

09ENG5.5

Fifth Semester B.Arch. Degree Examination, June/July 2019
 Structures - V

Max. Marks: 100
Time: 3 hrs .

Note: 1. Answer any FIVE full questions.
 2. IS : 456 and SP16 is allowed.
 3. Use limits state method unless specified.

1 a. Explain balanced, under reinforced and over reinforced sections.
(06 Marks)
b. Find the moment of resistance of a singly reinforced beam section 225 mm wide and 350 mm deep to the centre of the tensile reinforcement. If the permissible stresses in concrete and steel are $7 \mathrm{~N} / \mathrm{mm}^{2}$ and $230 \mathrm{~N} / \mathrm{mm}^{2}$ respectively. The reinforcement consists of 4 bars of 20 mm dia. What max udl this beam can carry safely on a span of 8 m ? Take $\mathrm{m}=13.33$ (Use WSM).
(14 Marks)
2 a. Determine the reinforcement required for T-beam subjected to an ultimate moment of $500 \mathrm{kN} . \mathrm{m}$ for the following sectional dimensions. $\mathrm{b}_{\mathrm{f}}=1500 \mathrm{~mm}, \mathrm{D}_{\mathrm{f}}=120 \mathrm{~mm}, \mathrm{~b}_{\mathrm{w}}=300 \mathrm{~mm}$, $\mathrm{d}=750 \mathrm{~mm} \mathrm{f}_{\mathrm{ck}}=20, \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$.
(12 Marks)
b. Explain the philosophy of limit state method.
(08 Marks)
3 A reinforced concrete beam is to be designed over an effective span of 5 m to support a design service load of $8 \mathrm{kN} / \mathrm{m}$. Adopt M20 grade of concrete and Fe 415 HYSD bars and design the beam to satisfy the collapse and serviceability limit states.
(20 Marks)

4 Design a two way slab for an office floor of size $3.5 \mathrm{~m} \times 4.5 \mathrm{~m}$ with discontinuous and simply supported edges on all the sides with corners prevented from lifting and supporting a service live load of $4 \mathrm{kN} / \mathrm{m}^{2}$. Adopt M20 concrete and Fe 415 steel.
(20 Marks)
5 a. A rectangular reinforced concrete column of cross sectional dimension $300 \mathrm{~mm} \times 600 \mathrm{~mm}$ is to be designed to support an ultimate axial load of 200 kN . Design suitable reinforcements in the column using M20 concrete and Fe 415 steel.
(10 Marks)
b. Design the reinforcements in a rectangular column of size $300 \times 500 \mathrm{~mm}$ to support a design ultimate load of 500 kN together with a factored moment of $200 \mathrm{kN}-\mathrm{m}$. Adopted the value of $\mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$.
(10 Marks)
6 Design a square footing for a short axially loaded column of size $300 \times 300 \mathrm{~mm}$ carrying 600 kN load. Use M20 and Fe 415 steel. SBC of soil is $180 \mathrm{kN} / \mathrm{m}^{2}$.
(20 Marks)
7 Design one of the flights of a dog legged stairs spanning between landing beams using following data :
Data : No. of steps in the flight $=10$
Tread $=300 \mathrm{~mm}$, Riser $=150,=\mathrm{mm}$
Width of landing beams $=300 \mathrm{~mm}$
Materials : M20 and Fe415 grade for concrete and steel resp.
(20 Marks)
8 Write short notes on :
a. Water cement ratio
b. Workability of concrete
c. Advantages of RCC
d. Grades of concrete and steel.
(20 Marks)

