

Second Semester B.Arch. Degree Examination, Jan. Heb. 2023
 Building Structures - II

Time: 3 hrs.
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define center of gravity and centroid.
b. Determine the location of the centroid shown in Fig.Q1(b).

Fig.Q1(b)
(16 Marks)
OR
2 a. State parallel axis theorem and briefly explain.
b. Determine the location of the centroid shown in Fig.Q2(b).
(16 Marks)

Module-2

3 a. Find the support reactions for the beam shown in Fig.Q3(a).

Fig.Q3(a)
(10 Marks)
b. Find the support reactions show in Fig.Q3(b).

Fig.Q3(b)

OR
4 a. Draw SFD and BMD for the beam shown in Fig.Q4(a).

Fig.Q4(a)
(10 Marks)
b. Draw SFD and BMD for the bema shown in Fig.Q4(b).

Fig.Q4(b)
(10 Marks)

Module-3

5 a. What are the assumptions made in theory a simple bending?
(04 Marks)
b. A rectangular beam, simply supported over a span of 4 m is carrying a uniformly distributed load of $50 \mathrm{kN} / \mathrm{m}$. Find the dimensions of the beam, if the depth of beam section is 2.5 times its width. Take maximum bending stress in the beam section as $60 \mathrm{~N} / \mathrm{mm}^{2}$.
($\mathbf{1 6}$ Marks)

OR

6 a. Provide the expression for finding the section modulus for :
i) Rectangular section
ii) Circular section
iii) Hollow rectangular section
iv) Hollow circular section.
(04 Marks)
b. Calculate the maximum deflection at the free end of the cantilever of 3 m span 100 mm wide and 150 mm deep in section, carrying a UDl of $10 \mathrm{kN} / \mathrm{m}$. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(16 Marks)

Module-4

7 a. Differentiate between long column and short column.
(04 Marks)
b. A solid round bar 60 mm in diameter and 2.5 m long is used as strut. One end of the strut is fixed, while its other end is hinged. Find the safe compressible load for this strut using Euler's formula. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and factor of safety as 3 .
(16 Marks)

OR

8 A hollow section of external diameter 60 mm and thickness 5 mm and 2.5 m long is used as a column. One end is fixed, while other end is hinged. Find the safe compressive load using Euler's formula. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Factor of safety 3 .
(20 Marks)

Module-5

9 A reinforced concrete column $500 \times 500 \mathrm{~mm}^{2}$ in section is Reinforced with 4 steel bars of 25 mm diameter placed one at each corner. The column carries an axial load of 2000 kN . Find the stresses in concrete and steel bars. Take $\mathrm{E}_{\mathrm{S}}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{E}_{\mathrm{C}}=0.14 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(20 Marks)

OR

10 A reinforced concrete column is $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ in section. The column is provided with 8 bars of 20 mm diameter. The column carries a load of 360 kN . Find the stress in concrete and steel bars. Find the load shared by each material. Take $E_{s}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{E}_{\mathrm{C}}=0.14 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(20 Marks)

