

Second Semester B.Arch. Degree Examination, July/August 2022 Building Structures - II

Time: 3 hrs.
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Define centre of gravity and centroid.
(04 Marks)
b. Determine the location of the centroid shown in Fig.Q1(b).

Fig.Q1(b)
(16 Marks)
OR
2 a. State parallel axis theorem and explain in brief.
(04 Marks)
b. Determine the centroid of the Fig. Q2 (b).

Fig.Q2(b)
(16Marks)

Module-2

3 a. Define i) Bending moment ii) Shear force and explain sign conventions. (06 Marks)
b. Draw shear force diagram (SFD) and bending moment diagram (BMD) for given beam in Fig.Q3(b).

Fig.Q3(b)
(14 Marks)

OR

4 Draw shear force diagram and bending moment diagram for given beam Fig.Q4.

Fig.Q4
(20 Marks)

Module-3

5 a. What are the assumption made in simple theory of bending?
(06 Marks)
b. A simply supported beam of span 5 m has a cross section $150 \mathrm{~mm} \times 250 \mathrm{~mm}$ if the permissible stress is $10 \mathrm{~N} / \mathrm{mm}^{2}$ Find:
i) Maximum intensity of uniformly distributed load it can carry
ii) Maximum concentrated load P applied at 2 m from one ênd it can carry.
(14 Marks)

OR

6 a. Provide the expression for finding out section modulus for :
i) Rectangular section
ii) Hallow rectangular section
iii) Circular section
iv) Hollow circular section.
(04 Marks)
b. A circular pipe of external diameter 70 mm and thickness 8 mm is used as a simply supported beam over an effective span 2.5 m . Find the maximum concentrated load that can be applied at the centre of the span if permissible stress in tube is $150 \mathrm{M} / \mathrm{mm}^{2}$.
(16 Marks)

Module-4

7 a. Differentiate between short and long columns.
(04 Marks)
b. A hollow mild steel tube 6 m long 40 mm internal diameter and 50 mm external diameter is used as a shunt with both ends hinged. Find the crippling load and safe load taking factor of safety as 3.0 and $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(16 Marks)

8
a. Define: i) strut ii) Slenderness ratio iii) Buckling lond iv) safe load
(04 Marks)
b. A solid rand bar 3 m long and 50 mm diameter is used as a strut. Determine the crippling load, when the given strut is used with the following conditions: $\quad \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
i) Both ends hinged
ii) One end fixed and other is free
iii) Both ends are fixed
iv) One end fixed and other is hinged.
(16 Marks)

Module-5

9 a. Define short column and long column according to IS 456:2000.
(04 Marks)
b. Calculate ultimate load carried by a RCC column of size $500 \mathrm{~mm} \times 500 \mathrm{~mm}$ and reinforced with 8 bars of 16 mm diameter. Grade of steel and concrete used are Fe415 and M20 respectively.
(16 Marks)

OR

Calculate ultimate load carried by the circular column of diameter 300 mm and reinforced with 6 bars of 16 mm diameter. Grade of concrete and steel used are
i) M20 and Fe415
ii) M15 and Fe500.

