

15ARC4.6

Fourth Semester B.Arch. Degree Examination, Dec.2017/Jan, 2018 Specification Quantity and Costing
Time: 3 hrs.
Max. Marks: 100
Note: Answer FIVE full questions, choosing one full question from each module.
1 List out different types of approximate building methods:
Carpet area -60 sqmt, Wall area -10.93%, Cost of construction of building - ₹ $10,00,000$, Height of building from ground Level to top of roof slab $-3,0$ meters.
Parapet wall height -0.8 meters
(06 Marks)
a. Determine cost per sq.mt by plinth Area method.
(07 Marks)
b. Determine cost per cumt byvolume rate method.
(07 Marks)
OR
2 Write detailed specification for the-following giving measuring mode adopted, scaffolding where necessary also.
a. Laying $600 \times 600 \mathrm{~mm}$ vitrified file on CMP : bed.
(08 Marks)
b. Pointing in CM 1:1 over exposed brick maşonry.
(06 Marks)
c. Excavation for foundation trenches.
(06 Marks)
Module 2
3 Refer Fig. Q3. Using short wall-long wall method,
a. Calculate Net center line with calculation details.
(08 Marks)
b. Calculate the quantity of earthworb in excavation forfoundation
(04 Marks)
c. Calculate the quantity PCC $1 \supset 4 / 8$ for foundation.

(04 Marks)
d. Calculate the quantity of DPC.
(04 Marks)

4 a. Refer Fig. Q3. Using shori wall-long wall method,
b. Calculate Quantity of SSMY in CM 1:6.
c. Calculate Quantityof 200 mm thick solid block wall.
(10 Marks)

Module-3

5 a. Write briefly onescalation clause in the condition of contract. Adso write the formula to calculate the costvariation in material and cost variation on labour.
(08 Marks)
b. Write briefly on basic price.
(06 Marks)
c. Basic price of reinforcement steel is indicated in the tender as $₹ 50,000$ per MT and the quantity of Reinforcement steel is 10 MT . If the purchase price at the endof the project is $₹ 48,000$ per MT. Write if the client is obligated to receive from the contractor or pay the contractor.
(c) 06 Marks)

OR
$6 \quad$ Detailed rate analysis for [Importance is given for the detailed steps followed in the andysis of rates]
a. $\quad 12 \mathrm{~mm}$ thick cement plaster in CM 1:4.
b. Random rubble masonry in CM 1:6.
c. $300 \times 300 \mathrm{~mm}$ plain ceramic tile flooring in CM 1:3.

Modulc-4

7 Refer Fig. Q7 \& Fig. Q8, calculate Reinforcement steel quantity of RCC column from the data -D7/8 as below.
(20 Marks)

OR

8 Refer Fig, Q7 / Fig. 8, calculate the quantities of RCC roof slab, RCC colurinn and RCC roof beam member from the data $D-7 / 8$ as below.
$\mathrm{D}-7 / 8$ Following are the data:

- Size of coliminn $200 \times 600 \mathrm{~mm}$, number of columns are -4
- Height of coluninn from top of footing to bottom of roof beam is 4 mt .
- Size of RCC roof slab is $3000 \times 5000 \mathrm{~mm}$ and 125 mmethick.
- Size of RCC roof beam connecting the 4 columns is $200 \times 300 \mathrm{~mm}$.
- Depth of beam excluding thickness of slab.

Main reinforcement of column - 4 Nos. of 20 mm da
-4 Nos. of 16 mm da
Main reinforcement of Beam- 3 Nos. of 16 mm dab
-3 Nos. of 12 mm dial
Stirrups 8 mm dea at spacing $150 \mathrm{~mm} \mathrm{C} / \mathrm{C}$
Assume $\frac{\mathrm{d}^{2}}{162}$ to derive weight of alk bars ind ge per mt , where d is the da of the bar in mm or 7850 kg per curt as density.
(20 Marks)

9 Refer Fig. Q9

Fig. Q9

