,m). If n ≥ 3 and odd, m ≥ 3 and (2n-m) ≥ 3 then  

(i) G is Hamiltonian-t*-laceable for t =1. 

(ii) G is Hamiltonian-t*-laceable for all 2 ≤ t ≤ n with *(t) =1. 

(iii) G is Hamiltonian-t*-laceable for t = n+1 with *(t) =1. 

Proof. Consider G=C(2n, m) with vertices: 

0)12(53525140)12(4424130)12(3

323120)12(2121110)12(11514131211

,...............,,,,............,,,..

..............,,,.,.........,,,.............,,,,

mnmnn

nn

aaaaaaaaaaa

aaaaaaaaaaaaa
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be m sub paths in G. 

Let diam G = n+1 and 11a and ia1 be the vertices in 1sP .We have the following cases. 

Case (i). For  t=1. 

 Let i = 2. Then ),( 1211 aa  is attainable and the path:

innnm

nmnmnmnnnn

nnnnnn

aaaaa

aaaaaaaaaa

aaaaaaaaaaaP

1)22(1)12(1)2(11

)22()12()2()22(5)12(5)2(5)2(4424131

)42(3)32(3)22(3)12(3)2(3)2(22423222111

.......................

...............................................

.............................:

  

is a Hamiltonian path. 

 
Fig.5  Hamiltonian Path from a11 to a12 in C(8,5) 

Case (ii). For 2 ≤  t ≤ n.  

Let 2 ≤ i ≤ (n+1). Then ),( 111 iaa  is attainable for each i and the path:      

ii

nnnmnnnn

nnnnnn

aaaaa

aaaaaaaaaaa

aaaaaaaaaaaP

1141312)1(1

)22(1)12(1)2(11)22(5)12(5)2(5)2(4424131

)42(3)32(3)22(3)12(3)2(3)2(22423222111

...................................

........................................

.............................:

   

is a Hamiltonian path with t* laceability edge ).,( 12)1(1 aa i  
Case (iii). For t=n+1 

Sub Case (i). Let  i = n+2 for even n ≥ 4, consider a vertex ami on smP  . Then (a11 ,ami) is attainable 

and the path:

0)12(54321

30)12(335343332313

20)12(225242322212

10)12(115141312111

.............:

.............:

.............:

.............:

mnmmmmmmsm

ns

ns

ns

aaaaaaaP

aaaaaaaP

aaaaaaaP

aaaaaaaPLet
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    ............................

................................................

..........................................

..................................

.............................:

)12()2()3)(1(

)22)(1()12)(1(2)1()22)(1()12)(1(2)1()2(441

)1(44)1(4)1(3)22(3)12(3)2(3)2(3)1(332

)32(2)22(2)12(2)2(221)3(2)2(2)1(2)1(1)22(1

)12(1)2(11)3()2()1()2(11514131211

minmnmimm

nmnmnmnmnmnmn

iiiinnniiii

nnnniiiin

nnmimimimi

aaaa

aaaaaaaa

aaaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaaaaP

 is a Hamiltonian path with t* laceability edge ).,( )2()3)(1( nmimm aa   

Sub Case (ii). Let  i = n+2 for odd n ≥ 3. Consider a vertex ami on smP . Then (a11 ,ami) is attainable 

and the path: 

minmnmnm

nmimimimnmnmnm

nmnmmmmmimim

imimimmmmn

aaaa

aaaaaaaa

aaaaaaaa

aaaaaaaaaaaaP

..................

..............................

......................................

.............................:

)22()12()2(

)2)(1()2)(1()1)(1()1(21)32)(3()22)(3()12)(3(

)2)(3()2)(2(3)2(2)2(1)2(1)1()4)(1()3)(1(

)2)(1()1)(1()1(321)2(11514131211

  

is a Hamiltonian path with t* laceability edge ).,( )1(21 imaa

 

Hence the Proof.                          □                                                                                                                         

 

 

Theorem 2.6. Let G = C(2n+1, 3, 2) for n ≥ 3, then  

(i) G is Hamiltonian-t*- laceable for t=1 

(ii) G is Hamiltonian-t*- laceable for 2 ≤ t ≤ (n+1) with *(t)=1 

Proof. Consider G = C(2n+1, 3, 2) with vertices:

30)2(3)12(3

33323120)2(2)12(223222110)2(1)12(11514131211

,,......

......,,,,,.................,,,.............,,,,

aaa

aaaaaaaaaaaaaaaaa

nn

nnnn

under modulo 2n+1.    

 

 

 

 

 

 

       Let diam G = n+1and  11a  and ia1  be the vertices in Ps1.We have the following cases. 

Case (i). For t=1.  

Let i = 2. Then ),( 1211 aa is attainable and the path: 

123332313036353424

2829)10(220212223131819)10(11011

.........................

.............................:

aaaaaaaaa

aaaaaaaaaaaaaP
  

 is a Hamiltonian path.                                     

 

 

 

 

 

 G.in  paths sub   threebe.............:

.............:

.............:

30)2(3)12(335343332313

20)2(2)12(225242322212

10)2(1)12(115141312111

aaaaaaaaP

aaaaaaaaP

aaaaaaaaPLet

nns

nns

nns
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Fig.6  Hamiltonian Path from a11 to a12 in C(11, 3, 2) 

Case (ii). For 2 ≤ t ≤ n 

Sub Case (i). For each odd i,  2 <  i ≤ (n+1),  (a11, a1i) is attainable and the path 

iii

iiiin

iiiiiin

aaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaP

1141312)1(1)2(333

323130)5(3)4(3)3(3)3(22829)2(22021

)1(22)1(2)2(2)2(1)1(11819)2(11011

................................

......................................

.............................:

    

is a Hamiltonian path with t* laceability edge ).,( 12)1(1 aa i  
Sub Case (ii). For each even i between  2 < i ≤ (n+1), (a11, a1i) is attainable and the path:  

i

iiiii

niiiin

aaa

aaaaaaaaaaa

aaaaaaaaaaaaaP

11413

12)1(333323130)4(3)3(3)2(3)2(228

29)2(22021)1(22)1(2)1(11819)2(11011

................

..............................................

..................................:

  

is a Hamiltonian path with t* laceability edge ).,( 12)1(3 aa i  
Case (iii).  For t= n+1 

Sub Case (i).  Let  i = n+2 for odd  n ≥ 3, consider a vertex ia3  on 3sP . Then (a11 ,a3i) is attainable 

and the path: 

in

nninnnnii

iii

aa

aaaaaaaaaaa

aaaaaaaaaaaaaaP

3)32(3

)22(3)12(32)22(2)12(2)2(2)2(33031)4(3)3(3

)2(3)1(3)1(22423222120101514131211

.............

................................

..................................:

    

is a Hamiltonian path with t* laceability edge ).,( )12(32 ni aa       

Sub Case (ii).  Let  i = n+2 for even n ≥ 4, consider a vertex ia3  on 3sP .  

Then ),( 311 iaa  is attainable and the path: 

in

nninn

aa

aaaaaaaa

aaaaaaaaaaaP

3)32(2

)22(3)12(3)1(3323130)2(3)2(2

2423222120101514131211

..........

.........................

.............................:

 

is a Hamiltonian path with t* laceability edge ).,( )12(3)1(3 ni aa
 

Hence the proof.                □ 
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