

Volume-4, Issue-4, August-2014, ISSN No.: 2250-0758

Total Domination Number of Butterfly Graph

Indrani Kelkar ${ }^{1}$, B. Maheswari ${ }^{2}$
${ }^{1}$ Department of Mathematics, Acharya Institute of Technology, Bangalore, INDIA
${ }^{2}$ Department of Applied Mathematics, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India..

Abstract

Butterfly graphs are very important structures in computer architecture and communication techniques. Total Domination is an important parameter as it ensures connectivity in the network even after failure of few of the communication points. In this paper we find total domination number of $B F(\mathbf{n})$ and deduce a relation between the domination number and total domination number of $\operatorname{BF}(\mathbf{n})$ as $$
\begin{array}{ll} \gamma_{\mathrm{t}}(\mathbf{B F}(\mathbf{2}))=2^{2} & =\gamma(\mathbf{B F}(\mathbf{2}))+2 \\ \gamma_{\mathrm{t}}(\mathbf{B F}(\mathbf{3}))=2^{3} & =\gamma(\mathbf{B F}(\mathbf{3}))+2 \\ \gamma_{\mathrm{t}}(\mathbf{B F}(\mathbf{n})) & =\gamma(\mathbf{B F}(\mathbf{n})) \quad \text { for } \mathrm{n}>3 \end{array}
$$

Keywords- Butterfly graph, domination number, total domination number

I. INTRODUCTION

Berge [3] presents the problem of 5 queens as Can we place 5 queens on a chess board such that every square on the board is covered by at least one queen? Another problem is that not only one or more queens dominate the squares, but each queen is dominated by another queen. The solution of this problem introduces the concept of total dominating sets in graphs.

Total Dominating sets were introduced by Cockayne, Dawes and Hedetniemi [4]. Some results on total domination can also be seen in Allan, Laskar and Hedetniemi [1]. In this paper we present the results on total domination number of butterfly graph $\mathrm{BF}(\mathrm{n})$.

Butterfly Graph BF(n) : The vertex set V of BF(n) is the set of ordered pairs $(\alpha ; v)$ where $\alpha \in\{0,1,2$, $\ldots . . n-1\}$ and $v=x_{n-1} x_{n-2} \ldots \ldots x_{1} x_{0}$ is a binary string of length n where $x_{i}=0$ or 1. There is an edge from a vertex $\left(\alpha ;\right.$ v) to a vertex $\left(\alpha^{\prime} ; \mathrm{v}^{\prime}\right)$ where $\alpha^{\prime} \equiv \alpha+1(\bmod \mathrm{n})$ and $\mathrm{x}_{\mathrm{j}}=$ $\mathrm{x}_{\mathrm{j}}^{\prime} \forall \mathrm{j} \neq \alpha^{\prime}$. A butterfly graph $\mathrm{BF}(\mathrm{n})$ is an n - partite graph with n levels. Each level L_{k} for $k=0,1, \ldots, n-1$ has 2^{n} vertices and $L_{k}=\left\{(k ; v) / v=x_{n-1} x_{n-2} \ldots \ldots . x_{1} x_{0}, x_{i}=0\right.$ or 1$\}$. Using decimal representation of the binary string we can write $\mathrm{L}_{\mathrm{k}}=\{(\mathrm{k} ; \mathrm{m}) /$ where $\mathrm{k}=0,1,2, \ldots . \mathrm{n}-1$ and m $\left.\left.=\sum \mathrm{x}_{\mathrm{j}} \mathrm{j}^{\mathrm{j}}, \mathrm{j}=0,1, \ldots . \mathrm{n}-1\right)\right\}$.

II. SPECIAL RECURSIVE CONSTRUCTION OF BF(4k)

The recursive construction given by Barth and Raspaud [2] constructs $\mathrm{BF}(\mathrm{n})$ from 2 copies of $\mathrm{BF}(\mathrm{n}-1)$, which gives that first 4 consecutive levels $\mathrm{L}_{0}, \mathrm{~L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ consist of 2^{n-3} copies of $\operatorname{BF}(4)$ in $B F(n)$ for $n>4$. Now we present a special recursive construction of $\operatorname{BF}(\mathrm{n})$ for $\mathrm{n}=$ 4 k from $\mathrm{BF}(4)$, which is of great advantage for finding dominating sets of $\mathrm{BF}(4 \mathrm{k})$ from the dominating set of $B F(4)$.

Consider 2^{4} copies of the graph $\mathrm{BF}(4(\mathrm{k}-1))$ in levels $\mathrm{L}_{0}, \mathrm{~L}_{1}, \mathrm{~L}_{2}, \ldots \ldots \mathrm{~L}_{4 k-5}$ and place them next to each other. Now call a set of $2^{\text {n-3 }}$ vertices in each copy in these levels as a vertex group. Define a set of parallel edges between these vertices as an edge between vertex groups. Now the 4 levels $\quad L_{4 k-4}, L_{4 k-3}, L_{4 k-2}$ and $L_{4 k-1}$ consist of 2^{4} vertex groups in each level with edges as defined in $\mathrm{BF}(4)$ without winged edges. We shall call this a pattern of $\mathbf{B F}(4)$, without winged edges. Thus $\mathrm{BF}(4 \mathrm{k})$ can be obtained recursively from $\mathrm{BF}(4(\mathrm{k}-1))$ by taking 2^{4} copies of $\mathrm{BF}(4(\mathrm{k}-1))$, adding 4 levels of 2^{4} vertex groups and defining the edges between these vertex groups in the same way as the edges between vertices of $\mathrm{BF}(4)$. Figure 2 illustrates this process for $\mathrm{k}=2$, namely for $\mathrm{BF}(8)$.

Figure 1: Special recursive construction of $\mathrm{BF}(8)$
Indrani [6] has given minimal dominating sets of butterfly graphs and the domination numbers of $\mathrm{BF}(\mathrm{n})$ found are as follows.

$$
\begin{aligned}
\gamma(\mathrm{BF}(\mathrm{n})) & =2 & & \text { if } \mathrm{n}=2 \\
& =6 & & \text { if } \mathrm{n}=3 \\
& =(2 \mathrm{k}+\mathrm{r}) 2^{\mathrm{n}-1} & & \text { if } \mathrm{n}=4 \mathrm{k}+\mathrm{r}, \mathrm{r}=0,1 \text { and } k \varepsilon Z^{+} \\
& =(\mathrm{k}+1) 2^{\mathrm{n}} & & \text { if } \mathrm{n}=4 \mathrm{k}+\mathrm{r}, \mathrm{r}=2,3, \mathrm{k} \varepsilon \mathrm{Z}^{+} .
\end{aligned}
$$

Because of the n-partite structure of $\operatorname{BF}(\mathrm{n})$, we choose vertices into the total dominating set from two consecutive levels say L_{i} and L_{i+1} which together dominate all the vertices of 4 levels L_{i-1}, L_{i}, L_{i+1} and L_{i+2}. But we require an additional condition, every vertex in the total dominating set T must be adjacent to some vertex of T .

III. MAIN RESULT

Theorem : The total domination number of Butterfly graph $\mathrm{BF}(\mathrm{n})$ is

$$
\begin{array}{rlr}
\gamma_{\mathrm{t}}(\mathrm{BF}(\mathrm{n})) & =2^{2} & \text { for } \mathrm{n}=2 \\
& =2^{3} & \text { for } \mathrm{n}=3 \\
& =(2 \mathrm{k}+\mathrm{r}) 2^{\mathrm{n}-1} & \text { for } \mathrm{n}=4 \mathrm{k}+\mathrm{r}, \mathrm{r}=0,1, \text { and } \mathrm{k} \varepsilon \mathrm{Z}^{+} \\
& =(\mathrm{k}+1) 2^{\mathrm{n}} & \text { for } \mathrm{n}=4 \mathrm{k}+\mathrm{r}, \mathrm{r}=2,3 \text { and } \mathrm{k} \varepsilon \mathrm{Z}^{+} .
\end{array}
$$

The butterfly graphs $\mathrm{BF}(2)$ and $\mathrm{BF}(3)$ have a special structure. $\mathrm{BF}(2)$ is the only butterfly graph having parallel edges and $\mathrm{BF}(3)$ is the only butterfly graph having triangles. So we give the total domination number of these two graphs separately. We find total domination number of $\mathrm{BF}(4)$ which is a 4-regular graph without triangles and then using Special Recursive construction of $\operatorname{BF}(4 \mathrm{k})$ the results for total domination number of $\mathrm{BF}(4)$ are extended for $\mathrm{BF}(4 \mathrm{k})$. Later using the Recursive construction 1 we find total domination numbers of $\mathrm{BF}(4 \mathrm{k}+\mathrm{r})$ for $\mathrm{r}=1,2,3$. Case 1: $n=2$.

Consider the graph $\mathrm{BF}(2)$. We know that $\gamma(\mathrm{BF}(2))=2$. Without loss of generality, we assume that a dominating set of $\mathrm{BF}(2)$ be $\mathrm{D}=\left\{\left(0 ; \mathrm{m}_{1}\right),\left(1 ; \mathrm{m}_{2}\right)\right\}$, where $\mathrm{m}_{1}, \mathrm{~m}_{2} \in\{0,1,2,3\}$ and $\mathrm{m}_{1}+\mathrm{m}_{2}=3$. Possible values for m_{1} and m_{2} are 0,3 or 1,2 . From the definition of edges in $\mathrm{BF}(2)$ these pairs of vertices in D are not adjacent. Clearly D is not a total dominating set as the two vertices in D are not adjacent and hence does not dominate each other. To dominate the vertices of D, let us include a new vertex (k; t) into D. If $k=0$ then $(k ; t)$ is not adjacent to $\left(0 ; m_{1}\right)$ and if $k=1$ then $(k ; t)$ is not adjacent to $\left(1 ; m_{2}\right)$. So there is no single vertex ($\mathrm{k} ; \mathrm{t}$) which dominates both $\left(0 ; \mathrm{m}_{1}\right)$ and $\left(1 ; m_{2}\right)$ of D. Thus a dominating set of cardinality 3 is not a total dominating set. Hence if a total dominating set T exists in $\mathrm{BF}(2)$ then $|\mathrm{T}|>3$.

Now ($0 ; \mathrm{m}_{1}$) is adjacent to 3 vertices of level L_{1}, so we include any one of these 3 vertices into D say (1 ; $\left.m_{3}\right)$ where $m_{3} \neq m_{2}$. Again vertex $\left(1 ; m_{2}\right)$ is adjacent to 3 vertices of L_{0}, so we include any one of these three vertices into D say $\left(0 ; m_{4}\right)$ where $\mathrm{m}_{4} \neq \mathrm{m}_{1}$. Thus the vertices $\left(1 ; m_{3}\right)$ and $\left(0 ; m_{1}\right)$ are adjacent and similarly the vertices $\left(1 ; \mathrm{m}_{2}\right)$ and $\left(0 ; \mathrm{m}_{4}\right)$ are adjacent .
$\mathrm{T}=\left\{\left(0 ; \mathrm{m}_{1}\right),\left(1 ; \mathrm{m}_{2}\right),\left(1 ; \mathrm{m}_{3}\right),\left(0 ; \mathrm{m}_{4}\right) / \mathrm{m}_{1} \neq \mathrm{m}_{4}\right.$ and $\left.\mathrm{m}_{2} \neq \mathrm{m}_{3}\right\}$.
Clearly $\mathrm{D} \subseteq \mathrm{T}$. So T is a dominating set. Also vertices $\left(1 ; \mathrm{m}_{3}\right)$ and $\left(0 ; \mathrm{m}_{1}\right)$ dominate each other and similarly the vertices $\left(1 ; \mathrm{m}_{2}\right)$ and $\left(0 ; \mathrm{m}_{4}\right)$ dominate each
other, it follows that T is a total dominating set of minimum cardinality. Hence $\gamma_{\mathrm{t}}(\mathrm{BF}(2))=4=\gamma(\mathrm{BF}(2))+2$.

Two possible choices of total dominating sets are illustrated in the figure below :

Figure 2: Two Total dominating sets for $\mathrm{BF}(2)$
Case 2: n=3.
Consider the graph $\mathrm{BF}(3)$. We know that $\gamma(\mathrm{BF}(3))=6$. As shown in [6] any dominating set D of cardinality 6 for $\mathrm{BF}(3)$ is an independent set. So D can not be a total dominating set. By recursive construction 1 we observe that $\mathrm{BF}(3)$ contains two copies of $\mathrm{BF}(2)$ and a level with 8 vertices. Let us consider the first copy of $\mathrm{BF}(2)$ along with the first four vertices of level L_{2} as left part of $\mathrm{BF}(3)$ and the remaining part as right part of $\mathrm{BF}(3)$. A minimal dominating set D of $\mathrm{BF}(3)$ has 3 vertices, one vertex from each level, from left and right parts of $\mathrm{BF}(3)$. Hence, by symmetric structure of butterfly graph, we need to add at least one vertex each from left part and right part of $\mathrm{BF}(3)$ to D , in order to get a total dominating set. Thus $\gamma_{\mathrm{t}}(\mathrm{BF}(3)) \geq 8$. Now we present a construction of a total dominating set of cardinality 8 for $\mathrm{BF}(3)$. Consider a set of vertices from level L_{k} given by
$\mathrm{T}_{1}=\left\{\left(\mathrm{k} ; \mathrm{m}_{1}\right),\left(\mathrm{k} ; \mathrm{m}_{2}\right)\left(\mathrm{k} ; \mathrm{m}_{3}\right)\left(\mathrm{k} ; \mathrm{m}_{4}\right) /\left|\mathrm{m}_{\mathrm{i}}-\mathrm{m}_{\mathrm{j}}\right| \neq 2^{\mathrm{k}}, 2^{\mathrm{k}+1}\right\}$.
Vertices in T_{1} dominate all the vertices of $\mathrm{L}_{\mathrm{k}-1}$ and $\mathrm{L}_{\mathrm{k}+1}$ (Lemma 4.3 of [6]). Now to dominate the remaining vertices of $L_{k} \backslash T_{1}$, we select vertices from L_{k-1} or L_{k+1}. A vertex $(k-1 ; t)$ of L_{k-1} is adjacent to two vertices $(k ; t)$ and $(k ; s)$ where $|t-s|=2^{k}$. So only one of these vertices is in T_{1} and the other is in $L_{k} \backslash T_{1}$. So $(k-1 ; t)$ dominates one vertex of $L_{k} \backslash T_{1}$. Thus every vertex of L_{k-1} dominates one vertex of T_{1} and one vertex of $L_{k} \backslash T_{1}$. So we need to select 4 vertices from L_{k-1} to dominate 4 vertices of $L_{k} \backslash T_{1}$.
Let $\mathrm{T}_{2}=\left\{\left(\mathrm{k}-1 ; \mathrm{t}_{1}\right),\left(\mathrm{k}-1 ; \mathrm{t}_{2}\right)\left(\mathrm{k}-1 ; \mathrm{t}_{3}\right)\left(\mathrm{k}-1 ; \mathrm{t}_{4}\right) /\left|\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{j}}\right| \neq 2^{\mathrm{k}}\right\}$.
Take $T=T_{1} \cup T_{2}$. So $|T|=4+4=8$. Now vertices of T_{1} dominate all the vertices of $\mathrm{L}_{\mathrm{k}-1}$ and $\mathrm{L}_{\mathrm{k}+1}$ and vertices of T_{2} dominate all the vertices of $L_{k} \mid T_{1}$. So vertices of T dominate all the vertices of $\mathrm{BF}(3)$. As vertices of T_{1} are adjacent to vertices of T_{2}, it follows that T is a total dominating set of $\mathrm{BF}(3)$. As $\gamma_{\mathrm{t}}(\mathrm{BF}(3)) \geq 8, \mathrm{~T}$ is a minimal total dominating set of $\mathrm{BF}(3)$.

Thus $\gamma_{\mathrm{t}}(\mathrm{BF}(3))=8=\gamma(\mathrm{BF}(3))+2$
Case 3: $n=4$
Consider the graph $\mathrm{BF}(4)$. We know that $\gamma(\mathrm{BF}(4))=16$. As every total dominating set is dominating set, $\gamma_{\mathrm{t}}(\mathrm{BF}(4)) \geq 16$. Consider a dominating set of $\mathrm{BF}(4)$ given by $\mathrm{D}=\mathrm{D}_{1} \cup \mathrm{D}_{2}$, where the two sets D_{1} and D_{2} are $\mathrm{D}_{1}=\left\{\left(1 ; \mathrm{m}_{1}\right),\left(1 ; \mathrm{m}_{2}\right) \ldots \ldots\left(1 ; \mathrm{m}_{8}\right) /\left|\mathrm{m}_{\mathrm{i}}-\mathrm{m}_{\mathrm{j}}\right| \neq 2,4\right\}$ and $\mathrm{D}_{2}=\left\{\left(2 ; \mathrm{s}_{1}\right),\left(2 ; \mathrm{s}_{2}\right) \ldots \ldots . .\left(2 ; \mathrm{s}_{8}\right) /\left|\mathrm{s}_{\mathrm{i}}-\mathrm{s}_{\mathrm{j}}\right| \neq 4\right\}$.

Clearly from the definition of adjacency of vertices in two consecutive levels, the vertices in D_{1} dominate all the vertices of level L_{0} and L_{2}. As vertices of
D_{2} belong to L_{2}, it is clear that a vertex in D_{1} dominates a vertex in D_{2} and vice-a-versa. So this set D dominates all the vertices of $\mathrm{BF}(4)$ and hence D is a total dominating set of $\mathrm{BF}(4)$. Since $|\mathrm{D}|=16, \mathrm{D}$ is a minimum total dominating set of $\mathrm{BF}(4)$. Therefore $\gamma_{\mathrm{t}}(\mathrm{BF}(4))=16$.
Case 4 : $n=4 k$.
We prove the result for $\mathrm{BF}(4 \mathrm{k})$ by using the Principle of Mathematical Induction.
Step 1: Let $\mathrm{k}=1$. So $\mathrm{n}=4$. For $\mathrm{k}=1$, from theorem 3, the result is true for $\mathrm{BF}(4)$.
Step 2 : Let us assume that the result is true for $\mathrm{k}=\mathrm{t}$. We prove the result for $k=t+1$. Consider the graph $B F(4(t+1))$. From Special Recursive Construction of $\mathrm{BF}(4 \mathrm{k}), \mathrm{BF}(4 \mathrm{t}+4)$ is decomposed into 16 copies of $\mathrm{BF}(4 \mathrm{t})$ without wings and the last 4 levels form a pattern with 2^{4} vertex groups, where each vertex group has $2^{4 t}$ vertices. From the induction hypothesis the result is true for $\mathrm{BF}(4 \mathrm{t})$. Consider a total dominating set S_{i} of cardinality $t \times 2^{4 t}$ of $\mathrm{BF}(4 \mathrm{t})$. The last 4 levels of $\mathrm{BF}(4 \mathrm{t}+4)$ form a pattern of $\mathrm{BF}(4)$ which is isomorphic to $\mathrm{BF}(4)$ without wings. Consider a total dominating set T_{1} with 16 vertex groups for this pattern of $\mathrm{BF}(4)$ formed between the last 4 levels where each vertex group has $2^{4 t}$ vertices.

Suppose we get a total dominating set of cardinality less than $16 \times 2^{4 t}$ for the pattern of $\mathrm{BF}(4)$. Since pattern of $\mathrm{BF}(4)$ is isomorphic to the graph $\mathrm{BF}(4)$ without wings, this assumption gives that we can get a total dominating set for $\mathrm{BF}(4)$ of cardinality less than 2^{4}, which is a contradiction as $\gamma_{\mathrm{t}}(\mathrm{BF}(4))=2^{4}$.

$$
\text { Let } \quad T=\left(\bigcup_{i=1}^{16} S_{i}\right) \cup T_{1} \text {. }
$$

For $\mathrm{i}=1,2 \ldots 16$, each S_{i} is a minimum total dominating set of $\mathrm{BF}(4 \mathrm{t})$ between levels L_{0} to $\mathrm{L}_{4 t-1}$ and T_{1} is a minimum total dominating set of pattern of $\mathrm{BF}(4)$ between $\mathrm{L}_{4 \mathrm{t}}$ to $\mathrm{L}_{4 \mathrm{t}-3}$. Thus all the $\mathrm{S}_{\mathrm{i}}{ }^{\prime} \mathrm{s}$ and T_{1} are disjoint sets. Hence T is a minimum total dominating set of $\mathrm{BF}(4 \mathrm{t}+4)$ whose cardinality is $|\mathrm{T}|=16 \times \mathrm{t} \mathrm{x} 2^{4 \mathrm{t}}+16 \times 2^{4 \mathrm{t}}$ $=\mathrm{tx} 2^{4 \mathrm{t}+4}+2^{4 \mathrm{t}+4}=(\mathrm{t}+1) 2^{4(\mathrm{t}+1)}$.

So the result is true for $k=t+1$. Hence by the Principle of Mathematical Induction the result is true for all positive integers k . Thus $\gamma_{\mathrm{t}}(\mathrm{BF}(4 \mathrm{k}))=\mathrm{kx} 2^{4 \mathrm{k}}$.
Case 5 : $n=(4 k+r) r=1,2,3$
By Recursive Construction 1, there are 2^{r} copies of $\mathrm{BF}(4 \mathrm{k})$ and r levels with $2^{4 \mathrm{k}+\mathrm{r}}$ vertices in $\mathrm{BF}(4 \mathrm{k}+\mathrm{r})$. To get a minimum total dominating set for $\mathrm{BF}(4 \mathrm{k}+\mathrm{r})$, first we include the vertices in a minimum total dominating set of disjoint copies of $\mathrm{BF}(4 \mathrm{k})$ in first 4 k levels. Now for total domination of vertices, we include vertices into T from last r levels as follows :

For $r=1$, we choose 2^{n-1} vertices from level $L_{4 k-1}$ to dominate all vertices of the last level $\mathrm{L}_{4 \mathrm{k}}$.

For $r=2$, we choose 2^{n-1} vertices from levels $L_{4 k}$ 1 and $L_{4 k}$ each to dominate all vertices of the last two levels $L_{4 k}$ and $L_{4 k+1}$.

For $r=3$, we choose 2^{n-1} vertices from levels $L_{4 k}$ and $L_{4 k+1}$ each to dominate all vertices of the last three levels $\mathrm{L}_{4 \mathrm{k}}, \mathrm{L}_{4 \mathrm{k}+1}$ and $\mathrm{L}_{4 \mathrm{k}+2}$.

These vertices together with the minimum total dominating sets of r copies of $\mathrm{BF}(4 \mathrm{k})$ form a minimum total dominating set of $\mathrm{BF}(4 \mathrm{k}+\mathrm{r})$. Combining these cases we get that the cardinality of minimum total dominating set for $\mathrm{BF}(4 \mathrm{k}+\mathrm{r}), \quad|\mathrm{D}|=$
$=2 \gamma(\mathrm{BF}(4 \mathrm{k}))+2^{4 \mathrm{k}}=2 \mathrm{k} 2^{4 \mathrm{k}}+2^{4 \mathrm{k}}=(2 \mathrm{k}+1) 2^{4 \mathrm{k}} \quad$ if $\mathrm{r}=1$
$=2^{2} \gamma(\mathrm{BF}(4 \mathrm{k}))+2.2^{4 \mathrm{k}+1}=2^{2} \mathrm{k} 2^{4 \mathrm{k}}+2.2^{4 \mathrm{k}+1}=(\mathrm{k}+1) 2^{4 \mathrm{k}+2}$ if $\mathrm{r}=2$
$=2^{3} \gamma(\mathrm{BF}(4 \mathrm{k}))+2.2^{4 \mathrm{k}+2}=2^{3} \mathrm{k} 2^{4 \mathrm{k}}+2.2^{4 \mathrm{k}+2}=(\mathrm{k}+1) 2^{4 \mathrm{k}+3} \quad$ if $\mathrm{r}=3$
Thus we get

$$
\begin{aligned}
\gamma_{\mathrm{t}}(\mathrm{BF}(4 \mathrm{k}+\mathrm{r})) & =(2 \mathrm{k}+\mathrm{r}) 2^{\mathrm{n}-1} \text { for } \mathrm{r}=0,1 \text { and } \mathrm{k} \varepsilon \mathrm{Z}^{+} \\
& =(\mathrm{k}+1) 2^{\mathrm{n}} \quad \text { for } \mathrm{r}=2,3 \text { and } \mathrm{k} \varepsilon \mathrm{Z}^{+} .
\end{aligned}
$$

One such choice is illustrated in the figure below for the graph $\mathrm{BF}(5)$ in which bold lines show domination of the vertices from dominating set D and thin lines show $\mathrm{V} \backslash \mathrm{D}$ vertices domination.

Figure 3: A Total dominating set for $\mathrm{BF}(5)$

IV. CONCLUSION

The total domination number of $\mathrm{BF}(2)$ is 2^{2} and $\mathrm{BF}(3)$ is 2^{3}. For $\mathrm{n}>3$ the total domination number is same as the domination number of $\mathrm{BF}(\mathrm{n})$. But every minimal dominating set is not minimal total dominating set. Only particular choices, form minimal total dominating sets. Thus $\gamma_{\mathrm{t}}(\mathrm{BF}(\mathrm{n}))=\gamma(\mathrm{BF}(\mathrm{n}))$ for $\mathrm{n}>3$.

REFERENCES

[1] Allan, R.B. Laskar, R Hedetniemi, S.T., A note on Total Domination, Discrete Maths 49, (1984), pp 7-13.
[2] Barth D. and Raspaud A., Two edge - disjoint Hamiltonian Cycles in the Butterfly Graphs, Information processing letters, 51(1994), 175-179.
[3] Berge, C., Graphs and Hypergraphs, North Holland Amsterdam (1973).
[4] Cockayne, E J., Dawes, R.M. Hedetniemi, S.T., Total Domination in Graphs, Networks, Vol. 10, (1980), pp 211219
[5] Haynes, T.W. Hedetniemi, S.T. Slater, P.J., Fundamentals of Domination in graphs, Marcel Dekker Inc. New York, (1998).
[6] Indrani Kelker., B Maheswari, Domination Number of Butterfly graphs, Journal of Pure \& Applied Physics, Vol. 21, No.3, 2009, pp 401-407.

