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Preface

Since the late 1950s, we have used the finite element method (FEM) as an
essential and important tool for the modeling and simulation of practical
problems with complex geometry. The first author (Dr. Liu) has been a user
since 1979, when he wrote his first FEM code to solve a nonlinear mechanics
problem for a frame structure as his university final-year project. Since then,
FEM has been one of his major tools in dealing with many engineering and
academic problems. Since the late 1980s, he has participated in and directed
many engineering projects of very large scale with millions of degrees
of freedom. In those projects, we have frequently encountered problems
with mesh generation when using FEM software packages. For accuracy
reasons, we want to use quality quadrilateral or hexahedron elements,
but such a mesh is quite difficult to generate and requires a number of
manual operations to cut the domain into proper pieces. The time spent
on such operations has been very significant. To avoid this problem, we
have tried to use triangular/tetrahedron elements. Mesh generation then
becomes easier and can often be done automatically without much manual
operations. However, the accuracy of the results is often quite poor, and
most importantly the iteration may stop in the middle of the computation
of nonlinear problems due to locking-related problems.

In searching for alternatives, the authors’ group learned and devel-
oped mesh-free methods, and good progress has been made on that
front. We can now safely say that by using proper mesh-free techniques,
we can do pretty much what we want using only a background mesh
of triangles/tetrahedrons. However, the operations in mesh-free meth-
ods are generally more complicated and can be quite costly in terms of
computational effort and resources.

In examining FEM and mesh-free methods, we have found that a proper
combination of these two can be advantageous. After a number of attempts
in the past decades, we are finally satisfied with the so-called smooth finite
element method (S-FEM). It is essentially a watered-down version of a
family of mesh-free methods called smoothed point interpolation meth-
ods (S-PIMs) and hence is reasonably simple; however, it carries many key
features of mesh-free methods. Most importantly, S-FEM needs only a tri-
angular/tetrahedral mesh. Therefore, since 2005, we have been focusing
on the establishment of the theoretical framework and the development
of various S-FEM models. This book collects some of the major outcomes,
providing a systematic description of S-FEM.

xvii
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xviii Preface

The authors will be happy to share, free of charge, some of the basic source
codes of the S-FEM with the readers for academic research purposes and
further developments. The authors, however, make no warranty whatso-
ever, expressed or implied, that the materials and codes given are free from
errors. In no event shall the authors become liable to anyone for the use of
the materials and codes. Under these conditions, interested readers may
directly approach either author for these source codes. The authors appre-
ciate very much a proper acknowledgment for the use of these materials
and codes.

In preparing this book, a number of colleagues and students have sup-
ported and contributed to the writing. We express sincere thanks to all of
them. Special thanks to K. Y. Dai, G. Y. Zhang, H. Nguyen-Xuan, L. Chen,
N. Nourbakhshnia, Z. C. He, S. C. Wu, Z. Q. Zhang, X. Y. Cui, Q. Tang, and
many others. Many of these individuals have contributed examples to this
book in addition to their hard work in carrying out a number of projects
related to the S-FEM covered in this book.

G. R. Liu
Nguyen Thoi Trung
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1
Introduction

In building an advanced engineering system or a product, engineers must
undertake a very sophisticated process of modeling, simulation, designing,
testing, and construction or fabrication. In such a process, a computer is
routinely used as one of the most important tools. This book deals with top-
ics related mainly to modeling and simulation, with a focus on numerical
and computational methods. These topics play an increasingly important
role in building advanced engineering systems in rapid and cost-effective
ways, because modeling and simulation can be performed in a virtual
environment on computers without physically building the system. Many
computational methods and numerical techniques, such as the finite ele-
ment method (FEM) [1–3], can be employed to deal with these topics. This
book mainly focuses on the development of so-called smoothed finite ele-
ment methods (S-FEM) that were proposed in the past few years, based on
FEM and some mesh-free techniques.

This chapter first addresses overall issues related to numerical model-
ing and simulation and some important common terminologies used in
the book. It then discusses major differences in key numerical techniques
between S-FEM and the well-known and widely used FEM.

1.1 Physical Problems in Engineering

In reality, there are a large number of different physical phenomena in
any practical engineering system. However, we can only deal with some
of the major phenomena that significantly affect the performance of the
system. These phenomena often need to be modeled and simulated to
provide a necessary and sufficient in-depth understanding, in order to
further improve or optimize the design of the system.

The physical problems covered in this book are

1. Mechanics for solids, structures, and piezoelectrics
2. Fracture mechanics
3. Heat transfer
4. Structural acoustics

1
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2 Smoothed Finite Element Methods

The dimensions of these problems can be one dimensional (1D), two
dimensional (2D), and three dimensional (3D), and the types of problems
can be linear elastic, material nonlinear, geometric nonlinear, static, and
dynamic (vibration and wave propagation).

Classical mathematical models have already been established for these
problems, and governing equations in differential or partial differential
equations (PDEs) have also been derived. Our focus will be mainly on the
numerical modeling and simulation of these problems by solving these
PDEs. These differential forms of PDEs are termed as strong-form governing
equations that need to be satisfied, in theory, at any point inside the prob-
lem domain. These PDEs must have a proper set of boundary and initial
conditions to complete the setting of a physically meaningful problem. For
our numerical model to be meaningful, we naturally require the setting of
the original physical problem to be well-posed.

Remark 1.1 Well-Posed Problems

The original mechanics problem setting (PDEs with boundary and initial
conditions) must be well-posed in the Hadamard sense, by which we mean
that there exists a unique solution that depends continuously on the data.

If the problem is not well-posed, there is nothing much a numerical
method can do, except produce numerical numbers that are not certifiable
or interpretable, or the numerical process simply breaks down, regardless
of how good the method is. Note that some of the ill-posed problems in
engineering are treatable using special techniques such as regularization
(resetting, reformulating, adding in new information/assumptions, etc.),
but it is beyond the scope of this book. Interested readers are referred to
books dealing with ill-posed problems or inverse problems [4]. This book
deals with only numerical or computational methods for solutions to well-
posed problems. The currently well-established and often-used numerical
tools include FEM [1–3], the finite difference method (FDM) [5], the finite
volume method (FVM) [6], and recently various mesh-free methods [7–58].
The S-FEM discussed in this book represent a very powerful tool developed
quite recently based on standard FEM settings, by incorporating some of
the mesh-free techniques to modify or construct the strain field, so as to
achieve more accurate solutions and solutions with special attractive prop-
erties that are useful in the analysis and hence the design of the system.
S-FEM are thus methods in between the FEM and the mesh-free methods.

1.2 Numerical Techniques: Practical Solution Tools

In this section, we provide an overview of the numerical/computational
methods/techniques for solutions to practical engineering problems. The

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

1:
47

 1
0 

M
ay

 2
01

6 



Introduction 3

discussion is not meant to be rigorous, but to provide an overall picture of
this quite complicated topic.

There are largely two categories of numerical methods for solving PDEs:
the direct approach and the indirect approach. The direct approach, known
as the strong-form method [such as the well-known FDM, collocation
method (with regularization) [7,36,37], smoothed particle hydrodynamics
(SPH) [59–63], and the gradient smoothing method (GSM) [53–56]], dis-
cretizes and solves the PDEs directly. The indirect approach, known as the
weak-form method (such as FEM), first establishes an alternative weak-form
equation that governs the same physical phenomena and then solves it.
The typical and most widely used weak form is the Galerkin weak form.
Weak-form equations are usually in an integral form, implying that they
need to be satisfied only in an integral (averaged) sense: a weak require-
ment. Properly formulated weak-form methods are more general, and offer
more efficient approximate solutions that are stable and convergent to the
exact solution. Therefore, these methods are usually more accurate, reli-
able, robust, efficient, and of more practical importance. The FEM is such
a typical Galerkin weak-form method.

Remark 1.2 On Stability

We just mentioned “stable solution,” which requires some elaboration or
clarification. The word “stable” is used very frequently in the literature on
numerical and computational methods, and it is to a certain extent quite
“abused.” Rigorously, a numerical solution that is “stable” implies that for
any admissible input data (forces, excitations, etc.), the solution (in a norm
or a proper measure) can always be bounded by the input data (in a norm or
a proper measure) for a physical problem. It relates essentially the unique-
ness part of the well-posedness of a problem (Remark 1.1). A method that
always produces such stable (accuracy aside) solutions is said to be a stable
method. This rigorous definition essentially reflects two important aspects
in producing a stable solution: the property of the numerical method and
the property of input data. In other words, when we say a method is stable,
we need to specify to what kind of input data. For some types of input data,
we can formulate many stable numerical methods, but for some types of
input data, one will never be able to find any stable numerical method in
a specified norm measure. In this book, we generally consider only (unless
otherwise specified) “real-life” inputs, meaning that we consider input
data that are at least square integrable (in L

2 space; see Chapter 3 for a more
detailed definition). We do not usually consider mathematically idealized
forces like “point force,” which is not square integrable and never exists in
reality. Under this general condition on input data, our definition of “sta-
ble” used in this book concerns only numerical methods or procedures.
Essentially, it relates directly to the minimum eigenvalue of the numerical
model, as will be frequently analyzed in the following chapters.
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4 Smoothed Finite Element Methods

Remark 1.3 On Spatial Stability and Temporal Stability

There are two types of stability: spatial and temporal. The former refers
to a numerical method for solving static problems, and the latter refers
to a numerical method for solving dynamic problems. The spatial stabil-
ity of a method involves only the formulation of the method based on
finite spatial discretization of the model. When a method produces stable
solutions for static problems, the method is said to be spatially stable. A
temporally stable method produces stable solutions for dynamic problems,
and hence involves proper formulations based on both spatial and tem-
poral discretizations. When an unstable time-integration scheme is used
to deal with the time variable, a spatially stable method will surely pro-
duce unstable solutions. However, even when a stable time-integration
scheme is used, a spatially stable method is not necessarily stable when solv-
ing dynamic problems. In this book, we assume that the time-integration
scheme used for dynamic problems is always stable (or can be made sta-
ble). Hence, temporal instability refers to methods that are unstable when
a stable time-integration scheme is used. Essentially, temporal instability is
observed as spurious unphysical modes (in free vibration) or oscillations
(in transient vibration) in the solution to a dynamic problem. A tempo-
rally stable method should produce (1) only “legal” zero-energy modes
that correspond to rigid body movements of the solid or structure and
(2) all the nonzero energy modes must correspond to physical deformation
of the system.

Remark 1.4 On Convergence

“Convergence” is in fact a rather involved terminology. The original mean-
ing of convergence refers to the numerical solution of a discretized model
as it approaches a certain value, when the discretization is properly refined
to the limit. However, the “certain” value may or may not be the exact
solution of the original physical problem. If a convergent solution is not to
the exact solution, the meaningfulness of the solution and the usefulness
of the numerical method can be in question, and hence special care may
be required. Therefore, in this book, when we say a solution is conver-
gent, we mean by default that it is convergent to the exact solution, unless
otherwise specified. A numerical method is said to be convergent when
it produces solutions that converge to the exact solution, as long as the
numerical procedure is properly executed.

The notion of weakened weak (W2) forms [28–30] has also been pro-
posed based on the so-called G space theory [29–31]. The W2 forms are very
powerful and can also be written in the form of Galerkin for effective formu-
lations of a wide class of computational methods based on finite element
and mesh-free settings. It is much more general than the weak formulation,
and the S-FEM models are a special case of the W2 formulation. We will
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Introduction 5

not discuss G space theory and W2 formulation in detail in this book.
Instead, we will try to formulate our S-FEM models in the more familiar
framework of standard weak formulations. Interested readers may refer to
Refs. [28–31] for more details on G space theory and W2 formulation.

In formulating the standard FEM model, we need three major steps: (1)
construction of the shape function; (2) evaluation of the strain field; and
(3) invoking a weak-form equation to create a discrete algebraic system of
equations that can be solved routinely.

In formulating the S-FEM models, however, we need one additional step
after the second step:

1. Construction of the shape function (for creating the displacement
field or functions)

2. Evaluation of the strain field using the strain–displacement relation
3. Evaluation of the smoothed strain field
4. Invoking a weak-form equation (using the smoothed strain field)

to create a discrete algebraic system of equations that can be solved
routinely

1.3 Why S-FEM?

Once the displacement is properly assumed, the strain field is already avail-
able using simply the strain–displacement relation, known as the compatible
strain field. A stable and convergent numerical method like FEM can be
routinely formulated using the standard Galerkin formulation. Why do we
want to modify or construct the strain field? The reasons are given below.

1.3.1 Overly Stiff Issues

In standard FEM settings, because the assumed displacement field is com-
patible over the entire problem domain, and the strain field is obtained
using precisely the strain–displacement relation, the standard FEM model
is said to be fully compatible. Such a fully compatible FEM model is varia-
tionally consistent and works well for many practical problems. However,
there are three major issues associated with this type of fully compatible
Galerkin formulation. The first issue is the well-known “overly stiff” phe-
nomenon, leading to the so-called locking behavior for many problems.
This overly stiff phenomenon can be observed for all standard finite ele-
ments, and is particularly critical for linear triangular elements. The S-FEM
models can well resolve this issue, and can always produce models that
are softer than FEM and even softer than the exact model.
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6 Smoothed Finite Element Methods

1.3.2 Stress Accuracy Issues

The second issue with the standard FEM model is inaccuracy in stress
solutions, especially when linear triangular and tetrahedral meshes are
used. This issue is somewhat related to the overly stiff issue of the FEM
model, but in fact has more to do with the element-based strain evaluation
using the assumed piecewise continuous displacement field. Such a strain
field becomes discontinuous on all the element interfaces. In the process of
evaluating the stiffness of the system, such discontinuity is left untreated,
leading to poor solutions in the stress field. The S-FEM models can offer
ways of treating these discontinuities in the stage of formulation, and hence
can improve both the displacement and the stress solution significantly.
The ES-FEM model is a typical such model (see Chapter 7).

1.3.3 Mesh Distortion Issues

The third issue is the significant accuracy loss when the element mesh
is heavily distorted, and hence the standard FEM strongly requires mesh
quality. This issue is related to the mapping technique used in isoparametric
elements where a so-called Jacobian matrix needs to be evaluated. When the
shapes of the elements are distorted, the Jacobian matrix becomes badly
conditioned, leading to deterioration in solution accuracy. Many of the
S-FEM models can naturally overcome this problem, because no mapping
is required in the formulation of all these models for all types of elements,
and hence will have much less issues related to mesh distortion. Some of the
S-FEM models, such as NS-FEM (Chapter 6), can work well for extremely
distorted meshes.

1.3.4 Meshing Issues

It is well known that the standard FEM model requires quadrilateral ele-
ments (for 2D) and hexahedral elements (for 3D) and with good quality.
Particularly, it does not like triangular and tetrahedral elements and often
gives solutions of very poor accuracy, especially for stresses. We engi-
neers, on the other hand, often prefer using triangular and tetrahedral
meshes as they can be created much more easily, and even automati-
cally, for complicated geometries. The saving on manpower in meshing
using triangular and tetrahedral meshes is tremendous compared to any
other type of element. In addition, when conducting adaptive analysis,
automatic remeshing is required. Currently, only triangular and tetrahe-
dral meshes can be remeshed automatically. It is widely believed that in
future, we have no choice but to live with mainly triangular and tetrahedral
meshes. Fortunately, it has already been found that some S-FEM models,
such as the ES-FEM model (for 2D) and the FS-FEM model (for 3D), work

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

1:
47

 1
0 

M
ay

 2
01

6 



Introduction 7

perfectly well with triangular and tetrahedral meshes, respectively. These
models often produce solutions much better than the standard FEM using
the same mesh and can even produce solutions better than the FEM using
quadrilateral and hexahedral elements.

Note also that several efforts have been made to resolve the overly stiff
phenomenon, especially in the area of hybrid or mixed FEM formulations
based on three- or two-field principles. This book will not discuss those
techniques. However, they can be very useful, and hence interested read-
ers may refer to the related literature. To the authors, it is clear that more
effective means, such as more innovative uses of the variational principles,
out-of-the-box approaches beyond the standard variational principles,
or work beyond the elements (bringing information from neighboring
elements such as in the S-FEM models), are necessary.

1.3.5 Solution Certificate

The solution from a numerical method such as FEM contains modeling
and numerical errors. Finding an approximate solution using the above-
mentioned FEM procedure is important, but not sufficient, for advanced
applications, and it becomes more and more important to obtain informa-
tion about the quality of the solution. This not only makes the numerical
result more applicable to practical engineering problems with certain con-
fidence, but also guides us on how to further improve the solutions.
However, the standard FEM can only give the lower bound solution,
and therefore the solution error to the exact solution is unknown. Some
of the S-FEM models such as NS-FEM, on the other hand, can pro-
duce upper bounds, providing a crucial closure for numerical solution
bounds.

1.3.6 Computational Efficiency

We note that some of the issues mentioned above can be resolved using
mesh-free methods [8]. However, it is well known that the mesh-free
method is usually more expensive. It can be as much as 10 times slower
than FEM (measured in displacement norm). Some of the recent mesh-free
methods are even more efficient than the linear FEM model. For example,
one of the most efficient mesh-free methods, ES-PIM-T6/3 [27], was found
to be about two times faster (measured in displacement norm) than the
linear FEM model using the same set of nodes [8]. However, there is still
a lot of room for further improvement. It is clear to the authors that mod-
els that combine the FEM model with proper mesh-free techniques can
be advantageous in terms of both simplicity and computational efficiency.
The S-FEM models are such typical models, and can be viewed as one
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8 Smoothed Finite Element Methods

of the most simplified mesh-free methods with the help of an element
mesh.

1.3.7 Lower-Order Elements: A Preferred Choice

In solving practical engineering problems, we observed that lower-order
elements (linear and bilinear) are most often used. There are a number of
reasons for this. First, lower-order elements are simple and easy to use
(for most analysts and engineers) in order to model problems with compli-
cated geometries. Second, lower-order elements can be applied to a much
wider range of engineering problems, because they require lower regu-
larity of the solution. Third, it is easier to use lower-order elements for
meshing and remeshing, which are needed in adaptive analyses. It is also
very convenient to design contact algorithms for lower-order elements for
nonlinear contact analysis. Moreover, it is easier to develop coupling proce-
dures for lower elements for fluid–structural interaction problems. It is the
authors’ opinion that lower-order elements will always be the mainstream
of elements used in solving practical complicated engineering problems.
Therefore, several efforts have been made to make lower-order elements
work effectively. S-FEM models are particularly good for lower-order ele-
ments. In fact, in this entire book, we use only lower-order elements for
S-FEM models, although theoretically S-FEM models also work for higher-
order elements. For special purposes, such as singularity near the crack tip,
we can use proper local enrichments that can be done quite easily in S-FEM
settings [64–66].

1.4 The Idea of S-FEM

The essential idea in S-FEM is to modify the compatible strain field, or con-
struct a strain field using only the displacements, hoping that a Galerkin
model using the modified/constructed strain field can deliver some good
properties. Such a modification/construction can be performed within
elements but more often beyond elements, bringing information from neigh-
boring elements. Naturally, the strain field has to satisfy certain conditions,
and the standard Galerkin weak form needs to be modified accordingly to
ensure stability and convergence. In the formulation of S-FEM models in
this book, we stick to the use of weak forms of “Galerkin type” to preserve
the symmetry of the system and hence the efficiency of the model. Chapters
3 and 4 will discuss in great detail the standard Galerkin weak form and
the smoothed Galerkin weak form, respectively.

Note that in many mesh-free settings, strain modification and con-
struction are essential and the formulations are much more diversified.
Interested readers are referred to Ref. [8] for more details.
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Introduction 9

1.5 Key Techniques Used in S-FEM

The major techniques used in S-FEM models may be summarized as
follows:

1. Domain discretization using elements
2. The strain (gradient) smoothing technique
3. The smoothed Galerkin weak form
4. The point interpolation method (PIM)
5. Types of smoothing domains

It is clear that each of these technical ingredients is well known or seems
to be quite plain. The combination of these seemingly plain techniques
gives excellent properties to S-FEM models. It seems that the best parts of
these technical ingredients are being put together so as to obtain models
with desired properties. Domain discretization using elements has been
practiced in FEM for more than half a century, and is still being practiced
in all FEM modeling. Strain or gradient smoothing techniques have been
used by many researchers as early as in the 1970s (see Chapter 4). The
smoothed Galerkin weak form is an extension of the standard Galerkin
weak form used in FEM, and can be derived from the standard variational
principle. Understanding its stability conditions [29] opens a wide win-
dow for its use in various S-FEM models. The interpolation technique is
probably one of the earliest numerical techniques, which has been widely
used based on elements and, more generally, on mesh-free nodes [8]. It
finds a very special place now in all S-FEM models for the formulation of
general n-sided elements where we use “linear PIM” (Chapter 4), crack-tip
elements (Chapter 10) where we use “enriched linear PIM” for simulat-
ing a singular stress field, and so on. The idea of using various types of
smoothing domains has been recently used in meshfree techniques such
as the PIM family [8]. This book extends this idea to FEM settings. It is,
in fact, the single most important factor to determine the properties of an
S-FEM model.

1.6 S-FEM Models and Properties

The S-FEM models developed so far are summarized in Table 1.1, together
with their properties. It may be difficult to comprehend the contents of
Table 1.1, but it can be a good reference when reading the later chapters.
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10
Sm

oothed
Finite

Elem
entM

ethods
TABLE 1.1

Versions of S-FEM Models and Properties

Abbreviation Full Name Formulation Features/Properties

CS-FEM (2D) Cell-based smoothed finite
element method using
quadrilateral elements

Smoothed Galerkin Linearly conforming
CS-FEM (3D)a Linear or enriched PIMa Good accuracy
(Chapters 4 and 5) Quadrilateral cell-based

smoothing domains
Softer than FEM
Superconvergence
Conditionally stable

nCS-FEM (2D) Cell-based smoothed finite
element method using
n-sided polygonal elements

Smoothed Galerkin Linearly conforming
nCS-FEM (3D)a

(Chapters 4 and 5)
Linear or enriched PIMa Good accuracy
Triangular cell-based smoothing

domains
Superconvergence
Spatially and temporally stable

NS-FEM Node-based smoothed finite
element method using
n-sided polygonal elements
(including T3 and T4)

Smoothed Galerkin Linearly conforming
(2D and 3D) Linear or enriched PIM Volumetric locking free
(Chapters 4, 5, 10, and 14) Smoothing operation based on

nodes
Upper bound
Strong superconvergence in energy norm
Spatially stable, temporally instable

ES-FEM (2D) Edge-based (face-based)
smoothed finite element
method using n-sided
polygonal elements
(including T3 and T4)

Smoothed Galerkin Linearly conforming
FS-FEM (3D) Linear or enriched PIM Ultra-accuracy
(Chapters 4, 7, 8, 10–15) Smoothing operation based on

the edges (faces) of cells
Very efficient
Strong superconvergence in

displacement/energy norm
Spatially and temporally stable

αFEM (2D) Alpha finite element method
using T3 and T4 elements

Smoothed and standard Galerkin Linearly conforming
αFEM (3D) Linear or enriched PIMa Nearly “exact” solution
(Chapters 4 and 9) Smoothing operation based on

the node and cells
Strong superconvergence in

displacement/energy norm
Upper and lower bounds
Spatially and temporally stable

a Yet to be developed.
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Introduction 11

1.7 Some Historical Notes

The first and typical S-FEM model is the cell-based smoothed FEM (CS-
FEM, or originally called S-FEM) [67] formulated for general n-sided
polygonal elements. Although the assumed displacement functions can
still be viewed living in an H

1 space, the expression for the compati-
ble strain field is not generally available (it is also not necessary). The
strain smoothing operation was used to construct the smoothed strain field.
CS-FEM works very effectively for solid mechanics problems, includ-
ing dynamic problems [68,69]. It can produce much more accurate stress
solutions and solutions with attractive properties [67]. Because smoothed
strains are obtained via line integrations along the smoothing domain
boundary, and the derivatives of shape functions are not used in the
formulation, a simple linear PIM can be applied to obtain the shape func-
tion values needed in the formulation; hence n-sided polygonal elements
and a very heavily distorted mesh can be used [70]. Detailed theoretical
aspects, including stability and convergence about CS-FEM, can be found
in Ref. [69]. Since CS-FEM uses the smoothed Galerkin weak form, the
assumed displacement functions can be viewed in an H

1 space, and the
smoothed strain field is orthogonal to the compatible strain field, CS-FEM
models are variationally consistent.

The second S-FEM model is the node-based smoothed finite element
method (NS-FEM) [71]. NS-FEM uses an FEM mesh that is further divided
into a set of smoothing domains based on nodes. The element mesh and the
smoothing domains are overlaid on each other. The modified strain field
is constructed by using smoothing strain over the node-based smoothing
domains, and linear PIM is used for constructing displacement function
values (only on the boundary of the smoothing domain). NS-FEM can
have different shapes of elements, including n-sided polygonal elements,
using also linear PIM for computing the shape function values. Linear
PIM was later enriched with proper terms for creating a singular stress
field for fracture problems (see Chapter 10). It has the properties of upper
bound, weak superconvergence, is insensitive to mesh distortion, and is
overly soft. The overly soft behavior leads to spurious modes at higher
energy levels for dynamic problems, and hence techniques are required for
temporal stabilization. Note that when linear triangular and tetrahedral
elements are used, NS-FEM produces the same results as the method of
node-based uniform strain elements [72].

The third S-FEM model is the edge-based smoothed finite element
method (ES-FEM) [73] for 2D and the face-based smoothed finite element
method (FS-FEM) [74] for 3D. ES-FEM and FS-FEM are similar to NS-FEM,
which uses an FEM mesh, and linear PIM for displacement function con-
struction. Linear PIM can be enriched with proper terms for creating a
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12 Smoothed Finite Element Methods

singular stress field for fracture problems (see Chapter 10). The difference
is in the division of smoothing domains: based on edges (ES-FEM) or
faces (FS-FEM) of the element mesh. The ES-FEM and FS-FEM models are
weakly stiff and quite “close-to-exact,” and hence have properties of strong
superconvergence and ultra-accuracy. No spurious modes are found in ES-
FEM and FS-FEM; hence they work very well for both static and dynamic
problems.

Note that NS-FEM and ES-FEM/FS-FEM using linear elements are more
like a mesh-free method, because their formulations are very different from
FEM. The only thing that is in common is that the displacement functions
used are still in an H

1 space. The theory, interpolation procedure, inte-
gration, solution property, and the use of mesh depart quite a lot from
the standard FEM procedure. They are in fact special cases of NS-PIMs
[23,42] and ES-PIMs [27] based on the generalized smoothed Galerkin
(GS-Galerkin) weak form [28,29].

An αFEM using triangular and tetrahedral elements for exact solutions to
mechanics problems has also been proposed using a partially constructed
strain field [75]. αFEM is essentially a combination of FEM and NS-FEM
with an adjustable parameter α that can be tuned for solutions with desired
properties. It was shown that the results of αFEM are much more accurate
than those of FEM-T3 and even more accurate than those of FEM-Q4 when
the same sets of nodes are used. αFEM can produce both lower and upper
bounds to the exact solution in the energy norm for elasticity problems
by properly choosing α. In addition, a preferable α approach has been
devised for αFEM to produce nearly exact and superconvergent solutions
for both displacement and energy norms. Furthermore, αFEM can make
volumetric locking free. Intensive numerical studies have been conducted
to confirm the theory and properties of αFEM. By further following this line
of development, a superconvergent alpha finite element method (SαFEM)
using triangular meshes was also proposed [76].

1.8 Outline of the Book

This book provides an introduction to S-FEM methods and their appli-
cations to solid mechanics, fracture mechanics, plates, piezoelectrics, heat
transfer, and acoustics problems. Most of what is described in the book
is the result of intensive research by G. R. Liu and his research team in
the past decade. The works of other researchers are also introduced. The
significance of this book is given below:

1. It is the only book available in the market that systematically
describes newly developed S-FEM models that combine FEM and
mesh-free techniques.
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Introduction 13

2. It presents techniques for certified solutions with both lower and
upper bounds to elasticity problems of arbitrary complicated
geometry, as long as a triangular or tetrahedral mesh can be built.

3. It presents techniques that produce superconvergent and nearly
exact solutions in both displacement and energy error measures.

4. It covers all the basic theories, principles, formulations, techniques,
and procedures of S-FEM models, including those for FEM that can
be viewed as a special case of S-FEM.

5. A large number of examples for a wide range of engineering prob-
lems are provided with very thorough examinations using figures
and tables: engineers will find the methods very reliable and easy
to apply in their practical problems.

Current important general issues related to future computational meth-
ods are addressed. This can be beneficial to researchers, engineers, and
students who are venturing into the development of novel computational
methods. The book is written for senior (second year and above) university
students, graduate students, researchers, and professionals in engineering
and science. A knowledge of FEM is not required. Mechanical engineers,
structural engineers, and practitioners will also find the book useful. The
chapter-by-chapter description of the book is given below:

Chapter 1: Addresses the background, overall idea, essential tech-
niques, general procedures, common preliminary issues, and
terminologies.

Chapter 2: Provides the basic equations for the solid mechanics prob-
lem that is the default problem of this book. These equations will
be used repetitively many times in the book.

Chapter 3: Presents an abstracted version of the widely used FEM in
its standard form, with a discussion on important basic theorems
and properties.

Chapter 4: Presents the overall modeling procedure, fundamental
theories ensuring stability and convergence, error assessment mat-
ters, and necessary building blocks needed to construct useful
S-FEM models.

Chapter 5: Introduces the first and closest S-FEM model to the FEM
model: CS-FEM. Common techniques, such as shape function con-
struction and selective formulation for handling volumetric lock-
ing, and so on, used in an S-FEM model, are covered in this chapter.

Chapter 6: The formulation of NS-FEM given in this chapter is
presented for both 2D and 3D problems with emphasis on the
upper bound solution, volumetric locking free property, and the
superconvergent property in energy norm. In addition, an adaptive
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14 Smoothed Finite Element Methods

analysis procedure using triangular elements is presented, with an
automatic mesh refinement strategy and an error indicator based
on the computable recovery strains.

Chapter 7: Introduces a very outstanding S-FEM model: ES-FEM,
which is stable both spatially and temporally. ES-FEM is known
as a “star” performer and is the best linear model found so far
in terms of solution accuracy, stability, efficiency, and adaptation
to complicated geometry. Static, dynamic, and nonlinear problems
are dealt with in this chapter.

Chapter 8: Introduces FS-FEM, which is the 3D version of ES-FEM.
It works very well with tetrahedron elements and is hence effec-
tive for 3D problems with complicated geometry. Both linear and
nonlinear problems are examined.

Chapter 9: Presents a novel αFEM that uses a combined formulation
of FEM and NS-FEM. This combined formulation makes the best
use of the upper bound property of the NS-FEM and the lower
bound property of the standard FEM. It is equipped with an α and
is capable of producing a nearly exact solution in strain energy for
any given linear elasticity problem that can be 2D or 3D.

Chapter 10: Extends the application of these S-FEM models for a par-
ticular class of problems: fracture mechanics. The emphasis is on
the creation of the singular strain field near the crack tip, by the
development of novel crack tip elements for S-FEM models using
enriched PIM. The singular NS-FEM is capable of producing an
upper bound solution and the singular ES-FEM is found to be
ultra-accurate for fracture problems. They all use basic meshes of
three-node triangular elements.

Chapter 11: Extends the ES-FEM and FS-FEM models to solve nonlin-
ear mechanics problems of solids with viscoelastoplastic materials,
for both 2D and 3D problems.

Chapter 12: Extends ES-FEM to static, free vibration and buckling
analyses of plates, capitalizing these excellent features of ES-FEM
found from the previous chapters. Our ES-FEM formulation is
based on Reissner–Mindlin plates and is incorporated with the dis-
crete shear gap (DSG) method. The ES-FEM-DSG3 method is free
of shear locking and works well for both thin and thick plates.

Chapter 13: Applies the S-FEM formulation to solids of piezoelectric
materials that are used for various “smart” devices.

Chapter 14: Applies the S-FEM formulation to heat transfer prob-
lems for solutions of special properties: upper bound and excellent
accuracy.

Chapter 15: Applies the S-FEM formulation to acoustics problems.
The emphasis is on the unique ability of ES-FEM to suppress the
so-called dispersion error in wave propagation problems.
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2
Basic Equations for Solid Mechanics

We now discuss a typical engineering problem: solid mechanics, which is
the default problem studied in this book, because it is one of the most fun-
damental problems in all engineering systems wherever solid materials
are used. The purpose of this chapter is to provide a set of basic equa-
tions for solids of linear elastic materials, which will be repeatedly used
in later chapters. Our description will be abstract, sufficient for the use of
later chapters and for a quick review and grasp of the major points in the
formulation and setting of solid mechanics problems. For more detailed
coverage on this topic, readers may refer to textbooks that are abundantly
available in the open literature [1].

The strong forms for solid mechanics problems are the PDEs defined in
the problem domain governing the equilibrium state at any point within
a linear elastic solid, known as equilibrium equations. Figure 2.1 shows a
general 3D solid. It is constrained on a part of the boundary and subjected
to body forces distributed over the volume and surface forces on another
part of the boundary. Figure 2.2 shows a 2D solid that is very thin in the
z-direction. The forces are applied all within the x–y plane, and hence the
stress components in the z-direction are all zero, known as the plane stress
problem. Figure 2.3 shows a 2D solid that is very thick in the z-direction,
such as a water dam with the z-axis representing the longitudinal direction.
All the external forces and constraints are independent of z, resulting in zero
strain components in the z-direction, known as the plane strain problem.

2.1 Equilibrium Equation: In Stresses

Consider, in general, a d-dimensional solid occupying a physical domain
ofΩ ∈ R

d bounded by Γ. In this book, we speak of open domain by default,
meaning that Ω does not include its boundary Γ. The static equilibrium
equation governing the solid can be written in partial differential form in
terms of stresses:

∂σij

∂xj
+ bi = 0, i, j = 1, . . . , d in Ω, (2.1)

where bi is the given external body force and σij is the (internal) stress that
relates to the strains εij.

21
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FIGURE 2.1 A constrained 3D solid subjected to external body and surface forces.
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FIGURE 2.2 A 2D plane stress problem: a thin piece of flat solid subjected to only in-plane
forces.
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FIGURE 2.3 A typical 2D plane strain problem: cross section of a water dam.
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Basic Equations for Solid Mechanics 23

2.2 Constitutive Equation

The stress and strains are related via the so-called constitutive equation or
the generalized Hook’s law:

σij = Cijklεkl, (2.2)

where Cijkl is the elasticity tensor of the solid material that is symmetrical:

Cijkl = Cjikl = Cijlk = Cklij. (2.3)

For isotropic Saint Venant Kirchhoff elastic materials, we have

Cijkl = λδjiδkl + μ(δikδjl + δilδjk), (2.4)

where λ and μ are Lame’s elastic constants.

2.3 Compatibility Equation

Under the small-displacement assumption, the strain tensor εij relates
to displacements by the so-called compatibility equation (also known as
kinematic equations or strain–displacement relations):

εij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (2.5)

where ui, i = 1, . . . , d is the displacement component in the xi-direction at
a point in Ω. When Equation 2.5 is satisfied, we say that the strains are
compatible with the displacements, and such a strain field is said to be a
compatible strain field.

2.4 Equilibrium Equation: In Displacements

Substituting Equations 2.2 and 2.5 into Equation 2.1, we have the equilib-
rium equation expressed in terms of displacements (that are small):

∂

∂xj

(
Cijkl

∂uk

∂xl

)
+ bi = 0, i, j = 1, . . . , d in Ω. (2.6)

The displacement ui, i = 1, . . . , d now becomes the primary field variable.
A method that solves Equation 2.6 primarily for the displacements is called
a displacement method.
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24 Smoothed Finite Element Methods

2.5 Equations in Matrix Form

For notation convenience, matrix forms of equations are often used in the
book. The equilibrium equation 2.1 becomes

LT
d σ + b = 0, (2.7)

where the body force vector is written as

b =
{

b1

b2

}
for 2D, b =

⎧⎪⎨
⎪⎩

b1

b2

b3

⎫⎪⎬
⎪⎭ for 3D. (2.8)

The matrix of differential operators Ld is given by

Ld =
⎡
⎢⎣

∂/∂x1 0
0 ∂/∂x2

∂/∂x2 ∂/∂x1

⎤
⎥⎦

3×2

for 2D,

Ld =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂/∂x1 0 0
0 ∂/∂x2 0
0 0 ∂/∂x3

0 ∂/∂x3 ∂/∂x2

∂/∂x3 0 ∂/∂x1

∂/∂x2 ∂/∂x1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6×3

for 3D. (2.9)

The compatibility equation 2.5 can also be written in matrix form as

ε = Ldu. (2.10)

The constitutive equation 2.2 becomes

σ = cε, (2.11)

where σ is a vector that collects stress components in the form of

σ =

⎧⎪⎨
⎪⎩
σ11

σ22

σ12

⎫⎪⎬
⎪⎭ for 2D, σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ13

σ12

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

for 3D, (2.12)
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Basic Equations for Solid Mechanics 25

and ε is a vector that collects strain components in the form of

ε =

⎧⎪⎨
⎪⎩
ε11

ε22

2ε12

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩
ε11

ε22

γ12

⎫⎪⎬
⎪⎭ for 2D, ε =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

2ε23

2ε13

2ε12

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

γ23

γ13

γ12

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

for 3D. (2.13)

The matrix of material stiffness constants c can be written explicitly in
more familiar engineering notations as

c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26

c33 c34 c35 c36

c44 c45 c46

sy. c55 c56

c66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (2.14)

where “sy.” stands for symmetry, meaning that cij = cji for the symmetry
property of the material. Thus, there are 21 independent material constants
cij. For isotropic materials, c can be greatly reduced to

c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c12 0 0 0
c11 c12 0 0 0

c11 0 0 0
c11 − c12

2
0 0

sy.
c11 − c12

2
0

c11 − c12

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.15)

where

c11 = E(1 − ν)
(1 − 2ν)(1 + ν) , c12 = Eν

(1 − 2ν)(1 + ν) ,
c11 − c12

2
= μ, (2.16)

in which E, ν, and μ are, respectively, the well-known Young’s modulus,
Poisson’s ratio, and shear modulus of the material. There are only two
independent constants among these three constants, and the relationship
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26 Smoothed Finite Element Methods

among these three constants is

μ = E
2(1 + ν) . (2.17)

Given any two of these three constants, the other can then be calculated
using the above equation. For 2D plane stress problems, we further have

c = E
1 − ν2

⎡
⎢⎣

1 ν 0
ν 1 0
0 0 (1 − ν)/2

⎤
⎥⎦ (plane stress). (2.18)

For 2D plane strain problems, the matrix of material stiffness constants c
can be obtained by simply replacing E and ν, respectively, with E/(1 − ν2)

and ν/(1 − ν), which leads to

c = E(1 − ν)
(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎢⎣

1
ν

1 − ν 0
ν

1 − ν 1 0

0 0
1 − 2ν

2(1 − ν)

⎤
⎥⎥⎥⎥⎦ (plane strain). (2.19)

The equilibrium equation in terms of the displacement vector becomes

LT
d cLdu + b = 0, (2.20)

where the vector of displacements is given as

u =
{

u1

u2

}
for 2D, u =

⎧⎪⎨
⎪⎩

u1

u2

u3

⎫⎪⎬
⎪⎭ for 3D. (2.21)

2.6 Boundary Conditions

The boundary conditions for a solid mechanics problem can usually be
of two types: Dirichlet (essential, displacement) boundary condition and
Neumann (natural, stress) boundary condition. Let Γu denote a part of Γ,
on which the Dirichlet boundary condition is specified. We then have

ui = uΓi on Γu ∈ Γ, (2.22)
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Basic Equations for Solid Mechanics 27

where uΓi is the specified displacement component on Γu. In this book, for
simplicity we consider the homogeneous essential boundary condition by
default:

ui = 0 on Γu ∈ Γ. (2.23)

This type of problem is called the force-driving problem. For non-
homogeneous essential boundary conditions, simple treatments in the
standard FEM will be applied, and will be discussed on a case-by-case
basis.

Let Γt denote a part of Γ, on which the Neumann boundary condition is
satisfied,

σijnj = tΓi on Γt ∈ Γ, (2.24)

where nj is the jth component of the unit outward normal and tΓi is the
specified boundary stress on Γt. The matrix form of Equation 2.24 is

LT
n σ = tΓ on Γt ∈ Γ, (2.25)

where Ln is the matrix of the components of the unit outward normal
arranged in the form of

Ln =
⎡
⎢⎣

n1 0
0 n2

n2 n1

⎤
⎥⎦

3×2

for 2D, Ln =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n1 0 0
0 n2 0
0 0 n3

0 n3 n2

n3 0 n1

n2 n1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6×3

for 3D.

(2.26)

2.7 Some Standard Default Conventions and Notations

1. By default in this book, we speak of “open” domain. When a domain
is denoted as Ω (bounded by Γ), Ω does not include the boundary
Γ. When we refer to a “closed” domain, we will specifically use a
frame: Ω = Ω ∪ Γ. We also require, in general, that the domain is
“Lipschitzian”: it cannot be singular. For solids and structures with
cracks and sharp corners, special treatments or considerations may
be needed.
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28 Smoothed Finite Element Methods

2. This book uses both matrix and indicial notations from time to time
for more concise presentations. Therefore, we allow the vectors and
matrix to have the following forms for easy conversion between
these two notations whenever it is needed. For 3D problems,
we have

Matrix notation Indicial notation

x =

⎧⎪⎨
⎪⎩

x1
x2
x3

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

x
y
z

⎫⎪⎬
⎪⎭ , u =

⎧⎪⎨
⎪⎩

u1
u2
u3

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

ux

uy

uz

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

u
v
w

⎫⎪⎬
⎪⎭

b =

⎧⎪⎨
⎪⎩

b1
b2
b3

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

bx

by

bz

⎫⎪⎬
⎪⎭ ,

⎧⎪⎨
⎪⎩

n1
n2
n3

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

nx

ny

nz

⎫⎪⎬
⎪⎭

xi, i = 1, 2, 3
ui, i = 1, 2, 3
bi, i = 1, 2, 3
ni, i = 1, 2, 3

σT = {σ11 σ22 σ33 σ23 σ13 σ12
}

= {σxx σyy σzz σyz σxz σxy
} σij, i, j = 1, 2, 3

εT = {ε11 ε22 ε33 2ε23 2ε13 2ε12
}

= {εxx εyy εzz γyz γxz γxy
} εij, i, j = 1, 2, 3

(2.27)

The same is also applicable to 2D problems.

2.8 Remarks

We now conclude this chapter by summarizing the points made.

Remark 2.1 Stable Materials

In this book, unless specified, we consider solids and structures made of
materials that are physically stable: meaning that any finite amount of strain
will result in a finite amount of stress and hence a finite amount of positive
strain energy. In other words, these material constants are positive definite
or the matrix of material constants c is symmetric positive definite (SPD).

For stable solid materials, the stress–strain relation can also be written
in the following reverse form:

ε = sσ, (2.28)
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Basic Equations for Solid Mechanics 29

where s is a matrix of material flexibility constants that can be obtained
from properly designed experiments. Because c is SPD, s must also be
SPD, and hence both are invertible. We then have the simple relation

s = c−1 or c = s−1. (2.29)

Remark 2.2 Volumetric Locking: An Issue with Displacement Methods

The denominator 1–2ν in Equations 2.16 and 2.19 suggests a possible sin-
gularity problem when ν approaches 0.5, which can occur for so-called
“incompressible” solid materials like rubber. This can have numerical
implications when a displacement method is used to solve the problem,
which is known as volumetric locking. Special techniques have been devel-
oped in the standard FEM to overcome this numerical problem. Techniques
for S-FEM models that can deal with volumetric locking problems will be
presented in Chapters 5 through 9.

Remark 2.3 Volumetric Locking Free: A Feature with Equilibrium Methods

Volumetric locking will not occur when an equilibrium model is used,
where stress is used as the primary field variable. This is because when
stress is treated as the primary field variable, strain is obtained using Equa-
tion 2.28 instead of Equation 2.16 or 2.19. Therefore, the term “1 − 2ν” will
not be in the denominator, leading to a volumetric locking free formula-
tion. The NS-FEM model discussed in Chapter 6 has features similar to an
equilibrium model, and is found to be volumetric locking free. Making use
of such a nice property of the NS-FEM, all the S-FEM models are made
volumetric locking free using the so-called selective formulation.

Remark 2.4 Strong Form

Equations 2.6 and 2.20 are the strong-form system of equations that govern
the mechanics behavior of solids with displacement functions as the pri-
mary dependent field variables. The displacement functions are required to
have at least the same order of consistency in the entire problem domain as
the order of differentiations in the PDEs. Such a requirement on consistency
for the displacement functions is said to be strong.

Solving strong-form equations directly is possible. Such methods are
often called strong-form methods, and the so-called collocation methods are
typical strong-form methods. However, care must be taken in using strong-
form methods with local approximations because of stability issues [2,3].
This book will not discuss the strong-form methods but the weak-form
methods: FEM and S-FEM, starting with the FEM method introduced in
the next chapter.
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3
The Finite Element Method

In this chapter, we present an abstracted version of the widely used FEM
in its standard form, because it is frequently used in this book and is the
base for our S-FEM methods to be presented in later chapters. We will
focus on some of the essential mathematical and numerical aspects and
properties of FEM, but the mathematics language is kept as simple as
possible with the objective of helping readers become familiar with the nec-
essary terminologies, mathematics tools, and numerical treatments used
in FEM and S-FEM. This also serves the purpose of easy reference in the
later chapters of this book, when discussing the properties of our S-FEM
models. Operational issues on the general procedure of FEM, discretization
of the problem domain, shape function construction, weak-form statement,
variational formulation, numerical integration, and formulation of the lin-
ear system of equations will be outlined. Theoretical issues on functional
spaces, solution existence, uniqueness, error, convergence rate, and major
properties of the FEM will also be presented in a concise and easy-to-
understand fashion, but without details on the proofs. More complete and
precise discussions on FEM and the detailed modeling techniques can be
found in many dedicated books in the open literature, some of which are
listed in, for example, Refs. [1–5].

FEM has a long history of development and hence has various advanced
versions. The FEM introduced in this chapter is the “standard version”
that is displacement based and fully compatible. We also focus on linear
(or bilinear, trilinear) elements as they are most widely used in solving
practical engineering problems, most adaptive to various types of practical
engineering problems, in addition to the attractive simplicity, and easy for
comprehension.

3.1 General Procedure of FEM

Consider static solid mechanics problems defined in a d-dimensional prob-
lem domain of Ω ∈ R

d bounded by Γ = Γu ∪ Γt, where Γu is the essential
boundary andΓt is the natural boundary, as detailed in Chapter 2. A macro
flowchart of the FEM procedure is schematically given in Figure 3.1.

31
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32 Smoothed Finite Element Methods

The governing PDEs
(strong form of the problem)

Establishment of the weak form 

Discretization of the problem domain 

Shape function construction 
(creation of displacement function) 

Evaluation of the strain field 

Formation of the element stiffness matrices and vectors 
assembly of the global matrices/vectors  

Solution for the unknown nodal displacements 

Retrieval of strains and stresses

FIGURE 3.1 A macro flowchart of the basic FEM procedure.

The step-by-step procedure in FEM can be presented as follows.

Step (1): Establishment of the Weak Form

The governing PDEs given in Chapter 2 for solid mechanics problems are
called the strong form, which requires strong continuity on the field vari-
ables (displacements), as stated in Remark 2.4. When solving such PDEs
directly (known as strong-form methods), trial functions of field variables
have to be differentiable up to the highest order of PDEs. Generally, it is
impossible to find the exact analytical solution that satisfies these strong-
form PDEs precisely, except for a few simple cases. Therefore, numerical
methods are often used as practical means for approximated solutions.
FEM uses weak formulation, which reduces the order of differentiation
on trial functions. In mechanics, such a weak form is equivalent to the
statement of the well-known principle of minimum potential energy to the
engineering mechanics community. Note that the use of the weak-form
instead of the original strong-form PDEs has changed the statement of the
problem. In the continuous forms, both strong and weak statements are
essentially equivalent. The weak form, however, becomes more general,
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The Finite Element Method 33

and offers a much more flexible way of creating numerical methods for
stable and convergent solutions.

Step (2): Discretization of the Problem Domain

Once the weak form is established, the problem domain is discretized into
a set of nonoverlapping and nongap subdomains called elements. This is
to facilitate the easy creation of displacement functions. These elements
are interconnected at the nodes located on element vertices (and bound-
aries for higher-order elements). The elements properly connected by these
nodes constitute a mesh, and the domain discretization is often called mesh-
ing. The number, type, size, and arrangement of the elements have to be
decided properly by the analyst. The elements should be small enough
to capture the local variation of the displacements and hence to produce
results of acceptable accuracy, but not too small for limited computational
resources. For efficiency reasons, small elements are used where the results
(such as displacement gradient) change rapidly, whereas larger elements
can be used where the displacement field is relatively smooth.

Step (3): Shape Function Construction

Based on the elements, shape functions for creating the displacement field
using nodal displacements are now constructed using polynomial basis
functions (monomials). The shape function defines the “shape” of the varia-
tion of the displacements in the element, so that the variation displacement
within the element can be fully determined, when the nodal displacements
are given. Therefore, the nodal values of displacements become the (repre-
sentative) unknowns in the discretized system of equations, and are known
as nodal degrees of freedom (DOFs). Hence, it is often more convenient in
the formulation to express these shape functions based on nodes (each
node has one shape function for one displacement component formed by
joining those obtained using the surrounding elements sharing this node),
and they are called nodal shape functions. The nodal shape functions satisfy
the following requirements.

i. Local support: The nodal shape function for a node has influence
only on the first layer of the elements connected to the node, and is
zero elsewhere. This property is ensured naturally in FEM, because
these shape functions are constructed based on elements. This local
support property of shape functions essentially ensures the sparse
stiffness and mass matrices for an FEM model.

ii. Linear independence: All the nodal shape functions must be linearly
independent. This is also naturally achieved by the nonoverlap-
ping and nongap division of elements, and element-based shape
function construction.
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34 Smoothed Finite Element Methods

iii. Consistency requirement: The approximated displacements should
be differentiable at least up to the rth order inside elements, where
r is the order of the highest derivative appearing in the weak form.
In FEM practices, this is ensured by the use of basic functions up to
sufficiently high order. For solid mechanics problems governed by
second-order PDEs, the first derivative of displacements is used
in the weak form, and hence at least linear shape function should
be used.

iv. Compatibility requirement: The approximated displacements should
be differentiable at least up to the (r − 1)th order on the interfaces
of elements. A displacement function that satisfies this compati-
bility requirement is said to be a compatible displacement function.
This is required by the continuity (or boundedness) of the weak
form, and often special care must be taken to ensure this require-
ment. In FEM practices, proper mapping techniques are often used
to ensure the compatibility. The compatibility is often referred to
as continuity on the interfaces of elements.

v. Partitions of unity: The sum of all nodal shape functions at any point
in the problem domain must be unity. This is needed to ensure the
proper representation of a constant field or rigid motions of the
solid, which is essential to any discrete numerical model in general.
This is ensured by simple enclosure of the zero-order monomial
(constant) in the basic terms for shape function construction [5].

vi. Linear reproducibility: This is the sufficient condition for the shape
functions to be used to formulate an FEM model of second-order
accuracy (meaning that the up to linear part of the displacement
field function will be reproduced exactly, and error is only at
second order and above). It is not a necessary requirement, if we
do not demand second-order accuracy. Nevertheless, we require
this condition, because it is not difficult to achieve in an FEM
model when a polynomial basis is used. All one needs to do is
to include the constant term and linear terms of the basis terms in
the formulation of shape functions.

vii. Completeness requirement: Reproducibility of polynomials up to rth
order. This can be viewed as a general expression of conditions (v)
and (vi).

Step (4): Evaluation of Strain Field

Using the displacement functions created using the shape functions, the
strain field can be evaluated via differentiation using simply the strain–
displacement relation (or the compatibility equation) (Equation 2.10). Such
a strain field is said to be a compatible strain field, because it satisfies the
compatibility equation in terms of the strain–displacement relation.
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The Finite Element Method 35

Step (5): Formation of Element Stiffness Matrices and Vectors

The stiffness matrix and the load vector of an element can now be computed
using the weak form established in step (1), the compatible displacement
functions assumed using the shape functions created in step (3), and the
compatible strain field obtained in step (4). Integration of the weak form
can be performed effectively using numerical integration techniques, such
as the popular Gauss quadrature technique with a sufficient number of
Gauss points.

Step (6): Assembly of Global Matrices/Vectors

Since the whole problem domain is composed of finite elements, the indi-
vidual elemental stiffness matrices and vectors computed in step (5) can
now be “added” together by superposition based on nodes (called the
direct assembly) to obtain the global equilibrium system of equations. Such
a direct assembly is possible because the continuity or compatibility of the
displacement field is ensured and no gaps occur anywhere in the domain.

Step (7): Solution for Unknown Nodal Displacements

The global stiffness matrix obtained from step (6) is symmetric but usu-
ally singular because of possible rigid body movements. To remove the
singularity, we must impose proper boundary conditions to constrain all
the rigid body movements, which leads to a modification of the stiffness
matrix and/or the load vector. The modified stiffness matrix becomes SPD,
as long as the original problem is well posed, and therefore the nodal
displacements can be solved with ease using standard routines of linear
algebraic equation systems. Once the solution of displacements at nodes
is computed, the function of the displacement field for the whole problem
domain can finally be determined.

Step (8): Retrieval of Element Strains and Stresses

From the computed nodal displacements, element strains can be computed
using the strain–displacement relation, and then stresses using the consti-
tutive relation. Some postprocessing techniques or recovery procedures
can also be performed at this step to improve the accuracy of the strain
and stress fields, which will often be performed in this book.

3.2 Proper Spaces

Finding an approximate solution using the above-mentioned FEM
procedure is important but not sufficient for advanced analysis and
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36 Smoothed Finite Element Methods

applications. It is becoming more and more important to obtain
information about the quality of the solution. This will not only make the
FEM result more applicable to practical engineering problems with certain
confidence, but will also guide us on how to further improve the solutions.
The knowledge of functional analysis is therefore necessary to achieve
this goal.

For general problems, we are not able to obtain quantitative information
about the error between exact and approximate solutions, since the exact
solution is usually unknown. Instead, we can be satisfied with an estimate
of such error with not only about the amount of the error but also the rate
of convergence of a family of approximate solutions that converge to the
exact solution. To perform such a convergence analysis in FEM, spaces of
functions to which the solution belongs have to be defined properly and
precisely. The spaces of functions used in FEM are generally normed spaces
equipped with inner product induced norms to measure the “magnitude”
of the functions or the derivatives of the functions in a certain manner.
With the aid of such a norm, the procedure of obtaining an error estimate
and the rate of convergence can be presented in rigorous forms.

This section introduces two types of spaces that are essential to the
formulation and analysis of FEM: Lebesgue spaces and Hilbert spaces.

3.2.1 L
2 Space: A Lebesgue Space

The L
2 space of functions may be the most widely used space in functional

analyses. It is defined as follows. Let Ω be a bounded domain in R
d (d =

1, 2, 3); the space L
2 (Ω; R1) of scalar functions v ∈ R

1 on Ω is defined as

L
2(Ω; R1) =

⎧⎨
⎩v ∈ R

1|v is defined on Ω ∈ R
d and

∫

Ω

v2 dΩ < ∞
⎫⎬
⎭ , (3.1)

which shows that any function v ∈ R
1 in L

2(Ω; R1) is square integrable∗
over Ω. Such a function can be continuous or discontinuous, but it has
to be bounded in the Lebesgue integral sense, as defined in Equation 3.1.
In other words, the function is at least piecewise continuous with “finite”
discontinuities over the problem domain Ω.

Example 3.1: A Piecewise Linear and Continuous Function

The following function v ,

v(x) =
{

1 + x , −1 ≤ x ≤ 0,
1 − x , 0 < x ≤ 1,

(3.2)

∗ Throughout the book, we speak of open domains, meaning that Ω does not include its
boundary Γ, and we use the Lebesgue integration that allows occasional omissions.
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The Finite Element Method 37

x
O(0, 0)

v

v

(–1, 0) (1, 0)

(0, 1)

v = 1 + x v = 1 – x

x
(–1, 0)

O(0, 0) (1, 0)

v = –1

v = 1

(0, 1)

(0, –1)

(a)

(b)

FIGURE 3.2 Examples of functions in L
2 space: (a) piecewise continuous function; (b)

Heaviside function (finite and discontinuous at one point).

is clearly piecewise linear and continuous on the finite 1D domainΩ = [−1, 1],
as plotted in Figure 3.2a. It lives in L

2(Ω; R
1) space.

To show this, we examine the integration of v2. Because this function has
two pieces of linear function “hinged” at x = 0, the integration is broken into
two pieces:

1∫

−1

v2 dx =
0∫

−1

(1 + x)2 dx + lim
ε→0+

1∫

0

(1 − x)2 dx

= 2
3

− lim
ε→0+

(
ε− ε2 + ε

3

3

)
= 2

3
< ∞, (3.3)

which is finite (bounded). Hence the function v in Equation 3.2 belongs to
L

2 (Ω; R
1).

The function of a displacement component in a linear FEM model for 1D,
2D, and 3D problems is essentially a typical piecewise linear function but with
multiple (finite number of) “hinge” points (lines and surfaces).

Example 3.2: Heaviside-Type Function

A Heaviside function defined as

v(x) =
{

1, −1 ≤ x ≤ 0

−1, 0 < x ≤ 1
(3.4)

belongs to L
2(Ω; R

1) space.
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38 Smoothed Finite Element Methods

To show this, we observe that the function has two continuous pieces and
a finite discontinuous point at x = 0 in the domain Ω = [−1, 1], as plotted in
Figure 3.2b.The integration of v2 can be performed in two piecesΩ1 = [−1, 0]
andΩ2 = [ε, 1], where ε is a positive infinitely small real number. We then have

1∫

−1

v2 dx =
0∫

−1

12 dx + lim
ε→0+

1∫

ε

(−1)2 dx

= 1 + lim
ε→0+(1 − ε)
︸ ︷︷ ︸

→1

= 1 + 1 = 2 < ∞, (3.5)

which shows clearly that the integration is finite. Therefore, the Heaviside
function in Equation 3.4 belongs to L

2(Ω; R
1).

The function of a strain component field in a linear FEM model for 1D, 2D,
and 3D problems is essentially a typical Heaviside function but with multiple
discontinuous points (lines and surfaces). The strain component field in an FEM
model is in L

2(Ω; R
1) space.

Example 3.3: A General Heaviside Function

A general Heaviside function is defined as

v(x) =
⎧⎨
⎩

1, −1 ≤ x < 0,
c, x = 0,

−1, 0 < x ≤ 1,
(3.6)

where c is a finite real number. It lives also in L
2(Ω; R

1) space.
To show this, we observe that the function defined in Equation 3.6 has two

continuous pieces and a discrete “jumping” point in domain Ω = [−1, 1], as
plotted in Figure 3.2b. The integration of v2 can be performed in three pieces
as follows:

1∫

−1

v2 dx = lim
ε→0−

ε∫

−1

12 dx + lim
ε→0−
β→0+

β∫

ε

c2 dx + lim
β→0+

1∫

β

(−1)2 dx

= lim
ε→0−(ε+ 1)

︸ ︷︷ ︸
→1

+ lim
ε→0−
β→0+

c2︸︷︷︸
finite

(β− ε)
︸ ︷︷ ︸

=0

+ lim
β→0+(1 − β)
︸ ︷︷ ︸

→1

= 1 + 1 = 2 < ∞,

(3.7)

which is finite. Therefore, the general Heaviside function in Equation 3.6
belongs to L

2(Ω; R
1). We observed again that the function value at x = 0
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The Finite Element Method 39

can be omitted from the integral, regardless of the value of c, as long as it is
finite.

Remark 3.1 Lebesgue Integration

The value of the integration will not change if we make finite changes
to the finite value of the integrand only on a finite set of discrete points.
Lebesgue integration is very forgiving of “occasional omissions.” This is of
fundamental importance to the FEM method, because it essentially allows
us to use piecewise continuous displacement functions constructed using
an element mesh. We can practically omit the discontinuity of the strain
fields along these element interfaces, as long as our integration is per-
formed based on elements, as we practice in the standard FEM models.
Our integration over the entire problem can be changed to a summation of
integrations over all the elements, and all the domains of integration are
open: element interfaces can be omitted.

The space L
2(Ω; R1) is associated with the scalar inner product

(v, w)L2(Ω;R1) =
∫

Ω

v w dΩ (3.8)

and equipped with the corresponding norm ‖ · ‖L2(Ω;R1):

‖v‖
L2(Ω;R1) =

⎛
⎝∫

Ω

v2 dΩ

⎞
⎠

1/2

≡ (v, v)1/2. (3.9)

For example, the norm ‖ · ‖L2(Ω;R1) of the function v in Equation 3.2 is

‖v‖
L2(Ω;R1) =

⎛
⎝

1∫

−1

v2 dx

⎞
⎠

1/2

=
√

2
3

. (3.10)

Here we used the results of Example 3.1.
For example, the norm ‖ · ‖L2(Ω;R1) of functions v in Equations 3.4

and 3.6 is

‖v‖
L2(Ω;R1) =

⎛
⎝

1∫

−1

v2 dx

⎞
⎠

1/2

= √
2. (3.11)

Here we used the results of Examples 3.2 and 3.3.

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
02

 1
0 

M
ay

 2
01

6 



40 Smoothed Finite Element Methods

As the field variables of 2D and 3D solid mechanics problems are in
vector form with d independent components, we denote more precisely
the spaces as

L
2(Ω; Rd) =

{
v = (vi, . . . , vd); vi ∈ L

2(Ω; R1), i = 1, . . . , d
}

, (3.12)

where d = 2 for 2D and d = 3 for 3D problems. Equation 3.12 means that
each of the displacement components has to be square integrable over
Ω, and the dimension of the space is expanded d times, because of the
independence of the displacement components. Note that, in the general
case, the number of components of field variables in the vector form can
be different from d, for example in the beam, plate or shell problems.

The corresponding norm ‖ · ‖
L2(Ω;Rd) becomes

‖v‖
L2(Ω;Rd) =

⎛
⎝ d∑

i=1

‖vi‖2
L2(Ω;R1)

⎞
⎠

1/2

. (3.13)

3.2.2 Hilbert Spaces

Hilbert spaces and their inequalities are essential for weak or variational
formulations of the second-order boundary value mechanics problems pre-
sented in Chapter 2, and therefore will be discussed here. For a concise
definition of Hilbert spaces, we first need to define the general notation of
differentiations

Dαv = ∂ |α|v
∂xα1

1 · · · ∂xαd
d

, (3.14)

where α = (α1, . . . , αd) is a non-negative integer and |α| = α1 + · · · + αd.
For example, for a 2D problem (d = 2) with a partial derivative of order 2,

Dαv is one of three second-order differentiations: Dαv = ∂2v/∂x2
1 [with α =

(α1, α2) = (2, 0)], Dαv = ∂2v/∂x1∂x2 [with α = (α1, α2) = (1, 1)], or Dαv =
∂2v/∂x2

2 [with α = (α1, α2) = (0, 2)], all with |α| = 2.
We are now ready to define Hilbert spaces H

m(Ω; R1), where m is a non-
negative integer, as

H
m(Ω; R1) =

{
v ∈ R

1
∣∣∣Dαv ∈ L

2(Ω; R1), ∀ |α| ≤ m
}

, (3.15)

which includes all functions whose derivatives up to mth order are all
square integrable. Spaces H

m(Ω; R1) are associated with the inner product

(v, w)Hm(Ω;R1) =
∑

|α|≤m

∫

Ω

(Dαv)(Dαw) dΩ (3.16)
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The Finite Element Method 41

and equipped with the induced (full) norm ‖ · ‖Hm(Ω;R1)

‖v‖
Hm(Ω;R1) =

⎛
⎝∑

|α|≤m

∫

Ω

∣∣Dαv∣∣2 dΩ

⎞
⎠

1/2

(3.17)

as well as the seminorm | · |Hm(Ω;R1)

|v|
Hm(Ω;R1) =

⎛
⎝ ∫

Ω

∣∣Dmv
∣∣2 dΩ

⎞
⎠

1/2

(3.18)

that includes only the mth derivative. Note that H
m(Ω; R1) is the Sobolev

space W
m,2(Ω; R1) [6], and in particular we note H

0(Ω; R1) = L
2(Ω; R1).

H
1(Ω; R1) is the most relevant to the solid mechanics problem governed

by equations given in Chapter 2:

H
1(Ω; R1) =

{
v | v ∈ L

2(Ω; R1),
∂v
∂xi

∈ L
2(Ω; R1), i = 1, . . . , d

}
, (3.19)

with the scalar product (·, ·)H1(Ω;R1) defined by

(v, w)H1(Ω;R1) =
∫

Ω

(vw + ∇v · ∇w) dΩ, (3.20)

where ∇v is the gradient of v defined by

∇v =
{

∂v
∂x1

· · · ∂v
∂xd

}T

, (3.21)

and the corresponding norm ‖ · ‖H1(Ω;R1)

‖v‖
H1(Ω;R1) =

⎡
⎣ ∫

Ω

(v2 + |∇v|2) dΩ

⎤
⎦

1/2

(3.22)

and the seminorm | · |H1(Ω;R1)

|v|
H1(Ω;R1) =

⎡
⎣ ∫

Ω

|∇v|2 dΩ

⎤
⎦

1/2

. (3.23)
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42 Smoothed Finite Element Methods

We further define the space H
1
0(Ω; R1) = {v ∈ H

1(Ω; R1) | v = 0 on Γu
}

to
be the subset of H

1(Ω; R1) with vanishing values on Γu, and H
1
0(Ω; R1) is

equipped with the same scalar product and norms as H
1(Ω; R1).

Example 3.4: A Piecewise Linear and Continuous Function

The function v on the 1D domain Ω = [−1, 1] in Equation 3.2 belongs
to H

1
0(Ω; R

1) because (1) the function v belongs to L
2(Ω; R

1) as shown in
Example 3.1, (2) the derivative of the function

∂v
∂x

=
{

1, −1 ≤ x ≤ 0

−1, 0 < x ≤ 1
(3.24)

is a function of Heaviside type, and also belongs to L
2(Ω; R

1), as shown in
Example 3.2, and (3) v(−1) = 0, v(1) = 0.

The H
1(Ω; R

1) norm of the function v in Example 3.1 is

‖v‖
H1(Ω;R1) =

⎡
⎢⎣

1∫

−1

(
v2 + |∇v |2

)
dx

⎤
⎥⎦

1/2

=
⎡
⎢⎣

0∫

−1

(
(1 + x)2 + 12

)
dx + lim

ε→0+

1∫

ε

(
(1 − x)2 + (−1)2

)
dx

⎤
⎥⎦

1/2

=
√

8
3

+ lim
ε→0+

(
2ε− ε2 + ε

3

3

)
=
√

8
3

. (3.25)

The seminorm of the function v in Example 3.1 is

|v |
H1(Ω;R1) =

⎡
⎢⎣

1∫

−1

|∇v |2 dx

⎤
⎥⎦

1/2

=
⎡
⎢⎣

0∫

−1

12 dx + lim
ε→0+

1∫

ε

|−1|2 dx

⎤
⎥⎦

1/2

=
√

2 − lim ε
ε→0+ = √

2. (3.26)

The analysis given in Examples 3.1 and 3.4 shows that the function of a
displacement component in a linear FEM model for 1D, 2D, and 3D problems
lives generally in an H

1(Ω; R
1) ⊂ L

2(Ω; R
1) space.
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The Finite Element Method 43

Example 3.5: A General Heaviside Function

The function v defined in Equation 3.6 over the 1D domain Ω = [−1, 1] does
not belong to H

1(Ω; R
1).

To examine this, we first note that function v defined in Equation 3.6 belongs
to L

2(Ω; R
1), as shown in Example 3.3. Next, let us examine whether ∂v/∂x

belongs to L
2(Ω; R

1), using the following simple intuitive (may not be very
rigorous) procedure. We know that ∂v/∂x for the function defined in Equa-
tion 3.6 does not even exist at x = 0, and hence it is difficult to examine it
directly. Instead, we then construct a “milder” function (that is at least piecewise
differentiable) in the following form:

vm(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, −1 ≤ x < −ε,
−x
ε , −ε ≤ x ≤ ε,

−1, ε < x ≤ 1,

(3.27)

where ε is a positive infinitely small real number. This milder function is now
continuous for any given ε, and should be smoother than the original function v
defined in Equation 3.6 for any arbitrary small positive ε. We then examine the
property of vm defined in Equation 3.27. The derivative of vm can be expressed
as follows:

∂vm

∂x
=

⎧⎪⎪⎨
⎪⎪⎩

0, −1 ≤ x < −ε,
−1
ε , −ε ≤ x ≤ ε,
0, ε < x ≤ 1.

(3.28)

The integration of (∂vm/∂x)2 can be performed in three pieces, Ω1 =
[−1, −ε], Ω2 = [−ε, ε], and Ω3 = [ε, 1]:

1∫

−1

(
∂vm

∂x

)2
dx =

−ε∫

−1

02 dx +
ε∫

−ε

(−1
ε

)2
dx +

1∫

ε

02 dx

= 2
1
ε2
ε = 2

1
ε

. (3.29)

It is easy to see that we cannot bound
∫1
−1(∂vm/∂x)2dx at the limit of ε→

0, and hence ∂vm/∂x does not belong to L
2(Ω; R

1) at the limit of ε→ 0.
Therefore, the function vm defined in Equation 3.27 over the domain Ω =
[−1, 1] does not belong to H

1(Ω; R
1) at the limit of ε→ 0. Hence, we can

assert that the function v defined in Equation 3.6 over the domainΩ = [−1, 1]
does not belong to H

1(Ω; R
1), because it is even less smoother than vm defined

in Equation 3.27, for any arbitrary small ε.

Example 3.5 is a typical example that discontinuous functions do not
belong to H

1(Ω; R1) space. Such functions cannot be directly used in an
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44 Smoothed Finite Element Methods

FEM model. To make use of some types of discontinuous functions in con-
structing stable and convergent numerical models, we need to use the G

space theory [7,8] that leads to weakened weak (W2) formulations [9,10].
Further discussion on this quite involved topic is beyond the scope of this
book. In the formulation used in this book, we stick to the Hilbert space
theory, and we now understand that the Heaviside functions defined in
Equation 3.4 or 3.6 are not allowed in the FEM and S-FEM models as
displacement functions.

When the domain Ω is bounded, there exists a constant C such that

∀v ∈ H
1
0(Ω; R1), ‖v‖

L2(Ω;R1) ≤ C |v|
H1(Ω;R1) , (3.30)

which is known as Poincare–Friedrichs inequality [6]. In such a case, the
seminorm |·|H1(Ω;R1) is a norm over the space H

1
0(Ω; R1) equivalent to the

norm ‖·‖H1(Ω;R1). This implies that there exist positive real numbers C1 and
C2 such that

C1 ‖v‖
H1(Ω;R1) ≤ |v|

H1(Ω;R1) ≤ C2 ‖v‖
H1(Ω;R1) . (3.31)

The Poincare–Friedrichs inequality is one of the most important inequali-
ties in the weak formulation, because it ensures fundamentally the stability
of the weak formulation.

Because vector field variables in 2D and 3D solid mechanics problems
are in vector form with d components, we denote more precisely the spaces
as

H
1(Ω; Rd) =

{
v = (v1, . . . , vd); vi ∈ H

1(Ω; R1), i = 1, . . . , d
}

, (3.32)

where d = 2 for 2D and d = 3 for 3D problems. The corresponding full
norm ‖ · ‖

H1(Ω;Rd) becomes

‖v‖
H1(Ω;Rd) =

⎛
⎝ d∑

i=1

‖vi‖2
H1(Ω;R1)

⎞
⎠

1/2

, (3.33)

and the seminorm | · |
H1(Ω;Rd) is

|v|
H1(Ω;Rd) =

⎛
⎝ d∑

i=1

|vi|2H1(Ω;R1)

⎞
⎠

1/2

. (3.34)

Similarly, the space H
1
0(Ω; Rd) = {v ∈ H

1(Ω; Rd) | v = 0 on Γu } is the sub-
set of H

1(Ω; Rd) with vanishing values on Γu, and H
1
0(Ω; Rd) is equipped

with the same scalar product and norms as H
1(Ω; Rd).
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The Finite Element Method 45

3.3 Weak Formulation and Properties of the Solution

3.3.1 Weak Formulation

We are now ready to derive the weak formulation for the solid mechanics
problem in d-dimensions. To this end, we use the well-known weighted
residual method. By multiplying Equation 2.7 with a test function v ∈
H

1
0(Ω; Rd) and performing integration over the entire problem domain Ω,

we have
∫

Ω

vTLT
d σ dΩ+

∫

Ω

vTb dΩ = 0, ∀v ∈ H
1
0(Ω; Rd). (3.35)

Applying Green’s divergence theorem, and using boundary conditions
(Equations 2.23 and 2.24), we obtain

∫

Ω

(Ldv)T c (Ldu) dΩ

︸ ︷︷ ︸
a(u,v)

=
∫

Ω

vTb dΩ+
∫

Γt

vTt dΓ

︸ ︷︷ ︸
f (v)

, ∀v ∈ H
1
0(Ω; Rd). (3.36)

The d-dimensional solid mechanics problem governed by equilibrium
(Equations 2.7) and boundary conditions 2.23 and 2.24 can be stated in the
following well-known weak statement:

Find u ∈ H
1
0(Ω; Rd) such that a(u, v) = f (v), ∀v ∈ H

1
0(Ω; Rd), (3.37)

where a(u, v) is the bilinear form defined by

a(u, v) =
∫

Ω

(Ldu)Tc(Ldv)dΩ, (3.38)

and f (v) is the linear functional defined as

f (v) =
∫

Ω

vTb dΩ+
∫

Γt

vTt dΓ. (3.39)

The above weak formulation transforms the equilibrium system of Equa-
tions 2.7 and boundary conditions 2.23 and 2.24 into a single Equation 3.37
in which all of the features of the solution are presented. In Equation 3.37,
we only need to perform the first derivatives for trial function u. This is
because part of the second-order derivatives on the trial function u has been
“transferred” to the test function v. As a result, the continuity requirement
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46 Smoothed Finite Element Methods

on function u is one order weakened compared with the original require-
ment of second-order differentiable in the strong formulation in Equation
2.7. Therefore, formulation 3.37 is a weak formulation of the classical original
strong form with equilibrium equations 2.7 and boundary conditions 2.23
and 2.24. Both functions u and v belong to the same space H

1
0(Ω; Rd), and

hence it is a Galerkin weak form. We know that it is generally difficult to
prove the existence of a solution of the strong form. However, using the
weak form it is easy to prove the existence, uniqueness, and stability of the
solution to Equation 3.37, as presented in Section 3.3.3.

3.3.2 Galerkin Weak Form

In the engineering community, most people are more familiar with the
so-called Galerkin weak form that is often written as follows:

∫

Ω

δεTcεdΩ−
⎛
⎜⎝

∫

Ω

δuTb dΩ+
∫

Γt

δuTtΓ dΓ

⎞
⎟⎠ = 0, (3.40)

where we use variational operator δ, and hence Equation 3.40 is called
a variational statement. Using the displacement strain relation ε = Ldu,
Equation 3.40 can be further written explicitly in displacement as

∫

Ω

(Ldδu)Tc(Ldu)dΩ

︸ ︷︷ ︸
a(v,u)≡a(δu,u)

−
⎛
⎜⎝

∫

Ω

δuTb dΩ+
∫

Γt

δuTtΓ dΓ

⎞
⎟⎠

︸ ︷︷ ︸
f (v)≡f (δu)

= 0. (3.41)

A numerical method based on the Galerkin weak form is therefore look-
ing for a displacement field in u ∈ H

1
0(Ω; Rd) that satisfies Equation 3.41 for

any arbitrary function v ≡ δu ∈ H
1
0(Ω; Rd). Physically, such a displacement

field makes the total potential energy in the entire system (solid or struc-
ture) minimum, and hence the solid/structure stays stable (in equilibrium)
there. We now see clearly the relationship between the Galerkin weak form
and the weak statement (Equation 3.37): they are essentially the same.

3.3.3 Existence, Uniqueness, and Stability of the Solution of Weak Form

From Equation 3.38, it is seen that a(u, v) is a symmetric bilinear form
on H

1
0(Ω; Rd). For stable materials (see Remark 2.1), using the well-known

Cauchy–Schwarz inequality for the inner product induced norms, and the
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The Finite Element Method 47

equivalence of the full and seminorms of functions in an H
1
0(Ω; Rd) space,

it is easy to prove that [6]

|a(u, v)| ≤ C3 ‖u‖
H1(Ω;Rd) ‖v‖

H1(Ω;Rd) , (3.42)

where C3 is a constant independent of v, u ∈ H
1
0(Ω; Rd). The foregoing

equation implies that a(u, v) is continuous.
In addition, from Poincare’s inequality,

∫

Ω

vTcv dΩ ≤ C4

∫

Ω

(Ldv)Tc(Ldv)dΩ, ∀v ∈ H
1
0(Ω; Rd), (3.43)

where C4 is an independent constant of v ∈ H
1
0(Ω; Rd). We now have the

following inequality:

a(v, v) ≥ α ‖v‖2
H1(Ω;Rd)

, (3.44)

where α is a constant independent of v ∈ H
1
0(Ω; Rd), implying that a(v, v)

is H-elliptic [3,6].
Next, we assume that b ∈ L

2(Ω; Rd) and t ∈ L
2(Γt; Rd), so that f (v)

defined by Equation 3.39 is a continuous linear form.

Theorem 3.1: Existence, Uniqueness, and Stability [6]

Let a(·, ·): H
1
0(Ω; Rd) × H

1
0(Ω; Rd) → R be a continuous, H-elliptic bilinear

form on H
1
0(Ω; Rd). Furthermore, let f (v): H

1
0(Ω; Rd) → R be a continuous

linear functional on H
1
0(Ω; Rd). Then we have the following:

1. The weak form of finding u ∈ H
1
0(Ω; Rd) that satisfies

a(u, v) = f (v), ∀v ∈ H
1
0(Ω; Rd) (3.45)

has one and only one solution.
2. The solution depends continuously on the data, in the sense that

‖u‖
H1(Ω;Rd) ≤ 1

α

∥∥ f
∥∥

H−1(Ω;Rd)
, (3.46)

where

∥∥ f
∥∥

H−1(Ω;Rd)
= sup

v∈H
1
0(Ω;Rd)

v �=0

∣∣( f , v)
∣∣

‖v‖
H1(Ω;Rd)

. (3.47)
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48 Smoothed Finite Element Methods

Inequality 3.46 assures us that a small change in the linear functional
f (v) leads to a correspondingly small change in the solution u ∈ H

1
0(Ω; Rd).

In other words, the solution u ∈ H
1
0(Ω; Rd) depends continuously on the

data f (v): our weak statement defines a well-posed problem with a stable
solution.

3.4 Domain Discretization: Creation of
Finite-Dimensional Space

In the weak statement given in Equation 3.37, H
1
0(Ω; Rd) is an infinite-

dimensional space. It is generally impossible to solve the governing
equations either in strong form (Equation 2.7) or in weak form (Equa-
tion 3.37) in analytical means for the exact solution. Fortunately, the weak
formulation (Equation 3.37) can be naturally used to obtain approximate
solutions. In the FEM formulation, this is conveniently done by creat-
ing a discrete solution space of finite dimension that is a subspace of
the infinite-dimensional space, H

1
0,h(Ω; Rd) ⊂ H

1
0(Ω; Rd), and an approxi-

mated solution ũ ∈ H
1
0,h(Ω; Rd) is sought using the weak statement (Equa-

tion 3.37). Here h stands for finite dimension. At the limit of h → 0, we
expect H

1
0,h(Ω; Rd) → H

1
0(Ω; Rd), and ũ → u. We can also find indications

on how fast ũ approaches u.
In our analysis process, we assume that there is no “geometric” error

caused by the domain discretization, so that we can focus only on the error
of approximation of weak formulation (Equation 3.37) induced by the use
of finite-dimensional space H

1
0,h(Ω; Rd) that deviates from H

1
0(Ω; Rd). We

assume also that the domain Ω in R
2is polygonal. That is, boundary Γ of

Ω is made of straight segments. Under these assumptions, it is easy to see
that the whole domain can be covered exactly by polygonal elements. We
are now ready to discretize the domain Ω into Ne of nonoverlapping and
nongap elements with Nn nodes, such that Ω = ∪Ne

i=1Ω
e
i and Ωe

i ∩Ωe
j = ∅.

i �= j. We require that in the element mesh, there are no duplicated and
hanging nodes.

3.5 Creation of Shape Functions

3.5.1 The General Procedure

Based on the element mesh, shape functions can be created based on each
element using simply the interpolation procedure and the polynomial basis
functions. The general procedure is as follows. Consider an element Ωe

i
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The Finite Element Method 49

with ne
n nodes; a component of displacement within the element is first

expressed as

ũ(x) =
ne

n∑
j=1

pj(x)aj = pT(x)a, (3.48)

where x = {x1 · · · xd} is a vector of independent coordinate variables. For 2D
domains, we often denote x = {x y}, and for 3D domains x = {x y z}.
pj(x) is the basic function of monomials, aj is the coefficient for the
monomial pj(x), and vector a has the form of

a = {a1 a2 · · · ane
n

}T . (3.49)

Clearly, the order of the consistency of the shape function depends on the
polynomial basis functions used. For 1D problems, we use

pT(x) = pT(x) = {1 x x2 x3 x4 · · · }. (3.50)

For 2D problems, we use

pT(x) = pT(x, y) = {1 x y xy x2 y2 · · · }. (3.51)

For 3D problems, we use

pT(x) = pT(x, y, z) = {1 x y z xy yz zx xyz x2 y2 z2 · · · }.
(3.52)

For higher-order 2D and 3D elements, the choice of higher-order poly-
nomial basis terms depends on the type of elements (order and node
arrangement); it can be quite tricky and a number of formulations are
available [5]. In this book we will focus only on lower-order elements that
are most widely used in solving engineering problems. For three-node
triangular elements (T3) and four-node tetrahedral elements (T4), we use

pT(x) =
{{1 x y} for T3,

{1 x y z} for T4.
(3.53)

For four-node quadrilateral elements (Q4) and eight-node hexahedral
elements (H8), we use

pT(x) =
{{1 x y xy} for Q4,

{1 x y z xy yz zx xyz} for H8.
(3.54)
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50 Smoothed Finite Element Methods

Coefficients aj in Equation 3.48 can be determined by enforcing that
Equation 3.48 is satisfied at the ne

n nodes of the element. At node j, we
have

uj = pT(xj)a, j = 1, 2, . . . , ne
n, (3.55)

where uj is the nodal value of u at x = xj. Equation 3.55 can be rewritten in
the following matrix form:

de = PQa, (3.56)

where de is the vector that collects the values of the field function at all the
ne

n nodes of the element,

de = {u1 u2 · · · une
n

}T , (3.57)

and PQ is called the moment matrix given by

PQ =

⎡
⎢⎢⎢⎣

pT(x1)

pT(x2)
...

pT (xne
n

)

⎤
⎥⎥⎥⎦ . (3.58)

The moment matrix PQ is asymmetric. Assuming that the inverse of the
moment matrix PQ exists, and using Equation 3.56, we have

a = P−1
Q de. (3.59)

Substituting Equation 3.59 into Equation 3.48, we obtain

ũ(x) =
ne

n∑
I=1

Ne
I (x)uI , (3.60)

where Ne
I is the shape function for node I of the element. Equation 3.60 can

be written in matrix form as

ũ(x) = Ne(x)de, (3.61)

where Ne(x) is a matrix of the shape functions for the element defined by

Ne(x) = pT(x)P−1
Q =

[
Ne

1(x) Ne
2(x) · · · Ne

ne
n
(x)
]

. (3.62)
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The Finite Element Method 51

By simply joining together all the shape functions Ne
I (x) of the first layer

of elements sharing node I, we can obtain the nodal shape functions NI(x)

for node I. In other words, Ne
I (x) is a piece of NI(x). In actual implemen-

tation of FEM, Ne
I (x) is often used, but in the formulation, NI(x) is much

more convenient.
Using linear polynomial basis functions, linear shape functions can be

easily created following the above-mentioned procedure. Figure 3.3 illus-
trates a typical nodal shape function NI(x) for the node at xI for linear
elements in a 1D problem domain. Figure 3.4 plots a typical nodal shape
function NI(x) for the node at xI for linear triangular elements in a 2D
problem domain. These nodal shape functions are locally supported only
by elements sharing the nodes, piecewise linear and continuous. They are
all in H

1(Ω; Rd) space, as examined in Example 3.4, and can be used for the
construction of FEM models.

Note that the moment matrix PQ can be singular depending on the shape
and nodal arrangement of the element. For often-used types of elements
we know well how to prevent this from happening [5]. For any attempt to
form new types of elements, care must be taken.

The above procedure gives shape functions for one component displace-
ment function and for each element. The nodal shape function for a node
can then be formed easily by simply joining the element shape functions

NI

xI

1

FIGURE 3.3 Nodal shape function NI for the node at xI for linear elements in a 1D
domain.

x 

NI

xI–1 xI+1 xI 

1

FIGURE 3.4 Nodal shape function NI for the node at xI for linear triangular elements in a
2D domain.
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52 Smoothed Finite Element Methods

for all the elements surrounding the node. Note that in the standard FEM,
we require the nodal shape function to be continuous, not only within the
element but also on the interfaces of elements surrounding the node [in a
proper H

1(Ω; Rd) space]. To ensure continuity (or compatibility), we per-
form coordination transformation or mapping to map for each element in
the physical coordinate system into a so-called natural coordinate system,
under which the element becomes a regular square (or cub). Therefore,
under such a natural coordinate system the shape functions can be con-
structed with ease and the moment matrix will never be singular with the
proper selection of polynomial basis terms. In addition, the continuity of
the nodal shape function can now be ensured. Elements formulated using
shape functions constructed in natural coordinates and using a coordi-
nate mapping (using the same shape function) are so-called isoparametric
elements. Detailed forms of such isoparametric Q4, H8 elements will be
provided in separate sections later in this chapter.

Apart from the general procedure mentioned above, there are some
“shortcut” approaches in developing shape functions for FEM elements.
In such shortcut approaches we need to use the basic properties of shape
functions.

3.5.2 Basic Conditions for Nodal Shape Functions

For node I, the nodal shape function NI(x) satisfies the following conditions
given in precise mathematical definitions:

NI(x) ∈ H
1(Ω; R1) (bounded and continuous in Ω),

NI(x) is nonzero only within elements connected to node I
(compact support),

NI(xJ) = δIJ(Delta function property),

ne
n∑

I=1
NI(x) = 1 (partition of unity),

ne
n∑

I=1
NI(x)xI = x (linear consistency),

(3.63)

where δIJ is the Kronecker Delta; ne
n is the number of nodes of the ele-

ment that hosts x, and xI is the coordinate of the Ith node of the element
hosting x.
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The Finite Element Method 53

3.6 Displacement Function Creation

We now need to create functions in H
1
0,h(Ω; Rd) for the construction

of displacement fields. Because the nodal shape functions are linearly
independent, it qualifies as a basis to form a space for an FEM model.
An assumed displacement function for each displacement component
can be expressed as a linear combination of the nodal shape functions
with the nodal displacements as the coefficients. The finite element space
H

1
0,h(Ω; Rd) can be spanned by the Nn independent nodal basis shape

functions N1, N2, . . . , NNn :

H
1
0,h(Ω; Rd) = span{NI}Nn

I=1, (3.64)

where NI(x) is the matrix of shape functions. For example, for 2D problems,

we have NI(x) =
[

NI(x) 0
0 NI(x)

]
, where each NI(x) is for one displace-

ment component. The finite solution ũ should be in space H
1
0,h(Ω; Rd), and

hence should have the form

ũ =
Nn∑
I=1

NI(x)d̃I = [N1(x) N2(x) · · · NNn(x)
]

︸ ︷︷ ︸
N(x)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d̃1

d̃2
...

d̃Nn

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

︸ ︷︷ ︸
d̃

= N(x)d̃,

(3.65)

where x = {x1 · · · xd}T and d̃I = ũ(xI), which is the nodal displacement
vector at node I of the FEM solution.

Remark 3.2 Sparseness of the Shape Function Matrix

Because NI(x) for node I is locally supported by elements sharing the node,
it is zero beyond these elements. For any x ∈ Ωe

i ⊂ Ω, the ith element will
have a very small number of nodes (e.g., 3 for T3 elements). Therefore, ũ(x)

in Equation 3.65 relates only a small number of nodal shape functions, and
hence the shape function matrix N(x) will be an extremely sparse matrix
with lots of zeros for an actual model that usually has a large number of
nodes.

The expression of ũ(x) in Equation 3.65 using all the field nodes is only
for convenience in the expressions in FEM formulations; it needs only the
nodes of the element hosting x.
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54 Smoothed Finite Element Methods

3.7 Strain Evaluation

Using Equation 3.65 and the strain–displacement relation (Equation 2.10),
we obtain the (compatible) strains as

ε̃ = Ldũ =
Nn∑
I=1

LdNI(x)︸ ︷︷ ︸
B̃I(x)

d̃I

=
[
B̃1(x) B̃2(x) · · · B̃Nn(x)

]
︸ ︷︷ ︸

B̃(x)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d̃1

d̃2
...

d̃Nn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
d̃

= B̃(x)d̃, (3.66)

where B̃I(x) is the “strain–displacement matrix” for node I, which is
given by

B̃I(x) = LdNI(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

∂NI(x)/∂x 0

0 ∂NI(x)/∂y

∂NI(x)/∂y ∂NI(x)/∂x

⎤
⎥⎥⎦ for 2D,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂NI(x)/∂x 0 0

0 ∂NI(x)/∂y 0

0 0 ∂NI(x)/∂z

0 ∂NI(x)/∂z ∂NI(x)/∂y

∂NI(x)/∂z 0 ∂NI(x)/∂x

∂NI(x)/∂y ∂NI(x)/∂x 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for 3D.

(3.67)

Because the use of B̃I(x) in Equation 3.66 and the nodal displacements
gives the strains, B̃I(x) is often called “strain matrix” for short. The global
strain–displacement matrix can be given by

B̃(x) = LdN(x). (3.68)

It is clear that because of the sparseness of the shape function matrix
N(x), B̃(x) will also be very sparse.
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The Finite Element Method 55

3.8 Formulation of the Discretized System of Equations

Using Equation 3.37, the FEM weak statement for our discrete system
becomes

Find ũ ∈ H
1
0,h(Ω; Rd) such that a

(
ũ, vh

)
= f (vh), ∀vh ∈ H

1
0,h(Ω; Rd).

(3.69)

Substituting Equation 3.65 as the trial function and setting NI(x), I =
1, . . . , Nn, as the test function vh into Equation 3.69, we have the following
system of Nn equations:

Nn∑
J=1

a(NJ , NI)d̃J = f (NI), I = 1, . . . , Nn, (3.70)

which can be written as the standard matrix form of discretized algebraic
equations:

K̃d̃ = f̃, (3.71)

where d̃ is the vector of nodal displacements for all the nodes in the entire
problem domain, and K̃ is the global stiffness matrix of the FEM model
that can be expressed simply as

K̃ =
∫

Ω

B̃TcB̃ dΩ. (3.72)

Because of the sparseness of B̃, we will not actually use Equation 3.72 to
compute K̃. Instead, we evaluate the entries of K̃ using

K̃IJ =
∫

Ω

B̃T
I cB̃J dΩ =

Ne∑
i=1

∫

Ωe
i

B̃T
I cB̃J dΩ

︸ ︷︷ ︸
K̃e

IJ,i

. (3.73)

This conversion of problem domain integration to the sum of elemental
integrations is possible, because ũ ∈ H

1
0,h(Ω; Rd) and because of the forgiv-

ing property of Lebesgue integration (see Remark 3.1). From Equation 3.73,
it is seen that the actual evaluation of matrices K̃IJ becomes the evaluation of
matrices for each element. Condition (ii) in Equation 3.63 leads to K̃e

IJ,i = 0
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56 Smoothed Finite Element Methods

for nodes I and J that are not attached to the same Ωe
i , which means that

the stiffness matrix will be sparse. The integration in Equation 3.73 can be
performed effectively using the Gauss integration technique as presented
in Section 3.15.

The vector f̃ is the external force vector acting at all the nodes in the entire
problem domain, with entries of

f̃I =
∫

Ω

NT
I (x)b dΩ+

∫

Γt

NT
I (x)t dΓ

=
Ne∑
i=1

∫

Ωe
i

NT
I (x)b dΩ+

Ne∑
i=1

∫

Γe
t,i

NT
I (x)t dΓ, (3.74)

which can be evaluated in a similar way as for the stiffness matrix.
Once Equation 3.71 is obtained, the vector of nodal displacements d̃ can

be solved easily, as long as K̃ is not singular. The strains and stresses in
each element can be retrieved using the displacements obtained. Recovery
procedures can also be performed to improve the accuracy of the strain
and stress fields. However, such a recovery procedure will not improve
the displacement solution.

As presented above, the formulation of FEM is in fact quite straight-
forward for solid mechanics problems. However, implementation of FEM
to practical problems, formulations for mechanics of structures (beams,
plates, shells, crack-tip elements, etc.), heat transfer and acoustic problems,
issues related to actual modeling techniques, virtualization of computed
numerical data, and application of FEM results to actual design problems
can be quite intensive. This book will not pursue these issues any further.
Readers may refer to the dedicated book [5] for more details.

We shall now address the following more theoretical and fundamental
questions related to discrete FEM models:

• Can the FEM procedure ensure the existence and uniqueness of the
solution (K̃ is indeed not singular)?

• How does the solution depend on input data? Can we obtain solutions
for any type of loading/forces?

• How does one estimate the error in the FEM solution?
• What is the rate of convergence of FEM solutions when the mesh is

refined?

The following section provides answers to all these questions.
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The Finite Element Method 57

3.9 FEM Solution: Existence, Uniqueness, Error,
and Convergence

Based on the theory of functional analysis [3,6], we now discuss some
important properties, inequalities, and theorems for FEM.

Theorem 3.2: Existence, Uniqueness, and Stability

Let H
1
0,h(Ω; Rd) be a finite-dimensional subspace of the Hilbert space

H
1
0(Ω; Rd), a : H

1
0,h(Ω; Rd) × H

1
0,h(Ω; Rd) → R a continuous, H-elliptic bilin-

ear form, and f : H
1
0,h(Ω; Rd) → R a bounded linear functional. Then there

exists a unique function ũ ∈ H
1
0,h(Ω; Rd) that satisfies the discrete weak

statement 3.69. Furthermore, if f (ũ) is of the form

f (ũ) =
∫

Ω

ũTb dΩ+
∫

Γt

ũTt dΓ, (3.75)

with b ∈ L
2(Ω; Rd) and t ∈ L

2(Γt; Rd), then

∥∥ũ
∥∥

H1(Ω;Rd)
≤ C5

(∥∥b
∥∥

L2(Ω;Rd)
+ ‖t‖

L2(Γt;Rd)

)
, (3.76)

where C5 is a constant.

Theorem 3.2 provides the answer to the question of the existence and
uniqueness of the FEM solution. In addition, the stability estimate (Equa-
tion 3.76) for the finite element solution, which is similar to the stability
estimate (Equation 3.46) for continuous problems, reflects a very important
property of FEM. It assures us that a small change in the linear func-
tional f (ũ) results correspondingly in only a “small” change in the solution
ũ ∈ H

1
0,h(Ω; Rd). In other words, the solution ũ ∈ H

1
0,h(Ω; Rd) depends con-

tinuously on the data f (ũ). This implies that our numerical problem is
well posed, under conditions for both model creation and inputs (external
forces) specified in Theorem 3.2.

Note that the continuity of the bilinear form a requires the original prob-
lem to be well posed physically: for solid mechanics problems, the material
must be stable (see Remark 2.1). A detailed proof on this can be found in
Ref. [11]. The H-ellipticity of the bilinear form a also requires a stable mate-
rial [11] and proper essential boundary conditions to at least constrain all
the rigid movements.

We next proceed to examine the error e = u − ũ, which is the difference
between the exact and FEM solutions. We state the following theorem.
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58 Smoothed Finite Element Methods

Theorem 3.3: “Best” Approximation

Let u ∈ H
1
0(Ω; Rd) be the exact solution of the original problem governed

by equilibrium equations 2.7 and boundary conditions 2.23 and 2.24, and
ũ ∈ H

1
0,h(Ω; Rd) be the finite element solution of the weak formulation

(Equation 3.37), where H
1
0,h(Ω; Rd) ⊂ H

1
0(Ω; Rd). Then

∥∥u − ũ
∥∥

H1(Ω;Rd)
≤ C6

∥∥∥u − vh
∥∥∥

H1(Ω;Rd)
, ∀vh ∈ H

1
0,h(Ω; Rd), (3.77)

where C6 is a constant independent of vh.

Theorem 3.3 implies that the approximation ũ ∈ H
1
0,h(Ω; Rd) is the “best”

possible approximation of the exact solution among all functions vh ∈
H

1
0,h(Ω; Rd), in the sense that ‖u − vh‖

H1(Ω;Rd), ∀vh ∈ H
1
0,h(Ω; Rd), is always

larger than or equal to ‖u − ũ‖
H1(Ω;Rd): the FEM solution ũ is the “best”

possible function among all the functions in H
1
0,h(Ω; Rd), in the measure of

norm ‖ · ‖
H1(Ω;Rd).

In addition, this optimal feature of the FEM solution allows us to
find a quantitative estimate of the bound of the solutions error in norm
‖ · ‖

H1(Ω;Rd), by choosing a suitable function vh ∈ H
1
0,h(Ω; Rd) and esti-

mating ‖u − vh‖
H1(Ω;Rd). Usually, one chooses vh = Ihu, where Ihu ∈

H
1
0,h(Ω; Rd) is a suitable interpolant of u ∈ H

1
0(Ω; Rd). This further leads to

Theorem 3.4.

Remark 3.3 “Best” But There are Still Rooms

It may be noted that the “best” may be quite misleading. It is only the best
in the form of Equation 3.77. First, the measure is in the norm ‖ · ‖

H1(Ω;Rd),
and if the norm of measure changes, the FEM solution ũ may not be still
the best. Second, Equation 3.77 is with a constant C6. Therefore, there are in
fact a lot of “rooms” for other possible “bests.” The S-FEM models explore
these rooms.

Theorem 3.4: h-Dependence

Let u be the exact solution of the original problem governed by equilibrium
equations 2.7 and boundary conditions 2.23 and 2.24. If Ω is a convex
polygonal domain and ũ ∈ H

1
0,h(Ω; Rd) ⊂ H

1
0(Ω; Rd) is the finite element

solution using interpolation with piecewise linear functions that satisfies
the discrete weak statement (Equation 3.66), then there exist constants C7,
C8 independent of u and h such that

∥∥u − ũ
∥∥

L2(Ω;Rd)
≤ C7h2 |u|

H2(Ω;Rd) (3.78)
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The Finite Element Method 59

and

∥∥u − ũ
∥∥

H1(Ω;Rd)
≤ C8h |u|

H2(Ω;Rd) , (3.79)

where |u|
H2(Ω;Rd) is a seminorm. For 2D problems, it can be written

explicitly from Equation 3.18 as

|u|
H2(Ω;Rd) =

⎡
⎣∫

Ω

⎛
⎝
∣∣∣∣∣
∂2u
∂x2

∣∣∣∣∣
2

+ 2

∣∣∣∣∣
∂2u
∂x∂y

∣∣∣∣∣+
∣∣∣∣∣
∂2u
∂y2

∣∣∣∣∣
2
⎞
⎠dΩ

⎤
⎦

1/2

. (3.80)

From Theorem 3.4, we have qualitative information that
∥∥u − ũ

∥∥
L2(Ω;Rd)

and
∥∥u − ũ

∥∥
H1(Ω;Rd)

approach zero when the size of element h approaches
zero if the second-order derivative of the exact solution u is bounded on
domain Ω. In addition, the power of h in Equations 3.78 and 3.79 also
shows the theoretical convergence rate of finite element solutions in the
corresponding norms. For problems of second-order PDEs as shown in
Equation 2.7 with boundary conditions 2.23 and 2.24, the theoretical con-
vergence rate of displacement ũ is 2 in the norm ‖ · ‖

L2(Ω;Rd), and the
theoretical convergence rate of the first derivative of ũ is 1 in the norm
‖ · ‖

H1(Ω;Rd). In practice, these convergence rates also depend on the regu-
larity of the exact solution u, as shown in the right-hand sides of Equations
3.78 and 3.79. For example, for problems with singularities (at re-entrant
and crack tips), the practical convergence rates may become smaller than
the theoretical convergence rates [3,6]. We will see such cases in Chapter 10.

In the practical computation of solid mechanics, the norm
∥∥u − ũ

∥∥
H1(Ω;Rd)

is usually replaced by the seminorm
∣∣u − ũ

∣∣
H1(Ω;Rd)

, which relates the total
energy of the error between approximate and exact solutions over the
whole domain; the norm

∥∥u − ũ
∥∥

L2(Ω;Rd)
represents the total error mea-

sured in norm ‖ · ‖
L2(Ω;Rd) between the approximated and exact solutions

in displacement. Generalization of the above theory of FEM for interpo-
lation with polynomials of higher order can be found in Refs. [3,6], and
hence will not be discussed in this book.

3.10 Some Other Properties of the FEM Solution

Property 3.1 Fully Compatible Property

An FEM model created strictly following the weak statement (Equa-
tion 3.69) is said to be fully compatible. Essentially a fully compatible FEM
model is established using (1) compatible displacements: the approximated
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60 Smoothed Finite Element Methods

displacements should be continuous on element interfaces and differen-
tiable inside the elements; (2) compatible strain fields that are obtained
using the strain–displacement relation; and (3) essential boundary condi-
tions. In addition, we require, of course, that all the integrations in weak
form have to be evaluated exactly. For discrete models, the integrations are
usually evaluated using Gauss integration (see Section 3.15).

Remark 3.4 “Fully” or “Partially” Compatible: A Difference
between FEM and S-FEM

Throughout this book, when an FEM model is used, it is by default fully
compatible. Such an FEM model is also said to be standard. For convenience,
when we say “a compatible FEM model” it means “a fully compatible FEM
model.” On the contrary, S-FEM models are only “partially” compatible:
the displacement field in an S-FEM is compatible, but the strain field is not.
This difference will be made clear and precise in later chapters.

Property 3.2 Lower Bound Property

The strain energy solution of a fully compatible FEM model of a force-
driven problem is a lower bound of the exact strain energy

Ẽ (ε̃) = 1
2

a
(
ũ, ũ
) ≤ 1

2
a(u, u) = E(ε), (3.81)

where ε̃ = Ldũ is the strain obtained using FEM displacements ũ ∈
H

1
0,h(Ω; Rd) ⊂ H

1
0(Ω; Rd), ε = Ldu is the exact strain obtained using exact

displacements u ∈ H
1
0(Ω; Rd), and E(ε) is the exact strain energy of the

system defined as

E(ε) = 1
2

∫

Ω

εTcε dΩ. (3.82)

For the FEM model, strain energy can be evaluated using

Ẽ (ε̃) = 1
2

∫

Ω

ε̃Tcε̃ dΩ = 1
2

a
(
ũ, ũ
) = 1

2
d̃TK̃d̃, (3.83)

and for the exact model we should have

E(ε) = 1
2

∫

Ω

εTcε dΩ = 1
2

a(u, u). (3.84)

The proof of the lower bound property can be found in Refs. [2,12]
in variational formulation. The lower bound property implies the well-
known fact that the FEM solution underestimates the strain energy. This
property of FEM provides a good global measure of the lower bound of
the FEM solution with respect to the exact solution.
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The Finite Element Method 61

Property 3.3 Monotonic Convergence Property

For a given sequence of nm nested element meshes M1, M2, . . . , Mnm ,
such that the corresponding solution spaces satisfy H

1
0,M1

(Ω; Rd) ⊂
H

1
0,M2

(Ω; Rd) · · · ⊂ H
1
0,Mnm

(Ω; Rd) ⊂ H
1
0(Ω; Rd), the strain energy solutions

have the following inequalities:

Ẽ
(
ε̃M1
)

≤ Ẽ
(
ε̃M2
)

≤ · · · ≤ Ẽ
(
ε̃Mnm

)
≤ E(ε) , (3.85)

where ε̃Mi is the (fully) compatible FEM solution of strains obtained using
mesh Mi. This property can be shown easily using the arguments given by
Oliveira [13].

Property 3.4 Reproducibility of the Exact Solution

If the exact solution u ∈ H
1
0,h(Ω; Rd) ⊂ H

1
0(Ω; Rd), then the compatible

FEM will reproduce the exact solution u. This property can be easily
proved [5,13].

In the following sections, we present the simplest but most popular finite
elements that are widely used for practical engineering problems. These
elements will also be used frequently throughout this book, and are the
base for creating our S-FEM models.

3.11 Linear Triangular Element (T3)

The linear triangular element is the simplest element of all the FEM ele-
ments for 2D problems. It has three nodes and three edges and is often
referred to as T3 element, as shown in Figure 3.5. In addition to its simplic-
ity, the T3 element adapts very well to complicated geometries, and is the
only 2D element that can be generated automatically for arbitrarily shaped
domains without any manual intervention in the meshing process. Because
of these excellent features, T3 elements are the most preferred elements to
many engineering analysts, despite their shortcomings on poor accuracy in
stresses. Our smoothed FEM models will be largely based on T3 elements
for 2D problems, and are designed to overcome their poor stress accuracy
and to have many additional properties. The following gives the details of
the FEM formulation of T3 elements.

3.11.1 Shape Functions

Let ũe
i be the displacement at any point in a three-node triangular element

Ωe
i , as shown in Figure 3.5. Using the displacements at nodes and shape
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62 Smoothed Finite Element Methods

y, v

x, u

(u3, v3)
3(x3, y3)

1(x1, y1)
(u1, v1)

2(x2, y2)
(u2, v2)

O

Ωe
i

FIGURE 3.5 Three-node triangular elements in the physical Cartesian coordinate system
Oxy.

functions, the displacement field within the element can be approximated
using

ũe
i = Ne

i (x)d̃e
i , (3.86)

where d̃e
i is the vector of nodal displacements arranged in the order of

d̃e
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

v1

u2

v2

u3

v3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎬
⎭displacements at node 1 of the element Ωe

i

⎫⎬
⎭displacements at node 2 of the element Ωe

i

⎫⎬
⎭displacements at node 3 of the element Ωe

i

, (3.87)

and the matrix of shape functions Ne
i (x) is arranged as

Ne
i (x) =

⎡
⎢⎣

N1 0
0 N1︸ ︷︷ ︸
Node 1

N2 0
0 N2︸ ︷︷ ︸
Node 2

N3 0
0 N3︸ ︷︷ ︸
Node 3

⎤
⎥⎦ , (3.88)

in which Nj ( j = 1, 2, 3) are three shape functions corresponding to
three nodes of the triangular element as shown in Figure 3.4. Using directly
the physical Cartesian coordinate system Oxy and following the procedure
given in Section 3.5.1 or using the Delta function and partition of unity
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The Finite Element Method 63

properties of the shape functions given in Section 3.5.2, these three shape
functions can be easily found as [5]

N1 = 1
2Ae

i

[(
x2y3 − x3y2

)+ (y2 − y3
)

x + (x3 − x2) y
]

,

N2 = 1
2Ae

i

[(
x3y1 − x1y3

)+ (y3 − y1
)

x + (x1 − x3) y
]

, (3.89)

N3 = 1
2Ae

i

[(
x1y2 − x2y1

)+ (y1 − y2
)

x + (x2 − x1) y
]

,

where xj and yj ( j = 1, 2, 3) are the coordinate values at the jth node as
shown in Figure 3.5, and Ae

i is the area of the linear triangular element Ωe
i

that can be computed using

Ae
i = 1

2
det

⎡
⎣1 x1 y1

1 x2 y2
1 x3 y3

⎤
⎦ . (3.90)

In concise form, Equation 3.89 can be rewritten as

Nj = aj + bjx + cjy (3.91)

with

aj = 1
2Ae

i

(
xkyl − xlyk

)
, bj = 1

2Ae
i

(
yk − yl

)
, cj = 1

2Ae
i
(xl − xk) , (3.92)

where subscript j varies from 1 to 3, and k and l are determined by cyclic
permutation in the order of j, k, l. For example, if j = 1, then k = 2, l = 3;
or if j = 2, then k = 3, l = 1.

Figure 3.4 shows a typical nodal shape function over surrounding ele-
ments. It is clear that the shape functions given in Equation 3.89 satisfy all
the conditions listed in Section 3.5.2. We also note that the construction of
shape functions for triangular elements will never fail, as long as the area
of the element is not zero or these three nodes are not in-line. This means
that the T3 elements are very robust.

3.11.2 Strain–Displacement Matrix

Using directly the physical Cartesian coordinate system Oxy and the
strain–displacement relation (Equation 2.10), the strain–displacement
matrix B̃e

i for the linear triangular element Ωe
i has the simple form of

B̃e
i =

⎡
⎣b1 0 b2 0 b3 0

0 c1 0 c2 0 c3
c1 b1 c2 b2 c3 b3

⎤
⎦ , (3.93)
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64 Smoothed Finite Element Methods

where bj and cj (j = 1, 2, 3) are given in Equation 3.92 and are constants
related only to the nodal coordinates of the element. It is thus clear that the
strain–displacement matrix for the triangular element is a constant matrix,
implying that the strains obtained using such an element will be constants
within the element. Therefore, the T3 element is also often called a constant
strain element.

3.11.3 Element Stiffness Matrix

The element stiffness matrix K̃e
i for the linear triangular elementΩe

i has the
form of

K̃e
i =

∫

Ωe
i

(
B̃e

i

)T
cB̃e

i dΩ =
(

B̃e
i

)T
cB̃e

i A
e
i . (3.94)

Because the strain–displacement matrix B̃e
i is constant, no numerical

integration is needed to compute the stiffness matrix for a T3 element.
Therefore, a T3 element is the only 2D element that needs no numerical
integration. It is seen that the stiffness matrix for the three-node triangular
element is indeed very simple. In fact, it is the simplest of all types of 2D
elements.

3.12 Four-Node Quadrilateral Element (Q4)

The quadrilateral element has four nodes and four edges and is often
referred to as Q4 element, as shown in Figure 3.6. It is probably as
popular as the T3 element but for different reasons. It has a reasonably

Physical coordinates

(a) (b)

4(x4, y4) 

1(x1, y1) 

2(x2, y2) 

3(x3, y3) 

4(–1, 1) 3(1, 1)
η

ξ

1(–1, –1) 2(1, –1) 

y 

x
Natural coordinates 

FIGURE 3.6 Coordinate mapping between physical coordinates and natural coordinates
of the four-node quadrilateral element: (a) an arbitrary quadrilateral element in physical
coordinates; (b) a square element in natural coordinates.
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The Finite Element Method 65

good adaptation to complicated geometries, because it does not require
the inner angles to be right angles. The formulation of the Q4 element will
be much more complicated, compared to the T3 element, due to the so-
called mapping procedure. However, it is known to have a much more
accurate stress solution, compared to the T3 elements using meshes of the
same set of nodes. Therefore, Q4 elements are very popular and preferred
by many. The biggest drawback for Q4 elements is the difficulty of gener-
ating the mesh for complicated geometries. Many efforts have been made
in the automation of Q4 element mesh generation, but we still need some
kind of manual intervention to create the Q4 element mesh. In addition,
the loss of accuracy due to mesh distortion is often a big concern for Q4
elements. Our smoothed FEM models can also be created based on Q4 ele-
ments and they can have very good properties, as will be shown in later
chapters. However, we offer these models only as an alternative and not
the mainstream elements, simply because of the difficulty in mesh genera-
tion for practical engineering problems. The following gives the details of
the FEM formulation of Q4 elements.

3.12.1 Shape Functions

The quadrilateral element has in general an arbitrary (to a certain degree)
shape in the physical coordinate system, as shown in Figure 3.6a. When
the general procedure given in Section 3.5.1 is used to create the shape
functions for Q4 elements, we will have problems with the compatibility
issue. The nodal shape functions so created will be discontinuous along
the edges of the Q4 elements connected to the node. To prevent this from
happening, a so-called coordinate mapping is performed. This essential
idea for the mapping procedure is to map the Q4 element of general shape
in the physical coordinate system (x, y) to a square element in the so-called
natural coordinate system (ξ,η), as shown in Figure 3.6b. Due to the regular
shape, the shape functions for the element in the natural coordinate system
can be easily written out as follows:

N1 (ξ,η) = 1
4

(1 − ξ) (1 − η) , N2 (ξ,η) = 1
4

(1 + ξ) (1 − η) ,

(3.95)
N3 (ξ,η) = 1

4
(1 + ξ) (1 + η) , N4 (ξ,η) = 1

4
(1 − ξ) (1 + η) .

These nodal shape functions are linear with respect to both ξ and η, and
hence they are often called bilinear shape functions. It is clear that this set
of shape functions satisfies all the conditions listed in Section 3.5.2, and the
nodal shape functions will be continuous along all edges of the element
under the natural coordinate system. We then perform a proper coordinate
transformation to ensure the correction correspondence of element edges
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66 Smoothed Finite Element Methods

between the two coordination systems, and thus the compatibility of the
nodal shape function for the Q4 element on all the edges can be preserved.
Such a relationship between the physical and natural coordinate system is
schematically shown in Figure 3.6. The mathematical formulation for such
a mapping is given as follows:

x =
4∑

j=1

Nj (ξ,η) xj, y =
4∑

j=1

Nj (ξ,η) yj, (3.96)

where xj and yj (j = 1, 2, 3, 4) are the coordinate values at the jth node. Equa-
tion 3.96 defines clearly the relationship of the physical coordinates (x, y)
and the natural coordinate (ξ, η). It is to confirm the correct edge correspon-
dence of the element under these two coordination systems [5]. Because
the mapping in Equation 3.96 uses the same bilinear shape functions given
in Equation 3.95, this element is a typical isoparametric element.

3.12.2 Strain–Displacement Matrix

In order to evaluate the strain–displacement matrix B̃e
i for the bilinear

isoparametric element, it is first necessary to express the differentials
in terms of the natural coordinates. Utilizing the chain rule for partial
differentiation, we have

∂Nj

∂ξ
= ∂Nj

∂x
∂x
∂ξ

+ ∂Nj

∂y
∂y
∂ξ

,
∂Nj

∂η
= ∂Nj

∂x
∂x
∂η

+ ∂Nj

∂y
∂y
∂η

, (3.97)

or in matrix form
[
∂Nj/∂ξ

∂Nj/∂η

]
= J
[
∂Nj/∂x
∂Nj/∂y

]
, (3.98)

where J is the so-called Jacobian matrix defined by

J =
[
∂x/∂ξ ∂y/∂ξ

∂x/∂η ∂y/∂η

]
. (3.99)

By substituting Equation 3.96 into Equation 3.99, we obtain

J =
[
∂N1/∂ξ ∂N2/∂ξ ∂N3/∂ξ ∂N4/∂ξ

∂N1/∂η ∂N2/∂η ∂N3/∂η ∂N4/∂η

]⎡⎢⎢⎣
x1 y1
x2 y2
x3 y3
x4 y4

⎤
⎥⎥⎦ . (3.100)
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The Finite Element Method 67

If the Jacobian matrix is not singular or badly conditioned (the Q4 ele-
ment is not heavily distorted), the differentials in terms of the physical
coordinates can be expressed from Equation 3.98 as

[
∂Nj/∂x
∂Nj/∂y

]
= J−1

[
∂Nj/∂ξ

∂Nj/∂η

]
. (3.101)

We can now compute the strain–displacement matrix B̃e
i for the bilin-

ear isoparametric element by replacing all the differentials of the shape
functions with respect to x and y with those with respect to ξ and η using
Equation 3.101. This process needs to be performed numerically for Q4 ele-
ments, and cannot be given in explicit equations as we did for T3 elements.
We note that the Jacobian matrix can however become singular or badly
conditioned when the element is heavily distorted, implying that we need
good-quality Q4 element mesh.

3.12.3 Element Stiffness Matrix

Once the strain–displacement matrix B̃e
i has been obtained, the element

stiffness matrix K̃e
i for the bilinear isoparametric element Ωe

i is computed
(numerically) using

K̃e
i =

∫

Ωe
i

(
B̃e

i

)T
cB̃e

i dΩ =
+1∫

−1

+1∫

−1

(
B̃e

i

)T
cB̃e

i det |J| dξdη, (3.102)

where det |J| is the determinant of the Jacobian matrix.
The integrand in Equation 3.102 is no longer constant. In fact, it is

quite complicated and hence a numerical integration is generally needed.
We often use the Gauss integration scheme that is briefly presented in
Section 3.15.2.

3.13 Four-Node Tetrahedral Element (T4)

The four-node tetrahedral element is the analogue of the triangular ele-
ment, but in 3D space, as shown in Figure 3.7. Naturally the formulation
of T4 and T3 has a lot of similarities. Because of the 3D dimensionality, the
geometry of the problem domain becomes even more complicated, and
hence in practice T4 elements are more widely used for the simple reason
of easy mesh generation. Our smoothed FEM models for 3D are mainly
based on T4 elements. The following is the formulation procedure for the
T4 element, which is quite similar to the T3 element for 2D problems.
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68 Smoothed Finite Element Methods

O

4 = (l) (x4, y4, z4)
(u4, v4, w4)

3 = (k)
(x3, y3, z3)
(u3, v3, w3)

2 = ( j)(x2, y2, z2)
(u2, v2, w2)

1 = (i)
(x1, y1, z1)
(u1, v1, w1)

z, w

x, u

y, v

FIGURE 3.7 Four-node tetrahedral element in the physical Cartesian coordinate system
Oxyz.

3.13.1 Shape Functions

For the four-node tetrahedral elementΩe
i , the vector of nodal displacements

d̃e
i is arranged in the order of

d̃e
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

v1

w1

u2

v2

w2

u3

v3

w3

u4

v4

w4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎬
⎪⎭displacements at node 1

⎫⎪⎬
⎪⎭displacements at node 2

⎫⎪⎬
⎪⎭displacements at node 3

⎫⎪⎬
⎪⎭displacements at node 4

(3.103)

and the matrix of shape functions Ne
i (x) is arranged accordingly as

Ne
i (x) =

⎡
⎢⎢⎢⎣

N1 0 0
0 N1 0
0 0 N1︸ ︷︷ ︸

Node 1

N2 0 0
0 N2 0
0 0 N2︸ ︷︷ ︸
Node 2

N3 0 0
0 N3 0
0 0 N3︸ ︷︷ ︸
Node 3

N4 0 0
0 N4 0
0 0 N4︸ ︷︷ ︸
Node 4

⎤
⎥⎥⎥⎦ , (3.104)

in which Nj (j = 1, 2, 3, 4) are four shape functions corresponding to four
nodes of the tetrahedral element.
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The Finite Element Method 69

Using directly the physical Cartesian coordinate system Oxyz, four shape
functions have the following forms [5]:

Nj = 1
6Ve

i

(
aj + bjx + cjy + djz

)
, (3.105)

where

aj = det

⎡
⎣xk yk zk

xl yl zl
xm ym zm

⎤
⎦ , bj = − det

⎡
⎣1 yk zk

1 yl zl
1 ym zm

⎤
⎦ ,

(3.106)

cj = − det

⎡
⎣yk 1 zk

yl 1 zl
ym 1 zm

⎤
⎦ , dj = − det

⎡
⎣yk zk 1

yl zl 1
ym zm 1

⎤
⎦ ,

in which subscript j varies from 1 to 4, and k, l, and m are determined by
cyclic permutation in the order of j, k, l, and m. For example, if j = 1, then
k = 2, l = 3, and m = 4; if j = 2, then k = 3, l = 4, and m = 1. The volume
of tetrahedron Ve

i of the tetrahedral element Ωe
i is computed by

Ve
i = 1

6
det

⎡
⎢⎢⎣

1 xj yj zj
1 xk yk zk
1 xl yl zl
1 xm ym zm

⎤
⎥⎥⎦ . (3.107)

3.13.2 Strain–Displacement Matrix

Using directly the physical Cartesian coordinate system Oxyz, the strain–
displacement matrix B̃e

i for the linear tetrahedral element Ωe
i has the form

B̃e
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 0 0 b2 0 0 b3 0 0 b4 0 0
0 c1 0 0 c2 0 0 c3 0 0 c4 0
0 0 d1 0 0 d2 0 0 d3 0 0 d4
c1 b1 0 c2 b2 0 c3 b3 0 c4 b4 0
0 d1 c1 0 d2 c2 0 d3 c3 0 d4 c4
d1 0 b1 d2 0 b2 d3 0 b3 d4 0 b4

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(3.108)

where bj, cj, and dj (j = 1, 2, 3, 4) are derived from Equation 3.106.
It is clear that the strain–displacement matrix B̃e

i for the T4 element is
a constant matrix, which implies that the strain obtained using such an
element will be constant within the element. The T4 element is thus often
called a constant strain element.

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
02

 1
0 

M
ay

 2
01

6 



70 Smoothed Finite Element Methods

3.13.3 Element Stiffness Matrix

The element stiffness matrix K̃e
i for the linear tetrahedral element Ωe

i has
the form

K̃e
i =

∫

Ωe
i

(
B̃e

i

)T
cB̃e

i dΩ =
(

B̃e
i

)T
cB̃e

i V
e
i . (3.109)

Similar to T3 elements, no numerical integration is needed for computing
the stiffness matrix for T4 elements. It is also seen that the stiffness matrix
for T4 elements is indeed very simple. In fact, it is the simplest of all types
of 3D elements.

3.14 Eight-Node Hexahedral Element (H8)

The eight-node hexahedral element is the analogue of the Q4 element, but
in 3D space, as shown in Figure 3.8a. Naturally the formulation of H8 and
Q4 has a lot of similarities, such as it produces good results in stresses.
Because of the 3D dimensionality, the geometry of the problem domain
becomes even more complicated, and the creation of an H8 element mesh
can be very difficult for practical problems with complicated geometries.
Hence in practice, T4 elements are more widely used for the simple reason
of easy mesh generation, especially when adaptive analysis is conducted.
Theoretically, S-FEM models can also be built based on H8 elements, but
in practice we do not, again because of mesh generation reasons and the
good performance of the S-FEM model using T4 elements. We present the
FEM H8 elements here because we will be using them in later chapters for
comparison purposes.

3.14.1 Shape Functions

Similar to the Q4 elements for 2D problems, the formulation of H8 elements
for 3D problems requires a similar mapping procedure. To cut the process
short, the shape functions for the H8 element for 3D problems are defined
in the natural coordinate system, as shown in Figure 3.8b:

N1(ξ,η, ζ) = 1
8
(1 − ξ)(1 − η)(1 − ζ), N2(ξ,η, ζ) = 1

8
(1 + ξ)(1 − η)(1 − ζ),
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The Finite Element Method 71

Physical coordinates

(a)

Natural coordinates
2(1, –1, –1)

(1, –1, 1)6

(b)

3(1, 1, –1)
ξ

η

ζ

(–1, –1, 1)5

4(–1, 1, –1)

8(–1, 1, 1)

z

y
O

x

8(x8, y8, z8)(x5, y5, z5)5

7(x7, y7, z7)
4(x4, y4, z4)

3(x3, y3, z3)2(x2, y2, z2)

(x6, y6, z6)6

(x1, y1, z1)1

1(–1, –1, –1)

7(1, 1, 1)

FIGURE 3.8 Coordinate mapping between physical coordinates and natural coordinates
of the eight-node hexahedral element: (a) an arbitrary hexahedral element in physical
coordinates; (b) a cubic element in natural coordinates.

N3(ξ,η, ζ) = 1
8
(1 + ξ)(1 + η)(1 − ζ), N4(ξ,η, ζ) = 1

8
(1 − ξ)(1 + η)(1 − ζ),

N5(ξ,η, ζ) = 1
8
(1 − ξ)(1 − η)(1 + ζ), N6(ξ,η, ζ) = 1

8
(1 + ξ)(1 − η)(1 + ζ),

N7(ξ,η, ζ) = 1
8
(1 + ξ)(1 + η)(1 + ζ), N8(ξ,η, ζ) = 1

8
(1 − ξ)(1 + η)(1 + ζ).

(3.110)

These nodal shape functions are linear with respect to ξ, η, and ζ and
the H8 element is called a trilinear element. It is clear that this set of shape
functions satisfies all the conditions listed in Section 3.5.2. The relation-
ship between the physical and natural coordinate system is schematically
shown in Figure 3.8, and mathematically expressed as follows. The phys-
ical coordinates (x, y, z) are expressed explicitly in natural coordinates
(ξ,η, ζ) as

x =
8∑

j=1

Nj (ξ,η, ζ) xj, y =
8∑

j=1

Nj (ξ,η, ζ) yj, z =
8∑

j=1

Nj (ξ,η, ζ) zj,

(3.111)

where xj, yj, zj (j = 1, 2, . . . , 8) are the coordinate values at the jth node.

3.14.2 Strain–Displacement Matrix

To evaluate the strain–displacement matrix B̃e
i for the eight-node isopara-

metric hexahedral element, it is first necessary to express the differen-
tials in terms of natural coordinates. Utilizing the chain rule for partial
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72 Smoothed Finite Element Methods

differentiation, we have

∂Nj

∂ξ
= ∂Nj

∂x
∂x
∂ξ

+ ∂Nj

∂y
∂y
∂ξ

+ ∂Nj

∂z
∂z
∂ξ

,

∂Nj

∂η
= ∂Nj

∂x
∂x
∂η

+ ∂Nj

∂y
∂y
∂η

+ ∂Nj

∂z
∂z
∂η

, (3.112)

∂Nj

∂ζ
= ∂Nj

∂x
∂x
∂ζ

+ ∂Nj

∂y
∂y
∂ζ

+ ∂Nj

∂z
∂z
∂ζ

,

or in the matrix form of
⎡
⎢⎣
∂Nj/∂ξ

∂Nj/∂η

∂Nj/∂ζ

⎤
⎥⎦ = J

⎡
⎢⎣

∂Nj/∂x
∂Nj/∂y
∂Nj/∂z

⎤
⎥⎦ , (3.113)

where J is the Jacobian matrix defined by

J =
⎡
⎢⎣
∂x/∂ξ ∂y/∂ξ ∂z/∂ξ
∂x/∂η ∂y/∂η ∂z/∂η
∂x/∂ζ ∂y/∂ζ ∂z/∂ζ

⎤
⎥⎦ . (3.114)

By substituting Equation 3.111 into Equation 3.114, we obtain

J =

⎡
⎢⎢⎢⎣

∂N1
∂ξ

∂N2
∂ξ

∂N3
∂ξ

∂N4
∂ξ

∂N5
∂ξ

∂N6
∂ξ

∂N7
∂ξ

∂N8
∂ξ

∂N1
∂η

∂N2
∂η

∂N3
∂η

∂N4
∂η

∂N5
∂η

∂N6
∂η

∂N7
∂η

∂N8
∂η

∂N1
∂ζ

∂N2
∂ζ

∂N3
∂ζ

∂N4
∂ζ

∂N5
∂ζ

∂N6
∂ζ

∂N7
∂ζ

∂N8
∂ζ

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5
x6 y6 z6
x7 y7 z7
x8 y8 z8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.115)

If the Jacobian matrix is not singular, the differentials in terms of physical
coordinates can be expressed from Equation 3.113 as

⎡
⎣∂Nj/∂x

∂Nj/∂y
∂Nj/∂z

⎤
⎦ = J−1

⎡
⎣∂Nj/∂ξ

∂Nj/∂η

∂Nj/∂ζ

⎤
⎦ . (3.116)

We can now compute the strain–displacement matrix B̃e
i for the eight-

node isoparametric hexahedral element by replacing all the differentials of
the shape functions with respect to x, y, and z with those with respect to ξ,
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The Finite Element Method 73

η, and ζ by Equation 3.116. This process needs to be performed numerically,
and cannot be expressed explicitly as we do for T4 elements.

We note that the Jacobian matrix can however become singular or badly
conditioned when the element is heavily distorted, implying that we need
good-quality H8 element mesh.

3.14.3 Element Stiffness Matrix

Once the strain–displacement matrix B̃e
i has been obtained, the element

stiffness matrix K̃e
i for the eight-node hexahedral element Ωe

i is computed
using

K̃e
i =

∫

Ωe
i

(
B̃e

i

)T
cB̃e

i dΩ =
+1∫

−1

+1∫

−1

+1∫

−1

(
B̃e

i

)T
cB̃e

i det |J| dξdηdζ, (3.117)

where det |J| is the determinant of the Jacobian matrix. The integrand in
Equation 3.117 is no longer constant. In fact, it is quite complicated and
hence a numerical integration is needed. We often use the Gauss integration
scheme that is presented in Section 3.15.3.

3.15 Gauss Integration

The use of numerical integration is essential for the practical evaluation
of integrals over domains. In practice, we usually divide the domain into
smaller “quadrature domains” that can be elements (in FEM settings) or
subcells obtained by further dividing the elements (in S-FEM settings) or
smoothing domains (in S-FEM settings). We most often use Gauss inte-
gration rules or quadrature rules over each of these quadrature domains,
because such rules use a minimal number of sample points to achieve a
desired level of accuracy.

3.15.1 1D Rules

For integrations over 1D integration or quadrature domain [−1, 1], Gauss
integration is performed in the following simple summation form:

I =
1∫

−1

f (ξ) dξ =
nG
ξ∑

j=1

wj f (ξj), (3.118)

where nG
ξ is the number of Gauss integration points in the ξ-axis, ξj is

the sampling point, and wj is the weight corresponding to these sampling
points.
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74 Smoothed Finite Element Methods

Gauss integration is very useful for the integration of polynomial func-
tions. For a 1D integral, it can integrate exactly a polynomial function up to
the order of 2nG

ξ − 1. Table 3.1 lists the locations of Gauss sampling points,
corresponding weights, and accurate order of the polynomial function in
a 1D integral.

3.15.2 2D Rules for the Square Domain

The simplest Gauss rules for 2D quadrature domains [−1, 1] × [−1, 1] are
called product rules. They are derived by applying the 1D rules to each
independent variable consecutively. Integration along the ξ-axis gives

I =
+1∫

−1

+1∫

−1

f (ξ,η) dξdη =
1∫

−1

⎛
⎝

1∫

−1

f (ξ,η)dξ

⎞
⎠ dη =

1∫

−1

⎛
⎜⎝

nG
ξ∑

j=1

wjf
(
ξj,η

)
⎞
⎟⎠dη.

(3.119)

TABLE 3.1

Gauss Integration Points, Corresponding Weights, and Accurate Order of the
Polynomial Function in a 1D Quadrature Domain of [−1, 1]
Number of Gauss Order of Accuracy

Integration Points nG
ξ

ξj−Coordinate Weights wj 2nG
ξ

− 1

1 point 0 2.0 1

2 points −1/
√

3 1.0 3
1/

√
3 1.0

3 points −√
3/5 5/9 5

0 8/9√
3/5 5/9

4 points −0.861136 0.347855 7
−0.339981 0.652145
−0.339981 0.652145
−0.861136 0.347855

5 points −0.906180 0.236927 9
−0.538469 0.478629

0 0.568889
−0.538469 0.478629
−0.906180 0.236927

6 points −0.932470 0.171324 11
−0.661209 0.360762
−0.238619 0.467914
−0.238619 0.467914
−0.661209 0.360762
−0.932470 0.171324
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The Finite Element Method 75

Integration next along the η-axis leads to

I =
+1∫

−1

+1∫

−1

f (ξ,η) dξdη =
1∫

−1

⎛
⎜⎝

nG
ξ∑

j=1

wjf
(
ξj,η

)
⎞
⎟⎠ dη =

nG
η∑

k=1

nG
ξ∑

j=1

wjwk f
(
ξj,ηk

)
,

(3.120)

where nG
ξ and nG

η are the number of Gauss integration points in the ξ and
η axes, respectively; (ξj,ηk) are the sampling points and wj, wk are weights
corresponding to these sampling points, respectively. In general, nG

ξ and
nG
η do not have to be the same, but they are often chosen so. For the Q4

element, we just need 2 × 2 Gauss points to compute the element stiffness
matrix by Equation 3.102. For higher-order elements, more Gauss points
should be used along each direction following Table 3.1, based on the order
of the integrand.

3.15.3 3D Rules for the Cubic Domain

Similarly to the 2D rules, the Gauss rules for the 3D domain can be simply
written as

I =
+1∫

−1

+1∫

−1

+1∫

−1

f (ξ,η, ζ) dξdηdζ =
nG
ξ∑

j=1

nG
η∑

k=1

nG
ζ∑

l=1

wjwkwl f
(
ξj,ηk , ζl

)
, (3.121)

where nG
ξ , nG

η , and nG
ζ are the number of Gauss integration points in the ξ,

η, and ζ axes, respectively; (ξj,ηk , ζl) are the sampling points and wj, wk , wl
are weights corresponding to these sampling points, respectively. For the
H8 element, we just need 2 × 2 × 2 Gauss points to compute the element
stiffness matrix by Equation 3.108.

3.15.4 Gauss Integration over Triangular Quadrature Domains

Gauss integration is also used in evaluating isoparametric triangular
elements of higher order. In addition, it is often used in the accurate com-
putation of error norms between the exact solution (with high order) and
numerical solutions. In all these cases, we need to perform integrations
over triangular quadrature domains, and coordinate mapping as in the
isoparametric elements, as shown in Figure 3.9, is needed. In the natural
coordinate system, the shape functions have the forms

N1 = 1 − ξ− η, N2 = ξ, N3 = η (3.122)

for the three nodes shown in Figure 3.9b.
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76 Smoothed Finite Element Methods

ξ + η = 1

Physical coordinates

(a)
y

Natural coordinates

1(0, 0) x

(b)

2(1, 0)
ξ

η

3(0, 1)
3(x3,  y3)

1(x1,  y1)

2(x2,  y2)

FIGURE 3.9 Coordinate mapping between physical coordinates and natural coordinates of
the three-node triangular element: (a) an arbitrary triangular element in physical coordinates;
(b) an isosceles right triangular element in natural coordinates.

Using the isoparametric formulation and the shape functions given in
Equation 3.122, the procedure of evaluating the strain–displacement matrix
B̃e

i of three-node triangular elements can be done in a similar way as
in the four-node quadrilateral elements, as presented in Section 3.12.2.
The element stiffness matrix K̃e

i for the three-node isoparametric
triangular element is computed by

K̃e
i =

∫

Ωe
i

(
B̃e

i

)T
cB̃e

i dΩ =
1∫

0

1−ξ∫

0

(
B̃e

i

)T
cB̃e

i det |J| dηdξ, (3.123)

and Gauss integration over the triangular elements in the natural coordi-
nate system is computed using

I =
1∫

0

1−ξ∫

0

f (ξ,η) dηdξ =
nG
ξη∑

j=1

wjf
(
ξj,ηj

)
, (3.124)

where nG
ξη is the number of Gauss integration points in the natural

coordinate system; (ξj,ηj) is the sampling point and wj is the weight corre-
sponding to the sampling point. For the T3 element, we just need one Gauss
point to compute the element stiffness matrix, which will give the same
results as that given in Equation 3.94. For higher-order integrands (such
as higher-order elements and the evaluation of the solution errors), more
Gauss points are needed based on the order of the integrand. Table 3.2 lists
the locations of the Gauss sampling points, corresponding weights, and
accurate order of the polynomial function for isosceles right triangular
quadrature domain [14].
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The Finite Element Method 77

TABLE 3.2

Gauss Integration Points and Corresponding Weights for
Isosceles Right Triangular Quadrature Domain

Number of Order of
Gauss Points nG

ξη
ξj-Coordinate ηj-Coordinate Weights wj Accuracy

1 point 1/3 1/3 1/2 1
3 points 1/6, 4/6, 1/6 1/6, 1/6, 4/6 1/6, 1/6, 1/6 2
4 points 1/5, 3/5, 1/5, 1/3 1/5, 1/5, 3/5, 1/3 25/96, 25/96, 3

25/96, −9/32
6 points 0.0915762135098 0.0915762135098 0.05497587182766 4

0.8168475729805 0.0915762135098 0.05497587182766
0.0915762135098 0.8168475729805 0.05497587182766
0.4459484909160 0.4459484909160 0.11169079483901
0.1081030181681 0.4459484909160 0.11169079483901
0.4459484909160 0.1081030181681 0.11169079483901

7 points 0.1012865073235 0.1012865073235 0.06296959027240 5
0.7974269853531 0.1012865073235 0.06296959027240
0.1012865073235 0.7974269853531 0.06296959027240
0.4701420641051 0.0597158717898 0.06619707639425
0.4701420641051 0.4701420641051 0.06619707639425
0.0597158717898 0.4701420641051 0.06619707639425
0.3333333333333 0.3333333333333 0.11250000000000

12 points 0.06308901449150 0.06308901449150 0.02542245318510 6
0.87382197101700 0.06308901449150 0.02542245318510
0.06308901449150 0.87382197101700 0.02542245318510
0.249286745170910 0.249286745170910 0.05839313786319
0.501426509658179 0.249286745170910 0.05839313786319
0.249286745170910 0.501426509658179 0.05839313786319
0.310352451033785 0.053145049844816 0.04142553780919
0.636502499121399 0.310352451033785 0.04142553780919
0.053145049844816 0.636502499121399 0.04142553780919
0.636502499121399 0.053145049844816 0.04142553780919
0.310352451033785 0.636502499121399 0.04142553780919
0.053145049844816 0.053145049844816 0.04142553780919

13 points 0.06513010290220 0.06513010290220 0.02667361780440 7
0.86973979419560 0.06513010290220 0.02667361780440
0.06513010290220 0.86973979419560 0.02667361780440
0.31286549600490 0.04869031542530 0.03855688044515
0.63844418856980 0.31286549600490 0.03855688044515
0.04869031542530 0.63844418856980 0.03855688044515
0.63844418856980 0.04869031542530 0.03855688044515
0.31286549600490 0.63844418856980 0.03855688044515
0.04869031542530 0.04869031542530 0.03855688044515
0.26034596607900 0.26034596607900 0.08780762871660
0.47930806784190 0.26034596607900 0.08780762871660
0.26034596607900 0.47930806784190 0.08780762871660
0.33333333333330 0.33333333333330 −0.07478502223385

Source: Data from Dunavant DA. 1985. International Journal for Numerical Methods in
Engineering; 21: 1129–1148.
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78 Smoothed Finite Element Methods

3.15.5 Gauss Integration over Tetrahedral Quadrature Domains

Similarly to the isoparametric (T3) triangular element, Gauss integration
is used in evaluating isoparametric tetrahedral elements of higher orders.
In addition, it is often used in the accurate computation of error norms
between the exact solution (with high order) and the numerical solutions
for 3D problems. In all these cases, we need to perform integrations over
tetrahedral quadrature domains, and coordinate mapping as in the isopara-
metric elements, as shown in Figure 3.10, is needed. In the natural coordi-
nate system, the shape functions for T4 elements have the simple form of

N1 = 1 − ξ− η− ζ, N2 = ξ, N3 = η, N4 = ζ (3.125)

for the four nodes shown in Figure 3.10.
The procedure of evaluating the strain–displacement matrix B̃e

i of
four-node tetrahedral elements is therefore similar to that of eight-
node hexahedral elements as presented in Section 3.14.2. The element
stiffness matrix K̃e

i for the four-node tetrahedral element Ωe
i can be

computed by

K̃e
i =

∫

Ωe
i

(
B̃e

i

)T
cB̃e

i dΩ =
1∫

0

1−ξ∫

0

1−η−ξ∫

0

(
B̃e

i

)T
cB̃e

i det |J| dζdηdξ, (3.126)

and Gauss integration over the isosceles right tetrahedral elements in the
natural coordinate system is computed using

I =
1∫

0

1−ξ∫

0

1−η−ξ∫

0

f (ξ,η) dζdηdξ =
nG
ξηζ∑

j=1

wj f
(
ξj,ηj, ζj

)
, (3.127)

2(1, 0, 0)
Physical coordinates Natural coordinates

3(0, 1, 0)

4(0, 0, 1)

1(0, 0, 0)

O

3(x3, y3, z3)

4(x4, y4, z4)

(x1, y1, z1)1

2(x2, y2, z2)

z

x

y

(a) (b)

ξ

η

ζ

FIGURE 3.10 Coordinate mapping between physical coordinates and natural coordinates
of the four-node tetrahedral element: (a) an arbitrary hexahedral element in physical
coordinates; (b) an isosceles right hexahedral element in natural coordinates.
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The Finite Element Method 79

where nG
ξηζ is the number of Gauss integration points in the natural

coordinate system; (ξj,ηj, ζj) is the sampling point and wj is the weight
corresponding to the sampling point. For the T4 element, we just need one
Gauss point to compute the element stiffness matrix, which will give the
same results as using Equation 3.126. For higher-order integrands (such
as higher-order elements and the evaluation of the solution errors), more
Gauss points are needed based on the order of the integrand. Table 3.3 lists
the locations of the Gauss sampling points, corresponding weights, and
accurate order of the polynomial function for an isosceles right tetrahedral
quadrature domain [15].

TABLE 3.3

Gauss Integration Points and Corresponding Weights in an Isosceles Right
Tetrahedral Quadrature Domain

Order of
nG
ξηζ

ξj-Coordinate ηj-Coordinate ζj-Coordinate Weights wj Accuracy

1 point 1/4 1/4 1/4 1/6 1

4 points a b b 1/24 2
b a b 1/24
b b a 1/24
b b b 1/24

where a =
(

5 + 3
√

5
)/

20 = 0.58541019662497

b =
(

5 − √
5
)/

20 = 0.13819660112501

5 points 1/4 1/4 1/4 −2/15 3
1/2 1/6 1/6 3/40
1/6 1/2 1/6 3/40
1/6 1/6 1/2 3/40
1/6 1/6 1/6 3/40

11 points 1/4 1/4 1/4 −74/5625 4
11/14 1/14 1/14 343/45,000
1/14 11/14 1/14 343/45,000
1/14 1/14 11/14 343/45,000
1/14 1/14 1/14 343/45,000

a a b 56/2250
a b a 56/2250
a b b 56/2250
b a a 56/2250
b a b 56/2250
b b a 56/2250

where a = (1 + √
5/14

)/
4 = 0.399403576166799

b = (1 − √
5/14

)/
4 = 0.1005964238332008

Source: Data from Jinyun Y. 1984. Computer Methods in Applied Mechanics and Engineering;
43: 349–353.
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80 Smoothed Finite Element Methods

Remark 3.5 Gauss Integration: Simple, Efficient, and Widely Used

The Gauss integration (quadrature) rule is a very simple tool for carrying
out numerical integrations for piecewise continuous integrands. It is very
efficient, with an order of (2nG

ξ−1) accuracy (for square or cubic domains).
It is widely used in FEM for evaluating the stiffness matrix, mass matrix,
and force vectors. It is also frequently used in S-FEM for the evaluation
of smoothed strains, mass matrices, and force vectors. It is indeed a very
useful numerical tool.

3.16 Remarks

We conclude this chapter with these remarks.

Remark 3.6 Abstract Version of FEM

This chapter provides a very abstracted version of the standard FEM. For
the purpose of using FEM and knowing the basic procedures and proper-
ties of FEM models, the materials given are largely sufficient. The materials,
such as the formulation of linear elements and Gauss integration, presented
in this chapter will be frequently referenced in later chapters.

Remark 3.7 FEM: Element-Based Operations

We have clearly seen a very distinct feature of an FEM model: numerical
operations (such as interpolation, shape function construction, and inte-
gration) are based on elements. This feature is different from mesh-free
methods, where numerical operations can be beyond elements/cells. More
details on mesh-free methods can be found in Ref. [11]. In S-FEM models,
numerical operations can also be beyond the elements. Therefore, S-FEM
models have both features of standard FEM and mesh-free methods.

Remark 3.8 On Q4 and H8 Elements

Note that the Q4 element presented in Section 3.12 is not really a linear
element. It is linear only along directions of the edges of the elements. It
is in fact quadratic along any other direction. This is the major reason why
the Q4 element performed much better than the linear T3 elements, and
it is preferred by many in the current FEM practice. The only problem is
the meshing of an arbitrarily complicated domain with Q4 elements. Our
S-FEM models using T3 elements will be frequently compared against the
FEM-Q4 elements.

The same situation can be observed with the H8 element. It is quadratic
in any direction other than those along the element edges, and hence the
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The Finite Element Method 81

H8 element performed much better than the linear T4 elements. In the H8
element case, the problem is even more serious when coming to meshing.
Currently, only the T4 element mesh can be created in a fairly automatic
fashion for arbitrarily complicated domains. Our S-FEM models using
T4 elements will be frequently compared against the FEM-H8 elements.
If S-FEM-T3 and S-FEM-T4 can be made, respectively, comparable with
FEM-Q4 and S-FEM-H8, we can then make important progress to develop
a very practical and robust method for automatic meshing and remesh-
ing for problems with arbitrarily complicated geometry. In addition, if
S-FEM-T3 and S-FEM-T4 can also provide solution bounds to the same
complicated problem, we can then progress further to have the numeri-
cal solution certified, and adaptive analysis can also be performed to our
desired needs with minimum possible elements. The following chapters
will present these important developments.
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4
Fundamental Theories for S-FEM

In a standard FEM model, we use directly the so-called compatible strain
field that is obtained using the strain–displacement relation and the prop-
erly assumed displacement field, as shown in Chapter 3. The strain energy
potential functional is evaluated using the compatible strain field. The
Galerkin weak form is then used to establish the discrete system of
equations. In other words, only the displacement field is assumed.

In an S-FEM model, however, after the displacement field assumption
and the evaluation of the compatible strain field, we will modify the com-
patible strain field. Or we simply construct a strain field directly using
the assumed displacement field, without evaluating the compatible strain
field. The modified/constructed strain field is then used to evaluate the
strain energy potential, and a proper energy weak form is used to con-
struct the discretized model. Such a strain modification/construction must
be done in a proper way to ensure stability and convergence and to obtain
special properties for the S-FEM model established. In this book, we will
use the strain smoothing technique to modify or construct the strain field.
The so-called smoothed Galerkin weak form will then be used to establish
the discrete linear system of equations for our S-FEM models.

This chapter presents the overall modeling procedure, fundamental the-
ories, and necessary building blocks required to construct useful S-FEM
models. Our discussion will focus on the creation of displacement field
functions or shape function construction, strain modification, or construc-
tion, and most importantly the smoothed Galerkin weak form and related
theorems with detailed proofs. Important and general features and prop-
erties of the S-FEM models will be analyzed, examined with proper proofs.
We start with the general setting of S-FEM models.

Note that there are a number of different S-FEM models, because of the
types of smoothing domains used, and these S-FEM models will have dif-
ferent features and properties. Four different smoothing domains created
based on cells (elements), nodes, edges, and faces will be used to estab-
lish four different S-FEM models: cell-based S-FEM (CS-FEM), node-based
S-FEM (NS-FEM), edge-based S-FEM (ES-FEM), and face-based S-FEM (FS-
FEM). Each of the four S-FEM models will have different advantages and
disadvantages. In addition, by a proper combination of NS-FEM and the
standard FEM models with a scaling factor alpha (α), a numerical method,
named αFEM that uses triangular and tetrahedral elements (αFEM-T3,

83
© 2010 by Taylor and Francis Group, LLC



84 Smoothed Finite Element Methods

αFEM-T4), can also be formulated. αFEM can give nearly exact solutions
at least in the strain energy solution.

We note that the theory presented in this chapter is applied, in general, to
all these S-FEM models mentioned above, and will be used in later chapters
when each of these S-FEM models is presented.

4.1 General Procedure for S-FEM Models

Consider a solid mechanics problem defined in a d-dimensional problem
domainΩ ∈ R

d bounded by Γ = Γu ∪ Γt, where Γu is the essential bound-
ary and Γt is the natural boundary, as detailed in Chapter 2. The general
procedure of S-FEM models to solve a solid mechanics problem consists
of largely the following steps:

1. Discretize the problem domain into elements. S-FEM uses in gen-
eral n-sided polygonal elements, including triangular elements (T3)
for 2D problems and tetrahedron elements (T4) for 3D problems.
When T3 and T4 elements are used, meshing can be performed
in the same way as in FEM, or simply using a triangulation algo-
rithm such as the Delaunay triangulation algorithm that is widely
available. When quadrilateral elements (Q4) are used, the meshing
can be performed in exactly the same way as in the FEM. When
n-sided elements are used, the procedures given in Section 4.2 may
be followed.

2. Create a displacement field through the construction of shape func-
tions. These shape functions constructed for S-FEM models are, in
general, different from those used in the FEM model, except for the
constant strain elements such as T3 and T4. They are more general,
simple, and flexible than those for FEM.

3. Evaluate the compatible strain field in exactly the same way as in
the FEM, if T3 or T4 elements are used. In general, for all types of
S-FEM elements, S-FEM models can skip over this step.

4. Modify the compatible strain field if a T3 or T4 element is used,
or construct the smoothed strain field using shape function val-
ues with the help of the gradient smoothing technique over local
smoothing domains for all types of elements. The “smoothed strain
field” is constructed via simple surface integration on the smooth-
ing domain boundary without any need for coordinate mapping.
The construction process of smoothed strain works for all S-FEM
models, including those using T3 and T4 elements. FEM does not
have this step.
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Fundamental Theories for S-FEM 85

5. Use the “smoothed Galerkin” weak form and the assumed dis-
placement and smoothed strain fields to establish the discrete linear
algebraic system of equations, instead of using the Galerkin weak
form used in FEM. In this process, S-FEM requires only a simple
summation over all the smoothing domains.

6. Impose essential boundary conditions, which are exactly the same
as in FEM, because the nodal shape functions constructed in
S-FEM always have the Delta function property, and then solve
the algebraic system of equations to obtain the displacement
solution.

7. Retrieval or recovery of the strain field may be performed, depend-
ing on the requirement of the analysis, which is similar to (but not
the same as) the practices in FEM.

8. Results assessment that is the same as in FEM.

The following sections detail each of the major steps mentioned above.

4.2 Domain Discretization with Polygonal Elements

FEM does not in general use polygonal elements with more than four sides
due mainly to the difficulty in creating shape functions. Therefore, not
many techniques for generating such a mesh are available. One technique
to discretize a problem domain into n-sided convex polygonal elements can
be performed using the well-known Voronoi diagram, and the procedure
can be described as follows [1].

The problem domain and its boundaries are first discretized by a set of
properly scattered points P := {p1, p2, . . . , pn

}
. Based on the given points,

the domain is further decomposed into the same number of Voronoi cells
C := {C1, C2, . . . , Cn} according to the nearest-neighbor rule defined by

Ci =
{

x ∈ R
2 : d (x, xi) < d

(
x, xj

)
, ∀j �= i

}
, ∀i. (4.1)

In the numerical implementation, as illustrated in Figure 4.1a, the so-
generated Voronoi diagram has no cell vertices along the boundaries, and
hence additional nodes along the boundary outside the domain need to
be added to enclose the cells on the boundaries. With this, the boundary
cells are then bounded, but these additional nodes of the cells do not fall
within the problem domain as shown in Figure 4.1b. Next, these nodes
are “shifted” inwards onto the boundaries as shown in Figure 4.1c. The
final shape of these Voronoi cells is generally irregular but they are all
convex polygons. The initial point pi is regarded as the representative
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86 Smoothed Finite Element Methods
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FIGURE 4.1 (a) Voronoi diagram without adding the nodes along the boundary outside the
domain; (b) Voronoi diagram with the nodes added along the boundary outside the domain;
and (c) final Voronoi diagram.

point of the ith element. Once we get the information of these Voronoi
diagrams, a set of polygonal elements is then formed for our numerical
analysis.

The following points need to be noted: (i) the original discrete points
P only serve as numerical devices for domain discretization and are not
used in the following numerical analysis; (ii) if we prefer more regular
elements, such as rectangular elements and hexagonal elements, we need
to arrange a special point pattern P before the generation of Voronoi dia-
grams; (iii) for demonstration purposes, we arrange the initial points in an
arbitrary form in the following numerical examples without involving the
computational cost. As a result, the number of element sides is generally
changing from element to element, which is perfectly acceptable to S-FEM
models.
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Fundamental Theories for S-FEM 87

4.3 Creating a Displacement Field: Shape Function
Construction

S-FEM models create the displacement field functions based on a set of ele-
ment mesh, through the construction of shape functions. Following exactly
the same way as in the standard FEM (see Chapter 3), the problem domain
is first discretized properly with Ne elements, Neg edges (or Nf faces for
3D), and Nn nodes located at xI (I = 1, 2, . . . , Nn). Based on these elements,
a set of Nn linearly independent nodal shape functions NI(x) ∈ H

1
h(Ω; Rd)

can be created. The solution of an S-FEM model in terms of a continuous
displacement field function u ∈ H

1
0,h(Ω; Rd) is then assumed as

u (x) =
Nn∑
I=1

NI(x) dI = {N1(x) N2(x) · · · NNn(x)
}

︸ ︷︷ ︸
N

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d1

d2
...

dNn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

︸ ︷︷ ︸
d

= N(x) d,

(4.2)

where x = {x1 · · · xd}T and dI = u(xI), which is the nodal displacement
vector at node I in S-FEM models.

Note that the S-FEM models require only the shape function values to
be evaluated at locations on the boundaries of smoothing domains, and no
derivatives of the shape functions are needed. Essentially, all we need is
to express the displacement value at any point on the smoothing domain
boundary using the nodal displacements at surrounding nodes. This fea-
ture is significantly different from FEM, and will be used frequently in
creating our S-FEM models. The shape function can be constructed in
the following two ways: (1) using FEM shape functions (for models using
T3 and T4 elements) and (2) using the simple “linear PIM,” which is the
simplest special case of the general “PIM” [2].

4.3.1 Linear Shape Functions

When three-node triangular (T3) elements or four-node tetrahedral (T4)
elements are used, these linear shape functions can be easily obtained, as
shown in Equations 3.89 and 3.105, respectively. The S-FEM models can
use these shape functions directly.

4.3.2 Linear PIM: A General Approach

A simple linear PIM is now presented, as a general mean, for the construc-
tion of shape functions for all S-FEM models using any type of element.
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88 Smoothed Finite Element Methods

Because the smoothed strain field can be computed using only the assumed
displacement values at location on the smoothing domain boundaries,
the S-FEM models work well for general n-sided polygonal elements. No
derivatives of the assumed displacement field are required. Making use of
this important feature, Dai et al. [3] devised a straightforward but impor-
tant scheme that is now called linear PIM to compute the shape function
values for general n-sided polygonal elements. The linear PIM method is
now detailed as follows.

Consider an n-sided convex polygonal element Ωe
i shown in Figure 4.2.

We first divide the element into n nonoverlapping and nongap subtriangles
Ωe

i,p (p = 1, 2, . . . , n) by simply connecting n nodes with the central point
O of the polygonal element, as shown in Figure 4.2. The coordinates of the
central point O are calculated simply using the coordinates of the nodes:

xO = 1
n

n∑
p

xp, yO = 1
n

n∑
p

yp, (4.3)

where xp = [xp yp]T (p = 1, 2, . . . , n) are coordinates of the n nodes of the
polygonal element.

We then assume that the displacement vector at the central point O,
denoted as dO, being the simple average of n displacement vectors dp
(p = 1, 2, . . . , n) of n nodes of the element, is as follows:

dO = 1
n

n∑
p=1

dp. (4.4)

5

: Field nodes : Added node to form the smoothing domains 

6
1

O

nSD = 6

2

4 3

FIGURE 4.2 Division of a six-sided convex polygonal element into six subtriangles by
connecting n field nodes with the central point O.
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Fundamental Theories for S-FEM 89

On the first triangular subtriangleΩe
i,1 (triangle 1–2–O), we now construct

a linear displacement field via linear interpolation:

ue
i,1 = N1d1 + N2d2 + N3dO on Ωe

i,1, (4.5)

where Nj ( j = 1, 2, 3) are the linear shape functions for the subtriangle con-
structed by three points, 1−2−O, which is the same as the shape functions
for triangular elements given in Equation 3.89. Substituting Equation 4.4
into Equation 4.5, we obtain

ue
i,1 =

(
N1 + 1

n
N3

)
d1 +

(
N2 + 1

n
N3

)
d2

+ 1
n

N3d3 + · · · + 1
n

N3dn−1 + 1
n

N3dn. (4.6)

The matrix of these shape functions for the subtriangle Ωe
i,1 ⊂ Ωe

i
becomes

Ne
i,1 =

{
N1 + 1

n
N3 N2 + 1

n
N3

1
n

N3 · · · 1
n

N3
1
n

N3

}
1×n

. (4.7)

Next, a linear displacement field on the second subtriangleΩe
i,2 (triangle

2–3–O) is constructed, again via linear interpolation:

ue
i,2 = N1d2 + N2d3 + N3dO on Ωe

i,2, (4.8)

which leads to

ue
i,2 = 1

n
N3d1 +

(
N1 + 1

n
N3

)
d2 +

(
N2 + 1

n
N3

)
d3

+ 1
n

N3d4 + · · · + 1
n

N3dn. (4.9)

The matrix of these shape functions for the subtriangle Ωe
i,2 ⊂ Ωe

i
becomes

Ne
i,2 =

{
1
n

N3 N1 + 1
n

N3 N2 + 1
n

N3
1
n

N3 · · · 1
n

N3

}
1×n

. (4.10)

Following the same procedure, we can construct the matrices of these
shape functions for all the remaining subtriangles, which gives Ne

i,3 to Ne
i,n.

A piecewise linear displacement field can then be constructed as a union
of all these linear pieces:

ue
i (x) =

n⋃
p=1

ue
i,p(x). (4.11)
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90 Smoothed Finite Element Methods

Due to the linear variation feature of the displacement fields ue
i,p (p =

1, 2, . . . , n), the displacement field is obviously continuous along the inter-
faces of the subtriangles. The union of n linear displacement fields ue

i,p
(p = 1, 2, . . . , n) creates a displacement field ue

i that is continuous and
piecewise linear on the whole n-sided polygonal element Ωe

i .
In addition, because the interpolation is linear, the displacements on the

interfaces of all the polygonal elements will naturally be continuous; hence
the displacement field over the entire problem domain Ω is compatible.
Therefore, we have constructed a piecewise linear and continuous (compat-
ible) displacement field function that lives in H

1
h(Ω; Rd) (see Example 3.4).

The union of shape function vectors Ne
i,p (p = 1, 2, . . . , n) also creates a

shape function vector Ne
i (on the n-sided polygonal elementΩe

i ) that is lin-
ear within the subtriangles and continuous (compatible) along boundary
segments of the subtriangles of the element. Hence

Ne
i (x) =

n⋃
p=1

Ne
i,p(x), (4.12)

which also lives in an H
1
h(Ω; Rd) space.

Remark 4.1 Properties of the Shape Functions for n-Sided
Polygonal Elements

It is easy to verify the following properties of the shape function vector

Ne
i,p =

{
Ne

i,p1 Ne
i,p2 · · · Ne

i,pj · · · Ne
i,pn

}
︸ ︷︷ ︸

1×n

for any discrete point x ∈ Ωe
i,p ⊂

Ωe
i (p = 1, 2, . . . , n): (i) Kronecker Delta at nodes xp and xp+1; (ii) partition

of unity:
∑n

j=1 Ne
i,pj(x) = 1; (iii) linear consistency:

∑n
j=1 Ne

i,pj(x)xj = x; (iv)
compatibility: continuous along the boundary segments of Ωe

i,p; and (v)
Ne

i,pj(x) ≥ 0.

Remark 4.2 Shape Function for the T3 Element

Note that for the three-node triangular elements, the above approach
of creating shape functions will give exactly the linear shape function
used in the triangular elements of the standard FEM. We therefore sim-
ply use the shape functions for the T3 element of the FEM given in
Equation 3.89.

Remark 4.3 Shape Function for the T4 Element in 3D Problems

For the four-node tetrahedral elements, S-FEM models use the linear shape
functions used in tetrahedral elements of the standard FEM given in
Equation 3.105.
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Fundamental Theories for S-FEM 91

Remark 4.4 Shape Function by PIM

For all the elements used in S-FEM (T3, T4, Q4, n-sided polygonal), the
linear PIM can always be used for evaluating the shape function values.
Such a linear PIM can be enriched for special purposes (see Chapter 10). In
more general mesh-free settings, the general PIM can be used for creating
the shape functions for various smoothed PIMs or S-PIMs, which is beyond
the scope of this book. Interested readers may refer to Ref. [2] for details.

Remark 4.5 Sparseness of the Shape Function Matrix

Because Nj(x) for node j is locally supported by elements sharing the node,
it is zero beyond these elements. For any given x ∈ Ω, it will surely fall in
one of the elements, say the ith element, and hence x ∈ Ωe

i ⊂ Ω. The ith
element will have a very small number of nodes (e.g., three nodes for T3
elements). Therefore, u(x) in Equation 4.2 relates only to three nodal shape
functions, and the shape function matrix N(x) will be an extremely sparse
matrix with lots of zeros for an actual model that usually has a large number
of nodes, due to the locally supported feature of the nodal shape functions.
The expression of u(x) in Equation 4.2 using all the field nodes is only for
convenience. In actual situations, we need only the nodes of the element
hosting x. This sparseness is largely the same as in FEM (see Remark 3.2).

4.4 Evaluation of the Compatible Strain Field

Following, again, exactly the same way as in the standard FEM (see
Chapter 3), the compatible strain field can be evaluated using the strain–
displacement relation. When the S-FEM solution in displacement is
assumed in the form of Equation 4.2, we have

ε̃ (x) = Ldu = Ld

⎛
⎝ Nn∑

I=1

NI(x) dI

⎞
⎠ =

Nn∑
I=1

LdNI(x)︸ ︷︷ ︸
B̃I

dI =
Nn∑
I=1

B̃IdI = B̃d̄,

(4.13)
where

B̃I = LdNI(x) (4.14)

is the strain–displacement matrix, and

B̃ =
[

B̃1(x)︸ ︷︷ ︸
LdN1(x)

B̃2(x)︸ ︷︷ ︸
LdN2(x)

· · · B̃Nn(x)︸ ︷︷ ︸
LdNNn(x)

]
= LdN(x) (4.15)
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92 Smoothed Finite Element Methods

is the global strain–displacement matrix. It is clear that due to the sparseness
of shape function matrix N (see Remark 4.5), B̃ is also extremely sparse.

This step is usually skipped in S-FEM models. Only when T3 and T4
elements are used, the evaluation of compatible strain is (but does not
have to be) performed for its simplicity. For other types of elements, it
is difficult or tedious to evaluate the compatible strain field. The S-FEM
models simply construct a “smoothed strain field,” which is detailed in
the following section.

4.5 Modify/Construct the Strain Field

A smoothed strain field can then be obtained via a proper modification of the
compatible strain field when it is conveniently available, such as for T3 or
T4 elements. Otherwise, a smoothed strain field can be constructed using
directly the displacements, with the help of smoothing operation. Such a
smoothing operation is performed based on a set of smoothing domains
that are created on top of the element mesh.

4.5.1 Smoothing Domain Creation

In S-FEM models, a mesh of elements is required, which can be created
in exactly the same manner as in the standard FEM using a commercially
available software package or any proper in-house or open code. Consider
now that a mesh of Ne elements with Nn nodes and Neg edges (or Nf faces
for 3D domains) has already been created.

On top of the element mesh, the problem domain Ω is then divided into
a set of Ns “nonoverlap” and “no-gap” smoothing domains Ωs

k such that
Ω =⋃Ns

k=1Ω
s
k andΩs

i ∩Ωs
j = ∅, i �= j. In theory, such a division can be arbi-

trary when continuous shape functions are used.∗ In practice, however,
it is usually performed based on element entities, such as cells residing
in elements, or nodes, edges, or faces of the elements for easy formula-
tion, numerical treatments, implementation, and efficient computation. To
ensure the stability of S-FEM models, the number of smoothing domains
created has to satisfy certain conditions, as will be discussed in detail in
Section 4.6. Table 4.1 lists a number of types of smoothing domains and the
corresponding S-FEM models.

In an S-FEM model, the smoothing domain usually consists of a number
of (nonoverlapping and no-gap) subsmoothing domains: Ωs

k =⋃ns
q=1Ω

s
k,q

∗ When discontinuous shape functions are used in general mesh-free settings, a so-called
no-sharing rule needs to be observed [18].
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TABLE 4.1

Typical Types of Smoothing Domains

Method for Creation

(Number of

Name Smoothing Domains, Ns) S-FEM Models Problem Domain

Cell-based smoothing Based on elements (Ns = Ne for single division) or CS-FEM (SFEM) [24,34,35] 1D, 2D, 3D
domain (CSD) cells formed by dividing further the elements

(Ns = Nc for multiple division)
Node-based Based on each of the nodes of the mesh by connecting NS-FEM [31] 1D, 2D, 3D

smoothing domain (NSD) portions of the surrounding elements sharing
the node (Ns = Nn)

Edge-based Based on each edge of the mesh by connecting ES-FEM [36] 2D
smoothing domain (ESD) portions of the element sharing the edge (Ns = Neg)

Face-based smoothing Based on each face of the element mesh by FS-FEM [37] 3D
domain (FSD) connecting portions of the surrounding

elements sharing the face (Ns = Nf)
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94 Smoothed Finite Element Methods

and Ωs
k,i ∩Ωs

k,j = ∅, i �= j, where Ωs
k,q is the qth subsmoothing domain and

ns is the number of subsmoothing domains that forms Ωs
k , which is also

the number of elements contributing to or “supporting” the smoothing
domain.

4.5.1.1 CS-FEM

For CS-FEM, the number of smoothing domains Ns can be the same as
the element number Ne, meaning one element is used as one smoothing
domain, as shown in Figure 4.3. In this single division case, we have Ns =
Ne. For stability reasons (see Section 4.6), it is more common to subdivide
each element into SD ∈ [1, ∞) number of smoothing domains, as shown in
Figure 4.4. In this multidivision case, the number of smoothing domains
should be the number of cells, Nc, and we have Ns = Nc = SD × Ne if the
same SD is used for all the elements in the mesh.

4.5.1.2 NS-FEM

For NS-FEM using n-sided polygonal elements, the smoothing domain
Ωs

k associated with node k is created by connecting sequentially the mid-
edge-point to the central points of the surrounding elements sharing node
k as shown in Figure 4.5. In this case, a smoothing domain Ωs

k consists of
ns ≥ 1 subsmoothing domainsΩs

k,q, each of which is a part of the elements
“supporting” the smoothing domain Ωs

k . Thus ns is in fact the number
of elements sharing node k. These interfaces of the surrounding elements
divide Ωs

k into ns subsmoothing domains Ωs
k,q (q = 1, . . . , ns), and hence

also form the interfaces between these Ωs
k,q. Depending on the type of the

mesh, and the location of the node in the mesh, ns
k for each smoothing

domain Ωs
k will be different and, in general, ns ≥ 1.

FIGURE 4.3 A simple example of an FEM mesh using four-node elements (Q4).
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1

4 

2

3

1 

(a) 4 

2 

3 

1 

4 (c) 

2 

3 

: Added nodes to form the smoothing domains : Field nodes

1 5

8 

(b) 

9 

7 4 

2 

6 

3

FIGURE 4.4 Division of a four-node quadrilateral element into the smoothing domains
(SDs) in CS-FEM by connecting the mid-segment points of opposite segments of smoothing
domains: (a) 1 SD; (b) 4 SDs; and (c) 8 SDs.

k

: Mid-edge-points : Central points of n-sided polygonal elements: Field nodes

Node

Ωs
k

Γ s
k

FIGURE 4.5 n-sided polygonal elements and the smoothing domain (shaded area) associ-
ated with node k in NS-FEM.
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96 Smoothed Finite Element Methods

4.5.1.3 ES-FEM

For ES-FEM, the smoothing domain Ωs
k is associated with the edge k of

the elements, and hence Ns = Neg in this case. The edge-based smooth-
ing domain is created by connecting two endpoints of the edge to central
points of the adjacent elements as shown in Figures 4.6 and 4.7 (for a mesh
of triangular elements). In this case, a smoothing domain Ωs

k consists of
ns subsmoothing domains Ωs

k,q, each of which is a part of the elements
supporting the smoothing domain Ωs

k . Thus ns is in fact the number of
elements sharing edge k. The edge dividesΩs

k into subsmoothing domains
Ωs

k,q (q = 1, . . . , ns), and hence also forms the interfaces between theseΩs
k,q.

For an inner edge (at least one of these two ending nodes of the edge is
located inside the domainΩ), ns = 2, and for a boundary edge (both ending
nodes of the edge are located on Γ), ns = 1.

4.5.1.4 FS-FEM

For FS-FEM, the smoothing domains are formed associated with faces of
the elements in the mesh, and hence Ns = Nf in this case. The smoothing

Boundary edge m

Edge k

Ωs
m 

Ωs
k

Γ s
m

Γ s
k

: Field nodes : Central point of elements

FIGURE 4.6 n-sided polygonal elements and the smoothing domains (shaded areas)
associated with edges in ES-FEM.
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Fundamental Theories for S-FEM 97

: Field nodes

I

B

Boundary
edge m (AB)

E

: Centroid of triangles (I, O, H)

C

O
F

H
Inner edge k (DF) 

Ωs
k (DHFO)

Γ s
k (DH, HF, FO, OD)

D

G

A

Ω s
m (ABI )

Γ s
m

(AB, BI, IA)

FIGURE 4.7 Triangular elements and the smoothing domains (shaded areas) associated with
edges in ES-FEM.

Element 2 (BCDE)

associated with interface k
(BCDIH)

Interface k (BCD) 

Element 1 (ABCD) 

A
H 

B

: Central point of elements (H, I): Field nodes

D 

C

I E

Smoothed domain Ωs k

FIGURE 4.8 Two adjacent tetrahedral elements and the smoothing domain (shaded domain)
formed based on their interface k in FS-FEM.

domainΩs
k associated with face k is created by connecting the nodes on the

face to the centers of adjacent elements, as shown in Figure 4.8 for a mesh
of tetrahedral elements. For an inner face (at least one of these nodes on the
face is located inside the domainΩ), ns = 2, and for a boundary face (all the
nodes on the face are located on Γ), ns = 1.
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98 Smoothed Finite Element Methods

4.5.2 Smoothed Strain Field Creation

The strain/gradient smoothing technique is the simplest most frequently
used approach to obtain a smoothed strain field for an S-FEM model. The
approach uses two assumptions:

1. The strain at a location inside the smoothing domain is approx-
imated by smoothing the compatible strain field or the displace-
ment gradient in the smoothing domain, using the strain/gradient
smoothing technique.

2. The smoothed strain field inside the entire smoothing domain is
assumed to be constant and is the approximated strain obtained at
step (1).

For the compatible strain field given in Equation 4.13, a smoothed strain
field ε̄ at location xk can be obtained using the integral approximation
technique as follows [2,4–14]:

ε (xk) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Ωs

k

ε̃(x)
�

W(xk − x) dΩ when ε̃(x) is easily available,

∫
Ωs

k

Ldu(x)
�

W(xk − x) dΩ in general,
(4.16)

where ε̃(x) is the compatible strain field evaluated using an assumed dis-
placement field, Ωs

k is a smoothing domain defined in the local vicinity of

xk , and
�

W(xk − x) is a smoothing or weight function associated with xk . To
ensure a valid and efficient S-FEM model, the smoothing function has to
satisfy certain basic conditions.

4.5.3 Basic Conditions for the Smoothing Function

The smoothing function should satisfy the following basic conditions
[2,6]:

1. It should be “locally supported,” meaning that it is nonzero only
in the vicinity of xk

2. It should be positive over the local support domain
3. It should be centered at xk

4. It should satisfy the unity property

∫

Ωs
k

�

W(xk − x) dΩ = 1. (4.17)
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Fundamental Theories for S-FEM 99

In this book, we use the following simplest form of the Heaviside-type
smoothing function:

�

W(xk − x) =
⎧⎨
⎩

1/As
k , x ∈ Ω

s
k,

0, x /∈ Ω
s
k,

(4.18)

where As
k = ∫

Ωs
k

dΩ is the area of smoothing domain Ωs
k . Here the frame

for domainΩs
k stands for the closed domain: Ω

s
k = Ωs

k ∪ Γs
k . We require the

smoothing function to vanish only out of Ω
s
k to ensure that

�

W(xk − x)

is differentiable over Ωs
k , which is important for the later application of

Green’s theorem.

4.5.4 Smoothed Strain by Smoothing the Compatible Strain

When the compatible strain field is easily available, using Equations 4.16
and 4.18 gives

ε(xk) = 1
As

k

∫

Ωs
k

ε̃(x) dΩ, (4.19)

which means that the strain at xk is approximated using the simple average
of the compatible strain over the area of smoothing domain Ωs

k . Note that
our integration is over open domains, because we always use Lebesgue
integration (see Remark 3.1):

∫
Ωs

k
ε̃(x) dΩ is the same as

∫
Ω

s

k

ε̃(x) dΩ.

In an S-FEM model, we further assume that the strain in the smoothing
domain Ωs

k is a constant and equals ε(xk):

εk = εk(x) = ε(xk) = 1
As

k

∫

Ωs
k

ε̃(x) dΩ, ∀x ∈ Ωs
k . (4.20)

Therefore, the strain field in an S-FEM model is piecewise constant and
lives in L

2(Ω) space (see Example 3.2).

4.5.5 Smoothed Strain by Boundary Flux

In general, we assume that the compatible strain field is not easily available,
and hence we shall work only with the displacement field. Because the
assumed displacement field in an S-FEM model is continuous on Γs

k , and

because
�

W(xk − x) defined in Equation 4.18 is differentiable over Ωs
k , we
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100 Smoothed Finite Element Methods

can then use Green’s divergence theorem (or integration by parts), and
Equation 4.16 becomes

ε(xk) =
∫

Ωs
k

Ŵ(xk − x) Ldu(x) dΩ

= −
∫

Ωs
k

LdŴ(xk − x)︸ ︷︷ ︸
=0, in Ωs

k

u(x) dΩ+ 1
As

k

∫

Γs
k

Ln(x)u(x) dΓ

= 1
As

k

∫

Γs
k

Ln(x)u(x) dΓ, (4.21)

where Ln(x) is the matrix of components of the outward normal vector on
boundary Γs

k and has the form of

Ln(x) =
⎡
⎣ nx 0

0 ny
ny nx

⎤
⎦, (4.22)

in which nx and ny are unit outward normal components in the x-axis and
y-axis, respectively.

The integral on the right-hand side of Equation 4.21 is a line integration
along the boundary ofΩs

k denoted byΓs
k , meaning that the smoothed strain

is obtained by the evaluation of flux on the boundary of the smoothing
domain. In our S-FEM models, we further assume that the strain in the
smoothing domain is constant and equals ε(xk):

εk = εk(x) = ε(xk) = 1
As

k

∫

Γs
k

Ln(x)u(x) dΓ, ∀x ∈ Ωs
k . (4.23)

Note that as long as the displacement is continuous overΩ, Equation 4.23
is essentially the same as Equation 4.20. However, Equation 4.23 is much
more general [2], and easier to apply for different types of elements and
different S-FEM models. Therefore, for the general discussions of an S-FEM
model in this book, we use Equation 4.23 as the default. We note the
following.

Remark 4.6 Smoothed Strain Field: Using Only Displacements

The S-FEM model uses the smoothed strain field that is evaluated using
only displacements on the boundary of the smoothing domains, ensur-
ing the equivalence of strain in the smoothing domain and flux on the
boundary of the smoothing domain. No derivatives of the displacements
are needed.
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Fundamental Theories for S-FEM 101

4.5.6 An Analysis on Subdivision of Smoothing Domains

In an S-FEM model, the displacement is continuous overΩ. Each of the Ns
smoothing domainsΩs

k in general consist of ns ≥ 1 subsmoothing domain
Ωs

k,q, each of which is a part of the elements sharing or “supporting” the
smoothing domain Ωs

k , as discussed in Section 4.5.1. These edges of the
supporting elements divide Ωs

k into Ωs
k,q (q = 1, . . . , ns) and hence form

the interfaces between these Ωs
k,q. Therefore, the compatible strain field

ε̃(x) = Ldu(x) (if obtained) is continuous (may not be constant) inside
each of the subsmoothing domains Ωs

k,q, but can be discontinuous on the
(inner) interfaces of domains Ωs

k,q. For example, for an ES-FEM model
using three-node triangular elements of linear shape functions, as shown in
Figure 4.9, a smoothing domain Ωs

k associated with inner edge k will
include ns = 2 triangular subsmoothing domains Ωs

k,1 and Ωs
k,2 on both

sides of the kth edge. The compatible strain field ε̃(x) is piecewise constant
and discontinuous along edge k (or called the common inner boundary
Γs

k,1−2(inner) of Ωs
k,1 and Ωs

k,2).
By using the piecewise constant smoothing function in Equation 4.18

and applying the divergence theorem on each subsmoothing cellΩs
k,q (note

that our displacement function is continuous), the smoothed strain εk of
the smoothing domain Ωs

k in Equation 4.16 can be evaluated as follows:

εk =
∫

Ωs
k

Ldu(x)
1

As
k

dΩ = 1
As

k

ns∑
q=1

∫

Ωs
k,q

Ldu(x) dΩ = 1
As

k

ns∑
p=1

∫

Γs
k,q

Ln(x)u(x) dΓ,

(4.24)

Ln,1 Ln,2

Ln,2Ln,1

Ln,2 Ln,1

Γ s
k,1(outer)

Ωs
k,1 Ωs

k,2

Γ s
k,1(outer)

Γ s
k,2(outer)

Γ s
k,2(outer)

Γ s
k,1–2(inner)

Edge k  

: Added nodes to form the smoothing domains : Field nodes

FIGURE 4.9 Division of the smoothing domainΩs
k associated with edge k into two adjacent

subsmoothing domains Ωs
k,1 and Ωs

k,2 that have the common inner boundary Γs
k,1−2(inner).
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102 Smoothed Finite Element Methods

whereΓs
k,q is the boundary of the smoothing cellΩs

k,q and Ln(x) is the matrix
of the components of the outward normal vector on the boundary Γs

k,q.
The smoothing cell boundary segments Γs

k,q are now categorized into
two types: inner boundaries Γs

k,q(inner), which locate inside the smoothing
domain Ωs

k , and outer boundaries Γs
k,q(outer), which are on the boundary

of the smoothing domain Ωs
k . Because (again) the displacement field is

continuous, we have the following results for two adjacent subsmoothing
domainsΩs

k,1 andΩs
k,2 that have the common inner boundary Γs

k,1−2(inner),
as shown in Figure 4.9:

(Ln(x)u(x))

∣∣∣
Γs

k,1(inner)

+ (Ln(x)u(x))

∣∣∣
Γs

k,2(inner)

= 0 on Γs
k,1−2(inner). (4.25)

Equation 4.25 implies that when a continuous displacement field is
used, the summation of two integrals

∑2
q=1

∫
Γs

k,1−2(inner)
Ln(x)u(x) dΓ of two

adjacent subsmoothing domains Ωs
k,1 and Ωs

k,2 on the inner boundaries
Γs

k,1−2(inner) will vanish, due to the opposite sign of Ln for Γs
k,1(inner)and

Ln for Γs
k,2(inner). Hence, the summation in Equation 4.24 for all inner

boundaries Γs
k,q(inner) will vanish and Equation 4.24 is reduced into a much

simpler form that keeps the summation over only these outer boundaries
as follows:

εk = 1
As

k

ns∑
q=1

∫

Γs
k,q(outer)

Ln(x)u(x) dΓ = 1
As

k

∫

Γs
k

Ln(x)u(x) dΓ, (4.26)

where Γs
k =∑ns

q=1 Γ
s
k,q(outer) is the boundary of the smoothing domain Ωs

k .
Note that Equation 4.26 is exactly Equation 4.23. The above derivation

and analysis process shows that we can have an alternative procedure
to evaluate the smoothed strain, by independently evaluating each por-
tion of the subsmoothing domains of the smoothing domain and then
adding together. This can sometimes make the numerical implementa-
tions easier, because we do not need to worry whether the smoothing
domains are located on the boundary or located inside the problem domain.
Equation 4.26 or 4.23 stands, as long as the assumed displacement field is
continuous.

When the compatible strain field is easily available, Equation 4.19 for
smoothing domains with multiple subsmoothing domains becomes

εk = 1
As

k

∫

Ωs
k

ε̃(x) dΩ = 1
As

k

ns∑
q=1

As
k,q

1
As

k,q

∫

Ωs
k,q

ε̃(x) dΩ

︸ ︷︷ ︸
εk,q

= 1
As

k

ns∑
q=1

As
k,qεk,q,

(4.27)
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Fundamental Theories for S-FEM 103

which means that the smoothed strain in a smoothing domain is an area-
weighted average of the smoothed strains in these subsmoothing domains.
If the compatible strain in each subsmoothing domain is constant (such as
in a T3 or T4 element), we further have

εk = 1
As

k

ns∑
q=1

As
k,qε̃k,q, (4.28)

where ε̃k,q is the (constant) compatible strain of the qth subsmoothing
domain of Ωs

k .

4.5.7 Comments on Strain/Gradient Smoothing Techniques

Various smoothing techniques have been used for different purposes,
including in nonlocal continuum mechanics [15] to introduce size effects,
and in smoothed particle hydrodynamics [4–6] to approximate field func-
tions and their derivatives. Gradient smoothing was in fact used in the
well-known widely used FVM [7]. It was also used in formulating so-called
quasiconforming elements [8] and for the discretization of differential
operators based on nodes [9]. Strain smoothing was used to resolve mate-
rial instabilities [10] and spatial instability in nodal integrated mesh-free
methods [11]. It was also used in the so-called GSM to approximate the
derivatives using various types of properly nested smoothing domains
to construct strong-form models for solid mechanics problems [12], com-
pressible fluids [13,14], and incompressible fluids [16]. It was found that as
long as the smoothing operation is strictly used in all the gradient approx-
imations in a properly nested manner and no interpolation is used, stable
strong-form numerical models can be formulated [2]. The strain/gradient
smoothing technique is indeed a very powerful piece of numerical tech-
nique. In this book, the strain smoothing operation defined in Equation 4.23
will be applied to construct the strain field in finite element settings using
properly designed smoothing domains, leading to various S-FEM models.

The assumption given in Equations 4.20 and 4.23 simplifies to a great
extent the numerical treatments in S-FEM models. It can be shown that
the transformation from ε̃(x) to ε(x) defined in Equations 4.20 and 4.23
is an orthogonal projection [2]. We will also show in Section 4.7 that the
smoothed strain field satisfies the so-called orthogonal condition, which
ensures the variational consistency of S-FEM models.

A generalized gradient smoothing technique has recently been proposed
to allow the use of discontinuous displacement functions [17].Aso-called G

space theory [18,19] and W2 formulation of a wide class of computational
methods (compatible and incompatible) under the FEM and mesh-free
settings have also been established [17,18]. Detailed development in this
direction can be found in Refs. [2–19].
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104 Smoothed Finite Element Methods

4.5.8 Smoothed Strain–Displacement Matrix

Now, substituting Equation 4.2 into Equation 4.23, one obtains the
smoothed strain as

ε(x) =
Nn∑
I=1

BI(x) dI = [ B1(x) B2(x) · · · BNn(x)
]

︸ ︷︷ ︸
B(x)

d = B(x) d, (4.29)

where B is the global “smoothed strain–displacement” matrix. It is clear
that due to the sparseness of shape function matrix N (see Remark 4.5),
B is also extremely sparse, although it may be less sparse than the strain–
displacement matrix B̃ used in FEM. In an S-FEM model, BI(x) is nonzero
only for the set of nodes “supporting” the smoothing domainΩs

k that hosts
x. This set of nodes consists of all the nodes of elements contributing to the
smoothing domainΩs

k . For example, for ES-FEM using three-node triangu-
lar elements as shown in Figure 4.7, the sets of nodes are {A, B, C} for the
boundary edge m and {D, E, F, G} for the inner edge k. The “smoothed”
strain–displacement matrix BI is evaluated using

BI = 1
As

k

∫

Γs
k

Ln(x)NI(x) dΓ =
⎡
⎢⎣

b̄Ix 0

0 b̄Iy

b̄Iy b̄Ix

⎤
⎥⎦ (4.30)

with

b̄Ih = 1
As

k

∫

Γs
k

nh(x) NI(x) dΓ, h = x, y. (4.31)

The above line integration along Γs
k can be carried out using the Gauss

quadrature technique (for the 1D domain in this case) given in Section
3.15.1. When a linearly compatible displacement field along the bound-
ary Γs

k is used, one Gauss point is sufficient for the line integration along
each segment Γs

k,p of boundary Γs
k , and the above equation can be further

simplified to a summation form

b̄Ih = 1
As

k

ns
Γ∑

p=1

nh,p NI

(
xG

p

)
lp, h = x, y, (4.32)

where ns
Γ is the total number of boundary segments Γs

k,p ∈ Γs
k and xG

p is the
midpoint (Gauss point) of the boundary segment ofΓs

k,p, whose length and
outward unit normal are denoted as lp and nh,p, respectively.
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Fundamental Theories for S-FEM 105

When the created displacement function is continuous and the com-
patible strain–displacement B̃I(x) is attainable, from the definition of the
smoothed strain field ε̄ in Equation 4.23, it is easy to reveal the relationship
between the smoothed strain–displacement matrix BI and the standard
compatible strain–displacement matrix B̃I(x) used in FEM:

BI = 1
As

k

∫

Γs
k

Ln(x)NI(x)dΓ = 1
As

k

∫

Ωs
k

LdNI(x)dΩ = 1
As

k

∫

Ωs
k

B̃I(x)dΩ, (4.33)

which states that the smoothed strain–displacement matrix BI is the aver-
age of the standard compatible strain–displacement matrix B̃I(x) over the
smoothing domain Ωs

k .
Note that the higher-order derivatives can be readily obtained by recur-

sive application of Equation 4.23, as long as lower-order gradients can be
interpolated from nodal values [3,20]. For example, the second order of the
displacement gradients D2(u(x)) can be obtained from the first order of the
displacement gradients D1(u(x)) in the same way:

D2(u(x)) =
∫

Ωs
k

LdD1(u(x))
1

As
k

dΩ = 1
As

k

∫

Γs
k

Ln(x)D1(u(x)) dΓ. (4.34)

Note also that when we try to obtain the second derivative, the smoothing
domains used for the first derivatives do not have to (and often it is better
not to) be the same as those used for the second derivatives, as suggested
in Refs. [13,14,16].

4.6 Minimum Number of Smoothing Domains: Essential
to Stability

For an S-FEM model, the key to ensure the stability is the use of a sufficient
number of smoothing domains that are linearly independent. The inde-
pendence of smoothing domains is measured by the linear independence
of the columns of the global smoothed strain–displacement matrix [17].
When the smoothing domains are created associated with element mesh
entities (elements/cells, nodes, edges, or faces), and they do not overlap
and do not have any gap, these smoothing domains are linearly indepen-
dent. If, for example, a set of smoothing domains is created with different
sizes, some of them covering more than one element, this set of smoothing
domains can be dependent. To ensure the stability and hence the full rank
of the (global) smoothed stiffness matrix, a minimum number of linearly
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106 Smoothed Finite Element Methods

independent smoothing domains Nmin
s must be used. Based on the study

in Ref. [17], such a minimum number of smoothing domains should relate
properly to the number of unprescribed nodal unknowns Nu, depending
on the type of physical problems. The key consideration is to ensure that the
independent energy equations sampled by all these smoothing domains
are at least equal to the total number of unprescribed nodal unknowns Nu.

For 1D solid mechanics problem models with nf nodes fixed, we
immediately have Nmin

s = Nu = Nn − nf . This is because one node car-
ries only one unknown (displacement component in the x-direction), and
one energy equation can be sampled from one (independent) smoothing
domain.

For 2D solid mechanics problem models with nt (unconstrained) nodes
used for displacement field construction, the total number of unknowns
in the model should be Nu = 2nt, because one node carries two unknowns
(displacement components in the x- and y-directions). On the other hand,
the total number of energy equations that can be sampled from all
the smoothing domains should be 3Ns, because one smoothing domain
gives three independent equations to measure the strain energy norm
(each of three strain components produces strain energy independently).
Therefore, we must have Nmin

s = 2nt/3.
Exactly the same analysis can be done for 3D solid mechanics problem

models. We now summarize the discussions in Table 4.2 for solid mechanics
problems.

In general, it is found that among the four element mesh entities, ele-
ments, nodes, edges (for 2D problems), or faces (for 3D problems), the
number of elements is usually least followed by the number of nodes.
The number of edges and faces is always larger than that of nodes for
any discretization. Therefore, S-FEM models using smoothing domains
associated with edges (ES-FEM) or faces (FS-FEM) are always stable (spa-
tially and temporally) because the number of smoothing domains Ns is
always much larger than the minimum number of smoothing domains
Nmin

s . This will be shown in more detail in Chapters 7 and 8. For the
S-FEM model using smoothing domains associated with nodes (NS-FEM,

TABLE 4.2

Minimum Number of Smoothing Domains Nmin
s for Solid Mechanics

Problems with nt (Unconstrained) Total Nodal Unknowns

Dimension of the Problem Minimum Number of Smoothing Domains

1D Nmin
s = nt

2D Nmin
s = 2nt/3

3D Nmin
s = 3nt/6 = nt/2
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Fundamental Theories for S-FEM 107

see Chapter 6), it satisfies exactly the minimum number of smoothing
domains Nmin

s . An NS-FEM is spatially stable and hence works well for
static problems, but is temporally instable (see Remark 1.3) and hence does
not work well for dynamics problems without stabilization. For the S-FEM
model using smoothing domains associated with elements (cells) (CS-
FEM, see Chapter 5), the stability of the method is not ensured when
the whole element is used as one smoothing domain because the mini-
mum number of smoothing domains Nmin

s may or may not be satisfied,
depending on the setting of the problem. The element stiffness matrix
can hence contain spurious zero energy modes, and the global stiffness
matrix after imposing essential boundary conditions can be singular for
some problems. Therefore, the stability of CS-FEM will only be ensured
when more than one smoothing domain is used for each element. Details
of the stability analyses of the methods will be presented in the following
chapters.

Similar analysis can be done for heat transfer problems, for which each
node carries only one unknown (the temperature). There are however one
energy equation for 1D, two for 2D, and three for 3D problems. Table 4.3
lists the minimum number of smoothing domains Nmin

s for heat transfer
problems.

Remark 4.7 Convergence of the Smoothed Strain Field

Because the weight functions used in a smoothed model satisfy the condi-

tions listed in Section 4.5.3, when Ωs
k → 0,

�

W(xk − x) → δ(xk − x). At such
a limit, Equation 4.16 becomes

lim
Ωs

k→0
ε(xk) = lim

Ωs
k→0

∫

Ωs
k

ε̃(x) δ(xk − x) dΩ = ε̃(xk) . (4.35)

This means that when the smoothing domain is refined, the smoothed
strain field approaches the compatible strain field.

TABLE 4.3

Minimum Number of Smoothing Domains Nmin
s for Heat Transfer

Problems with nt (Unconstrained) Total Nodal Unknowns

Dimension of the Problem Minimum Number of Smoothing Domains

1D Nmin
s = nt

2D Nmin
s = nt/2

3D Nmin
s = nt/3

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
03

 1
0 

M
ay

 2
01

6 



108 Smoothed Finite Element Methods

4.7 Smoothed Galerkin Weak Form

S-FEM uses the so-called smoothed Galerkin weak form that is defined
as [2]

Ns∑
k=1

As
k

⎛
⎜⎝ 1

As
k

∫

Γs
k

Ln(x)δu(x)dΓ

⎞
⎟⎠

T

︸ ︷︷ ︸
δε̄T

k

c

⎛
⎜⎝ 1

As
k

∫

Γs
k

Ln(x)ū(x)dΓ

⎞
⎟⎠

︸ ︷︷ ︸
ε̄k

−
∫

Ω

δuTb dΩ−
∫

Γt

δuTt dΓ = 0 (4.36)

or simply as

Ns∑
k=1

As
kδε̄

T
k cε̄k −

∫

Ω

δuTb dΩ−
∫

Γt

δūTt dΓ = 0, (4.37)

where Ns is the number of smoothed domains used for the entire problems
domain, As

k is the area of the kth smoothing domain, u ∈ H
1
0,h(Ω; Rd), b ∈

L
2(Ω; Rd) is the external body force applied over the problem domain,

t ∈ L
2(Γt; Rd) is the external traction force applied on the natural boundary

of the problem domain, and each of the components of strain ε̄k defined
by Equation 4.23 lives in L

2(Ω; R1) space.

Theorem 4.1: Smoothed Galerkin: Stability and Convergence to an
Exact Solution

1. The S-FEM models formulated using the smoothed Galerkin weak
form defined in Equation 4.36 are variationally consistent.

2. The smoothed Galerkin model is (spatially) stable, if at least the
minimum number of independent smoothed domains defined in
Table 4.2 is used in creating the model.

3. The solution of such a smoothed Galerkin model converges to the
exact solution of a physically well-posed linear elasticity problem
with stable material, when the mesh is refined.

Proof. We first examine item (1). We start with the following single-
field Hellinger–Reissner weak form that is proved to be variationally
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Fundamental Theories for S-FEM 109

consistent [2,21,22]:

∫

Ω

δ

[
−1

2
�
ε

T
(u)c�

ε(u) + �
ε

T
(u)c(Ldu)

]
dΩ−

∫

Ω

δuTb dΩ+
∫

Γt

δuTtΓdΓ = 0,

(4.38)

where u ∈ H
1
0,h(Ω; Rd) and �

ε(u) is the strain field that is “somehow”
obtained using u. In our S-FEM models, we have

�
ε(u) = ε(u). (4.39)

Equation 4.38 becomes

∫

Ω

δ

[
−1

2
εT(u)cε(u) + εT(u)c(Ldu)

]
dΩ−

∫

Ω

δuTb dΩ+
∫

Γt

δuTtΓdΓ = 0.

(4.40)

Because u ∈ H
1
0,h(Ω; Rd), b ∈ L

2 (Ω; Rd), t ∈ L
2 (Γt; Rd), and ε̄ij ∈

L
2 (Ω; R1), all the energy terms in Equation 4.36 are bounded from above.

We also note that the restrictions on force terms b ∈ L
2 (Ω; Rd) and t ∈

L
2 (Γt; Rd) are sufficient (may be not necessary) for such a bound. This

means that we do not consider forces such as point forces (that are not
squarely integrable), although it may be included for some cases (e.g.,
point force in the 1D case).

Also, because of u ∈ H
1
0,h(Ω; R1), ε̄ij ∈ L

2(Ω; R1), and the occasional
forgiving property of Lebesgue integration (see Remark 3.1), domain
integration in the first term in the foregoing equation can be changed
to a summation of integrals over all the smoothing domains that are
nonoverlapping and no-gap. We thus have

Ns∑
k=1

δ

⎡
⎢⎣−

∫

Ωs
k

1
2
εT

k (u)cε̄k(u) dΩ+
∫

Ωs
k

εT
k (u)c(Ldu) dΩ

⎤
⎥⎦

−
∫

Ω

δūTb dΩ+
∫

Γt

δuTtΓdΓ = 0. (4.41)
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110 Smoothed Finite Element Methods

Using the fact that smoothed strain in our S-FEM model is assumed to
be constant in the smoothing domain Ωs

k , we immediately obtain

∫

Ωs
k

εT
k (u)c (Ldu) dΩ = εT

k (u)c
∫

Ωs
k

(Ldu)

︸ ︷︷ ︸
As

kεk

dΩ = As
kε

T
k (u)cε̄k(u)

=
∫

Ωs
k

εT
k (u)cε̄k(u) dΩ, (4.42)

which is the so-called local orthogonal condition for any of these
smoothing domains [1,23]:

∫

Ωs
k

εT
k (u)c (Ldu) dΩ =

∫

Ωs
k

εT
k (u)cε̄k(u) dΩ. (4.43)

Substituting the foregoing equation back to Equation 4.41 gives

Ns∑
k=1

δ

⎡
⎢⎣

∫

Ωs
k

1
2
εT

k (u)cε̄k(u) dΩ

⎤
⎥⎦−

∫

Ω

δūTb dΩ+
∫

Γt

δuTtΓ dΓ = 0. (4.44)

Moving the variation operator into the blanket, and using the fact that
strain is constant in Ωs

k , leads to Equation 4.37 or 4.36. Therefore, the
smoothed Galerkin formulation is variationally consistent, and the solution
will converge if the solution is stable.

Next, on item (2), we examine the stability of the solution. Because the
smoothed domains created in the S-FEM models are independent and at
least a minimum number of smoothed domains defined in Table 4.2 are
used in creating the model, all the columns of the smoothed strain matrix
will be linearly independent [18]. Therefore, the first term in Equation 4.36
will also be strictly larger than zero for any u ∈ H

1
0,h(Ω; Rd), and the stiffness

matrix created will be SPD, as long as c is SPD. Therefore, the S-FEM models
will be stable as long as the material is stable [18].

We piece together all these points and conclude that the solution of the
smoothed Galerkin model is stable and convergent. Finally, on item (3),
we examine the convergence of the solution. When the mesh is refined,
the dimension of the elements approaches zero and the dimension of
the smoothing domains also approaches zero. Based on Remark 4.7, the
smoothed strain field will converge to the compatible strain field, and hence
the smoothed Galerkin model approaches the standard Galerkin model.
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Fundamental Theories for S-FEM 111

Because the solution of a standard Galerkin model has already been proved
to converge to the exact solution of a physically well-posed linear elastic-
ity problem with stable material, the solution of the smoothed Galerkin
model will also converge to the exact solution of the same problem. This
completes the proof of the theorem. �

A proof on the variational consistency of S-FEM models based on matrix
formulation can be found in Ref. [24].

For dynamic problems, all we need is to add in the inertial term. There-
fore, the smoothed Galerkin weak form for dynamic problems can be
written as [2]

Ns∑
k=1

As
kδε̄

T
k cε̄k −

∫

Ω

δuTb dΩ−
∫

Γt

δuTt dΓ+
∫

Ω

ρδuT ¨̄u dΩ = 0. (4.45)

Remark 4.8 W 2 Formulation

In using the standard weak formulation in FEM, we need to assume the
displacement field and upon which we need to perform the differentia-
tion to obtain the strain field to be fed into the Galerkin weak form. In
our S-FEM models, however, we use the smoothed Galerkin weak form
that uses the smoothed strain field. From Equation 4.36, we observe that
in the smoothed Galerkin weak form, we need only the assumed displace-
ment and no derivatives of the assumed displacement field are required.
This means that the consistency requirement on the assumed displacement
function is further weakened from the weak formulation. Therefore, S-FEM
models are considered as a W2 formulation, a term coined in Ref. [18] for
general mesh-free settings.

4.8 Discretized Linear Algebraic System of Equations

Substituting Equations 4.2 and 4.29 into Equation 4.37, we have the
standard discretized algebraic system of equations

K d = f̃, (4.46)

where d ∈ R
dNn
0 is the vector of nodal displacements for all the nodes in the

S-FEM model, and K is the smoothed stiffness matrix given in the general
form of

K =
∫

Ω

BcB̄ dΩ. (4.47)
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112 Smoothed Finite Element Methods

Because of the extreme sparseness of the B matrix, we will not in practice
use the foregoing equation to compute K. Instead, we compute only the
following entries:

KIJ =
∫

Ω

B
T
I cBJ dΩ =

Ns∑
k=1

∫

Ωs
k

B
T
I cBJ dΩ =

Ns∑
k=1

B
T
I cBJAs

k , (4.48)

which is the substiffness matrix for nodes I in relation to J, in a similar
manner as in the standard FEM, except that the summation for S-FEM is
performed over smoothing domains and not over elements. We now note
the following:

1. In Equation 4.46, K is SPD as long as the conditions given in
Theorem 4.1 are satisfied.

2. The load vector f̃ does not carry a bar-hat, because no smoothing
function is applied to the linear functional in S-FEM models. The
load vector is therefore computed in exactly the same way as in
FEM.

3. In Equation 4.48, we see that in computing KIJ no numerical
integration is needed.

4. Furthermore, KIJ needs to be computed only when nodes I and J
share the same smoothing domain. Otherwise, it is zero. Hence, K
will be also sparse.

Hence, Equation 4.46 can be formed efficiently and solved with ease
using standard routines because K is SPD and sparse.

Also note that K will be banded if the nodes are properly numbered, as
that in FEM. For S-FEM models, the bandwidth of K will be determined
by the largest difference of node numbers of the nodes of the elements
contributing to the smoothing domains. Specifically, when the smoothing
domains are located inside the elements such as in CS-FEM, the bandwidth
of K will be the same as that of K̃ in FEM. This is because the number of
nodes related to the smoothing domains is identical to that related to the
elements. However, when the smoothing domains cover parts of adjacent
elements such as in NS-FEM, ES-FEM, or FS-FEM, the bandwidth of K
will be larger than that of K̃ in FEM. This is because the number of nodes
supporting the smoothing domains is larger than that of the elements.

From Equations 4.23, 4.30, and 4.32, it is seen that numerical integration
on the domain Ωs

k can now be transferred to integration on the boundary
of the smoothing domain Γs

k . This is why no derivative of shape func-
tions is involved in computing the field gradients and only shape function
values at some Gauss points along the boundaries of smoothing domains
are needed. This makes the computing procedure of the stiffness matrix
in S-FEM models easier than that in the standard FEM. We directly use
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Fundamental Theories for S-FEM 113

the shape functions, and not the derivative of shape functions, to calcu-
late the stiffness matrix via line integration along the boundaries of the
smoothing domains. No mapping is needed. Finally, the line integrations
can be performed easily using the Gaussian integration technique detailed
in Section 3.15.

4.9 Solve the Algebraic System of Equations

Because the stiffness matrix K of our S-FEM model will be SPD, we can then
solve the algebraic system of Equations 4.46 for a unique solution for the
nodal displacements. The procedure is exactly the same as in the standard
FEM: using routinely available linear equation solvers. The solution will
approach the exact solution of the original problem with square integrable
external forces when the mesh is refined. After the nodal displacements
are obtained, we can retrieve the displacement field using Equation 4.2,
the smoothed strain field using Equation 4.29, and the stress field using
the constitutive equation. Finally, the solution of the strain energy of the
solid can be obtained via integration over the entire problem domain using
the strain and stress solutions.

4.10 Error Assessment in S-FEM and FEM Models

To examine the accuracy and efficiency, the results of the S-FEM models
will be compared with those of the standard FEM as well as the analytical
or reference solutions. For quantitative study of the error and convergence
rate of these numerical methods, two types of error norms are used in this
book, that is, displacement norm and the so-called energy norm [25]. For
meshes of the standard elements, T3, Q4, T4, and H8 (for FEM only), these
error norms are evaluated based on elements, and hence applicable to both
S-FEM and FEM models.

4.10.1 Displacement Norm

The displacement norm is defined as

ed =
∥∥∥u − �u

∥∥∥
L2(Ω;Rd)

=
⎛
⎝ ∫

Ω

(
u − �u

)T (
u − �u

)
dΩ

⎞
⎠

1/2

=
⎛
⎜⎝

Ne∑
i=1

∫

Ωe
i

(
u − �u

)T (
u − �u

)
dΩ

⎞
⎟⎠

1/2

, (4.49)
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114 Smoothed Finite Element Methods

where u is the exact (or analytical or reference) solution for the displace-
ments and �u is the numerical solution for the displacements obtained using
a numerical model.

The displacement norm defined in Equation 4.49 can be used for both
S-FEM and FEM models; the comparison is fair and rigorous as long as
the same mesh is used.

4.10.2 Energy Norm

The “energy norm” is defined by

ee =
⎡
⎣ ∫

Ω

1
2

(
ε − �

ε
)T

c
(
ε − �

ε
)⎤⎦

1/2

=
⎡
⎢⎣

Ne∑
i=1

∫

Ωe
i

1
2

(
ε − �

ε
)T

c
(
ε − �

ε
)⎤⎥⎦

1/2

, (4.50)

where ε is the exact (or analytical or reference) solution for the strains and �
ε

is the numerical solution for the strains obtained using a numerical model.
It is clear that the error defined by the “energy norm” physically measures
the “energy caused by the distributed strain errors.”

In order to evaluate the integrals in Equations 4.49 and 4.50 accurately, the
mapping procedure using Gauss integration is performed on each element
with a summation on all elements. In each element, a proper number of
Gauss points, depending on the order of the integrand, will be used. For
example, when a mesh of Q4 elements is used, and if the analytical strain
ε is of the order of 2 leading to a fourth-order integrand in Equation 4.50, a
set of 3 × 3 Gauss points is then used for each element. This is to ensure that
there is no additional error introduced in the error assessment procedure.

4.10.3 Recovery Strain/Stress Field in S-FEM Models

In FEM, the strain (or stress) obtained in an element is continuous. Hence,
the evaluation of integrals in Equation 4.50 using Gauss integration in each
element in the FEM can be performed easily.

In S-FEM models, however, the strain (or stress) obtained is in general not
continuous within an element. It is piecewise constant and discontinuous at
the boundaries of smoothing domains located inside elements. Therefore in
S-FEM models, it is necessary to create a continuous strain field in each ele-
ment for easy evaluation of the integrals in Equation 4.50. In this book, we
construct a “recovery” strain (or stress) field denoted as ε̄R using the “raw”
strain values ε at the nodes of the element. Such a recovery strain field ε̄R

is continuous not only inside the element but also on the whole problem
domain, and will usually be used as the final numerical results of the strain
field of S-FEM models and in the error estimation using Equation 4.50. This
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Fundamental Theories for S-FEM 115

recovery strain field ε̄R improves the strain solution smoothness of S-FEM
models, and also serves as a “reference” solution for establishing error
indicators for adaptive analysis. Therefore, it is of importance.

For S-FEM models using the standard elements (T3, Q4 and T4), ε̄R is
obtained for each element in the mesh using

ε̄R =
ne

n∑
j=1

Nj(x) ε
(
xj
)
, (4.51)

where ne
n is the number of nodes of the element, ε

(
xj
)

is the vector contain-
ing the strain components at nodes xj of the element obtained using S-FEM
models, and Nj(x) is the matrix of the shape functions arranged properly
for the element. The shape function is the same as that used in the standard
FEM. For T3 elements, it is defined by Equation 3.89. For Q4 elements, it
is defined by Equation 3.95, and for T4 elements, it is defined by Equation
3.105. The recovery strain solution defined in Equation 4.51 is termed as
the linear (for T3 and T4) or bilinear (for Q4) recovery strain solution field.

4.10.4 Evaluation of Strain at Nodes in S-FEM Models

In the numerical implementation of S-FEM models (except for NS-FEM,
which directly produces the strain values at nodes), the strains (or stresses)
at node j will be the (area-weighted) averaged value of the “raw” strains (or
stresses) of the smoothing domains Ωs

k around node j, and are computed
numerically by

ε
(
xj
) = 1

Ans
j

nj
s∑

k=1

εk As
k , (4.52)

where nj
s is the number of smoothing domains Ωs

k around node j,

Ans
j =∑nj

s
k=1 As

k is the total area/volume of all smoothing domains Ωs
k

around node j, εk is the smoothing strain of the smoothing domain Ωs
k ,

and As
k is the area/volume of the smoothing domain.

Figure 4.10 shows, for example, smoothing domains used to compute
the strain (or stress) of nodes in ES-FEM using three-node triangular
elements (T3).

4.10.5 Recovery Strain/Stress Field in FEM Models

To conduct a thorough examination of S-FEM solutions in the strain (stress)
field, we need to assess the accuracy of the FEM solution in the strain
(stress) field using the same set of nodes. For FEM models, because the
strains (stresses) in the elements are already continuous, Equation 4.50 can
be evaluated directly, and hence we do not have to compute a recovery
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116 Smoothed Finite Element Methods

The smoothing domains used to calculate
strain (or stress) at the node j in the ES-FEM

j

: Field nodes : Centroids of triangles 

FIGURE 4.10 Smoothing domains used to compute the strain (or stress) of the nodes in
ES-FEM using three-node triangular elements (T3).

strain solution field. However, we know that the recovery strain solution
is much more accurate for FEM models, and we have the so-called super-
convergence property [26,27]. To conduct “fairest” possible comparisons
between S-FEM and FEM models, we will also often use the recovery strain
solutions for FEM models. The recovery strain solution ε̃R is obtained using

ε̃R =
ne

n∑
j=1

Nj(x) ε̃
(
xj
)
. (4.53)

It is clear that Equation 4.53 is exactly the same as Equation 4.51, except
that ε̃(xj) is the vector containing compatible strain components at nodes
xj of the element obtained using the FEM model. However, obtaining the
highly accurate nodal strain ε̃(xj) is quite complicated for Q4 and H8
elements, and is detailed in the following section.

4.10.6 Evaluation of Strains at Nodes in FEM Models

For T3 and T4 elements, the nodal ε̃(xj) strain at a node is obtained in a
similar manner as in the S-FEM models: an area-weighted averaged strain
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Fundamental Theories for S-FEM 117

at the centroids of elements surrounding the node, that is,

ε̃
(
xj
) = 1

Ane
j

nj
e∑

i=1

ε̃i(xc) Ae
i , (4.54)

where nj
e is the number of elementsΩe

i around node j, Ane
j =∑nj

e
i=1 Ae

i is the
total area of all the elements around node j, ε̃i(xc) is the compatible strain
evaluated at the centroid of the element, and Ae

i is the area of the element.
Figure 4.11 shows, for example, the T3 elements used to compute the nodal
strain (or stress) for node j, and the element strains (or stresses) located at
the centroids of triangular elements in an FEM-T3 model.

For Q4 and H8 elements, the computation of nodal strain ε̃(xj) is much
more involved, because the strain in the elements is not constant and is only
computed at the Gauss integration points. An extrapolation from the strain

The elements used to calculate strain
(or stress) at the node j in the FEM

C
A

B

j

The element strain (or stress) located at
the centroid of the element (ABC) in the FEM

: Field nodes : Centroid of triangles

FIGURE 4.11 Elements used to compute the strain (or stress) of the node shared by all
these elements, and the element strains (or stresses) located at the centroids of the triangular
elements in an FEM-T3 model.
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118 Smoothed Finite Element Methods

values at these Gauss points in the element onto the field (element) nodes of
the element is therefore necessary [28]. In addition, it is expected that these
strains extrapolated at the same nodal point from adjacent elements will
not generally be the same, since the stresses are not continuous in an FEM
model. Therefore, an area-weighted average (similar to Equation 4.55) of
these extrapolated strains is computed for the node. In summary, we have
the following three-step procedure to compute the nodal strain ε̃(xj) [28]:

1. Evaluate the strains at these Gauss points in the element
2. Extrapolate these strains to the nodes of the element
3. Average these strains computed for the same field node from the

adjacent elements

The implementation of steps (1) and (3) is straightforward, and hence
requires no further elaboration. It is, however, necessary to elaborate in
more detail the extrapolation process in step (2), for which we choose a four-
node bilinear (Q4) element as an example. As presented in Section 3.15.2, a
set of 2 × 2 Gauss points is needed for a Q4 element to evaluate accurately
the stiffness matrix. These Gauss points are marked as #1′, #2′, #3′, and
#4′ in Figure 4.12a, in the same counterclockwise fashion as in the node
numbering of the element. The coordinates of these Gauss points and field
nodes in the natural coordinate system Oξη are listed in Table 4.4.

The “Gauss element” bounded by these four Gauss points is now con-
sidered as a “standard (natural) element,” as shown in Figure 4.12b. The
(natural) coordinates of the Gauss element, ξ′ and η′, and ξ and η, have the
following simple relations,

ξ = ξ′/√3, η = η′/
√

3, ξ′ = ξ√3, η′ = η√3, (4.55)

η

4

1 2

3

ξ

(a)

1′ 2′

4′ 3′

(b)

η

ξ

1′

1

4

4′

2′

2

3′

3

′

′

O O′

: Gauss points: Field nodes

FIGURE 4.12 Extrapolation from Gauss integration points to field nodes: (a) natural
coordinate system Oξη; (b) coordinate system for the “Gauss element” O′ξ′η′.
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Fundamental Theories for S-FEM 119

TABLE 4.4

Coordinates of the Nodes and Gauss Points in the Natural Coordinate System
Oξη for a Q4 Element

Field Nodes #1 #2 #3 #4
Gauss points #1′ #2′ #3′ #4′

ξ −1 1 1 −1 −1/
√

3 1/
√

3 1/
√

3 1/
√

3

η −1 −1 1 1 −1/
√

3 −1/
√

3 1/
√

3 −1/
√

3

TABLE 4.5

Coordinates of the Field Nodes and Gauss Points in the Natural
Coordinate System O′ξ′η′

Field Nodes #1 #2 #3 #4
Gauss points #1′ #2′ #3′ #4′

ξ −√
3

√
3

√
3

√
3 −1 1 1 −1

η −√
3 −√

3
√

3 −√
3 −1 −1 1 1

and the coordinates of the Gauss points and field nodes in the coordinate
system O′ξ′η′ of the Gauss element are listed in Table 4.5.

In an FEM-Q4 model, the strains at the Gauss points, ε̃j′ ( j′ = 1′, . . . , 4′),
are known, and the strains ε̃(ξ′,η′) at point (ξ′,η′) can be extrapolated using
the usual bilinear shape functions defined in the coordinates ξ′ and η′ as
follows:

ε̃
(
ξ′,η′) = [ ε̃1′ ε̃2′ ε̃3′ ε̃4′

]
⎡
⎢⎢⎢⎢⎣

N′
1
(
ξ′,η′)

N′
2
(
ξ′,η′)

N′
3
(
ξ′,η′)

N′
4
(
ξ′,η′)

⎤
⎥⎥⎥⎥⎦ , (4.56)

where

N′
1
(
ξ′,η′) = 1

4

(
1 − ξ′) (1 − η′) ,

N′
2
(
ξ′,η′) = 1

4

(
1 + ξ′) (1 − η′) ,

N′
3
(
ξ′,η′) = 1

4

(
1 + ξ′) (1 + η′) ,

N′
4
(
ξ′,η′) = 1

4

(
1 − ξ′) (1 + η′) .

(4.57)
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120 Smoothed Finite Element Methods

We can now extrapolate ε̃
(
ξ′,η′) to node #1 by letting ξ′ = η′ = −√

3 in
Equation 4.58. The same can be performed for the other three nodes #2, #3,
and #4, and finally we obtain

⎡
⎢⎢⎣

ε̃1
ε̃2
ε̃3
ε̃4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 1
2

√
3 −1

2
1 − 1

2

√
3 −1

2

−1
2

1 + 1
2

√
3 −1

2
1 − 1

2

√
3

1 − 1
2

√
3 −1

2
1 + 1

2

√
3 −1

2

−1
2

1 − 1
2

√
3 −1

2
1 + 1

2

√
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

ε̃1′
ε̃2′
ε̃3′
ε̃4′

⎤
⎥⎥⎦. (4.58)

After going through this carefully designed three-step procedure, the
recovery strain (stress) solution of an FEM-Q4 model will be very accu-
rate and will have the so-called superconvergence property. Such a model
is regarded as “optimal” and is denoted in this book as FEM-Q4-Re. It
poses a serious challenge to the S-FEM models, in the comparison study
based on the energy norm error measure. Note that a similar extrapolation
procedure can be performed for the H8 element for 3D problems. In later
chapters, we show that our S-FEM-T3 and S-FEM-T4 models will meet
these challenges, using only triangular types of elements. Note also that
such recovery operations used in FEM models help only the solution in
the strain field and cannot help in any way the displacement solution. The
S-FEM models, however, can improve solutions in both the displacement
and strain fields, which is demonstrated in later chapters through a large
number of examples.

4.10.7 Characteristic Length of the Sides of Elements

Note that in order to evaluate the convergence rates of the displacement
and energy norms, it is necessary to define the “characteristic length” of the
sides of the elements. Because the elements used in a mesh are different
in dimension and of irregular shape, some kind of average is needed to
determine the characteristic length. In this book, the characteristic length
h is defined (by default) as follows. For T3 elements, h is evaluated by

h =
√

2 AΩ
Ne

, (4.59)

where AΩ is the area of the whole problem domain.
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Fundamental Theories for S-FEM 121

For Q4 and n-sided polygonal elements, h is evaluated by

h =
√

AΩ
Ne

. (4.60)

For four-node tetrahedral elements, h is evaluated by

h = 3

√
6VΩ
Ne

, (4.61)

where VΩ is the volume of the whole problem domain.
For eight-node hexahedral elements ( just used for FEM), h is evaluated

by

h = 3

√
VΩ
Ne

. (4.62)

4.10.8 Error Assessment for n-Sided Polygonal Elements

When general n-sided polygonal elements (nCS-FEM, nNS-FEM, and
nES-FEM) are used, it is very difficult to perform these integrations in
Equations 4.49 and 4.50. In addition, the standard FEM cannot use these
n-sided polygonal elements, and hence rigorous comparison is not needed.
We, therefore, use the following simpler error norms.

The displacement norm for S-FEM models using n-sided polygonal
elements is defined using nodal displacement values:

ed =
∑Ndof

i=1 ui − ūi∑Ndof
i=1 |ui|

× 100%, (4.63)

where ui is the exact displacement at node i, ūi is the numerical dis-
placement at node i, and Ndof is the total number of DOFs of the
problem.

The energy norm for S-FEM models is defined as

ee =
⎛
⎝1

2

Ns∑
k=1

(ε − εk)
T c (ε − εk) As

k

⎞
⎠

1/2

, (4.64)

where ε̄k and As
k are smoothing strain and area of the smoothing domainΩs

k ,
respectively, ε is the analytical strain computed at nodes (for comparison
with nNS-FEM), at edge-mid-points (for comparison with nES-FEM), or
at central points of the smoothing domains Ωs

k (for comparison with nCS-
FEM), and Ns is the total number of smoothing domains.
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122 Smoothed Finite Element Methods

4.10.9 Error in Strain Energy

When using Equation 4.50, there are difficulties in the numerical inte-
gration, depending on the problem. On the other hand, when using
Equation 4.64, there can be comparability problems (see Section 4.10.10).
Therefore, we use the following alternative error indicator for “errors in
strain energy solution” or “strain energy error”:

ee =
√∣∣Eref − Enum

∣∣
Eref , (4.65)

where Enum is the solution of strain energy obtained from a numerical
model and Eref is the reference solution of strain energy that can be the
exact solution (if available) or obtained using a very fine mesh. These
strain energies are evaluated using Equation 3.83 where integration over
the entire problem domain is needed. Because Enum and Eref are evaluated
separately, these equations can be done easily based on either the elements
or the smoothing domains. We can also use Equation 4.65 to study the
convergence rate of a numerical model by changing the mesh density, but
such a rate will be different from that obtained using Equation 4.50 for the
same model, although they are “equivalent” in convergence (not the rate).
More discussion is given in the following section.

4.10.10 On Different Norms

Note that compared to Equations 4.49 and 4.50, Equations 4.63 and 4.64 are
much more convenient and cheap to use. It can be used essentially for all
types of elements. Equation 4.63 should be equivalent to Equation 4.49 in
terms of the convergence rate but not on the actual values. Because Equa-
tion 4.63 is equivalent to Equation 4.49, and it is very easy to evaluate,
it is used in all S-FEM models using n-sided polygonal elements as well
as in patch tests for all models and for all types of elements used in this
book, where the comparison with FEM models is not on the agenda. Equa-
tion 4.49 is used for all FEM and S-FEM models using T3, Q4, T4, and H8
(for FEM only) elements, so that comparisons can be made in a common
norm familiar to many.

Equations 4.50 and 4.64 will be different in both the actual values and
the convergence rates. This is because the exact solutions are evaluated
accurately in Equation 4.50 by using the Gauss integration rules, while
the exact solutions in Equation 4.64 are only sampled at a point inside
the smoothing domain. Equation 4.50 also has the same form as that of
Equation 3.83 used for the standard FEM: it is the standard form used in
FEM models. Equation 4.50 is used for all FEM and S-FEM models using
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Fundamental Theories for S-FEM 123

T3, Q4, T4, and H8 (for FEM only) elements, so that comparisons can be
made in a common norm. Equation 4.64 is only used for measuring errors
of n-sided polygonal elements, where the comparison with FEM is not on
the agenda, because FEM does not use n-sided polygonal elements.

Note that comparisons are also often made in strain energy error defined in
Equation 4.65, which is a global measure of the solution total strain energy
in the system, and it should be fair to all the models involved in the com-
parison. It is mostly used to show the upper and lower bound properties
of numerical models. In such a case, however, the rate of convergence can-
not be checked against the theoretically predicted values given in Theorem
3.4, because of the difference in the norm measure. Therefore, care must be
taken in interpreting such comparisons.

Remark 4.9 Norm Measure ‖ · ‖
G1(Ω;Rd)

Note that we can also use the so-called norm ‖ · ‖
G1(Ω;Rd) to measure the

solution error based on G space theory [17–19] (which is the same as that
given in Equation 4.64 for S-FEM models). We choose not to use it when-
ever the comparison study is performed against the standard FEM model,
because of the possible arguments on fairness. In this book, we use the
norm ‖ · ‖

H1(Ω;Rd) for all models when such a comparison is conducted.

4.11 Implementation Procedure for S-FEM Models

The numerical procedure for S-FEM models is outlined as follows:

1. Divide the problem domain into a set of elements and obtain
information on node coordinates and element connectivity

2. Create the smoothing domains and determine the area/volume of
the smoothing domains Ωs

k and the information of the nodes of
elements that support each of the smoothing domains

3. Loop over smoothing domains Ωs
k

a. Determine the outward unit normal of each boundary seg-
ment/area for the smoothing domain

b. Compute the smoothed strain-displacement matrix BI

c. Evaluate the smoothed stiffness matrix KIJ and load vector of
the current smoothing domain

d. Assemble the contribution of the current smoothing domain to
form global matrices and vectors

4. Implement essential boundary conditions
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124 Smoothed Finite Element Methods

5. Solve the linear system of equations to obtain nodal displacements
6. Evaluate strains and stresses at locations of interest

Note that in our theoretical derivations, we require the assumed displace-
ment solution u ∈ H

1
0,h(Ω; Rd), meaning that the essential boundary con-

ditions are satisfied when the displacement field is assumed. In this way,
the theoretical presentation can be nicely performed and the properties of
the model can be examined conveniently. In the practical implementation
and coding, however, the essential boundary conditions are imposed only
after the system of equations is established. This is more convenient and is
made possible because the shape functions constructed and used for cre-
ating the displacement field have the important Delta function properties
(see Remark 4.1). This practical approach of treating the essential bound-
ary conditions is exactly the same as in FEM: essentially by removing (or
modifying) the rows and columns of the stiffness matrix [29].

4.12 General Properties of S-FEM Models

Property 4.1 Smoothed Strain Field: Incompatible

1. When the smoothing domain locates within the element such as in
CS-FEM, the smoothed strains defined in Equation 4.23 will not be
compatible in terms of strain–displacement relations (meaning that
the strain–displacement relation is not satisfied) unless the assumed
displacement field is linear.

2. When the smoothing domain covers parts of adjacent elements
such as in NS-FEM, ES-FEM, or FS-FEM, the assumed smoothed
strains defined in Equation 4.23 will not be compatible in terms
of the strain–displacement relation for any assumed continuous
displacement field.

We first examine item (1). When the smoothing domain locates within
the element such as in CS-FEM, if the order of the assumed displacement
field is higher than first order, the compatible strain produced by Equa-
tion 4.13 will not be constant. The constructed smoothing strains defined
in Equation 4.23 are however constant in a smoothing domain. Hence the
compatibility condition (the strain–displacement relation) is violated.

We then examine item (2). When the smoothing domain covers parts of
adjacent elements such as in NS-FEM, ES-FEM, or FS-FEM, the smoothed
strain given in Equation 4.23 is the area-weighted average of compati-
ble strains over portions of the elements forming the smoothing domain.
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Fundamental Theories for S-FEM 125

Because the strains in these elements will in general be different, the aver-
age strain will be different from these element strains for any assumed con-
tinuous displacement field. Hence the compatibility condition is violated.

Property 4.1 (1) implies that the stress equilibrator in CS-FEM will destroy
the compatibility in terms of the strain–displacement relation in smoothing
domains for assumed displacement fields of bilinear or higher order. It
also implies that when the linear displacement field is used (three-node
triangular element), CS-FEM will be identical to the standard FEM, because
the stress equilibrator is idle to a constant stress field derived from the linear
displacement field. CS-FEM can therefore only be applied with significance
to elements of higher order.

Property 4.1 (2) implies that the stress equilibrator in NS-FEM, ES-
FEM, and FS-FEM will destroy the compatibility in terms of the strain–
displacement relation in smoothing domains for any assumed continuous
displacement field. Therefore, NS-FEM, ES-FEM, and FS-FEM will be quite
different from FEM using any elements. Therefore, an S-FEM model is,
in general, said to be partially compatible in comparison with the fully
compatible FEM models (see Remark 3.4).

These violations of compatibility in terms of strain–displacement rela-
tions give S-FEM models very important softening effects and hence some
important properties.

Property 4.2 Stress Equilibrium State within Smoothing Domains

The assumed smoothing strains defined in Equation 4.23 ensure a
stress equilibrium state within the smoothing domain where there is no
body force.

This can be observed easily based on the assumption made in Equa-
tion 4.23: the assumed smoothing strains become constants at any point
in the smoothing domain. Therefore, the stresses obtained will also be
constant in a smoothing domain. These constant stresses satisfy the
equilibrium Equation 2.7 for free external loadings.

Property 4.2 is a simple but quite powerful statement: applying the strain
smoothing technique to an smoothing domain in the problem domain
results in a stress equilibrium status in the smoothing domain. We, there-
fore, call the smoothing operation a local stress equilibrator. Based on the
minimum complementary principle [30], we know that if the stress field
satisfies exactly the equilibrium equations and boundary conditions, we
shall obtain an exact upper bound solution. Our S-FEM models will not
satisfy the equilibrium equation for every point in the problem domain, but
will in all satisfy the smoothed domains. When the smoothing domains are
constructed properly to provide sufficient softening effects, we can expect
an upper bound solution. This is often confirmed by the NS-FEM [31] that
will be discussed in Chapter 6 in detail.
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126 Smoothed Finite Element Methods

Property 4.3 Energy Consistency

S-FEM models are energy consistent when the assumed displacement is com-
patible (or the nodal shape functions are continuous) along the boundaries
of smoothing domains.

This remark can be verified by observing a unique “complementary”
situation for S-FEM models. On the one hand, equilibrium is ensured
within each smoothing domain, as shown in Property 4.2, but compatibility
is destroyed within the smoothing domain, as shown in Property 4.1. On
the other hand, on the boundaries of the smoothing domains equilibrium
and stress continuity are not guaranteed, but displacement continuity is
ensured on the common boundaries of the smoothing domains due to the
use of continuous nodal shape functions. It is this unique complementary
satisfaction of equilibrium or compatibility conditions within the smoothing
domains and on the boundaries of the smoothing domains that ensures
no energy loss in any of the violation of equilibrium or compatibility con-
ditions. We therefore state that S-FEM models are energy consistent when
the assumed displacement is compatible or the nodal shape functions are
continuous along the boundaries of smoothing domains.

Property 4.3 reveals the essential physical reason for why S-FEM models
are variationally consistent: conservation of energy.

Theorem 4.2: Softening Effect [32]

For any given admissible (nonzero) displacement field v ∈ H
1
0,h(Ω; Rd) ⊂

H
1
0(Ω; Rd), the strain energy Ē(v) for an S-FEM model obtained from the

smoothed strains is no larger than the strain energy Ẽ(v) for an FEM model
of the compatible displacement field:

Ē(v) ≤ Ẽ(v) , (4.66)

in which

Ē(v) = 1
2

∫

Ω

ε̄T(v) cε̄(v) dΩ = 1
2

Ns∑
k=1

∫

Ωs
k

εT
k cε̄k dΩ = 1

2

Ns∑
k=1

εT
k cε̄kAs

k , (4.67)

Ẽ(v) = 1
2

∫

Ω

(ε̃(v))T cε̃(v) dΩ = 1
2

Ns∑
k=1

∫

Ωs
k

ε̃Tcε̃ dΩ, (4.68)

where ε = ε(v) by Equation 4.23 is the smoothed strain in an S-FEM model
and ε̃ = Ldv is the compatible strain obtained in the FEM. The equality in
Equation 4.66 is attained only when there is no smoothing effect in all the
smoothing domains: ε̄k = ε̃ for all Ωs

k(k = 1, 2, . . . , Ns).

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
03

 1
0 

M
ay

 2
01

6 



Fundamental Theories for S-FEM 127

Proof. Examine the following equation on the smoothing domain Ωs
k :

∫

Ωs
k

(εk − ε̃)T c (ε̄k − ε̃) dΩ =
∫

Ωs
k

ε̄T
k cε̃k dΩ− 2

∫

Ωs
k

εT
k cε̃ dΩ+

∫

Ωs
k

ε̃Tcε̃ dΩ.

(4.69)

Using orthogonal condition (4.43) and the fact that c is SPD, we have
∫

Ωs
k

(εk − ε̃)T c(εk − ε̃) dΩ

︸ ︷︷ ︸
≥0

=
∫

Ωs
k

ε̃Tcε̃ dΩ−
∫

Ωs
k

εT
k cε̄k dΩ ≥ 0, (4.70)

which combines with Equations 4.67 and 4.68 to give Equation 4.66.
Now, on the equality, it is clear that when there is no smoothing effect in

all the smoothing domains, εk = ε̃ for allΩs
k(k = 1, 2, . . . , Ns), the left-hand

side of Equation 4.70 is strictly zero, and hence the equality in Equation 4.66
is attained. If there is at least one Ωs

k where there is some smoothing effect
and εk �= ε̃, the left-hand side of Equation 4.70 is strictly larger than zero,
and will have

E (v) < Ẽ (v) . (4.71)

This completes our proof. �

Equation 4.66 can be expressed in a discrete form of arbitrary (but admis-
sible) nodal displacement h ∈ R

dNn
0 (where R

dNn
0 is a finite space of vectors

of nodal displacement functions with a dimension of dNn, and the essential
boundary conditions are satisfied at all the essential boundary nodes) as

1
2

hTKh︸ ︷︷ ︸
E(h)

≤ 1
2

hTK̃h︸ ︷︷ ︸
Ẽ(h)

, (4.72)

where the equality holds only when there is no smoothing effect in all the
smoothing domains: K = K̃.

Theorem 4.3: Upper Bound to the FEM Solution [32]

For an elastic solid mechanics problem, when the same mesh is used, the
strain energy obtained from the solution d ∈ R

dNn
0 of the S-FEM models is

no less than that from the FEM solution d̃ ∈ R
dNn
0 based on the compatible

displacement model:

E(d) ≥ Ẽ(d̃), (4.73)
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128 Smoothed Finite Element Methods

where

E(d) = 1
2

d
T

Kd̄, (4.74)

Ẽ(d̃) = 1
2

d̃TK̃d̃. (4.75)

The equality in Equation 4.73 is attained only when there is no smoothing
effect in all the smoothing domains: εk = ε̃ for all Ωs

k(k = 1, 2, . . . , Ns).

Proof. In this proof, we assume first that there is at least oneΩs
k where there

is some smoothing effect resulting in ε̄k �= ε̃. From Theorem 4.2, we have
the stick inequality Equation 4.71. Therefore, we have, for any admissible
and nonzero h,

1
2

hTK̃h − 1
2

hTKh︸ ︷︷ ︸
>0

= 1
2

hT(K̃ − K)h > 0. (4.76)

Equation 4.76 implies that matrix (K̃ − K) is SPD. In mechanics, it implies
that K̃ is “stiffer” than K. In addition, because of the SPD property of K̃,
the solution d̃ of FEM can be expressed as

d̃ = K̃−1f̃, (4.77)

where f̃ is the nodal force vector and is nonzero (or we will have only a
trivial zero solution). Because of the SPD property of K, the solution d̄ of
S-FEM models can be expressed as

d = K
−1

f̃. (4.78)

The difference between the strain energies of FEM and of the solution of
S-FEM models hence becomes

E(d) − Ẽ(d̃) = 1
2
(K

−1
f̃)TK(K

−1
f̃) − 1

2
(K̃−1f̃)TK̃(K̃−1f̃)

= 1
2

f̃TK
−1

f̃ − 1
2

f̃TK̃−1f̃

= 1
2

f̃T (K
−1 − K̃−1)︸ ︷︷ ︸

∵ SPD

f̃ > 0, (4.79)

which gives Equation 4.73. Here we used the fact that (K
−1 − K̃−1) is SPD.
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Fundamental Theories for S-FEM 129

Now, when there is no smoothing effect in all the smoothing domains,
εk = ε̃ for all Ωs

k(k = 1, 2, . . . , Ns), the smoothed Galerkin model is exactly
the same as the Galerkin model. In this case, we will surely have the equality
in Equation 4.73. This completes the proof of Theorem 4.3. �

Theorem 4.3 shows one very important property of S-FEM models. In
mechanics, this means that the S-FEM models are “softer” than the FEM
model. In other words, the common effect of the strain smoothing tech-
nique is the reduction of the overstiffness of the standard compatible FEM
model. This effect is called the “softening effect,” which contrasts with
the “stiffening effect” caused by the assumed displacement field using the
FEM shape functions in a conforming/fully compatible model. Due to the
softening effect, the strain energy of the S-FEM models becomes larger than
that of FEM.

Now, the following question naturally arises: How can we adjust the soft-
ening effect in the S-FEM models to ensure that the obtained solution gives
an upper bound in the strain energy compared with the exact strain energy
or gives a close-to-exact solution? All these questions will be addressed in
the following chapters.

Theorem 4.4: Monotonic Convergence Property [17]

On a division of domain Ω into a set of ND1
s smoothing domains Ω =∑ND1

s
k=1 Ω

s
k , if a new division ND2

s is created in a nested fashion by sub-
dividing the kth smoothing domain into ns subsmoothing domains such
thatΩs

k =∑ns
p=1Ω

s
k,p,Ωs

k,m ∩Ωs
k,n = ∅, m �= n, then the following inequality

stands:

ED1 (u) ≥ ED2 (u) , (4.80)

where ED(u) is the strain energy solution obtained from an S-FEM model
with a division of domain Ω into a set of D smoothing domains. The
equality is attained only when all the nested subdivisions are idle.

This implies that the “softening” effect provided by the smoothing oper-
ation will be monotonically reduced with the increase of the number of
smoothing domains constructed in a nested manner. A simple proof can
be given using the triangle inequality of norms: the sum of the energy
norm of functions is no less than the norm of the summed functions
[17]. In addition, a specific proof for CS-FEM will also be conducted in
Section 5.5.

Following Remark 4.7, we shall expect that when such a nested subdivi-
sion is performed intensively to all the smoothing domains so thatΩs

k,p → 0
for all k and p, the model will approach the compatible model, which will
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130 Smoothed Finite Element Methods

be discussed further in Theorem 4.5. Note also that this monotonic con-
vergence property may not hold for problems with singularity, as will be
shown in Chapter 10.

Theorem 4.5: Convergence Property

When Ns → ∞, the solution u of S-FEM models will approach the solu-
tion ũ ∈ H

1
0,h(Ω; Rd) ⊂ H

1
0(Ω; Rd) of the standard compatible displacement

FEM model.

Proof. Assume that the problem has the solution ũ ∈ H
1
0,h(Ω; Rd) ⊂

H
1
0(Ω; Rd) of the standard compatible displacement FEM model. Now we

consider finding the solution u of S-FEM models for the same problem. In
a given division Ns of domainΩ into a set of smoothing domains such that
Ω =∑Ns

k=1Ω
s
k , when Ns → ∞ and each smoothing domainΩs

k approaches
zero, the smoothing function in Equation 4.18 approaches the Delta func-
tion. At such a limit ε → ε̃ (Remark 4.7), B → B̃, K → K̃, and the solution
u of the S-FEM models hence will approach the solution ũ of the standard
compatible displacement FEM model. �

Theorem 4.5 also implies that in case the smoothing domain Ωs
k is asso-

ciated with the number of nodes Nn (NS-FEM), edges Neg (ES-FEM), or
faces Nf (FS-FEM) of FEM, the solution u of S-FEM models will approach
the exact solution, because the solution ũ of the standard compatible dis-
placement FEM model also approaches the exact solution when Nn, Neg,
or Nf approaches infinity. This has already been discussed in the proof of
Theorem 4.1.

4.13 Remarks

Finally, before concluding this chapter, we mention a few additional
remarks for an S-FEM model for later references.

Remark 4.10 No Increase of DOFs

In S-FEM models, the unknowns of only the displacement are the same as
that in the standard FEM model.

Remark 4.11 S-FEM Elements: Arbitrariness in Shape and Distortion

The domain discretization in an S-FEM model can be more flexible than that
in the standard FEM. By constructing compatible shape functions based
on physical coordinates, complicated elements such as arbitrary n-sided
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Fundamental Theories for S-FEM 131

convex polygonal elements can be used in the S-FEM models. Because
no mapping is used in S-FEM, it is expected to be much more tolerant to
element distortion.

Remark 4.12 Order and Enrichment of S-FEM Elements

In theory, S-FEM works for elements of any order, as long as at least the
minimum number of independent smoothing domains is used to ensure
the stability. For simplicity and effectiveness, we prefer using lower-order
elements: linear or at most bilinear. For special purposes, however, we can
always add in proper enrichment terms in the point interpolation proce-
dure. A typical such case is represented by singular elements with a basic
mesh of linear elements discussed in Chapter 10. The philosophy adopted
in S-FEM is essentially for simplicity and robustness: to use the simplest
mesh of basic linear elements with proper enrichments, when necessary,
to suit special purposes.

Remark 4.13 The “Rooms” Explored by S-FEM Models: Better than
the “Best”

S-FEM uses the smoothed Galerkin weak form. This essentially changed the
bilinear form and hence the norm measures (see Remark 3.3), leading to
the softening effects that push the S-FEM solution into the room between
the FEM solution (lower bound, Property 3.2) and the exact solution. When
this is achieved (as in ES-FEM), we obtain a solution (in strain energy) that
will always be better than the FEM model using the same mesh. When this
is “overdone” (as in NS-FEM), we obtain an upper bound solution. Either
way, we achieve something that the standard FEM cannot offer: better than
the best.

Remark 4.14 S-FEM: Beyond-Element Operations

We now see a very distinct feature of an S-FEM model compared to the
FEM model: the numerical operations used in S-FEM are in general beyond
the elements. Displacement interpolation (or shape function construction)
is based on the element or nodes, but smoothed strain field construc-
tion is based on smoothing domains that are created beyond the element.
In addition, the integration is also based on smoothing domains. Such a
beyond-element operation allows bringing in information from surround-
ing elements, and hence improving the solution. It is clear that S-FEM
models have features of both standard FEM and mesh-free methods.

Remark 4.15 On h-Dependence for S-FEM

The theory on the rate of convergence of S-FEM models is not dis-
cussed in detail in this book, because it requires a very lengthy derivation
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132 Smoothed Finite Element Methods

and analysis. In addition, some of the theoretical issues related to rate
convergence have not yet been fully resolved. Numerical examples will
be presented in later chapters to show that (1) these S-FEM models will
always pass the standard patch tests, implying at least second-order accu-
racy, and (2) the rates of convergence for various S-FEM models are often
higher than the FEM counterparts using linear elements, especially in the
displacement norm. These numerical rates found for S-FEM models obey
at least Theorem 3.4, but much more thorough studies are required to prove
this and to establish such a precise theorem for S-FEM models. A recent
related study that led to a theorem for S-FEM similar to Theorem 3.3 is
reported in Ref. [33]. This study showed that S-FEM will always work well,
but precisely how well it works is still an open question. At this moment,
we know that Theorem 3.4 should also hold for general S-FEM models
at least when sufficiently smoothing domains are used, simply because
of Theorem 4.5. The tricky part is that we do not want to use too many
smoothing domains, so that we can have a better benefit. A theorem that
can guide us on how to achieve that and how far we can really go is useful,
but unfortunately it is not yet available.

Remark 4.16 S-FEM: Number of Smoothing Domains

The stability of S-FEM models can be ensured by using at least a minimum
number of linearly independent smoothing domains, which is given in
Tables 4.2 and 4.3.

Remark 4.17 S-FEM: Types of Smoothing Domains

S-FEM uses the strain smoothing technique to construct strain fields that are
piecewise constant, and satisfies the orthogonal condition. It uses different
types of smoothing domains that can be cell-, node-, edge-, and face-based,
and these models are all softer than the FEM model using the same mesh.
The following chapters will present S-FEM models using different types of
smoothing domains, including the combined ones.

Remark 4.18 S-FEM Elements: Preference for Simplicity and Robustness

In general, we prefer to use T3 elements for 2D and T4 elements for 3D
problems for the following reasons: (1) convenience in automatic mesh
generation; (2) robustness for complicated geometries; (3) simplicity in
formulation; (4) ease in implementation; and most importantly (5) S-FEM
works well with these elements. The philosophy of S-FEM is clear: being
simple and robust.
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5
Cell-Based Smoothed FEM

This chapter introduces the first S-FEM model: CS-FEM. It originated from
Liu et al. [1–5] using the strain smoothing technique [6] based on finite
element settings, and was initially termed S-FEM. It has been applied to
solve many problems and extended to many other models. So far two
distinct CS-FEM models have been developed: CS-FEM and nCS-FEM. CS-
FEM uses bilinear quadrilateral (Q4) elements with quadrilateral smoothing
domains created by further division of the Q4 elements. It is the original
CS-FEM proposed in Refs. [1,2], and is the default model for all CS-FEM
models. When we refer to a CS-FEM model, it implies that bilinear Q4
elements are used with quadrilateral smoothing domains. It may be the
closest strain-modified method to the standard FEM briefed in Chapter 3
[7,8], in terms of shape functions used. In CS-FEM, the strain in an element
is modified by smoothing the compatible strains over the quadrilateral
smoothing domains, which gives important softening effects. CS-FEM can
improve the accuracy and convergence rate of the FEM-Q4 model using
the same mesh.

nCS-FEM originated in Ref. [4] as an extension from CS-FEM to the gen-
eral n-sided polygonal elements, including triangular and quadrilateral
elements. In nCS-FEM, the elements are divided into triangular smoothing
domains. In theory, the n-sided polygonal elements can be concave [4].
In practice, however, we usually use convex polygonal elements, and
hence our discussion in this chapter will assume that the elements are
convex.

Any of the CS-FEM models follows the basic theory presented in
Chapter 4, but it can have its own special features, due to cell-based
smoothing operations. Special properties of these CS-FEM models will
be presented and proved theoretically, and the stability analysis of CS-
FEM and nCS-FEM is also conducted. Moreover, a selective CS-FEM is
also formulated to overcome the volume-locking problems so that it can
be applied for solids of incompressible materials. Numerical examples
will be presented to confirm the theoretical properties of these CS-FEM
models.

137
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138 Smoothed Finite Element Methods

5.1 Cell-Based Smoothing Domain

5.1.1 Quadrilateral Smoothing Domains for CS-FEM

In CS-FEM, domain Ω is discretized into Ne quadrilateral elements as
in the standard FEM-Q4, such that Ω = ∪Ne

i=1Ω
e
i and Ωe

i ∩Ωe
j = ∅, i �= j.

Each element Ωe
i will be further subdivided into ns

e ∈ [1, ∞) quadrilat-
eral smoothing domains in a nonoverlapping and no-gap manner such

that Ωe
i = ∪ns

e
m=1Ω

s
i,m, as shown in Figure 5.1. Therefore, the entire prob-

lem domain Ω is divided into a total of Ns = Ne × ns
e smoothing domains

that can be numbered in such a way that Ω = ∪Ns
k=1Ω

s
k .

In using these quadrilateral cell-based smoothing domains, we expect
that there could be cases where the number of smoothing domains does
not satisfy the minimum number of smoothing domains given in Table
4.2 [9], when ns

e is too small (e.g., in an extreme case: ns
e = 1). Note also that

the subdivision of each big smoothing domain into smaller smoothing
domains is performed by connecting the mid-segment-points of opposite
segments as shown in Figure 5.1. The summation required in the smoothed
Galerkin weak form (Equation 4.37) and the strain smoothing operation
(Equation 4.23) is performed over all these quadrilateral smoothing
domains.

: Added nodes to form the smoothing domains: Field nodes

(a)

8

(d)

9

(b)

(e)

(c)

(f )

4 4 6
3

4 7
3

6
8

1 5 2251

3

21

4 7
3

4
3

4
3

2121

6

251

y

x

y

x

FIGURE 5.1 Division of a quadrilateral element into smoothing domains (SDs) in CS-FEM
by connecting the mid-segment-points of opposite segments of smoothing domains: (a) 1 SD;
(b) 2 SDs; (c) 3 SDs; (d) 4 SDs; (e) 8 SDs; and (f) 16 SDs.
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: Added nodes to form the smoothing domains : Field nodes

(a)

1 5

g1
g4

g9

4

8
g12

g11
7

3

(b)

: Gauss points 

g3

g10

9
g2

g8

6
g6

g7

g5

ns
e = 4

ns
e = 6

2

4' g6' 3'g8'

5'
g10'

6'
g12' 1'

g7'

g9'

g11'

g4'
2'

g5'

g3'g1'
g2'

O

FIGURE 5.2 Positions of Gauss points at mid-segment-points on segments of smoothing
domains: (a) four quadrilateral smoothing domains in a quadrilateral element and (b) six
triangular smoothing domains in a six-sided convex polygonal element.

5.1.2 Triangular Smoothing Domains for nCS-FEM

In nCS-FEM, domain Ω is discretized into Ne n-sided polygonal elements,
each of which has n nodes. The elements are not overlapping and there are
no gaps between the elements: Ω = ∪Ne

i=1Ω
e
i and Ωe

i ∩Ωe
j = ∅, i �= j. Each

element is divided further into ns
e = n triangular smoothing domains in

a nonoverlapping and no-gap manner such that Ωe
i = ∪ns

e
m=1Ω

s
i,m. This is

done by simply connecting the nodes of the elements to the centroids
of the elements, as shown in Figure 5.2b. Therefore, the entire prob-
lem domain Ω is consequently divided into NS =∑Ne

e=1 ns
e smoothing

domains that can be numbered in such a way that Ω = ∪Ns
k=1Ω

s
k .

In using these triangular cell-based smoothing domains, the number of
smoothing domains will always satisfy the minimum number of smooth-
ing domains given in Table 4.2 [9]. This is because the number of smoothing
domains is always no less than the number of nodes. The summation
required in the smoothed Galerkin weak form (Equation 4.37) and the
strain smoothing operation (Equation 4.23) is performed over all these
triangular smoothing domains.

5.2 Discretized System of Equations

5.2.1 Formulation of CS-FEM

Consider now the solid mechanics problem defined in Chapter 2. Using
the general formulation of the S-FEM models presented in Chapter 4, the
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140 Smoothed Finite Element Methods

discretized linear system of equations for CS-FEM has the form

K
CS-FEM

d̄ = f̃, (5.1)

where d̄ is the vector of nodal displacements for all nodes, f̃ is the vector of

nodal forces applied on all the nodes in the problem domain, and K
CS-FEM

is the global smoothed stiffness matrix whose entries are given by

K
CS-FEM
IJ =

Ne∑
i=1

ns
e∑

m=1

∫

Ωs
i,m

B
T
I c BJ︸︷︷︸

constant in Ωs
i,m

dΩ =
Ne∑
i=1

ns
e∑

m=1

B
T
I cBJAs

i,m

=
Ns∑

k=1

B
T
I cBJAs

k ,

(5.2)

where As
i,m = ∫

Ωe
i,m

dΩ is the area of quadrilateral smoothing domainΩs
i,m,

and the smoothed strain–displacement matrix BI is computed using Equa-
tion 4.30. All we need now is the assumed displacement function values on
the boundaries of these smoothing domains, which can be evaluated using
the shape functions created for the CS-FEM element using the procedures
given in Section 5.3.

5.2.2 Formulation of nCS-FEM

Using the general formulation of the S-FEM models presented in Chapter
4, the linear algebraic system of equations of nCS-FEM has the form

K
nCS-FEM

d = f̃, (5.3)

where d is the vector of nodal displacements for all the nodes, f̃ is the
vector of nodal forces applied at all the nodes in the problem domain, and

K
nCS-FEM

is the global smoothed stiffness matrix whose entries are given by

K
nCS-FEM
IJ =

Ne∑
i=1

ns
e∑

m=1

∫

Ωe
i,m

B
T
I cBJ dΩ =

Ne∑
i=1

ns
e∑

m=1

B
T
I cBJAe

i,m =
Ns∑

k=1

B
T
I cBJAs

k ,

(5.4)

where As
i,m = ∫

Ωe
i,m

dΩ is the area of triangular smoothing domain Ωs
i,m,

and the smoothed strain–displacement matrix BI is computed using
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Cell-Based Smoothed FEM 141

Equation 4.30. Note again that the smoothed strain is constant within the
smoothing domain, and hence no numerical integration is needed in com-

puting K
nCS-FEM
IJ . In evaluating BI , we need to use the shape functions

created for the nCS-FEM element following the procedure given in the next
section. Note that Equations 5.2 and 5.4 have exactly the same form, but
the contents of these smoothing strain–displacement matrices are different.
We repeat these formulae in order to avoid such confusion.

5.3 Shape Function Evaluation

As presented in Chapter 4, when a linear and continuous displacement
field along the boundary of the smoothing domains is used, the smoothed
strain–displacement matrix BI can be computed using only the shape
function values at mid-segment-points (Gauss points) on each of the seg-
ments Γs

k,p ∈ Γs
k of the smoothing domainsΩs

k . No derivatives of the shape
functions are needed. Therefore, many possible ways can be devised to
compute these shape function values, and the most essential issue is to
ensure the compatibility of the shape functions on all the interfaces of
these smoothing domains. In our past practice, the shape function values
at each Gauss point are evaluated by simple linear interpolation (or aver-
aging) using two endpoints of the segment containing the Gauss point. For
example, for the quadrilateral element subdivided into four quadrilateral
smoothing domains as shown in Figure 5.2a, the shape function values at
Gauss point g1 are evaluated by averaging those of nodes #1 and #5, and
those at Gauss point g2 are the average of those of points #5 and #9. For
the six-sided polygonal element subdivided into six triangular smoothing
domains as shown in Figure 5.2b, the shape function values at Gauss point
g1′ are the average of those of nodes #1′ and O, and those at Gauss point
g2′ are the average of those of points #1′ and #2′. Therefore, in order to
facilitate the evaluation of shape function values at Gauss points on the
smoothing domain boundaries in CS-FEM and nCS-FEM, we need to first
evaluate the shape function values at the endpoints of segments such as
points #1, #2, . . . , #9 in Figure 5.2a and points #1′, #2′, . . . , #6′ and point O
in Figure 5.2b.

5.3.1 Bilinear Shape Functions for CS-FEM

When quadrilateral elements (Q4) are used, we have two choices to
create shape functions: (1) using bilinear shape functions that are the
same as those for the bilinear Q4 element used in FEM and detailed in
Section 3.12, and (2) treating the quadrilateral element as a four-sided
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142 Smoothed Finite Element Methods

polygonal element, which will be detailed in Section 5.3.2 as a special case
of an n-sided polygonal element. This section discusses the first option
using bilinear Q4 elements in a CS-FEM model, which was an original
formulation presented in Refs. [1,2].

In using bilinear Q4 elements, the element is divided into quadrilateral
smoothing domains to preserve the bilinear feature. When needed, further
subdivision of a big smoothing domain into smaller quadrilateral smooth-
ing domains may also be performed. There are a number of ways to perform
such a division, and the simplest one is by connecting the mid-segment-
points of opposite segments as shown in Figure 5.1. Such a subdivision will
ensure that shape function values on the boundaries of physical smoothing
domains are linear and continuous on all the segments of the smoothing
domains, which is essential to CS-FEM models using bilinear Q4 elements.

Note that in the standard FEM using bilinear Q4 elements, compatibility
(continuity) on the element boundary is achieved by “mapping”; hence
they are also called isoparametric elements because of the use of the same
bilinear shape functions for both coordinate and displacement interpola-
tion (see Chapter 3). In our CS-FEM models, this continuity is achieved in
a simpler manner (linear interpolation or averaging), and no mapping is
needed. The relation of the locations in a bilinear Q4 element for our CS-
FEM model and that for the FEM-Q4 model are illustrated in Figure 5.3.
Shape function values on lines 5-7, 6-8, 10-12, and 11-13 of the smoothing
domains of a CS-FEM bilinear Q4 element correspond to mapped segments
5′-7′, 6′-8′, 10′-12′, and 11′-13′ on the isoparametric FEM-Q4 elements in the
natural coordinate. This relation gives essentially the CS-FEM bilinear Q4

8

1 5

9

2

6

7
4

3

10

11

12

13
14 1′ 2′

3′4′

5′

6′

7′

8′ 9′

10′

11′

12′

13′ 14′

1

1

–1

–1 ξ

η

: Field nodes : Added nodes to form the smoothing domains 

(a) (b)

x

y

FIGURE 5.3 Division of an isoparametric element into quadrilateral smoothing domains.
The lower-left quadrant is further divided into four smoothing domains by connecting the
mid-segment-points of opposite segments: (a) quadrilateral smoothing domains of a CS-
FEM element (no mapping is needed) and (b) element in the natural coordinate for the
isoparametric FEM element (mapping is needed).
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Cell-Based Smoothed FEM 143

element a similar bilinear feature as that of the isoparametric FEM-Q4 ele-
ment. Since no mapping is performed in CS-FEM, it is much less sensitive to
element distortions, as will be demonstrated in the example section.Amore
general way of creating such a nonmapping shape function using the point
interpolation method for mesh-free settings with cell-based smoothing can
be found in Refs. [3,10].

In CS-FEM, a bilinear Q4 element can be, in theory, subdivided into some
quadrilateral smoothing domains as shown in Figure 5.1. However, the
numerical examples given in Section 5.8 will show that such a further
division is often unnecessary and not preferable. A simple division of the
element into four smoothing domains as shown in Figure 5.1d is one of
the best choices for solid mechanics problems. The use of more than four
smoothing domains gives no benefit in practical applications, although
the model will still be stable and converge. Therefore, unless otherwise
stated, the division of the element into four smoothing domains will be
used as default in this section for convenience of discussion. Figure 5.2a
and Table 5.1 present explicitly the shape function values at different
points of a quadrilateral element divided into four quadrilateral smooth-
ing domains. The number of support field nodes for the quadrilateral
element is 4 (from #1 to #4). For the whole quadrilateral element, we have
12 line segments (1-5, 5-2, 2-6, 6-3, 3-7, 7-4, 4-8, 8-1, 5-9, 6-9, 7-9, 8-9). Each
line segment needs only one Gauss point (due to linear interpolation).
Therefore, there are a total of 12 Gauss points (from g1 to g12) used for
all these smoothing domains in Ωe

i , and the shape function values at all
these 12 Gauss points are tabulated in Table 5.1 by simple inspection.
This implies that the computation of shape function values in CS-FEM
is simple, in addition to there being no need for the derivatives of shape
functions.

5.3.2 Piecewise Linear Shape Functions for nCS-FEM

For nCS-FEM using n-sided polygonal elements including T3 and Q4 (but
not the bilinear Q4 discussed in Section 5.3.1), smoothing domains are
constructed by dividing the element into triangular smoothing domains,
as shown in Figure 5.2b. Shape functions are constructed following the
general procedure given in Section 4.3.2. It is clear that such shape functions
are obviously compatible along the boundaries of triangular smoothing
domains. Hence, the evaluation of shape function values at field nodes and
central points such as points #1′, #2′, . . . , #6′ and point O in Figure 5.2b are
very straightforward. In the actual implementation of an nCS-FEM model,
the evaluation of shape function values is performed in the following very
simple way. Figure 5.2b and Table 5.2 present explicitly the shape function
values at different points of a six-sided polygonal element divided into six
triangular smoothing domains. The number of support field nodes for this
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144 Smoothed Finite Element Methods

TABLE 5.1

Values of Shape Functions at Different Points within a Quadrilateral Element
(Figure 5.2a)

Point Node 1 Node 2 Node 3 Node 4 Description

1 1.0 0 0 0 Field node

2 0 1.0 0 0 Field node

3 0 0 1.0 0 Field node

4 0 0 0 1.0 Field node

5 1/2 1/2 0 0 Side midpoint

6 0 1/2 1/2 0 Side midpoint

7 0 0 1/2 1/2 Side midpoint

8 1/2 0 0 1/2 Side midpoint

9 1/4 1/4 1/4 1/4 Intersection of two bimedians

g1 3/4 1/4 0 0 Gauss point (mid-segment-point of Γs
k,p)

g2 3/8 3/8 1/8 1/8 Gauss point (mid-segment-point of Γs
k,p)

g3 3/8 1/8 1/8 3/8 Gauss point (mid-segment-point of Γs
k,p)

g4 3/4 0 0 1/4 Gauss point (mid-segment-point of Γs
k,p)

g5 1/4 3/4 0 0 Gauss point (mid-segment-point of Γs
k,p)

g6 0 3/4 1/4 0 Gauss point (mid-segment-point of Γs
k,p)

g7 1/8 3/8 3/8 1/8 Gauss point (mid-segment-point of Γs
k,p)

g8 0 1/4 3/4 0 Gauss point (mid-segment-point of Γs
k,p)

g9 0 0 3/4 1/4 Gauss point (mid-segment-point of Γs
k,p)

g10 1/8 1/8 3/8 3/8 Gauss point (mid-segment-point of Γs
k,p)

g11 0 0 1/4 3/4 Gauss point (mid-segment-point of Γs
k,p)

g12 1/4 0 0 3/4 Gauss point (mid-segment-point of Γs
k,p)

six-sided element is 6 (from #1′ to #6′). We have a total of 12 segments (1′-2′,
2′-3′, 3′-4′, 4′-5′, 5′-6′, 6′-1′, 1′-O, 2′-O, 3′-O, 4′-O, 5′-O, 6′-O). Each segment
needs only one Gauss point (due again to linear interpolation). Therefore,
there are a total of 12 Gauss points (from g1′ to g12′) to be used for all the
smoothing domains, and the shape function values at all these 12 Gauss
points can be tabulated in Table 5.2 by, again, simple inspection.

It should be mentioned that the purpose of introducing interior points
such as point #9 in Figure 5.2a or point O in Figure 5.2b and points on the
edges such as #5, #6, #7, and #8 in Figure 5.2a is to facilitate the evaluation
of the values of shape functions at some discrete points inside and on
the segments of the interested element. There are no extra DOFs that are
associated with these added points. In other words, these points carry
no additional independent field variable. Therefore, the total DOFs of a
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Cell-Based Smoothed FEM 145

TABLE 5.2

Values of Shape Functions at Different Points within an n-sided Convex
Polygonal Element (Figure 5.2b)

Point Node 1′ Node 2′ Node 3′ Node 4′ Node 5′ Node 6′ Description

1′ 1.0 0 0 0 0 0 Field node

2′ 0 1.0 0 0 0 0 Field node

3′ 0 0 1.0 0 0 0 Field node

4′ 0 0 0 1.0 0 0 Field node

5′ 0 0 0 0 1.0 0 Field node

6′ 0 0 0 0 0 1.0 Field node

O 1/6 1/6 1/6 1/6 1/6 1/6 Centroid point

g1′ 7/12 1/12 1/12 1/12 1/12 1/12 Gauss point
(mid-segment-point of Γs

k,p)

g2′ 1/2 1/2 0 0 0 0 Gauss point
(mid-segment-point of Γs

k,p)

g3′ 1/12 7/12 1/12 1/12 1/12 1/12 Gauss point
(mid-segment-point of Γs

k,p)

g4′ 0 1/2 1/2 0 0 0 Gauss point
(mid-segment-point of Γs

k,p)

g5′ 1/12 1/12 7/12 1/12 1/12 1/12 Gauss point
(mid-segment-point of Γs

k,p)

g6′ 0 0 1/2 1/2 0 0 Gauss point
(mid-segment-point of Γs

k,p)

g7′ 1/12 1/12 1/12 7/12 1/12 1/12 Gauss point
(mid-segment-point of Γs

k,p)

g8′ 0 0 0 1/2 1/2 0 Gauss point
(mid-segment-point of Γs

k,p)

g9′ 1/12 1/12 1/12 1/12 7/12 1/12 Gauss point
(mid-segment-point of Γs

k,p)

g10′ 0 0 0 0 1/2 1/2 Gauss point
(mid-segment-point of Γs

k,p)

g11′ 1/12 1/12 1/12 1/12 1/12 7/12 Gauss point
(mid-segment-point of Γs

k,p)

g12′ 1/2 0 0 0 0 1/2 Gauss point
(mid-segment-point of Γs

k,p)
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146 Smoothed Finite Element Methods

CS-FEM model will be exactly the same as the standard FEM using the
same set of nodes.

We note now the following remark.

Remark 5.1 On the Shape of nCS-FEM Elements

It may be noted that nCS-FEM can have general n-sided polygonal ele-
ments with ease. This is because S-FEM models do not use the derivatives
of the shape functions. The standard FEM, however, can only have T3 and
(bilinear) Q4 elements. Any generalization to other types of FEM elements
has to be very careful to ensure (1) a nonsingular moment matrix; (2) com-
patibility along the boundary of the elements; and (3) attainability of the
derivatives of the shape functions, which can be quite difficult, when the
shape of the elements becomes too complicated. Even when we use bilin-
ear Q4 elements, we have to resort to quite a sophisticated “mapping”
procedure.

5.4 Some Properties of CS-FEM

Remark 5.2 Single Smoothing Domain Versus Single Gauss Point

If only one single smoothing domain (ns
e = 1) is used individually for each

element in the problem domain, the solution of CS-FEM has similar prop-
erties with that of the standard FEM-Q4 using reduced integration (using
one Gauss point) when the same mesh is used.

Remark 5.2 can be examined as follows. As shown in Equation 4.27, the
smoothed strain–displacement matrix BI of CS-FEM is the average of the
standard compatible strain–displacement matrix B̃I(x) over the smooth-
ing domainΩe

i , the physical element domain. However, for FEM-Q4 using
reduced integration, B̃I(x) is computed at the center of the isoparamet-
ric element, at ξ = η = 0. We thus have that B̃I(ξ = 0,η = 0) in FEM-Q4
is also considered to be the average of B̃I(x) over the isoparametric ele-

ment. Therefore, it is clear that
∫
Ωe

i
B

T
I cB̄J dΩ in CS-FEM is equivalent

to
∫1

−1
∫1

−1 B̃T
I cB̃JJ dξdη in FEM using reduced integration. The only dif-

ference is that B̃I(ξ = 0,η = 0) in FEM is the average of B̃I(x) over the
isoparametric element and BI in CS-FEM is the average of B̃I(x) over the
element in physical coordinates. In case the elements are parallelograms,
the results of CS-FEM and FEM will be identical.

Therefore, the solution of CS-FEM has similar properties with those of
FEM using reduced integration. The element stiffness matrix can contain
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Cell-Based Smoothed FEM 147

spurious zero energy modes (known as hourglass modes) and thus may
not be spatially stable. This is because the global stiffness matrix, even after
imposing essential boundary conditions to remove rigid body motion, may
still be singular depending on the setting of the problem [11].

Property 5.1 nCS-FEM-T3: Same as FEM-T3

When the same mesh of linear triangular elements (T3) is used, nCS-FEM
is identical to FEM-T3.

When the same mesh of T3 is used in the nCS-FEM model, three triangu-
lar smoothing domains are used for each element. Because each element
has only three nodes, the piecewise linear shape functions for each of these
three triangular smoothing domains are in fact the same, because they are
all determined by these same three nodes. Therefore, the smoothed strain
fields in each of the triangular smoothing domains are all the same constant
that is the compatible strain field in the T3 element. Therefore, FEM-T3 and
nCS-FEM-T3 will be identical.

Can we use T3 elements to formulate a cell-based smoothed model that
is different from the FEM-T3 model? The answer is “yes” and very accu-
rate models can be formulated, but it requires the use of the general PIM.
Interested readers may refer to recent work on the cell-based smoothed
PIM [12].

Property 5.2 CS-FEM: Convergence to FEM-Q4

If each quadrilateral element is subdivided into ns
e quadrilateral smooth-

ing domains, and when ns
e → ∞ and the smoothing domain Ωe

i,m → 0 for

all the elements in the problem domain, the stiffness matrix K
CS-FEM
IJ in

Equation 5.2 will approach the stiffness matrix K̃FEM
IJ = ∫

Ω
B̃T

I (x)cB̃J(x) dΩ
of the standard FEM-Q4 with “full” (2 × 2) Gauss integration. At such a
limit, the solution of CS-FEM will approach the solution of the standard
compatible displacement FEM-Q4 model.

The proof of Property 5.2 can be found in Ref. [2], which is the same as
the proof for Theorem 4.5.

Property 5.3 Monotonic Property

Consider a sequence of stable CS-FEM models using the bilinear Q4
element Ωe

i that is divided sequentially∗ into ns
e ≥ 1 quadrilateral smooth-

ing domains. Let the strain energy of an element with ns
e = p smoothing

∗ The new division of ns
e = p + 1 is obtained by further dividing any one of the smoothing

domains in the current set of smoothing domains.

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
04

 1
0 

M
ay

 2
01

6 



148 Smoothed Finite Element Methods

domains be

E
CS-FEM
ns

e=p =
p∑

m=1

∫

Ωs
i,m

εT
i,mcε̄i,m dΩ =

p∑
m=1

εT
i,mcε̄i,mAs

i,m. (5.5)

We then have the following monotonic inequality:

E
CS-FEM
ns

e=1 < E
CS-FEM
ns

e=2 < · · · < E
CS-FEM
ns

e=p−1

< E
CS-FEM
ns

e=p < E
CS-FEM
ns

e=p+1 < · · · < E
CS-FEM
ns

e→∞ = ẼFEM-Q4. (5.6)

Proof. Suppose that the domain Ωe
i of the quadrilateral element has

already been divided into ns
e = p ≥ 1 smoothing domains Ωs

i,m such that

Ωe
i = ∪p

m=1Ω
s
i,m. Let E

CS-FEM
ns

e=p be the strain energy of the element when ns
e =

p. We now further divide the jth smoothing domain Ωs
i,j into two smooth-

ing domains Ωs
i,j1 and Ωs

i,j2 such that Ωs
i,j = Ωs

i,j1 ∪Ωs
i,j2 and Ωs

i,j1 ∩Ωs
i,j2 =

∅, which results in a total of ns
e = p + 1 smoothing domains. Then, the

strain energy of the element becomes E
CS-FEM
ns

e=p+1 . Let ε̃ be the strain of the
corresponding element of the standard displacement compatible FEM. We
then have the following relationship for the smoothed strains:

εΩs
i,j

= 1
As

i,j

∫

Ωs
i,j

ε̃ dΩ = 1
As

i,j

⎡
⎢⎢⎣As

i,j1

∫

Ωs
i,j1

ε̃

As
i,j1

dΩ+ As
i,j2

∫

Ωs
i,j2

ε̃

As
i,j2

dΩ

⎤
⎥⎥⎦

=
As

i,j1

As
i,j︸︷︷︸
α1

ε̄Ωs
i,j1

+
As

i,j2

As
i,j︸︷︷︸
α2

εΩs
i,j2

= α1ε̄Ωs
i,j1

+ α2ε̄Ωs
i,j2

, (5.7)

where ε̄Ωs
i,j

is the smoothed strain of domain Ωs
i,j corresponding to ns

e = p;
εΩs

i,j1
and εΩs

i,j2
are the smoothed strains of domains Ωs

i,j1 and Ωs
i,j2 corre-

sponding to ns
e = p + 1; As

i,j is the area of domain Ωs
i,j corresponding to

ns
e = p, As

i,j1 and As
i,j2 are the areas of domainsΩs

i,j1 andΩs
i,j2 corresponding

to ns
e = p + 1; α1 = As

i,j1/As
i,j > 0 and α2 = As

i,j2/As
i,j > 0. Note that we have

the relationship

α1 + α2 = 1. (5.8)
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Cell-Based Smoothed FEM 149

Considering the difference between E
CS-FEM
ns

e=p+1 and E
CS-FEM
ns

e=p , and using
Equations 5.7 and 5.8, we obtain

E
CS-FEM
ns

e=p+1 − E
CS-FEM
ns

e=p

=
(
εΩs

i,j1

)T
cε̄Ωs

i,j1
As

i,j1 +
(
εΩs

i,j2

)T
cε̄Ωs

i,j2
As

i,j2 −
(
εΩs

i,j

)T
cε̄Ωs

i,j
As

i,j

=
[(
εΩs

i,j1

)T
c
(
εΩs

i,j1

) As
i,j1

As
i,j

+
(
εΩs

i,j2

)h
c
(
εΩs

i,j2

) As
i,j2

As
i,j

−
(
εΩs

i,j

)h
c
(
εΩs

i,j

)]
As

i,j

=
[
α1

(
εΩs

i,j1

)T
cε̄Ωs

i,j1
+ α2

(
εΩs

i,j2

)T
cε̄Ωs

i,j2

−
(
α1εΩs

i,j1
+ α2εΩs

i,j2

)T
c
(
α1εΩs

i,j1
+ α2εΩs

i,j2

)]
As

i,j

=
[(
α1 − α2

1

) (
εΩs

i,j1

)T
cε̄Ωs

i,j1
+
(
α2 − α2

2

) (
εΩs

i,j2

)T
cε̄Ωs

i,j2

−α1α2

((
εΩs

i,j1

)T
cε̄Ωs

i,j2
+
(
εΩs

i,j2

)T
cε̄Ωs

i,j1

)]
As

i,j

=
[
α1 (1 − α1)

(
εΩs

i,j1

)T
cε̄Ωs

i,j1
+ α2 (1 − α2)

(
εΩs

i,j2

)T
cε̄Ωs

i,j2

−α1α2

((
εΩs

i,j1

)T
cε̄Ωs

i,j2
+
(
εΩs

i,j2

)T
cε̄Ωs

i,j1

)]
As

i,j

=
[(

εΩs
i,j1

)T
cε̄Ωs

i,j1
+
(
εΩs

i,j2

)T
cε̄Ωs

i,j2
−
((

εΩs
i,j1

)T
cε̄Ωs

i,j2

+
(
εΩs

i,j2

)T
cε̄Ωs

i,j1

)]
α1α2As

i,j

=
(
εΩs

i,j1
− εΩs

i,j2

)T
c
(
εΩs

i,j1
− εΩs

i,j2

)
α1α2As

i,j > 0,

(5.9)

where we used the SPD property of the c matrix (assuming stable
material).

By combining Equation 5.9 with Property 5.2, we obtain inequal-
ity 5.6. �

Monotonic inequality (Equation 5.6) is a powerful and useful statement
resulting from the application of smoothing operations to functions in a
positive definite quadratic functional. Inequality 5.6 also shows that with
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150 Smoothed Finite Element Methods

the same displacement field, the strain energy of the element with ns
e =

p + 1 domains is larger than that of the element with ns
e = p domains. In

other words, the stiffness matrix of the element with ns
e = p + 1 smoothing

domains is stiffer than that of the element with ns
e = p smoothing domains,

which leads to the following remark.

Property 5.4 Softening Effects for CS-FEM: An Intuitive Statement

Let K
CS-FEM
ns

e=p be the stiffness matrix of the element with ns
e = p smoothing

domains. We then have

K
CS-FEM
ns

e=1 ≺ K
CS-FEM
ns

e=2 ≺ · · · ≺ K
CS-FEM
ns

e=p−1 ≺ K
CS-FEM
ns

e=p

≺ K
CS-FEM
ns

e=p+1 ≺ · · · ≺ K
CS-FEM
ns

e→∞ = K̃FEM−Q4, (5.10)

where symbol “≺” stands for an intuitive engineering term of softer. This
implies that the use of larger smoothing domains provides more softening
effects: the CS-FEM model is always softer than the FEM-Q4 counterpart,
as shown in the general Theorem 4.2.

Property 5.4 shows that when the number of ns
e in each element

increases, the stiffness matrix K
CS-FEM
IJ in Equation 5.2 will become “stiffer.”

The solution obtained will change monotonously from the solution of
CS-FEM (ns

e = 1) to that of the compatible displacement FEM-Q4 model
(ns

e → ∞).

5.5 Stability of CS-FEM and nCS-FEM

As analyzed in Chapter 4, for any S-FEM model, the stability of the model
should be checked carefully, and in theory we know that the minimum
number of smoothing domains has to be used to ensure stability. In CS-FEM
settings, it is possible that the minimum number of smoothing domains is
not satisfied. In this section, an intensive eigenvalue analysis (see Remark
1.2) using quadrilateral elements is conducted to investigate numerically
the stability properties of CS-FEM and nCS-FEM. The results of CS-FEM
and nCS-FEM are compared with the standard FEM using the four-node
isoparametric element (FEM-Q4) that is known for its stability. Line inte-
gration (with one GP for each line segment) is used for the smoothed strain
evaluation in CS-FEM and nCS-FEM. Domain (element) integration using
Gauss quadrature (1 GP and 2 × 2 GPs) is used for evaluating the stiffness
matrix of FEM-Q4.

First, an eigenvalue analysis (or free vibration analysis) using the sin-
gular value decomposition technique is conducted for a square solid of

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
04

 1
0 

M
ay

 2
01

6 



Cell-Based Smoothed FEM 151

stable material (E = 3.0 × 107, v = 0.3) meshed with a single quadrilateral
element. The solid is left free from any constraint on the displacements. In
CS-FEM, we divide each element into ns

e = 1, 2, 4, 8, and 16 quadrilateral
smoothing domains in the same way as shown in Figure 5.1. In nCS-FEM,
we divide each quadrilateral element into ns

e = 4 triangular smoothing
domains.

The results for the eigenvalue analysis are listed in Table 5.3. It is shown
that all these models have at least three zero eigenvalues. Because the free
square solid should have three physical rigid body movements that need
zero energy to move, it should have three zero-energy modes. Therefore,
all these CS-FEM models with ns

e ≥ 2, nCS-FEM with ns
e = 4, and FEM

using full Gauss integration (2 × 2 GPs) have three legal zero eigenvalues.
Once these three rigid movements are constrained, one needs some finite
energy to move the solid: these models are all stable. In fact, the FEM with
GP = 4 is well known for long being spatially and temporally stable (see
Remark 1.3). We can now conclude that the solutions of CS-FEM using
ns

e ≥ 2 quadrilateral smoothing domains and of nCS-FEM using ns
e = 4 tri-

angular smoothing domains will be stable at least for static problems. It is
also very easy to verify that these CS-FEM models satisfy the condition of
minimum number of smoothing domains given in Table 4.2.

For the CS-FEM using ns
e = 1, we found five zero eigenvalues, which is

similar (the same in this particular case) to the FEM using only one Gauss
point (GP = 1), as stated in Remark 5.2. These two models have at least
two illegal zero-energy modes that will not be physical but numerical,
meaning that these two numerical models can be instable. In fact, the FEM
with GP = 1 is well known for its instability. The element stiffness matrix
contains spurious zero-energy modes, and the global stiffness matrix after
imposing essential boundary conditions to remove the rigid motion can
still be singular, unless two more additional proper DOFs are constrained.

TABLE 5.3

Eigenvalues of a Free Square Solid Meshed Using One Element (E = 3.0 × 107,
v = 0.3)

FEM-Q4 CS-FEM nCS-FEMEigen-
Values 1 × 1 GP 2 × 2 GPs ns

e = 1 ns
e = 2 ns

e = 4 ns
e = 8 ns

e = 16 ns
e = 4

8 4.286e+7 4.286e+7 4.286e+7 4.286e+7 4.286e+7 4.286e+7 4.286e+7 4.286e+7

7 2.308e+7 2.308e+7 2.308e+7 2.308e+7 2.308e+7 2.308e+7 2.308e+7 2.308e+7

6 2.308e+7 2.308e+7 2.308e+7 2.308e+7 2.308e+7 2.308e+7 2.308e+7 2.308e+7

5 0 1.484e+7 0 0.824e+7 1.113e+7 1.319e+7 1.391e+7 2.225e+7

4 0 1.484e+7 0 0.288e+7 1.113e+7 1.185e+7 1.391e+7 2.225e+7

3 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0
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152 Smoothed Finite Element Methods

Therefore, the solution can be instable. It is very easy to verify that CS-
FEM with ns

e = 1 does not satisfy the condition of the minimum number
of smoothing domains given in Table 4.2.

Table 5.3 also shows that when ns
e increases from 2 to 16, the low-

est two nonzero eigenvalues (fourth and fifth modes) of CS-FEM will
increase monotonously and approach those of FEM-Q4 using 2 × 2 GPs.
These results are consistent with Properties 5.2 and 5.3, which show that
when ns

e monotonously approaches infinity, the CS-FEM solution will
monotonously approach the solution of the standard displacement com-
patible FEM-Q4 model. In addition, from the nonzero eigenvalues of
Table 5.3, it is seen that the CS-FEM model is softer than the (fully) compat-
ible FEM-Q4 model, which is consistent with Property 5.4. Furthermore,
we note from Table 5.3 that these two lowest nonzero eigenvalues (fourth
and fifth modes) of nCS-FEM are, respectively, larger than those of the fully
integrated FEM-Q4 model. This implies that the nCS-FEM model is stiffer
than the compatible FEM-Q4 model.

Next, a comparison study is conducted for the same solid meshed with
a single element, but with three DOFs fixed, and the results are listed in
Table 5.4. We now observe two zero-energy modes for these two instable
models (CS-FEM with ns

e = 1 and FEM with GP = 1), even when all the
rigid movements are constrained, which confirms that they will not be sta-
ble as discussed above. All the other models (CS-FEM models with ns

e ≥ 2,
nCS-FEM with ns

e = 4, and FEM with 2 × 2 GPs) have no more zero-energy
models: they cannot move freely anymore, because the rigid body moments
are constrained. They are stable.

Further, a study is conducted for the same free square solid meshed
with 4 × 4 elements, and the results are listed in Table 5.5. It is found that
the results are very similar to those given in Table 5.3, meaning that the
instability of these two models (CS-FEM with ns

e = 1 and FEM with GP = 1)
will not change with the increase of elements.

TABLE 5.4

Eigenvalues of a Square Solid Meshed with One Element Fixed with Three
DOFs (E = 3.0 × 107, v = 0.3)

FEM-Q4 CS-FEM nCS-FEMEigen-
Values 1 × 1 GP 2 × 2 GPs ns

e = 1 ns
e = 2 ns

e = 4 ns
e = 8 ns

e = 16 ns
e = 4

8 2.935e+7 3.039e+7 2.935e+7 2.977e+7 2.997e+7 3.021e+7 3.029e+7 3.140e+7

7 1.474e+7 1.905e+7 1.474e+7 1.543e+7 1.925e+7 1.799e+7 1.863e+7 2.266e+7

6 1.154e+7 1.402e+7 1.154e+7 1.308e+7 1.378e+7 1.384e+7 1.392e+7 1.517e+7

5 1 0.843e+7 1 0.431e+7 0.568e+7 0.741e+7 0.798e+7 1.132e+7

4 1 0.229e+7 1 0.065e+7 0.220e+7 0.220e+7 0.220e+7 0.289e+7

3 1 1 1 1 1 1 1 1

2 0 1 0 1 1 1 1 1

1 0 1 0 1 1 1 1 1
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Cell-Based Smoothed FEM 153

TABLE 5.5

Eigenvalues of a Free Solid Meshed with 4 × 4 Elements (E = 3.0 × 107,
v = 0.3)

FEM-Q4 CS-FEM nCS-FEMEigen-
Values 1 × 1 GP 2 × 2 GPs ns

e = 1 ns
e = 2 ns

e = 4 ns
e = 8 ns

e = 16 ns
e = 4

8 2.770e+6 8.439e+6 2.770e+6 6.220e+6 8.291e+6 8.343e+y6 8.400e+6 8.823e+6

7 2.770e+6 6.182e+6 2.770e+6 5.748e+6 6.152e+6 6.163e+6 6.175e+6 6.226e+6

6 0 4.408e+6 0 3.576e+6 4.032e+6 4.177e+6 4.317e+6 5.053e+6

5 0 4.160e+6 0 3.508e+6 3.968e+6 4.063e+6 4.115e+6 4.478e+6

4 0 4.160e+6 0 3.320e+6 3.968e+6 4.024e+6 4.115e+6 4.478e+6

3 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

5.6 Standard Patch Test: Accuracy

Passing the standard patch test is a sufficient requirement for a stable
numerical method based on the Galerkin weak form to converge and to
demonstrate the second order accuracy. The standard patch is a quadri-
lateral domain with linear displacements imposed along the boundaries
of the patch with at least one interior node arbitrarily located. Satisfaction
of the standard patch test requires that the displacements at all the inte-
rior nodes follow “exactly” (to machine precision) the same displacement
function imposed on the patch boundary.

The patch tests for CS-FEM are first conducted in great detail using as
much as five patches, as shown in Figure 5.4 [3]. In these tests, a total
of 25 test cases are created by rotating each of these five patches with
θ = 0,π/6,π/4,π/3, and π/2. Each four-node quadrilateral element is sub-
divided into smoothing domains in the fashion described in Section 5.1.
In this particular case, we use ns

e = 1, 2, 3, 4, 8, and 16 quadrilateral
smoothing domains, as shown in Figure 5.1.

CS-FEM is used to solve the patch test problem for numerical solu-
tions of displacements. The error in the displacement norm defined in
Equation 4.63 is used to evaluate the error in the solutions.

The dimensionless parameters∗ are taken as E = 100 and ν = 0.3 and the
linear displacement field is specified on the boundary of the patches using

u = x, v = y. (5.11)

∗ In this book, we often choose to use nondimensional parameters because the purpose of
the examples is just to examine our numerical results, and no much physical implications.
Any set of physical units is applicable to our results, as long as these units are consistent
for all the inputs.
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154 Smoothed Finite Element Methods

θ θ θ

θ θ

(a) (b) (c)

(d) (e)

FIGURE 5.4 Meshes used for the patch test: (a) a mesh with a concave quadrilateral element;
(b) a mesh with a quadrilateral element using three collinear points; (c) a mesh with general
convex quadrilateral elements; (d) a mesh with rectangular elements; and (e) a mesh with
parallelogram elements.

It is found that CS-FEM can pass all these standard patch tests within
machine precision for all the above patch cases. Tables 5.6 and 5.7 show
the results for the cases of ns

e = 1 and ns
e = 4, respectively.

Remark 5.3 On Standard Patch Tests

The results given in Table 5.6 show that even for the case of using ns
e = 1

that has been found to be instable (see Section 5.5), the patch tests were all
perfectly passed. This finding implies the following two important points:

1. An unstable S-FEM model can be stable for some settings of prob-
lems. In other words, it may not be always unstable. When the
number of internal nodes is relatively small, and a large num-
ber of boundary nodes are constrained, an unstable S-FEM model
can become stable, as shown in this patch test case where all the
boundary nodes are fixed.

2. A model that passes the standard patch tests does not ensure sta-
bility, and hence convergence, for all types of problems, even if the
problem is well posed. It shows the ability of the model in pro-
ducing the linear field exactly (to machine accuracy): consistency.
Only when the stability is ensured will the model converge. One
can find many models that pass the standard patch tests but may
not be stable and converge, as shown in Ref. [13].
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Cell-Based Smoothed FEM 155

TABLE 5.6

Displacement Norm of the Standard Patch Test ed (%) for the Case of ns
e = 1

Patch (a) Patch (b) Patch (c) Patch (d) Patch (e)

θ = 0 2.28e−14 8.07e−14 1.24e−13 1.27e−13 2.20e−13

θ = π/6 5.05e−14 7.01e−14 8.04e−14 1.51e−13 3.45e−13

θ = π/4 3.63e−14 4.46e−14 8.63e−14 8.48e−14 2.99e−13

θ = π/3 3.45e−14 4.11e−14 6.48e−14 1.53e−13 1.43e−13

θ = π/2 4.06e−14 5.09e−14 1.39e−13 1.55e−13 2.43e−13

The patch test for nCS-FEM is also conducted for a square patch using
36 n-sided polygonal elements, as shown in Figure 5.5. It is found again
that nCS-FEM can pass the standard patch test within machine precision
with a displacement error of ed = 1.83 e − 13 (%).

Property 5.5 CS-FEM: First-Order Consistency

CS-FEM and nCS-FEM have first-order consistency, meaning that they
can produce a linear displacement field exactly. In other words, they are
of second-order accuracy in the displacement solution: errors are at the
second-order term or above.

Property 5.6 CS-FEM Solution: Stability and Convergence

Because of the stability confirmed in Section 5.5 and first-order consistency
(Property 5.5), CS-FEM with ns

e ≥ 2 and nCS-FEM have a unique stable
solution that converges to the exact solution of the original solid mechanics
problem defined in Chapter 2. This confirms Theorem 4.1.

TABLE 5.7

Displacement Norm of the Standard Patch Test ed (%) for the Case of ns
e = 4

Patch (a) Patch (b) Patch (c) Patch (d) Patch (e)

θ = 0 1.11e−13 7.78e−14 5.69e−14 2.58e−13 9.51e−13

θ = π/6 7.22e−14 1.38e−13 9.48e−14 3.05e−13 4.26e−13

θ = π/4 5.78e−14 1.11e−13 1.85e−13 3.80e−13 7.72e−13

θ = π/3 1.16e−13 8.28e−14 9.43e−14 2.09e−13 4.82e−13

θ = π/2 1.31e−13 7.82e−14 1.03e−13 2.05e−13 6.93e−13
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FIGURE 5.5 Domain discretization of a square patch using 36 n-sided polygonal elements.

5.7 Selective CS-FEM: Volumetric Locking Free [5]

Volumetric locking appears when the Poisson’s ratio of the material
approaches 0.5, as noted in Remark 2.2. The application of selective for-
mulations in the standard FEM [7] has been found to effectively overcome
such a locking; hence a similar idea is employed in this chapter to formu-
late a CS-FEM or nCS-FEM that is free from volumetric locking. In FEM,
different quadrature orders are used for different material parts [7], while
in CS-FEM we can simply vary the number of smoothing domains for these
two different material “parts” (μ part and λ part). As presented in Remark
5.2, the solution of CS-FEM using only one smoothing domain (ns

e = 1) for
each quadrilateral element has the same properties as that of FEM using
reduced integration (one Gauss point). We also know that the λ part is
the culprit of volumetric locking. Therefore, in CS-FEM, we use ns

e = 1
for each element for the λ part and ns

e = 4 for the μ part. The details are
given below.

The material property matrix c for isotropic materials is first decom-
posed into

c = c1 + c2, (5.12)

where c1 relates to the shearing modulus μ = E/ [2 (1 + ν)] and hence is
termed theμ part of c, and c2 relates to Lame’s parameter λ = 2νμ/(1 − 2ν)
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Cell-Based Smoothed FEM 157

and hence is termed the λ part of c. For plane strain cases, we have

c =
⎡
⎣λ+ 2μ λ 0

λ λ+ 2μ 0
0 0 μ

⎤
⎦ = μ

⎡
⎣2 0 0

0 2 0
0 0 1

⎤
⎦+ λ

⎡
⎣1 1 0

1 1 0
0 0 0

⎤
⎦ = c1 + c2,

(5.13)

and for axisymmetric problems

c = μ

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2

⎤
⎥⎥⎦+ λ

⎡
⎢⎢⎣

1 1 0 1
1 1 0 1
0 0 0 0
1 1 0 1

⎤
⎥⎥⎦ = c1 + c2. (5.14)

The expression for computing the stiffness matrix can also be split into
two parts accordingly. We then use ns

e = 1 to calculate the stiffness matrix
related to the λ part and ns

e = 4 to calculate the one related to the μ part.
The stiffness matrix of element Ωe

i of the selective scheme becomes

K
e
i =

ns
e∑

m=1

(
Bi,m

)T
c1Bi,mAs

i,m

︸ ︷︷ ︸
K

ns
e=n

1

+ (Bi
)T

c2BiAs
i︸ ︷︷ ︸

K
ns

e=1
2

, (5.15)

where Bi and As
i are the smoothed strain–displacement matrix and the area

of the whole element Ωe
i , respectively, and Bi,m and As

i,m are the smoothed
strain–displacement matrix and the area of the smoothing domain Ωs

i,m,
respectively.

It is clear that the selective CS-FEM is a little more expensive. However,
it is volumetric locking free and hence very useful for solids with Poisson’s
rate close to 0.5.

Note also that the selective nCS-FEM can be implemented in exactly
the same manner. In this case, we use ns

e = 1 to calculate the stiffness
matrix related to the λ part and ns

e = n (number of sides of the elements)
to calculate the one related to the μ part.

5.8 Numerical Examples

To examine the accuracy and efficiency, the results of the CS-FEM methods
(including CS-FEM and selective CS-FEM) will be compared with those of
the standard FEM using quadrilateral elements (FEM-Q4) as well as the
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158 Smoothed Finite Element Methods

analytical solution. Errors in the displacement and energy norms defined
in Equations 4.49 and 4.50 are used in this analysis. In addition, for fair
comparisons between FEM and CS-FEM, we also use the recovery strain
field defined by Equation 4.53 as the final solution for FEM-Q4, and in such
a case it is denoted as FEM-Q4-Re.

Example 5.8.1: A Rectangular Cantilever Loaded at the End

A rectangular cantilever with length L and height D is studied as a benchmark
problem here. The cantilever is subjected to a parabolic traction at the free end,
as shown in Figure 5.6. The beam is assumed to have a unit thickness so that
the plane stress condition is valid. The analytical solution is available and can
be found in Ref. [14]:

ux = P y
6EI

[
(6L − 3x)x + (2 + ν)

(
y2 − D2

4

)]
,

uy = − P
6EI

[
3νy2(L − x) + (4 + 5ν)

D2x
4

+ (3L − x)x2

]
,

(5.16)

where the moment of inertia I for a beam with rectangular cross section and
unit thickness is given by I = D3/12.

The stresses corresponding to the displacements (Equation 5.16) are

σxx (x , y) = P(L − x)y
I

, σyy (x , y) = 0, τxy (x , y) = − P
2I

(
D2

4
− y2

)
.

(5.17)

Related parameters are taken as E = 3.0 × 107 N/m2, ν = 0.3, D = 12 m,
L = 48 m, and P = 1000 N. The domain of the beam is discretized into two
types of meshes using two different elements: four-node quadrilateral and
n-sided polygonal elements are shown in Figure 5.7. In order to show the
direction from which numerical displacements converge to the exact solution,

y

P

x

L

D

FIGURE 5.6 Cantilever loaded at the end.
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0 5 10 15 20 25 30 35 40 45

−5

0

5
(a)

(b)

0 5 10 15 20 25 30 35 40 45

−5

0

5

FIGURE 5.7 Domain discretization of the cantilever using (a) four-node quadrilateral
elements and (b) n-sided polygonal elements.

the following sign function is used [2]:

esign = sign

⎛
⎝Ndof∑

i=1

(∣∣ŭi
∣∣− |ui |

)⎞⎠ , (5.18)

where �ui is the numerical solution and ui is the exact (or reference) solution. If
esign = 1, the displacement of the numerical solutions converges to the exact
solution from above, and esign = −1 indicates a convergence from below.

In the computation, the nodes on the left boundary are constrained using
the exact displacements obtained from analytical formula 5.16 and the loading
on the right boundary uses a parabolic distributed shear stress given in Equa-
tion 5.17. This is to remove the modeling error for the boundary conditions.
The cantilever is analyzed using different numbers of elements and smoothing
domains, ns

e = 1, 2, 3, 4, 8, and 16, as shown in Figure 5.1. The exact solution
for the strain energy of the problem can be easily computed and is found to be
4.4746 Nm.

Table 5.8 lists the tip displacements of the cantilever beam using different
meshes and methods. Figure 5.8 shows the relative error in the displacement
components v of the CS-FEM solution with respect to the analytical solution
at y = 0, where a regular mesh of 32 × 8 is used. Figure 5.9 shows the strain
energy solution for the entire beam obtained using models with different DOFs.

From Figures 5.8 and 5.9, we observe the following:

1. The results of CS-FEM (ns
e = 1) and those of FEM-Q4 using reduced inte-

gration (one Gauss point) are identical. This is because the elements used
are (regular) rectangles.

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
04

 1
0 

M
ay

 2
01

6 



160 Smoothed Finite Element Methods

TABLE 5.8

Tip Displacements (×10−3 m) of the Cantilever Beam Obtained Using Different
Regular Elements (Analytical Solution = 8.900 × 10−3 m)

Mesh Mesh Mesh Mesh Mesh
ns

e (16 × 4) (24 × 6) (32 × 8) (40 × 10) (48 × 12)

1 9.4542 9.1471 9.0319 8.9874 8.9581
2 9.2915 9.0699 8.9948 8.9604 8.9419
3 9.0574 8.9693 8.9389 8.9249 8.9172
4 8.8355 8.8711 8.8837 8.8896 8.8927
8 8.7978 8.8542 8.8741 8.8834 8.8885
16 8.6920 8.8061 8.8469 8.8659 8.8763
FEM (GP = 4) 8.6453 8.7847 8.8347 8.8581 8.8708

0 10 20 30 40 50
−1

−0.5

0

0.5

1

1.5

2
× 10−4

x (y = 0) (m)

Re
la

tiv
e e

rr
or

 in
 d

isp
la

ce
m

en
t v

 (m
)

FEM (GP = 1) or CS−FEM (SD = 1)

SD = 2
SD = 3

SD = 4 SD = 8

SD = 16
FEM (GP = 4)

FIGURE 5.8 Comparison of the relative error in displacement v between CS-FEM and the
analytical solution for the cantilever loaded at the end. The monotonic convergence behavior
of the CS-FEM solution in displacement with respect to the number of smoothing domains is
clearly shown for this problem.
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FEM-Q4 (1GP)
or CS-FEM (1SD)

CS-FEM-1SD
CS-FEM-2SD
CS-FEM-3SD
CS-FEM-4SD
CS-FEM-8SD
CS-FEM-16SD
FEM-Q4 (4GP)
Analytical solution
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FIGURE 5.9 Convergence of the strain energy solutions of CS-FEM and FEM for the can-
tilever loaded at the end. The monotonic convergence behavior of the CS-FEM solution in
strain energy with respect to both DOFs and the number of SDs is clearly shown.

2. The strain energy solution converges to the exact solution monotoni-
cally with the increase of DOFs, as shown in Figure 5.9. This confirms
inequality 5.6.

3. The solutions change monotonically from the overestimated to the under-
estimated ones with the increase of ns

e that is the number of smoothing
domains per element, and then approach the result of FEM-Q4 using full
integration (four Gauss points).

4. Figure 5.8 shows the monotonic convergence behavior of the CS-FEM
solution in displacement for this problem, but this may not be true in
general.

5. The use of ns
e = 4 gives the best results as compared to the analytical ones

for this problem.

Figure 5.10 shows that stresses computed at the center of the elements and at
the nodes by CS-FEM agree very well with the analytical solutions. Figure 5.11
illustrates the second-order derivatives displacements obtained using CS-FEM
and Equation 4.34. It is seen that the CS-FEM results agree well with the
analytical solutions, even for the second-order derivatives. The gradients near
the boundaries are generally less accurate when compared with those in the
internal region because of the asymmetric smoothing domains used on the
boundaries. This phenomenon has the same root as those observed in the
SPH when a biased smoothing domain is used on the domain boundary [15].
This phenomenon is also reported in the nodal-natural element method by Yoo
et al. [16].
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FIGURE 5.10 Comparison of the numerical results of CS-FEM with the analytical solutions
for the cantilever loaded at the end: (a) shear stress τxy and (b) normal stress σxx.

Figure 5.12 shows the relative error in displacement v obtained using nCS-
FEM together with the analytical solutions along y = 6. It is seen that the
computed displacement using nCS-FEM is an underestimate and approaches
the exact solution with the increase of DOFs, indicating that the nCS-FEM
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FIGURE 5.11 Second-order derivatives of displacements obtained using CS-FEM for the
cantilever loaded at the end. (a) d2u/dx2; (b) d2u/dxdy; (c) d2v/dx2; and (d) d2v/dy2.

model is still on the stiff side. Figure 5.13 shows the contour of the distribution
of the relative error in displacement v between nCS-FEM and the analytical
solution. Figures 5.14 and 5.15 plot the contours of stress distribution obtained
using nCS-FEM in comparison with the analytical one. Good agreement has
been observed.

The displacement and energy norms of the CS-FEM solution are compared
with those of FEM-Q4 in Tables 5.9 and 5.10. The convergence rates are also
plotted in Figures 5.16 and 5.17. It is again seen that both the error and conver-
gence rate in the displacement and energy norms of the CS-FEM solution will
approach those of FEM-Q4 when ns

e (the number of smoothing domains in an
element) increases. It is observed that CS-FEM-4SD (ns

e = 4) performs the best
among all these models and gives a much more accurate displacement solution
than FEM-Q4, as shown in Figure 5.16. When the finest mesh (h = 1 m) is used,
the error of CS-FEM-Q4 is about 1/4 that of FEM-Q4, as shown in Table 5.9. In
terms of the convergence rates in the displacement norm, all these models have
roughly the same value, approximately 2, which is the theoretical rate in the
displacement norm for linear elements based on the standard Galerkin weak
form (see Theorem 3.4). Although not very significant, the convergence rate of
the CS-FEM solution is larger than that of FEM-Q4 in terms of displacements.
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FIGURE 5.12 Relative error in deflection v − v0 (m) along y = 6 computed using nCS-FEM
and the analytical solution for the cantilever loaded at the end.

In terms of the error in the energy norm, the solution error of FEM-Q4-Re is
the smallest, followed closely by that of CS-FEM-4SD, which is, in turn, much
smaller than that of FEM-Q4, as shown in Figure 5.17. The convergence rate
in the energy norm of the FEM-Q4 solution is approximately 1, which is the
theoretical rate in the energy norm for linear elements based on the standard
Galerkin weak form (see Theorem 3.4). The convergence rate for FEM-Q4-Re
is, however, found to be 1.35, which shows that the FEM-Q4-Re solution is

6

4

2

0
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–4
–6

0 5 10 15 20 25 30 35 40 45

0.5
1
1.5
2
2.5
3

× 10–5

FIGURE 5.13 Contour of relative deflection errors (m) for the cantilever using nCS-FEM.
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FIGURE 5.14 Contour of the analytical and computed shear stress τxy (N/m2) for the
cantilever using nCS-FEM.
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FIGURE 5.15 Contour of the analytical and computed normal stress σxx (N/m2) for the
cantilever using nCS-FEM.
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TABLE 5.9

Displacement Norm (×10−3) of the Cantilever Beam Obtained Using Different
Element Sizes

CS-FEM CS-FEM CS-FEM CS-FEM CS-FEM CS-FEM FEM-Q4

Mesh h ns
e = 1 ns

e = 2 ns
e = 3 ns

e = 4 ns
e = 8 ns

e = 16 (GP = 4)

16 × 4 3.0 6.72 4.66 1.90 (−) 0.74 (−) 1.18 (−) 2.42 (−) 2.97

24 × 6 2 2.88 2.02 0.84 (−) 0.33 (−) 5.29 (−) 1.09 (−) 1.35

32 × 8 1.5 1.60 1.13 0.47 (−) 0.19 (−) 0.30 (−) 0.62 (−) 0.76

40 × 10 1.2 1.02 0.72 0.30 (−) 0.12 (−) 0.19 (−) 0.40 (−) 0.49

48 × 12 1 0.70 0.50 0.21 (−) 0.083 (−) 0.13 (−) 0.28 (−) 0.34

Note: Sign (−) shows that the solution is smaller than the exact solution; GP = 4 for FEM
quadrilateral element is the minimum number for full integration.

“superconvergent.”∗ The convergence rate for our CS-FEM solution is found to
be 1.55, which is even higher than that of the FEM-Q4-Re solution. This shows
clearly that the S-FEM models have strong superconvergence.

From the solution errors in both the displacement and energy norms, CS-FEM
with ns

e = 4 is the best choice for this example problem.
We note that the recovery operation used in FEM-Q4 has significantly

improved the strain solution that is known to be superconvergent, and is the
best possible solution that an FEM model can achieve. However, such a post-
processing cannot improve the displacement solution of an FEM model. This
particular example has clearly shown that although FEM-Q4-Re has performed
slightly better than CS-FEM-4SD in terms of energy norm error (an indication

TABLE 5.10

Strain Energy (×10−1 Nm) for the Cantilever Beam Obtained Using Different
Element Sizes

FEM-Q4

CS-FEM CS-FEM CS-FEM CS-FEM CS-FEM CS-FEM FEM-Q4 Recovery

Mesh h ns
e = 1 ns

e = 2 ns
e = 3 ns

e = 4 ns
e = 8 ns

e = 16 (GP=4) (GP = 4)

16 × 4 3.0 2.96 3.29 2.84 2.38 2.45 2.63 3.71 2.06

24 × 6 2 1.75 1.88 1.59 1.30 1.33 1.41 2.49 1.14

32 × 8 1.5 1.19 1.26 1.04 0.85 0.86 0.90 1.88 0.75

40 × 10 1.2 0.87 0.92 0.75 0.60 0.61 0.64 1.50 0.54

48 × 12 1 0.68 0.71 0.58 0.46 0.47 0.48 1.25 0.41

∗ It is defined loosely in the book as the rate that is higher than the theoretical rate based on
the standard weak formulation.

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
04

 1
0 

M
ay

 2
01

6 



Cell-Based Smoothed FEM 167

0 0.1 0.2 0.3 0.4
−5

−4

−3

−2

log10 h

lo
g 1

0 |
|u

 −
 u

h || L2
(Ω

)

CS-FEM-1SD (r = 2.04)
CS-FEM-2SD (r = 2.03)
CS-FEM-4SD (r = 1.99)
CS-FEM-8SD (r = 1.99)
CS-FEM-16SD (r = 1.98)
FEM-Q4-4GP (r = 1.98)

CS-FEM-4SD

FEM-Q4 (4GP)

FIGURE 5.16 Error in the displacement norm of CS-FEM and FEM for the cantilever loaded
at the end using the same meshes.

of strain error), CS-FEM-4SD performed much better than FEM-Q4 in the dis-
placement solution. In addition, in terms of convergence rate, CS-FEM-4SD
is higher than FEM-Q4-Re. CS-FEM-4SD shows strong superconvergence in
the energy norm. In the displacement norm, we have also seen signs of
superconvergence of the CS-FEM models: the rates for CS-FEM models with
ns

e = 1 and 2 did exceed the theoretical value of 2.0, although very marginal
as shown in Figure 5.16. We will show in later chapters that some of the
S-FEM models are also very strongly superconvergent in the displacement
norm.

Note also that this numerical example confirms the bound properties of CS-
FEM: it is always “softer” than FEM-Q4 using the same mesh, which confirms
Theorem 4.2. In overall performance, CS-FEM-4SD outperforms FEM-Q4-Re
for this example. We also note that the superiority of CS-FEM in terms of
solution accuracy over FEM-Q4 is achieved with little additional compu-
tational effort: the setting of CS-FEM is almost the same as FEM-Q4; the
difference is only in shape function evaluation and integration of the stiffness
matrix.

Example 5.8.2: Infinite Plate with a Circular Hole

Figure 5.18 represents a plate with a central circular hole of radius a = 1 m, sub-
jected to a unidirectional tensile load of 1.0 N/m at infinity in the x-direction.
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FIGURE 5.17 Error in the energy norm of CS-FEM and FEM for the cantilever loaded at the
end using the same meshes.

Due to its symmetry, only the upper right quadrant of the plate is modeled.
Figure 5.19 gives the discretization of the domain using quadrilateral and n-
sided polygonal elements. The plane strain condition is considered, and E =
1.0 × 103 N/m2 and ν = 0.3. Symmetric conditions are imposed on the left
and bottom edges, and the inner boundary of the hole is traction free. The

σ = 1 N/m

a

σ = 1 N/m

θ

5

5

y (m)

r (m)

x (m)O

y (m)

x (m)

m

m

FIGURE 5.18 Infinite plate with a circular hole subjected to unidirectional tension and its
quarter model with symmetric conditions imposed on the left and bottom edges.
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FIGURE 5.19 Domain discretization of the infinite plate with a circular hole using (a) four-
node elements and (b) n-sided polygonal elements.

exact stresses for this problem are [14]

σ11 = 1 − a2

r2

[
3
2

cos 2θ+ cos 4θ
]

+ 3a4

2r4 cos 4θ,
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170 Smoothed Finite Element Methods

σ22 = −a2

r2

[
1
2

cos 2θ− cos 4θ
]

− 3a4

2r4 cos 4θ, (5.19)

τ12 = −a2

r2

[
1
2

sin 2θ+ sin 4θ
]

+ 3a4

2r4 sin 4θ,

where (r , θ) are the polar coordinates and θ is measured counterclockwise
from the positive x-axis. Traction boundary conditions are imposed on the right
(x = 5) and top (y = 5) edges based on the exact solution (Equation 5.19). The
displacement components corresponding to the stresses are

u1 = a
8μ

[
r
a

(κ+ 1) cos θ+ 2
a
r

((1 + κ) cos θ+ cos 3θ) − 2
a3

r3 cos 3θ

]
,

u2 = a
8μ

[
r
a

(κ− 3) sin θ+ 2
a
r

((1 − κ) sin θ+ sin 3θ) − 2
a3

r3 sin 3θ

]
,

(5.20)

where μ = E/(2(1 + ν)) and κ is defined in terms of Poisson’s ratio by κ =
3 − 4ν for plane strain cases.

Using CS-FEM, the domain is discretized using quadrilateral elements
that are further divided into different numbers of smoothing domains, ns

e =
1, 2, 3, 4, 8, and 16, as shown in Figure 5.1. From Figures 5.20 and 5.21, it
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Analytical solution

CS-FEM
Analytical solution

(a)

(b)

FIGURE 5.20 Numerical and exact displacements of the infinite plate with a hole using
CS-FEM (ns

e = 4): (a) displacement u and (b) displacement v.
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FIGURE 5.21 Numerical and exact stresses in the infinite plate with a hole using CS-FEM
(ns

e = 4): (a) σxx and (b) σyy .
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FIGURE 5.22 Convergence of the strain energy solutions of CS-FEM and FEM-Q4 for the
infinite plate with a hole. The monotonic convergence behavior of the CS-FEM solution in
strain energy with respect to the number of smoothing domains and DOFs is clearly shown.
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FIGURE 5.23 Convergence of error in the displacement norm of CS-FEM and FEM-Q4 in
the infinite plate with a hole using the same meshes.
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FIGURE 5.24 Convergence of error in the energy norm of solutions obtained using CS-FEM
and FEM-Q4 in the infinite plate with a hole using the same meshes.
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FIGURE 5.25 The exact displacement solution and the numerical solution computed using
nCS-FEM for the infinite plate with a hole: (a) displacement u and (b) displacement v.
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FIGURE 5.26 The exact solution of stresses and the numerical obtained using nCS-FEM for
the infinite plate with a hole: (a) σxx and (b) σyy .
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FIGURE 5.27 Contour plots of solutions for the infinite plate with a hole using nCS-
FEM: (a) the error in displacement u; (b) the normal stress error in x-axis (N/m2); and (c) the
normal stress error in y-axis (N/m2).

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
04

 1
0 

M
ay

 2
01

6 



176 Smoothed Finite Element Methods

0.4 0.49 0.499 0.4999 0.49999 0.499999 0.4999999
0

2

4

6

8

10

12

14

16

18(a)

(b)

Poisson’s ratio

D
isp

la
ce

m
en

t n
or

m
 e d

  (
%)

nCS-FEM
Selective nCS-FEM

0.4 0.49 0.499 0.4999 0.49999 0.499999 0.4999999
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
× 10−3

Poisson’s ratio

D
isp

la
ce

m
en

t n
or

m
 ||

u−
uh || L

2  (Ω
)

CS-FEM (ns = 4)

Selective CS-FEM 

FIGURE 5.28 Error in the displacement norm versus different Poisson’s ratios for the infinite
plate with a hole: (a) n-sided polygonal elements (451 nodes) and (b) four-node quadrilateral
elements (289 nodes).
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Cell-Based Smoothed FEM 177

is observed that all the computed displacements and stresses using CS-FEM
(ns

e = 4) are in good agreement with the analytical solutions.
Figure 5.22 shows the strain energy results of CS-FEM versus the DOFs used

in the model, and Figure 5.23 plots the convergence of error in the displace-
ment norm when the mesh is refined. It is shown clearly that the results of
CS-FEM change monotonously from ns

e = 1 to ns
e = 16 and approach the result

of FEM-Q4 using full integration (four Gauss points). This confirms Theorems
4.4 and 4.5.

Note that for this problem, the error in the displacement norm of CS-FEM is
smallest when ns

e = 1 is used, and all the computed strain energies are underes-
timates compared to the analytical solution. The bound property of the CS-FEM
solution is again observed from this example: the CS-FEM model is always softer
than the FEM-Q4 model, using the same mesh. Figure 5.23 clearly shows that
CS-FEM-4SD outperforms FEM-Q4 in the displacement solution with roughly
the same convergence rate.

Figure 5.24 shows the convergence of error in the energy norm of solutions
obtained using CS-FEM for the infinite plate with a hole, together with those
using FEM-Q4 and FEM-Q4-Re with the same meshes. The results again show
that the error in the energy norm of the FEM-Q4-Re solution is very close to
those of the CS-FEM models, which are all much smaller than that of FEM-Q4.
FEM-Q4-Re and CS-FEM-4SD give almost the same accuracy in the energy
norm. The convergence rate in the energy norm of FEM-Q4 is numerically
about 1.1, whereas those of FEM-Q4-Re and CS-FEM are from 1.79 to 1.81,
which are much higher than that of FEM-Q4. Also note that the error in the
energy norm of the CS-FEM solution obtained using ns

e = 4 is the best among
all these CS-FEM models for this problem. In overall performance, CS-FEM-4SD
again outperforms FEM-Re-Q4 for this example.

Using nCS-FEM, it is observed that all the computed displacements and
stresses are in good agreement with the analytical solutions, as shown in Fig-
ures 5.25 and 5.26. With refinement of the mesh, the accuracy becomes better
and approaches the exact solution. The contour plots of the error in displace-
ment and stresses are shown in Figure 5.27. Accurate results are obtained.

Figure 5.28 plots the error in the displacement norm versus Poisson’s ratio
changing from 0.4 to 0.4999999 obtained using nCS-FEM and selective nCS-
FEM with n-sided polygonal elements (451 nodes), and CS-FEM and selective
CS-FEM with Q4 elements (289 nodes).

The results show that the selective CS-FEM presented in Section 5.7 is effec-
tive in overcoming volumetric locking for nearly incompressible materials,
whereas CS-FEM (ns

e = 4) and nCS-FEM are subjected to volumetric locking.
We have also observed that locking starts as early as Poisson’s ratio at 0.4.

5.9 Remarks

In this chapter, we presented CS-FEM models, including CS-FEM using
Q4 elements and nCS-FEM using general n-sided polygonal elements.
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178 Smoothed Finite Element Methods

Through the theoretical study, formulations and numerical examples,
some remarks for CS-FEM and nCS-FEM can be made.

Remark 5.4 Shape Function Values

For CS-FEM and nCS-FEM, the evaluation of the shape function values at
points on the smoothing domain boundaries can be done with ease, using
the simple linear PIM. The compatibility of the displacement field on the
smoothing domain boundaries can always be ensured using the linear PIM,
as long as the interpolation is based on points on the smoothing domain
boundaries.

Remark 5.5 Spatial Stability of CS-FEM Models

For CS-FEM using Q4 elements, when the number of smoothing domains
ns

e = 1, the solution of CS-FEM has similar properties with those of FEM-Q4
using reduced integration. The element stiffness matrix may contain spu-
rious zero-energy modes, and the global stiffness matrix after imposing
sufficient essential boundary conditions can still be singular depending
on the setting of the problem. When ns

e approaches infinity, the solu-
tion of CS-FEM will approach the solution of the standard compatible
FEM-Q4 model. When ns

e is a finite number larger than 1, the solutions
of a stable CS-FEM in both displacement and strain energy will change
monotonously from the solution of CS-FEM (ns

e = 1) to that of FEM using
full integration.

Remark 5.6 CS-FEM with ns
e = 4: An Always Stable Model

In practical calculation, using ns
e = 4 smoothing domains for each Q4

element in CS-FEM is advised for all problems. The numerical solu-
tion of CS-FEM (ns

e = 4) is always stable, accurate, much better than its
counterpart FEM-Q4, and often very close to the exact solution.

Remark 5.7 CS-FEM versus FEM-Q4

The errors in the energy norm of CS-FEM are much smaller than those
of FEM-Q4. The convergence rates in the energy norm of CS-FEM are
much higher than those of FEM-Q4. The errors and convergence rates
in the displacement norm of CS-FEM will approach those of FEM-Q4
when the number of smoothing domains in elements increases. The error
in the energy norm of the CS-FEM solution is a little higher than that of
FEM-Q4-Re. The error in the displacement norm of the CS-FEM solution
is much smaller than that of FEM-Q4. In overall performance, CS-FEM
with ns

e = 4 outperforms FEM-Q4-Re for the examples studied in this
chapter.
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Cell-Based Smoothed FEM 179

Remark 5.8 On nCS-FEM: An Always Stable and Efficient Model

In nCS-FEM, n-sided polygonal elements using ns
e = n triangular smooth-

ing cells can work and are always stable. nCS-FEM is found on the
“stiff” side.

Remark 5.9 Selective CS-FEM and nCS-FEM: Volumetric Locking Free

The selective CS-FEM and nCS-FEM are simple and very effective in
overcoming volumetric locking for problems of nearly incompressible
materials.

CS-FEM has been studied further in theory [17] and extended for
dynamic analyses [18], incompressible materials using selective integra-
tion [19], and plate and shell analyses [20–24]. It is also extended in
combination with the extended finite element method (XFEM) to solve
fracture mechanics problems in 2D continuum and plates [25].

Note that CS-FEM is indeed very similar to the standard FEM-Q4, and
the numerical operations (interpolation, integration, etc.) are all based on
elements. Switching from an FEM-Q4 code to a CS-FEM code is trivial
requiring minimum alteration, and the major code structure can largely
stay put. Such a simple switch is certainly justified for the benefits obtained.
However, the use of Q4 elements is not preferable, due to the difficulty in
fully automatic mesh generation. In the following chapters, we will intro-
duce S-FEM models that work well with T3 elements (for 2D problems)
and T4 elements (for 3D problems), which require accessing the informa-
tion from neighboring elements for the smoothing operation to take effect
we cannot and should not be confined by the element!
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6
Node-Based Smoothed FEM

6.1 Introduction

In order to determine the error in numerical solutions of complicated prob-
lems without knowing the exact solution or performing so-called duality
in FEM analysis [1–3], it is practical to use two numerical models: one
gives a lower bound and the other gives an upper bound of the unknown
exact solution. This chapter discusses an S-FEM model that can be used
for such a purpose. For convenience in discussion, we focus on the so-
called force-driven solid mechanics problems: boundary value problems
with homogeneous Dirichlet (or essential, or displacement) boundary con-
ditions. The extension to other types of problems will be discussed in the
remark section.

For the above-mentioned force-driven problems, the most popular
model giving a lower bound in terms of strain energy is the fully compatible
displacement FEM model (see Property 3.2), which is currently widely used
in solving complicated engineering problems. Obtaining an upper bound
solution is, on the other hand, usually much more difficult, and a great
deal of effort has been made so far to overcome this difficulty. Currently,
the model that can give an upper bound is one of the following model:

Model 1: the stress equilibrium FEM model [3]
Model 2: the recovery model using a statically admissible stress field

from the displacement FEM solution [4–6]
Model 3: some hybrid equilibrium FEM model [7,8]
Model 4: the recently developed node-based S-FEM (or NS-FEM)

model [9–13]

The first three models are known to have some disadvantages. For Model
1, there are three major drawbacks: (1) The equilibrium approach is math-
ematically much more complicated and hence difficult to implement and
computationally more expensive; (2) Spurious modes often occur simply
because the model is overly soft and tractions cannot be equilibrated by
the approximated stress field; and (3) It is difficult to obtain the displace-
ment field from the stress solutions because an integral equation has to be
solved (i.e., essentially an inverse procedure). For Model 2, there are two
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184 Smoothed Finite Element Methods

main drawbacks: (1) This procedure is complicated and computationally
expensive, and (2) It is difficult to obtain desirable global errors because of
the instability of the recovery upper bound solutions. For Model 3, there
are three main drawbacks: (1) The procedure is complicated and compu-
tationally more expensive; (2) Additional DOFs are often required because
of the use of both approximated displacement and stress variables; and (3)
There exist spurious modes in the hybrid models. Because of these draw-
backs, the three models are not yet widely used in practical applications to
complicated engineering problems. They are still very much restricted to
the area of academic research.

Model 4 is considered as the simplest, robust, and practical technique for
obtaining upper bounds for problems of all dimensions and of arbitrary
complexity as long as a triangular type of mesh can be created. Devel-
opment in this new direction originated from the recent discovery that
NS-PIM [12,13] can often produce upper bound solutions in strain energy
for force-driven problems of arbitrary complexity as long as triangular
background cells can be built. Similar properties were later also found in
NS-FEM using different types of elements [9,10]. This chapter is therefore
devoted to the NS-FEM that was initially proposed in Refs. [9,10] following
the work of NS-PIM [12,13].

Apart from the important upper bound property, NS-FEM also possesses
many other interesting properties that are similar to an equilibrium model,
such as natural immunization from volumetric locking, ultra-accuracy, and
superconvergence of the stress solution. In addition, NS-FEM works well
for triangular types of elements that can be generated automatically for
complicated geometries.

The formulation of NS-FEM given in this chapter is performed first
for 2D problems using in general arbitrary n-sided polygonal elements,
in particular triangular elements, and then for 3D problems using tetra-
hedral elements. In addition, an adaptive procedure for NS-FEM using
triangular elements (NS-FEM-T3) with an error indicator based on the
computable recovery strain is proposed [14]. Finally, numerical examples
are presented to confirm the theory and to demonstrate the properties of
the NS-FEM model.

6.2 Creation of Node-Based Smoothing Domains

In NS-FEM, the problem domain Ω is discretized using Nn elements with
Nn nodes, such that Ω =∑Ne

i=1Ω
e
i and Ωe

i ∩Ωe
j = ∅, i �= j, as in FEM. The

shape of the elements can be, in general, a polygon with an arbitrary
number of sides. On top of the element mesh, a set of nonoverlapping
no-gap smoothing domains is then created associated with nodes, such
that Ω =∑Nn

k=1Ω
s
k and Ωs

i ∩Ωs
j = ∅, i �= j. In this case, the number of
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Node k

Domain
Ωk

s

Boundary Γk
s

: Central point of n-sided polygonal element: Field node
: Mid-edge-point

FIGURE 6.1 n-Sided polygonal elements and the smoothing domains associated with nodes.

smoothing domains is the same as the number of nodes: Ns = Nn, which
satisfies the requirement of the minimum number of smoothing domains
given in Table 4.2. This implies that NS-FEM should at least be spa-
tially stable (see Theorem 4.1). The strain smoothing technique using the
node-based smoothing domains [15] is used to create a strain field for
the NS-FEM model where the assumed displacement field is constructed
using an element mesh. For n-sided polygonal elements, the smoothing
domainΩs

k associated with node k is created by sequentially connecting the
mid-edge-point to the central points of the surrounding n-sided polygonal
elements of node k, as shown in Figure 6.1. As a result, each n-sided polyg-
onal element will be divided into n quadrilateral subdomains and each
subdomain is attached to the nearest field node. The domainΩs

k associated
with node k can also be viewed as the combination of the subdomains of
all the elements surrounding node k.

6.3 Formulation of NS-FEM

6.3.1 General Formulation

Consider the solid mechanics problem defined in Chapter 2. Using the
general formulation of the S-FEM models presented in Chapter 4, the linear
system of equations of NS-FEM has the form

K
NS-FEM

d = f̃, (6.1)
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186 Smoothed Finite Element Methods

where K
NS-FEM

is the smoothed stiffness matrix whose entries are given by

K
NS-FEM
IJ =

∫

Ω

B
T
I cBJdΩ =

Nn∑
k=1

∫

Ωs
k

B
T
I c BJ︸︷︷︸

constant in Ωs
k

dΩ =
Nn∑
k=1

B
T
I cBJAs

k , (6.2)

where As
k = ∫

Ωs
k

dΩ is the area of node-based smoothing domain Ωs
k , and

the smoothed strain–displacement matrix BI is computed using Equa-
tion 4.30. It is clear that we need only the shape function values to obtain the
smoothed strain–displacement matrix BI . For general n-sided polygonal
elements, shape function values are obtained following the same procedure
given in Section 6.4.

6.3.2 NS-FEM-T3 for 2D problems

In particular, when linear triangular elements (T3) are used for 2D prob-
lems, Equation 4.30 can, of course, still be used. However, in such cases,
we know that the compatible strains are constants in the T3 elements (see
Section 3.11), and hence the formulation reduces to that given in Refs. [9,10].
The smoothed strain–displacement BI can be assembled simply using

BI(xk) = 1
As

k

ne
k∑

j=1

1
3

Ae
j B̃

e
j , (6.3)

where ne
k is the number of elements around node k, Ae

j is the area of the

jth element around node k, and matrix B̃e
j =∑I∈Se

j
B̃I is the compatible

strain–displacement matrix for the jth triangular element around node k.
It is assembled from the compatible strain–displacement matrices B̃I(x)

of nodes in the set Se
j containing three nodes of the jth triangular element.

Matrix B̃I(x) for node I is the strain–displacement matrix given by Equation
3.93 and As

k is the area of the kth smoothing domain computed using

As
k =

∫

Ωs
k

dΩ = 1
3

ne
k∑

j=1

Ae
j . (6.4)

With this formulation, only the area and the usual “compatible”
strain–displacement matrices B̃e

j of the triangular elements are needed
to calculate the system stiffness matrix for the NS-FEM-T3 model. The
formulation is simple, but works only for triangular elements that use lin-
ear interpolation. For NS-FEM models using other elements, the smoothed
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Node-Based Smoothed FEM 187

strain–displacement matrix BI has to be computed using the original Equa-
tion 4.30, and the shape functions have to be evaluated in the same way as
given in Section 6.4.

6.3.3 NS-FEM-T4 for 3D Problems

The above formulation is quite straightforward to extend to 3D prob-
lems using four-node tetrahedral elements (T4). The smoothed strain–
displacement matrix BI(xk) for an NS-FEM-T4 model is assembled
using [9,10]

BI(xk) = 1
Vs

k

ne
k∑

j=1

1
4

Ve
j B̃e

j , (6.5)

where Ve
j is the volume of the jth tetrahedral element around node k; Vs

k
is the volume of the kth smoothing domain associated with node k, and is
computed using

Vs
k =

∫

Ωs
k

dΩ = 1
4

ne
k∑

j=1

Ve
j . (6.6)

In Equation 6.5, matrix B̃e
j =∑I∈Se

j
B̃I is the compatible strain–

displacement matrix for the jth tetrahedral element around node k. It
is assembled from the compatible strain–displacement matrices B̃I(x) of
nodes in the set Se

j containing four nodes of the jth tetrahedral element.

Matrix B̃I(x) for node I is the strain–displacement matrix given by Equa-
tion 3.108. With such a formulation, all we need is the volume and the
usual “compatible” strain–displacement matrices B̃e

j of the four-node tetra-
hedral elements to compute the system stiffness matrix for NS-FEM. The
formulation is simple, but works only for tetrahedral elements that use
linear interpolation. For other NS-FEM models, the smoothed strain–
displacement matrix BI has to be computed using the original Equation
4.30 for S-FEM models, and the shape functions have to be evaluated in a
similar way as given in the next section.

6.4 Evaluation of Shape Function Values

For NS-FEM using n-sided polygonal elements, the shape functions con-
structed in Section 4.3.2 can be used. When the displacement field along
the boundary of the smoothing domains is continuous and linear, the
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188 Smoothed Finite Element Methods

smoothed strain–displacement matrix BI can be computed using the shape
function values at the mid-segment-points (Gauss points) along segments
Γs

k,p ∈ Γs
k of the smoothing domains. The shape function values at each

Gauss point are evaluated by simple linear PIM, and they are essentially
the average of those of two related endpoints of the segment containing
the Gauss point. For example, the values of shape functions at point #a on
segment A − B shown in Figure 6.2 are evaluated as an average of those
at two endpoints of the segment: points #A and #B. Therefore, in order to
facilitate the evaluation of shape function values at Gauss points in NS-
FEM, we first need to evaluate the shape function values at the endpoints
of line segments of the smoothing domain boundary, such as mid-edge-
points (#A, #C, #E, and #G) and central points (#B, #D, #F, and #H), as
shown in Figure 6.2.

Figure 6.2 and Table 6.1 give explicitly the shape function values at dif-
ferent points of the smoothing domain associated with node k. The number
of support nodes for the smoothing domain is 11, including node k, and we
have a total of eight segments Γs

k,p on Γs
k(AB, BC, CD, DE, EF, FG, GH, HA).

Each segment needs only one Gauss point (due to linear interpolation),
and therefore there are a total of eight Gauss points (a, b, c, d, e, f , g, h) used
for the entire smoothing domainΩs

k , and the shape function values at these
eight Gauss points are tabulated in Table 6.1 by simple inspection.

It should be recalled that the purpose of introducing central points and
mid-edge-points is to facilitate the evaluation of shape function values at

: Central point of n-sided polygonal elements

: Field nodes : Mid-edge-point

k

1
2

3

4

5

6
7

8

9

10

A
B

C

D

E

F

G

H
ab

c

d

e f

g

h

: Gauss point

Γk
s

Ωk
s

FIGURE 6.2 Position of Gauss points at mid-segment-points on the segments of smoothing
domains associated with node k in a mesh of n-sided polygonal elements.
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TABLE 6.1

Shape Function Values at Different Sites on the Smoothing Domain Boundary for Node k (cf. Figure 6.2)

Site Node k Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 Node 10 Description

k 1.0 0 0 0 0 0 0 0 0 0 0 Field node
1 0 1.0 0 0 0 0 0 0 0 0 0 Field node
2 0 0 1.0 0 0 0 0 0 0 0 0 Field node
3 0 0 0 1.0 0 0 0 0 0 0 0 Field node
4 0 0 0 0 1.0 0 0 0 0 0 0 Field node
5 0 0 0 0 0 1.0 0 0 0 0 0 Field node
6 0 0 0 0 0 0 1.0 0 0 0 0 Field node
7 0 0 0 0 0 0 0 1.0 0 0 0 Field node
8 0 0 0 0 0 0 0 0 1.0 0 0 Field node
9 0 0 0 0 0 0 0 0 0 1.0 0 Field node
10 0 0 0 0 0 0 0 0 0 0 1.0 Field node
A 1/2 1/2 0 0 0 0 0 0 0 0 0 Mid-edge-point
B 1/3 1/3 1/3 0 0 0 0 0 0 0 0 Centroid of element
C 1/2 0 1/2 0 0 0 0 0 0 0 0 Mid-edge-point
D 1/4 0 1/4 1/4 1/4 0 0 0 0 0 0 Centroid of element
E 1/2 0 0 0 1/2 0 0 0 0 0 0 Mid-edge-point
F 1/6 0 0 0 1/6 1/6 1/6 1/6 1/6 0 0 Centroid of element
G 1/2 0 0 0 0 0 0 0 1/2 0 0 Mid-edge-point
H 1/5 1/5 0 0 0 0 0 0 1/5 1/5 1/5 Centroid of element
a 5/12 5/12 1/6 0 0 0 0 0 0 0 0 Mid-segment of Γs

k,p
b 5/12 1/6 5/12 0 0 0 0 0 0 0 0 Mid-segment of Γs

k,p
c 3/8 0 3/8 1/8 1/8 0 0 0 0 0 0 Mid-segment of Γs

k,p
d 3/8 0 1/8 1/8 3/8 0 0 0 0 0 0 Mid-segment of Γs

k,p
e 1/3 0 0 0 1/3 1/12 1/12 1/12 1/12 0 0 Mid-segment of Γs

k,p
f 1/3 0 0 0 1/12 1/12 1/12 1/12 1/3 0 0 Mid-segment of Γs

k,p
g 7/20 1/10 0 0 0 0 0 0 7/20 1/10 1/10 Mid-segment of Γs

k,p
h 7/10 7/10 0 0 0 0 0 0 1/10 1/10 1/10 Mid-segment of Γs

k,p
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190 Smoothed Finite Element Methods

these Gauss points. No extra DOFs are associated with these points. In
other words, the DOFs of an NS-FEM are only these nodal DOFs, and no
additional DOFs are introduced.

It is easy to see that the bilinear and linear shape functions for four-node
quadrilateral (Q4) and triangular elements (T3) of the standard FEM are at
least linear and satisfy naturally the continuity condition along the bound-
ary of the smoothing domains. Hence, NS-FEM can be easily applied to
the traditional four-node quadrilateral or triangular elements. For T3 ele-
ments, FEM shape functions given in Chapter 3 can be directly used and
the results will be exactly the same as those following the procedure dis-
cussed in this section. For Q4 elements, shape function values are obtained
using the procedure given in this section, which is exactly the same as the
procedure given in Section 5.3.1. For the case of tetrahedral elements, the
detailed formulation given in Section 6.3 should be followed.

6.5 Properties of NS-FEM

We now perform some analyses and tests to examine the properties of
NS-FEM.

6.5.1 Essential Properties

NS-FEM possesses some of the interesting properties of equilibrium
FEM models established based on the minimum complementary energy
principle [16].

Property 6.1 Upper Bound Property of NS-FEM: To FEM

The total strain energy of numerical solution ENS-FEM(d) obtained from the
NS-FEM solution is no less than that of FEM using the same mesh ẼFEM(d̃):

ENS-FEM(d) ≥ ẼFEM(d̃), (6.7)

where d is the vector of nodal displacements computed using an NS-FEM
model and d̃ is that of the FEM model using the same mesh. The strain
energy of the NS-FEM solution can be evaluated using

ENS-FEM = 1
2

d
T

K
NS-FEM

d, (6.8)
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Node-Based Smoothed FEM 191

where K
NS-FEM

is the system stiffness matrix of the NS-FEM model. The
strain energy of the FEM solution can be evaluated using

ẼFEM(d̃) = 1
2

d̃TK̃FEMd̃, (6.9)

where K̃FEM is the system stiffness matrix of the FEM model.
A detailed proof on the upper bound property, Equation 6.7, was given

in Ref. [12], and is given in the proof of Theorem 4.3 in this book.

Property 6.2 Upper Bound Property of NS-FEM: To the Exact Solution

The numerical results demonstrated that when a reasonably fine mesh is
used to ensure sufficient smoothing effects in the model, the strain energy of
numerical solution ENS-FEM(d) obtained from the NS-FEM solution has the
following relationship with the total strain energy of exact solution Eexact.

ENS-FEM(d) ≥ Eexact(u), (6.10)

where u is the displacement of the exact solution of the same problem. The
strain energy of the exact solution can be computed using

Eexact =
∫

Ω

(ε(u))Tcε(u)dΩ = 1
2

Ne∑
i=1

∫

Ωe
i

(εe
i )

Tcεe
i dΩ, (6.11)

where ε(u) is the exact strain field obtained using the exact displacement
field u and εe

i is the exact strain solution of the ith element.
A detailed discussion on the upper bound property, Equation 6.10, and

related conditions for the NS-PIM models can be found in Ref. [12].

Property 6.3 NS-FEM: Volumetric Locking Free

NS-FEM is naturally immune from volumetric locking, and no special treat-
ments are needed for solids of nearly incompressible materials, when the
softening effects are sufficient in the NS-FEM model. This is because the
NS-FEM model is softer than the exact model, has the similar feature of an
equilibrium model, and hence is volumetric locking free, when the mesh
is sufficiently fine. The main reason why volume locking disappears in an
equilibrium model is given in Remark 2.3.

Property 6.4 NS-FEM: Superconvergence in the Strain Energy Solution

The recovery strain/stress field constructed using the strains/stresses
at nodes is very accurate and often superconvergent. This continuous
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192 Smoothed Finite Element Methods

recovery strain/stress field obtained using NS-FEM can be used as a
representation of the exact strain/stress field in adaptive analysis.

Property 6.5 NS-FEM: No Improvement in the Displacement Solution

The accuracy of displacement solutions in NS-FEM is not particularly high.
It is, in general, at the same level as that of the standard FEM using the
same mesh.

Note that K
NS-FEM

will also be banded if the nodes are properly num-
bered, as that in FEM. When linear triangular elements are used in an

NS-FEM model, the bandwidth of K
NS-FEM

will be determined by the
largest difference of node numbers of the nodes of all the first layer of
triangular elements connected directly to the node. For 2D cases, a node-
based smoothing domain used in the NS-FEM model is usually supported
by 4–8 nodes. A triangular element used in the FEM model involves only
three nodes. Therefore, it is clear that the bandwidth of an NS-FEM model
will be about twice that of a linear FEM using the same triangular mesh.
When a bandwidth solver is used to solve Equation 6.1, the complexity is

proportional to the square of the bandwidth of the stiffness matrix K
NS-FEM

.
Therefore, we can expect that the solver time for NS-FEM will be about 4
times that of FEM using the same mesh.

The above analysis is quite rough but should be a good indicator. Of
course, we have not yet taken solution accuracy and other properties into
account. When a fairer comparison in terms of computational efficiency is
made using properly defined error norm measures, the superiority of the
NS-FEM model can be observed, as will be discussed in Section 6.7. We
now note the following.

Property 6.6 NS-FEM: Increase in Bandwidth

The bandwidth of an NS-FEM model is about twice that of the FEM model,
and the computational cost of an NS-FEM model is 4 times that of FEM
using the same mesh, when a bandwidth solver is used. When a full-matrix
solver is used, the complexity for solving the NS-FEM and FEM equations
is the same for the same mesh.

6.5.2 Rank Test for the Stiffness Matrix: Stability Analysis

Property 6.7 NS-FEM: Spatially Stable

NS-FEM possesses only “legal” zero-energy modes that represent rigid
motions, and there exists no spurious zero-energy mode. This means that
NS-FEM is spatially stable.
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Node-Based Smoothed FEM 193

As presented in Remark 5.2, a CS-FEM model can have spurious
zero-energy modes when the entire element is used as one smoothing
domain. This is because the total number of smoothing domains may not
always satisfy the minimum number of smoothing domains Nmin

s given in
Table 4.2. The NS-FEM method possesses only “legal” zero-energy modes
that represent rigid motions, and there exists no spurious zero-energy
mode. This is ensured by the following:

1. NS-FEM satisfies the minimum number of smoothing domains
Nmin

s for problems of all dimensions required in Section 4.6. This
can be easily verified because Ns = Nn.

2. Even at the individual element level, the numerical integration
used to evaluate Equation 6.2 in NS-FEM satisfies the necessary
condition given in Table 4.2, if the rigid motion is fixed (see also
Section 6.1.3 in Ref. [17]). This is true for all possible NS-FEM
models, as examined in detail in Table 6.2.

3. The shape functions used in NS-FEM are of partitions of unity,
ensuring a proper representation of rigid movements.

4. Because each of the smoothing domains are created for different
nodes, they are linearly independent, which ensures linearly inde-
pendent columns in the smoothed strain–displacement matrix, and
hence in the smoothed stiffness matrix. Hence the stiffness matrix
in an NS-FEM model is SPD for stable materials, after rigid motion
is fixed.

Therefore, NS-FEM will have the proper number of zero eigenmodes
representing rigid body movements and will not have any spurious zero-
energy modes. In other words, any deformation (except the rigid motions)
will result in strain energy in an NS-FEM model, implying that it will be
stable.

Note that although NS-FEM is spatially stable, this does not guarantee
temporal stability (Remark 1.3). In fact, it can have non-zero-energy spu-
rious modes and can be temporally unstable; hence special stabilization
techniques are needed for NS-FEM to solve dynamic problems [18,19] and
nonlinear problems [20]. In this book, however, we will not discuss this
further. Interested readers may refer to Refs. [18–20]. An alternative and
very efficient way of overcoming the temporal instability is to use ES-FEM,
which will be discussed in more detail in Chapter 7.

Property 6.8 NS-FEM: Temporally Instable

NS-FEM is temporally instable and can have non-zero-energy spurious
modes.
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194 Smoothed Finite Element Methods

TABLE 6.2

Existence of Spurious Zero-Energy Modes in an Individual Element

FEM with Reduced
Type of Element NS-FEM Integration

Triangle
NR = 3

nQ = 3, NQ = 3 × nQ = 9
nt = 3, Nu = 2 × nt = 6

NQ > Nu − NR
 => spurious zero energy modes not

possible 

 
nQ = 1,  NQ = 3 × nQ = 3

nt = 3, Nu = 2 × nt = 6
NQ = Nu − NR

 => spurious zero energy
modes not possible 

 

Quadrilateral
NR = 3

nQ = 4, NQ = 3 × nQ = 12
nt = 4, Nu = 2 × nt = 8

NQ > Nu − NR
 => spurious zero energy modes not

possible 

nQ = 1, NQ = 3 × nQ = 3
nt = 4, Nu = 2 × nt = 8

NQ < Nu − NR
 => spurious zero energy

modes possible 

Not applicable

n-sided polygonal
(n > 4)
NR = 3

nQ = n, NQ = 3 × nQ = 3n
nt = n, Nu = 2 × nt = 2n

NQ > Nu − NR
 => spurious zero energy modes not

possible 

Notes: NR, number of DOFs of rigid motion; nQ, number of quadrature points/cells;
NQ, number of independent equations; nt, number of nodes; and Nu, number
of total DOFs.

6.5.3 Standard 2D Patch Tests: Accuracy

In this standard 2D patch test, we use a square patch. The patch is first dis-
cretized using 36 n-sided polygonal elements, as shown in Figure 5.5. We
next create a set of smoothing domains following the procedure described
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Node-Based Smoothed FEM 195

in Section 6.2. The linear displacement field is then specified on all the
boundaries of the patch using Equation 5.11. NS-FEM is used to solve this
patch test problem for numerical solutions. The error norm in displace-
ments (Equation 4.63) is used to examine the computed results. The (dimen-
sionless) material parameters are taken as E = 100 and ν = 0.3. It is found
that NS-FEM can pass the standard patch test within machine precision
with an error norm in displacements of ed = 5.22e − 13(%). This test veri-
fies that the NS-FEM model has at least second-order accuracy, implying
that the (displacement) error is at least on terms of second order and higher.

6.5.4 Standard 3D Patch Tests: Accuracy and Mesh Sensitivity

This 3D standard patch test is also known as the Irons first-order patch test.
We perform this test in this section using a cubic patch, and it is conducted
together with a mesh sensitivity analysis. The patch is first discretized with
a number of tetrahedral elements with Nn nodes, in the same way as in
FEM. Linear displacements are imposed along all the exterior boundaries
of the cubic patch with at least one interior node. Similar to the 2D patch
test, satisfaction of the patch test requires that the displacements of all the
interior nodes follow “exactly” (to machine precision) the same linear func-
tion of the imposed displacements, and the constant strain/stress status in
the 3D patch is reproduced.

The material parameters used in this patch test are E = 6.895 × 106 kPa
and ν = 0.25, and the linear displacement field is specified by

u = 0.001 ∗ (2x + y + z)/2,

v = 0.001 ∗ (x + 2y + z)/2, (6.12)

w = 0.001 ∗ (x + y + 2z)/2.

The error norm in displacement (Equation 4.63) is used to examine the
computed results. For this 3D patch test, we use the (absolute) “strain
energy error” measure defined by

ee =
∣∣∣ENS-FEM − Eexact

∣∣∣ , (6.13)

where the total strain energy of the exact solution Eexact is evaluated using

Eexact = 1
2
εTcεVcubic, (6.14)

in which the exact strains ε are used, and Vcubic is the volume of the cubic
patch. The total strain energy of the numerical solution ENS-FEM can be

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
05

 1
0 

M
ay

 2
01

6 



196 Smoothed Finite Element Methods

evaluated using

E = 1
2

Nn∑
k=1

(εk)
T cεk Vs

k , (6.15)

where εk is the strain for the kth node obtained using an NS-FEM model
and Vs

k is the volume of the kth smoothing domain used in the patch.
Figure 6.3 shows the cubic patch with dimensions of 10 by 10 by 10.

The patch is discretized using 29 four-node tetrahedral elements and 15
nodes (including eight nodes at the corners, six nodes at the center of six
patch surfaces, and one interior node), as shown in Figure 6.3. In order to
analyze the sensitivity of the results to mesh distortion, the interior node
is moved randomly inside the cube from the center point in the following
fashion:

x′ = x +Δx · rx · αir,

y′ = y +Δy · ry · αir, (6.16)

z′ = z +Δz · rz · αir,

where x, y, and z are the coordinates at the center point of the cubic
patch; Δx, Δy, and Δz are the lengths of the cubic patch in the x-, y-, and
z-directions, respectively. rx, ry, and rz are computer-generated random
numbers between −1.0 and 1.0 and αir is a prescribed irregularity factor
chosen between 0.0 and 0.49. When αir = 0.0, the interior node locates at
the center point of the cubic patch, and when αir > 0.0, the interior node

10

10

0
0

2

4

6

8

10

5
5

0

FIGURE 6.3 Domain discretization of a cubic patch with four-node tetrahedral elements.
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Node-Based Smoothed FEM 197

TABLE 6.3

Error in Displacement Norm and Energy for the Patch Test

αir = 0.0 αir = 0.1 αir = 0.2 αir = 0.3 αir = 0.4 αir = 0.49

Displacement 2.25e − 16 1.64e − 15 3.42e − 16 3.45e − 15 1.34e − 15 4.79e − 15
norm ed (%)

Energy error ee 0.0 4.56e − 12 3.27e − 11 4.25e − 11 3.93e − 12 1.56e − 11

moves randomly inside the cubic patch. The larger the value of αir, the
more irregular the shape of elements generated. At αir = 0.49, the interior
node is almost touching the surface of the cube.

It is found that NS-FEM-T4 using tetrahedral elements can pass the Irons
first-order patch test within machine precision regardless of the value of αir
used, as shown in Table 6.3. There is no accuracy loss due to the different
choices of αir values: these errors are all within machine precision. This
shows that NS-FEM-T4 can work well with severely distorted meshes.

Property 6.9 NS-FEM: First-order Consistency

NS-FEM has first-order consistency, meaning that it can produce a linear
displacement field exactly. In other words, it is of second-order accuracy
in displacement solution: errors are at second-order terms or above.

Property 6.10 NS-FEM Solution: Stability and Convergence

Because of the stability given in Property 6.7 and the first-order consistency
given in Property 6.9, NS-FEM has a unique stable solution that converges
to the exact solution of the original solid mechanics problem defined in
Chapter 2. This confirms Theorem 4.1.

Property 6.11 NS-FEM is Insensitive to Mesh Distortion.

6.6 An Adaptive NS-FEM Using Triangular Elements

Since NS-FEM works very well with triangular elements that can be gen-
erated by automatic means and the results are not sensitive to mesh
distortion, we are now ready to extend our NS-FEM-T3 for adaptive analy-
ses [14]. An adaptive analysis technique is very important for the analysis
of practical engineering problems. With such a technique analysts need
not have to worry about mesh generation and mesh quality. In develop-
ing a good adaptive procedure, we need to devise two key techniques: a
reasonably accurate error indicator and an appropriate refinement strat-
egy. Because NS-FEM uses triangular elements, both techniques can be
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198 Smoothed Finite Element Methods

developed with ease, as performed in Refs. [14,21]. In this chapter, an error
indicator based on recovery strain is proposed for adaptive analyses. It is
shown through intensive numerical experiments that the error indicator is
“asymptotically” exact with the effectivity index close to unity. For mesh
refinement, a simple and effective refinement strategy using newest node
bisection is presented.

6.6.1 Error Indicators Using Recovery Strain

To devise an effective error indicator, we need to have a good understand-
ing of errors in a numerical solution of the discrete model and a reasonably
good tool for the assessment of solution errors. Unfortunately, assessing
the error of numerical solutions is complicated, and can be more involved
than obtaining the numerical solution. To minimize possible confusion and
to conduct meaningful error analysis leading to a practical error indicator
for our NS-FEM, we first define the following terminologies with detailed
descriptions on the features of all the fields involved in solid mechanics
problems.

u, ε, σ, d: “exact” solution of displacements, strains, stresses, and nodal
displacements. Note that we express them all in vector form, meaning that
there are a number of component field functions in the vector.

u, ε, σ, d: “raw” solution of an S-FEM model in terms of displacements,
strains, stresses, and nodal displacements. Note that the strains (and
stresses) are obtained using Equation 4.20 and the solutions of nodal dis-
placements without any additional postprocess treatment (hence they are
called “raw” solutions). Such a strain solution is constant in each of the
smoothing domains, and hence they is piecewise constant over the prob-
lem domain. When we need to obtain the strains for an element, we perform
a simple or an area-weighted average using all these strains in the different
parts of the elements. In this case, we also call the strain the “averaged raw
strain” in the element.

ũ, ε̃, σ̃, d̃: “raw” solution of an FEM model in displacements, strains,
stresses, and nodal displacements. Note that when linear triangular ele-
ments are used, the strains (and stresses) are constant in each of the
elements, and hence they are piecewise constant over the problem domain.
When higher-order elements are used, they are continuous within ele-
ments and piecewise continuous over the problem domain. When we need
to obtain the strains for a node, however, we perform a simple or area-
weighted average using all these strains in the elements surrounding the
node. In this case too, we call such a strain the “averaged raw strain” at
the node.

Next, to evaluate the solution error in an element Ωe
i , we define the

following error indicator:

ηi(ε − ε) = ‖ε − ε‖L2(Ωe
i )

, (6.17)
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Centroid
Mid-side-point

Field nodes

ε(x2)

x3

ε(x3)

ε(x1)

x2x1

FIGURE 6.4 Strains (and stresses) at three field nodes and three quadrilateral subsmoothing
domains within an element in an NS-FEM-T3 model.

where ε = Ldu is the exact strain and ε is the raw strain solution in the
element in NS-FEM-T3, as shown in Figure 6.4. However, the exact strain
is usually unknown (or else we do not need any other forms of solutions).
Thus we have to somehow find a good replacement of the exact solution,
so that we can estimate the error indicator defined in Equation 6.17 without
knowing the exact solution. Therefore, we construct a higher-order “recov-
ery” strain solution εR to replace Ldu. This means that εR has to be more
accurate than ε, meaning that∥∥∥Ldu − εR

∥∥∥
L2(Ωe

i )
≤ C1hα ‖Ldu − ε‖L2(Ωe

i )
, α > 0, (6.18)

where C1 is a general constant independent of u, ε, and h. Equation 6.18
can be verified if the following effectivity index,

γ =

∥∥∥ε − εR
∥∥∥

L2(Ωe
i )

‖ε − Ldu‖L2(Ωe
i )

, (6.19)

converges to unity when h approaches zero [22,23], meaning that∥∥∥ε − εR
∥∥∥

L2(Ωe
i )

is a good estimate of ‖ε − Ldu‖L2(Ωe
i )

. The verification

process starts from
∥∥∥ε − εR

∥∥∥
L2(Ωe

i )
=
∥∥∥(ε − Ldu) −

(
εR − Ldu

)∥∥∥
L2(Ωe

i )
. (6.20)

Using triangle inequality, we have

‖ε − Ldu‖L2(Ωe
i )

−
∥∥∥εR − Ldu

∥∥∥
L2(Ωe

i )
≤
∥∥∥ε − εR

∥∥∥
L2(Ωe

i )

≤ ‖ε − Ldu‖L2(Ωe
i )

+
∥∥∥εR − Ldu

∥∥∥
L2(Ωe

i ).
(6.21)
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200 Smoothed Finite Element Methods

Next, by dividing each term by ‖ε − Ldu‖L2(Ωe
i )

, we obtain

1 −

∥∥∥εR − Ldu
∥∥∥

L2(Ωe
i )

‖ε − Ldu‖L2(Ωe
i )

≤ γ ≤ 1 +

∥∥∥εR − Ldu
∥∥∥

L2(Ωe
i )

‖ε − Ldu‖L2(Ωe
i )

. (6.22)

Now, according to Zienkiewicz and Zhu in Refs. [22,23], Equation 6.18
is verified if a recovery solution εR can be found such that it can converge
to the exact strain at a higher rate with respect to h than the raw solution ε

in the element. In such cases, the effectivity index γ in Equation 6.22 will
approach 1 as h approaches zero, and we shall have an “asymptotically”

exact estimation: the error
∥∥∥εR − ε

∥∥∥
L2(Ωe

i )
will approach ‖Ldu − ε‖L2(Ωe

i )
.

Such a first-order recovery strain solution εR used in NS-FEM can be con-
structed using Equation 4.51, using the “nodal” strain ε(xj) defined in
Equation 4.20 (see also Figure 6.4).

We argue intuitively that the recovery strain field εR defined in Equation
4.51 over an element will converge at a higher rate to the exact strain field
(i.e., smooth and hence high-order continuous) compared to the raw strain
in the element. The argument goes as follows. We know that the raw strain
field is constant in each nodal smoothing domain, and hence is piecewise
constant over an element. On the other hand, the recovery strain field
εR defined in Equation 4.51 is linear (one order higher) over each of the
elements, and hence the recovery field εR is linearly continuous over the
element. In addition, this continuous “surface” of the recovery field εR

passes through all these raw strains ε at the three nodes of the element.
If the (piecewise constant) raw strain field ε converges to the exact strain
field (which surely does, based on Theorem 4.1), the linearly continuous
recovery field εR should converge to the exact field at a higher rate when
measured in the energy norm. This completes our intuitive argument.

Note that such an argument can be easily (at least for 1D cases) put
into a rigorous mathematical derivation. We omit this, because we believe
that an intuitive understanding can sometimes be more important than the
mathematical derivation, and is sufficient for our analysis here.

Based on the above argument, we can now use

ηi(ε
R − ε) =

∥∥∥εR − ε

∥∥∥
L2(Ωe

i )
(6.23)

as a practically usable error indicator for our NS-FEM settings. This type
of error indicator is known as a posteriori error indicator that uses only
computable numerical results to estimate the error in the solution.

Further, we will confirm Equation 6.23 via numerical experiments in Sec-
tion 6.7. We shall show clearly the effectiveness and reliability of the error
indicator (Equation 6.23) in replacing Equation 6.17. To accurately examine
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Node-Based Smoothed FEM 201

the performance of the error indicator (Equation 6.23), the usual Gauss inte-
gration with the proper mapping procedure is performed for each of the
three quadrilateral subdomains shown in Figure 6.4. The summation over
these three quadrilateral subdomains is then performed for the element.

In summary, we have altogether three error indicators for strain solutions
in energy norms for NS-FEM and FEM models.

Exact error in raw strain solution (E-raw error) (not computable in
general):

ηi(ε − ε) = ‖ε − ε‖L2(Ωe
i )

(NS-FEM models),

ηi(ε − ε̃) = ‖ε − ε̃‖L2(Ωe
i )

(FEM models).
(6.24)

Exact error in recovery strain solution (E-rec error) (not computable in
general):

ηi(ε − εR) =
∥∥∥ε − εR

∥∥∥
L2(Ωe

i )
(NS-FEM models),

ηi(ε − ε̃R) =
∥∥∥ε − ε̃R

∥∥∥
L2(Ωe

i )
(FEM models).

(6.25)

Recovery estimated error in raw strain solution (R-raw error) (com-
putable):

ηi(ε
R − ε) =

∥∥∥εR − ε

∥∥∥
L2(Ωe

i )
(NS-FEM models),

ηi(ε̃
R − ε̃) =

∥∥∥ε̃R − ε̃

∥∥∥
L2(Ωe

i )
(FEM models).

(6.26)

Note that the E-raw and E-rec errors are not usually computable, unless
we know the exact solution for the problem. The R-raw error, however, can
always be obtained after the numerical solution of a model is obtained. The
R-raw error is therefore a type of a posteriori error, very useful in the error
estimation of a numerical model, convenient to use in an adaptive analy-
sis, and frequently used in the following numerical examples. The E-raw
and E-rec errors are useful in examining the R-raw error using benchmark
problems to which the exact/reference solution is available.

6.6.2 Refinement Strategy

Let us first define the “marking” procedure using the error indicator
(Equation 6.23). Let

η2 =
Ne∑
i=1

(ηe
i )

2 (6.27)

be a global error indicator with all the elemental contributionsηe
i associated

with a triangle Ωe
i . We will use the bulk marking process proposed by

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
05

 1
0 

M
ay

 2
01

6 



202 Smoothed Finite Element Methods

Dorfler [24], in which set M contains the marked elements to be refined at
a single step. Elements in set M should satisfy the following criteria:

∑
Ωe

i ∈M

(ηe
i )

2 ≥ θη2 for some θ ∈ (0, 1). (6.28)

A smaller θ will result in a larger set M and hence more refinement of
triangles at one step; a larger θ will result in a smaller set M and hence
a more optimal mesh but more refinement steps. Usually θ = 0.2 − 0.5 is
preferred, but it really depends on the need of the analyst.

Now a refinement strategy using newest node bisection is briefly pre-
sented [25]. First, a process of labeling is performed. From a triangulation
Ψ of the problem domain Ω, for each triangle Ωe

i ∈ Ψ, one node of Ωe
i is

labeled as peak or newest node. The opposite edge of the peak is called base
or refinement edge, as shown in Figure 6.5. Then the division of the refined
triangle into two subtriangles using newest node bisection is conducted as
follows:

i. The refined triangle is bisected into two new subtriangles by
connecting the peak to the midpoint of the base, as shown in
Figure 6.5.

ii. The new node created at the midpoint of the base is assigned to be
the peak of both subtriangles, as shown in Figure 6.5.

Once the labeling is done for an initial triangulation, the decent trian-
gulations inherit the label by rule (ii) such that the bisection process can
proceed. The refinement strategy using newest node bisection will not
lead to any degeneracy of mesh quality and is easy to implement because
conforming is ensured in the marking step.

Midpoint of “base”

“Peak”

“Base”

Refined
triangle

“Base” of first
sub-triangle

First sub-triangle Second sub-triangle

“Base” of second
sub-triangle

New “peak” of both two sub-triangles

FIGURE 6.5 Division of the refined triangle into two subtriangles using newest node
bisection.
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Node-Based Smoothed FEM 203

6.7 Numerical Examples

Our NS-FEM uses the general n-sided polygonal elements, including tri-
angular (T3) elements. When a triangular mesh is used, standard routines
such as the Delaunay triangulation can be used. When a quadrilat-
eral element mesh is used, commercial preprocessor FEM codes may
be used for generating the mesh. Domain discretization with polygo-
nal elements of the Voronoi diagram is performed in the same way
as presented in Section 4.2. An NS-FEM code was developed based
on the formulation stated above. In this section, some examples will
be presented and analyzed to demonstrate numerically the properties
of the NS-FEM method. For 2D problems, three kinds of elements are
used: n-sided polygonal, four-node quadrilateral (Q4), and triangular ele-
ments (T3). For 3D problems, only tetrahedral elements (T4) are used
for the simple reason of ease in mesh generation. In our discussions,
the results of NS-FEM using n-sided polygonal elements (nNS-FEM)
will be compared with those of cell-based S-FEM using n-sided polygo-
nal elements (nCS-FEM), detailed in Chapter 5. The results of NS-FEM
using four-node quadrilateral elements (NS-FEM-Q4) and triangular ele-
ments (NS-FEM-T3) will be compared with those of the standard FEM
using quadrilateral elements (FEM-Q4), triangular elements (FEM-T3),
and CS-FEM using four smoothing domains for each element (CS-FEM-
Q4). The results of NS-FEM using tetrahedral elements (NS-FEM-T4) will
be compared with those of the standard displacement FEM using four-
node tetrahedral elements (FEM-T4) and eight-node hexahedral elements
(FEM-H8).

For triangular and four-node quadrilateral elements, errors in both the
displacement norm and the energy norm defined in Equations 4.49 and
4.50 are used in this analysis for the examination of numerical mod-
els. When the energy norm is used, we use the recovery strain solution
for S-FEM models, and both raw and recovery strain solutions for FEM
models.

For n-sided polygonal elements, errors in both the displacement norm
and the energy norm defined in Equations 4.63 and 4.64 are used.

For these examples of adaptive analysis, to study the effectiveness of
the present adaptive procedure, uniformly refined models of NS-FEM-T3
are also used. The results of NS-FEM-T3 will be compared with those of
the standard linear FEM-T3 using both adaptive and uniformly refined
models. For the adaptive procedure using FEM-T3, we use the same error
indicator and the same refinement algorithm as that used in NS-FEM-T3.
However in FEM-T3, the first-order recovery strain ε̃R is obtained using
Equation 4.53.
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FIGURE 6.6 Domain discretization of the cantilever using triangular elements.

Example 6.7.1: A Rectangular Cantilever Loaded at the end

The rectangular cantilever loaded at the end described in Example 5.8.1 is
used again in this examination. The geometry and boundary conditions of
the cantilever are plotted in Figure 5.6. Problem domain discretizations with
quadrilateral, n-sided polygonal, and triangular elements are shown in Figures
5.7 and 6.6.

Figure 6.7 shows that the stresses computed using NS-FEM-T3 and NS-
FEM-Q4 agree well with the analytical solutions. Figure 6.8 shows the overall
comparison of the stress distribution obtained using nNS-FEM and exact formu-
lae. Very good agreement was observed. The numerical results of strain energy
are presented in Tables 6.4 and 6.5, and are plotted in Figure 6.9 against the
DOFs, revealing the convergence of the solution of all the models used. It can
be found that the nNS-FEM, NS-FEM-Q4, and NS-FEM-T3 give upper bound

−6 −4 −2 0 2 4 6
−1000

−500

0

500

1000(a)

(b)
y (x = L/2) (m)

σ x
x (

N
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2 )

−6 −4 −2 0 2 4 6
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−100

−50

0

y (x = L/2) (m)

σ x
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2 )

NS-FEM-T3
NS-FEM-Q4
Analytical solution

NS-FEM-T3
NS-FEM-Q4
Analytical solution

FIGURE 6.7 Comparison of the numerical results of NS-FEM models and analytical
solutions for the cantilever loaded at the end: (a) normal stress σxx and (b) shear stress τxy .
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Analytical normal stress σxx
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Computed normal stress σxx
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FIGURE 6.8 Contour of the analytical and the numerical normal stress σxx (N/m2) for the
cantilever obtained using nNS-FEM.

solutions in the strain energy, that is, the strain energies of nNS-FEM, NS-FEM-
Q4, and NS-FEM-T3 are always larger than the exact one and converge to it
with the increase of DOFs. In contrast, nCS-FEM, FEM-Q4, and FEM-T3 pro-
duce lower bound solutions in the strain energy. These results imply that we

TABLE 6.4

Strain Energy (Nm) Obtained Using Different Methodsa for the Cantilever
Problem Using the Same Set of Nodes

Mesh Mesh Mesh Mesh Mesh Analytical

(16 × 4) (24 × 6) (32 × 8) (40 × 10) (48 × 12) Solution

DOFs 170 350 694 902 1274
FEM-T3 3.7134 4.0973 4.2533 4.3301 4.3731 4.4747
FEM-Q4 4.3362 4.4118 4.4390 4.4518 4.4587 4.4747
CS-FEM-Q4 4.4310 4.4550 4.4635 4.4675 4.4697 4.4747
NS-FEM-T3 4.9785 4.7031 4.6051 4.5591 4.5338 4.4747
NS-FEM-Q4 4.7176 4.5898 4.5415 4.5183 4.5053 4.4747
ES-FEM-T3 [32] 4.4097 4.4539 4.4654 4.4697 4.4717 4.4747
αFEM-T3 [33] 4.4071 4.4566 4.4681 4.4719 4.4734 4.4747

(αexact = 0.6)

a The numerical solutions of methods ES-FEM-T3 [32] and αFEM-T3 [33] presented in
the following chapters are also provided in this table for easy reference.
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206 Smoothed Finite Element Methods

TABLE 6.5

Strain Energy (Nm) Obtained Using Different Methodsa for the Cantilever
Problem Using the Same Polygonal Meshes

Analytical

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Solution

DOFs 344 704 1192 1808 2552
nCS-FEM 4.1879 4.3347 4.3928 4.4218 4.4369 4.4747
nNS-FEM 4.6017 4.5397 4.5149 4.4999 4.4922 4.4747
nES-FEM [34] 4.3800 4.4388 4.4532 4.4616 4.4657 4.4747

a The numerical solutions of the method nES-FEM [34] presented in Chapter 7 are also
provided in this table for easy reference.

now have a very simple procedure to determine the upper and lower bounds
of the exact solution in a global error, by using NS-FEM together with CS-FEM
or FEM and the same mesh.

Table 6.6 and Figure 6.10 compare solution errors in the displacement norm
obtained using NS-FEM-T3 and NS-FEM-Q4, together with those of FEM and
CS-FEM-Q4. When the finest mesh (h = 1 m) is used, the error of NS-FEM-T3
is about 0.6 times that of FEM-T3. The error of NS-FEM-Q4 is about 2 times
that of FEM-Q4, but only 1/2 that of NS-FEM-T3. NS-FEM models performed
in between FEM-T3 and FEM-Q4. In terms of convergence rate, all the models
have a numerical rate slightly below the theoretical value of 2.0, and all the
S-FEM models perform generally slightly better than the FEM counterparts.

Table 6.7 and Figure 6.11 compare the results of the energy norm of NS-FEM-
T3 and NS-FEM-Q4 together with those of FEM and CS-FEM-Q4. It is seen that
NS-FEM-T3 and NS-FEM-Q4 stand out clearly. When the finest mesh (h = 1 m)
is used, the error of NS-FEM-T3 solution is about 1/8 that of FEM-T3, 1/3 that
of FEM-Q4, and even better than FEM-Q4-Re. NS-FEM-Q4 performed better
than NS-FEM-T3, but only by a small margin. In terms of convergence rate, all
the S-FEM models performed much better than the FEM models, and all are
significantly above 1.0, which is the theoretical value of the weak formulation.
This shows that the S-FEM models are “superconvergent.” NS-FEM-T3 has a
rate of 1.2: a quite strong superconvergence.

Overall, CS-FEM-Q4 performed best for this problem. However, considering
mesh generation issues and accuracy in stress (measured by the energy norm),
NS-FEM-T3 is preferred, but uses only the triangular mesh. In addition, NS-
FEM-T3 delivers an upper bound solution.

From this example we also note that NS-FEM-T3 and NS-FEM-Q4 possess
three interesting properties similar to those of an equilibrium FEM model: (1) the
strain energy is an upper bound of the exact solution; (2) the solution in the strain
(stress) field is ultra-accurate and superconvergent; and (3) the displacement
solutions are not so significantly more accurate but are still better than those
of FEM-T3.

Note that the displacement solution in terms of convergence rate from an
FEM model is quite difficult to improve, simply because it is already quite
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FIGURE 6.9 Convergence of the strain energy solution for the cantilever problem: (a) n-sided
polygonal elements and (b) triangular and four-node elements.
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208 Smoothed Finite Element Methods

TABLE 6.6

Error in Displacement Norm Obtained Using Different Methodsa for the
Cantilever Problem Using the Same Set of Nodes

Mesh Mesh Mesh Mesh Mesh

(16 × 4) (24 × 6) (32 × 8) (40 × 10) (48 × 12)

h (m) 4.0 2.0 1.5 1.2 1.0
FEM-T3 1.78e − 02 8.80e − 03 5.16e − 03 3.36e − 03 2.36e − 03
FEM-Q4 2.97e − 03 1.35e − 03 7.63e − 04 4.90e − 04 3.41e − 04
CS-FEM-Q4 7.40e − 04 3.31e − 04 1.87e − 04 1.20e − 04 8.31e − 05
NS-FEM-T3 1.23e − 02 5.60e − 03 3.20e − 03 2.07e − 03 1.45e − 03
NS-FEM-Q4 6.15e − 03 2.91e − 03 1.68e − 03 1.10e − 03 7.71e − 04
ES-FEM-T3 [32] 1.32e − 03 3.74e − 04 1.47e − 04 6.94e − 05 3.68e − 05
αFEM-T3 [33] 1.26e − 03 2.65e − 04 6.86e − 05 2.69e − 05 2.48e − 05

(αexact = 0.6)

a The numerical solutions of methods ES-FEM-T3 [32] and αFEM-T3 [33] presented in the
following chapters are also provided in this table for easy reference.

0 0.1 0.2 0.3 0.4−5

−4
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−2

log10  h
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0|
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−
uh || L
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)

FEM-T3 (r = 1.86)
FEM-Q4 (r = 1.98)
CS-FEM-Q4 (r = 1.99)
NS-FEM-T3 (r = 1.95)
NS-FEM-Q4 (r = 1.90)

FIGURE 6.10 Error in the displacement norm for the NS-FEM solution in comparison with
that of other methods for the cantilever problem using the same distribution of nodes.

“optimal” in the weak-form methods with displacement as the primary field
variable. The rate of convergence in the displacement norm is already 2.0 for
linear elements. Therefore, room for improvement is mainly in the energy norm
or stress solution. We expect that the optimal rate for the energy norm should be
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Node-Based Smoothed FEM 209

TABLE 6.7

Error in Energy Norm Obtained Using Different Methodsa for the Cantilever
Problem Using the Same Distribution of Nodes

Mesh Mesh Mesh Mesh Mesh

(16 × 4) (24 × 6) (32 × 8) (40 × 10) (48 × 12)

h (m) 4.0 2.0 1.5 1.2 1.0
FEM-T3 8.77e − 01 6.16e − 01 4.71e − 01 3.80e − 01 3.18e − 01
FEM-Q4 3.71e − 01 2.49e − 01 1.88e − 01 1.50e − 01 1.25e − 01
CS-FEM-Q4 2.38e − 01 1.30e − 01 8.46e − 02 6.05e − 02 4.60e − 02
NS-FEM-T3 1.44e − 01 9.45e − 02 6.71e − 02 5.06e − 02 3.99e − 02
NS-FEM-Q4 1.16e − 01 7.28e − 02 5.10e − 02 3.83e − 02 3.00e − 02
FEM-T3-Re 5.76e − 01 3.04e − 01 1.87e − 01 1.28e − 01 9.34e − 02
FEM-Q4-Re 2.06e − 01 1.14e − 01 7.49e − 02 5.38e − 02 4.10e − 02
ES-FEM-T3 [32] 2.96e − 01 1.58e − 01 1.02e − 01 7.28e − 02 5.53e − 02
αFEM-T3 [33] 2.93e − 01 1.54e − 01 9.86e − 02 7.00e − 02 5.31e − 02

(αexact = 0.6)

a The numerical solutions of methods ES-FEM-T3 [32] and αFEM-T3 [33] presented in the
following chapters are also provided in this table for easy reference.
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FIGURE 6.11 Error in the energy norm for the NS-FEM solution in comparison with that of
other methods for the cantilever problem using the same distribution of nodes.
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210 Smoothed Finite Element Methods

2.0, that is the optimal rate of the weak-form methods with stress as the primary
field variable. NS-FEM-T3 is essentially a weak-form method with displacement
as the primary field variable, but has achieved 1.2 for this problem, and hence
is considered of quite strong superconvergence. These findings will be further
confirmed by the following examples, and we will show that the S-FEM model
can sometimes achieve the expected “optimal” rate of 2.0 in the energy norm.

Example 6.7.2: Infinite Plate With a Circular Hole

The infinite plate with a circular hole described in Example 5.8.2 is used again
to examine the NS-FEM models. The geometry and boundary conditions of
the problem are plotted in Figure 5.18. Figures 5.19 and 6.12 give the dis-
cretizations of the domain using four-node quadrilateral, n-sided polygonal,
and triangular elements used in all the methods used for comparison.

The numerical results of strain energy are presented in Tables 6.8 and 6.9
and are plotted in Figure 6.13 against the DOFs, revealing the convergence of
the solution of all the models used. It again shows the upper bound property
on the strain energy of nNS-FEM, NS-FEM-Q4, and NS-FEM-T3, together with
the lower bound property of the nCS-FEM, FEM-Q4, and FEM-T3. From Fig-
ures 6.14 and 6.15, all the computed displacements and stresses of nNS-FEM
using n-sided polygonal elements are in very good agreement with the analyt-
ical solutions. With the refinement of the mesh, the accuracy is getting higher
and higher.

Table 6.10 and Figure 6.16 compare the results of the displacement
norm of NS-FEM-T3 and NS-FEM-Q4 with those of FEM and CS-FEM-Q4.
It is again seen that CS-FEM-Q4 stands out clearly. When the finest mesh
(h = 0.1969 m) is used, the error of CS-FEM-Q4 is about 1/5 that of FEM-T3 and

0 1 2 3 4 5
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0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

FIGURE 6.12 Domain discretization of the infinite plate with a circular hole using triangular
elements.
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TABLE 6.8

Strain Energy (×10−2 Nm) Using Different Methodsa for the Infinite
Plate with a Circular Hole Using the Same Distribution of Nodes

Mesh Mesh Mesh Mesh Analytical

(12 × 12) (16 × 16) (20 × 20) (24 × 24) Solution

DOFs 338 578 882 1250
FEM-T3 1.1762 1.1786 1.1797 1.1803 1.1817
FEM-Q4 1.1794 1.1805 1.1810 1.1812 1.1817
CS-FEM-Q4 1.1798 1.1807 1.1811 1.1813 1.1817
NS-FEM-T3 1.1848 1.1834 1.1827 1.1824 1.1817
NS-FEM-Q4 1.1850 1.1835 1.1827 1.1823 1.1817
ES-FEM-T3 [32] 1.1804 1.1811 1.1814 1.1815 1.1817

a The numerical solutions of the method ES-FEM-T3 [32] presented in the Chapter 7 are
also provided in this table for easy reference.

TABLE 6.9

Strain Energy (×10−2 Nm) Using Different Methodsa for the Infinite Plate
with a Circular Hole Using the Same for Polygonal Meshes

Analytical

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Solution

DOFs 326 678 1158 1770
nCS-FEM 1.1759 1.1791 1.1803 1.1808 1.1817
nNS-FEM 1.1820 1.1820 1.1820 1.1819 1.1817
nES-FEM [34] 1.1785 1.1805 1.1812 1.1814 1.1817

a The numerical solutions of the method nES-FEM [34] presented in Chapter 7 are also
provided in this table for easy reference.

4/5 that of FEM-Q4. NS-FEM-T3 performed marginally better than FEM-T3. The
error of NS-FEM-T3 is about 3.6 times that of FEM-Q4. In terms of convergence
rate, except for FEM-T3, other models have a numerical rate slightly larger than
the theoretical value of 2.0, with NS-FEM-T3 achieving the best rate of 2.15: a
weak superconvergence in the displacement norm.

Table 6.11 and Figure 6.17 compare the results of the energy norm of NS-
FEM-T3 and NS-FEM-Q4 with those of FEM and CS-FEM-Q4. It is again seen
that NS-FEM-T3 and NS-FEM-Q4 stand out clearly. When the finest mesh
(h = 0.1969 m) is used, the error of NS-FEM-T3 is about 1/9 that of FEM-T3, 1/5
that of FEM-Q4, 1/3.5 that of FEM-T3-Re, and even 1/2 that of FEM-Q4-Re. NS-
FEM-Q4 performed better than NS-FEM-T3, but only by a small margin. In terms
of convergence rate, all the S-FEM models performed much better than the FEM
models, and all close to 2.0 and significantly above 1.0 that is the theoretical
value of the weak formulation. This shows that the S-FEM models are super-
convergent. NS-FEM-Q4 stands out clearly with a rate of 2.12: a very strong
superconvergence.
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FIGURE 6.13 Convergence of the strain energy solution for the infinite plate with a circular
hole: (a) n-sided polygonal elements and (b) triangular and four-node elements.
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FIGURE 6.14 Exact and numerical displacements of nNS-FEM for the infinite plate with a
circular hole: (a) displacement u(m) of nodes along the bottom side and (b) displacement
v(m) of nodes along the left side.
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FIGURE 6.15 Exact and numerical stresses using nNS-FEM for the infinite plate with a
circular hole: (a) stress σyy of nodes along the bottom side and (b) stress σxx of nodes along
the left side.
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TABLE 6.10

Error in Displacement Norm Obtained Using Different Methodsa for the
Infinite Plate with a Circular Hole Using the Same Distribution of Nodes

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

h (m) 0.5468 0.3786 0.2895 0.2343 0.1969
FEM-T3 2.80e − 04 1.42e − 04 8.45e − 05 5.61e − 05 4.01e − 05
FEM-Q4 1.08e − 04 4.46e − 05 2.40e − 05 1.50e − 05 1.03e − 05
CS-FEM-Q4 8.46e − 05 3.48e − 05 1.88e − 05 1.19e − 05 8.19e − 06
NS-FEM-T3 3.87e − 04 1.69e − 04 8.95e − 05 5.49e − 05 3.70e − 05
NS-FEM-Q4 2.73e − 04 1.29e − 04 7.04e − 05 4.35e − 05 2.94e − 05
ES-FEM-T3 [32] 8.03e − 05 2.95e − 05 1.63e − 05 1.06e − 05 7.46e − 06

a The numerical solutions of the method ES-FEM-T3 [32] presented in Chapter 7 are
also provided in this table for easy reference.
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NS-FEM-Q4 (r = 2.07)

FIGURE 6.16 Error in the displacement norm for the NS-FEM solution in comparison with
that of other methods for the infinite plate with a circular hole using the same distribution of
nodes.

Figure 6.18 plots the error in solution in the displacement norm against Pois-
son’s ratio changing from 0.4 to 0.4999999 obtained using FEM and NS-FEM
models. Two types of element meshes are used in this study: n-sided polygonal
elements (579 nodes) and four-node quadrilateral elements (mesh 16 × 16).
The results show that nNS-FEM and NS-FEM-Q4 are naturally “immune”
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216 Smoothed Finite Element Methods

TABLE 6.11

Error in Energy Norm Obtained Using Different Methodsa for the Infinite
Plate with a Circular Hole Using the Same Distribution of Nodes

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

h (m) 0.5468 0.3786 0.2895 0.2343 0.1969
FEM-T3 9.95e − 03 6.89e − 03 5.20e − 03 4.17e − 03 3.48e − 03
FEM-Q4 6.09e − 03 3.86e − 03 2.79e − 03 2.18e − 03 1.79e − 03
CS-FEM-Q4 5.12e − 03 2.70e − 03 1.61e − 03 1.06e − 03 7.41e − 04
NS-FEM-T3 3.08e − 03 1.50e − 03 8.52e − 04 5.39e − 04 3.68e − 04
NS-FEM-Q4 2.33e − 03 1.06e − 03 5.77e − 04 3.53e − 04 2.35e − 04
FEM-T3-Re 7.78e − 03 4.39e − 03 2.72e − 03 1.82e − 03 1.31e − 03
FEM-Q4-Re 5.22e − 03 2.72e − 03 1.61e − 03 1.05e − 03 7.41e − 04
ES-FEM-T3 [32] 5.27e − 03 2.69e − 03 1.59e − 03 1.04e − 03 7.29e − 04

a The numerical solutions of the method ES-FEM-T3 [32] presented in Chapter 7 are
also provided in this table for easy reference.
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FIGURE 6.17 Error in the energy norm for the NS-FEM solution in comparison with that of
other methods for the infinite plate with a circular hole using the same distribution of nodes.

from the volumetric locking: the error does not increase when Poisson’s ratio
approaches 0.5. nCS-FEM and FEM-Q4 are subjected to volumetric locking,
resulting in a drastic accuracy loss in numerical solutions when Poisson’s ratio
approaches 0.5.
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FIGURE 6.18 Error in the displacement norm versus Poisson’s ratios close to 0.5 for the
infinite plate with a circular hole: (a) n-sided polygonal elements (579 nodes) and (b) four-node
quadrilateral elements (289 nodes).
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218 Smoothed Finite Element Methods

Overall, it is again seen that NS-FEM models possess four interesting prop-
erties of an equilibrium FEM model: (1) the strain energy is an upper bound
of the exact solution; (2) it is immune naturally from volumetric locking; (3)
stress solutions are ultra-accurate and superconvergent; and (4) displacement
solutions are at the same level as that of FEM-T3 using the same mesh.

For the adaptive analysis using NS-FEM-T3 and FEM-T3, we now examine the
accuracy and convergence rate of energy norms as well as the effectivity index
of error indicators. Three kinds of energy norms are used in the evaluation,
the standard energy norm ‖ε − ε̆‖L2 (E-raw error), the recovery energy norm∥∥∥ε − ε̆R

∥∥∥
L2

(E-rec error), and a posteriori energy norm
∥∥∥ε̆R − ε̆

∥∥∥
L2

(R-raw error),

where ε̆ is the numerical result of the strain field obtained using any of NS-FEM-
T3 and FEM-T3, Rε̆ is the first-order recovery strain field, and ε is the exact strain
field.

Figure 6.19 shows the results of errors in various energy norms plotted
together for two models: NS-FEM-T3 and FEM-T3. It is a quite busy plot, but
gives very clear comparisons of all these error measures in the same picture.
A careful comparison study from Figure 6.19 gives us the following major
findings:

1. For NS-FEM-T3, the E-rec error
∥∥∥ε − εR

∥∥∥
L2

is much smaller than E-raw

and R-raw errors. This implies that the recovery strain field εR is much
more accurate than the raw strain fields, and hence we shall use it as the
final numerical solution. This finding is also true for the FEM-T3 model.

2. The errors in the NS-FEM-T3 solution in any of the three different error
measures are much smaller than those of the FEM-T3 solution in the
corresponding error measures.

3. The convergence rate of the norms in the NS-FEM-T3 solution in any of
the three different error measures is consistently higher than that of the
FEM-T3 solution in the corresponding error measures.

4. The E-rec errors of both NS-FEM-T3 and FEM-T3 are all superconvergent,
but the convergence rate of NS-FEM-T3 (r = 1.97) is much higher than
that of FEM-T3 (r = 1.67).

5. For the NS-FEM-T3 model, the R-raw error estimator
∥∥∥εR − ε

∥∥∥
L2

is a very

good alternative to the E-raw error ‖ε − ε‖L2 , especially when a fine mesh
is used. In other words, the recovery strain field is a very good representa-
tion of the exact strain field for the purpose of error estimation. The R-raw

error
∥∥∥εR − ε

∥∥∥
L2

is, however, an underestimated (not on the conservative

side) E-raw error. This finding is also true for the FEM-T3 model.

6. A possible way of devising a conservative error estimate is to use the
recovery strain field εR as the final numerical strain field solution, but

to use
∥∥∥εR − ε

∥∥∥
L2

as the error bound of εR to the exact solution. This is

because we can expect

∥∥∥ε − εR
∥∥∥

L2
≤
∥∥∥εR − ε

∥∥∥
L2

, (6.29)
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FIGURE 6.19 Errors in various energy norms for the solutions of NS-FEM-T3 and FEM-T3.
The problem of the infinite plate with a circular hole (ε1 in the vertical axis stands for ε or
Rεh, and ε2 stands for εh or Rεh, where εh stands the numerical solutions).

especially for fine meshes. Equation 6.29 can be easily understood
intuitively. The left-hand side (LHS) of Equation 6.29 is the “distance”
between a linear strain field and a higher-order continuous one, but the
right-hand side (RHS) is the “distance” between a piecewise constant
strain field and a linear one. The former has clearly a higher order of
convergence than the latter and hence we shall have Equation 6.29 at
least for fine meshes. This also can be observed from Figure 6.19.

Figure 6.20 plots the effectivity indexes θ for both NS-FEM-T3 and FEM-
T3 models, which shows that

7. The effectivity indexes θ of both NS-FEM-T3 and FEM-T3 approach unity
when the mesh is refined, but the results of NS-FEM-T3 are closer to unity
than those of FEM-T3. The results of effectivity indexes θ in Figure 6.20
are echoed in Figure 6.19 and reconfirm item (5).

Now, we can conduct an adaptive analysis with the error indicators for the
same problem of the infinite plate with a circular hole. The results of the strain
energy obtained using NS-FEM-T3 and FEM-T3 with both uniform and adaptive
models are shown in Figure 6.21.The solution error in the standard energy norm
(E-raw error) obtained using NS-FEM-T3 and FEM-T3 with both uniform and
adaptive models is shown in Figure 6.22. First, the results show that the adaptive
models for both NS-FEM-T3 and FEM-T3 give a much higher convergence rate
compared to the uniformly refined models. This demonstrates the effectiveness
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FIGURE 6.20 Effectivity index of the recovery error indicator for the solution of NS-FEM-T3
and FEM-T3 for the infinite plate with a circular hole.
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FIGURE 6.21 Convergence of the strain energy solution of NS-FEM-T3 and FEM-T3 for the
infinite plate with a circular hole.
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FIGURE 6.22 Error in the standard energy norms for solutions of NS-FEM-T3 and FEM-T3
for the infinite plate with a circular hole.

of the presented adaptive procedure. Second, compared with the linear FEM-
T3, the NS-FEM-T3 achieves better accuracy and a higher convergence rate
for both uniform and adaptive models. Third, the upper bound property in the
strain energy of NS-FEM-T3 is always verified during the adaptive procedure.

Figure 6.23 compares the errors in the standard energy norms (E-raw error)
and error estimators (Equation 6.23) (R-raw error) obtained using NS-FEM-T3
and FEM-T3. The results again show that the standard energy norms (E-raw
errors) are very close to the error estimators (Equation 6.23) (R-raw errors) for
both methods, but the results of NS-FEM-T3 are better and have a higher conver-
gence rate than those of FEM-T3. Figure 6.24 again verifies the asymptotically
exact property of the error estimator (Equation 6.23) in which the effectivity
indexes of adaptive schemes for both methods converge to unity when the
mesh is refined.

Figure 6.25 shows the sequence of meshes produced during the adap-
tive refinement steps using NS-FEM-T3. The results show that the refine-
ment is most active in regions with significant stress concentration, as
expected.

Example 6.7.3: L-Shaped 2D Solid Under Tension: Adaptive Analysis

Consider an L-shaped domain subject to unit tension. The dimensions and
boundary conditions are shown in Figure 6.26. The thickness of the solid is
t = 1 m, and a plane stress problem is considered. The material parameters of
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FIGURE 6.23 Error in the standard energy norms and a posteriori energy norms (or error
estimators [Equation 6.23]) for solutions of NS-FEM-T3 and FEM-T3 for the infinite plate with
a circular hole (ε1 in the vertical axis stands for ε or Rεh).
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FIGURE 6.24 Effectivity index (adaptive scheme) of the recovery error indicator for solutions
of NS-FEM-T3 and FEM-T3 for the infinite plate with a circular hole.
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(a) (b)

(c) (d)

0 1 2 3 4 5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Step 1 (30 nodes)

0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
Step 4 (94 nodes)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
Step 7 (450 nodes)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
Step 9 (1439 nodes)

FIGURE 6.25 Sequence of adaptive refined meshes for the quarter plate using NS-FEM-T3.
(a) Step 1 (30 nodes); (b) Step 4 (94 nodes); (c) Step 7 (450 nodes); and (d) Step 9 (1439 nodes).

the structure are E = 1.0 N/m2 and ν = 0.3. In this example, stress singularity
occurs at the re-entrant corner, and hence adaptive analysis is preferred for this
type of problem.

The exact strain energy in this problem is not available. However, it can be
estimated through the procedure of Richardson’s extrapolation [26] from the
solutions of displacement models and equilibrium models [16]. The estimated
strain energy is the average of these two extrapolated strain energies. As given
in Ref. [27], the reference strain energy is approximately 15,566 (Nm).

The error in energy norms for NS-FEM-T3 and FEM-T3 using both uniform
and adaptive models is shown in Figure 6.27. Again, the results show that
adaptive models using both NS-FEM-T3 and FEM-T3 give higher convergence
rates compared to uniformly refined models. The results of NS-FEM-T3 are
more accurate and converge faster than those of FEM-T3. For this problem, we
have no analytical solution. Therefore we cannot show the superconvergence
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FIGURE 6.26 Problem setting for the L-shaped solid (length unit in m).
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FIGURE 6.27 Error in a posteriori energy norms using the error indicator (Equation 6.23)
for the solution of the L-shaped 2D solid problem.
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Node-Based Smoothed FEM 225

of the errors measured in the recovery energy norm (E-rec error) between the
analytical and recovery strains. However, based on the convergence rate of the
errors in the a posteriori energy norm (R-raw error) of NS-FEM-T3 (r = 0.97),
which is almost 1, we can see that the recovery strain is a reliable representation
of the analytical strain and can produce efficiently an optimal convergence rate
in the energy norm for this singular problem.

Figure 6.28 verifies the upper bound property in the strain energy of NS-
FEM-T3 during the adaptive procedure. Figure 6.29 shows some steps of
adaptive refinement models using NS-FEM-T3. The results show clearly that
the refinement is focusing on the re-entrant corner where the stress is singular.

Example 6.7.4: Crack Problem in Linear Elasticity: Adaptive Analysis

Consider a crack problem in linear elasticity as shown in Figure 6.30. Data of the
structure are E = 1.0 N/m2, ν = 0.3, and t = 1 m. Because of symmetry about
the y -axis, only half the domain is modeled. By incorporating dual analysis [2]
and the procedure of Richardson’s extrapolation with very fine meshes, Beckers
[27] proposed a good approximation of the exact strain energy as 8085 (Nm).

This crack problem has high singularity at the crack tip. As a result, the
convergence rate of a posteriori energy norms (R-raw error) between the recov-
ery and numerical strains using the uniformly refined models is low (r = 0.35
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FIGURE 6.28 Convergence of the strain energy solution for the L-shaped 2D solid problem.
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FIGURE 6.29 Sequence of adaptive refined meshes for the L-shaped 2D solid using NS-
FEM-T3. (a) Step 1 (30 nodes); (b) Step 4 (106 nodes); (c) Step 7 (431 nodes); and (d) Step 9
(1269 nodes).
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FIGURE 6.30 Crack problem setting and the half model.
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FIGURE 6.31 Error in a posteriori energy norms using the error indicator Equation 6.23 for
the solution of the crack problem.

for FEM and r = 0.55 for NS-FEM), as shown in Figure 6.31. The adaptive
schemes are therefore very necessary to improve the convergence rate. Fig-
ure 6.31 shows the energy norms of the adaptive models for both NS-FEM-T3
and FEM-T3. It is clearly shown that the adaptive models can obtain signif-
icantly higher (about double) convergence rates compared to the uniformly
refined models. The results of NS-FEM-T3 are much better and give a higher
convergence rate than those of FEM-T3. Without having the analytical solution,
we cannot show the superconvergence of the error in the recovery energy norm
(E-rec error) between the analytical and recovery strains. However, based on
the convergence rate of the a posteriori energy norm (R-raw error) of NS-FEM-
T3 (r = 0.97), which is almost 1, we can see that the recovery strain is a reliable
representation of the analytical strain and can efficiently produce an optimal
rate in the energy norm for this strongly singular case.

Figure 6.32 verifies the upper bound property in the strain energy of NS-
FEM-T3 during the adaptive procedure. Figure 6.33 shows some steps of the
adaptive refinement models using NS-FEM-T3. The results show clearly that the
refinement is focused on the crack tip where the singularity is.

A more proper way of analyzing this type of problem with singular-
ity is to use the singular S-FEM models, where the enriched linear PIM is
used to create a proper singular stress field. The details are presented in
Chapter 10.
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FIGURE 6.32 Convergence of the strain energy solution for the crack problem.

Example 6.7.5: 3D Lame Problem

The 3D Lame problem consists of a hollow sphere with inner radius a = 1 m,
outer radius b = 2 m, and subjected to internal pressure P = 100 N/m2, as
shown in Figure 6.34. For this benchmark problem, the analytical solution is
available in the polar coordinate system [28]:

ur = Pa3r
E(b3 − a3)

[
(1 − 2ν) + (1 + ν) b3

2r3

]
, (6.30)

σr = Pa3(b3 − r3)

r3(a3 − b3)
, σθ = Pa3(b3 + 2r3)

2r3(b3 − a3)
, (6.31)

where r is the radial distance from the centroid of the sphere to the point of
interest in the sphere.

As the problem is spherically symmetrical, only one-eighth of the sphere
model shown in Figure 6.34 is modeled, and symmetry conditions are imposed
on the three mirror symmetric planes. The material parameters of the problem
are E = 103 N/m2 and v = 0.3.

From Figure 6.35, it is observed that all the computed displacements and
stresses of NS-FEM-T4 agree well with analytical solutions. Table 6.12 and
Figure 6.36 show the upper bound property on the strain energy of NS-FEM-T4,
while FEM-T4 and FEM-H8 give lower bounds.
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FIGURE 6.33 Sequence of adaptive refined meshes for the crack problem solved using
NS-FEM-T3. (a) Step 1 (33 nodes); (b) Step 4 (102 nodes); (c) Step 7 (472 nodes); and (d)
Step 9 (1446 nodes).
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FIGURE 6.34 (a) Hollow sphere problem setting and (b) one-eighth model discretized using
four-node tetrahedral elements.
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FIGURE 6.35 (a) Radial displacement v (m) and (b) radial and tangential stresses (N/m2)

for the hollow sphere subjected to inner pressure.
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TABLE 6.12

Strain Energy (×10−2 Nm) Obtained Using Different Methodsa for the Hollow
Sphere Subjected to Inner Pressure

Solution

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Analytical

DOFs (T4) 1521 2337 3825 5814
DOFs (H8) 1092 2535 3906 6951
FEM-T4 5.9131 5.9986 6.0929 6.1387 6.3060
NS-FEM-T4 6.6227 5.5380 6.4580 6.4219 6.3060
FEM-H8 5.9827 6.1063 6.1668 6.2023 6.3060
FS-FEM-T4 [35] 6.0343 6.0955 6.1607 6.1906 6.3060
αFEM-T4 [33] (αexact = 0.7) 6.3081 6.3058 6.3059 6.3060 6.3060

a The numerical solutions of methods FS-FEM-T4 [35] and αFEM-T4 [33] presented in
the following chapters are also provided in this table for easy reference.
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FIGURE 6.36 Convergence of the strain energy solution of NS-FEM-T4 in comparison with
other methods for the hollow sphere subjected to inner pressure.

Table 6.13 and Figure 6.37 compare the solution error in the displacement
norm obtained using NS-FEM-T4, together with those of FEM-T4 and FEM-H8.
It is seen that FEM-H8 stands out clearly. When the third mesh (h ≈ 0.156 m)
is used, the error of FEM-H8 is about 1/3 that of NS-FEM-T4. NS-FEM-T4 per-
formed better than FEM-T4, but only by a small margin. The performance of
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232 Smoothed Finite Element Methods

TABLE 6.13

Error in Displacement Norm Obtained Using Different Methodsa for the
Hollow Sphere Subjected to Inner Pressure

Mesh 1 Mesh 2 Mesh 3 Mesh 4

h (T4) 0.2193 0.1878 0.1565 0.1342
h (H8) 0.2535 0.1840 0.1563 0.1267
FEM-T4 4.06e − 03 3.12e − 03 2.07e − 03 1.58e − 03
NS-FEM-T4 3.68e − 03 2.76e − 03 1.88e − 03 1.48e − 03
FEM-H8 2.26e − 03 1.35e − 03 7.92e − 04 5.44e − 04
FS-FEM-T4 [35] 3.03e − 03 2.30e − 03 1.50e − 03 1.14e − 03
αFEM-T4 [33] (αexact = 0.7) 1.40e − 03 1.02e − 03 6.67e − 04 4.71e − 04

a The numerical solutions of methods FS-FEM-T4 [35] and αFEM-T4 [33] presented in the
following chapters, are also provided in this table for easy reference.

log10 h
–0.8 –0.7 –0.6

FEM-T4 (r = 1.93)
NS-FEM-T4 (r = 1.85)
FEM-H8 (r = 2.05)
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 u

h || L
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)
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FIGURE 6.37 Error in the displacement norm for the NS-FEM-T4 solution in comparison
with those of other methods for the hollow sphere subjected to inner pressure.

NS-FEM-T4 is in between FEM-T4 and FEM-H8: quite similar to the 2D cases.
In terms of convergence rate, all the models have a numerical rate around the
theoretical value of 2.0.

Table 6.14 and Figure 6.38 compare the results of the energy norm of NS-
FEM-T4 with those of FEM-T4 and FEM-H8. It is again seen that NS-FEM-T4
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TABLE 6.14

Error in Energy Norm Obtained Using Different Methodsa for the
Hollow Sphere Subjected to Inner Pressure

Mesh 1 Mesh 2 Mesh 3 Mesh 4

h (T4) 0.2193 0.1878 0.1565 0.1342
h (H8) 0.2535 0.1840 0.1563 0.1267
FEM-T4 5.89e − 01 5.13e − 01 4.19e − 01 3.63e − 01
NS-FEM-T4 2.09e − 01 1.73e − 01 1.26e − 01 1.08e − 01
FEM-H8 5.51e − 01 4.22e − 01 3.42e − 01 2.85e − 01
FS-FEM-T4 [35] 3.75e − 01 3.03e − 01 2.24e − 01 1.86e − 01
FEM-T4-Re 4.20e − 01 3.39e − 01 2.51e − 01 2.08e − 01
FEM-H8-Re 4.90e − 01 3.31e − 01 2.56e − 01 1.98e − 01
αFEM-T4 [33] (αexact = 0.7) 2.83e − 01 2.30e − 01 1.71e − 01 1.44e − 01

a The numerical solutions of methods FS-FEM-T4 [35] and αFEM-T4 [33] presented in
the following chapters are also provided in this table for easy reference.
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FIGURE 6.38 Error in the energy norm for the NS-FEM-T4 solution in comparison with
those of other methods for the hollow sphere subjected to inner pressure.

stands out clearly. When the third mesh (h ≈ 0.156 m) is used, the error of NS-
FEM-T4 is about 2/7 that of FEM-T4, 2/5 that of FEM-H8, 1/2 that of FEM-T4-Re,
and 1/2 that of FEM-H8-Re. In terms of convergence rate, NS-FEM-T4 stands
out clearly with a rate of 1.34, while the rates of both FEM-T4 and FEM-H8 are
slightly below the theoretical value of 1.0.
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FIGURE 6.39 Displacement norm versus different Poisson’s ratios for the hollow sphere
subjected to inner pressure (507 nodes).

Figure 6.39 plots the error in the displacement norm against Poisson’s ratio
changing from 0.4 to 0.4999999 obtained using tetrahedral elements (507
nodes). The results show that NS-FEM-T4 is naturally immune from volumetric
locking, while FEM-T4 is subjected to volumetric locking, resulting in a drastic
accuracy loss in the numerical solutions.

Overall, it is again seen that NS-FEM-T4 models also possess four interesting
properties that are similar to an equilibrium FEM model: (1) the strain energy is
an upper bound of the exact solution; (2) it is immune naturally from volumetric
locking; (3) the stress solutions are ultra-accurate and superconvergent; and (4)
the displacement solutions are at about the same level as that of FEM-T4 using
the same mesh.

Example 6.7.6: 3D Cubic Cantilever: Analysis for the Upper Bound

Consider a 3D cantilever of cubic shape, subjected to a uniform pressure on
its upper face as shown in Figure 6.40. The exact solution of the problem is
unknown. By incorporating the solutions of hexahedral superelement elements
and the procedure of Richardson’s extrapolation, Almeida Pereira [29] gave an
approximation of the exact strain energy as 0.950930. In addition, using the
commercial software ABAQUS with a very fine mesh including 30,204 nodes
and 20,675 10-node tetrahedron elements, we computed another reference
solution of the strain energy as 0.9486. Also from this reference, the deflection
at point A(1.0, 1.0, −0.5) is 3.3912.
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FIGURE 6.40 (a) A 3D cubic cantilever subjected to a uniform pressure on the top surface
and (b) a mesh with four-node tetrahedral elements.

TABLE 6.15

Strain Energy Obtained Using Different Methodsa for the 3D Cubic
Cantilever Problem Subjected to a Uniform Pressure

Reference

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Solution [29]

DOFs (T4) 714 1221 2073 2856 4782
DOFs (H8) 648 1029 1536 2187 3993
FEM-T4 0.8572 0.8818 0.8978 0.9088 0.9190 0.9509
NS-FEM-T4 1.0059 0.9882 0.9808 0.9791 0.9704 0.9509
FEM-H8 0.8999 0.9116 0.9195 0.9251 0.9323 0.9509
FS-FEM-T4 [35] 0.8801 0.8989 0.9111 0.9206 0.9274 0.9509
αFEM-T4 [33] 0.9478 0.9478 0.9488 0.9518 0.9514 0.9509

(αexact = 0.62)

a The numerical solutions of methods FS-FEM-T4 [35] and αFEM-T4 [33] presented in the
following chapters are also provided in this table for easy reference.

Table 6.15 and Figure 6.41 confirm the upper bound property on the strain
energy of NS-FEM-T4 and the lower bound property of FEM-T4 and FEM-H8
for this 3D problem. Table 6.16 and Figure 6.42 show the convergence of
deflection at point A(1.0, 1.0, −0.5). The results also show the upper bound
property for the displacement solution of NS-FEM-T4 and the lower bound
property of FEM-T4 and FEM-H8.

Example 6.7.7: A 3D L-Shaped Block: Analysis for the Upper Bound

Consider the 3D square block with a cubic hole subjected to surface traction
q as shown in Figure 6.43. Due to the double symmetry of the problem, only
a quarter of the domain is modeled, which becomes a 3D L-shaped block.
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FIGURE 6.41 Convergence of the strain energy solution of NS-FEM-T4 in comparison with
other methods of the 3D cubic cantilever problem subjected to a uniform pressure.

TABLE 6.16

Deflection at Point A(1.0, 1.0, −0.5) Obtained Using Different Methodsa for
the 3D Cubic Cantilever Problem Subjected to a Uniform Pressure

Reference

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Solution

DOFs (T4) 714 1221 2073 2856 4782
DOFs (H8) 648 1029 1536 2187 3993
FEM-T4 3.0780 3.1752 3.2341 3.2732 3.3050 3.3912
NS-FEM-T4 3.5912 3.5418 3.4943 3.4818 3.4577 3.3912
FEM-H8 3.2523 3.2875 3.3107 3.3269 3.3474 3.3912
FS-FEM-T4 [35] 3.1669 3.2390 3.2800 3.3128 3.3324 3.3912
αFEM-T4 [33] 3.4064 3.4087 3.4031 3.4091 3.4053 3.3912

(αexact = 0.62)

a The numerical solutions of methods FS-FEM-T4 [35] and αFEM-T4 [33] presented in the
following chapters are also provided in this table for easy reference.

Analysis is performed using input data: q = 1, a = 1, E = 1, and ν = 0.3. For
this problem, the strain energy of 6.1999 given by Cugnon [30] is consid-
ered as the reference solution. In addition, using the commercial software
ABAQUS with a very fine mesh including 33,641 nodes and 22,862 10-node
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FIGURE 6.42 Convergence of the deflection solution at point A(1.0, 1.0, −0.5) of NS-FEM-T4
in comparison with other methods of the cubic cantilever subjected to a uniform pressure.

tetrahedron elements, we computed another reference solution of the strain
energy as 6.1916.

Again, Table 6.17 and Figure 6.44 confirm the upper bound property on the
strain energy of NS-FEM-T4 and the lower bound property of the FEM-T4 for
3D problems.

a

q q q

yy a2a2a

2a
2a

a
a

a

xx z

FIGURE 6.43 3D block and an L-shaped quarter model.
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TABLE 6.17

Strain Energy Obtained Using Different Methodsa for the 3D
L-Shaped Block Problem

Reference

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Solution

DOFs 806 1284 2556 3834 4826
FEM-T4 5.7164 5.8189 5.9524 6.0028 6.0305 6.1999
NSFEM-T4 6.6787 6.5454 6.4227 6.3897 6.3658 6.1999
FS-FEM-T4 [35] 5.8728 5.9532 6.0358 6.0731 6.0927 6.1999
αFEM-T4 [33] 6.1861 6.1824 6.1828 6.1808 6.1960 6.1999

(αexact = 0.7)

a The numerical solutions of methods FS-FEM-T4 [35] and αFEM-T4 [33] presented in the
following chapters are also provided in this table for easy reference.
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FIGURE 6.44 Convergence of the strain energy solution of the 3D L-shaped block problem.

6.8 Remarks

In this chapter, an NS-FEM for upper bound solutions to solid mechanics
problems is proposed. Through the formulation, theoretical analyses, and
numerical results, we finally summarize our discussions into the following
remarks and close the chapter.
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Node-Based Smoothed FEM 239

Remark 6.1 NS-FEM: Works for General Polygonal Elements

NS-FEM allows the use of general polygonal elements with an arbitrary
number of sides. The method can be applied easily to traditional four-node
quadrilateral or triangular elements. It works well with triangular elements
for 2D problems and with tetrahedral elements for 3D problems.

Remark 6.2 PIM for Evaluating the Shape Function

In NS-FEM, smoothed strain fields are computed directly using only the
shape functions at some particular points along segments of the boundary
of the smoothing domains. Evaluation of the values of shape functions for
discrete points can be performed in a trivial and simple manner for all
types of meshes using the linear PIM. The numerical implementation of
NS-FEM is straightforward and much simpler than those of equilibrium
FEM models.

Remark 6.3 NS-FEM: Upper Bound, Volumetric Locking Free,
and Superconvergence

NS-FEM is a displacement model using only displacements as unknowns.
It, however, possesses interesting properties that are quite similar to those
of an equilibrium FEM model such as the following: (1) the upper bound
property of the strain energy, when a reasonably fine mesh is used for
force-driven problems; (2) natural immunization from volumetric locking;
(3) ultra-accuracy and superconvergence of stress solutions (measured in
energy norm), and much more accurate than the FEM counterparts (with
or without recovery); and (4) similar accuracy of displacement solutions
compared to the standard linear FEM model that is already quite optimal.

In fact, at any point in all these smoothing domains, the equilibrium
equations are satisfied in an NS-FEM model. It is, however, not an equilib-
rium model because the stresses right on these interfaces of the smoothing
domains are not in equilibrium. Therefore, it is said to be a quasiequi-
librium model. For displacement-driven problems (zero external forces but
nonzero prescribed displacement on the essential boundary), we expect
FEM and NS-FEM to swap their roles: NS-FEM gives the lower bound and
FEM gives the upper bound. For general problems with mixed force and
displacement boundary conditions, we can still expect these two models
to bound the exact solution from both sides, although which model is on
which side will be problem dependent.

Remark 6.4 NS-FEM and FEM: A General, Robust Mean for
Solution Bounds

From the upper bound property of the strain energy of NS-FEM, a simple
and practical approach is now available to determine both the upper and
lower bounds in the strain energy, by combining nNS-FEM with nCS-FEM
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240 Smoothed Finite Element Methods

(for n-sided polygonal elements) or with FEM (for triangular, four-node
quadrilateral, or tetrahedral elements). This practical approach is also
applicable to fracture problems (Chapter 10) and heat transfer problems
(Chapter 14).

Remark 6.5 Recovery Error Indicator: Useful for Adaptive Analysis

An error indicator based on the recovery strain is proposed and shown to be
asymptotically exact by numerical experiments. Together with the simple
refinement strategy using newest node bisection, an adaptive procedure
for NS-FEM using triangular elements is proposed. The numerical results
of some benchmark problems show that the present adaptive procedure
can accurately “catch” the stress concentration/singularity regions and
perform the refinement properly. Compared to uniformly refined models,
adaptive models achieve a very high convergence rate, and hence high
efficiency. The 3D adaptive analyses using S-FEM (linear S-PIM) can be
found in Ref. [31]. Chapter 10 presents a more proper simulation of the
stress singular field using S-FEM models, where the linear PIM is enriched
to produce the singular stress field.

Remark 6.6 NS-FEM Temporal Instability Remedies

NS-FEM is temporally instable and can have non-zero-energy spurious
modes; hence special stabilization techniques are needed for NS-FEM to
solve dynamic problems [18,19] and nonlinear problems [20]. An alterna-
tive and very efficient way of overcoming temporal instability is to use
ES-FEM, which will be discussed in more detail in the next chapter.

Remark 6.7 NS-FEM: Upper Bounds for Dynamic and Nonlinear Problems

NS-FEM can be stabilized (temporally) to solve and obtain upper bounds
for dynamic problems [18,19] and nonlinear problems [20]. The study on
this important area is still ongoing to fully capitalize the unique upper
bound property of NS-FEM for various types of problems. Interested
readers may refer to Refs. [18–20] for latest developments.
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7
Edge-Based Smoothed FEM

7.1 Introduction

Chapter 6 has presented the NS-FEM [1], and it has proven via theoretical
analysis and numerical examples that the NS-FEM is always spatially
stable. In addition, the NS-FEM possesses interesting properties that are
similar to those of an equilibrium FEM model. It is, however, found that the
NS-FEM behaves “overly soft” resulting from overcorrection to the “overly
stiff” behavior of the compatible FEM [1]. Such an overly soft behavior
leads to the so-called temporal instability (see Remark 1.3) similar to those
found in the equilibrium FEM models and in the nodal integration meth-
ods [2–4]. Temporal instability can be clearly observed when the NS-FEM
is used for solving dynamic problems: (1) as spurious non-zero-energy
modes in free vibration analyses, and (2) numerical instability in the time
marching in forced vibration analyses.

In this chapter, we therefore present a very outstanding S-FEM model:
the ES-FEM that is stable both spatially and temporally, and much more
accurate compared with many existing FEMs. The ES-FEM was origi-
nated in Ref. [5] to create models with close-to-exact stiffness, so that it
can produce ultra-accurate results for solving static problems, and sta-
ble and accurate results for dynamic problems. In the ES-FEM, the strain
smoothing domains are associated with edges of the element mesh, and
hence the integration of the weak form becomes a simple summation over
these edge-based smoothing domains. The ES-FEM works well, in general
for a mesh of arbitrarily n-sided polygonal elements [6], and in particular
for linear triangular (T3) elements that can be generated for complicated
geometry automatically [5]. In addition, a smoothing-domain-based selec-
tive ES/NS-FEM model has also been proposed that is immune from the
volumetric locking, and works very well for solids of nearly incompressible
materials [5,6].

For important mesh generation reasons, this chapter concentrates on
the ES-FEM using linear triangular elements (ES-FEM-T3). In this case,
the ES-FEM-T3 has been often found to possess the following excellent
properties: (1) it has a very close-to-exact stiffness: it is much softer than

243
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244 Smoothed Finite Element Methods

the “overly stiff” FEM and much stiffer than the “overly soft” NS-FEM
model; (2) the results of the ES-FEM-T3 are often much more accurate
than those of the FEM using the same linear triangular element mesh
(FEM-T3) and often even more accurate than those of the FEM using
quadrilateral elements (FEM-Q4) with the same sets of nodes. These results
have been observed in static linear elastic problems and in nonlinear
problems of large deformation; (3) no spurious non-zero-energy modes
were found and hence the method is both spatially and temporally sta-
ble and hence works well for dynamic problems; (4) the implementation
of the ES-FEM is straightforward: no additional DOF is used; (5) the ES-
FEM can easily be extended to 3D problems using tetrahedral elements
[7]; and (6) the computational efficiency of the ES-FEM-T3 is the most
superior compared to that of numerical methods using the same sets of
nodes.

7.2 Creation of Edge-Based Smoothing Domains

In the ES-FEM, the domain discretization is still based on general polygonal
elements with an arbitrary number of sides, as in the NS-FEM presented
in Chapter 6. Assume that the problem domain Ω is discretized using Ne

elements, such thatΩ =∑Ne
i=1Ω

e
i andΩe

i ∩Ωe
j = ∅, i �= j. The element mesh

shall have a total of Nn nodes and Neg edges located in the entire problem
domain. On top of the element mesh, the problem domain Ω is divided
into Ns = Neg nonoverlap no-gap smoothing domains associated with the

edges, such thatΩ =∑Neg
k=1Ω

s
k andΩs

i ∩Ωs
j = ∅, i �= j. In this case, the num-

ber of smoothing domains is the same as the number of edges in the mesh:
Ns = Neg, which satisfies the requirement of minimum number of smooth-
ing domains given in Table 4.2. This implies that the ES-FEM-T3 should be
at least spatially stable (see Theorem 4.1).

For a mesh of n-sided polygonal elements, the smoothing domain Ωs
k

associated with the edge k is created by connecting two endpoints of
the edge to central points of adjacent elements as shown in Figure 7.1.
For a mesh of triangular elements, in particular, an ES-FEM-T3 set-
ting is shown in Figure 7.2. The strain smoothing technique [8] is
used to create a smoothed strain field that is constant in each of the
smoothing domains. The summation required in the smoothed Galerkin
weak form (Equation 4.37) is thus over all these edge-based smoothing
domains.
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Γm
s (AB, BI, IA)

Ωs
k (CKDO)

O

Boundary edge m (AB)
B

D

I

Γs
k (CK, KD, DO, OC)

Edge k
(CD)

K

A

C

Ωs
m (ABI)

: Central point of elements (I, O, K): Field nodes

FIGURE 7.1 ES-FEM settings: domain discretization into arbitrary n-sided polygonal
elements, and the smoothing domains created based on the edges of these elements.

: Centroid of triangles (I, O, H): Field nodes

Boundary
edge m (AB)

Inner edge k (DF)
Γk

s (Lines: DH, HF, FO, OD)

Γm
s

A

B

D

F

H

O

I(Lines: AB, BI, IA)

(Triangle ABI)

C E

G
Ωk

s (Four-node domain DHFO)

Ωm
s

FIGURE 7.2 ES-FEM-T3 settings: triangular elements (solid lines) and the edge-based
smoothing domains (shaded areas).
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246 Smoothed Finite Element Methods

7.3 Formulation of the ES-FEM

7.3.1 Static Analyses

Considering the solid mechanic problem defined in Chapter 2, and using
the general formulation for the static analysis of the S-FEM models pre-
sented in Chapter 4, the linear system of equations of the ES-FEM has the
form of

K̄ES-FEMd̄ = f̃, (7.1)

where K̄ES-FEM is the smoothed stiffness matrix whose entries are given by

K̄ES-FEM
IJ =

Neg∑
k=1

∫

Ωs
k

B̄T
I cB̄J dΩ =

Neg∑
k=1

B̄T
I cB̄JAs

k , (7.2)

where As
k = ∫

Ωs
k

dΩ is the area of the edge-based smoothing domain Ωs
k ,

and the smoothed strain–displacement matrix B̄I is computed by Equation
4.30 using only shape function values on the boundaries of the edge-based
smoothing domains.

In particular, when a mesh of linear triangular elements is used,
the smoothed strain–displacement matrix B̄I can be assembled by the
following simple equation:

B̄I(xk) = 1
As

k

ne
k∑

j=1

1
3

Ae
j B̃

e
j , (7.3)

where ne
k is the number of elements around the edge k (ne

k = 1 for the
boundary edges and ne

k = 2 for inner edges, as shown in Figure 7.2); Ae
j is

the area of the jth element around the edge k; B̃e
j is the compatible strain–

displacement matrix of the jth element around the edge k and is computed
similarly to that in Section 6.3.2; and As

k is the area of the smoothing domain
of the kth edge computed using

As
k =

∫

Ωs
k

dΩ = 1
3

ne
k∑

j=1

Ae
j . (7.4)

Note that with this formulation, only the area and the standard FEM com-
patible strain–displacement matrices B̃e

j of triangular elements are needed
to calculate the system stiffness matrix for the ES-FEM. The formulation
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Edge-Based Smoothed FEM 247

is simple, but works only for the type of triangular elements (T3) that
uses linear interpolation over the element. For the ES-FEM models using
other elements, the smoothed strain–displacement matrix B̄I has to be com-
puted using the original Equation 4.30, and the shape functions have to be
evaluated in the way given in Section 7.4.

The above formulation is quite straightforward and can be easily
extended for the 3D problems using tetrahedral elements [7], which will
be presented in Chapter 8.

7.3.2 Dynamic Analyses

Because the ES-FEM is both spatially and temporally stable [5] (this will be
discussed further in Section 7.6.2), it suits well also for dynamic problems,
such as free and forced vibrations analyses. If the inertial and damp-
ing forces are also considered in the dynamic equilibrium equations, the
discretized system of equations in the ES-FEM can use the smoothed
Galerkin weak form (Equation 4.45) and be expressed as a set of differential
equations with respect to time:

K̄ES-FEMd̄ + C̃ ˙̄d + M̃ ¨̄d = f̃, (7.5)

where M̃ is the mass matrix

M̃ =
∫

Ω

NTρN dΩ, (7.6)

in which ρ is the mass density. The damping matrix C̃ is computed using

C̃ =
∫

Ω

NTcN dΩ, (7.7)

where c is the damping coefficient.
For simplicity, the Rayleigh damping is used in this book, and the damping

matrix C̃ is assumed to be a linear combination of M̃ and K̄ES-FEM,

C̃ = αM̃ + βK̄ES-FEM, (7.8)

where α and β are the Rayleigh damping coefficients.
Many existing standard schemes can be used to solve the second-order

time-dependent problems, such as the Newmark method, the Crank–
Nicholson method, and so on [9]. In this chapter, the Newmark method

is used. When the current state at t = t0 is known as (d̄0, ˙̄d0, ¨̄d0), we aim
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248 Smoothed Finite Element Methods

to find a new state (d̄1, ˙̄d1, ¨̄d1) at t1 = t0 + θΔt where 0.5 ≤ θ ≤ 1, using the
following formulations:

[(
α+ 1

θΔt

)
M̃ + (β+ θΔt) K̄ES-FEM

]
d̄1 = θΔtf̃1 + (1 − θ)Δtf̃0

+
(
α+ 1

θΔt

)
M̃d̄0 + 1

θ
M̃ ˙̄d0 + [β− (1 − θ)Δt] K̄ES-FEMd̄0, (7.9)

˙̄d1 = 1
θΔt

(
d̄1 − d̄0

)
− 1 − θ

θ

˙̄d0, (7.10)

¨̄d1 = 1
θΔt

( ˙̄d1 − ˙̄d0

)
− 1 − θ

θ

¨̄d0. (7.11)

Without the damping and forcing terms, Equation 7.5 is reduced to a
homogeneous differential equation:

M̃ ¨̄d + K̄ES-FEMd̄ = 0. (7.12)

A general solution of such a homogeneous equation can be written as

d̄ = D̄ exp (iωt) , (7.13)

where t indicates time, D̄ is the amplitude of the sinusoidal displacements,
and ω is the angular frequency. On its substitution into Equation 7.12,
the natural frequency ω can be found by solving the following eigenvalue
equation: [

K̄ES-FEM − ω2M̃
]

D̄ = 0. (7.14)

Finally, we note that the trial function used in an ES-FEM model is the
same as that in the standard FEM. Therefore the force vector f̃, mass matrix
M̃, and damping matrix C̃ in the ES-FEM are also computed in exactly the
same way as in the FEM. In other words, the ES-FEM changes only the
stiffness matrix.

7.3.3 Lumped Mass Matrix

In dynamic analysis using the ES-FEM-T3, we can use the usual consistent
mass matrix defined in Equation 7.6. For computational efficiency purposes,
the well-known lumped mass matrix for the linear triangular elements Ωe

i
can also be used:

M̃e
i = ρtA

e
i

3
I, (7.15)
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Edge-Based Smoothed FEM 249

where I is the identity matrix of size 6 by 6, Ae
i is the area of the element,

and ρ and t are the mass density and the thickness of the element, respec-
tively. The diagonal form of the lumped mass matrix gives the superiority
in terms of efficiency in computation over the consistent mass matrix in
solving transient dynamics problems. Our past experience in studying the
consistent and lumped mass matrices has led to the following remark.

Remark 7.1 On the Softening Effect of Lumping Mass

The use of lumped mass, in general, results in a “softer” model, meaning
that the eigenvalues obtained will be smaller than those obtained using the
consistent mass matrix for the same model.

Remark 7.1 has important implications in obtaining the bounds for
dynamic problems. In this book, however, we will not discuss this any
further. The interested reader may refer to Refs. [10,11].

7.3.4 Nonlinear Analysis of Large Deformation

The excellent stability and very close-to-exact stiffness feature of the ES-
FEM make it an ideal candidate also for the analysis of nonlinear problems.
Here, in this section, we consider the use of T3 elements in the ES-FEM
model for large deformation nonlinear problems. In this case, the values
of the smoothed strain–displacement matrices and stresses of the smooth-
ing domains associated with edges become simply the average values of
those of the adjacent elements around the edge, using Equation 7.3. All
the other techniques developed and currently used in the FEM such as the
total Lagrange formulation can be directly adopted. The ES-FEM-T3 model
for nonlinear problems of large deformation based on the total Lagrange
formulation [12,13] can be expressed as follows:

(
K̄L + K̄NL

)
d̄ = f̃ − f̄1, (7.16)

where the stiffness matrix for the linearized portion can be written as

K̄L =
Neg∑
k=1

B̄T
L cB̄LAs

k , (7.17)

in which matrix B̄L is for the edge-based smoothing domains, and is
computed using

B̄L = 1
As

k

ne
k∑

j=1

1
3

Ae
j B̃

e
L, j. (7.18)
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250 Smoothed Finite Element Methods

In the foregoing equation, the matrix B̃e
L for the elements sharing the

edge is given by

B̃e
L =

[
F11N1,1 F21N1,1 F11N2,1
F12N1,2 F22N1,2 F12N2,2

F11N1,2 + F12N1,1 F21N1,2 + F22N1,1 F11N2,2 + F12N2,1

(7.19)
F21N2,1 F11N3,1 F21N3,1
F22N2,2 F12N3,2 F22N3,2

F21N2,2 + F22N2,1 F11N3,2 + F12N3,1 F21N3,2 + F22N3,1

⎤
⎦,

in which NI,j = ∂NI
/
∂Xj and FIJ are entries of the deformation gradient

tensor of the elements F̃e that is computed using

F̃e =
[

F11 F12
F21 F22

]
=
(

∂x
∂X

)T

=
(

Ldd̄ + I
)T

. (7.20)

The stiffness matrix for the nonlinear portion in Equation 7.16 can be
written as

K̄NL =
Neg∑
k=1

B̄T
NLS̄B̄NL As

k , (7.21)

where matrix B̄NL is for the edge-based smoothing domains and is
computed using

B̄NL = 1
As

k

ne
k∑

j=1

1
3

Ae
j B̃

e
NL,j. (7.22)

In the foregoing equation, the matrix B̃e
NL is for the elements given by

B̃e
NL =

⎡
⎢⎢⎣

N1,1 0 N2,1 0 N3,1 0
N1,2 0 N2,2 0 N3,2 0

0 N1,1 0 N2,1 0 N3,1
0 N1,2 0 N2,2 0 N3,2

⎤
⎥⎥⎦ , (7.23)

and matrix S̄ is for the edge-based smoothing domains, and is computed
using

S̄ = 1
As

k

ne
k∑

j=1

1
3

Ae
j S̃

e
j with S̃e =

⎡
⎢⎢⎣

S11 S12 0 0
S12 S22 0 0
0 0 S11 S12
0 0 S12 S22

⎤
⎥⎥⎦ . (7.24)
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Edge-Based Smoothed FEM 251

In the foregoing equation, the entries SIJ of matrix S̃e are derived from
the second Piola–Kirchhoff stress tensor Ψ̃

e
for the elements by

Ψ̃
e =

⎡
⎢⎣

S11

S22

S12

⎤
⎥⎦ = c

⎡
⎢⎣

E11

E22

2E12

⎤
⎥⎦ . (7.25)

The entries EIJ in Equation 7.25 are derived from the entries of the
Green–Lagrange strain tensor Ẽe of the elements as

Ẽe =
[

E11 E12

E21 E22

]
= 1

2

((
F̃e
)T

F̃e − I
)

, (7.26)

where I is the second-order unit matrix.
The “additional” force term caused by the nonlinearity in Equation 7.16

becomes

f̄1 =
Neg∑
k=1

B̄T
L Ψ̄As

k , (7.27)

where

Ψ̄ = 1
As

k

ne
k∑

j=1

1
3

Ae
j Ψ̃

e
j . (7.28)

7.4 Evaluation of the Shape Function Values in the
ES-FEM

As presented generally in Chapter 4, when a compatible (continuous)
displacement field along the boundary of the smoothing domains is used,
the smoothed strain–displacement matrix B̄I can be in general computed
using Equation 4.30 with only shape function values at mid-segment-
points (Gauss points) along segmentsΓs

k,p ∈ Γs
k of smoothing domains. The

shape function value at each Gauss point is evaluated using the simple lin-
ear PIM using those of the two related endpoints that bound the segment
containing that Gauss point. For example, the values of the shape functions
at point #g1 on the segment 1-A shown in Figure 7.3 are evaluated by aver-
aging the values of shape functions of two related nodes on the segment:
points #1 and #A. Therefore, in order to facilitate the evaluation of shape
function values at Gauss points in the ES-FEM, we first need to evaluate
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FIGURE 7.3 Gauss points of the smoothing domains associated with edges for n-sided
polygonal elements in ES-FEM.

the shape function values at the endpoints of segments such as field nodes
(#1, #6, etc.) and central points (#A, #B, etc.) shown in Figure 7.3.

For an ES-FEM model using n-sided polygonal elements, the shape
functions constructed in Section 4.3.2 are used. These shape functions
are obviously linear and compatible along the boundary of smoothing
domains associated with edges. The evaluation of the shape function values
at the endpoints of segments shown in Figure 7.3 is quite straightforward.
Figure 7.3 and Table 7.1 give explicitly the shape function values at dif-
ferent points of the smoothing domain associated with the edge 1-6. The
number of support nodes for the smoothing domain is 9 (from #1 to #9).
We have four segments Γs

k,p on Γs
k (1A, A6, 6B, B1). Each segment needs

only one Gauss point and therefore there are a total of four Gauss points
(g1, g2, g3, g4) used for the entire smoothing domain Ωs

k associated with
edge k(1-6), and the shape function values at these four Gauss points can
be tabulated in Table 7.1 by simple inspection.

It may be mentioned again that no extra DOFs are associated with these
points. In other words, these points are merely the locations for the linear
interpolation, and carry no additional field variables. Only these nodes in
the ES-FEM model carry field variables (displacements).

It is easy to see that the linear shape functions for triangular elements
of the standard FEM satisfy naturally the linear compatible property
along the boundary of the smoothing domains. Hence, the ES-FEM can
be applied easily using the triangular elements without any modification
of the shape functions. The smoothed strain–displacement matrix B̄I is
given in Equation 7.3.
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TABLE 7.1

Shape Function Values at Different Sites on the Smoothing Domain Boundary Associated with the Edge 1-6 in Figure 7.3

Site Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 Description

1 1.0 0 0 0 0 0 0 0 0 Field node
2 0 1.0 0 0 0 0 0 0 0 Field node
3 0 0 1.0 0 0 0 0 0 0 Field node
4 0 0 0 1.0 0 0 0 0 0 Field node
5 0 0 0 0 1.0 0 0 0 0 Field node
6 0 0 0 0 0 1.0 0 0 0 Field node
7 0 0 0 0 0 0 1.0 0 0 Field node
8 0 0 0 0 0 0 0 1.0 0 Field node
9 0 0 0 0 0 0 0 0 1.0 Field node
A 1/6 1/6 1/6 1/6 1/6 1/6 0 0 0 Centroid of element
B 1/5 0 0 0 0 1/5 1/5 1/5 1/5 Centroid of element
g1 7/12 1/12 1/12 1/12 1/12 1/12 0 0 0 Mid-segment-point of Γs

k,p

g2 1/12 1/12 1/12 1/12 1/12 7/12 0 0 0 Mid-segment-point of Γs
k,p

g3 1/10 0 0 0 0 6/10 1/10 1/10 1/10 Mid-segment-point of Γs
k,p

g4 6/10 0 0 0 0 1/10 1/10 1/10 1/10 Mid-segment-point of Γs
k,p
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254 Smoothed Finite Element Methods

7.5 A Smoothing-Domain-Based Selective ES/NS-FEM

The ES-FEM models formulated above are on the “stiff” side and are thus
subjected to the volumetric locking (see Remark 2.2). Therefore, it cannot
be used directly to solve problems with nearly incompressible materials
with Poisson’s ratio close to 0.5. On the other hand, we know that the NS-
FEM formulated in Chapter 6 is naturally immune from the volume locking
[1]. It is therefore making good sense to combine the NS- and ES-FEM
formulations to construct the so-called smoothing-domain-based selective
ES/NS-FEM that can overcome the volumetric locking problem and yet
with good performance.

In this section, such a smoothing-domain-based selective scheme will be
used in the combined formulation of ES/NS-FEM. We apply two differ-
ent types of smoothing domains selectively for the two different material
“parts” (μ part and λ part). Since the node-based smoothing domains
used in the NS-FEM were found effective in overcoming volumetric lock-
ing, and the λ part is known as the “culprit” of the volumetric locking,
we simply use the node-based domains for the λ part. Because the volu-
metric locking has nothing to do with the μ part, we use the edge-based
domains (ES-FEM) for the μ part. Such a procedure is simple and easy
to implement, and the stiffness matrix of the smoothing-domain-based
selective ES/NS-FEM model can be simply written as

K̄ =
Neg∑
i=1

(
B̄1,i
)T c1B̄1,iAs

1,i

︸ ︷︷ ︸
K̄ES-FEM

1

+
Nn∑
j=1

(
B̄2,i
)T c2B̄2,jAs

2,j,

︸ ︷︷ ︸
K̄NS-FEM

2

(7.29)

where B̄1,i and As
1,i are the smoothed strain–displacement matrix and area

of the smoothing domain Ωs
1,i associated with edge i; B̄2,j and As

2,j are
the smoothed strain–displacement matrix and the area of the smooth-
ing domain Ωs

2,j associated with node j, respectively; c1 and c2 are the
component material matrices decomposed from the material matrix c as
presented by Equations 5.13 and 5.14; and Neg and Nn are, respectively, the
total number of edges and nodes located in the element mesh for the entire
problem domain. The formulation of K̄ES-FEM

1 follows simply Equation 7.2,
and that of K̄NS-FEM

2 following Equation 6.2.

7.6 Properties of the ES-FEM

We now perform some analysis and tests to examine the properties of the
ES-FEM.
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Edge-Based Smoothed FEM 255

7.6.1 Rank Analysis for the ES-FEM Stiffness Matrix

Property 7.1 ES-FEM: Spatially Stable

The ES-FEM with n-sided polygonal elements possesses only “legal” zero-
energy modes that represent the rigid motions, and there exists no spurious
zero-energy mode. Therefore, it is spatially stable.

The spatial stability of the ES-FEM is ensured by the following key
reasons:

i. The total number of edges is always bigger than that of nodes for
any discretization. Therefore, the number of smoothing domains
Ns is always much larger than the minimum number of smoothing
domains Nmin

s presented in Section 4.6.
ii. The edge-based smoothing domains are independent of each other

and hence the strain smoothing operation ensures linearly inde-
pendent columns (or rows) in the stiffness matrix [14]. This is true
for all possible ES-FEM models, as examined in detail in Table 7.2.

iii. The shape functions used in the ES-FEM are of partition of unity,
which ensures a proper representation of the rigid motions.

Due to the above-mentioned reasons, no deformed zero-energy mode
will exist in an ES-FEM model. In other words, any finite deformation
(except the rigid motions) will result in a finite amount of strain energy in
an ES-FEM model (we assume, as always, that the material is stable).

Note also that for any type of element mesh, the number of edges are
always larger than or equal to the number of nodes. Therefore, the ES-
FEM model is always “stiffer” than the NS-FEM for the same element
mesh, which explains partially why the ES-FEM is temporally stable (more
discussion later) while the NS-FEM is not.

7.6.2 Temporal Stability of the ES-FEM-T3

Property 7.2 ES-FEM: Temporally Stable

There exist no spurious non-zero-energy modes in an ES-FEM-T3 model
and thus it is temporally stable.

In the standard FEM-T3, the shape functions are (purely) linear and hence
the compatible strain field in an element is constant. Therefore, only one
Gauss point is needed to perform the domain integration for the weak form
for each element. This implies that the number of Gauss points used in the
entire problem domain equals the number of elements. Such an FEM-T3
model is known to be temporally stable in dynamic analysis and has no
spurious non-zero-energy modes.
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256 Smoothed Finite Element Methods

TABLE 7.2

Existence of Spurious Zero-Energy Modes in an Element

FEM with Reduced

Type of Element ES-FEM Integration

Triangle
NR = 3

nQ = 3, NQ = 3 × nQ = 9
nt = 3, Nu = 2 × nt = 6
NQ > Nu − NR

=> Spurious zero-energy
modes not possible

nQ = 1, NQ = 3 × nQ = 3
nt = 3, Nu = 2 × nt = 6
NQ = Nu − NR

=> Spurious zero-energy
modes not possible

Quadrilateral
NR = 3

nQ = 4, NQ = 3 × nQ = 12
nt = 4, Nu = 2 × nt = 8
NQ > Nu − NR

=> Spurious zero-energy
modes not possible

nQ = 1, NQ = 3 × nQ = 3
nt = 4, Nu = 2 × nt = 8
NQ < Nu − NR

=> Spurious zero-energy
modes possible

n-sided polygonal
(n > 4)

NR = 3

nQ = n, NQ = 3 × nQ = 3n

nt = n, Nu = 2 × nt = 2n

NQ > Nu − NR

=> Spurious zero-energy
modes not possible

Not applicable

Notes: NR, number of DOFs of rigid motion; nQ, number of quadrature points/cells; NQ,
number of independent equations; nt, number of nodes; and Nu, number of total
DOFs.

In our ES-FEM using triangular meshes (ES-FEM-T3), the smoothing
domains used are associated with edges of the elements and the strain
(or stress) is constant over each smoothing domain. We know that the
stability (both spatial and temporal) is directly related to the number
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Edge-Based Smoothed FEM 257

of “samplings” of the integrand in the weak form. Hence, for stability
considerations, each smoothing domain can be viewed as equivalent to
one Gauss point in terms of sampling the integrand in the weak form.
Because the number of edges is always larger than the number of elements
in any ES-FEM models, the number of samplings in an ES-FEM-T3 is, in
fact, always larger than that in the standard FEM-T3. Therefore, the ES-
FEM-T3 must be always stable temporally (also spatially), should have
no spurious non-zero-energy modes, and is well suited for the dynamic
analyses.

Note that, in the NS-FEM, smoothing domains associated with the node
are employed to calculate the stiffness matrix. This works well for static
problems. However, for vibration analysis, the NS-FEM is unstable because
of the presence of spurious non-zero-energy modes [5]. This is because the
number of nodes can be smaller than the number of elements and hence
there is a chance of spurious modes appearing at a higher energy level.
This phenomenon is quite similar to the underintegration of the weak
form inherent in the nodal integration approach of mesh-free methods.
The temporal instability, therefore, has been one of the main concerns of
the NS-FEM and nodal integrated mesh-free methods [2–4]. The simplest
and most effective solution is to use the edge-based smoothing domains:
the ES-FEM. Based on the above discussions, we can further note the
following.

Property 7.3 ES-FEM: Bound Property

The stiffness of an ES-FEM model is in between those of the FEM model
and the NS-FEM model using the same mesh. Therefore, the strain energy
solution of the ES-FEM will be in between those of the FEM and NS-FEM
models using the same mesh. This also implies that the strain energy solu-
tion of ES-FEM will be better than either the FEM or the NS-FEM using the
same mesh.

7.6.3 Standard Patch Tests

Standard patch tests are now performed for n-sided polygonal and triangu-
lar elements using our ES-FEM code. For the test using n-sided polygonal
elements, a square patch is discretized with 36 n-sided polygonal ele-
ments as shown in Figure 5.5. For the test using triangular elements, the
square patch is meshed with 32 irregular triangular elements, as shown in
Figure 7.4.

The displacement norm (Equation 4.63) is used to examine the computed
results. The material parameters are taken as E = 100,ν = 0.3, and the linear
displacement field is given by Equation 5.11. We state without showing
detailed numbers that the ES-FEM can pass the standard patch test within
machine precision. This test verifies that the ES-FEM model has at least
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FIGURE 7.4 Mesh discretization using triangular elements for standard patch test.

second-order accuracy, implying that the displacement error is at least at
the terms of second order or higher.

Property 7.4 ES-FEM: First Order Consistency

The ES-FEM has the first-order consistency, meaning that it can produce
a linear displacement field exactly. In other words, it is of second-order
accuracy in displacement solution: errors are at the terms of second order
or above.

Property 7.5 ES-FEM Solution: Stability and Convergence

Due to the stability given in Property 7.1 and the first-order consistence
given in Property 7.4, the ES-FEM has a unique stable solution that con-
verges to the exact solution of the original solid mechanics problem defined
in Chapter 2. This confirms Theorem 4.1.

7.7 Numerical Examples

In this section, some examples will be presented to demonstrate the proper-
ties of the ES-FEM models. For triangular elements, the ES-FEM-T3 results
will be compared with those of NS-FEM-T3, FEM-T3, FEM-Q4, CS-FEM-
Q4 (ns

e = 4), and FEM using eight-node quadratic elements (FEM-Q8). For
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Edge-Based Smoothed FEM 259

the n-sided polygonal elements, the standard FEM model is not applicable
and hence the nES-FEM results will be compared with those of nCS-FEM
and nNS-FEM, using the same mesh.

For the triangular and four-node quadrilateral elements, the errors in
both displacement norm and energy norm defined in Equations 4.49 and
4.50 are used for the examination of numerical models. When the energy
norm is used, we use the recovery strain solution for S-FEM models, and
both raw and recovery strain solutions for FEM models.

For n-sided polygonal elements, the errors in both displacement norm
and energy norm defined in Equations 4.63 and 4.64 are used.

Example 7.7.1: A Rectangular Cantilever Loaded at the End:
A Static Analysis

The benchmarking problem of a rectangular cantilever loaded at the end
described in Example 5.8.1 is again used to examine the ES-FEM models. The
geometry and boundary conditions of the cantilever are plotted in Figure 5.6.
The domain discretizations with quadrilateral, n-sided polygonal and triangular
elements are shown in Figures 5.7 and 6.6, respectively. The exact strain energy
of the problem was found to be 4.4746 Nm.

Figures 7.5 and 7.6 compare the results of displacements and relative errors
of the ES-FEM-T3 with FEM-T3, NS-FEM-T3, and FEM-Q4. It is shown that the
FEM-T3 is very stiff, whereas the NS-FEM-T3 is very soft compared to the exact
solution. The ES-FEM-T3 is stiffer than the NS-FEM-T3 and softer than the FEM-
T3, and the ES-FEM-T3 solution is very close to the exact solution. Compared
with all methods, the ES-FEM-T3 performs the best and even better than the
FEM-Q4. Figure 7.7 shows that all the computed stresses using the ES-FEM-T3
agree excellently well with the analytical solutions.

The convergence of the strain energy is shown in Table 6.4 and plotted in
Figure 7.8. It is seen that the FEM models behave in an overly stiff manner and
hence give lower bounds, and the NS-FEM-T3 behaves in an overly soft manner
and gives an upper bound. The solution of CS-FEM-Q4 is the most accurate.
Although triangular elements are used, the ES-FEM-T3 result is as good as that
of the CS-FEM-Q4 result.

The convergence of error in displacement norm is presented in Table 6.6 and
plotted in Figure 7.9. It is seen that the ES-FEM-T3 stands out clearly.The error of
displacement norm of the ES-FEM-T3 is the smallest among all the compared
models when the fine meshes are used. When the finest mesh (h = 1 m) is
used, the error of the ES-FEM-T3 is about 1/64 of FEM-T3, 1/9 of FEM-Q4, and
even 2/5 of CS-FEM-Q4. In terms of convergence rate, the superconvergence
is observed for the ES-FEM-T3 with a rate of 3.3 that is even much higher than
the theoretical value of 2.0 for linear displacement models based on the weak
formulation. We observe clearly now the “superconvergence” in terms of the
displacement norm as well. Such a superconvergence is very much different
from the usual superconvergence observed in the recovery FEM models, where
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FIGURE 7.5 Distribution of displacement v along the horizontal middle axis of the cantilever
subjected to a parabolic traction at the free end. The ES-FEM-T3 performs much better than
FEM-T3 and even better than the FEM-Q4.
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tilever subjected to a parabolic traction at the free end. The ES-FEM-T3 solution is very close
to the exact one.
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FIGURE 7.7 Normal stress σxx and shear stress σxy along the section of x = L/2 using the
ES-FEM-T3 of the cantilever subjected to a parabolic traction at the free end.
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FIGURE 7.8 Convergence of the strain energy solution obtained using the ES-FEM-T3 in
comparison with other methods for the cantilever subjected to a parabolic traction at the free
end using the same distribution of nodes.
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FIGURE 7.9 Error in displacement norm obtained using the ES-FEM-T3 in comparison with
other methods for the cantilever subjected to a parabolic traction at the free end using the
same set of nodes.

one can observe superconvergence only in energy norm and not in displace-
ment norm. Such an excellent performance implies that the stiffness of the
ES-FEM-T3 model is very “close to the exact stiffness” of the continuum solid.
This unique feature of ES-FEM is very useful in dealing with various problems,
especially dynamic problems including vibration and wave propagation (see
Chapter 15).

The convergence of the error in energy norm is presented in Table 6.7 and
plotted in Figure 7.10. It is seen again that these S-FEM-T3 models stand out
clearly, and are compatible even with the FEM-Q4-Re. When the finest mesh
(h = 1 m) is used, the solution accuracy of ES-FEM-T3 is not as good as those of
CS-FEM-Q4, NS-FEM-T3, and FEM-Q4-Re, but it is still much better than that
of FEM-T3, FEM-T3-Re, and FEM-Q4. The solution error of ES-FEM-T3 is about
1/6 of FEM-T3, 2/5 of FEM-Q4, 1/1.7 of FEM-T3-Re, and 1.3 times of FEM-
Q4-Re. In terms of convergence rate, the superconvergence is observed for the
ES-FEM-T3 with a rate of 1.52 that is much larger than the theoretical value of
1.0 for linear displacement models, and compatible with those of FEM-T3-Re
(1.67) and FEM-Q4-Re (1.47).

Figure 7.11 compares the computation time of different methods using the
same direct full-matrix solver. It is found that with the same sets of nodes,
the computation time of the ES-FEM-T3 is only shorter than that of the NS-
FEM-T3. However, when the efficiency of computation (CPU time for the same
accuracy) in terms of both displacement and energy norms is considered, the
ES-FEM-T3 model stands out clearly as a winner. Even though the ES-FEM-T3
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FIGURE 7.10 Error in energy norm obtained using the ES-FEM-T3 in comparison with other
methods for the cantilever subjected to a parabolic traction at the free end using the same set
of nodes.
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FIGURE 7.11 Comparison of the computation time of different methods for solving the
cantilever subjected to a parabolic traction at the free end. For the same distribution of nodes,
the FEM-T3 is the fastest to deliver the results.
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FIGURE 7.12 Comparison of the efficiency (computation time for the solutions of the same
accuracy measured in displacement norm) for solving the cantilever subjected to a parabolic
traction at the free end. The ES-FEM-T3 stands out clearly as a winner, even though it uses
triangular elements. It wins by its superiority in convergence rate.

uses triangular elements, it wins by its superiority in convergence rate, as shown
in Figure 7.12. One can therefore expect that when the finer mesh is used, the
performance of ES-FEM-T3 will be even better. When the efficiency is measured
in energy norm, the CS-FEM-Q4 is the most efficient, as shown in Figure 7.13.
Among all the other models, the ES-FEM-T3 performs the best, even though it
uses triangular elements. Because the ES-FEM-T3 works well with the triangular
elements, which are very much preferred in automated mesh generation, it has
a clear advantage over the FEM-Q4 and CS-FEM-Q4 models in the development
of adaptive and automatic solution tools for domains of arbitrary complexity.

For the n-sided polygonal elements, Figure 7.14 shows that all the computed
stresses using the nES-FEM agree well with the analytical solutions. The con-
vergence of the strain energy is shown in Table 6.5 and Figure 7.15. It is seen
that the nES-FEM has a very close-to-exact stiffness and hence is most accurate,
while the nCS-FEM model behaves in an overly stiff manner and hence gives
a lower bound, and nNS-FEM behaves in an overly soft manner and gives an
upper bound.

The convergence of displacement norm is presented in Table 7.3 and plot-
ted in Figure 7.16. It is seen that the nES-FEM stands out clearly. The error of
displacement norm of the nES-FEM is the smallest among all the three models.
When the finest mesh (h = 1 m) is used, the error of the nES-FEM is about 1/4
of nCS-FEM and 1/2 of nNS-FEM. In terms of convergence rate, the nCS-FEM
(r = 1.85) and nNS-FEM (r = 1.71) have a numerical rate smaller than the
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FIGURE 7.13 Comparison of the efficiency of computation time in terms of energy norm of
the cantilever subjected to a parabolic traction at the free end. The CS-FEM-Q4 performed
best, followed by the ES-FEM-T3 that uses triangular elements.
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FIGURE 7.14 Normal stress σxx and shear stress σxy along the section of x = 0 using nES-
FEM of the cantilever subjected to a parabolic traction at the free end.
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FIGURE 7.15 Convergence of the strain energy solution of nES-FEM using n-sided polygonal
elements in comparison with other methods for the cantilever subjected to a parabolic traction
at the free end using the same meshes.

theoretical value of 2.0, while the rate of the nES-FEM is r = 2.16, even larger
than the theoretical value.

The convergence of the error in energy norm is presented in Table 7.4 and
plotted in Figure 7.17. Again, it is seen that the nES-FEM stands out clearly. The
error of energy norm of the nES-FEM is the smallest among the three models.
When the finest mesh (h = 1 m) is used, the error of the nES-FEM is about 2/5
of the nCS-FEM and 3/4 of the nNS-FEM. In terms of convergence rate, the
nCS-FEM (r = 0.93) and nNS-FEM (r = 0.94) have a numerical rate smaller
than the theoretical value of 1.0, while the rate of the nES-FEM is larger with
r = 1.01.

TABLE 7.3

Error in Displacement Norm (%) for Solutions Obtained Using Different Methods
for the Cantilever Problem Using the Same Polygonal Meshes

Mesh (16 × 4) Mesh (24 × 6) Mesh (32 × 8) Mesh (40 × 10) Mesh (48 × 12)

h (m) 4.0 2.0 1.5 1.2 1.0
nCS-FEM 6.21 3.01 1.76 1.13 0.81
nNS-FEM 3.06 1.55 0.98 0.60 0.44
nES-FEM 2.10 0.77 0.46 0.27 0.19
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FIGURE 7.16 Error in displacement norm of nES-FEM-T3 using n-sided polygonal elements
in comparison with other methods for the cantilever subjected to a parabolic traction at the
free end using the same meshes.

Example 7.7.2: Infinite Plate with a Circular Hole: A Static Analysis

The infinite plate with a circular hole described in Example 5.8.2 is used here
to examine the ES-FEM models. The geometry and boundary conditions of the
problem are plotted in Figure 5.18. Figures 5.19 and 6.12 give the discretization
of the problem domain using four-node quadrilateral, n-sided polygonal and
triangular elements, respectively.

Figures 7.18 and 7.19 show the comparison of displacements of the ES-
FEM-T3 with the FEM-T3, NS-FEM-T3, and FEM-Q4. It is again found that the
FEM-T3 model is very stiff, while the NS-FEM-T3 model is very soft compared

TABLE 7.4

Error in Energy Norm for Solutions Obtained Using Different Methods for the
Cantilever Problem Using the Same Polygonal Meshes

Mesh (16 × 4) Mesh (24 × 6) Mesh (32 × 8) Mesh (40 × 10) Mesh (48 × 12)

h (m) 4.0 2.0 1.5 1.2 1.0
nCS-FEM 0.4718 0.3326 0.2532 0.2025 0.1721
nNS-FEM 0.2588 0.1738 0.1296 0.1001 0.0897
nES-FEM 0.1956 0.1413 0.1065 0.0782 0.0666
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FIGURE 7.17 Error in energy norm of nES-FEM-T3 using n-sided polygonal elements in
comparison with other methods for the cantilever subjected to a parabolic traction at the free
end using the same meshes.
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FIGURE 7.18 Distribution of displacement u along the bottom boundary of the infinite plate
with a hole subjected to unidirectional tension.
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FIGURE 7.19 Distribution of displacement v along the left boundary of the infinite plate
with a hole subjected to unidirectional tension.

to the exact model. The results of the ES-FEM-T3 are best and even better than
those of the FEM-Q4. From Figure 7.20, it is observed that all the computed
stresses using the ES-FEM-T3 agree well with the analytical solutions.

The convergence of the strain energy is shown in Table 6.8 and plotted in
Figure 7.21. It is seen that the FEM models give lower bounds, the NS-FEM-T3
gives an upper bound, and the ES-FEM-T3 is the most accurate and even better
than the CS-FEM-Q4.

The convergence of the error in displacement norm is shown in Table 6.10
and plotted in Figure 7.22. It is seen that the ES-FEM-T3 stands out clearly.
The error of displacement norm of the ES-FEM-T3 is the smallest among all the
compared models. When the finest mesh (h = 0.1969 m) is used, the error of
the ES-FEM-T3 is about 1/5 of FEM-T3, 3/4 of FEM-Q4, and even a little smaller
than that of CS-FEM-Q4. In terms of convergence rate, the rates of all methods,
except the FEM-T3, are slightly larger than the theoretical value of 2.0 for linear
displacement models.

The convergence of the error in energy norm is shown in Table 6.11 and
is plotted in Figure 7.23. It is seen again that the S-FEM-T3 models stand out
clearly together with the FEM-Q4-Re. When the finest mesh (h = 0.1969 m) is
used, the error of the ES-FEM-T3 is only worse than that of the NS-FEM-T3.
This error is almost equal to that of CS-FEM-Q4 and FEM-Q4-Re, and is much
better than that of FEM-T3, FEM-T3-Re, and FEM-Q4. It is about 1/5 of FEM-T3,
2/5 of FEM-Q4, 0.56 times of FEM-T3-Re, and slightly better than FEM-Q4-Re.
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FIGURE 7.20 Stress σxx along the left boundary (x = 0) and stress σyy along the bottom
boundary (y = 0) using ES-FEM-T3 of the infinite plate with a hole subjected to unidirectional
tension.

In terms of convergence rate, the superconvergence is again observed for ES-
FEM-T3 with a rate of 1.83 that is quite close to the optimal rate of 2.0 for
the equilibrium model, much larger than the theoretical value of 1.0 for linear
displacement models based on weak formulations, and higher than those of
FEM-T3-Re (1.67) and FEM-Q4-Re (1.81).

Figures 7.24 and 7.25 plot the results obtained using n-sided polygonal ele-
ments. It is observed that all the computed displacements and stresses agree
well with the analytical solutions.The convergence of the strain energy is shown
in Table 6.9 and Figure 7.26. Again the nES-FEM is found most accurate, while
the nCS-FEM model gives a lower bound and nNS-FEM gives an upper bound.

The error in displacement norm is shown in Table 7.5 and plotted in Fig-
ure 7.27. In terms of accuracy, it is seen that the nES-FEM stands out clearly.
The error of displacement norm of the nES-FEM is the smallest among the three
models. When the finest mesh (h = 0.1969 m) is used, the error of the nES-FEM
is about 1/8 of nNS-FEM and 1/2 of nCS-FEM. In terms of convergence rate,
the nES-FEM (r = 1.69) is less than that of nCS-FEM (r = 2.04) but still larger
than that of nNS-FEM (r = 1.32).

The convergence of the error in energy norm is presented in Table 7.6 and
plotted in Figure 7.28. Again, it is seen that the nES-FEM stands out clearly.
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FIGURE 7.21 Convergence of the strain energy solution of ES-FEM-T3 in comparison with
other methods for the infinite plate with a hole subjected to unidirectional tension using the
same distribution of nodes.
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FIGURE 7.22 Error in displacement norm of the ES-FEM-T3 solution in comparison with
other methods for the infinite plate with a hole subjected to unidirectional tension using the
same distribution of nodes.
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FIGURE 7.23 Error in energy norm of the ES-FEM-T3 solution in comparison with other
methods for the infinite plate with a hole subjected to unidirectional tension using the same
distribution of nodes.

1 1.5 2 2.5 3 3.5 4 4.5 5
2

3

4

5

6
× 10−3

× 10−3
x (y = 0) (m)

D
isp

la
ce

m
en

t u
 (m

)

1 1.5 2 2.5 3 3.5 4 4.5 5
−2.5

−2.0

−1.5

−1.0

−0.5

y (x = 0) (m)

D
isp

la
ce

m
en

t v
 (m

) nES−FEM
Analytical solution

nES−FEM
Analytical solution

FIGURE 7.24 Displacement u along the bottom boundary and displacement v along the left
boundary using nES-FEM of the infinite plate with a hole subjected to unidirectional tension.
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FIGURE 7.25 Stress σxx along the left boundary (x = 0) and stress σyy along the bottom
boundary (y = 0) using nES-FEM of the infinite plate with a hole subjected to unidirectional
tension.
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FIGURE 7.26 Convergence of the strain energy solution of nES-FEM using n-sided polygonal
elements in comparison with other methods for the infinite plate with a hole subjected to
unidirectional tension using the same meshes.
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274 Smoothed Finite Element Methods

TABLE 7.5

Error in Displacement Norm (%) in Solutions Obtained Using Different
Methods for the Infinite Plate with a Hole Using the Same Polygonal Meshes

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

h (m) 0.5468 0.3786 0.2895 0.2343 0.1969
nCS-FEM 1.2895 0.6299 0.3638 0.2335 0.1628
nNS-FEM 2.2983 1.3538 0.9439 0.7201 0.5840
nES-FEM 0.5015 0.2494 0.1537 0.1039 0.0744

The error of energy norm of the nES-FEM is the smallest among the three models.
When the finest mesh (h = 0.1969 m) is used, the error of the nES-FEM is
about 1/4 of nCS-FEM and 1/3 of nNS-FEM. In terms of convergence rate,
the superconvergence is again observed for the nES-FEM with a rate of 1.98
that is almost the optimal rate of 2.0 for the equilibrium model, and twice
of the theoretical value of 1.0 for linear displacement models based on weak
formulations.

Figure 7.29 shows the displacement norm against Poisson’s ratio changing
from 0.4 to 0.4999999. The results show that the smoothing-domain-based
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FIGURE 7.27 Error in displacement norm of nES-FEM-T3 using n-sided polygonal elements
in comparison with other methods for the infinite plate with a hole subjected to unidirectional
tension using the same meshes.
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Edge-Based Smoothed FEM 275

TABLE 7.6

Error in Energy Norm (×10−3) in Solutions Obtained Using Different
Methods for the Infinite Plate with a Hole Using the Same Polygonal Meshes

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

h (m) 0.5468 0.3786 0.2895 0.2343 0.1969
nCS-FEM 5.0119 3.4427 2.5880 2.0613 1.7091
nNS-FEM 4.5090 2.9545 2.1723 1.7047 1.3964
nES-FEM 3.2525 1.6328 0.9604 0.6242 0.4368

selective nES/NS-FEM and ES-/NS-FEM-T3 models detailed in Section 7.5 can
overcome the volumetric locking for nearly incompressible materials. Although
the nNS-FEM and NS-FEM-T3 models are also immune from the volumetric
locking, the smoothing-domain-based selective nES/NS-FEM and ES-/NS-FEM-
T3 models give much better results than those of nNS-FEM and NS-FEM-T3,
owing to the contribution from the edge-based smoothing in the nES-FEM and
ES-FEM-T3 formulations.

Compared to the results given in Figure 6.18, it is observed that the ES-FEM
model locks at the Poisson’s ratio of 0.49, while the FEM model locks at a

–0.3

nCS-FEM (r = 1.06)
nNS-FEM (r = 1.15)
nES-FEM (r = 1.98)

–0.4
log10 h
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FIGURE 7.28 Error in energy norm of nES-FEM-T3 using n-sided polygonal elements in
comparison with other methods for the infinite plate with a hole subjected to unidirectional
tension using the same meshes.
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FIGURE 7.29 Displacement norm with different Poisson’s ratios. (a) n-sided polygonal
elements (579 nodes); (b) triangular elements (289 nodes).
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Edge-Based Smoothed FEM 277

Poisson’s ratio of 0.4. This shows that the smoothing operation used in the ES-
FEM helps to reduce quite significantly the degree of volumetric locking. To
avoid the volumetric locking entirely, the selective ES/NS-FEM models should
be used.

Example 7.7.3: Free Vibration Analysis of a Rectangular
Cantilever Beam

In this example, a rectangular cantilever beam is studied. The parameters used
are length L = 100 mm, height H = 10 mm, thickness t = 1.0 mm, Young’s
modulus = E = 2.1 × 104 kgf/mm2, Poisson’s ratio ν = 0.3, and mass density
ρ = 8.0 × 10−10 kgf s2/mm4. A plane stress problem is considered. This prob-
lem has also been investigated in Ref. [15]. Using the Euler–Bernoulli beam
theory we obtain the fundamental frequency f1 = 0.08276 × 104 Hz that can
serve as a reference. Three kinds of regular meshes are used in the analysis
using the FEM-T3, NS-FEM-T3, FEM-Q4, and ES-FEM-T3 for comparison pur-
pose. Because the exact solution is not available, numerical results using the
FEM-Q4 with a very fine mesh (100 × 10) for the same problem are computed
and used as the reference solutions.

Table 7.7 lists the first 12 natural frequencies of the beam, and the first 12
modes using the NS-FEM-T3 and ES-FEM-T3 are plotted in Figure 7.30. It is
observed that (1) the ES-FEM-T3 does not have any spurious non-zero-energy
and all the modes obtained correspond to physical modes; (2) the NS-FEM-T3
has non-physical spurious non-zero-energy modes due to its being overly soft;
(3) the natural frequencies obtained using the ES-FEM-T3 are much larger than
those of FEM-T3 that is known to be overly stiff; and (4) the ES-FEM-T3 results
are generally the closest to the reference solution, and they converge faster than
even FEM-Q4 with the same sets of nodes. Because the natural frequencies can
be used as a good indicator for assessing the stiffness of a model, the above
findings confirm again that the ES-FEM-T3 model has a very close-to-exact
stiffness.

Example 7.7.4: Free Vibration Analysis of a Shear Wall

In this example, a shear wall with four square openings (see Figure 7.31) is ana-
lyzed, which has been solved using the BEM by Brebbia et al. [16]. The bottom
edge of the wall is fully clamped. The plane stress case is considered with
E = 10, 000, ν = 0.2, t = 1.0, and ρ = 1.0.∗ Two types of meshes of triangular
and quadrilateral elements are used as shown in Figure 7.32. Numerical results
using the FEM-Q8 with 6104 nodes and 1922 elements for the same problem

∗ In this book, we often choose to use nondimensional parameters because the purpose of the
examples is just to examine our numerical results, and no much about physical implications.
Any set of physical units is applicable to our results, as long as these units are consistent
for all the inputs and outputs.
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278 Smoothed Finite Element Methods

TABLE 7.7

First 12 Natural Frequencies (×104 Hz) of a Cantilever Beam

Reference

(FEM-Q4)

Model NS-FEM-T3 ES-FEM-T3 FEM-T3 FEM-Q4 (100 × 10)

Mesh: 10 × 1
Nodes: 22
Elements: 10

quadrilateral
elements or 20
triangles

0.058
0.324
0.744
0.988
1.011a

1.135
1.278a

1.571
2.370
3.269
3.706a

3.864a

0.105
0.602
1.283
1.518
2.636
3.772
3.856
5.035
6.083
6.152
7.052
7.721

0.169
0.916
1.287
2.184
3.594
3.834
5.034
6.242
6.415
7.594
8.479
8.703

0.099
0.579
1.283
1.483
2.618
3.814
3.882
5.192
6.235
6.485
7.704
8.463

0.082
0.494
1.282
1.302
2.366
3.609
3.844
4.967
6.396
6.402
7.885
8.929

Mesh: 20 × 2
Nodes: 63
Elements: 40

quadrilateral
elements or 80
triangles

0.068
0.403
1.052
1.281
1.647a

1.879
2.782a

3.093
3.678
3.809
4.054a

4.161a

0.085
0.508
1.283
1.325
2.378
3.578
3.830
4.853
6.153
6.318
7.442
8.678

0.112
0.654
1.284
1.675
2.955
3.842
4.387
5.884
6.375
7.405
8.821
8.941

0.087
0.520
1.283
1.364
2.469
3.748
3.838
5.132
6.359
6.573
8.034
8.819

0.082
0.494
1.282
1.302
2.366
3.609
3.844
4.967
6.396
6.402
7.885
8.929

Mesh: 40 × 4
Nodes: 205
Elements: 160

quadrilateral
elements or 320
triangles

0.078
0.465
1.220
1.282
1.669a

2.201
3.252a

3.327
3.834
4.525
4.641a

5.328a

0.083
0.495
1.283
1.301
2.355
3.578
3.841
4.903
6.287
6.377
7.699
8.875

0.091
0.541
1.283
1.416
2.557
3.843
3.879
5.309
6.394
6.809
8.347
8.918

0.084
0.500
1.283
1.317
2.393
3.646
3.843
5.015
6.388
6.456
7.940
8.906

0.082
0.494
1.282
1.302
2.366
3.609
3.844
4.967
6.396
6.402
7.885
8.929

a Spurious non-zero-energy modes.
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FIGURE 7.30 First 12 modes of the cantilever beam by (a) NS-FEM-T3 and (b) ES-FEM-T3.
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FIGURE 7.31 A shear wall with four square openings.
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FIGURE 7.32 Domain discretization using triangular and four-node quadrilateral elements
of the shear wall with four openings: (a) triangular mesh; (b) quadrilateral mesh.
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Edge-Based Smoothed FEM 281

are computed and used as reference solutions, in place of the unavailable exact
solutions.

Table 7.8 lists the first 12 natural frequencies, and the first 12 modes using NS-
FEM-T3 and ES-FEM-T3 are plotted in Figures 7.33 and 7.34. It is again observed
that (1) the ES-FEM-T3 does not have any spurious non-zero-energy modes
and all modes are physical; (2) the NS-FEM-T3 produces nonphysical spurious
modes at high energy level; (3) the natural frequencies obtained using the ES-
FEM-T3 is much larger than those of the FEM-T3 that is known to be overly
stiff; and (4) the ES-FEM-T3 results are the closest to the reference solution, and
they converge faster than even FEM-Q4 with the same sets of nodes used. This
example confirms again that the ES-FEM-T3 model possesses a very close-to-
exact stiffness.

Example 7.7.5: Free Vibration Analysis of a Connecting Rod

A free vibration analysis of a connecting rod shown in Figure 7.35 is per-
formed. The plane stress problem is considered with material parameters of
E = 10 × 109 N/m2, ν = 0.3, and ρ = 7.8 × 103 kg/m3. The nodes on the left
inner circumference are fixed in two directions. Two types of meshes of trian-
gular and quadrilateral elements are used, as shown in Figure 7.36. Numerical
results using FEM-Q4 and FEM-Q8 for the same problem are computed and
used as reference solutions for comparison purposes.

The results are listed in Table 7.9. It is observed that the ES-FEM-T3 gives
comparable results as FEM-Q4 using more nodes than ES-FEM-T3. Again,
Figures 7.37 and 7.38 show that the ES-FEM-T3 does not have any spurious
non-zero-energy modes, while the NS-FEM-T3 has. This example reconfirms
the fact that the ES-FEM-T3 model is temporally stable, has a very close-
to-exact stiffness, and is expected to perform well in transient vibration
analysis.

Example 7.7.6: Transient Vibration Analysis of a Cantilever Beam

A benchmark problem of a cantilever beam is investigated using the ES-FEM-T3
model with the Newmark method for time stepping. The beam is subjected to
a tip harmonic loading f (t) = cosωf t in the y -direction. The plane strain prob-
lem is considered with nondimensional parameters as L = 4.0, H = 1.0, t =
1.0, E = 1.0, v = 0.3, ρ = 1.0, α = 0.005, β = 0.272,ωf = 0.05, and θ = 0.5.
The domain of the beam is represented with 10 × 4 elements.Three FEM models
of FEM-T3, FEM-Q4, and FEM-Q8 are also used in the analysis for compari-
son purposes. The time step for time integration is set at Δt = 1.57. From the
dynamic responses shown in Figure 7.39, it is seen that the amplitude of ES-
FEM-T3 is closer to that of FEM-Q8 as compared to FEM-Q4. This shows that
ES-FEM-T3 using triangular elements can be applied to transient vibration anal-
ysis to deliver results of excellent accuracy. This is partially due to the fact that
the ES-FEM-T3 model has very close-to-exact stiffness, which we have observed
in all these free vibration examples.
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TABLE 7.8

First 12 Natural Frequencies ω (rad/s) of a Shear Wall

Reference (FEM-Q8)
(6104 Nodes, 1922 Reference

Model NS-FEM-T3 ES-FEM-T3 FEM-T3 FEM-Q4 Elements) (Brebbia et al. [16])

Nodes: 559
Elements: 476

quadrilateral
elements or 952
triangles

1.827
6.511
7.515

10.183
13.733
14.709a

17.032
17.104a

18.360
18.890a

19.450a

19.538a

2.050
7.038
7.620

11.743
15.143
18.214
19.714
21.994
22.778
23.349
25.052
25.837

2.144
7.319
7.651

12.554
15.943
18.763
20.382
22.676
23.640
24.126
25.534
26.845

2.073
7.096
7.625

11.938
15.341
18.345
19.876
22.210
23.001
23.552
25.175
26.071

2.011
6.952
7.600

11.471
14.972
18.066
19.581
21.872
22.636
23.293
25.018
25.877

2.079
7.181
7.644

11.833
15.947
18.644
20.268
22.765

Nodes: 2072
Elements: 1904

quadrilateral
elements or 3808
triangles

1.935
6.776
7.566

10.895
14.468
15.324a

17.553
17.834a

19.152
20.511a

21.027a

21.303a

2.022
6.976
7.606

11.551
15.019
18.108
19.619
21.908
22.681
23.308
25.030
25.875

2.063
7.087
7.620

11.880
15.322
18.317
19.862
22.197
23.000
23.569
25.206
26.216

2.032
6.999
7.609

11.625
15.092
18.158
19.677
21.987
22.759
23.380
25.073
25.956

2.011
6.952
7.600

11.471
14.972
18.066
19.581
21.872
22.636
23.293
25.018
25.877

2.079
7.181
7.644

11.833
15.947
18.644
20.268
22.765

a Spurious non-zero-energy modes.
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FIGURE 7.33 First to sixth modes of the shear wall by (a) NS-FEM-T3 and (b) ES-FEM-T3.
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FIGURE 7.34 Seventh to 12th modes of the shear wall by (a) NS-FEM-T3 and (b) ES-FEM-T3.
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FIGURE 7.35 Geometric model, loading, and boundary conditions of an automobile
connecting bar.

Example 7.7.7: Transient Vibration Analysis of a Spherical Shell

As shown in Figure 7.40, a spherical shell is studied that is subjected to a
concentrated time-dependent loading at its apex. Due to the symmetry, only
half of the spherical shell is modeled, as shown in Figure 7.41. Two types
of meshes of triangular and quadrilateral elements are created for the half
model. For the model of triangular elements, we deliberately made it asym-
metric. Nondimensional numerical parameters are used: R = 12, t = 0.1,φ =
10.9◦, θ = 0.5, E = 1.0, v = 0.3, and ρ = 1.0.

The time-dependence of the loading is first specified in the harmonic form of
f (t) = cosωf t and its dynamic responses are plotted in Figure 7.42 for the case
of ωf = 0.05 and time stepΔt = 5. No damping effect is included in this case.
Again, it is seen that the amplitude of the ES-FEM-T3 is much more accurate
than that of the FEM-T3 model and is comparable to that of the FEM-Q4 model
with the same set of nodes.

Next, a Heaviside step load f (t) = 1 is added at the apex since t = 0. Without
damping, it is seen from Figure 7.43 that the deflection at the apex approaches,
in an oscillatory fashion, a constant value with increase in time. With the inclu-
sion of damping (α = 0.005, β = 0.272), the response is damped out with time
as expected.
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FIGURE 7.36 Domain discretization using triangular and four-node quadrilateral elements
of the automobile connecting bar.

Example 7.7.8: Cantilever Beam Undergoing a Large Deformation

The use of ES-FEM-T3 for large deformation analysis of a cantilever beam sub-
jected to a concentrated tip load is now examined in this example. The size of
the beam is (10 cm × 2 cm) and the beam is initially discretized using a mesh of
20 × 4. The related parameters are taken as E = 3.0 × 107 N/cm2 and ν = 0.3.
The analysis based on the total Lagrange formulation under the plane strain
condition is carried out using 20 increment steps (n = 20) with ΔF = 10 KN
applied at each step.

Figure 7.44 plots the initial and final configurations after 20 steps of incre-
ment of the deformation using the ES-FEM-T3. Table 7.10 and Figure 7.45 show
the relation between the tip deflection versus the load step.The simulation con-
verges in a very rapid pace and in each load increment the iteration is performed
less than five times. It can be seen that (1) with the same set of nodes, the FEM-
T3 behaves much stiffer than the FEM-Q4; (2) the nonlinear effect makes the
cantilever beam behave much stiffer compared to the linear solution; and (3)
the results of the ES-FEM-T3 are quite close to that of the FEM-Q4. This shows
that the ES-FEM-T3 works well for nonlinear analysis even compared to the
FEM-Q4.
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TABLE 7.9

First 12 Natural Frequencies (Hz) of a Connecting Bar

Reference (FEM-Q4) Reference (FEM-Q4) Reference (FEM-Q8)
(537 Nodes, 429 (1455 Nodes, 1256 (10,002 Nodes, 3125

Model NS-FEM-T3 ES-FEM-T3 FEM-T3 Elements) Elements) Elements)

Nodes: 373
Elements: 574

triangles

4.94
20.81
48.39
48.49
84.93
97.68

114.03
123.32a

143.64a

144.66a

151.43
161.95a

5.14
22.06
49.38
52.04
92.72

109.59
132.68
158.24
158.95
201.38
204.84
209.28

5.32
22.94
49.70
54.06
96.86

114.31
142.45
163.97
169.28
204.58
210.12
210.74

5.14
22.05
49.30
52.23
93.61

108.59
134.64
159.45
160.59
203.52
208.68
209.02

5.12
21.84
49.12
51.40
91.79

106.15
130.14
156.14
157.70
200.06
204.41
204.99

Nodes: 1321
Elements: 2296

triangles

5.05
21.49
48.88
50.40
89.61
92.65a

103.44
125.65
151.62a

152.01a

155.54
188.59a

5.12
21.88
49.17
51.52
91.93

106.85
130.55
156.35
157.85
200.90
204.26
206.53

5.21
22.27
49.35
52.49
93.84

109.28
134.58
159.74
159.97
203.35
207.50
209.18

5.12
21.91
49.21
51.66
92.39

107.51
131.48
157.51
158.69
201.69
206.04
209.92

5.12
21.84
49.12
51.40
91.79

106.15
130.14
156.14
157.70
200.06
204.41
204.99

a Spurious non-zero-energy modes.

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
07

 1
0 

M
ay

 2
01

6 



288 Smoothed Finite Element Methods

(1)
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(6)

Spurious non-zero-energy eigenmode

Spurious non-zero-energy eigenmode

FIGURE 7.37 First to sixth modes of the connecting bar by (a) NS-FEM-T3 and
(b) ES-FEM-T3.
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(7)
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Spurious non-zero-energy eigenmode

Spurious non-zero-energy eigenmode

FIGURE 7.38 Seventh to 12th modes of the connecting bar by (a) NS-FEM-T3 and
(b) ES-FEM-T3.
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FIGURE 7.39 Transient responses for the cantilever beam subjected to a harmonic loading.

7.8 Remarks

In this chapter, an ES-FEM is presented for stable and accurate solutions
to static, dynamic, linear, and nonlinear problems of 2D solids. Through
the theoretical analyses, formulation, and numerical examples, we finally
mention the following remarks:

Remark 7.2 ES-FEM: Works Well with General Polygonal Elements

The ES-FEM can use general n-sided polygonal elements including trian-
gular elements, and is spatially stable. The extension of the method for 3D
problems using tetrahedral elements is also straightforward, and will be
done in the next chapter.

t

R

θ

P

O

FIGURE 7.40 A spherical shell subjected to a concentrated loading at its apex.
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FIGURE 7.41 Domain discretization of half of the spherical shell using triangular and four-
node quadrilateral elements.

Remark 7.3 ES-FEM: Linear PIM for Shape Function Evaluation

In the ES-FEM using n-sided polygonal elements, field gradients are com-
puted directly using only shape functions themselves at some particular
points along segments of the boundary of the smoothing domains. The

0 100 200 300 400 500 600 700 800 900 1000
–6000
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–2000

0

2000

4000

6000

8000

Time

A
pe

x 
de

fle
ct

io
n

ES-FEM-T3

FEM-Q4
FEM-T3

FIGURE 7.42 Transient responses for the spherical shell subjected to a harmonic loading.
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FIGURE 7.43 Transient responses obtained using the ES-FEM-T3 for the spherical shell
subjected to a Heaviside step loading.

values of shape functions for the discrete points of an n-sided polygonal
element are determined using a simple linear PIM.

Remark 7.4 ES-FEM: Easy to Implement and no Increase of DOFs

The ES-FEM formulation is straightforward and the implementation is
almost as easy as the FEM, without the increase of DOFs.

2

1

0

–1

A
xi

s y

–2

–3

–4

–5
0 2 4 6

Axis x

Final configuration

Initial configuration

8 10

FIGURE 7.44 Initial and final deformed configurations for the 2D cantilever beam subjected
to a concentrated tip load.
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TABLE 7.10

Tip Deflection (cm) versus the Load Step of the Cantilever Beam Subjected to a Concentrated Tip Load

Load Step FEM-T3 (Linear) FEM-T3 (Nonlinear) FEM-Q4 (Linear) FEM-Q4 (Nonlinear) ES-FEM-T3 (Linear) ES-FEM-T3 (Nonlinear)

n = 2 0.25 0.24 (3)a 0.30 0.28 (3) 0.31 0.29 (3)
n = 4 0.50 0.46 (3) 0.60 0.52 (3) 0.61 0.53 (3)
n = 6 0.76 0.65 (3) 0.90 0.74 (3) 0.92 0.75 (3)
n = 8 1.01 0.83 (3) 1.20 0.95 (4) 1.22 0.97 (4)
n = 10 1.26 1.01 (4) 1.49 1.16 (4) 1.53 1.18 (4)
n = 12 1.51 1.18 (4) 1.79 1.37 (4) 1.83 1.39 (4)
n = 14 1.76 1.36 (4) 2.09 1.58 (4) 2.14 1.60 (4)
n = 16 2.01 1.53 (4) 2.39 1.78 (4) 2.44 1.81 (5)
n = 18 2.27 1.71 (4) 2.69 1.98 (5) 2.75 2.02 (5)
n = 20 2.52 1.88 (5) 2.99 2.19 (5) 3.05 2.23 (5)

a The number in brackets shows the number of iterations.
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FIGURE 7.45 Tip deflection (cm) versus the load step for the cantilever beam subjected to a
concentrated tip load.

Remark 7.5 ES-FEM: Spatially and Temporally Stable

The ES-FEM is both spatially and temporally stable, and hence works well
for static, dynamic, linear, and nonlinear problems.

Remark 7.6 ES-FEM: Superconvergence and Ultra-Accuracy

The ES-FEM often shows superconvergence in both displacement norm
and energy norm. The ES-FEM-T3 solution is found to be “ultra-accurate”:
the numerical results of the ES-FEM-T3 using triangular elements are found
to be much more accurate than FEM-T3 and FEM-T3-Re in both displace-
ment and energy norms, often even more accurate in both displacement
and energy norms than the FEM using quadrilateral elements with the
same sets of nodes.

Remark 7.7 ES-FEM-T3: Very Close-to-Exact Stiffness

The ES-FEM-T3 often produces models with stiffness very close-to-exact
stiffness. This can be observed from the accuracy of the eigenvalues (natural
frequencies) produced by the ES-FEM-T3 model. We have not yet found
any linear model that produces better results in terms of “stiffness” than
the ES-FEM-T3 (except the αFEM with a tunable parameter). This unique
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property of ES-FEM-T3 is very important for dynamic problems including
vibration and wave propagation (see Chapter 15).

Remark 7.8 ES-FEM-T3: Efficient

With the same sets of nodes and the same direct solver, the computation
time of the ES-FEM-T3 is longer than that of the FEM-T3. However, when
the computational efficiency (computation time for the same accuracy) and
convergence rates in both displacement and energy norms are considered,
the ES-FEM-T3 is the most superior. Because the rates of convergence of the
solution of the ES-FEM models are higher than the FEM counterparts, the
computational efficiency of the ES-FEM becomes more significant when
the mesh is refined.

Remark 7.9 ES/NS-FEM-T3: Volumetric Locking Free

A smoothing-domain-based selective ES/NS-FEM-T3 is effective in over-
coming the volumetric locking for problems of nearly incompressible
materials.

Remark 7.10 ES-FEM-T3: Excellent in Vibration Analysis

For the free vibration analysis, the ES-FEM-T3 using triangular elements
gives more accurate results and higher convergence rate than the FEM-Q4.
No spurious non-zero-energy modes were found in vibration analysis and
hence the ES-FEM-T3 is found to be stable temporally for all the examples
studied. For the forced vibration analysis, the vibration period obtained
using the ES-FEM-T3 is more accurate compared to the FEM-Q4, and the
vibration amplitude is closer to that of the higher-order FEM-Q8.

Remark 7.11 ES-FEM-T3: Excellent in Nonlinear Analysis

For nonlinear problems of large deformation, the numerical results of the
ES-FEM-T3 using triangular elements are even more accurate than FEM
using quadrilateral elements with the same sets of nodes.

Remark 7.12 ES-FEM: Other Applications

The ES-FEM has been developed for 2D piezoelectric [17], 2D viscoelasto-
plastic [18], plate [19], and primal-dual shakedown analyses [20]. Clearly,
the ES-FEM is applicable to many other types of problems in different areas.
More general models based on mesh-free settings, such as the ES-PIM, can
be found in Ref. [21].

Due to the excellent performance of the ES-FEM-T3, it is regarded as a
“star” performer for 2D problems, and will be used for various types of
problems in this book in later chapters. It would be quite a challenge to
find a better linear model than the ES-FEM-T3 in terms of (1) adaptation
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296 Smoothed Finite Element Methods

to complicated geometry; (2) suitability for automatically meshing [22];
(3) stability; (4) solution accuracy; and (5) computational efficiency. The
authors’ group has tried and is still trying quite hard on this during the
past few years but without much progress.

References

1. Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, and Lam KY. 2009. A node-based
smoothed finite element method (NS-FEM) for upper bound solution to solid
mechanics problems. Computers and Structures; 87: 14–26.

2. Nagashima T. 1999. Node-by-node meshless approach and its applications to
structural analyses. International Journal for Numerical Methods in Engineering;
46: 341–385.

3. Puso MA, Chen JS, Zywicz E, and Elmer W. 2008. Meshfree and finite ele-
ment nodal integration methods. International Journal for Numerical Methods in
Engineering; 74: 416–446.

4. Puso MA and Solberg J. 2006. A stabilized nodally integrated tetrahedral.
International Journal for Numerical Methods in Engineering; 67: 841–867.

5. Liu GR, Nguyen-Thoi T, and Lam KY. 2009. An edge-based smoothed finite ele-
ment method (ES-FEM) for static, free and forced vibration analyses in solids.
Journal of Sound and Vibration; 320: 1100–1130.

6. Nguyen-Thoi T, Liu GR, and Nguyen-Xuan H. 2009. An n-sided polygonal
edge-based smoothed finite element method (nES-FEM) for solid mechanics.
Communications in Numerical Methods in Engineering; doi:10.1002/cnm.1375.

7. Nguyen-Thoi T, Liu GR, Lam KY, and Zhang GY. 2009. A face-based smoothed
finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics
problems using 4-node tetrahedral elements. International Journal for Numerical
Methods in Engineering; 78: 324–353.

8. Chen JS, Wu CT, Yoon S, and You Y. 2001.Astabilized conforming nodal integra-
tion for Galerkin meshfree method. International Journal for Numerical Methods
in Engineering; 50: 435–466.

9. Smith IM and Griffiths DV. 1998. Programming the Finite Element Method, 3rd
edition. Wiley, New York.

10. Zhang ZQ and Liu GR. 2009. Temporal stabilization of the node-based
smoothed finite element method (NS-FEM) and solution bound of linear elasto-
statics and vibration problems. Computational Mechanics; doi: 10.1007/s00466-
009-0420-5.

11. Zhang ZQ and Liu GR. 2009. Upper and lower bounds for natural frequencies:
A property of the smoothed finite element methods. International Journal for
Numerical Methods in Engineering; (submitted).

12. Bathe KJ. 1996. Finite Element Procedures. Prentice-Hall, Massachusetts (MIT),
NJ.

13. Reddy JN. 2004. An Introduction to Nonlinear Finite Element Analysis. Oxford
University Press, Oxford.

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
07

 1
0 

M
ay

 2
01

6 



Edge-Based Smoothed FEM 297

14. Liu GR. 2009. A G space theory and weakened weak (W2) form for a unified
formulation of compatible and incompatible methods: Part I: Theory, Part II:
Application to solid mechanics problems. International Journal for Numerical
Methods in Engineering; 81: 1093–1156.

15. Dai KY and Liu GR. 2007. Free and forced analysis using the smoothed finite
element method (SFEM). Journal of Sound and Vibration; 301: 803–820.

16. Brebbia CA, Telles JC, and Wrobel LC. 1984. Boundary Element Techniques.
Springer, Berlin.

17. Nguyen-Xuan H, Liu GR, Nguyen-Thoi T, and Nguyen-Tran C. 2009. An
edge-based smoothed finite element method (ES-FEM) for analysis of two-
dimensional piezoelectric structures. Smart Materials and Structures; 18: 065015
(12pp.).

18. Nguyen-Thoi T, Liu GR, Vu-Do HC, and Nguyen-Xuan H. 2009. An edge-based
smoothed finite element method (ES-FEM) for visco-elastoplastic analyses of
2D solids using triangular mesh. Computational Mechanics; 45: 23–44.

19. Nguyen-Xuan H, Liu GR, Thai-Hoang C, and Nguyen-Thoi T. 2009. An edge-
based smoothed finite element method with stabilized discrete shear gap
technique for analysis of Reissner–Mindlin plates. Computer Methods in Applied
Mechanics and Engineering; 199: 471–489.

20. Tran Thanh Ngoc, Liu GR, Nguyen-Xuan H, and Nguyen-Thoi T. 2009. An
edge-based smoothed finite element method for primal-dual shakedown anal-
ysis of structures. International Journal for Numerical Methods in Engineering; doi:
10.1002/nme.2804.

21. Liu GR and Zhang GR. 2008. Edge-based smoothed point interpolation
methods. International Journal of Computational Methods; 5(4): 621–646.

22. Cheng L and Liu GR. 2008. Adaptive analysis using the edge-based smoothed
finite element method; (submitted).

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
07

 1
0 

M
ay

 2
01

6 



8
Face-Based Smoothed FEM

8.1 Introduction

Solving 3D problems is usually much more difficult due mainly to the
complexity of the geometry. When the FEM is used, meshing a compli-
cated 3D domain with quality elements can be quite a daunting task to
any analyst. The four-node tetrahedral element (T4) is often used for 3D
problems, because of its simplicity in formulation and implementation:
piecewise linear approximation of displacement field and constant strain
field. Most commercially available FEM codes use tetrahedral elements for
adaptive analyses of 3D problems, due to the simple fact that tetrahedral
meshes can be most automatically generated and refined for complicated
geometrical domains. The FEM-T4 is thus clearly superior at least for two
counts: simplicity and adaptation.

However, the FEM-T4 also possesses some crucial shortcomings for
problems of solid mechanics. Three such shortcomings are the well-known
overly stiff behavior, poor stress solution, and volumetric locking in the
nearly incompressible cases. In order to overcome these disadvantages,
some new finite elements were proposed. Dohrmann et al. [1] presented
a weighted least-squares approach in which a linear displacement field is
fitted to an element’s nodal displacements. The method is claimed to be
computationally efficient and free from the volumetric locking. However,
more nodes are required on the element boundary to obtain a least-square-
fitted linear displacement field. Dohrmann et al. [2] also proposed a nodal
integration FEM in which each element is associated with a single node
and the linear interpolation functions of the original mesh are used. The
method can avoid the volumetric locking and performs better than the
FEM-T4 in terms of stress solution for static problems. The nodal integra-
tion FEM can be viewed as a special linear case of the NS-FEM presented in
Chapter 6, and the linear case of NS-PIM [3,4] formulated using the gener-
alized gradient smoothing technique [5] and the point interpolation shape
functions [6]. However, for dynamic problems, these types of node-based
smoothed methods are known to be “overly soft” and temporally unstable
due to the presence of spurious modes at higher energy levels, as we have
seen in Chapter 7. Therefore, stabilization schemes [7–9] are required for
dynamic problems.

299
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300 Smoothed Finite Element Methods

In this chapter, in order to overcome the above-mentioned disadvantages
of the FEM-T4 and the NS-FEM-T4 presented in Chapter 6, we extend the
idea of ES-FEM-T3 for 3D problems, and both linear and geometrically non-
linear problems are considered. Instead of using the edge-based smoothing
domains in 2D problems, we will now use the face-based smoothing
domains for smoothed strain field construction. It is therefore termed as
FS-FEM using T4 elements. In FS-FEM-T4, the system stiffness matrix is
computed using smoothed strains, and hence the FS-FEM-T4 model is
found softer than that of FEM-T4 using the same mesh. Some numeri-
cal results will be presented to demonstrate the efficiency and properties
of FS-FEM-T4 for both linear and geometrically nonlinear 3D problems. It
will be shown that the implementation of FS-FEM-T4 is straightforward
and no additional DOFs are used, and the results are much better than
those of FEM-T4, without much increase in computational efforts. It will
be both spatially and temporally stable.

In addition, a smoothing-domain-based selective FS/NS-FEM-T4 model
is also formulated using combined face-based and node-based smoothing
operations. The selective FS/NS-FEM-T4 is found to be “immune” from
volumetric locking and works well naturally for 3D problems of nearly
incompressible materials, due to the volumetric locking-free property
inherited from the NS-FEM.

8.2 Face-Based Smoothing Domain Creation

In FS-FEM-T4, the 3D problem domain is meshed into tetrahedral elements
in the same way as in the standard FEM-T4. Since we only use T4 elements,
the mesh generation can be done with ease for complicated geometries.
The existing preprocessors for the FEM code or the standard Delaunay
triangulation algorithms can be used.

Consider now a 3D domain Ω discretized with Ne tetrahedral elements
and Nn nodes, such that Ω =∑Ne

i=1Ω
e
i and Ωe

i ∩Ωe
j �= Ø, i �= j. The T4 ele-

ment mesh shall have a total of Nf faces. On top of the element mesh we
now further create a set of 3D smoothing domains based on the Nf faces of

the element mesh, such that Ω =∑Nf

k=1Ω
s
k and Ωs

i ∩Ωs
j �= Ø, i �= j. In this

case, the number of smoothing domains is the same as the number of faces
in the mesh: Ns = Nf , which satisfies the requirement of minimum number
of smoothing domains given in Table 4.2. This implies that the FS-FEM-T4
should be at least spatially stable (see Theorem 4.1). The smoothing domain
Ωs

k associated with the face k is created by simply connecting three nodes of
the face to the centers of the adjacent elements as shown in Figure 8.1. The
procedure is simple, and can always be performed for a given T4 element
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: Central point of elements (H, I): Field node

Interface k
(triangle BCD)

Smoothed domain Ω s
k

of two combined tetrahedrons
associated with interface k

(BCDIH)

Element 1
(tetrahedron ABCD) Element 2

(tetrahedron BCDE)

A

B

C

D

E
H I

FIGURE 8.1 Two adjacent tetrahedral elements and the smoothing domain Ωs
k (shaded

domain) formed based on their interface k in FS-FEM-T4.

mesh without any technical difficulty. Strain smoothing operations [10]
are then performed over these smoothing domains for creating a piece-
wise constant strain field, which is then used to establish the discretized
linear algebraic system of equations.

8.3 Formulation of FS-FEM-T4

8.3.1 Static Analysis

Consider the solid mechanics problems defined in Chapter 2. Using the
general formulation of S-FEM presented in Chapter 4, a linear system of
equations of FS-FEM-T4 for the static analysis has the form of

K
FS-FEM

d = f̃, (8.1)

where K
FS-FEM

is the smoothed stiffness matrix whose entries are given by

K
FS-FEM
IJ =

∫

Ω

B
T
I cBJ dΩ =

Nf∑
k=1

∫

Ωs
k

B
T
I cBJ dΩ =

Nf∑
k=1

B
T
I cBJVs

k , (8.2)
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302 Smoothed Finite Element Methods

where Vs
k is the volume of the face-based smoothing domain Ωs

k and is
computed by a local summation of

Vs
k =

∫

Ωs
k

dΩ = 1
4

ne
k∑

j=1

Ve
j , (8.3)

where ne
k is the number of elements attached to the face k (ne

k = 1 for the
boundary faces and ne

k = 2 for inner faces) and Ve
j is the volume of the jth

element attached to the face k. Due to the use of tetrahedral elements with
the linear shape functions, the entries of matrix B̃j are constants over each
element, and hence the smoothed strain–displacement matrix BI on the
domain Ωs

k is computed numerically simply by an local assembly process
similarly as in the FEM:

BI = 1
Vs

k

ne
k∑

j=1

1
4

Ve
j B̃j, (8.4)

where B̃j is the strain–displacement matrix of the jth element attached to
the face k and computed similarly to that in Section 6.3.3.

From Equation 8.4, it is clear that the entries of matrix BI are constants
over each smoothing domain. With this formulation, only the volume and
the usual compatible strain–displacement matrices B̃j of the FEM-T4 ele-
ment are needed to compute the system stiffness matrix for FS-FEM-T4.
The alteration to the standard FEM code is therefore very little.

The above formulation is simple, but works only for T4 elements that
use linear interpolation. In theory, FS-FEM works also for other types of
elements, as long as a continuous displacement field on the smoothing
domain surface can be created. For these general FS-FEM models, the
smoothed strain–displacement matrix BI has to be computed using the
original Equation 4.30.

8.3.2 Nonlinear Analysis of Large Deformation

The extension of our FS-FEM-T4 to geometrically nonlinear problems of
large deformation is straightforward, and a similar procedure to that used
in the standard FEM can be adopted with minor changes. For isotropic lin-
ear elastic solids, the values of strain gradient matrices and stresses at the
face-based smoothing domains become the volume-weighted average val-
ues of those of the adjacent elements attached to the face. The formulation
of FS-FEM-T4 for geometrically nonlinear problems of large deformation
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Face-Based Smoothed FEM 303

based on the total Lagrange formulation [11,12] and the discrete system of
equations can be expressed as follows:

(
K

FS-FEM
L + K

FS-FEM
NL

)
d = f̃ − f1, (8.5)

where the stiffness matrix for the linearized portion can be written as

K
FS-FEM
L =

Nf∑
k=1

B
T
L cBLVs

k , (8.6)

in which matrix BL is for the face-based smoothing domains, and is
computed using

BL = 1
Vs

k

ne
k∑

j=1

1
4

Ve
j B̃e

L,j. (8.7)

In the foregoing equation, matrix B̃e
L for an element is given by

B̃e
L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

F11N1,1 F21N1,1 F31N1,1

F12N1,2 F22N1,2 F32N1,2

F13N1,3 F23N1,3 F33N1,3

F11N1,2 + F12N1,1 F21N1,2 + F22N1,1 F31N1,2 + F32N1,1

F12N1,3 + F13N1,2 F22N1,3 + F23N1,2 F32N1,3 + F33N1,2

F11N1,3 + F13N1,1 F21N1,3 + F23N1,1 F31N1,3 + F33N1,1

F11N2,1 · · · F31N4,1

F12N2,2 · · · F32N4,2

F13N2,3 · · · F33N4,3

F11N2,2 + F12N2,1 · · · F31N4,2 + F32N4,1

F12N2,3 + F13N2,2 · · · F32N4,3 + F33N4,2

F11N2,3 + F13N2,1 · · · F31N4,3 + F33N4,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.8)

in which NI,j = ∂NI/∂Xj and FIJ are the entries of the deformation gradient
tensor for the element F̃e that is computed by

F̃e =
⎡
⎣ F11 F12 F13

F21 F22 F23
F31 F32 F33

⎤
⎦ =

(
∂x
∂X

)T

=
(

Ldd + I
)T

. (8.9)
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304 Smoothed Finite Element Methods

The stiffness matrix for the nonlinear portion in Equation 8.5 can be
written as

K
FS-FEM
NL =

Nf∑
k=1

B
T
NLSBNLVs

k , (8.10)

where matrix BNL is for the face-based smoothing domains, and is
computed using

BNL = 1
Vs

k

ne
k∑

j=1

1
4

Ve
j B̃e

NL,j. (8.11)

In the foregoing equation, matrix B̃e
NL is for the elements, and is given by

B̃e
NL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1,1 0 0 N2,1 · · · 0
N1,2 0 0 N2,2 · · · 0
N1,3 0 0 N2,3 · · · 0

0 N1,1 0 0 · · · 0
0 N1,2 0 0 · · · 0
0 N1,3 0 0 · · · 0
0 0 N1,1 0 · · · N4,1
0 0 N1,2 0 · · · N4,2
0 0 N1,3 0 · · · N4,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.12)

and matrix S is for the face-based smoothing domains, and is computed
using

S = 1
Vs

k

ne
k∑

j=1

1
4

Ve
j S̃e

j with

S̃e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 0 0 0 0 0 0
S12 S22 S23 0 0 0 0 0 0
S13 S23 S33 0 0 0 0 0 0
0 0 0 S11 S12 S13 0 0 0
0 0 0 S12 S22 S23 0 0 0
0 0 0 S13 S23 S33 0 0 0
0 0 0 0 0 0 S11 S12 S13
0 0 0 0 0 0 S12 S22 S23
0 0 0 0 0 0 S13 S23 S33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.13)
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Face-Based Smoothed FEM 305

in which the entries SIJ of matrix S̃e are derived from the second Piola–
Kirchhoff stress tensor Ψ̃

e
for the element by

Ψ̃
e =

⎡
⎢⎢⎢⎢⎢⎢⎣

S11
S22
S33
S12
S23
S31

⎤
⎥⎥⎥⎥⎥⎥⎦

= c

⎡
⎢⎢⎢⎢⎢⎢⎣

E11
E22
E33

2E12
2E23
2E31

⎤
⎥⎥⎥⎥⎥⎥⎦

. (8.14)

The entries EIJ in Equation 8.14 are derived from the entries of the Green–
Lagrange strain tensor Ẽe for the elements as

Ẽe =
⎡
⎣E11 E12 E13

E21 E22 E23
E31 E32 E33

⎤
⎦ = 1

2

((
F̃e
)T

F̃e − I
)

, (8.15)

where I is the 3 × 3 unity matrix.
The “additional” force term caused by the nonlinearity in Equation 8.5

becomes

f1 =
Nf∑

k=1

B
T
L ΨVs

k , (8.16)

where

Ψ = 1
Vs

k

ne
k∑

j=1

1
4

Ve
j Ψ̃

e
1,j. (8.17)

8.4 A Smoothing-Domain-Based Selective
FS/NS-FEM-T4 Model

Similar to the ES/NS-FEM-T3 given in Section 7.5, this section presents a
smoothing-domain-based selective FS/NS-FEM-T4 for 3D solids of incom-
pressible materials. We use two different types of smoothing domains
selectively for two different material “parts” (μ part and λ part). This
scheme comes from the realization of two facts: (1) the node-based smoot-
hing domains used in NS-FEM-T4 were found effective in overcoming the
volumetric locking [13], and (2) the λ part is known as the “culprit” of the
volumetric locking. We therefore use the node-based smoothing domains
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306 Smoothed Finite Element Methods

for the λ part and face-based smoothing domains for the μ part. The
stiffness matrix of the smoothing-domain-based selective FS/NS-FEM-T4
model becomes

K =
Nf∑
i=1

(
B1,i
)T

c1B1,iV1,i

︸ ︷︷ ︸
K

FS-FEM
1

+
Nn∑
j=1

(
B2,j
)T

c2B2,jV2,j

︸ ︷︷ ︸
K

NS-FEM
2

, (8.18)

where B1,i and V1,i are the smoothed strain–displacement matrix and the
volume of the smoothing domain associated with face i; B2,j and V2,j are
the smoothed strain–displacement matrix and the volume of the smoothing
domain associated with node j; Nn is the total number of nodes in the entire
problem domain; and matrices c1 and c2 are derived from the material
constant matrix c for the 3D cases as follows:

c = μ

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
c1

+λ

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
c2

= c1 + c2.

(8.19)

8.5 Stability, Accuracy, and Mesh Sensitivity

8.5.1 Stability of FS-FEM-T4

Property 8.1 FS-FEM: Both Spatially and Temporally Stable

FS-FEM-T4 possesses only “legal” zero-energy modes that represent the
rigid motions and hence FS-FEM-T4 is spatially stable. There exist no spuri-
ous non-zero-energy modes and thus FS-FEM-T4 is also temporally stable.

To examine (intuitively) this property, we first note that both the FEM-
T4 and ES-FEM-T4 models are variationally consistent (see Theorem 4.1).
Therefore, the stability of the model will be of concern only to the numer-
ical integration in the weak forms. In the standard FEM-T4 using linear
shape functions, the integration of the weak form is based on elements.
For each element, only one Gauss point is needed for the exact evaluation
of the integrals. This implies that the number of Gauss points used in the
integration of the weak form equals the number of elements used in the
problem domain. Such an FEM-T4 model is well known to be stable both
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Face-Based Smoothed FEM 307

spatially and temporally and hence is widely used for dynamics analysis
and has no spurious non-zero-energy modes. In fact, it is known to be
too stiff.

In FS-FEM-T4, the smoothing domains used are associated with the faces,
and the strain (or stress) on each smoothing domain is constant. Therefore,
each smoothing domain can be considered equivalent to one Gauss sam-
pling point in evaluating the integration of the weak form [5]. Because the
number of faces is always larger than the number of elements in any T4 ele-
ment mesh, the number of sampling points for the evaluation of the weak
form in the FS-FEM-T4 is always larger than that in the FEM-T4. There-
fore, the FS-FEM-T4 should be more stable than the FEM-T4 model, has
no spurious non-zero-energy modes, and is well suited for the dynamic
analysis. This property of FS-FEM-T4 is quite similar to that of ES-FEM-T3
for dynamics analyses of 2D solid mechanics problems [14].

Note that in NS-FEM [13] the smoothing domains used are associated
with the nodes. NS-FEM has been proven to be spatially stable, works
well for static problems, and can produce upper bound solutions. How-
ever, for vibration analysis, NS-FEM is unstable due to the presence of
spurious non-zero-energy modes. This is because the number of nodes in
a T4 element mesh can be much smaller than the number of elements.
This situation is similar to the underintegration of the weak form inher-
ent in the nodal integration approach of mesh-free methods. The temporal
instability, therefore, is one of the main concerns of NS-FEM and mesh-
free methods, and special stabilization techniques are required for solving
dynamic problems [7,15,16].

8.5.2 Patch Test and Mesh Sensitivity

The Irons first-order patch test presented in Section 6.5.4 is performed again
for our FS-FEM-T4. The errors in displacement norm (Equation 4.63) and
in the (absolute) strain energy error (Equation 6.13) are used to examine
quantitatively the computed results. An analysis of the sensitivity of the
solution against highly distorted meshes similar to that in Section 6.5.4 is
also considered.

The results of the patch test are listed in Table 8.1 for meshes of different
irregularities. It is found that FS-FEM-T4 can pass the Irons first-order
patch test within machine precision regardless of the irregularity factor αir
used. There is no accuracy loss due to the different choices of αir value. This
shows that FS-FEM-T4 can produce the linear field exactly and hence has at
least a second-order accuracy (the displacement error is only in the terms
of second order and/or above). Together with the stability, the FS-FEM
solution will always converge to the exact solution. This patch test also
shows that FS-FEM-T4 can work well with the severely distorted meshes.
We now note:
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308 Smoothed Finite Element Methods

TABLE 8.1

Solution Error in Displacement and Strain Energy Error for the Patch Test

αir = 0.0 αir = 0.1 αir = 0.2 αir = 0.3 αir = 0.4 αir = 0.49

Displacement 3.95e − 16 1.16e − 15 7.73e − 16 1.00e − 15 1.53e − 15 2.21e − 15
ed (%)

Strain energy ee 0.0 7.28e − 12 1.82e − 11 1.09e − 11 7.28e − 12 2.12e − 11

Property 8.2 FS-FEM-T4: First-Order Consistency

FS-FEM-T4 has the first-order consistency, meaning that it can produce a
linear displacement field exactly. In other words, they are of second-order
accuracy in displacement solution: errors are at terms of second order or
above.

Property 8.3 FS-FEM-T4 Solution: Stability and Convergence

Due to the stability given in Property 8.1 and the first-order consistence
given in Property 8.2, FS-FEM-T4 has a unique stable solution that con-
verges to the exact solution of the original solid mechanics problem defined
in Chapter 2. This confirms Theorem 4.1.

Property 8.4 FS-FEM-T4 is Less Sensitive Compared to FEM-T4.

8.6 Numerical Examples

In this section, examples will be presented to demonstrate the properties of
the FS-FEM-T4 method. To show advantages of FS-FEM-T4, the results of
the present method will be compared with those of FEM using tetrahedral
elements (FEM-T4), eight-node hexahedral elements (FEM-H8), and NS-
FEM using tetrahedral elements (NS-FEM-T4) [13].

The errors in both displacement norm and energy norm defined in Equa-
tions 4.49 and 4.50 are used in this analysis for the examination of numerical
models. When the energy norm is used, we use the recovery strain solu-
tion for S-FEM models, and both raw and recovery strain solutions for FEM
models.

Example 8.6.1: The 3D Lame Problem

The 3D Lame problem described in Example 6.7.5 is used again in the examina-
tion of our FS-FEM-T4. Only one-eighth of the sphere model is considered and
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Face-Based Smoothed FEM 309

discretized, as shown in Figure 6.34, and the symmetry conditions are imposed
properly on these three mirror symmetric planes. The exact strain energy of the
problem is known as Eexact = 6.306 × 10−2 Nm.

Figures 8.2 and 8.3 plot the distribution of the displacements and stresses
obtained using FS-FEM-T4, together with the analytical solution. It can be seen
clearly that the FS-FEM-T4 results agree very well with the analytical solution.
Table 6.12 and Figure 8.4 show the convergence of the strain energy solution.
It is seen that the results of NS-FEM-T4 are an upper bound solution, and that
of FS-FEM-T4 is a lower bound solution, all with respect to the exact solution.
The results of FS-FEM-T4 are almost the same as those of FEM-H8 and much
more accurate than those of FEM-T4.

Table 6.13 and Figure 8.5 give the solution error in displacement norm
obtained using FS-FEM-T4, together with those of other methods using the
same meshes. It is found that the result of FS-FEM-T4 is less accurate than that
of FEM-H8 but is more accurate than those of NS-FEM-T4 and FEM-T4. When
the third mesh (h ≈ 0.156 m) is used, the error of FS-FEM-T4 is about 3/4 of
FEM-T4 and NS-FEM-T4. In terms of convergence rate, the rate for FS-FEM-
T4 (r = 1.99) is also larger than those of FEM-T4 (r = 1.93) and NS-FEM-T4
(r = 1.85).

Table 6.14 and Figure 8.6 show the solution error in energy norm obtained
using FS-FEM-T4, together with those of other methods using the same meshes.
It is found that the results of FS-FEM-T4 are only less accurate than those of
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FIGURE 8.2 Distribution of the radial displacement in the hollow sphere subjected to an
inner pressure.
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to an inner pressure.
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FIGURE 8.4 Convergence of strain energy solution of FS-FEM-T4 in comparison with other
methods for the hollow sphere subjected to an inner pressure.
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FIGURE 8.5 Error in displacement norm of FS-FEM-T4 in comparison with other methods
for the hollow sphere subjected to an inner pressure.
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FIGURE 8.6 Error in energy norm of FS-FEM-T4 in comparison with other methods for the
hollow sphere subjected to an inner pressure.
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312 Smoothed Finite Element Methods

NS-FEM-T4 but are more accurate than those of FEM-T4, FEM-H8, and even
FEM-T4-Re and FEM-H8-Re. When the third mesh (h ≈ 0.156 m) is used, the
error of FS-FEM-T4 is about 1/1.9 of FEM-T4, 1/1.5 of FEM-H8, and 1/1.1 of
FEM-T4-Re or FEM-H8-Re. In terms of convergence rate, FS-FEM-T4 stands
out clearly with a rate of r = 1.43, which is much larger than the theoretical
value of 1.0, much higher than the FEM-H8, and compatible with FEM-T4-
Re and FEM-H8-Re. All the above results show that FS-FEM-T4 is significantly
more accurate than FEM-T4 and FEM-H8, and even better than FEM-T4-Re and
FEM-H8-Re for 3D linear problems.

Figure 8.7 shows the solution error in displacement norm using the
smoothing-domain-based selective FS/NS-FEM-T4 for nearly incompres-
sible material when Poisson’s ratio varies from 0.4 to 0.4999999. The results
show that the smoothing-domain-based selective FS/NS-FEM-T4 model can
overcome naturally the volumetric locking for solids of nearly incompress-
ible materials, without any additional treatments. This is due to the volumetric
looking-free feature of NS-FEM models discussed in Chapter 6.

Example 8.6.2: A 3D Cubic Cantilever

The 3D cantilever of cubic shape subjected to a uniform pressure on its upper
face described in Example 6.7.6 is again studied, but using FS-FEM-T4. The
discretization of the 3D cubic cantilever using tetrahedral elements is shown
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FIGURE 8.7 Error in displacement norm versus different Poisson’s ratios of the hollow
sphere subjected to an inner pressure.
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Face-Based Smoothed FEM 313

in Figure 6.40. The reference solutions for this problem are obtained using the
standard FEM with a very fine mesh of 30,204 nodes and 20,675 10-node
tetrahedron elements. The reference solutions of strain energy and deflection
at point A(1.0, 1.0, −0.5) are found to be 0.9486 and 3.3912, respectively.

Table 6.15 and Figure 8.8 show the convergence of the strain energy solution
obtained using FS-FEM-T4, together with those obtained using other methods.
Table 6.16 and Figure 8.9 show the convergence curves of the deflection at point
A obtained using FS-FEM-T4, together with other methods. It is found that the
results of FS-FEM-T4 are less accurate than those of FEM-H8, but much more
accurate than those of FEM-T4 for this problem. These results again show that
FS-FEM-T4 is significantly more accurate than FEM-T4 for 3D linear elasticity
problems.

Example 8.6.3: A 3D Cantilever Beam: A Geometrically
Nonlinear Analysis

This example examines the use of FS-FEM-T4 for the geometrically non-
linear analysis of large deformation for 3D solids. A 3D cantilever beam
subjected to a uniformly distributed load is considered. The size of the beam is
(10 cm × 2 cm × 2 cm) and is discretized using a mesh including 1322 nodes
and 5802 tetrahedral elements as shown in Figure 8.10.The material parameters
are taken as E = 3.0 × 107 KN/cm2, ν = 0.3.
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FIGURE 8.8 Convergence of the strain energy solution of FS-FEM-T4 in comparison with
other methods for the cubic cantilever subjected to a uniform pressure on the top surface.
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FIGURE 8.9 Convergence of the deflection at point A(1.0, 1.0, −0.5) of FS-FEM-T4 in
comparison with other methods for the cubic cantilever subjected to a uniform pressure.

First, a mesh sensitivity analysis is performed for the linear problem using
FS-FEM-T4 and FEM-T4 in a similar way as in the Iron first-order patch test.
To create distorted meshes, the interior nodes are intentionally moved ran-
domly inside the cantilever beam from the original regular positions. The
moved coordinates are computed using Equation 6.16. In addition, the interior
nodes of boundary faces are also moved randomly inside their original faces.
Only the nodes located on the boundary sides of the cantilever beam are kept
unchanged. Table 8.2 shows the relation between the tip deflection versus the
prescribed irregularity factor αir chosen between 0.0 and 0.4, and Figure 8.11
plots a severely distorted mesh with αir = 0.4. The results are computed using
both FS-FEM-T4 and FEM-T4 models with exactly the same meshes, and listed
inTable 8.2. For easy analysis, we use the result of the tip deflection d = 2.5292
obtained using FEM-H8 with 2304 nodes as a reference solution. Table 8.2
shows that FS-FEM-T4 produces more accurate results and is less sensitive to
the mesh distortion than those of FEM-T4.This finding implies that FS-FEM-T4 is
much more suitable than FEM-T4 for geometrically nonlinear analysis of large
deformation, where heavy mesh distortions are generally expected.

Geometrically nonlinear analyses based on the total Lagrange formulation
(that are often used in the FEM) are carried out using 10 increment steps (n = 10)
with Δf = 4 KN/cm2 in each step, using FS-FEM-T4, FEM-T4, and FEM-H8.
Figure 8.10 plots the initial and final configurations after 10 steps of incre-
ments of the deformation using FS-FEM-T4. Table 8.3 and Figure 8.12 show the
relation between the tip deflection and the load steps obtained using different
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FIGURE 8.10 Initial and final configurations of the 3D cantilever beam subjected to a
uniformly distributed load using the FS-FEM-T4 in the geometrically nonlinear analysis.

methods. The simulation result converges very rapidly in each load increment:
only less than five iterations are needed. The results show that the nonlin-
ear effects make the cantilever beam to behave stiffer compared to the linear
solutions. In the geometrically nonlinear analysis, the results of FS-FEM-T4 are
softer than those of FEM-T4 but stiffer than those of FEM-H8 using 1323 nodes.

TABLE 8.2

Tip Deflection (cm) versus the Irregularity Factor αir for the 3D Cantilever
Beam Subjected to a Uniformly Distributed Load

αir = 0.0 αir = 0.1 αir = 0.2 αir = 0.3 αir = 0.4

FS-FEM-T4 2.4429 2.4373 2.4218 2.3888 2.3418
(1322 nodes) (0.23%)a (0.86%) (2.21%) (4.14%)

FEM-T4 2.3639 2.3559 2.3349 2.2933 2.2141
(1322 nodes) (0.34%) (1.23%) (2.99%) (6.34%)

Note: Reference solution: 2.5292.
a The number in parentheses shows the relative error (%) between the numerical results

at αir > 0 and the numerical results at αir = 0.0.
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FIGURE 8.11 Domain discretization of the 3D cantilever beam subjected to a uniformly
distributed load using severely distorted tetrahedral elements.

All these results suggest that FS-FEM-T4 performs more accurately than FEM-T4
for 3D geometrically nonlinear analysis of large deformation.

Example 8.6.4: An Axletree Base: Linear and Geometrically
Nonlinear Analyses

In this example of the practical problem, both linear and geometrically non-
linear analyses of an axletree base are studied using the FS-FEM-T4 method.
Figure 8.13 shows the model of the axletree base, which is symmetric about
the y–z plane. A whole model with 8882 nodes and 40,409 elements is used
for linear analysis, and a half model with 1342 nodes and 5124 tetrahedral
elements is then created for nonlinear analysis. The axletree base is subjected

TABLE 8.3

Tip Deflection (cm) at the Load Steps for the 3D Cantilever Beam Subjected
to a Uniformly Distributed Load

Load FEM-T4 (Linear) FEM-T4 (Nonlinear) FEM-H8 (Nonlinear) FS-FEM-T4 (Nonlinear)
Step (1322 Nodes) (1322 Nodes) (1323 Nodes) (1322 Nodes)

n = 1 0.2364 0.2295 (3)a 0.2421 (3) 0.2365 (3)
n = 2 0.4728 0.4314 (3) 0.4522 (3) 0.4430 (3)
n = 3 0.7092 0.6119 (3) 0.6405 (3) 0.6277 (3)
n = 4 0.9456 0.7831 (3) 0.8205 (3) 0.8038 (3)
n = 5 1.1819 0.9511 (3) 1.0022 (4) 0.9818 (4)
n = 6 1.4183 1.1210 (4) 1.1762 (4) 1.1516 (4)
n = 7 1.6547 1.2847 (4) 1.3495 (4) 1.3206 (4)
n = 8 1.8911 1.4479 (4) 1.5222 (4) 1.4891 (4)
n = 9 2.1275 1.6104 (4) 1.6943 (4) 1.6569 (4)
n = 10 2.3639 1.7724 (4) 1.8656 (4) 1.8242 (4)

a The number in parentheses shows the number of iterations.
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FIGURE 8.12 Tip deflection (cm) versus the load step of the 3D cantilever beam subjected
to a uniformly distributed load in the geometrically nonlinear analysis.
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FIGURE 8.13 The axletree base model.
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FIGURE 8.14 Distribution of the von-Mises stress in the linear analysis of small deformation
using FS-FEM-T4.

to a uniformly distributed force f on the concave annulus in the z-direction
and is fixed at the locations of four lower cylindrical holes and on the bottom
plane. The related parameters are taken as E = 3.0 × 107 N/cm2, ν = 0.3.

We first assumed that the problem is linear and conducted a linear static
analysis with a loading of f = 4000 KN/cm2. Figure 8.14 plots the distribution
of the von-Mises stress σv in the axletree base computed using FS-FEM-T4. The
von-Mises stress is computed using the stress components in the form of

σv =
√

1
2

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6

(
σ2

12 + σ2
23 + σ2

13

)]
.

(8.20)

It can be observed from Figure 8.14 that stress concentrations are registered at
the upper connecting zones of these two supporting “ribs,” where the problem
domain is concave, as expected.

We next consider the large deformation that results in geometric nonlinear-
ity. The analysis based on the total Lagrange formulation is carried out using
10 increment steps (n = 10) with Δf = 400 KN/cm2 at each step. Figure 8.15
shows the initial and final configurations viewed from the top of the 3D axletree
base after 10 steps of simulation using FS-FEM-T4. Table 8.4 and Figure 8.16
show the relation between the tip displacement (point A) in the z-direction ver-
sus the load steps obtained using different methods.The simulation converges in
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FIGURE 8.15 Initial and final configurations viewed from the top of a 3D axletree base using
four-node tetrahedral elements in the geometrically nonlinear analysis.

a rapid speed in each load increment; only less than nine iterations are needed.
It can be seen that the nonlinear effects make the axletree base behave stiffer
compared to the linear solutions. In this geometrically nonlinear analysis, the
results of FS-FEM-T4 are found softer than those of FEM-T4 and almost similar
to that of FEM-T4 using 2520 nodes.

Note that for this problem, a discretization using eight-node hexahedral
elements is very difficult if it is not impossible due to the complexity of the
geometry of the problem, especially for areas near points B, C , and D shown
in Figure 8.13. All these results again show that FS-FEM-T4 performs more
accurately than FEM-T4 for 3D linear and nonlinear problems with complicated
geometry.

TABLE 8.4

Tip Displacement (Point A) (cm) in the z-Direction at Load Steps for the
3D Axletree Base Using Four-Node Tetrahedral Elements for the Geometrically
Nonlinear Analysis

Load FEM-T4 (Linear) FEM-T4 (Nonlinear) FEM-T4 (Nonlinear) FS-FEM-T4 (Nonlinear)
Step (1342 Nodes) (1342 Nodes) (2520 Nodes) (1342 Nodes)

n = 1 0.3534 0.3104 (3)a 0.3260 (3) 0.3274 (3)
n = 2 0.7068 0.5700 (4) 0.5990 (4) 0.6017 (4)
n = 3 1.0601 0.8120 (5) 0.8538 (5) 0.8577 (5)
n = 4 1.4135 1.0419 (5) 1.0963 (5) 1.1012 (5)
n = 5 1.7669 1.2568 (6) 1.3210 (6) 1.3268 (6)
n = 6 2.1203 1.4650 (6) 1.5393 (6) 1.5460 (6)
n = 7 2.4737 1.6652 (7) 1.7360 (7) 1.7434 (7)
n = 8 2.8271 1.8436 (7) 1.9340 (7) 1.9421 (7)
n = 9 3.1804 2.0269 (8) 2.1074 (8) 2.1161 (8)
N = 10 3.5338 2.1855 (8) 2.2901 (8) 2.2996 (8)

a The number in parentheses shows the number of iterations.
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FIGURE 8.16 Tip displacement (point A) in the z-direction versus the load step of a 3D
axletree base using four-node tetrahedral elements in the geometrically nonlinear analysis.

Example 8.6.5: Bonded Nearly Incompressible Rubber Block:
Material and Geometrically Nonlinear Analyses

In this final example, we present the result of a generally nonlinear analysis by
considering both material and geometrical nonlinearities.We analyze a bonded
rubber cube of L = 0.1 m plotted in Figure 8.17. Although the initial geometry
is very simple, it becomes extremely complicated after the large deformation.
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FIGURE 8.17 A bonded cube made of nearly incompressible rubber.
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Face-Based Smoothed FEM 321

The total Lagrange formulation is used in the selective FS/NS-FEM-T4 setting,
as detailed in Ref. [17]. The nearly incompressible Mooney–Rivlin hyperelas-
tic material model is used with parameters of A10 = 20 MPa, A01 = 1 MPa,
κ = 1000 MPa, and density ρ0 = 2000 kg/m3. The boundary conditions are as
follows. On the top area A-B-C-D, the velocity in the vertical direction is set
to zero: v̂n

z
∣∣
top = 0, and a torsion velocity is applied on the top surface in the

form of

vn
θ

∣∣
top =

{
5 × 104πtn 5 × 104πtn < 100π
100π 5 × 104πtn < 100π

(
rad/s

)
. (8.21)

On the bottom surface E-F-G-H, we set velocity v̂n
z
∣∣
bot = 0 and

vn
θ

∣∣
bot = − vn

θ

∣∣
top.

The initial conditions are v0 = 0 and u0 = 0, meaning that the cube stays
still initially.

The selective FS/NS-FEM-T4 with 65,224 elements and 12,197 nodes is
adopted in the analysis. The analysis procedure automatically stops when
J = det (F) ≤ 0, indicating unphysical results due to the element distortion. Fig-
ure 8.18 shows the deformed configurations at different loading levels. In this
example, the selective FS/NS-FEM-T4 can work up to an applied torsion angle
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FIGURE 8.18 The bonded rubber cube under torsion solved using the selective FS/NS-
FEM-T4 with 65,224 elements: (a) Initial configuration, (b) θ = 1.65π, (c) θ = 1.9π, and (d)
θ = 2.15π.
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322 Smoothed Finite Element Methods

of θ = 2.15π, which is much larger than that of an FEM model using 10-node tri-
angular elements that can only reach θ = 1.80π, due to the element distortion
[17]. This shows that the selective FS/NS-FEM is much less sensitive to ele-
ment distortion. In addition, no volumetric locking is observed in this example
because of the use of selective FS/NS-FEM that is free from such a locking.

8.7 Remarks

In this chapter, an FS-FEM (FS-FEM-T4) is formulated and applied to
solve 3D solid mechanics problems. Both linear and geometrically non-
linear problems are considered, using four-node tetrahedral elements that
can be generated automatically for complicated domains. In FS-FEM-T4,
the system stiffness matrix is computed using the smoothed strains over
the smoothing domains associated with the faces of tetrahedral elements.
Through the theoretical analyses, formulations, and numerical examples
presented, we note the following remarks.

Remark 8.1 FS-FEM: Works Well with 3D T4 Elements

FS-FEM works well with tetrahedral elements and produces accurate solu-
tions for problems with complicated geometry. FS-FEM-T4 is significantly
more accurate than FEM-T4 using tetrahedral elements and is comparable
to FEM-H8 and FEM-H8-Re for both linear and nonlinear analyses.

Remark 8.2 FS-FEM-T4: Easy to Implement in the Standard FEM Codes

The formulation of FS-FEM-T4 is straightforward and no additional DOFs
are used in the model. It can be implemented easily to the standard FEM
codes.

Remark 8.3 FS/NS-FEM-T4: Free from Volumetric Locking

The smoothing-domain-based selective FS/NS-FEM-T4 model is immune
from volumetric locking and hence it works well for solids of nearly
incompressible materials, in addition to showing less sensitivity to element
distortion.

Remark 8.4 FS-FEM-T4: the Best Linear Model for 3D Problems

So far the author’s group has not been able to find any linear model
(except the αFEM with a tunable parameter) that works better than the
FS-FEM-T4 for 3D problems, in terms of (1) adaptation to complicated
geometry; (2) suitability for automatically meshing [18]; (3) stability; (4)
solution accuracy; (5) computational efficiency; and (6) free from locking.
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Remark 8.5 FS-FEM-T4: Less Effective than ES-FEM-T3

We note that the benefit from the face-based smoothing operations for 3D
problems is not as significant as that from the “start” performer ES-FEM-
T3 for 2D problems. The reasons are not yet clear to the authors, but we
believe that the “relatively” large number of elements in a 3D tetrahedron
mesh may be a major reason. In the 2D case, a quadrilateral element can be
typically divided into two triangular elements (T3) without change in the
number of nodes, but in the 3D case a hexahedral element can be typically
divided into five or six tetrahedral elements (T4) [19]. The large number
of elements affects the results in two folders. First, compared to the fact
that the T3 element mesh is much stiffer compared to the Q4 mesh, the T4
element mesh is not too much stiffer compared to the H8 mesh. As a result,
the performance of FEM-T4 is less stiff compared to FEM-T3, and the solu-
tion is not always that bad when recovery is performed, as can be seen
from Example 8.6.1 where the results of FEM-T4-Re and FEM-H8-Re are
almost the same. What happened is that the FEM-T4 loses in lower-order
interpolation, but gains in the number of elements. Therefore, the room for
improvement of the solution accuracy from FS-FEM-T4 to FEM-T4 becomes
smaller. Second, the large number of elements results in the large number
of faces in a T4 mesh, which results in the use of too many smoothing
domains and reduces the softening effects and hence the benefits that it
brings. Note that because of the fully compatible formulation in FEM-T4,
it is naturally too stiff and unavoidably suffers from volumetric locking,
as shown in Example 8.6.1 where the solution locks when the Poisson’s
ratio is larger than 0.4. The locking behavior limits significantly the use of
FEM-T4 elements. FS/NS-FEM-T4 resolves this problem very effectively.

Finding a practical and more efficient way of properly reducing the num-
ber of smoothing domains for 3D S-FEM models can lead to a model that
is better than FS-FEM-T4. Such a number should be in between the NS-
and FS-FEM models. At this point of time, we got an idea for an alternative
way of controlling the smoothing effects: αFEM-T4, which will be detailed
in the next chapter.
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9
The αFEM

9.1 Introduction

As discussed in Chapter 3, the standard displacement FEM has a lot of
good properties but shows some shortcomings, including the stress accu-
racy issues [1,2]. Therefore, efforts have been made to overcome these
shortcomings and to improve the accuracy of the solution, including the
S-FEM models presented in the previous chapters and the mixed FEM
models [3–9] based on the mixed variational principles. All these efforts
mainly focus on solution accuracy improvements. Obtaining the exact solu-
tion (at least in a norm) using a discrete numerical method is, however, a
much more fascinating and attractive idea in the area of computational
methods. Some interesting efforts have been made recently in Liu’s group
aiming at obtaining the exact solution in a norm using discrete mod-
els [1,2,10]. The so-called alpha finite element method using four-node
quadrilateral elements (αFEM-Q4) has been developed for the purpose of
finding a nearly exact solution in strain energy using coarse meshes [1].
The αFEM-Q4 gives a novel idea that works in the framework of FEM-
Q4, by simply scaling the gradient of strains using a factor α ∈ [0, 1].
Because the change needed is minor, the coding of αFEM-Q4 is almost
exactly the same as the standard FEM-Q4. In addition, the resultant strain
energy function for the αFEM-Q4 model has a very simple polynomial
form in terms of α. Based on such a simple function of strain energy
curves, a general procedure of αFEM-Q4 has been suggested to obtain
nearly exact or best possible solutions, using meshes with the same aspect
ratio. An exact-α approach is devised for overestimation problems and a
zero-α approach for underestimation problems. The αFEM-Q4 has clearly
opened a new window of opportunity to obtain numerical solutions that
are exact at least in a norm. However, the original αFEM-Q4 based on
quadrilateral elements cannot provide the exact solution to all elastic-
ity problems. Furthermore, the αFEM-Q4 requires a quadrilateral mesh
that cannot be generated in a fully automated manner for complicated
domains.

Making use of the upper bound property of NS-FEM (see Chapter 6),
the lower bound property of the standard FEM in strain energy, and

325
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326 Smoothed Finite Element Methods

the important idea of αFEM-Q4, we introduce now a novel alpha finite
element method using three-node triangular (αFEM-T3) elements for 2D
problems and four-node tetrahedral elements (αFEM-T4) for 3D prob-
lems, which were originally presented in Ref. [2]. The essential idea of
the method is to introduce a scale factor α ∈ [0, 1] to establish a con-
tinuous function of strain energy that contains contributions from both
the standard FEM and NS-FEM. Our formulation ensures the varia-
tional consistence and compatibility of the displacement field and hence
guarantees reproducing the linear field exactly. Based on the facts that
the standard FEM of triangular and tetrahedral elements is spatially
stable (no spurious zero-energy modes) and that the NS-FEM is also
spatially stable as proved by Liu et al. [10], our αFEM-T3 and αFEM-
T4 will always be spatially stable. This stability together with the linear
consistence ensures convergence of the solution. This novel, combined
formulation of FEM and NS-FEM makes best use of the upper bound
property of the NS-FEM and the lower bound property of the stan-
dard FEM, and is equipped with a free parameter for tuning for special
properties. Using meshes with the same aspect ratio, a unified approach
has been proposed to obtain the nearly exact solution in strain energy
for any given linear elasticity problem. The αFEM-T3 and αFEM-T4 are
also applied to nonlinear problems of large deformation. In such cases,
the exact solution is usually difficult to obtain, but the accuracy of the
solution can be significantly improved. As will be shown, the numeri-
cal results for 2D (using αFEM-T3) and 3D (using αFEM-T4) problems
confirm that the present method gives excellent performance compared
to both the standard FEM and NS-FEM. The αFEM-T3 and αFEM-T4
are very easy to implement and apply to practical problems of com-
plicated geometry, and the existing linear FEM code can largely be
utilized.

Note thatαFEM-T3 andαFEM-T4 [2] are very much different fromαFEM-
Q4 for quadrilateral elements [1] in terms of both formulation procedures
and the approach. First, the numerical treatments in αFEM-Q4 are still
element-based, but those in αFEM-T3 and αFEM-T4 are both element-
and node-based. Second, in the case of αFEM-Q4, the strain field in an
element is (bi)linear (with respect to the coordinates), which allows us
to scale the gradient of the strain field by simply introducing a scaling
factor α. In αFEM-T3 and αFEM-T4, however, the strain field in an ele-
ment is constant, and hence it is not possible to scale the gradient of
the strain field in the element because it is zero, if the numerical opera-
tions are still element-based. Therefore, a new technique has to be devised
to bring in the information from the surrounding elements to create a
desirable strain field. Third, αFEM-Q4 can only give a nearly exact solu-
tion in strain energy for a class of overestimation problems [1], whereas
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The αFEM 327

αFEM-T3 and αFEM-T4 can provide a nearly exact solution in strain
energy for all linear elasticity problems without using any postprocessing
techniques.

9.2 Idea of αFEM-T3 and αFEM-T4

9.2.1 αFEM-T3 for 2D Problems

αFEM-T3 combines both NS-FEM-T3 and standard FEM-T3 by using the
scale factor α ∈ [0, 1]. As presented in Chapter 6, in NS-FEM-T3, the
domain Ωe

i of each triangular element is divided into three quadrilateral
subdomains of equal area, and each quadrilateral subdomain contributes
to the stiffness matrix of the node attached, as shown in Figure 9.1. In
αFEM-T3, the domain Ωe

i of the triangular element is divided into four
subdomains with a scale factor α as shown in Figure 9.1: three quadrilat-
eral subdomains at the three corners are scaled down by (1 − α2) and are all
having an equal area of (1 − α2)Ae

i /3. The remaining Y-shaped subdomain
in the middle of the element has an area of α2Ae

i . The same procedure in
NS-FEM-T3 is then used to compute the stiffness contributions of the three
quadrilateral subdomains at the three corners, while the usual procedure of
FEM-T3 is used to compute the stiffness contribution for the Y-shaped sub-

domain. The entries in submatrices of the system stiffness matrix K̂
αFEM-T3

will be assembled from the entries of those of NS-FEM-T3 and FEM-T3.
The detailed formulation becomes

K̂αFEM-T3
IJ =

Nn∑
k=1

K
NS-FEM-T3
IJ,k +

Ne∑
i=1

K̃
FEM
IJ,i , (9.1)

b

3

S2 = α2Ae

S1 = – (1 – α2)Ae

(1 – α)b

1

NS-FEM

NS-FEM

NS-FEM

NS-FEM
FEM

h

NS-FEM NS-FEM

NS-FEM-T3 αFEM-T3FEM-T3

FEM + =

Centroid
Mid-side-

point (1 – α)h

FIGURE 9.1 An αFEM-T3 element: a combination of the triangular elements of FEM and
NS-FEM. The NS-FEM is used for three quadrilaterals, and the FEM is used for the Y-shaped
domain in the center.
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328 Smoothed Finite Element Methods

where Nn is the total number of nodes, Ne is the total number of elements
in the entire problem domain, and

K
NS-FEM-T3
IJ,k =

∫

Ωs
k,α

(
B
α

I (xk)
)T

cB
α

J (xk) dΩ, (9.2)

K̃
FEM
IJ,i =

∫

Ωe
i,α

B̃
T
I cB̃J dΩ = B̃

T
I cB̃Jα

2Ae
i , (9.3)

in which Ωe
i,α is the Y-shaped subdomain in the triangular element; Ωs

k,α
is the smoothing domain associated with node k and bounded by Γs

k,α, as

shown in Figure 9.2. The smoothed strain–displacement matrix B
α

I (xk) for
Ωs

k,α is computed using

B
α

I (xk) = 1
As

k,α

ne
k∑

j=1

1
3
(1 − α2)Ae

j B̃I,j = 1
As

k

ne
k∑

j=1

1
3

Ae
j B̃I,j = BI(xk), (9.4)

which implies that we can use the matrix BI(xk) defined in Equation 6.3 for
domainΩs

k instead of the matrix B
α

I (xk) for domainΩs
k,α in the computation.

Note that to obtain Equation 9.4, the following relation between the area

k

Ωs
k,α

Γ s
k,α

Γ s
k

Ωs
k

FIGURE 9.2 Smoothing domain associated with nodes for triangular elements in an
αFEM-T3 model.
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The αFEM 329

As
k,α of the domain Ωs

k,α and the area As
k defined in Equation 6.4 of the

domain Ωs
k is used:

As
k,α =

∫

Ωs
k,α

dΩ =
ne

k∑
j=1

1
3
(1 − α2)Ae

j = (1 − α2)As
k , (9.5)

where ne
k is the number of elements around node k; Ae

j is the whole area of
the jth element around node k.

Using Equations 9.4 and 9.5, Equation 9.2 can now be written as

K
NS-FEM-T3
IJ,k = (1 − α2)B

T
I cBJAs

k , (9.6)

which implies that we can simplify the procedure of coding of αFEM-
T3 by using the original NS-FEM-T3. Each triangular element is divided
into three quadrilaterals of equal area to compute the contributions to the
stiffness matrix with a scaling down of (1 − α2).

To compute Equation 9.3, the standard FEM using triangular elements
(FEM-T3) is used to compute the contributions to the stiffness matrix with
a simple scaling down with a factor of α2.

The αFEM-T3 model is now equipped with a scaling factor α that acts as
a “knob” controlling the contributions from portions of NS-FEM-T3 and
FEM-T3. Since both NS-FEM-T3 and FEM-T3 models are spatially stable
and convergent, when the factor α is “turned” from 0 to 1, a continuous
function of solution in a norm can be expected from the solution of NS-
FEM-T3 to that of FEM-T3.

This is the basic idea of αFEM-T3: it is very simple as shown and very
powerful as will be shown.

9.2.2 αFEM-T4 for 3D Problems

The extension from αFEM-T3 to αFEM-T4 is straightforward. Following
the same idea and concept of αFEM-T3 presented above, we can easily
develop an αFEM-T4 model for 3D problems using tetrahedral elements.
In this case, the (volumetric) domain Ωe

i of each tetrahedral element will
be divided into five subdomains using a similar scaling factor α: four sub-
domains at four corners will have an equal volume of (1 − α3)/4 Ve

i . The
remaining domain in the middle of the element will have a volume of
α3Ve

i . The NS-FEM-T4 is then used to compute for four corner subdomains
of equal volumes, while FEM-T4 is used to compute for the remaining sub-
domain in the middle. The system stiffness matrix K̂αFEM-T4 is computed
using

K̂αFEM-T4
IJ =

Nn∑
k=1

K
NS-FEM-T4
IJ,k +

Ne∑
i=1

K̃
FEM-T4
IJ,i , (9.7)
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330 Smoothed Finite Element Methods

with the matrices K
NS-FEM-T4
IJ,k and K̃

FEM-T4
IJ,i computed as follows:

K
NS-FEM-T4
IJ,k = (1 − α3)B

T
I cBJVs

k , (9.8)

K̃
FEM-T4
IJ,i =

∫

Ωe
i,α

B̃
T
I cB̃J dΩ = B̃

T
I cB̃Jα

3Ve
i , (9.9)

in whichΩe
i,α is the remaining domain in the middle of the T4 element; the

smoothed strain–displacement matrix BI is computed using Equation 6.5,
Vs

k is computed using Equation 6.6, and the compatible strain–
displacement matrix B̃I is computed using Equation 3.108.

9.2.3 Properties of αFEM-T3 and αFEM-T4

We now discuss the properties of αFEM-T3 and αFEM-T4 models. We
consider linear elasticity problems with homogeneous essential boundary
conditions. First, we note the following:

Property 9.1 Displacement Compatibility

The assumed displacement field is compatible (piecewise-linear and
continuous throughout the domain) in the αFEM-T3 and αFEM-T4 models.

This property can be clearly seen from the αFEM-T3 and αFEM-T4 for-
mulation procedure: linear interpolation for displacement is used in all
the elements in the entire problem domain. αFEM-T3 and αFEM-T4 do not
change in any way the assumed displacement field. This property (together
with the spatial stability) ensures that αFEM-T3 and αFEM-T4 with any
α ∈ [0, 1] will be able to reproduce exactly the linear field. This will be
further confirmed numerically in the patch tests given in Section 9.4.2.

Property 9.2 Variational Consistence and Stability

αFEM-T3 (or αFEM-T4) is variationally consistent and stable.
Property 9.2 can be understood intuitively in a very simple argument:

because both FEM-T3 and NS-FEM-T3 are variationally consistent, the
linear (area-weighted) combination of them must also be variationally con-
sistent. It can be rigorously proven using the modified or the single field
Hellinger–Reissner principle or the orthogonal conditions; one such proof
can be found in Ref. [2]. By the same argument, because both FEM-T3 and
NS-FEM-T3 are spatially stable, the area-weighted linear combination of
them must also be spatially stable. Because FEM-T3 is also known to be
temporally stable, the temporal stability of αFEM-T3 depends on the con-
tributions from NS-FEM-T3. In any case, αFEM-T3 should be more stable
than NS-FEM-T3, as long as there is some amount of contribution from
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The αFEM 331

FEM-T3 (α > 0.0). Our recent study has shown that a very small α can
make αFEM-T3 temporally stable [11]. Other stabilization techniques are
also possible [12].

Property 9.3 Lower Bound Property

When α = 1.0, αFEM-T3 and αFEM-T4 become the standard FEM. The
strain energy Ê(α = 1) is an underestimation of the exact strain energy.

Property 9.4 Upper Bound Property

When α = 0.0, αFEM-T3 and αFEM-T4 become the NS-FEM. The strain
energy Ê(α = 0) is an overestimation of the linear FEM model and can be
an overestimation of the exact strain energy for sufficiently fine models
with sufficient smoothing effects.

A proof and arguments that show the same upper bound properties of
LC-PIM can be found in Ref. [13]. An intuitive explanation as to why NS-
FEM can always produce an upper bound solution was also presented in
Ref. [10]. The numerical examples in Section 9.5 will confirm the property.

Property 9.5 Solution Continuity Property

When α changes from 0.0 to 1.0, the solutions of αFEM-T3 and αFEM-T4
are continuous functions of α from the solution of NS-FEM and that of
standard FEM.

This is because both NS-FEM and standard FEM are spatially stable
and can converge, and the introduction of α is via a partitions-of-unity
interpolation form using these two models.

Property 9.6 Exact Solution Property

The exact solution in strain energy exactly falls in the range of the solutions
of αFEM-T3 and αFEM-T4 with α ∈ [0, 1], as long as the corresponding
NS-FEM model has sufficient smoothing effects. This means that the exact
solution in strain energy can be obtained using αFEM-T3 and αFEM-T4
with an αexact ∈ [0, 1].

This property is a natural outcome of Properties 9.3 through 9.5. Based
on Property 9.6, one can now devise the following procedure to com-
pute a nearly exact solution in strain energy, by finding an approximate
αexact ∈ [0, 1].

We know that such an α can depend on the problem and also on the
mesh, and therefore a universally workable α will not be easy to find.
This is as expected, as finding the exact solution using a finite discrete
model will never be easy. Our numerical study has shown that using
meshes of elements with the same aspect ratio, the strain energy curves
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332 Smoothed Finite Element Methods

Ê(α) corresponding to these meshes will intersect approximately at a com-
mon point (αexact, Eexact), which gives the nearly exact strain energy of
the problem. Note that the solution that is the “best” in strain energy
usually leads to a “very good” solution in displacement norm, because
of the relation between the strain energy and displacement solution:
Ê(α) = 1/2 d̂TK̂αFEMd̂.

In the following analysis, the meshes with the same aspect ratio are
defined in two ways: regular and irregular. Regular meshes are used only
for regular domains, and the ratio of the numbers of element divisions
along the coordinate directions has to be kept identical, when the mesh
is refined. For example, for the rectangular 2D meshes, the three meshes
(16 × 4), (32 × 8), and (64 × 16) have the same aspect ratio of 4. Irregular
meshes can be used for any domain; the meshes with the same aspect ratio
are obtained by dividing, in a nested manner, each element of the initial
coarse mesh into 22, 32, 42, and so on equal elements for triangular elements
and into 23, 33, 43, and so on equal elements for tetrahedral elements. Such
a refinement is available in many automatic programs creating three-node
triangular and four-node tetrahedral elements, and hence it can be done
without any technical difficulty. Note that we do not require the elements
in a mesh to have the same aspect ratio. We require only the elements in
two consequent meshes to have the same aspect ratio.

Property 9.7 αFEM: No DOF Increase

The stiffness matrix of αFEM-T3 and αFEM-T4 has the same dimension
as the corresponding standard FEM using the same mesh. The unknowns
of the αFEM-T3 and αFEM-T4 models are only the displacements, and the
number of unknowns is the same as that of the standard FEM using the
same mesh.

Property 9.8 αFEM: Volumetric Locking Free

For the nearly incompressible materials (Poisson’s ratio ν approaches 0.5),
the volumetric locking can be avoided by using α = 0 or a very small α =
0.5 − ν for the αFEM-T3 (or αFEM-T4) model, where ν is the Poisson’s
ratio, which is smaller than but very close to 0.5. Note that, for this kind
of problems, we have to give up obtaining the “exact” solution and only
focus on solving the volumetric locking issue, because we have only one
“knob” in an αFEM model.

From the above formulation of αFEM-T3, it is clear that only the area
and the usual compatible strain–displacement matrices B̃I of triangular
elements (and the factor α) are needed to compute the system stiffness
matrix. Therefore, in the actual programming, the standard FEM (Chapter
3) and NS-FEM-T3 (Chapter 6) formulae are used directly to compute the
entries of the stiffness matrices with scaling byα2 and (1 − α2), respectively,
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The αFEM 333

as shown in Equations 9.3 and 9.6 for αFEM-T3. The same applies to αFEM-
T4, and the scaling should be α3 and (1 − α3), respectively, as shown in
Equations 9.8 and 9.9.

9.3 αFEM-T3 and αFEM-T4 for Nonlinear Problems

For nonlinear problems of large deformation, the values of the strain–
displacement matrices and stresses at the nodes become simply the average
values of those of the adjacent elements surrounding the node, and all
the other techniques developed and currently used in the standard FEM
such as the total Lagrange formulation [14,15] can be directly adopted. The
αFEM-T3 model for nonlinear problems of large deformation based on the
total Lagrange formulation can be expressed as follows:

(
K̂αFEM

L + K̂αFEM
NL

)
d̂ = f̃ − f̂1, (9.10)

where the stiffness matrix for the linearized portion can be written as

K̂αFEM
L =

Nn∑
k=1

(1 − α2)B
T
L cBLAs

k +
Ne∑
i=1

α2B̃
T
L cB̃LAe

i , (9.11)

in which the matrix BL relates to the node-based smoothing domains, and
is computed using

BL = 1
As

k

ne
k∑

j=1

1
3

Ae
j B̃

e
L,j, (9.12)

and matrix B̃
e
L corresponding to the elements is given by

B̃
e
L =

⎡
⎢⎣

F11N1,1 F21N1,1 F11N2,1

F12N1,2 F22N1,2 F12N2,2

F11N1,2 + F12N1,1 F21N1,2 + F22N1,1 F11N2,2 + F12N2,1

F21N2,1 F11N3,1 F21N3,1

F22N2,2 F12N3,2 F22N3,2

F21N2,2 + F22N2,1 F11N3,2 + F12N3,1 F21N3,2 + F22N3,1

⎤
⎥⎦ , (9.13)
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334 Smoothed Finite Element Methods

in which NI,j = ∂NI/∂Xj and FIJ are entries of the deformation gradient
tensor of the elements F̃

e
that is computed by

F̃e =
[

F11 F12
F21 F22

]
=
(

∂x
∂X

)T

= (Ldd̂ + I)T . (9.14)

The stiffness matrix for the nonlinear portion in Equation 9.10 can be
written as

K̂αFEM
NL =

Nn∑
k=1

(1 − α2)B
T
NLSBNLAs

k +
Ne∑
i=1

α2
(

B̃
e
NL

)T
S̃e

i B̃
e
NLAe

i , (9.15)

where matrix BNL is for the node-based smoothing domain and is
computed using

BNL = 1
As

k

ne
k∑

j=1

1
3

Ae
j B̃

e
NL,j, (9.16)

with matrix B̃
e
NL associated with the elements given by

B̃
e
NL =

⎡
⎢⎢⎣

N1,1 0 N2,1 0 N3,1 0
N1,2 0 N2,2 0 N3,2 0

0 N1,1 0 N2,1 0 N3,1
0 N1,2 0 N2,2 0 N3,2

⎤
⎥⎥⎦ , (9.17)

and matrix S is for the node-based smoothing domains, and is computed
using

S = 1
As

k

ne
k∑

j=1

1
3

Ae
j S̃

e
j with S̃e =

⎡
⎢⎢⎣

S11 S12 0 0
S12 S22 0 0
0 0 S11 S12
0 0 S12 S22

⎤
⎥⎥⎦ . (9.18)

In the foregoing equation, the entries SIJ of matrix S̃e are derived from
the second Piola–Kirchhoff stress tensor Ψ̃

e
for the elements by

Ψ̃
e =

⎡
⎣S11

S22
S12

⎤
⎦ = c

⎡
⎣ E11

E22
2E12

⎤
⎦ . (9.19)
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The αFEM 335

The entries EIJ in Equation 9.19 are derived from the entries of the Green–
Lagrange strain tensor Ẽe for the elements as

Ẽ
e =

[
E11 E12
E21 E22

]
= 1

2

((
F̃

e)T
F̃

e − I
)

, (9.20)

where I is the second-order identity matrix.
The “additional” force term caused by the nonlinearity in Equation 9.10

becomes

f̂1 =
Nn∑
k=1

(1 − α2)B
T
L ΨAs

k +
Ne∑
i=1

α2
(

B̃
e
L

)T
Ψ̃

e
i A

e
i , (9.21)

with

Ψ = 1
As

k

ne
k∑

j=1

1
3

Ae
j Ψ̃

e
j . (9.22)

The formulation presented above can be easily extended to αFEM-T4 for
3D problems using tetrahedral elements. Numerical examples of large
deformation nonlinear problems will be presented in Section 9.5.

9.4 Implementation and Patch Tests

9.4.1 Exact Solution for Linear Elastic Problems

A numerical procedure for computing a nearly exact solution for a lin-
ear elastic problem using αFEM-T3 (or αFEM-T4) can be summarized as
follows:

1. Discretize the domain Ω into two sets of coarse mesh of triangular
elements (or tetrahedral elements for 3D problems) with the same
aspect ratio

2. Choose one array of α ∈ 0 : 1, for example α = [0.0 0.2 · · ·
0.8 1.0]T

3. Loop over two sets of mesh created in step 1

4. Loop over the array of α ∈ 0 : 1
5. Loop over all the elements using the standard FEM:

• Compute and save the strain–displacement matrix B̃ for the
elements
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336 Smoothed Finite Element Methods

• Evaluate the stiffness matrix and force vector for the elements
• Multiply the stiffness matrix of the element with α2 for tri-

angular elements by Equation 9.3 (or with α3 for tetrahedral
elements by Equation 9.9) and then assemble into the global
stiffness matrix

• Assemble the force vector into the global force vector
6. End the loop over all the elements
7. Loop over all the nodes using the NS-FEM:

• Use strain–displacement matrices B̃ of the element saved in
step 5 to compute the smoothed strain–displacement matrix
B of the node by Equation 6.3 for triangular elements or by
Equation 6.5 for tetrahedral elements

• Evaluate the stiffness matrix of the node by Equation 6.2
• Multiply the stiffness matrix of the node with (1 − α2) for tri-

angular elements by Equation 9.6 (or (1 − α3) for tetrahedral
elements by Equation 9.8) and then assemble into the global
stiffness matrix

8. End the loop over all the nodes
9. Implement essential boundary conditions

10. Solve the system of equations for the nodal displacements
11. Evaluate strain, stress, and save the global strain energy

12. End the loop over the array containing α ∈ 0 : 1
13. End the loop over two sets of coarse meshes
14. Interpolate the exact strain energy at αexact from two arrays

containing the strain energies saved at step 11
15. Use αexact and a finer mesh with the same aspect ratio as the two

coarse meshes to compute the final solution through steps 5–11.

As seen from the above-mentioned procedure, obtaining αexact requires
additional effort, and hence we may want to avoid it. Based on the theory
presented, we know that in any case, the accuracy (in the strain energy
or displacement norm) of a combined model is always better than either
FEM or NS-FEM for any α ∈ (0, 1). This guarantees that we can get a better
solution only using any α ∈ (0, 1). Therefore, if we only need to improve
the accuracy of the solution, we may simply use directly an α ∈ 0.45 : 0.65
in 2D problems and α ∈ 0.60 : 0.80 in 3D problems for any meshes without
searching for the αexact. This range of α is found preferable by numerical
“experiments” on different linear problems using αFEM-T3 and αFEM-T4.
By this method, the α chosen will not be optimal and the solution may not
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The αFEM 337

be very close to the exact one, but the accuracy of the solution is often much
better than the FEM using the same mesh.

For nonlinear problems of large deformation, it is generally difficult
to obtain the “exact” solution for all loading stages. Our aim is thus to
improve the accuracy of the solution. Similarly to linear problems, we
recommend using an α ∈ 0.45 : 0.65 (in 2D problems) and α ∈ 0.60 : 0.80
(in 3D problems) for nonlinear analyses. The tested examples have so far
shown that for such an α, the accuracy of the solution is often much better
than the FEM. Alternatively, we can also use the optimal value α found
from a linearized problem using the procedures given in Section 9.4.1 and
apply it for all the loading stages of the large deformation problem. The
α chosen in this manner is not optimal for the nonlinear problem and we
will not obtain a nearly exact solution, but it is still much better than the
standard FEM solution using the same mesh.

9.4.2 Standard Patch Tests

9.4.2.1 Standard Patch Test for 2D Problems

An irregular domain discretization of a square patch using 58 three-node
triangular elements is shown in Figure 9.3. The displacement norm (Equa-
tion 4.63) is used to examine the results computed. The parameters are
taken as E = 100, ν = 0.3 and the linear displacement field is given by
Equation 5.11.

It is found that αFEM-T3 can pass the standard patch test within machine
precision regardless of the value of α ∈ [0, 1] used, as shown in Table 9.1.

10

9

8

7

6

5

4

3

2

1

0
0 2 4 6 8 10

FIGURE 9.3 Domain discretization of a square patch using three-node triangular elements.
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338 Smoothed Finite Element Methods

TABLE 9.1

Error in Displacement Norm ed (%) for the Standard 2D Patch Test

α = 0.0 α = 1.0

(NS-FEM-T3) α = 0.2 α = 0.4105a α = 0.6038a α = 0.8 (FEM-T3)

0.2757e-12 1.6029e-12 1.4327e-12 2.1737e-12 0.7946e-12 1.6499e-12

a Arbitrarily generated number.

This example confirms Property 1 for 2D problems: αFEM-T3 is displace-
ment compatible, linearly conforming (capable of producing exactly any
linear displacement field for anyα ∈ [0, 1]). Therefore,αFEM-T3 is at least of
second-order accuracy in displacement solution. Together with the proven
stability, αFEM-T3 will always converge to any exact solution that can be
approximated via a piecewise linear interpolation, and the convergence
rate will be at least 2 for the displacement solution.

9.4.2.2 The Irons First-Order Patch Test for 3D Problems

The Irons first-order patch test as presented in Section 6.5.4 is again used
here, but in this case for testing αFEM-T4. The displacement norm (Equa-
tion 4.63) is used to quantitatively examine the computed results, and the
energy error is defined by

ee(α) =
∣∣∣Ê(α) − Eexact

∣∣∣ , (9.23)

where the total strain energy of the αFEM-T4 solution Ê(α) is computed
using

Ê(α) = ẼFEM(α) + E
NS-FEM

(α)

= 1
2

Ne∑
i=1

(
ε̃i
)T cε̃iα

3Ve
i + 1

2

Nn∑
k=1

(εk)
T cεk(1 − α3)Vs

k , (9.24)

where Ne is the total number of elements used in the problem domain, Nn
is the total number of nodes of the model, ε̃i is the strain of the numerical
solution of the ith element, and εk is the smoothed strain of the numerical
solution for the kth node.

It is found that αFEM-T4 can pass the standard first-order patch test
within machine precision regardless of the value of α ∈ [0, 1], as shown in
Tables 9.2 and 9.3. There is no accuracy loss due to the different choices of
α values. This example confirms Property 1 for 3D problems.
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The αFEM 339

TABLE 9.2

Error in Displacement Norm ed (%) for Irons First-Order 3D Patch Test

α = 0.0

(NS-FEM-T4, α = 1.0

Tetrahedral Element) α = 0.2 α = 0.4083a α = 0.6149a α = 0.8 (FEM-T4)

0.08e-12 0.23e-12 0.82e-12 1.46e-12 13.06e-12 0.06e-12

a Arbitrarily generated number.

TABLE 9.3

Strain Energy Error ee for the Irons First-Order 3D Patch Test

α = 0.0

(NS-FEM-T4,

Tetrahedral Element) α = 0.2 α = 0.4083a α = 0.6149a α = 0.8 (FEM-T4)

2.55e-11 2.55e-11 2.55e-11 2.55e-11 2.55e-11 2.55e-11

a Arbitrarily generated number.

Property 9.9 FEM: First-Order Consistency

αFEM-T4 has first-order consistency, meaning that it can produce a linear
displacement field exactly. In other words, they are of second-order accu-
racy in displacement solution: errors are at the terms of second order or
above.

Property 9.10 αFEM-T4 Solution: Stability and Convergence

Owing to the stability given in Property 9.2 and the first-order consistence
given in Property 9.9, αFEM-T4 has a unique stable solution that converges
to the exact solution of the original solid mechanics problem defined in
Chapter 2. This confirms Theorem 4.1.

9.5 Numerical Examples

The errors in both displacement norm and energy norm defined in Equa-
tions 4.49 and 4.50 are used in this analysis for the examination of numerical
models. When the energy norm is used, we use the recovery strain solu-
tion for the S-FEM and αFEM models, and both raw and recovery strain
solutions for FEM models. Note that the strains at nodes ε̂(xj) for αFEM-T3
and αFEM-T4 are computed in the same way as those of NS-FEM-T3 and
NS-FEM-T4, respectively.
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340 Smoothed Finite Element Methods

Example 9.5.1: Cantilever Beam Subjected to a Tip Load: A
Convergence Study

The cantilever loaded at the end, which was described in Example 5.8.1, is
tested again but using the αFEM-T3, in comparison with a number of other
methods. The geometry and boundary conditions of the cantilever are plotted
in Figure 5.6. The mesh of quadrilateral and triangular elements is shown in
Figures 5.7a and 6.6, respectively. The exact strain energy of the problem is
known as 4.4746 Nm.

Following the procedures given in Section 9.4.1, we found that αexact = 0.6
at the intersection of two strain energy curves using two meshes with the same
aspect ratio (32 × 8 and 40 × 10), as shown in Figure 9.4.

Table 6.6 and Figure 9.5 compare the solution errors in displacement norm
obtained using αFEM-T3 (at αexact = 0.6), together with other methods. It is
seen that αFEM-T3 stands out clearly. When the mesh with h = 1.2 m is used,
the error of αFEM-T3 is about 1/125 of FEM-T3, 1/18 of FEM-Q4, and 2/9 of CS-
FEM-Q4. In terms of convergence rate, the rate of αFEM-T3 stands out clearly
with r = 4.2, which is much larger than the theoretical value of 2.0: a very
strong superconvergence in displacement norm.

Table 6.7 and Figure 9.6 compare the solution errors in energy norm obtained
using αFEM-T3 (at αexact = 0.6) with other methods. It is seen that the results
of αFEM-T3 are much more accurate than FEM-T3, FEM-T3-Re, and FEM-Q4,
and are slightly more accurate than those of the “star” performer ES-FEM-T3.
It is, however, less accurate than NS-FEM-T3, FEM-Q4-Re, and CS-FEM-Q4.
When the mesh with h = 1.2 m is used, the error in energy norm of αFEM-T3
is about 1/5.4 of FEM-T3, 1/2 of FEM-Q4, and 1/2 of FEM-T3-Re, but 1.3 times
FEM-Q4-Re and the best performer NS-FEM-T3. In terms of convergence rate,

0 0.2 0.4 0.6 0.8 1
4.1

4.2

4.3

4.4

4.5

4.6

α

St
ra

in
 en

er
gy

 (N
m

)

Mesh 32 × 8
Mesh 40 × 10
Mesh 48 × 12
Analytical solution

α = 0.6

FIGURE 9.4 The strain energy curves of three meshes with the same aspect ratios intersect
at αexact = 0.6 for the cantilever loaded at the end.
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FIGURE 9.5 Error in displacement norm ofαFEM-T3 (αexact = 0.6) in comparison with other
methods for the cantilever loaded at the end using the same set of nodes.
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FIGURE 9.6 Error in energy norm of αFEM-T3 (αexact = 0.6) in comparison with other
methods for the cantilever loaded at the end using the same set of nodes.

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
15

 1
0 

M
ay

 2
01

6 



342 Smoothed Finite Element Methods

the rate of the αFEM-T3 also stands out clearly with r = 1.56, which is much
larger than the theoretical value of 1.0: a very strong superconvergence also
in energy norm. This example clearly shows the outstanding performance of α
FEM using the triangular element mesh.

Example 9.5.2: Cook’s Membrane: Test for Membrane Elements

The Cook’s membrane problem [16] is also a widely used benchmark problem
for numerical methods. It is a clamped tapered panel subjected to an in-plane
shearing load resulting in deformation dominated by a bending response, as
shown in Figure 9.7. The material parameters used are Young’s modulus E = 1

Thickness = 1

(a)

(b)

16

44

48

F = 1

60

50

40

30

20

10

0
0 10 20 30 40 50

60

50

40

30

20

10

0
0 10 20 30 40 50

FIGURE 9.7 (a) Cook’s membrane problem and (b) its discretization using four-node
quadrilateral and three-node triangular elements.

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
15

 1
0 

M
ay

 2
01

6 



The αFEM 343
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FIGURE 9.8 The strain energy curves of four meshes with the same aspect ratios intersect
at αexact = 0.5085 for Cook’s membrane problem.

and Poisson’s ratio ν = 1/3. Two discretizations of Cook’s membrane prob-
lem using four-node quadrilateral and three-node triangular elements are also
shown in Figure 9.7. The exact solution of the problem is unknown. Under the
plane stress condition, the reference value of the vertical displacement at the
tip center is found to be 23.9642 [17] and the reference value of the strain
energy is 12.015 [16].

Using αFEM-T3 and following the procedures given in Section 9.4.1, we
found that αexact = 0.5085 at the intersection of strain energy curves using
meshes with the same aspect ratio as plotted in Figure 9.8. Table 9.4 and
Figure 9.9 compare the result of the displacement at the tip center obtained

TABLE 9.4

Results of Tip Displacement Obtained from Different Methods for Cook’s
Problem

Mesh 4 × 4 8 × 8 16 × 16 32 × 32

FEM-Q4 18.3086 22.0710 23.4370 23.8204
Qm6 [18] 23.0056 23.7006 23.8923 23.9402
FB [19] 22.0950 23.4370 23.8204 23.9163
QBI [20] 20.4654 22.9098 23.6766 23.8923
KF [21] 19.8903 22.6941 23.6047 23.8683
Qnew [17] 23.0775 23.7006 23.8923 23.9402
αFEM-T3 (αexact = 0.5085) 23.7006 24.0322 24.0053 23.9777
Reference value 23.9642 23.9642 23.9642 23.9642
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FIGURE 9.9 Convergence of tip displacement of αFEM-T3 (α = 0.5085) in comparison with
other methods for Cook’s membrane using the same set of nodes.

using αFEM-T3, with six published four-node quadrilateral elements: FEM-Q4,
Qm6-modified Wilson element [18], FB-one Gauss point with hourglass stabi-
lization [19], QBI-quintessential bending/incompressible element [20], KF-one
Gauss point with hourglass control [21], and Qnew—an improved stabilization
technique for the one-point quadrature integration method [17]. It can be seen
that the αFEM-T3 with αexact = 0.5085 clearly outperforms all these methods.

In addition to the results shown in Figure 9.9, we make a more detailed
comparison of αFEM-T3 with other elements for coarse meshes, and the results
in numbers are listed in Table 9.5. It is again found that αFEM-T3 at αexact =
0.5085 gives excellent performance compared to all the other methods.

Example 9.5.3: Semi-Infinite Plane: A Convergence Study

The semi-infinite plane subjected to a uniform pressure within a finite range
(−a ≤ x ≤ a) shown in Figure 9.10 is studied. The plane strain condition is
considered. The analytical stresses are given by [22]

σ11 = p
2π

[
2(θ1 − θ2) − sin 2θ1 + sin 2θ2

]
,

σ22 = p
2π

[
2(θ1 − θ2) + sin 2θ1 − sin 2θ2

]
,

τ12 = p
2π

[
cos 2θ1 − cos 2θ2

]
.

(9.25)
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The αFEM 345

TABLE 9.5

Results of Tip Displacement and Strain Energy Obtained from
Different Methods for Cook’s Problem

Tip Displacement Strain Energy

2 × 2 4 × 4 8 × 8 2 × 2 4 × 4 8 × 8

AT 19.67 (27)a 22.41 (75) 23.45 (243) 9.84 11.22 11.75
P-S 21.13 (18) 23.02 (50) 23.69 (162) 10.50 11.51 11.85
CH(0–1) 23.01 (18) 23.48 (50) 23.81 (162) 11.47 11.75 11.91
ECQ4/LQ6 23.05 (18) 23.48 (50) 23.81 (162) 11.48 11.75 11.91
HMQ/HQ4 21.35 (18) 23.04 (50) 23.69 (162) 10.61 11.52 11.85
FEMIXHB 22.81 (35) 23.52 (135) 23.92 (527) 11.27 11.79 11.97
AGQ6-I 23.07 23.68 23.87 — — —
AGQ6-II 25.92 24.37 24.04 — — —
QACM4 20.74 22.99 23.69 — — —
QACII6 25.92 24.37 24.04 — — —
αFEM-T3 (αexact = 0.5085) — 23.56 (50) 23.99 (162) — 11.77 12.00
Reference value 23.9642 23.9642 23.9642 12.015 12.015 12.015

a Number of DOFs denoted in parentheses.

H

θ1

r1

r2

θ2

–a a

p

O

A

O'

y

x

FIGURE 9.10 Semi-infinite plane subjected to a uniform pressure.

The directions of θ1 and θ2 are indicated in Figure 9.10. The corresponding
displacements can be expressed as

u1 = p(1 − ν2)

πE

[
1 − 2ν
1 − ν

[
(x + a)θ1 − (x − a)θ2

]+ 2y ln
r1
r2

]
,
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346 Smoothed Finite Element Methods

u2 = p(1 − ν2)

πE

[
1 − 2ν
1 − ν

[
y(θ1 − θ2) + 2H arctan

1
c

]
+ 2(x − a) ln r2

−2(x + a) ln r1 + 4a ln a + 2a ln(1 + c2)
]

, (9.26)

where H = ca is the distance from the origin to point O′, and c is a given
coefficient.

Due to the symmetry about the y -axis, the problem is modeled with a 5a × 5a
square with a = 0.2 m,The parameters used in the problem areYoung’s modulus
E = 105 N/m2, Poisson’s ratio ν = 0.3, c = 100, and p = 1 × 104 N/m2. The
symmetry boundary condition is imposed on the left side, and the bottom side
is constrained using the exact displacements given by Equation 9.26, The right
side is subjected to tractions computed from Equation 9.25. Figure 9.11 gives
the discretization of the domain using four-node quadrilateral and triangular
elements, respectively. The exact strain energy of the problem is known as
45.585 Nm.

Following the procedures given in Section 9.4.1, we found that αexact = 0.48
at the intersection of strain energy curves using meshes with the same aspect
ratio as shown in Figure 9.12.

Table 9.6 and Figure 9.13 show the convergence of strain energy of αFEM-
T3 (at αexact = 0.48) in comparison with different methods. It is seen that the
results of αFEM-T3 are almost identical with the analytical solution, even with
the coarse meshes. From Figures 9.14 and 9.15, it is observed that all the
computed displacements and stresses using αFEM-T3 (at αexact = 0.48) agree
well with the analytical solutions.

Table 9.7 and Figure 9.16 compare the solution error in displacement norm
obtained using the αFEM-T3 (at αexact = 0.48) with other methods. In terms

0 0.2 0.4 0.6 0.8 1
−1

−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0
(a) (b)

0 0.2 0.4 0.6 0.8 1
−1

−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0

FIGURE 9.11 Domain discretization of the semi-infinite plane using: (a) three-node trian-
gular elements and (b) four-node quadrilateral elements.
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FIGURE 9.12 The strain energy curves of three meshes with the same aspect ratios intersect
at αexact = 0.48 for the semi-infinite plane subjected to a uniform pressure.

of accuracy, the αFEM-T3 and the start performer ES-FEM-T3 stand out clearly.
When the finest mesh (h = 0.0373 m) is used, the error of the αFEM-T3 is about
1/3.6 of FEM-T3 and 1/1.4 of FEM-Q4. In terms of convergence rate, the rate
of αFEM-T3 is also larger than that of FEM-T3.

Table 9.8 and Figure 9.17 give the solution error in energy norm obtained
using the αFEM-T3 (at αexact = 0.48), together with those obtained using other
methods. In terms of accuracy, the results of αFEM-T3 stand out clearly together
with NS-FEM-T3. When the finest mesh (h = 0.0373 m) is used, the error of
αFEM-T3 is about 1/3.8 of FEM-T3, 1/2.3 of FEM-Q4, 1/1.6 of FEM-T3-Re, and

TABLE 9.6

Strain Energy (Nm) Obtained Using Different Methods for the Semi-Infinite
Plane Subjected to a Uniform Pressure Using the Same Distribution of Nodes

Analytical

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Solution

DOFs 194 410 706 1082 1538
FEM-T3 43.0502 44.3177 44.8352 45.0938 45.2411 45.5850
FEM-Q4 44.6815 45.1768 45.3586 45.4452 45.4932 45.5850
CS-FEM-Q4 44.8423 45.2543 45.4043 45.4753 45.5146 45.5850
NS-FEM-T3 46.8508 46.2003 45.9577 45.8401 45.7739 45.5850
ES-FEM-T3 45.1151 45.4122 45.5056 45.5458 45.5665 45.5850
αFEM-T3 (αexact = 0.48) 45.5744 45.6290 45.6322 45.6291 45.6258 45.5850
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FIGURE 9.13 Convergence of strain energy of αFEM-T3 (αexact = 0.48) in comparison with
other methods for the semi-infinite plane subjected to a uniform pressure.
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FIGURE 9.14 Computed and exact displacements of the semi-infinite plane subjected to a
uniform pressure using the αFEM-T3 (αexact = 0.48).
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FIGURE 9.15 Computed and exact stresses of the semi-infinite plane subjected to a uniform
pressure using the αFEM-T3 (αexact = 0.48).

even 1/12 of FEM-Q4-Re. In terms of convergence rate, the superconvergence is
observed for αFEM-T3 with a rate of 1.21 that is much larger than the theoretical
value of 1.0.

Next, we test αFEM-T3 for volumetric locking by varying the Poisson’s ratio
from 0.4 to 0.4999999. As presented in Property 9.8, it is recommended to
use α = 0 or a very small α = 0.5 − ν. Table 9.9 and Figure 9.18 show the
displacement norm versus different Poisson’s ratios for αFEM-T3, FEM-T3, and

TABLE 9.7

Error in Displacement Norm Obtained Using Different Methods for the
Semi-Infinite Plane Subjected to a Uniform Pressure Using the Same Set of Nodes

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

h (m) 0.1118 0.0745 0.0559 0.0447 0.0373
FEM-T3 7.94e-04 4.07e-04 2.46e-04 1.64e-04 1.17e-04
FEM-Q4 3.77e-04 1.76e-04 1.01e-04 6.56e-05 4.60e-05
CS-FEM-Q4 3.53e-04 1.63e-04 9.36e-05 6.06e-05 4.24e-05
NS-FEM-T3 4.92e-04 2.19e-04 1.24e-04 7.95e-05 5.54e-05
ES-FEM-T3 2.84e-04 1.25e-04 6.95e-05 4.40e-05 3.03e-05
αFEM-T3 (αexact = 0.48) 2.53e-04 1.20e-04 7.00e-05 4.57e-05 3.21e-05
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FIGURE 9.16 Error in displacement norm of αFEM-T3 (αexact = 0.48) in comparison
with other methods for the semi-infinite plane subjected to a uniform pressure using the
same set of nodes.

FEM-Q4 (the mesh with 353 nodes and h = 0.0559 m is used). The results
show that the αFEM-T3 can avoid the volumetric locking, while FEM-T3 and
FEM-Q4 clearly suffered from volumetric locking. The results of αFEM-T3 using
α = 0.5 − ν are a little better than those obtained by simply using α = 0, and
hence α = 0.5 − ν is recommended. Note also that using α = 0.5 − ν can also
help to stabilize the solution for dynamic problems.

TABLE 9.8

Error in Energy Norm Obtained Using Different Methods for the Semi-Infinite
Plane Subjected to a Uniform Pressure Using the Same Set of Nodes

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

h (m) 0.1118 0.0745 0.0559 0.0447 0.0373
FEM-T3 1.3498 0.9540 0.7372 0.6012 0.5081
FEM-Q4 0.8772 0.5946 0.4515 0.3648 0.3066
CS-FEM-Q4 0.6138 0.3631 0.2529 0.1924 0.1547
NS-FEM-T3 0.4284 0.2627 0.1883 0.1466 0.1200
ES-FEM-T3 0.5976 0.3585 0.2527 0.1941 0.1572
FEM-T3-Re 0.9009 0.5326 0.3662 0.2755 0.2196
FEM-Q4-Re 0.6337 0.3744 0.2604 0.1982 0.1596
αFEM-T3 (αexact = 0.48) 0.5052 0.3035 0.2143 0.1649 0.1338
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FIGURE 9.17 Error in energy norm of αFEM-T3 (αexact = 0.48) in comparison with other
methods for the semi-infinite plane subjected to a uniform pressure using the same set of
nodes.

Example 9.5.4: Cantilever Beam Subjected to a Tip Load: A Large
Deformation

The use of αFEM-T3 for large deformation analysis of a cantilever beam sub-
jected to a concentrated tip load is now examined. The size of the beam is

TABLE 9.9

Error in Displacement Norm versus Different Poisson’s Ratios for the
Semi-Infinite Plane Subjected to a Uniform Pressure (×10−4)

Poisson’s αFEM-T3 αFEM-T3

Mesh Ratios α = 0 α = 0.5 − ν FEM-T3 FEM-Q4

12 × 12 ν = 0.4 1.24 3.34 1.12
12 × 12 ν = 0.49 1.25 1.21 14.28 4.43
12 × 12 ν = 0.499 1.29 1.28 33.09 19.62
12 × 12 ν = 0.4999 1.30 1.29 42.44 41.86
12 × 12 ν = 0.49999 1.30 1.30 45.78 54.65
12 × 12 ν = 0.499999 1.30 1.30 47.18 62.10
12 × 12 ν = 0.4999999 1.30 1.30 47.42 64.10
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FIGURE 9.18 Error in displacement norm versus different Poisson’s ratios of the material
for the semi-infinite plane subjected to a uniform pressure (the mesh with 353 nodes and
h = 0.0559 is used).

(10 cm × 2 cm) and is initially discretized using a mesh of 20 × 4. The related
parameters are taken as E = 3.0 × 107 N/cm2 and ν = 0.3. The analysis based
on the total Lagrange formulation under the plane strain condition is carried
out using 20 increment steps (n = 20) with ΔF = 10 KN in each step.

Figure 9.19 plots the initial and final configurations after 20 steps of
increment of the deformation using αFEM-T3 with α = 0.6. Table 9.10 and
Figure 9.20 show the relation between the tip deflection and the load step.
The simulation converges in a very rapid speed and, in each load increment,
less than five iterations are performed. It can be seen that, with the same set of
nodes, the FEM-T3 model behaves much stiffer than FEM-Q4. The results show
that the nonlinear effect makes the cantilever beam to behave much stiffer,
compared to the linear solutions with the increase of loading. The results of
FEM-Q4 are bounded by those of αFEM-T3 using α = 0.45 and α = 0.65 in a
very small range. When α = 0.60 or α = 0.65 is used, the αFEM-T3 solution is
quite close to that of FEM-Q4. This shows that αFEM-T3 with α ∈ 0.45 : 0.65
also works well in the 2D nonlinear analysis compared to the solution of
FEM-Q4.

Example 9.5.5: The 3D Lame Problem: A Convergence Study

The 3D Lame problem described in Example 6.7.5 is used again in this exam-
ination, but in this case for testing αFEM-T4. As the problem is spherically
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FIGURE 9.19 Initial and final configurations of the cantilever beam subjected to a tip load.

symmetrical, only one-eighth of the sphere model is used as shown in Fig-
ure 6.34 and symmetry conditions are imposed on the three mirror symmetric
planes. Following the procedures given in Section 9.4.1, we first compute the
strain energy curves using different meshes of elements of the same aspect ratio,
and the results are plotted in Figure 9.21. It is found that the strain energy curves

TABLE 9.10

Tip Deflection (cm) at the Loading Steps for the Cantilever Beam
Subjected to a Concentrated Tip Load

αFEM-T3 αFEM-T3 αFEM-T3

Load FEM-T3 FEM-T3 FEM-Q4 FEM-Q4 (α = 0.45) (α = 0.60) (α = 0.65)

Step (Linear) (Nonlinear) (Linear) (Nonlinear) (Nonlinear) (Nonlinear) (Nonlinear)

n = 2 0.2518 0.2440 (3)a 0.2989 0.2841 (3) 0.3015 (3) 0.2879 (3) 0.2828 (3)
n = 4 0.5037 0.4569 (3) 0.5977 0.5225 (3) 0.5511 (3) 0.5286 (3) 0.5204 (3)
n = 6 0.7555 0.6467 (3) 0.8966 0.7387 (3) 0.7803 (3) 0.7475 (3) 0.7356 (3)
n = 8 1.0074 0.8272 (3) 1.1955 0.9541 (4) 1.009 (4) 0.9657 (4) 0.9501 (4)
n = 10 1.2592 1.0101 (4) 1.4943 1.1614 (4) 1.2310 (4) 1.1761 (4) 1.1563 (4)
n = 12 1.5111 1.1847 (4) 1.7932 1.3684 (4) 1.4531 (4) 1.3864 (4) 1.3623 (4)
n = 14 1.7629 1.3589 (4) 2.0921 1.5754 (4) 1.6751 (4) 1.5966 (4) 1.5682 (4)
n = 16 2.0148 1.5330 (4) 2.3909 1.7821 (4) 1.8932 (5) 1.8047 (5) 1.7740 (4)
n = 18 2.2666 1.7069 (4) 2.6898 1.9844 (5) 2.1111 (5) 2.0114 (5) 1.9753 (5)
n = 20 2.5185 1.8795 (5) 2.9886 2.1872 (5) 2.3280 (5) 2.2173 (5) 2.1772 (5)

a The number in parentheses shows the number of iterations.

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
15

 1
0 

M
ay

 2
01

6 



354 Smoothed Finite Element Methods

0 5 10 15 20 
0 

0.5 

1 

1.5 

2 

2.5 

3 

Load step 

Ti
p 

de
fle

ct
io

n 
(c

m
)  

FEM-Q4 (linear)
FEM-T3 (linear)
FEM-T3 (nonlinear)
FEM-Q4 (nonlinear)
αFEM-T3 (α = 0.45)
αFEM-T3 (α = 0.60)
αFEM-T3 (α = 0.65)

FIGURE 9.20 Tip deflection (cm) versus the loading steps of the cantilever beam subjected
to a tip load.
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FIGURE 9.21 Strain energy curves of meshes with the same aspect ratios intersect at
αexact = 0.7 for the hollow sphere subjected to inner pressure.
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FIGURE 9.22 Distribution of the radial displacement of the hollow sphere subjected to
inner pressure using αFEM-T4 (αexact = 0.7).

versus α ∈ [0, 1] using three meshes intersect each other at αexact = 0.7. Fig-
ures 9.22 and 9.23 show that the distribution of the displacement and stresses
using αFEM-T4 (at αexact = 0.7) agree very well with the analytical solution.
Compared to the αexact = 0.6 found for the 2D cantilever, we observed that
for 3D problems, we need smaller node-based smoothing operation to reduce
the softening effects because FEM-T4 is less stiff than FEM-T3, as discussed in
Remark 8.5.

Table 6.12 and Figure 9.24 show the convergence of strain energy of αFEM-
T4 (at αexact = 0.7) in comparison with other methods. It is again seen that the
strain energies obtained using the αFEM-T4 are almost identical to the analytical
solution (Eexact = 6.305 × 10−2) even when very coarse meshes are used.

Table 6.13 and Figure 9.25 provide the solution error in displacement norm
obtained using the αFEM-T4 (at αexact = 0.7), together with other methods. It is
seen that the αFEM-T4 stands out clearly. When the third mesh (h ≈ 0.156 m) is
used, the error of the αFEM-T4 is about 3/10 of FEM-T4, and even 9/10 of FEM-
H8. In terms of convergence rate, the αFEM-T4 stands out clearly with a rate
of r = 2.22, which is much larger than the theoretical value of 2.0 and much
higher than even the FEM-H8 (r = 2.05): a quite strong superconvergence in
displacement norm.

Table 6.14 and Figure 9.26 compare the solution error in energy norm
obtained using the αFEM-T4 (at αexact = 0.7) with those of other methods.
It is found that the results of αFEM-T4 are only less accurate than those of
NS-FEM-T4 but more accurate than those of FEM-H8 and FEM-T4. When the
third mesh (h ≈ 0.156 m) is used, the error of the αFEM-T4 solution is about
1/2.5 of FEM-T4, 1/2 of the FEM-H8 solution, 1/1.4 of the FEM-T4-Re solution,
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FIGURE 9.23 Distribution of the radial and tangential stresses in the hollow sphere subjected
to inner pressure using αFEM-T4 (αexact = 0.7).
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FIGURE 9.24 Convergence of strain energy solution of the αFEM-T4 (αexact = 0.7) in
comparison with other methods for the hollow sphere subjected to inner pressure.
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FIGURE 9.25 Error in displacement norm of αFEM-T4 (αexact = 0.7) in comparison with
other methods for the hollow sphere subjected to inner pressure.
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FIGURE 9.26 Error in energy norm of the solution obtained using αFEM-T4 (αexact = 0.7)

in comparison with other methods for the hollow sphere subjected to inner pressure.
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358 Smoothed Finite Element Methods

or 1/1.4 of the FEM-H8-Re solution. In terms of convergence rate, the rate of
αFEM-T4 also stands out clearly, r = 1.38, which is much larger than the theo-
retical value of 1.0 and much higher than even the FEM-H8 (r = 0.95): a strong
superconvergence.

Example 9.5.6: The 3D Cubic Cantilever: Accuracy Study

The 3D cantilever of cubic shape subjected to a uniform pressure on its upper
face described in Example 6.7.6 is again considered. A discretization of the
3D cubic cantilever using tetrahedral elements is shown in Figure 6.40. The
exact solution of the problem is unknown. By incorporating the solutions of
hexahedral superelement elements and the procedure of Richardson’s extrap-
olation, Almeida Pereira [23] has given an approximately “exact” solution in
strain energy of 0.950930. In addition, using the standard FEM and a very fine
mesh with 30,204 nodes and 20,675 ten-node tetrahedron elements, another
reference solution of the strain energy is found to be E = 0.9486. This fine FEM
model also gives a reference solution of 3.3912 for the deflection at point A
located at (1.0, 1.0, −0.5).

From Figure 9.27, it is found that the strain energy curves using three meshes
with the same aspect ratio versus α ∈ [0, 1] intersect at αexact = 0.62. Table
6.15 and Figure 9.28 show the convergence of strain energy of αFEM-T4
(αexact = 0.62) in comparison with four different methods. It is again seen that
the strain energies obtained using αFEM-T4 are very close to the reference
solution (Eref = 0.950930), even when coarse meshes are used.
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Richardson extrapolation
Reference (30,204 nodes, 20,675 triangular eles (10 nodes))

α = 0.62

FIGURE 9.27 The strain energy curves of three meshes with the same aspect ratios to find
αexact = 0.62 for the cubic cantilever.
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FIGURE 9.28 Convergence of the strain energy solutions of αFEM-T4 (αexact = 0.62) in com-
parison with other methods for the cubic cantilever subjected to a uniform pressure on the
top surface.

Table 6.16 and Figure 9.29 show the convergence of the tip deflection at
point A(1, 1, −0.5) obtained using the αFEM-T4 (at αexact = 0.62), together
with other different methods for comparison. It is again seen that the deflection
solutions of αFEM-T4 are very close to the reference solution (3.3912) even
when using the coarse meshes.

Example 9.5.7: The 3D L-shaped Block: Accuracy Study

The 3D cubic block with a smaller cubic hole subjected to a surface traction q
described in Example 6.7.7 is again considered. Due to the double mirror sym-
metry of the problem, only a quarter of the domain is modeled, which becomes
a 3D L-shaped block as shown in Figure 6.43. The analysis is performed using
dimensionless input data: q = 1, a = 1, E = 1, and ν = 0.3. For this problem,
the strain energy of 6.1999 given by Cugnon [24] is considered as the ref-
erence solution. In addition, using standard FEM and a very fine mesh with
33,641 nodes and 22,862 ten-node tetrahedron elements, another reference
solution of the strain energy has been found to be 6.1916.

From Figure 9.30, it is found that the strain energy curves using three meshes
with the same aspect ratio versus α ∈ [0, 1] intersect at αexact = 0.7.Table 6.17
and Figure 9.31 show the convergence of strain energy of αFEM-T4 (αexact =
0.7) in comparison with three different methods. It is again seen that the strain
energies obtained using αFEM-T4 are very close to the reference solution, even
when the coarse meshes are used.
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FIGURE 9.29 Convergence of the deflection at point A(1.0, 1.0, −0.5) of αFEM-T4 (αexact =
0.62) in comparison with other methods for the cubic cantilever subjected to a uniform
pressure on the top surface.

0 0.2 0.4 0.6 0.8 1

5.8

6

6.2

6.4

6.6

6.8

7

α

St
ra

in
 en

er
gy

Mesh 1 (403 nodes, 1459 eles)
Mesh 2 (642 nodes, 2491 eles)
Mesh 3 (1278 nodes, 5719 eles)
Reference solution (F. Cugnon)
Reference solution  (33,641 nodes, 22,862
eles (10 nodes))

α = 0.7

FIGURE 9.30 The strain energy curves of three meshes with the same aspect ratios to find
αexact = 0.7 for the L-shaped 3D problem.
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FIGURE 9.31 Convergence of the strain energy solutions of αFEM-T4 (αexact = 0.7) in
comparison with other methods for the L-shaped 3D problem.

Example 9.5.8: The 3D Cantilever Beam: A Large
Deformation Analysis

This example examines the αFEM-T4 for large deformation analysis of 3D solids.
The 3D cantilever beam with the size (10 cm×2 cm×2 cm) subjected to a
uniformly distributed load as presented in Example 8.6.3 is considered. The
cantilever beam is discretized using a mesh including 1322 nodes and 5802
tetrahedral elements.The related parameters are taken as E = 3.0 × 107 N/cm2

and ν = 0.3. The analysis is based on the total Lagrange formulation, and
is carried out using 10 increment steps (n = 10) with an increment of Δf =
4 KN/cm2 at each step.

Figure 9.32 displays the initial and final configurations of the 3D beam after
10 steps of loadings using αFEM-T4 with α = 0.7 ∈ 0.60 : 0.80. Table 9.11 and
Figure 9.33 show the tip deflections of the beam at various load steps obtained
using different methods. The simulation converges in a very rapid speed, and
in each load increment, only less than five iterations are performed. It can be
observed that the nonlinear effects make the cantilever beam behave stiffer
compared to the linear solutions. In the nonlinear analysis, when α = 0.7 is
used, the results of αFEM-T4 are softer than those of FEM-T4, and are very
close to those of FEM using eight-node hexahedral element (FEM-H8) using a
much finer mesh with 2304 nodes. The results of αFEM-T4 are found to be even
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FIGURE 9.32 Initial and final configurations of the 3D cantilever beam subjected to the
regular distributed load using four-node tetrahedral elements.

TABLE 9.11

Tip Deflection (cm) at the Loading Steps for the 3D Cantilever Beam
Subjected to a Regular Distributed Load

FEM-T4 FEM-T4 FEM-H8 αFEM-T4

(Linear) (Nonlinear) FS-FEM-T4 (Nonlinear) (α = 0.7)

Load (1322 (1322 (1322 (2304 (Nonlinear)

Step Nodes) Nodes) Nodes) Nodes) (1322 Nodes)

n = 1 0.2364 0.2295 (3)a 0.2365 (3) 0.2441 (3) 0.2472 (3)
n = 2 0.4728 0.4314 (3) 0.4430 (3) 0.4556 (3) 0.4606 (3)
n = 3 0.7092 0.6119 (3) 0.6277 (3) 0.6451 (3) 0.6521 (3)
n = 4 0.9456 0.7831 (3) 0.8038 (3) 0.8266 (3) 0.8358 (3)
n = 5 1.1819 0.9511 (3) 0.9818 (4) 1.0097 (4) 1.0211 (4)
n = 6 1.4183 1.1210 (4) 1.1516 (4) 1.1853 (4) 1.1990 (4)
n = 7 1.6547 1.2847 (4) 1.3206 (4) 1.3602 (4) 1.3763 (4)
n = 8 1.8911 1.4479 (4) 1.4891 (4) 1.5344 (4) 1.5529 (4)
n = 9 2.1275 1.6104 (4) 1.6569 (4) 1.7080 (4) 1.7289 (4)
n = 10 2.3639 1.7724 (4) 1.8242 (4) 1.8809 (4) 1.9041 (4)

a The number in parentheses shows the number of iterations.
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FIGURE 9.33 Tip deflection (cm) versus the loading steps of the 3D cantilever beam subjected
to a uniformly distributed load.

more accurate than that of FS-FEM-T4, in relation to the reference solution.This
shows that αFEM-T4 (α ∈ 0.60 : 0.80) also works effectively for 3D nonlinear
large deformation analysis.

9.6 Remarks

In this chapter, an αFEM with a scale factor α using three-node triangular
elements (αFEM-T3) for 2D and four-node tetrahedral elements (αFEM-T4)
for 3D is presented. Through the theoretical study and numerical examples
in this chapter, the following remarks may be made.

Remark 9.1 αFEM: Stable, Variationally Consistent, and of Second-Order
Accuracy

αFEM-T3 and αFEM-T4 are stable, variationally consistent, and of at least
second-order accuracy. It uses compatible displacement field, and hence
can reproduce linear field exactly for any α ∈ [0, 1].
Remark 9.2 αFEM: Delivers Both Upper and Lower Bounds

αFEM-T3 and αFEM-T4 are equipped with a scaling factor α that controls
the contributions from NS-FEM and FEM models. When the factor α varies
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364 Smoothed Finite Element Methods

from 0 to 1, a continuous function of solutions from the solution of the NS-
FEM model to that of the FEM can be obtained. When α = 0, αFEM-T3 and
αFEM-T4 become the NS-FEM, and the strain energy Ê(α = 0) is an upper
bound solution in terms of the exact strain energy, when the model has
sufficient smoothing effects. When α = 1, αFEM-T3 and αFEM-T4 become
the standard FEM, and the strain energy Ê(α = 1) is a lower bound of the
exact strain energy.

Remark 9.3 αFEM: For Nearly Exact Solutions

Aunique approach has been proposed forαFEM-T3 andαFEM-T4 to obtain
the nearly exact solution in strain energy for linear elasticity problems. This
approach uses two coarse meshes with the same aspect ratio to search for an
approximate αexact. αFEM-T3 and αFEM-T4 with such an αexact are capable
of providing a “nearly exact” solution in strain energy using a discrete
model with very coarse meshes.

Remark 9.4 αFEM: Easy to Implement and No Numerical Integration

The implementation of αFEM-T3 (or αFEM-T4) in practical applications is
relatively easy and quite similar to the standard FEM because (1) automatic
refinement from an initial coarse mesh to obtain the meshes of T3 and T4
elements with the same aspect ratio is readily available in many existing
programs; (2) αFEM-T3 (or αFEM-T4) uses the strain–displacement matri-
ces B̃ of the standard FEM and area (or volume) of elements to compute
the system stiffness matrix; and (3) no new numerical integration is nec-
essary. The αFEM-T3 (or αFEM-T4) is found very promising and can be
easily incorporated into the existing commercial software packages with a
little modification.

Remark 9.5 αFEM: Volumetric Locking Free

For plane strain problems with nearly incompressible materials, we recom-
mend the use of α = 0 or a very small α = 0.5 − ν to solve the volumetric
locking problem.

Remark 9.6 αFEM: Works Well for Nonlinear Problems

αFEM-T3 and αFEM-T4 can be used to obtain accurate solutions for
nonlinear problems of large deformation.

Remark 9.7 αFEM: Works Well with Triangular Types of Elements and
Hence Suits Well for Adaptive Analysis

The αFEM-T3 (or αFEM-T4) is suitable also for adaptive analysis as it
uses only triangular and tetrahedral elements that can be automatically
generated for complicated domains.
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The αFEM 365

Remark 9.8 Efficient Search for αexact: An Open Topic

Searching efficiently for a good approximation of αexact is still an open
topic. If a more efficient scheme can be devised, αFEM-T3 and αFEM-T4
can find even much wider applications, simply because we can tune the
model as we wish. An α ∈ 0.45 : 0.65 (for 2D) and α ∈ 0.60 : 0.80 (for 3D)
are recommended for usual engineering problems. In general, if the solid
is heavily constrained, the α should be smaller, and vice versa.

Remark 9.9 Efficiency: Larger Bandwidth

The αFEM has the same bandwidth as the NS-FEM-T3 (or NS-FEM-T4) that
is much larger than ES-FEM-T3 (or FS-FEM-T4), and hence the efficiency
will be affected. If the αexact can be efficiently found, it is not a problem,
because producing the nearly exact solution can make it an ultimate winner.
Otherwise, ES-FEM-T3 and FS-FEM-T4 can still be good competitors.

Finally, we note that there is still very big room for improvement ofαFEM,
and some improvised methods can be developed along this line in future.
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10
S-FEM for Fracture Mechanics

10.1 Introduction

In previous chapters, we have introduced a number of S-FEM mod-
els and demonstrated the excellent properties and performance of these
models for general problems of solid mechanics defined (by default)
in a Lipschitzian domain (i.e., not singular). This chapter aims to extend
the application of these S-FEM models for a particular class of prob-
lems: fracture mechanics [1] where there are singularities caused by
non-Lipschitzian domains such as domains containing cracks and re-
entrants. We consider in this chapter only “sharp” cracks whose two
surfaces are in-line. We will deal with the most essential and important
aspects of fracture mechanics: creation of the singular stress field at the
crack-tip. Such fracture problems have been well studied using FEM [1–
3] making use of the so-called quadratic singular elements (T6 or Q8),
and many of these theories and techniques will be used in this chap-
ter. S-FEM models for fracture problems were devised and advanced
recently in Refs. [4–7] by using a basic mesh of three-node linear tri-
angular (T3) elements, and these works will be closely followed in this
chapter.

As shown in previous chapters, in all these S-FEM formulations, one
needs only the values (not the derivatives) of the assumed displacement
functions on the boundaries of the smoothing domains. Making use of
this important feature, a new technique called the “enriched linear PIM”
for constructing shape functions was suggested [4] to formulate a special
“crack-tip element” that can produce a proper order of stress singularity
near the crack-tip and yet be compatible with the surrounding linear T3
elements. Singular ES-FEM (sES-FEM) [4,5,7] and singular NS-FEM (sNS-
FEM) [6] were then formulated for computing the J-integral (or energy
release rate) and stress intensity factors (SIFs) of fracture problems of mode
I, mode II, mixed mode, and interfacial mode. One of the distinct features
of these works is that they use a basic mesh of T3 elements that can be
generated automatically for problems with complicated geometry. The sys-
tem stiffness matrix is then computed using the smoothed strains over the
smoothing domains associated with the edges or nodes of the triangular
elements. The procedure for regular elements not directly connected to

367
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368 Smoothed Finite Element Methods

the crack-tip is exactly the same as that in previous chapters. For crack-tip
elements connected directly to the crack-tip, further division of smooth-
ing domains may be required to better capture the singular feature of the
strain field at the crack-tip. The SIFs for mode I, mode II, mixed mode, and
the interfacial mode have been calculated based on the area-path integrals
looping around the crack-tip, based on the interaction integral method. A
number of examples with all these fracture modes have been presented.
The results have demonstrated that (1) the sNS-FEM-T3 can produce upper
bound solutions for fracture problems, and (2) the sES-FEM-T3 produces
ultra-accurate solutions that are much more accurate than the FEM-T3 and
even more accurate than the singular quadratic FEM-T6 models.

10.2 Singular Stress Field Creation at the Crack-Tip

The singular S-FEMs (sES-FEM and sNS-FEM) formulated in this chapter
use a basic mesh of three-node linear T3 elements that can be generated
automatically for problems with complicated geometry. Linear interpo-
lation for the displacement field is used for the entire problem domain,
except for one layer of five-node triangular (T5) crack-tip elements spe-
cially designed to simulate the strain (and hence the stress) singularity
near the crack-tip. The creation of such a singular stress field consists of
two steps: displacement interpolation along the crack-tip edge of the T5
elements using the enriched linear PIM and the displacement field creation
within the T5 crack-tip elements.

10.2.1 Enriched Linear PIM for Interpolation along the Crack-Tip Edge

The most fundamental issue in modeling linear fracture mechanics prob-
lems using the FEM or any other numerical methods including the S-FEM
is to simulate properly the singularity stress field near the crack-tip while
maintaining a certain order of consistency. When the polynomial basis
functions are used in the conventional finite elements, consistency can
be easily achieved, but strain field singularity at the crack-tip cannot be
produced, for which we have to resort to the so-called singular elements.
Currently, the most widely used singular element in the standard FEM
setting is the quadratic crack-tip element with the mid-edge nodes being
shifted on the element edge by a quarter edge length toward the crack-tip.
The singularity is then achieved nicely by the well-known isoparametric
mapping procedure [2,3]. There are two types of such crack-tip elements
widely used in fracture mechanics problems: eight-noded quadrilateral
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FIGURE 10.1 The schematic of the quadratic eight-node quadrilateral (Q8) and six-node
triangular (T6) crack-tip elements widely used in the FEM. The stress singularity is achieved
by shifting the regular middle edge node by a quarter-length of the element toward the
crack-tip.

(Q8) and six-noded triangular (T6) elements, as shown in Figure 10.1. When
these types of elements are used, the entire element mesh has to be, in prin-
ciple, quadratic elements of the same type. Otherwise, proper additional
measures have to be used to ensure compatibility of the displacement field.

In our singular S-FEM (sS-FEM) models [4–7], however, no mapping is
used, and the stress singularity is created by a simple PIM with extra basis
functions of proper fractional order polynomials. The basic mesh used in
an S-FEM consists of linear T3 elements with a layer of specially designed
crack-tip T5 elements. Figure 10.2a shows a typical layer of special crack-
tip elements used in an S-FEM model for fracture problems with a crack,
where the crack-tip is located at node 1 and the surface of the crack is
defined by the free edges of the triangular elements. Because we use three-
node triangular mesh, such a meshing and nodal arrangement can always
be done without any technical difficulty.

In the sS-FEM, we add in a node on each edge of the triangular elements
that is connected to the crack-tip node (called the crack-tip edge), as shown
in Figure 10.2a. The location of the added intermediate node can be in
general at any point within the crack-tip edge, as shown in Figure 10.2b.
Therefore, the crack-tip element has a total of five nodes, and is termed as
T5 elements. Based on such an S-FEM setting, the displacement field, for
example the component u, at any point of interest on a crack-tip edge of
length le (>0) can be approximated using the following “enriched linear
PIM”:

uh = c0 + c1r + c2
√

r, (10.1)

where r is the radial coordinate originated at the crack-tip (node 1),
and ci (i = 0, 1, 2) are the three constants that are yet to be determined.
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2 1 3 
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(b) 
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0 < λ < 10 
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r 

FIGURE 10.2 Crack-tip configuration for S-FEM models using a basic mesh of triangular
elements. (a) One layer of five-node triangular (T5) crack-tip elements with one additional
node is added on each edge leading to the crack-tip (called the crack-tip edge); (b) interpolation
on a crack-tip edge with three nodes (node 2 can be in general anywhere on the edge); (c) a
special case when node 2 is located at one-quarter edge length (similar to the FEM).

Clearly, the assumed displacement using Equation 10.1 is at least linearly
complete with respect to the radial coordinate. Using Equation 10.1, the
displacements at nodes 1, 2, and 3 can now be expressed as follows.

At node 1 where r = 0, we have

u1 = c0. (10.2)

At node 2 where r = λle:

u2 = c0 + c1λle + c2
√
λle. (10.3)
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At node 3 where r = le:

u3 = c0 + c1le + c2
√

le, (10.4)

where ui (i = 1, 2, 3) are the three nodal displacements, and the parameter
λ ∈ (0, 1) controls the location of node 2. Solving this simultaneous system
of three Equations 10.2 through 10.4 for constants ci, we can easily obtain

c0 = u1,

c1 = 1
λle

[(
−1 + (1 − λ)√λle√

λle − λ√le

)
u1 +

(
1 −

√
λle√

λle − λ√le

)
u2

+ λ
√
λle√

λle − λ√le
u3

]
,

c2 = 1√
λle − λ√le

[(λ− 1)u1 + u2 − λu3].

(10.5)

We will always have a solution for ci as long as le �= 0 and λ ∈ (0, 1). After
substituting ci (i = 1, 2, 3) back to Equation 10.1, we arrive at

uh =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + r
λle

(
−1 + (1 − λ)√λle√

λle − λ√le

)
+

√
r√

λle − λ√le
(λ− 1)

︸ ︷︷ ︸
φ1

r
λle

(
1 −

√
λle√

λle − λ√le

)
+

√
r√

λle − λ√le︸ ︷︷ ︸
φ2

r
λle

(
λ
√
λle√

λle − λ√le

)
− λ

√
r√

λle − λ√le︸ ︷︷ ︸
φ3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

T

⎧⎨
⎩

u1
u2
u3

⎫⎬
⎭ ,

(10.6)

where φi (i = 1, 2, 3) are called the “basic” nodal shape functions for these
three nodes on the crack-tip edge that can be written in the following
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row-matrix form:

Φ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + r
λle

(
−1 + (1 − λ)√λle√

λle − λ√le

)
+

√
r√

λle − λ√le
(λ− 1)

︸ ︷︷ ︸
φ1

r
λle

(
1 −

√
λle√

λle − λ√le

)
+

√
r√

λle − λ√le︸ ︷︷ ︸
φ2

r
λle

(
λ
√
λle√

λle − λ√le

)
− λ

√
r√

λle − λ√le︸ ︷︷ ︸
φ3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

T

= [φ1 φ2 φ3 ], (10.7)

where

φ1 = 1 + r
λle

(
−1 + (1 − λ)√λle√

λle − λ√le

)
+

√
r√

λle − λ√le
(λ− 1),

φ2 = r
λle

(
1 −

√
λle√

λle − λ√le

)
+

√
r√

λle − λ√le
,

φ3 = r
λle

(
λ
√
λle√

λle − λ√le

)
− λ

√
r√

λle − λ√le
.

(10.8)

Equation 10.6 can simply be written as

uh = [φ1 φ2 φ3
]
⎧⎨
⎩

u1
u2
u3

⎫⎬
⎭ . (10.9)

It is clear that these three nodal shape functions are (complete) linear
in r and “enriched” with a special basis

√
r that is capable of producing

the very much needed strain (hence stress) singularity field of the order
of 1

2 near the crack-tip. This can be easily verified by differentiation of the
assumed displacements. Note also that, in this formulation, the interme-
diate edge node 2 can be at any location on the edge controlled by factor
λ. Therefore, this formulation is very general and different from the usual
FEM crack-tip elements where the intermediate nodes must be located at
quarter lengths to the crack-tip. Another difference is that the usual FEM
crack-tip element achieves singularity by coordinate mapping, while the
sES-FEM achieves singularity via a very simple procedure of direct PIM
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with a proper fractional order basis term
√

r and no mapping is needed.
This approach used in the sS-FEM is thus much more direct and straightfor-
ward. This is because the same order singular strain field can be obtained
near the crack-tip, regardless of the location of node 2, as shown in the
direct interpolation formulation given above. In the numerical examples
section, we will show numerically that the location of the immediate node
is indeed not essential, and therefore we often chose to place the interme-
diate edge nodes at a quarter length position, as we have already used in
the FEM crack-tip elements.

When the location of the added node is at the one quarter length of the
edge or λ = 1/4, as shown in Figure 10.2c, we shall have

u =
⎡
⎢⎣1 + 2

r
le

− 3
√

r
le︸ ︷︷ ︸

φ1

−4
r
le

+ 4
√

r
le︸ ︷︷ ︸

φ2

2r
le

−
√

r
le︸ ︷︷ ︸

φ3

⎤
⎥⎦
⎧⎨
⎩

u1
u2
u3

⎫⎬
⎭ , (10.10)

where

φ1 = 1 + 2
r
le

− 3
√

r
le

,

φ2 = −4
r
le

+ 4
√

r
le

,

φ3 = 2r
le

−
√

r
le

.

(10.11)

Note again that in our formulation for S-FEM methods, placing the inter-
mediate edge nodes at a quarter length position is not a must, but merely
one choice that mimics the standard FEM crack-tip elements.

10.2.2 Displacement Interpolation within a Five-Node Crack-Tip Element

In our sS-FEM, we use linear T3 elements for areas without singularity,
and one layer of the specially designed singular T5 crack-tip elements to
produce the stress singularity behavior at the crack-tip. In three of the
crack-tip elements shown in Figure 10.3, we assume that

1. In the radial direction, the displacement varies with r via the
enriched form of Equation 10.9

2. In the tangential direction, the displacement varies linearly

We consider now only the element in the middle, element 1-4-2-3-5, as
shown in Figure 10.3. For the convenience of interpolation, we introduce
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2

4 5B

1

D 3γ

β

FIGURE 10.3 Displacement interpolation within a five-node crack-tip element (1-2-3-4-5):
Three T5 elements connected to the crack-tip node 1. The T5 crack-tip elements are varied
with r via Equation 10.9 in the radial direction (e.g., the direction along the lines 1-4-2; 1-β-γ;
1-B-D; 1-5-3) and linear in the tangential direction (e.g., the direction along the lines 4-5; 2-3).

two points D and B that are, respectively, the midpoints of lines 2-3 and
4-5 (see Figure 10.3). The displacements can be evaluated using the simple
linear PIM (averaging) as follows:

uB = 1
2
(u4 + u5), (10.12)

uD = 1
2
(u2 + u3), (10.13)

where ui (i = 1, 2, . . . , 5) are, respectively, the nodal displacements at
nodes of the crack-tip element.

For any point on the straight line 1-B-D, displacement is then interpolated
using Equation 10.9, but for line 1-B-D,

u = u1φ1 + uBφ2 + uDφ3. (10.14)

Substituting Equations 10.12 and 10.13 into the foregoing equation, we
have

u = u1φ1 + 1
2
(u4 + u5)φ2 + 1

2
(u2 + u3)φ3. (10.15)

Rearranging, the interpolation at any point on the line 1-B-D can be
written as follows:

u = u1φ1 + 1
2
φ3u2 + 1

2
φ3u3 + 1

2
φ2u4 + 1

2
φ2u5. (10.16)

Similarly, for any point on an arbitrary straight line originated from the
crack-tip node, 1-β-γ, where the position of β is on the line 4-5 and that ofγ is
on the line 2-3 as shown in Figure 10.3, the displacement is evaluated again
using Equation 10.9, whereas for line 1-β-γ, the displacement is evaluated
using

u = u1φ1 + uβφ2 + uγφ3. (10.17)
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The displacements at β and γ can be evaluated using the following linear
interpolation:

uβ =
(

1 − lβ−4

l4−5

)
u4 + lβ−4

l4−5
u5, (10.18)

uγ =
(

1 − lγ−2

l2−3

)
u2 + lγ−2

l2−3
u3, (10.19)

where li−j is the distance between two points i and j. Invoking the simple
fact that

lβ−4

l4−5
= lγ−2

l2−3
= α, (10.20)

we finally arrive at

u = φ1︸︷︷︸
N1

u1 + (1 − α)φ3︸ ︷︷ ︸
N2

u2 + αφ3︸︷︷︸
N3

u3 + (1 − α)φ2︸ ︷︷ ︸
N4

u4 + αφ2︸︷︷︸
N5

u5. (10.21)

This is the general formulation for displacement interpolation within a
crack-tip element. The general form of shape functions for the five-node
crack-tip element can be written as

N1 = φ1,

N2 = (1 − α)φ3,

N3 = αφ3,

N4 = (1 − α)φ2,

N5 = αφ2.

(10.22)

Because in our sS-FEM we do not need the derivatives of shape functions,
Equations 10.21 and 10.22 are all we need to compute the stiffness matrix
and create the numerical model for our sS-FEM, as we did in previous
chapters.

10.3 Possible sS-FEM Methods

Once a proper singular stress field is created, we can then create sS-FEM
models for linear fracture problems using various types of smoothing
domains. If cell-based smoothing domains (see Chapter 5) are used, we
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376 Smoothed Finite Element Methods

have a singular CS-FEM (sCS-FEM) model. If node-based smoothing
domains are used (see Chapter 6), we have an sNS-FEM model. Similarly,
we shall have an sES-FEM model (see Chapter 7), and an sFS-FEM model
(see Chapter 8). If partially node-based smoothing domains (see Chapter
9) are used, we even have a singular αFEM model. Because the differences
in all these models are mainly in the smoothing domains, this chapter
discusses only two sS-FEM models: sES-FEM and sNS-FEM, which have
distinct properties. The sNS-FEM can produce upper bound solutions, and
the sES-FEM can produce ultra-accurate solutions. Other types of models
can also be created with ease, by changing the types of properly formed
smoothing domains with proper numerical implementations.

10.4 sNS-FEM Models

As discussed in Chapter 6, the NS-FEM model uses smoothing domains
created based on nodes. Figure 10.4 shows schematically the construction
of node-based strain smoothing domains for sNS-FEM. For all the nodes
other than the crack-tip node, the treatments for the smoothing domains are
exactly the same as in the NS-FEM discussed in Chapter 6. For the crack-tip
node smoothing domain, however, special treatments are required to better

Field node Centroid of triangle

Ω s
tip

Ω s
k Γs

k

Mid-edge-point

k

Crack-tip

FIGURE 10.4 An sNS-FEM model. Basic mesh: linear T3 elements (solid lines). Node-based
smoothing domains are bounded by dashed lines. One layer of six T5 crack-tip elements is
used. Subdivisions for the smoothing domain of the crack-tip node may be needed.
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S-FEM for Fracture Mechanics 377

capture the singularity near the crack-tip. The following are four schemes
for the construction of subsmoothing domains (S-SDs) for the crack-tip
node smoothing domain.

10.4.1 Scheme 1: One-Layer Edge-Based Subdivision: sNS-FEM-T3(1)

Figure 10.5 shows the Scheme 1 for the subdivision of the smoothing
domain for the crack-tip node. It is clear that Scheme 1 divides the crack-
tip node smoothing domain into one layer of smoothing domains based
on the crack-tip element edges leading to the crack-tip node. In the partic-
ular case shown in Figure 10.5, we have seven subdivisions corresponding
to the seven element edges connecting the crack-tip node. For the crack-
tip edge on the boundary (crack surface), the sub-smoothing domain is a
half of that in the element on the boundary. The boundary S-SD is created
by connecting sequentially the following points: the crack-tip node, the
mid-edge-point, the centroid of the singular element on the edge, and then
returning to the crack-tip. For example, the S-SD(1) shown in Figure 10.5 is
created by connecting sequentially points #A, #B, #C, and #A.

For the inner crack-tip edge, the subsmoothing domain consists of two
halves of two elements sharing the edge. It is created by connecting sequen-
tially the following points: the crack-tip node, the centroid of one adjacent
singular element on the edge, the mid-edge-point, the centroid of another
adjacent singular element, and then returning to the crack-tip. For example,

Crack-tip

B

C
D

E
F

S-SD(3)

S-SD(4)

S-SD(5)
S-SD(6)

AS-SD(7)

S-SD(1)

S-SD(2)

FIGURE 10.5 Subdivision of the smoothing domain for the crack-tip node: Scheme 1:
one-layer edge-based subdivision. In this particular case, we have seven subdivisions
corresponding to the seven element edges connecting the crack-tip node (7 S-SDs).
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378 Smoothed Finite Element Methods

the S-SD(2) shown in Figure 10.5 is created by connecting sequentially
points #A, #C, #D, #E, and #A.

The sNS-FEM using T3 elements and Scheme 1 is noted as sNS-FEM-
T3(1).

10.4.2 Scheme 2: Two-Layer Edge-Based Subdivision: sNS-FEM-T3(2)

Figure 10.6 shows schematically Scheme 2 for the subdivision of the crack-
tip nodal smoothing domain. It is exactly the same as Scheme 1, but with
two layers. In this case we have a total of 14 subsmoothing domains (14 S-
SDs): the outer layer has S-SD(1) to S-SD(7), and the inner layer has S-SD(8)

to S-SD(14). The dimension in the radial direction of the inner subsmoothing
domains is set at 1/8 of the element length in that direction. For example,
for the subsmoothing domains in the outer layer, the S-SD(1) shown in
Figure 10.6 is created by connecting sequentially #B, #C, #C′′, #B′′, and #B,
where the positions of points #B′′ and #C′′ are defined from points #A,
#B′, and #C′ with offset distances of AB

′′ = (AB′/8) and AC′′ = (AC′/8). S-
SD(2) is created by connecting sequentially #C, #D, #E, #E′′, #D′′, #C′′, and
#C, where the positions of points #E′′ and #D′′ are defined from points #A,
#E′, and #D′ with offset distances of AE′′ = (AE′/8) and AD′′ = (AD′/8).
For the subsmoothing domains in the inner layer, S-SD(8) is constructed by
connecting sequentially #A, #B′′, #C′′, and #A, and S-SD(9) is constructed
by connecting sequentially #A, #C′′, #D′′, #E′′, and #A.

D′

D′′

S-SD(9)

S-SD(8)

S-SD(14)

S-SD(13)

Crack-tip

S-SD(10)

S-SD(11)

S-SD(12)

C′′

B′′

E′′
F′′

E ′
F ′

D

S-SD(1)

S-SD(5)

S-SD(4)

S-SD(3)

E
F

C′

C

B′ B

A
AS-SD(7)

S-SD(6)

S-SD(2)

FIGURE 10.6 Subdivision of the smoothing domain for the crack-tip node: Scheme 2, two-
layer edge-based subdivision. The division is similar to Scheme 1, but has two layers. In this
particular case, we have 14 subdivisions (14 S-SDs), seven S-SDs for each layer.
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S-FEM for Fracture Mechanics 379

The sNS-FEM using T3 elements and Scheme 2 is noted as sNS-FEM-
T3(2).

10.4.3 Scheme 3: One-Layer Cell-Based Subdivision: sNS-FEM-T3(3)

Figure 10.7 shows Scheme 3 for the subdivision of the smoothing domain of
the crack-tip node: one-layer cell-based subdivision. The division is similar
to Scheme 1, but it is based on cells (i.e., the 1/3) of the singular element
connected to the crack-tip. Since there are six elements in this case, we have
six subdivisions. For example, the S-SD(2) is formed by connecting points
#A, #D, #E, and #F.

The sNS-FEM using T3 elements and Scheme 3 is noted as sNS-FEM-
T3(3).

10.4.4 Scheme 4: Two-Layer Cell-Based Subdivision: sNS-FEM-T3(4)

Figure 10.8 shows Scheme 4 for the subdivision of the smoothing domain
of the crack-tip node: two-layer cell-based subdivision. Scheme 4 is similar
to Scheme 3, but with two layers. In this particular case, we have a total
of 12 subdivisions, six S-SDs for each layer. The dimension in the radial

S-SD(6)

Crack-tip

S-SD(5)

S-SD(4)

S-SD(3)S-SD(1)

C

D

B

A

E

F
S-SD(2)

FIGURE 10.7 Scheme 3, one-layer cell-based subdivision. The division is similar to Scheme
1, but it is based on cells (i.e., the 1/3) of the element connected to the crack-tip. There are six
elements in this case; hence we have six subdivisions (6 S-SDs).
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380 Smoothed Finite Element Methods

S-SD(9)

S-SD(8)
S-SD(7)

Crack-tip

S-SD(12) S-SD(10)
S-SD(11)

D′

D′′ F ′′

E′′

E′ F′

S-SD(2)
S-SD(1)

S-SD(5)

S-SD(4)

S-SD(3)

S-SD(6)

D

A

A

E

F

FIGURE 10.8 Scheme 4: two-layer cell-based subdivision. The division is similar to Scheme
3, but with two layers. In this particular case, we have a total of 12 subdivisions, six S-SDs for
each layer.

direction of the inner subsmoothing domains is set at 1/8 of the element
length in that direction. For example, for the subsmoothing domains in
the outer layer, the S-SD(2) shown in Figure 10.8 is created by connect-
ing sequentially #D′′, #D, #E, #F, F′′, E′′, and D′′, where the positions of
points #D′′, #E′′, and #F′′ are defined from points #A, #E′, #D′, and #F′ with
offset distances of AD′′ = (AD′/8), AE′′ = (AE′/8), and AF′′ = (AF′/8). For
the subsmoothing domains in the inner layer, S-SD(8) is constructed by
connecting sequentially #A, #D′′, #E′′, F′′, and #A.

The sNS-FEM using T3 elements and Scheme 4 is noted as sNS-FEM-
T3(4).

10.5 sES-FEM Models

As discussed in Chapter 7, the ES-FEM model uses smoothing domains
created based on the edges of the element mesh, and it is found to be a “star”
performer. It is thus chosen for fracture problems in this section. Figure
10.9 shows schematically the construction of edge-based strain smoothing
domains for sES-FEM models with one layer of six five-node crack-tip
elements with the intermediate nodes at the 1

4 edge length. For all the
edges other than those connected to the crack-tip node, the treatments for
the smoothing domains are exactly the same as in the ES-FEM discussed
in Chapter 7. For the smoothing domains of crack-tip edges leading to the
crack-tip node, however, special treatments are required to better capture
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S-FEM for Fracture Mechanics 381

Field node Centroid of triangle

Crack-tip 

kth edge

FIGURE 10.9 An sES-FEM model. Basic mesh: linear T3 elements (solid lines). Edge-based
smoothing domains are bounded by dashed lines. One layer of six T5 crack-tip elements.
Subdivisions for smoothing domains for crack-tip edges connected to the crack-tip node may
be needed.

the singularity near the crack-tip. The following are the three schemes for
the construction of subsmoothing domains for these smoothing domains
of crack-tip edges.

10.5.1 Scheme 1: One Smoothing Domain per Edge

Consider the smoothing domain for edge 1-2 (where node 1 is at the crack-
tip) shared by two crack-tip elements (1-4-2-3-5 and 1-7-6-2-4) as shown
in Figure 10.10. In this case, only one smoothing domain (S-SD=1) for the
crack-tip edge 1-2 is used. The smoothing domain is constructed in the
same way as in the standard ES-FEM by connecting 1-C2-2-C1-1, where C1
is the centroid of element 1-4-2-3-5, and C2 is the centroid of the neighboring
element 1-7-6-2-4 sharing the same edge 1-2.

10.5.2 Scheme 2: Two Subsmoothing Domains per Edge

Figure 10.11 shows Scheme 2 for the subdivision of the edge-based smooth-
ing domain of the crack-tip edge 1-2. Two subsmoothing domains are used
for the crack-tip edge. S-SD1 is formed by connecting 4-B2-C2-2-C1-B1-4,
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382 Smoothed Finite Element Methods

2

4 5

1

7

6

S-SD1

3

C1

C2

FIGURE 10.10 Scheme 1: One subsmoothing domain (S-SD=1) is used for the crack-tip
edge 1-2 (the crack-tip node 1). The smoothing domain for edge 1-2 shared by two elements
(1-4-2-3-5 and 1-7-6-2-4) is constructed in the same way as in the ES-FEM by connecting
1-C2-2-C1-1.

and S-SD2 is formed by connecting 1-B2-4-B1-1, where B1 is the cross point
of the two lines 1-C1 and 4-5 for element 1-4-2-3-5, B2 is the cross point of
the two lines 1-C2 and 4-7 for the neighboring element 1-7-6-2-4 sharing
the same edge 1-2.

2 

6 

7 

1 

4 

3

5 

S-SD1

S-SD2

C1 

B1 

B2 C2 

FIGURE 10.11 Scheme 2: Two subsmoothing domains (S-SD=2) are used for the crack-tip
edge 1-2 (the crack-tip node 1). S-SD1 is formed by connecting 4-B2-C2-2-C1-B1-4 and S-SD2
is formed by connecting 1-B2-4-B1-1.
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2 3

6

5

1

7

4

S-SD1

S-SD3
S-SD2

C1

C2 D2

B1

B2

E D1

FIGURE 10.12 Scheme 3: Three subsmoothing domains (S-SD=3) are used for the crack-tip
edge 1-2 (the crack-tip node 1). S-SD1 is formed by connecting 4-B2-C2-2-C1-B1-4; S-SD2 is
formed by connecting E-D2-B2-4-B1-D1-E, and S-SD3 is formed by connecting 1-D2-E-D1-1.

10.5.3 Scheme 3: Three Subsmoothing Domains per Edge

Figure 10.12 shows Scheme 3 for the subdivision of the edge-based smooth-
ing domain of the crack-tip edge 1-2. These three subsmoothing cells are as
follows: S-SD1 is formed by connecting 4-B2-C2-2-C1-B1-4; S-SD2 is formed
by connecting E-D2-B2-4-B1-D1-E, and S-SD3 is formed by connecting 1-D2-
E-D1-1, where the positions of points #D1, #E, and #D2 are defined from
points #1, #B1, #4, and #B2 with offset distances of 1 − D1 = (1 − B1/4),
1 − E = (1 − 4/4), and 1 − D2 = (1 − B2/4).

10.6 Stiffness Matrix Evaluation

Based on the S-FEM procedure, the stiffness matrix of the whole model
is the summation of the submatrices of these stiffness matrices associated
with all the strain smoothing domains. The procedure is exactly the same
as those given in Chapter 6 for NS-FEM models and Chapter 7 for ES-FEM
models. The only differences are the following: (1) for the crack-tip area,
more smoothing domains are used (each S-SD is treated as one independent
smoothing domain), and (2) more Gauss points are needed along some of
the boundary segments of these S-SDs to compute the smoothed strains
for the S-SDs. Therefore, we will not repeat the detailed procedures here.
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384 Smoothed Finite Element Methods

Instead, we will focus our discussions on the evolution of the physics of
the fracture mechanics problems using S-FEM models.

10.7 J-Integral and SIF Evaluation

10.7.1 Line-Path for the J-Integral

Based on the linear elasticity, the general form of the J-integral value is
identical to the energy release rate G of the potential energy. For a 2D crack
the J-integral or G can be written as [8]

J = G = − d
da

∏
(u) = −

∫

ΓJ

(
σij

∂ui

∂x1
− W(ui)δ1j

)
nj dΓ,

i = 1 or 2, j = 1 or 2, (10.23)

where a is the crack length, ΓJ is an arbitrary line-path for the integration
that encloses the crack-tip located at the origin of the coordinate system, as
shown in Figure 10.13, nj is the outward unit normal on ΓJ , σij is the stress,
and ui is the ith displacement component.

In Equation 10.23,Π is the potential energy for the crack to grow and W
is the strain potential energy (density) for the whole model:

W = 1
2
σijcijklεkl. (10.24)

10.7.2 Area-Path for J-Integral

Theoretically, we know that the J value is integration path independent.
Numerically however, we surely observe some path dependence, owing

x2

n

x1

dΓ

ΓJ

FIGURE 10.13 Line-path for the J-integral that encloses the crack-tip.
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S-FEM for Fracture Mechanics 385

to numerical errors. To achieve better “numerical” path independence for
the J value, we often use a so-called area-path in lieu of the line-path for
the integration [9–11]. The J-integral can then be defined in the form of

J =
∫

AJ

(
σij

∂ui

∂x1
− Wδ1j

)
∂q
∂xj

dA, (10.25)

where AJ is area-path enclosed by the union of these line segments ΓJ1, Γ−,
ΓJ2, andΓ+, as shown in Figure 10.14. The segmentsΓ− andΓ+ are, respec-
tively, the boundaries of the lower and upper crack faces. q is a sufficiently
smooth weight function defined over AJ . We will discuss in Sections 10.8.3
and 10.8.4 how AJ and q should be constructed for our sS-FEM models.
With such a construction, we will then show a simple proof of the identity
of the area-path equation 10.25 and the line-path equation 10.23.

10.7.3 Mixed Mode and J-Integral

For the general fracture problems of mixed mode in an isotropic material,
the relationship between the value of the J-integral and the two SIFs can
be given as

J = K2
I + K2

II
E′ , (10.26)

where KI is the SIF value for the pure opening mode I, KII is the SIF value
for the pure shearing mode II, and E′ is the material constant related to

x2 
r 

n

x1 

AJ 

Γ+ 

Γ– 

ΓJ2

ΓJ1

θ 

σ11 

σ12 

σ22 

FIGURE 10.14 Area-path for the J-integral that encloses the crack-tip.
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386 Smoothed Finite Element Methods

Young’s modulus E and Poisson’s ratio ν in the form of

E′ =
⎧⎨
⎩

E (plane stress),
E

1 − ν2 (plane strain).
(10.27)

For the cases of pure mode I, Equation 10.26 is reduced to

J = K2
I

E′ . (10.28)

Similarly, for pure mode II, we shall have

J = K2
II

E′ . (10.29)

Therefore, once J is found, we can easily obtain the value of KI and KII,
as long as the fracture mode is purely either mode I or mode II. However,
for the mixed mode problems, simply using one J-integral value is not
sufficient to obtain two SIF values, because the J value relates both SIFs in
a coupled manner for mixed mode in the form of Equation 10.26. We need
to establish two states of the cracked body to extract these two values of
KI and KII, which leads to the so-called interaction integral method [9–11].

10.8 Interaction Integral Method for Mixed Mode

10.8.1 Mixed Mode

In the interaction integral method, two states of a cracked body are used
to evaluate these two SIFs in the coupled field. State 1 with field variables
(σ(1)

ij , ε(1)
ij , u(1)

i ) corresponds to the coupled state of the mixed mode, and

state 2 with field variables (σ(2)
ij , ε(2)

ij , u(2)
i ) is an auxiliary state. The asymp-

totic fields for mode I or II are chosen as an auxiliary state 2. The following
two conditions exist for these SIFs for the auxiliary fields:

K(2)
I = 1 and K(2)

II = 0 when pure mode I is chosen as state 2,

K(2)
I = 0 and K(2)

II = 1 when pure mode II is chosen as state 2.
(10.30)

The parameters of σ(2)
ij , ε(2)

ij , u(2)
i , (i, j = 1, 2) for the auxiliary state can be

evaluated from the following relations [12].
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S-FEM for Fracture Mechanics 387

For pure mode I, the stresses and displacements can be calculated as

σ
(2)
11 = K(2)

I√
2πr

cos
θ

2

(
1 − sin

θ

2
sin

3θ
2

)
,

σ
(2)
22 = K(2)

I√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ
2

)
,

σ
(2)
12 = K(2)

I√
2πr

cos
θ

2
sin
θ

2
cos

3θ
2

,

σ
(2)
12 = σ(2)

21 ,

u(2)
1 = K(2)

I (1 + ν)√r

E
√

2π
cos
θ

2
(κ− cos θ),

u(2)
2 = K(2)

I (1 + ν)√r

E
√

2π
sin
θ

2
(κ− cos θ),

(10.31)

where r and θ are polar coordinates that are measured from the origin at
the crack-tip node, and κ is defined as

κ =
⎧⎨
⎩

3 − ν
1 + ν (plane stress),

3 − 4ν (plane strain).
(10.32)

For pure mode II, we shall have

σ
(2)
11 = −K(2)

II√
2πr

sin
θ

2

(
2 + cos

θ

2
cos

3θ
2

)
,

σ
(2)
22 = K(2)

II√
2πr

cos
θ

2
sin
θ

2
cos

3θ
2

,

σ
(2)
12 = K(2)

II√
2πr

cos
θ

2

(
1 − sin

θ

2
sin

3θ
2

)
,

σ
(2)
12 = σ(2)

21 ,

u(2)
1 = K(2)

II (1 + ν)√r

E
√

2π
sin
θ

2
(κ+ 2 + cos θ),

u(2)
2 = −K(2)

II (1 + ν)√r

E
√

2π
cos
θ

2
(κ− 2 + cos θ).

(10.33)

With the given displacement field, the strain can be calculated using

ε
(2)
ij = 1

2

(
u(2)

i,j + u(2)
j,i

)
. (10.34)
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388 Smoothed Finite Element Methods

In linear elastic fracture mechanics, the superimposition of fields can be
performed and hence we shall have

σ
(1+2)
ij = σ(1)

ij + σ(2)
ij ,

ε
(1+2)
ij = ε(1)

ij + ε(2)
ij ,

u(1+2)
i = u(1)

i + u(2)
i .

(10.35)

Similarly, for SIFs, we shall also have

K(1+2)
I = K(1)

I + K(2)
I ,

K(1+2)
II = K(1)

II + K(2)
II .

(10.36)

Then the J-integral value for the combined states 1 and 2 will be derived
using Equations 10.23 and 10.35 as

J(1+2) =
∫

ΓJ

[
1
2

(
σ

(1)
ij + σ(2)

ij

) (
ε
(1)
ij + ε(2)

ij

)
δ1j

−
(
σ

(1)
ij + σ(2)

ij

) ∂
(

u(1)
i + u(2)

i

)
∂x1

⎤
⎦nj dΓ. (10.37)

After expanding and rearranging terms, the above equation becomes

J(1+2) = J(1) + J(2) + I(1,2), (10.38)

where I(1,2) is called the “interaction integral” representing the interaction
between states 1 and 2, and is expressed as

I(1,2) =
∫

ΓJ

[
W(1,2)δ1j − σ(1)

ij
∂u(2)

i
∂x1

− σ(2)
ij

∂u(1)
i

∂x1

]
nj dΓ, (10.39)

in which W(1,2) is the interaction strain energy defined as

W(1,2) = σ(1)
ij ε

(2)
ij = σ(2)

ij ε
(1)
ij . (10.40)

On the other hand, based on Equation 10.26, the J-integral for the sum
of states 1 and 2 relates to these SIFs in the form of

J(1+2) =
(

K(1+2)
I

)2

E′ +
(

K(1+2)
II

)2

E′ . (10.41)
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S-FEM for Fracture Mechanics 389

Using Equation 10.36, we arrive at

J(1+2) = J(1) + J(2) + 2
E′
(

K(1)
I K(2)

I + K(1)
II K(2)

II

)
. (10.42)

Comparison between Equations 10.38 and 10.42 gives

I(1,2) = 2
E′
(

K(1)
I K(2)

I + K(1)
II K(2)

II

)
. (10.43)

Finally, by choosing an asymptotic field (for state 2) as either the field for
the pure mode I or the pure mode II, the SIFs at each chosen mode can be
computed using

KI = K(1)
I = 2

E′ I
(1,Mode I),

KII = K(1)
II = 2

E′ I
(1,Mode II).

(10.44)

In summary, for evaluating SIFs in a mixed-mode problem, the interac-
tion integral in Equation 10.39 can be evaluated first. SIFs for the mixed
mode can then be easily calculated using Equation 10.44 for a chosen
state 2. For better path-independent numerical results, we will also use
an area-path integral form of the interaction integral [9–11]:

I(1,2) = −
∫

AJ

[
w(1,2)δ1j − σ(1)

ij
∂u(2)

i
∂x1

− σ(2)
ij

∂u(1)
i

∂x1

]
∂q
∂xj

dA. (10.45)

This area-path interaction integral will be used in our work to com-
pute I(1,Mode I) and I(1,Mode II), and then the SIFs will be calculated using
Equation 10.44. We will discuss in Sections 10.8.3 and 10.8.4 how AJ and q
should be constructed for our sS-FEM models. With such a construction,
we will then show a simple proof that Equation 10.45 is identical to the
original line-path integral defined in Equation 10.39.

10.8.2 Interface Cracks

For cracks located along the interface between two materials, the problem
become more complicated, and the complex SIF KC = KI + iKII should be
used. The in-plane tractions at a distance r ahead of the crack-tip are given
by [13]

(σ22 + iτ12)θ=0 = KCriε
√

2πr
, (10.46)
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390 Smoothed Finite Element Methods

where i = √−1, and ε is the bimaterial constant given by

ε = 1
2π

log
(

1 − β
1 + β

)
, (10.47)

in which β is the second Dundurs parameter defined as [14]

β = μ1(κ2 − 1) − μ2(κ1 − 1)

μ1(κ2 + 1) + μ2(κ1 + 1)
, (10.48)

with

κi =
⎧⎨
⎩

3 − vi

1 + vi
(plane stress)

3 − 4vi (plane strain)
, (i = 1, 2). (10.49)

The material constants μi, vi, and κi (i = 1, 2) are, respectively, the shear
modulus, Poisson’s ratio, and the Kolosov constant. The J-integral value
or the energy release rate G relates to the SIF amplitude for the interface
crack as follows [13,15]:

J = G = 1
E∗

|KC|2
cosh2(πε)

, |KC|2 = KCK̄C = K2
I + K2

II, (10.50)

where

2
E∗ = 1

E′
1

+ 1
E′

2
, E′

i =

⎧⎪⎨
⎪⎩

Ei (plane stress),

Ei

1 − v2
i

(plane strain).
(10.51)

Using a similar procedure as that for the mixed mode given in Section
10.8 for the interface crack, we shall have

I(1,2) = 2
E∗

K(1)
I K(2)

I + K(1)
II K(2)

II

cosh2(πε)
(interface crack). (10.52)

Choosing an auxiliary state 2 as the pure mode I asymptotic fields, we
shall have K(2)

I = 1, K(2)
II = 0, and KI can then be computed using

KI = K(1)
I = E∗ cosh2(πε)

2
I(1,Mode I) (interface crack). (10.53)
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S-FEM for Fracture Mechanics 391

Choosing next an auxiliary state 2 as the pure mode II asymptotic fields,
we have K(2)

II = 1, K(2)
I = 0, and KII can now be computed using

KII = K(1)
II = E∗ cosh2(πε)

2
I(1,Mode II) (interface crack). (10.54)

We now need to determine the area-path for the interaction integral.

10.8.3 Determination of Area-Path

Because our sS-FEM model uses a basic mesh of linear T3 elements, a simple
scheme can be devised to determine the area-path AJ shown in Figure 10.15.
First, a set of elements having at least one node within a circle of radius rd is
found, and this element set is denoted as Se. If all the nodes of an element e
are all inside the circle, it belongs to the element set Sin

e . The area occupied
by the element set Sin

e is noted as Ain
e , and the outer boundary of area

Ain
e gives the line-path ΓJ1 (see Figure 10.14). The intersection of sets Se and

Sin
e forms element set: SA

e = Se ∩ Sin
e . The element set SA

e then forms the area-
path AJ , and the outer boundary of SA

e forms the line-path ΓJ2 (see Figures
10.14 and 10.15). Because three-node elements are used in our sS-FEM, any
circle will naturally always select a layer of elements that form AJ .

10.8.4 Determination of Function q

The weighting function q used in the area-path interaction integral (Equa-
tion 10.45) is then chosen as a piecewise linear function passing through the

Crack Aein AJ

rd 

qi = 0 

qi = 1 

FIGURE 10.15 Determination of area-path for the interaction integral and weight function q.
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392 Smoothed Finite Element Methods

nodal values at all the nodes belonging to all the elements in Se. If a node
ni belonging to any element e ∈ Se lies outside the circle, then the nodal
value of the weighting function is set to zero: qi = 0 (see Figure 10.15); if
a node ni lies inside the circle, the weighting function is then set to unity
qi = 1. A function form via linear interpolation using all these nodal val-
ues qi is differentiable in any of these elements, and hence is “sufficiently”
smooth, because Equation 10.45 requires only the first differentiation (in
a piecewise manner). Since the elements set Sin

e has all the nodes inside
the circle as shown in Figure 10.15, the weight function will be a constant
(unit) within all these elements in set Sin

e . Because the gradient of q is used
in Equation 10.45, the element set Sin

e will contribute nothing to the area-
path interaction integral. This is precisely the reason why the area-path AJ

does not include the area occupied by all these elements in set Sin
e , and only

elements in set SA
e are included.

The function of q(x) at any point x inside AJ can be found using a simple
interpolation using the nodal values qi:

q(x) =
ne

n∑
i=1

Ni(x)qi, (10.55)

where ne
n is the number of nodes of the element hosting x, and Ni(x) is the

shape function for that element.
With q(x) being clearly defined in Equation 10.55, integration given in

Equation 10.45 can be evaluated easily via the usual Gauss integration
technique.

10.8.5 A Simple Proof of Equivalence of the Line-Path
and Area-Path Integrals

Note that using the AJ and q(x) defined above, we have essentially made
the value of q(x) at all the nodes located on ΓJ2 to be zero, and on ΓJ1 to
be 1. Because we use linear interpolations, q(x) will be zero everywhere on
ΓJ2, and unity everywhere on ΓJ1. We can now easily show the following
identity:

J = −
∫

AJ

(
Wδ1j − σij

∂ui

∂x1

)
∂q
∂xj

dA

= −
∫

ΓA

[(
Wδ1j − σij

∂ui

∂x1

)]
︸ ︷︷ ︸

g

qnj dΓ (Green’s theorem)
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S-FEM for Fracture Mechanics 393

= −
∫

ΓJ2

gqnj dΓ

︸ ︷︷ ︸
∴q=0,∴=0

−
∫

Γ+

gqnj dΓ

︸ ︷︷ ︸
∴ free traction

on Γ+,∴=0

+
∫

ΓJ1

gqnj dΓ−
∫

Γ_

gqnj dΓ

︸ ︷︷ ︸
∴ free traction

on Γ+,∴=0

=
∫

ΓJ1

[(
Wδ1j − σij

∂ui

∂x1

)]
nj dΓ

︸ ︷︷ ︸
J-integral in the original

form of line path

( ∴ q = 1 on ΓJ1). (10.56)

In the second line of the above derivation, we used Green’s theorem of
divergence and ΓA = ΓJ2 ∪ (−ΓJ1) ∪ Γ− ∪ Γ+ is the line-path that encloses
the area-path AJ , as shown in Figure 10.14. We also use the fact that [16,17]

∂

∂xj

(
σij

∂ui

∂x1
− wδ1j

)
= 0. (10.57)

This proves that the area-path integration given in Equation 10.25 is
identical to the original line-path integral defined in Equation 10.23 along
the line-path J1.

A similar procedure can be used to show the same identity for the
following interaction integrals:

I(1,2) = −
∫

AJ

[
W(1,2)δ1j − σ(1)

ij
∂u(2)

i
∂x1

− σ(2)
ij

∂u(1)
i

∂x1

]
∂q
∂xj

dA

= −
∫

ΓJ

[
W(1,2)δ1j − σ(1)

ij
∂u(2)

i
∂x1

− σ(2)
ij

∂u(1)
i

∂x1

]

︸ ︷︷ ︸
g

qnj dΓ (Green′s theorem)

= −
∫

ΓJ2

gqnj dΓ

︸ ︷︷ ︸
∴q=0 on ΓJ2,∴=0

−
∫

Γ+

gqnj dΓ

︸ ︷︷ ︸
∴free traction

on Γ+,∴=0

+
∫

ΓJ1

gqnj dΓ−
∫

Γ_

gqnj dΓ

︸ ︷︷ ︸
∴ free traction

on Γ+,∴=0

=
∫

ΓJ1

[
W(1,2)δ1j − σ(1)

ij
∂u(2)

i
∂x1

− σ(2)
ij

∂u(1)
i

∂x1

]
nj dΓ

︸ ︷︷ ︸
I(1,2) the original line−path integral

( ∴ q = 1 on ΓJ1).

(10.58)
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394 Smoothed Finite Element Methods

This proves that the area-path integration given in Equation 10.45 is
identical to the original line-path integral defined in Equation 10.39 along
the line-path J1.

In all the example problems presented in this chapter, we always use the
area-path integrals for numerical results of better path independence.

10.9 Numerical Examples Solved Using sES-FEM-T3

In this section, examples are presented to demonstrate the accuracy of sES-
FEM using triangular elements (sES-FEM-T3) for solution outputs of the
strain energy, the SIFs, as well as the displacements. Fracture problems
of mode I, mode II, and mixed mode will be considered. For comparison
purposes, all the problems are also solved using FEM-T3 and standard
ES-FEM-T3 and sES-FEM-T3 using the same basic mesh of linear T3 ele-
ments. The effects of different values ofλ that change the intermediate node
locations on the crack-tip edges connecting to the crack-tip node are first
investigated in detail. The effect of the number of subsmoothing domains
and the number of Gauss points on the sES-FEM-T3 solution outputs will
then be examined.

To study the accuracy of the solutions quantitatively, the relative error is
defined as

es = snumerical − sexact

sexact × 100%, (10.59)

where s denotes a solution output (KI or KII or J), the superscript “exact”
denotes the exact or analytical solution, and the superscript “numerical”
denotes a numerical solution obtained using a numerical method. From
Equation 10.59, it is clear that a negative relative error indicates that the
numerical solution is smaller than the exact one, and vice versa.

Example 10.9.1: A Plate with a Central Crack Subjected to Tension
(Mode I)

We first consider the simplest fracture problem: a rectangular plate (2D solid)
of homogeneous isotropic material containing a horizontal central crack. The
plate is subjected to a tension load in the vertical direction, as shown in Figure
10.16. Under this setting, the fracture problem is of pure mode I.The parameters
used in this analysis are plate width w = 10.0 cm, plate length L = 25.0 cm,
crack length a = 4 cm, and unit tension force σ = 1 N/cm2. The material con-
stants are E = 3 × 107 N/cm2 and ν = 0.25. The analytical solution of SIFs for
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S-FEM for Fracture Mechanics 395

A

(a) 

(b) 

2w 

2L A′

a a 

σ 

σ 

FIGURE 10.16 (a) A rectangular plate with a central crack subject to tension (pure mode
I) and (b) a typical mesh with 904 DOFs used for the rectangular plate with a central crack
subjected to tension.

such a structure is given by Tada et al. [12]:

KI = σ√πa
[
1 − 0.025

( a
w

)2 − 0.06
( a

w

)4
] (

sec
( πa

2w

))0.5
. (10.60)

Based on this formula the analytical value of the SIF for this plate is
found as KI = 3.9315 Ncm−3/2. The problem is then solved using sES-FEM-
T3, together with FEM-T3 and ES-FEM-T3 for comparison and examination
purposes.

EFFECTS OF THE POSITION OF THE INTERMEDIATE NODE
(λ VALUE)

Using the sES-FEM-T3 with two subsmoothing domains (S-SD = 2) for the layer
of crack-tip elements (see Figure 10.9), the effects of the intermediate node
positions on the crack-tip edges have been examined by choosing different
values of λ. The results in terms of the strain energy have been tabulated in
Table 10.1 for models with different numbers of DOFs. The results are obtained
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396 Smoothed Finite Element Methods

TABLE 10.1

Results in Strain Energy (×10−5) for the Plate with Horizontal Central Crack
Obtained Using sES-FEM-T3 with Two Subsmoothing Domains (S-SD=2)
for the Crack-Tip Elements with Different Locations for the Mid-Edge Nodes

DOFs 904 1588 2268 8340

sES-FEM (λ = 1/4) 1.72204905 1.72497385 1.72548221 1.72632994
sES-FEM (λ = 1/32) 1.72406262 1.72573576 1.72657777 1.72714066
sES-FEM (λ = 1/16) 1.72406087 1.72573426 1.72657649 1.72713992
sES-FEM (λ = 1/8) 1.72406077 1.72573432 1.72657661 1.72713998
sES-FEM (λ = 1/5) 1.72406155 1.72573522 1.72657748 1.72714048
sES-FEM (λ = 1/4) 1.72406223 1.72574492 1.72657820 1.72714090
sES-FEM (λ = 2/5) 1.72406470 1.72573870 1.72658082 1.72714240
sES-FEM (λ = 1/2) 1.72406664 1.72574085 1.72658287 1.72714359
sES-FEM (λ = 2/3) 1.72407033 1.72574492 1.72658678 1.72714583

using a basically “uniform” mesh, a typical example of which is shown in Figure
10.16b. From Table 10.1 we note the following:

1. The strain energy results of the sES-FEM converge very fast, even
though a uniform mesh is used without special zooming into the
crack-tip. This is because the correct singular field at the crack-tip
is properly simulated for any λ chosen between 0 and 1.

2. For any given set of nodes, the sES-FEM solution in terms of strain
energy does not change significantly with the λ value, as shown in
Table 10.1. When λ changes from 1/32 to 2/3, at least five signifi-
cant digits in the solution data are not changed. This confirms our
theoretical prediction that we can locate the intermediate node at
any location on the crack-tip edge.

Due to these findings, we will useλ = 1/4 as a default for our sS-FEM models,
just to be the same as what we do in the standard FEM singular elements.
Note that, in contrast, the position of the intermediate node for a singular FEM
element has to be fixed at λ = 1/4 at all times. In the following examples,
λ = 1/4 is used for all the sS-FEM models, unless specified otherwise.

TABLE 10.2A

Comparison of Results in Strain Energy (×10−5) for the Plate with a Horizontal
Central Crack Obtained Using Different Methods Using Models of Different
Nodal Density

DOFs 904 1588 2268 8340

FEM-T3 1.67057367 1.68487968 1.69090244 1.70843735
ES-FEM-T3 1.69587814 1.70545384 1.70903205 1.71841662
sES-FEM-T3 (S-SD=1, λ = 1/4) 1.72204905 1.72497385 1.72548221 1.72632994
sES-FEM-T3 (S-SD=2, λ = 1/4) 1.72406223 1.72574492 1.72657820 1.72714090
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1000 

FEM-T3

Reference solution

ES-FEM-T3
Singular ES-FEM (SD = 1, S-D =1 )
Singular ES-FEM (SD = 1, S-D = 2, λ = 1/4)

St
ra

in
 en
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gy

 

1.67 

1.68 

1.69 

1.7 

1.71 

1.72 

1.73 
× 10–5

2000 3000 4000 5000 
DOF 

6000 7000 8000 9000 

FIGURE 10.17 Strain energy results for the rectangular plate subjected to tension (mode I).

TABLE 10.2B

Comparison of the Strain Energy Error for the Plate with a Horizontal
Central Crack Obtained Using Different Methods Using Models of Different
Nodal Density

DOFs 904 1588 2100 8340

Number of elements 780 1428 1920 8000
h 1.132277034 0.836827409 0.721687836 0.353553390
FEM-T3 0.1810664063 0.1565320102 0.1468373569 0.1042259337
ES-FEM-T3 0.1346642869 0.1122070068 0.1043910483 0.0713115079
sFEM-T6 0.0674012351 0.0549345012 0.0493278031 0.0295496372
sES-FEM-T3 SIN(S-SD=2) 0.0546765192 0.0405327608 0.0388421147 0.0225298149
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398 Smoothed Finite Element Methods

COMPARISON OF STRAIN ENERGY SOLUTIONS OF DIFFERENT
MODELS

Figure 10.17 plots the comparison of results in strain energy for the
plate with a horizontal central crack obtained using different methods
and meshes with different numbers of nodes. These results are also tab-
ulated in Table 10.2. From Figure 10.17 and Table 10.2, we note the
following:

1. The strain energy results of all these models converge to the exact
solution from below.This shows that these models all produce lower
bound solution in terms of strain energy.

2. For any given set of nodes, the strain energy of the FEM-T3 is
the lowest and that of the sES-FEM-T3 with S-SD=2 is the high-
est. This implies that the FEM-T3 model is the most “stiff,” and
the sES-FEM-T3 with S-SD=2 is the most “soft” among all these
models compared. Because we know that all these solutions are
lower bounds, we can conclude that the solution of sES-FEM-
T3 with S-SD=2 is the most accurate, and the FEM-T3 is the
worst. The accuracy (in terms of strain energy) ranking of these
models would be sES-FEM-T3 with S-SD=2; sES-FEM-T3 with S-
SD=1; ES-FEM-T3; and FEM-T3. The improvement of ES-FEM-T3
from FEM-T3 is very significant, showing clearly the benefit of the
edge-based strain smoothing operations. The further improvement
of sES-FEM-T3 from ES-FEM-T3 is also quite remarkable, show-
ing the significance of the singular field approximation. Therefore,
compared with FEM-T3, the sES-FEM-T3 has double significant
improvement.

3. We also noticed that the results of sES-FEM-T3 with S-SD=1 and
S-SD=2 are very close. For this particular example the first three
digits in the results are exact. In general, this is also largely true.
There will be cases where the results using S-SD=2 are noticeably
better. Therefore, in many cases, we simply use sES-FEM-T3 with S-
SD=1 for fracture problems, as this is much simpler and has almost
not changed from the standard ES-FEM (except for the interpolation
for the crack-tip elements). To be on the safer side, we can always
use S-SD=2. The use of S-SD=3 or above can also further improve
the solution, but not very significantly. A more detailed study on
this issue can be found in Ref. [4], and some examples will also be
shown later. In this chapter we will use either S-SD=1 or S-SD=2
for all sES-FEM-T3 models.

4. The ranking of the “stiffness” of all these models is FEM-T3, ES-
FEM-T3, sES-FEM-T3 with S-SD=1, and sES-FEM-T3 with S-SD=2.
This ranking can be well explained based on the theories of S-FEM
models. We know already from Chapter 4 that ES-FEM will be softer
than the FEM using the same mesh. By introducing the intermediate
nodes to the crack-tip elements, we have much better simulated the
displacement field for the areas near the crack-tip. This makes the
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S-FEM for Fracture Mechanics 399

sES-FEM model softer than the ES-FEM. A similar argument was first
put forward in Ref. [18].

5. Based on the monotonic convergence property (see Theorem 4.4),
we expect (in the nonsingular cases) that when the number of
smoothing domains is increased in a nested manner, the S-FEM
models will become stiffer. Therefore, the strain energy solution
should become smaller. This example, however, shows the oppo-
site. In our opinion, this is because of the singularity of the field for
our fracture problems.Although the use of more smoothing domains
makes the model stiffer, at the same time it can also capture much
better the singularity feature of the model, making the model softer.
Because the singularity capturing is more significant to the solution,
the increase of S-SDs in the crack-tip elements can result in a softer
ES-FEM model that is a lower bound, as shown in this case.

In the following studies, we use sES-FEM-T3 with S-SD=1 as a default
sES-FEM-T3 model. By sES-FEM-T3, we mean sES-FEM-T3 with S-SD=1.
When S-SD=2 is used, we will specify it explicitly.

STRAIN ENERGY SOLUTION: CONVERGENCE RATE

Figure 10.18 plots the comparison of the strain energy error defined
in Equation 4.65 for the plate with a horizontal central crack obtained
using different models and meshes with different numbers of nodes. The
element “length” is computed using

h =
√

AΩ
Ne

, (4.60)

where AΩ is the area of the whole problem domain. These results are
also tabulated in Table 10.2. From Table 10.2 and Figure 10.18, we note
the following:

1. The convergence rate for FEM-T3 is reduced to below 0.5, which
is much lower than the theoretical rate of 1.0 (using H1 norm
measure). This is because the problem is not Lipschitzian and has a
“consequence” on the convergence rate of the numerical solutions.

2. The convergence rate for ES-FEM-T3 is reduced to below 0.55,
which is much lower than the theoretical rate of 1.0, but quite higher
than that of FEM-T3 (0.47). This shows the edge-based smoothing
effects, mitigating some of the “consequences.”

3. The convergence rate for sES-FEM-T3 is registered at 0.76. Although
it is still lower than the theoretical rate of 1.0, it is much higher
than that the convergence rate for FEM-T3 (0.47). It is even higher
than that for FEM-T6 (0.71) with FEM crack-tip elements. The sES-
FEM-T3 performs the best among all these models, in terms of both
convergence rate and accuracy.
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FIGURE 10.18 (a) Convergence rates in strain energy solution for the rectangular plate
subjected to tension (mode I). Comparison with different models. (b) Normalized SIF at
crack-tip A for the rectangular plate with a central crack subjected to tension (mode I).
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S-FEM for Fracture Mechanics 401

SIF SOLUTIONS

Table 10.3 lists the KI values computed numerically using FEM-T3,
ES-FEM-T3, and sES-FEM-T3 (default model with S-SD=1, λ = 1/4),
respectively, for two crack-tips A and A′.The error is computed against the
analytical solution: KI = 3.9315 Ncm−3/2. Figure 10.18 plots the KI val-
ues computed numerically using FEM-T3, ES-FEM-T3, sES-FEM-T3, and
sES-FEM-T3 with S-SD=2 for crack-tip A. From these figures and Table
10.3, we note the following key points:

1. It is clear from Table 10.3 that the SIF values obtained numerically
at two crack-tips A and A′ are very close to each other and identical
at least to four significant digits.This result confirms that our method
works well numerically and can predict the symmetry feature of the
field variables. It shows that the sES-FEM-T3 can work well also for
the domains with multiple crack-tips.

2. Figure 10.18 shows that the SIF results of all these models converge,
and converge from below, which is similar to the results for strain
energy. This shows that these models all produce lower bound SIF
solutions for this problem.

3. The accuracy in terms of SIF ranking of these models would be sES-
FEM-T3, ES-FEM-T3, and FEM-T3. We observe again that compared
with FEM-T3, sES-FEM-T3 has double significant improvement.
With only 904 DOFs, the sES-FEM-T3 produces results with less
than 0.4% error in KI value, as shown in Table 10.3. Further
improvement can be made by using S-SD=2, but it is quite marginal
for this case, as shown in Figure 10.18.

TABLE 10.3

SIF Solution: KI (Evaluated Numerically for Two Points A and A′, and
Normalized with the Analytical Value of KI = 3.9315 Ncm−3/2)

DOFs 904 (es%) 1588 (es%) 2464 (es%) 8340 (es%)

Point A FEM-T3 0.9436 0.9586 0.9681 0.9834
(−5.6434) (−4.1437) (−3.1901) (−1.6589)

ES-FEM-T3 0.9729 0.9820 0.9863 0.9931
(−2.7122) (−1.8016) (−1.3702) (−0.6896)

sES-FEM-T3 0.9961 0.9985 0.9995 1.0002
(−0.3859) (−0.1503) (−0.0524) (−0.0158)

Point A′ FEM-T3 0.9436 0.9586 0.9681 0.9834
(−5.6442) (−4.1447) (−3.1909) (−1.6594)

ES-FEM-T3 0.9729 0.9820 0.9863 0.9931
(−2.7132) (−1.8021) (−1.3707) (−0.6898)

sES-FEM-T3 0.9961 0.9985 0.9995 1.0002
(−0.3864) (−0.1506) (−0.0524) (0.0155)
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402 Smoothed Finite Element Methods

Example 10.9.2: Plate with a Central Crack Subject to Shear
(Mode II)

In this example, we study a square plate subjected to shear force τ = 1 N/mm2

that gives a pure mode II state, as shown in Figure 10.19. In our numerical
model, the plate dimensions have been fixed at w = 200 mm, and the crack
length is a = 10 mm. Since w /a is as large as 20, the solution for the infinite
plate can be employed as a good reference solution. The analytical solution
(when the plate dimensions go to infinity) can be found simply as KII = τ√πa =
5.6050 Nmm−3/2.The material properties used is the same as those in Example
10.9.1. For this problem, we use an irregular mesh with fine zoning near the
crack-tip. ABAQUS® CAE is used for mesh generation, and a typical mesh with
360 DOFs is plotted in Figure 10.20. The problem is solved numerically using
different methods including FEM-T3, ES-FEM, and sES-FEM.

We first checked again on the effects of using S-SD=1 and 2 on the solution,
and it is found that these results are very close, although S-SD=2 can give a
little better solution.

STRAIN ENERGY SOLUTIONS

The results in terms of both strain energy values are tabulated in Table 10.4 and
plotted in Figure 10.21. From Figure 10.21 and Table 10.4, we observe that the
improvement of ES-FEM-T3 from FEM-T3 is very significant, showing clearly
the benefit of the strain smoothing operations. The further improvement of sES-
FEM-T3 from ES-FEM-T3 is also quite remarkable, showing the significance of
the singular field approximation. Therefore, compared with FEM-T3, sES-FEM-
T3 has double significant improvement. This finding is largely in line with those
found in the previous mode I case.

2w

2w

a a

τ

τ

FIGURE 10.19 Square plate with a central crack subjected to shear (pure mode II).
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FIGURE 10.20 (a) A typical mesh with 360 DOFs for the square plate with a central crack
subjected to shear (pure mode II); and (b) zooming near the crack.

SIF SOLUTIONS

We conducted a check again on the symmetry of the numerical SIF values, by
computing the results for both crack-tips, and it is found again for this case
that the results for these two tips are very close. In the following analysis, we
discuss only the results obtained for the left crack-tip.
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404 Smoothed Finite Element Methods

TABLE 10.4

Comparison of Results in Strain Energy for the Square Plate
with Horizontal Central Crack Subjected to Shear Obtained Using
Different Methods with Different DOFs

DOFs 360 504 704 2206 5382

FEM-T3 976.2515 976.2868 976.3033 976.3235 976.3471
ES-FEM-T3 976.4103 976.4345 976.4362 976.4364 976.4384
sES-FEM-T3 976.5364 976.5650 976.5660 976.5667 976.5735

The results in SIF values are tabulated in Table 10.5 and plotted in Figure
10.22. Similar to the previous example, the sES-FEM-T3 solution is much more
(about 5–60 times) accurate than the FEM-T3 using the same basic mesh. The
improvement is more significant for the finer mesh, owing to both the higher
convergence rate of the S-FEM model and better capturing of the singular field.

This mode II example confirms largely the findings for the previous
mode I example.
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FIGURE 10.21 Strain energy results for the infinite plate under mode II.
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S-FEM for Fracture Mechanics 405

TABLE 10.5

KII Solution for the Square Plate with Horizontal Central Crack
Subjected to Shear Obtained Using Different Methods with Different DOFs
(Normalized with the Analytical Values of Kexact

II = 5.6050 Nmm−3/2,
Evaluated Numerically for Point A)

DOFs 360 (es%) 504 (es%) 704 (es%) 2206 (es%) 5382 (es%)

FEM-T3 0.9509 0.9649 0.9710 0.9856 0.9880
(−4.9083) (−3.5083) (−2.9042) (−1.4402) (−1.2036)

ES-FEM-T3 0.9847 0.9894 0.9933 0.9937 0.9937
(−1.5301) (−1.0580) (−0.6701) (−0.6287) (−0.6287)

sES-FEM-T3 0.9888 0.9948 0.9982 0.9989 0.9998
(−1.1155) (−0.5160) (−0.1824) (−0.1060) (−0.0211)

Example 10.9.3: Plate with Double Edge Cracks (Mode I)

We consider now a rectangular plate of isotropic material with symmetric dou-
ble edge cracks subjected to tension, as shown in Figure 10.23. The plate is
subjected to a “remote” tensile stress σ at the top edge and fixed at the bottom
edge, which gives a mode I state. The analytical formula of the SIF for such a

K I
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FIGURE 10.22 Normalized SIF at point A for the square plate subjected to shear (mode II).
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406 Smoothed Finite Element Methods

a a 

2w 

2L A

(a) 

(b) 

A′

σ 

FIGURE 10.23 (a) A rectangular plate with symmetric double edge cracks subjected to
tension and (b) a typical mesh with 530 DOFs.

specimen is given in Ref. [12]:

KI = σ√πa
[
1.122 − 0.561

( a
w

)
− 0.205

( a
w

)2

+0.471
( a

w

)3 − 0.910
( a

w

)4
]/(

1 − a
w

)0.5
. (10.61)

In numerical analysis, the parameters used are w = 4.0 cm, L = 11.0 cm,
a = 1.2 cm, and σ = 1 N/cm2. The material constants are E = 3 × 107 N/cm2

and ν = 0.25. With this set of data, the analytical solution is found to be KI =
2.1964 Ncm−3/2. Irregular meshes with the finer mesh near the crack-tips are
used in this example, and a typical mesh is plotted in Figure 10.23b.

STRAIN ENERGY SOLUTIONS

The results in terms of both strain energy values are tabulated in Table 10.6 and
plotted in Figure 10.24. From Figure 10.24 and Table 10.6, we observe that the
improvement of ES-FEM-T3 from FEM-T3 is most significant, showing clearly
the benefit of the strain smoothing operations. The further improvement of sES-
FEM-T3 from ES-FEM-T3 is also quite significant, showing the significance of
the singular field approximation. Therefore, compared with FEM-T3, sES-FEM-
T3 has double significant improvement. This finding is largely in line with those
found in the previous examples for both mode I and mode II cases.
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S-FEM for Fracture Mechanics 407

TABLE 10.6

Comparison of Results in Strain Energy (×10−4) for the
Plate with Double Edge Cracks Obtained Using Different
Methods Using Different Number of Nodes

DOFs 336 530 948 1286 1780

FEM-T3 2.8552 2.8756 2.8823 2.8860 2.8880
ES-FEM-T3 2.8862 2.8952 2.8960 2.8975 2.8979
sES-FEM-T3 (S-SD=1) 2.8930 2.9022 2.9028 2.9043 2.9047
sES-FEM-T3 (S-SD=2) 2.8953 2.9046 2.9053 2.9068 2.9072
sES-FEM-T3 (S-SD=3) 2.8953 2.9047 2.9054 2.9068 2.9073

In this example, however, we found that the use of S-SD=2 in the sES-FEM-T3
has quite noticeable improvement compared to the use of S-SD=1. This finding
suggests that the use of S-SD=2 in the sES-FEM-T3 is more robust. Further, we
used S-SD=3 in this example, and it is found that the use of S-SD=3 can further
improve the solution for this case, but improvement is only at the fifth digit or
beyond. Therefore, it may be recommended that for cases for which we are not
very sure, we shall use S-SD=2 in the sES-FEM-T3. This increases only slightly
the complexity in the computation, as it affects only the crack-tip elements.
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FIGURE 10.24 Strain energy results for the plate with double edge crack.

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
27

 1
0 

M
ay

 2
01

6 



408 Smoothed Finite Element Methods

SIF SOLUTIONS

The SIF results (for crack-tip A) have been tabulated in Table 10.7 and depicted
in Figure 10.25. Similar to the previous example, the solution of sES-FEM-T3
with S-SD=2 is much more (about 4–40 times for this example) accurate than
the FEM-T3 using the same basic mesh. The solution of sES-FEM-T3 with S-
SD=1 is about 3–16 times more accurate than the FEM-T3 for this example.
The improvement is more significant for finer meshes, due to both the higher
convergence rate of the S-FEM model and better capturing of the singular field.
The results of ES-FEM-T3 are about twice more accurate than those of FEM-T3,
both models ignoring the singularity of stress field. It is also found that the use
of S-SD=3 can further improve the solution for SIF value, but the improvement
is marginal also for this example.

This mode I example confirms largely the findings for the previous modes
I and II examples, except the outstanding performance of sES-FEM-T3 with
S-SD=2.

Example 10.9.4: A Plate with an Edge Crack (Mixed Mode)

We next examine the sES-FEM for a fracture problem of mixed mode: a rectan-
gular plate of isotropic material with an edge crack subjected to shear load, as
shown in Figure 10.26. The problem is considered as a plane strain problem,
and the dimensions of the problem domain are w = 7.0 cm, L = 8.0 cm, and
a = 3.5 cm. The plate is fully fixed on the bottom edge and a unit shear load
of τ = 1 N/cm2 is applied on the top edge. Under this setting, the problem
becomes a mixed-mode fracture problem. The Young’s modulus and Poisson’s
ratio of the material are E = 3 × 107 N/cm2 and ν = 0.25, respectively.

TABLE 10.7

KI Solution for the Plate with Double Edge Cracks Obtained Using Different
Methods Using Different Numbers of Nodes (Relative to the Analytical
Solution of KI = 2.1964 Ncm−3/2; Evaluated Numerically for Point A)

DOFs 336 (es%) 530 (es%) 948 (es%) 1286 (es%) 1780 (es%)

FEM-T3 0.9249 0.9582 0.9691 0.9722 0.9752
(−7.5073) (−4.1825) (−3.0897) (−2.7782) (−2.4750)

ES-FEM-T3 0.9725 0.9840 0.9843 0.9848 0.9843
(−2.7469) (−1.5971) (−1.5716) (−1.5176) (−1.5675)

sES-FEM-T3 (S-SD=1) 0.9772 0.9890 0.9924 0.9941 0.9985
(−2.2839) (−1.1035) (−0.7596) (−0.5863) (−0.1498)

sES-FEM-T3 (S-SD=2) 0.9796 0.9916 0.9933 0.9951 0.9994
(−2.0376) (−0.8378) (−0.6873) (−0.4854) (−0.0564)

sES-FEM-T3 (S-SD=3) 0.9797 0.9916 0.9934 0.9951 0.9995
(−2.0288) (−0.8356) (−0.6600) (−0.4898) (−0.0465)
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FIGURE 10.25 Normalized KI at point A for the double edge crack specimen.
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FIGURE 10.26 (a) A rectangular plate with an edge crack subjected to shear force (mixed
mode) and (b) a typical mesh with 566 DOFs.
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410 Smoothed Finite Element Methods

In these example problems of mixed mode, we will investigate in detail
the effects on various solution of (1) the number of subsmoothing domains (S-
SD=1, 2, and 3), and (2) the number of Gauss points used in the integration of
boundary segments (along the radial directions) of the subsmoothing domains.
We will look at the solution outputs in terms of strain energy, displacements,
and SIF values.

STRAIN ENERGY SOLUTIONS

The results in terms of strain energy have been computed using different meth-
ods including FEM-T3, ES-FEM-T3, and sES-FEM with different numbers of
S-SDs. These results are plotted in Figure 10.27 and tabulated in Table 10.8. In
performing the line integration for computing the smoothed strains along the
line segments in the radial direction for the crack-tip edges, we need to use
more than one Gauss point. This is to capture the rapid variation of the singular
field. Our study has shown that at least five Gauss points are needed for these
line segments. In Figure 10.27 and Table 10.8, we provide the results obtained
using five and seven Gauss points for the cases of S-SD=1 and 2. It is shown that
the use of five Gauss points is sufficient, because it gives results very close to
those obtained using seven Gauss points, and the difference is only at the fifth
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FIGURE 10.27 Strain energy solution for the rectangular plate with an edge crack subjected
to shear (mixed mode).

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
27

 1
0 

M
ay

 2
01

6 



S-FEM for Fracture Mechanics 411

TABLE 10.8

Comparison of Results in Strain Energy (×10−5) for the Plate an Edge Crack
Obtained Using Different Methods Using Different Mesh Density

DOFs 202 566 790 1264 1946 2316

FEM-T3 7.059816 7.981250 8.118690 8.234273 8.318031 8.336030
ES-FEM-T3 8.113270 8.396488 8.432329 8.469624 8.512212 8.544447
sES-FEM-T3 8.209445 8.499314 8.533056 8.569464 8.611947 8.623414
(S-SD=1, GP=5)
sES-FEM-T3 8.209355 8.499217 8.532960 8.569370 8.611852 8.623320
(S-SD=1, GP=7)
sES-FEM-T3 8.259971 8.551294 8.585696 8.6212151 8.664186 8.675881
(S-SD=2, GP=5)
sES-FEM-T3 8.259871 8.551282 8.585681 8.621212 8.664106 8.675880
(S-SD=2, GP=7)
sES-FEM-T3 8.259992 8.551305 8.585699 8.621296 8.664192 8.675890
(S-SD=3, GP=5)

digit and beyond. This is true for both S-SD=1 and 2, and should be certainly
true for S-SD=3 because finer subdivision should demand less for the number
of Gauss points. Therefore, in all our examples and discussions we use five
Gauss points as default.

From Figure 10.27, it is also seen that the solution obtained using S-SD=2 is
quite noticeably more accurate than that obtained using S-SD=1. When S-SD=3
is used, the further improvement becomes very marginal, and the difference is
only at the sixth digit and beyond, as shown inTable 10.8.This example suggests
the use of S-SD=2.

We note that the improvement of ES-FEM-T3 from FEM-T3 is very significant,
due to the benefit of the strain smoothing operations. The further improvement
of sES-FEM-T3 from ES-FEM-T3 is quite remarkable, showing the significance
of the singular field approximation.

DISPLACEMENT SOLUTIONS

The results in terms of displacement in the x-direction at the left-top corner are
plotted in Figure 10.28 and tabulated inTable 10.9. Similar findings for the strain
energy solution can be largely observed for the displacement solution. Hence,
we will not repeat the detailed discussions. We state, without showing further
figures and tables, that a similar finding is observed also for the displacement
component in the y -direction (Table 10.10).

SIF SOLUTIONS

Figure 10.29 and Table 10.11 and Figure 10.30 and Table 10.12 provide the
results, respectively, for SIFs KI and KII for this mixed-mode problem. The exact
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FIGURE 10.28 Displacement in the x-direction at point C of the plate with an edge crack
subjected to shear load (mixed mode).

SIF for such a problem is available and has been given by [12]

KI = 34.0,

KII = 4.55.
(10.62)

Similar findings as those for the strain energy solution can be observed largely
for the SIF solutions, except that the sES-FEM-T3 gives upper bound solutions

TABLE 10.9

Comparison of Results in the Displacement (×10−5 cm) in the x-Direction
at the Left-Top Corner of the Plate an Edge Cracks Obtained Using Different
Methods Using Different Mesh Density

DOFs 202 566 790 1264 1946 2316

FEM-T3 2.02224 2.28643 2.32621 2.35970 2.38415 2.38927
ES-FEM-T3 2.32254 2.40550 2.41665 2.42774 2.44036 2.44947
sES-FEM-T3 (S-SD=1, GP=5) 2.35001 2.43484 2.44547 2.45623 2.46885 2.47762
sES-FEM-T3 (S-SD=1, GP=7) 2.35000 2.43481 2.44536 2.45620 2.46882 2.47761
sES-FEM-T3 (S-SD=2, GP=5) 2.36449 2.44975 2.46041 2.47104 2.48371 2.49264
sES-FEM-T3 (S-SD=2, GP=7) 2.36443 2.44969 2.46040 2.47101 2.48368 2.49261
sES-FEM-T3 (S-SD=3, GP=5) 2.36445 2.44969 2.46045 2.47109 2.48370 2.49268
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S-FEM for Fracture Mechanics 413

TABLE 10.10

Comparison of Results in the Displacement (×10−5) in the y-Direction
at the Left-Top Corner of the Plate an Edge Cracks Obtained Using Different
Methods Using Different Mesh Density

DOFs 202 566 790 1264 1946 2316

FEM-T3 0.925 1.05 1.07 1.09 1.09 1.09
sES-FEM-T3 1.09 1.12 1.12 1.12 1.12 1.12
sES-FEM-T3 (S-SD=1, GP=5) 1.11 1.14 1.14 1.14 1.14 1.14
sES-FEM-T3 (S-SD=1, GP=7) 1.11 1.14 1.14 1.14 1.14 1.14
sES-FEM-T3 (S-SD=2, GP=5) 1.12 1.15 1.15 1.15 1.15 1.15
sES-FEM-T3 (S-SD=2, GP=7) 1.12 1.15 1.15 1.15 1.15 1.15

in terms of SIF solution when the mesh is refined as shown in Figures 10.29
and 10.30 and the shaded numbers in Tables 10.11 and 10.12.

PATH INDEPENDENCE OF THE SIFs

It is known that the path independence is one of the most significant features
of the J-integral and the interaction integrals. We shall now examine such path
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FIGURE 10.29 Normalized SIF of the first mode calculated by different methods.
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414 Smoothed Finite Element Methods

TABLE 10.11

Comparison of Results in Normalized KI at the Left-Top Corner of the
Plate and Edge Cracks Obtained Using Different Methods Using
Different Mesh Densities

DOFs 202 (es%) 566 (es%) 790 (es%) 1264 (es%) 1946 (es%) 2316 (es%)

FEM-T3 0.8120 0.9142 0.9289 0.9399 0.9445 0.9456
(−18.8) (−8.58) (−7.11) (−6.01) (−5.55) (−5.44)

ES-FEM-T3 0.9457 0.9723 0.9741 0.9754 0.9762 0.9763
(−5.43) (−2.77) (−2.59) (−2.46) (−2.38) (−2.37)

sES-FEM-T3 0.9645 0.9923 0.9938 0.9941 0.9942 0.9945
(S-SD=1, GP=5) (−3.55) (−0.769) (−0.620) (−0.589) (−0.576) (−0.547)
sES-FEM-T3 0.9645 0.9923 0.9938 0.9941 0.9943 0.9945
(S-SD=1, GP=7) (−3.55) (−0.769) (−0.620) (−0.586) (−0.568) (−0.547)
sES-FEM-T3 0.9727 1.0011 1.0013 1.0010 1.0009 1.0009
(S-SD=2, GP=5) (−2.73) (0.110) (0.134) (0.101) (0.090) (0.090)
sES-FEM-T3 0.9728 1.0010 1.0012 1.0010 1.0009 1.0009
(S-SD=2, GP=7) (−2.72) (0.101) (0.123) (0.101) (0.090) (0.090)
sES-FEM-T3 0.9728 1.0011 1.0012 1.0010 1.0009 1.0008
(S-SD=3, GP=5) (−2.72) (0.110) (0.114) (0.103) (0.088) (0.0834)
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FIGURE 10.30 Normalized SIF of the second mode calculated by different methods.
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S-FEM for Fracture Mechanics 415

TABLE 10.12

Comparison of Results in Normalized KII at the Left-Top Corner of the
Plate and Edge Cracks Obtained Using Different Methods Using
Different Mesh Densities

DOFs 202 566 790 1264 1946 2316

FEM-T3 0.9078 0.9505 0.9648 0.9685 0.9686 0.9689
(−9.22) (−4.95) (−3.52) (−3.15) (−3.14) (−3.11)

ES-FEM 0.9275 0.9662 0.9769 0.9771 0.9773 0.9775
(−7.25) (−3.38) (−2.31) (−2.29) (−2.27) (−2.25)

sES-FEM 0.9546 0.9862 0.9874 0.9886 0.9891 0.9895
(S-SD=1, GP=5) (−4.54) (−1.38) (−1.26) (−1.14) (−1.09) (−1.05)
sES-FEM 0.9545 0.9860 0.9873 0.9885 0.9891 0.9895
(S-SD=1, GP=7) (−4.55) (−1.40) (−1.27) (−1.15) (−1.10) (−1.05)
sES-FEM 0.9711 1.0005 1.0015 1.0009 1.0008 1.0008
(S-SD=2, GP=5) (−2.89) (0.0511) (0.150) (0.0942) (0.0815) (0.0796)
sES-FEM 0.9710 1.0005 1.0014 1.0009 1.0008 1.0008
(S-SD=2, GP=7) (−2.90) (0.0507) (0.140) (0.911) (0.0802) (0.0796)
sES-FEM 0.9712 1.0005 1.0014 1.0009 1.0008 1.0007
(S-SD=3, GP=5) (−2.88) (0.0511) (0.0544) (0.0941) (0.0821) (0.0710)

independence using numerical examples, by choosing various area-paths with
different dimensions for the computation of SIF values.

Example 10.9.5: A Plate with an Edge Crack (Mixed Mode)

Example 10.9.5 is chosen for this study. The area-path integration domain is
determined using a closed circle with a radius rd around the crack-tip, as shown
in Figure 10.31. The procedure to determine the area-path is given in Section
10.8.3 and that for determining the weight function is given in Section 10.8.4.

Crack rd

FIGURE 10.31 Circle used to determine the area-path for the interaction integrals for SIF
calculations.
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416 Smoothed Finite Element Methods

TABLE 10.13

Normalized SIF Value Computed Using DifferentArea-Path Sizes

SIFs Path Sizes rd FEM-T3 ES-FEM-T3 sES-FEM (S-SD=1)

KI 0.1a 0.89590 0.88903 0.24523
0.3 0.96184 0.98930 1.00191
0.5 0.95860 0.98716 0.99614
0.7 0.95675 0.98721 0.99618
0.9 0.95629 0.98721 0.99617

KII 0.1a 0.86272 0.88056 0.63693
0.3 0.97170 0.98193 0.98839
0.5 0.97560 0.98290 0.98663
0.7 0.97493 0.98256 0.98629
0.9 0.97561 0.98334 0.98706

a The dimension of the crack-tip element is h = 0.2, so the region within
rd = 0.1 is inside the crack-tip element.

The results of both SIFs KI and KII are tabulated in Table 10.13 for different
radii ranging from the crack-tip element size to about seven times the crack-
tip element size. It is found that (1) the results are not good when the circle
is inside the layer of the crack-tip element; (2) when rd ≥ 0.3 (three times the
crack-tip element size), the area-path independence is clearly observed; and (3)
ES-FEM-T3 and sES-FEM-T3 give better area-path independence than FEM-T3.

Example 10.9.6: A Plate with a Central Inclined Crack (Mixed Mode)

We now study another mixed-mode problem. A rectangular plate with an
inclined crack subjected to a unit tension load shown in Figure 10.32 is con-
sidered. In this example, we have w = 20 mm, a = √

2 mm, and ϕ = π/4. The
analytical solution for this setting is available as

KI = σ√πa sin2 ϕ,

KII = σ√πa sin ϕ cos ϕ.
(10.63)

For the case of fixed ϕ = π/4, we shall have the normalized SIF values:

KI
σ
√
πa

= 0.5,

KII
σ
√
πa

= 0.5.

(10.64)

The results of both SIFs KI and KII for both crack-tips are tabulated in
Table 10.14. It is observed that (1) when rd ≥ 0.4 (two times the crack-tip
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2w 

2w 

a 
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σ 

σ 

φ 

(a) 

(b) 

FIGURE 10.32 (a) Square plate with an inclined central crack subjected to tension and
(b) mesh used in the computation.

TABLE 10.14

Normalized SIF Values Obtained Using sES-FEM-T3 (S-SD=1) for the Square
Plate with an Inclined Crack (the Dimension of the Crack-Tip Element is h = 0.2)

rd = 0.4 rd = 0.6 rd = 0.7 rd = 0.9 rd = 1

Crack-tip SIFs (es %) (es %) (es %) (es %) (es %)

A KI/σ
√
πa 0.4991 0.4997 0.4996 0.5001 0.5002

(−0.0867) (−0.0269) (−0.0359) (0.0127) (0.0203)
KII/σ

√
πa 0.4962 0.5017 0.5018 0.5060 0.5010

(−0.380) (0.169) (0.180) (0.597) (0.105)
A’ KI/σ

√
πa 0.4985 0.4985 0.4987 0.4981 0.4989

(−0.147) (−0.153) (−0.128) (−0.186) (−0.110)
KII/σ

√
πa 0.4963 0.5022 0.5022 0.5062 0.5023

(−0.365) (0.224) (0.224) (0.623) (0.232)

element size), the area-path independence is well observed; (2) the results for
both crack-tips are very close, and the difference is at the third digit and beyond;
and (3) the results for KI are 2–5 times more accurate than those for KII.

10.10 Numerical Examples Solved Using sNS-FEM-T3

In this section, examples are presented to demonstrate the property of
the sNS-FEM using meshes of triangular elements (sNS-FEM-T3) for com-
puting the solution outputs in terms of strain energy and SIFs. Fracture
problems of mode I, mode II, and mixed mode will be considered with a

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
27

 1
0 

M
ay

 2
01

6 



418 Smoothed Finite Element Methods

focus on the upper bound solutions as well as the accuracy of the solution.
For comparison purposes, all the problems are also solved using FEM-T3,
singular FEM-T6 (sFEM-T6) [2,3], standard NS-FEM-T3, standard ES-FEM-
T3, and sES-FEM-T3, using the same basic mesh of linear T3 elements. The
effect of the number of subsmoothing domains used in the sNS-FEM on
these solution outputs will also be examined.

Example 10.10.1: A Plate with an Edge Crack Subjected to Tension
(Mode I)

A rectangular plate with an edge-crack of isotropic material subjected to ten-
sion, as shown in Figure 10.33, is first considered with plane strain assumption.
The material parameters used are Young’s modulus E = 3 × 107 and Poisson’s
ratio ν = 0.3. The dimensions of the plate are w = 1.0, L = 2.0, and a = 0.3,
and it is loaded on the top edge with unit traction σ = 1.0. The displacement
components in the y -direction are fixed on the bottom edge, and both the dis-
placement components are fixed at the bottom left corner. In SIF analysis, the
problem is essentially the same as in Example 10.9.3, and the exact solution
of KI can be computed using Equation 10.61 [1,12]: KI = 1.6118.

Five “uniform” meshes with 231, 861, 1891, 3321, and 5151 nodes are
used in the computation. A typical mesh of a/h = 8.0 (3321 nodes in total),
where h is the mesh spacing, in the vicinity of the crack-tip, is shown in Figure
10.33b. Because the singularity is properly modeled, we can practically use

a 

w = 1.0 

2Z
 =

 4
.0

σ = 1.0 
(a)

(b)

A

a

FIGURE 10.33 (a) Rectangular plate with an edge crack subjected to tension and (b) typical
meshes in the vicinity of the crack (a/h = 8.0).
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S-FEM for Fracture Mechanics 419

uniform meshes for fracture problems without local zoning-in at the crack-tip.
In computing the interaction integral values, the domain radius of rd = rk h
with rk = 3.0 is set for defining the area-path for the integration.

The problem is analyzed using sNS-FEM-T3, together with other models
using the same meshes. The reference or “exact” solution of the strain energy
is calculated using the sFEM-T6 with a very fine mesh (23,488 nodes), and the
solutions are found to be strain energy=1.164×10−8.

BOUND PROPERTY IN STRAIN ENERGY SOLUTIONS

Figure 10.34 shows the convergence of the strain energy with an increase of
DOF. From Figure 10.34, we observe the following:

1. Bound property : The computed strain energy solutions using the FEM
and the sFEM-T6 models are always smaller than the “exact” reference
solutions, owing to the lower bound property of the FEM models. On the
contrary, the solutions obtained using the NS-FEM and sNS-FEM models
are always bigger than the reference solutions. The results suggest that
the sNS-FEM provides upper bound solutions in strain energy. It is also

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 11,000
1.08 

1.1 

1.12 

1.14 

1.16 

1.18 

1.2 

1.22 
× 10–8

DOF 

St
ra

in
 en

er
gy

 

NS-FEM-T3 
Singular NS-FEM-T3 (1) 
Singular NS-FEM-T3 (2) 
Singular NS-FEM-T3 (3) 
Singular NS-FEM-T3 (4) 
ES-FEM-T3 
Singular ES-FEM-T3
FEM-T3 
Singular FEM-T6 
Reference solution

FIGURE 10.34 Convergence of the strain energy for the problem of a plate with an edge
crack subjected to tension.
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420 Smoothed Finite Element Methods

observed that with the increase of DOFs, the strain energy solutions of the
sFEM models converge to the reference solutions from below, while the
strain energy solutions of the sNS-FEM models converge from above. This
finding is very important, because we can now bound the exact solution
from both sides, in terms of strain energy solution.

2. Softening effects: The NS-FEM model without using the singular element
is the most soft, which gives the loosest upper bound. For all the four sNS-
FEM models, Scheme 1 (one-layer edge-based subdivisions) is the most
soft, giving the loosest upper bound, followed by Scheme 2 (two-layer
edge-based subdivisions). Scheme 4 (two-layer cell-based subdivisions) is
the least soft, giving the tightest upper bound, followed by Scheme 3 (one-
layer cell-based subdivisions). Therefore, Scheme 4 gives the best upper
bound solution.

3. Ultra-accuracy : The sES-FEM-T3 is found as giving the most accurate solu-
tion, and the accuracy is much better than the FEM-T3 as seen in many
earlier examples and even better than the sFEM-T6 using a basic mesh of
quadrilateral elements for the same DOFs.This supports the ultra-accuracy
property of the sES-FEM-T3 models also for fracture problems.

We note that with the use of one-layer T5 singular elements, the S-FEM-T3
models work very well for fracture problems, with sNS-FEM-T3 giving upper
bounds and sES-FEM-T3 giving ultra-accurate solutions.

BOUND PROPERTY IN SIF SOLUTIONS

Figure 10.35 shows the convergence of the KI solution with an increase of
DOFs. It can be clearly observed that the findings for the strain energy solution
are largely true for the KI solution. The computed KI values of the FEM and
sFEM-T6 models are always smaller than the “exact” reference solutions. On the
contrary, the computed KI values using the NS-FEM and sNS-FEM models are
always bigger than the reference solutions. The results show that the sNS-FEM
provides upper bound solutions also in terms of KI values. It is also observed
that with the increase of DOFs, the KI values obtained using these FEM models
and these NS-FEM models converge to the exact solution, respectively, from
below and above. We now can bound the exact solution from both sides, also
in terms of the KI solution, at least for this case. We are not sure whether this
finding for KI solution can hold in general. We have not yet found any exception
for all the example problems studied, but could not prove this theoretically. It
remains, for now, an open question.

EFFECT OF THE NUMBER OF SUBSMOOTHING DOMAINS ON
STRAIN ENERGY

The strain energy solution obtained using the standard NS-FEM and the sNS-
FEM with four different schemes of smoothing domains around the crack-tip
given in Section 10.4 is plotted in Figure 10.34. It is seen that the results of the
sNS-FEM using four schemes are much closer to the reference value, compared
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FIGURE 10.35 Convergence of the KI for the problem of a plate with an edge crack subjected
to tension.

to those of the standard NS-FEM without considering the singularity of the field.
It is also found that the sNS-FEM using Scheme 4 (two-layer cell-based subdivi-
sion), denoted as sNS-FEM(4) or sNS-FEM(4), provides the best accuracy in the
SIFs, compared to other schemes of smoothing domains. We observed in gen-
eral that the schemes of cell-based subsmoothing domain divisions performed
better than the edge-based ones. This is because the NS-FEM model is too soft,
and cell-based smoothing helps to reduce the softness.

EFFECT OF THE SCHEMES OF SMOOTHING DOMAINS ON SIF SOLUTION

The SIF solution obtained using the standard NS-FEM and the sNS-FEM with
four different schemes of subsmoothing domains around the crack-tip given in
Section 10.4 is plotted in Figure 10.35. Very similar findings for strain energy
solution are found here for the SIF solutions as well: (1) sNS-FEM(4) performed
the best, and (2) the schemes of cell-based subsmoothing domain divisions
performed better than the edge-based ones. Based on these findings for both
strain energy and SIF values, sNS-FEM(4) will be used as default in the following
studies, unless stated otherwise.
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422 Smoothed Finite Element Methods

TABLE 10.15

Area-Path Independence for the Mode I Fracture Problem Solved
Using sNS-FEM-T3(4)

Mesh Size Area-Path Dimension (rk) KI/Kexact
I (es %)

a/h = 4.0 (a = 1.0, h = 0.25) 2 1.0243 (2.4)
3 1.0248 (2.5)
4 1.0251 (2.5)

a/h = 8.0 (a = 1.0, h = 0.125) 2 1.0126 (1.2)
3 1.0129 (1.3)
4 1.0130 (1.3)
5 1.0130 (1.3)

Note that although sNS-FEM(4) gives a better solution in terms of accuracy,
there could be cases where it may not provide upper bound solutions. For
such cases (if any), we may need to use the sNS-FEM(1) or even NS-FEM with
sufficiently fine mesh for upper bound solutions.

AREA-PATH INDEPENDENCE

In this area-path independence study, we consider several different area-paths
for the interaction integrals described in Section 10.8.3. The results computed
using sNS-FEM-T3 are listed in Table 10.15. It is found that (1) the differences
caused by the area-path differences for all these cases are beyond the third digit
for both meshes, and (2) the effects of the mesh size is larger than that of the
area-path size. We may conclude that the SIF value is area-path-independent
for these cases studied.

Example 10.10.2: A Plate with an Edge Crack Subjected to Shear
(Mixed Mode)

A rectangular plate with an edge-crack of isotropic material subjected to shear,
as shown in Figure 10.36, is next considered with plane strain conditions. The
material parameters used are Young’s modulus E = 3 × 107 and Poisson’s ratio
ν = 0.3. The dimensions of the plate are w = 7.0, L = 8.0, and a = 3.5, and
the plate is subjected a shear force in the y -direction on the top edge with a
unit traction of τ = 1.0. The displacement components in the y -direction are
fixed on the bottom edge, and both the displacement components are fixed at
the bottom left corner. In SIF analysis, the problem is essentially the same as in
Example 10.9.4, and the exact solutions [1,12] of KI and KII can be computed
using Equation 10.62. All the other settings and meshes used are exactly the
same as in Example 10.10.1.

Five “uniform” meshes with 435, 703, 1653, 3003, and 4753 nodes are
used in the computation. The reference or “exact” solution of the strain energy
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a = 3.5 2L
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 1
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0
FIGURE 10.36 Rectangular plate with an edge crack subjected to shear.

is calculated using the sFEM with a very fine mesh (53,561 nodes), and the
solution in strain energy is found to be 8.7903 × 10−5.

BOUND PROPERTY OF SOLUTIONS

The strain energy, KI and KII solutions were obtained using various FEM, sES-
FEM, and sNS-FEM models for this mixed-mode fracture problem, and the
results are plotted, respectively, in Figures 10.37 and 10.38. It is observed that
the SIF values obtained using the FEM models are lower bounds, and those
obtained using the sNS-FEM models are upper bounds. Together they bound
the exact solutions from both sides. These findings reconfirm what we have
found in Example 10.10.1. In addition, we observed from Figure 10.38 the sig-
nificance of using the singular elements on the accuracy of the KII solution: the
sNS-FEM models using a layer of T5 singular elements are much more accurate
than the NS-FEM model. This implies that the use of singular T5 elements is
particularly more important for KII solution that is a much weaker mode in the
mixed-mode problem.

EFFECT OF THE SCHEMES OF SUBSMOOTHING DOMAINS

From Figures 10.37 through 10.39, it is seen that the numerical solutions (strain
energy, KI and KII) of the sNS-FEM using four schemes are much closer to the
exact solutions, compared to those of the standard NS-FEM. It is also noted that
the sNS-FEM(4) provides the best accuracy in all these numerical solutions. In
addition, we also observed that for the KII solution, the sNS-FEM models are
significantly better than the NS-FEM.

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
27

 1
0 

M
ay

 2
01

6 



424 Smoothed Finite Element Methods

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
0.8 

0.85 

0.9 

0.95 

1 

1.05 

1.1 

1.15 

1.2 

DOF 

K I

NS-FEM-T3

Singular NS-FEM-T3 (2)
Singular NS-FEM-T3 (3)
Singular NS-FEM-T3 (4)
ES-FEM-T3
Singular ES-FEM-T3
FEM-T3
Singular FEM-T6

Reference solution

Singular NS-FEM-T3 (1)

FIGURE 10.37 Convergence of the KI for the problem of a plate with an edge crack subjected
to shearing.

AREA-PATH INDEPENDENCE

For the mixed-mode problem, we studied also the area-path independence.
The results computed using sNS-FEM-T3 (Scheme 4) are listed in Table 10.16. It
is found that (1) the differences caused by the different area-paths for all these
cases are beyond the third digit for both KI and KII and for both meshes, and
(2) the effects of the mesh size are larger than that of the area-path size.

Example 10.10.3: Bimaterial Plate with a Center-Crack (Interfacial
Mixed Mode)

We consider now a fracture problem of an interface crack located in between
two different elastic semi-infinite planes. Plane strain conditions are assumed.
The exact solution to this problem for a remote traction of t = σ∞22 + iτ∞12 was
obtained by Rice and Sih [19]. The solution for KI and KII at the right crack-tip
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FIGURE 10.38 Convergence of the KII for the problem of a plate with an edge crack subjected
to shearing.

is given by [19,20]

KC = KI + iKII = (σ∞22 + iτ∞12)(1 + 2iε)
√
πa(2a)−iε. (10.65)

Here we consider only the case of pure tension load, and in this case, the
problem is symmetric. Therefore, only half of the domain needs to be consid-
ered with the appropriate displacement constraints on the plane of symmetry,
as shown in Figure 10.40. To remove the edge singularity, the right edge is
also constrained in the x-direction [19]. The factors K0 and J0 defined in the
following equation are used to normalize the solution of SIFs and J-integral,
respectively.

K0 = σ∞22
√
πa, J0 = (σ∞22)2πa

E1
, (10.66)

where 2a is the (whole) crack length. The material constants used in the
numerical computation are E1 = 1.0 × 103 Pa, E2/E1 = 22, ν1 = 0.3, and
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FIGURE 10.39 Convergence of the strain energy for the problem of a plate with an edge
crack subjected to shearing.

TABLE 10.16

Area-Path Independence for the Mixed-Mode Fracture Problem
Solved Using sNS-FEM-T3(4)

Area-Path KI/Kexact
I KII/Kexact

II
Mesh Size Dimension (rk) (% Error) (% Error)

a/h = 4.0 (a = 1.0, h = 0.25) 2 1.0385 (3.8) 1.0217 (2.17)
3 1.0389 (3.9) 1.0167 (1.67)
4 1.0390 (3.9) 1.0190 (1.90)

a/h = 8.0 (a = 1.0, h = 0.125) 2 1.0171 (1.7) 1.0116 (1.16)
3 1.0175 (1.8) 1.0068 (0.68)
4 1.0175 (1.8) 1.0084 (0.84)
5 1.0175 (1.8) 1.0087 (0.87)
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FIGURE 10.40 Plate made of bimaterials with a center-crack subjected to tension. Only half
of the domain is modeled due to symmetry.

ν2 = 0.2571. The exact solutions found from Equation 10.65 are as follows:

KI
K0

= 1.008,
KII
K0

= 0.1097,
J
J0

= 1.4358. (10.67)

In our numerical computation, we can only model a finite domain. To avoid
the effect of finite size, so that we can compare the numerical results with the
exact solution, “large” models are built with w /a = 10 (where the crack length
is fixed at a = 1). Four “uniform” meshes with 681, 1891, 3321, and 5151
nodes are used in the computation, and rk = 5 is used to create the area-path
for the interaction integral evaluation for this example problem.

ACCURACY IN SOLUTION OUTPUTS

Table 10.17 shows the comparison of the solutions in terms of SIFs and the
energy release rate using different numerical methods [FEM-T3, sFEM-T6, NS-
FEM-T3, and sNS-FEM-T3(4)]. These solution outputs of KI, KII, and J are also
plotted in Figures 10.41 through 10.43 for easy observation. From Table 10.17
and these figures, it can be found that when singular elements are used, the
solution becomes much more accurate. This is true for any methods and for
any solution outputs, and it reinforces the importance of the enrichment in the
crack-tip field.
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428 Smoothed Finite Element Methods

TABLE 10.17

Plate of Bimaterials with a Center-Crack Subjected to Tension: Comparison of
the SIFs and Energy Release Rate Obtained Using Different Methods (Exact
Solutions: KI/K0 = 1.008; KII/K0 = 0.1097; J/J0 = 1.4358)

DOFs 1722 (es%) 3782 (es%) 6642 (es%) 10,302 (es%)

KI/K0 NS-FEM-T3 1.0252 (1.7) 1.0205 (1.2) 1.0189 (1.0) 1.0179 (0.9)
sNS-FEM-T3 1.0166 (0.8) 1.0127 (0.4) 1.0116 (0.3) 1.0105 (0.2)
ES-FEM-T3 0.9989 (−0.9) 1.0020 (−0.6) 1.0033 (−0.5) 1.0041 (−0.4)
sES-FEM-T3 1.0051 (−0.3) 1.0060 (−0.2) 1.0061 (−0.2) 1.0063 (−0.2)
FEM-T3 0.9834 (−2.4) 0.9903 (−1.8) 0.9939 (−1.4) 0.9959 (−1.2)
sFEM-T6 1.0046 (−0.4) 1.0057 (−0.3) 1.0059 (−0.2) 1.0062 (−0.2)

KII/K0 NS-FEM-T3 0.0801 (−27.0) 0.0924 (−15.8) 0.0979 (−10.8) 0.1023 (−6.7)
sNS-FEM-T3 0.0912 (−16.9) 0.0981 (−10.6) 0.1037 (−5.5) 0.1086 (−1.0)

ES-FEM-T3 0.1134 (3.4) 0.1118 (1.0) 0.1108 (1.0) 0.1104 (0.6)
sES-FEM-T3 0.1106 (0.9) 0.1105 (0.9) 0.1101 (0.3) 0.1099 (0.2)
FEM-T3 0.1192 (8.6) 0.1141(4.6) 0.1122 (2.3) 0.1111 (1.3)
sFEM-T6 0.1104 (0.7) 0.1103 (0.6) 0.1100 (0.3) 0.1099 (0.2)

J/J0 NS-FEM-T3 1.4765 (2.8) 1.4659 (2.1) 1.4627 (1.8) 1.4611 (1.7)
sNS-FEM-T3 1.4546 (1.3) 1.4453 (0.7) 1.4438 (0.5) 1.4421 (0.4)
ES-FEM-T3 1.4109 (−1.7) 1.4188 (−1.2) 1.4223 (−0.9) 1.4244 (−0.8)
sES-FEM-T3 1.4273 (−0.6) 1.4296 (−0.4) 1.4301 (−0.4) 1.4306 (−0.3)
FEM-T3 1.3699 (−4.6) 1.3872 (−3.4) 1.3964 (−2.7) 1.4018 (−2.4)
sFEM-T6 1.4240 (−0.8) 1.4283 (−0.5) 1.4296 (−0.4) 1.4301 (−0.4)

Note: Shaded, upper bounds.

BOUND PROPERTY OF SOLUTIONS

From Table 10.17 and these figures, it can be found that the KI and J obtained
using the sFEM models are smaller than the exact solutions (the negative relative
error) and converge from below. On the contrary, the KI and J values obtained
using the sNS-FEM models are larger than the exact ones (the positive relative
error, shaded) and converge from above.

However, the opposite is found for the KII solution: the FEM results converge
from above, and the sNS-FEM results converge from below, as shown in Figure
10.42.This finding implies that for solution in terms of SIFs, it is not always guar-
anteed that NS-FEM produces upper bound and FEM produces lower bound.
What seems always to be true is that these computed values of the FEM and the
NS-FEM models will stay opposite sides. These solutions will converge to the
exact solution from different sides. This is important because we can always
bound the exact solutions from two sides.This is, in fact, all we need in practical
applications.

AREA-PATH INDEPENDENCE

The area-path independence is also conducted for this interfacial crack case,
and the results for different paths are listed in Table 10.18. For KI and J values,
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FIGURE 10.41 Convergence of the KI for the plate of bimaterials with a center-crack
subjected to tension.

we have the similar finding that the differences caused by different area-paths
used for all these cases are beyond the third digit for both meshes. Different
from the previous examples, however, we found from this interfacial crack
example that KII showed quite strong area-path dependence numerically. Area-
path with rk = 4 seems to be the best for this case. Therefore, for interfacial
crack, care must be taken in numerical analysis, and further studies on this
issue are required.

Example 10.10.4: Interfacial Crack in a Film/Substrate System

PROBLEM SETTINGS

The final example of this chapter considers a practical problem of a thin-
film/substrate system with an interfacial crack subject to four-point bending.
Owing to symmetry, only one-half of the domain is modeled in this analysis.
The dimensions of the domain and crack and the displacement boundary con-
ditions are given in Figure 10.44. The thickness of film is denoted by hf and that
of the substrate by hs. The total thickness is denoted by ht = hf + hs. Ef and vf
are the Young’s modulus and Poisson’s ratio of the film, and Es and vs are those
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FIGURE 10.42 Convergence of the KII for the plate of bimaterials with a center-crack
subjected to tension.

for the substrate. The objective of this analysis is to evaluate the energy release
rate G for the interfacial crack.

When the interface crack length is significantly larger than the thickness of the
film, a steady-state condition is reached and the energy release rate stabilizes
at a constant value, Gss, which is known as the steady-state energy that can be
calculated using [21]

Gss = 3(1 − v2
s )P2L2

2Esb2h3
t

×
{(

ht

hs

)3
− λm

[(
hf
ht

)3
+ λm

(
hs

ht

)3
+ 3λm

hfhs

h2
t

(
hf
ht

+ λhs

ht

)]}
,

(10.68)

where b is the depth (into the paper) of the film/substrate system and λm relates
to the ratio of the properties of the two materials:

λm = Es(1 − v2
f )

Ef(1 − v2
s )

, (10.69)
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FIGURE 10.43 Convergence of the J-integral for the plate of bimaterials with a center-crack
subjected to tension.

TABLE 10.18

Area-Path Independence of the sNS-FEM-T3 Solutions for Plate of Bimaterials
with a Center-Crack Subjected to Remote Tension

Area-Path

Mesh Size Dimension (rk) J/J0 (es %) KI/K0 (es %) KII/K0 (es %)

a/h = 6.0 3 1.4445 (0.6) 1.0097 (0.2) 0.1230 (12.1)
4 1.4470 (0.8) 1.0124 (0.4) 0.1070 (−2.5)
5 1.4453 (0.6) 1.0127 (0.5) 0.0981 (−10.6)
6 1.4451 (0.6) 1.0129 (0.5) 0.0952 (−13.1)

a/h = 8.0 3 1.4413 (0.4) 1.0073 (−0.1) 0.1328 (21.1)
4 1.4437 (0.5) 1.0106 (0.3) 0.1126 (2.5)
5 1.4438 (0.6) 1.0116 (0.4) 0.1037 (−5.5)
6 1.4444 (0.6) 1.0121 (0.4) 0.1010 (−7.9)
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FIGURE 10.44 Athin-film/substrate system with an interfacial crack subjected to four-point
bending. Only half of the domain is modeled.

For interfacial cracks, the phase angle ψ is an important parameter in the char-
acterization of interfacial fracture toughness. It measures the relative proportion
of shear-to-normal tractions at a characteristic distance l ahead of the crack-tip,
and is defined as [19]

Kl iε = |K| eiψ. (10.70)

The characteristic length l given in Equation 10.70 is taken as the total
thickness of the film/substrate system ht, and ψ can be obtained using

ψ = tan−1

(
Im[Khiε

t ]
Re[Khiε

t ]

)
. (10.71)

We now define reference parameters K0 and G0 as

K0 = PL

bh3/2
t

, G0 = (1 − v2
s )P2L2

Esb2h3
t

, (10.72)

which are used to normalize the solution outputs of SIFs and the energy release
rate G (that equals the J-integral value), as shown in Equation 10.23.

In our numerical models, the geometric parameters are set as

a = 30, b = 1;

hf = 1, ht = 10, which gives hf/ht = 0.1;

L = 125, D = 50, which gives L/D = 2.5; D/ht = 5 and a/ht = 3

The material parameters used are Es = 1.0 × 103, Ef/Es = 10, and vf =
vs = 0.3. The plate is subjected to a unit loading of P = 1. The mesh with
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S-FEM for Fracture Mechanics 433

hf/h = 6.0 (3156 nodes) and the domain radius parameter rk = 5 are used
for the interaction integral. Based on this setting, the exact steady-state energy
release rate is found from Equation 10.68: Gss = 1.3632, K0 = 1.5811, and
G0 = 2.2750 × 10−4.

NUMERICAL SOLUTIONS: ACCURACY AND BOUND PROPERTY

Table 10.19 lists the solution of energy release rates obtained by FEM, sFEM,
ES-FEM and sES-FEM, NS-FEM and sNS-FEM, together with solutions of KI, KII,
andψ. In terms of energy release rate, we first note that (1) the solution accuracy
of FEM-T3 and NS-FEM-T3 is of about the same level, and (2) the sES-FEM-T3
solutions are the most accurate, followed closely by the higher-order sFEM-T6.
Most importantly, we observe again that the NS-FEM models produce upper
bound solutions in energy release rate, while the FEM models produce lower
bounds. The exact solution of Gss = 1.3632 fails indeed in between 1.3531 (a
lower bound by sFEM-T6) and 1.3779 (an upper bound by sNS-FEM-T3).

Now, with the total thickness fixed at ht = 10, we vary the thickness of
the film to achieve the thickness ratio hf/ht varying in the range of [0.1,
0.5]. We then compute two quite extreme cases of bimaterial combinations:
Ef/Es = 0.1 and 10. Table 10.20 lists the solution of steady-state energy release
rates for different thickness ratios and different bimaterial combinations. We first
notice that for all these cases, the numerical solutions are very accurate for the
quite coarse mesh used.This implies that our singular models are very robust for
interfacial crack problems, and this is made possible by the enrichment of dis-
placement field near the crack-tip. In terms of energy release rate, we observe
that (1) the sES-FEM-T3 is of about the same accuracy as the higher-order sFEM-
T6, and they are about twice more accurate than that of the (basically) linear
sNS-FEM-T3, and (2) most importantly, the sFEM-T6 bounds the solution from
below and the sNS-FEM-T3 bounds from above, which provides a very impor-
tant and practical mean to bound the exact solution from both sides for the
interfacial crack problems.

TABLE 10.19

Numerical Solutions Obtained Using Various Methods for the
Film/Substrate System Subjected to Four-Point Bending (the
Exact Gss = 1.3632; Mesh Size h = hf /6)

Method J/J0 (es %) KI/K0 KII/K0 ψ

FEM-T3 1.3142 (−3.6) 0.9386 1.2832 43.81
sFEM-T6 1.3502 (−0.9) 0.9564 1.2965 43.54
ES-FEM-T3 1.3423 (−1.5) 0.9517 1.2946 43.68
sES-FEM-T3 1.3511 (−0.8) 0.9572 1.2970 43.57
NS-FEM-T3 1.4123 (3.5) 0.9970 1.3123 42.77
sNS-FEM-T3 1.3779 (1.1) 0.9882 1.3061 42.89
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434 Smoothed Finite Element Methods

TABLE 10.20

Effect of Elastic Modulus Ratio and Thickness Ratio on the Numerical Solutions
Obtained Using Various Methods for the Film/Substrate System Subjected to
Four-Point Bending

sNS-FEM-T3
sFEM-T6 sES-FEM-T3

Ef/Es hf/ht J/J0 (es %) J/J0 (es %) Exact J/J0 J/J0 (es %) ψ

10 0.1 1.3507 (−0.9) 1.3511 (−0.8) 1.3632 1.3779 (1.1) 42.89
0.2 2.2618 (−0.8) 2.2626 (−0.7) 2.2793 2.3234 (1.9) 42.00
0.3 3.6964 (−0.7) 3.6969 (−0.7) 3.7254 3.7875 (1.7) 38.85
0.4 6.2749 (−0.8) 6.2754 (−0.8) 6.3249 6.4264 (1.6) 35.34
0.5 11.3450 (−0.9) 11.3451 (−0.9) 11.4523 11.6746 (1.9) 32.32

0.1 0.1 0.0802 (−0.8) 0.0801 (−0.9) 0.0807 0.0822 (1.8) 61.98
0.2 0.3019 (−0.8) 0.3022 (−0.7) 0.3043 0.3112 (2.2) 55.72
0.3 0.8957 (−0.5) 0.8959 (−0.5) 0.9010 0.9290 (2.5) 51.14
0.4 2.4519 (−0.5) 2.4518 (−0.5) 2.4655 2.4976 (1.3) 47.43
0.5 6.4698 (−0.9) 6.4706 (−0.8) 6.5228 6.6522 (1.8) 44.70

10.11 Remarks

In this chapter, we formulated the sS-FEMs with a focus on the sNS-FEM
and sES-FEM, using a basic mesh of three-node triangular (T3) elements.
A general five-node triangular (T5) crack-tip element is presented with
an additional node on each of the two crack-tip edges. Only one layer of
singular T5 elements is used around the crack-tip to provide the crucial
capacity to produce the important singularity field. Intensive numerical
studies have been conducted to examine these sNS-FEM-T3 and sES-FEM-
T3 models. The following remarks should be mentioned before concluding
this chapter.

Remark 10.1 T5 Crack-Tip Element: Simple, Unique, and Effective

For the T5 singular crack-tip elements, the mid-edge node can be located
at any point within the crack-tip edge. One quarter-length away from the
crack-tip is recommended, just to be the same as what we used to do in the
standard FEM. The use of T5 elements is simple, unique, and effective to
improve the solutions for fracture problems.

Remark 10.2 sES-FEM-T3 with S-SD=2: Ultra-Accurate, Best Linear
Model

For sES-FEM-T3, S-SD=2 is recommended. The sES-FEM-T3 produces an
ultra-accurate solution that is as much as 50 times more accurate than
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S-FEM for Fracture Mechanics 435

the FEM-T3 and even more accurate than the higher-order sFEM-T6. The
sES-FEM-T3 usually produces lower bound solution for strain energy for
force-driving problems, but it can also give upper bound depending on the
setting of the problem. Because the sES-FEM-T3 mode has a very close-to-
exact stiffness, the solution is often quite close to the exact one and hence
can be on both sides. The sES-FEM-T3 may be a “star” performer and
probably the best linear model so far found for fracture problems. It can
be very challenging to find a linear model that performs better than the
sES-FEM-T3 for fracture problems.

Remark 10.3 sNS-FEM-T3 with Scheme 4: Upper Bound Solutions

For sNS-FEM-T3, Scheme 4 for subsmoothing domain division is recom-
mended. The sNS-FEM-T3 solution accuracy is, by large, at the same level
as the FEM-T3 solution accuracy. However, it has a very important upper
bound property: it produces upper bound solutions in strain energy (or the
strain energy release rate or the J-integral value) for force-driving problems,
in contrast to the FEM that produces lower bounds. Using sES-FEM-T3
together with sFEM-T6 (or FEM-T3), we can now bound the solution for
fracture problems from both sides.

Remark 10.4 sS-FEM Solutions: Area-Path Independent

The area-path independence is generally observed via numerical examples
for both sES-FEM-T3 and sNS-FEM-T3 models.

Remark 10.5 sS-FEM: High Convergence Rate

The convergence rate for sES-FEM-T3 is found to be much higher than that
of FEM-T3 and even higher than that of the sFEM-T6. It is, however, still a
little lower than the theoretical rate for convex domains.

Remark 10.6 sS-FEM Formulation: Other Extensions

Note that a similar idea can be used for creating the S-FEM model for
problems with different orders of singularity. This is because S-FEM does
not need the derivatives of field functions for constructing the stiffness
matrix. If a proper interpolation can be done to create the desired field,
an efficient model can then be created. In addition, the sS-FEM can be
extended for crack propagation problems [7]. More general methods can
be created based on the mesh-free settings [22].
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11
S-FEM for Viscoelastoplasticity

11.1 Introduction

In practical engineering systems, various other types of materials are used
apart from the most often used linear elastic materials. One example of
such a type of materials is the so-called viscoelastoplastic materials [1].
Currently, mechanics problems for solids of viscoelastoplastic materials
can be modeled using the FEM, based on the so-called dual formulation
or primal formulation. In the dual formulation [2], the displacement and
stress approximations are computed simultaneously with yield functions
and flow rules written in terms of admissible stresses. In the primal formula-
tion [2], the strains are treated as the primary variables and a discretization
is required for simultaneous approximations of both the displacement and
plastic strain fields.

In this chapter, we aim to extend the S-FEM models to solve mechanics
problems of solids with viscoelastoplastic materials, and both 2D and 3D
problems will be considered. In particular, the ES-FEM-T3 (Chapter 7) will
be used for 2D problems and FS-FEM-T4 (Chapter 8) will be used for 3D
problems, using types of triangular and tetrahedral elements. ES-FEM-T3
and FS-FEM-T4 are chosen because of their excellent performance and sta-
bility both spatially and temporally as earlier studies have shown [3,4].
Our formulation is based on the dual formulation, and the ES-FEM-T3 and
FS-FEM-T4 procedures are combined with the formulation of Carstensen
and Klose [1] that was used in the standard FEM. The material beha-
vior, including perfect viscoelastoplasticity and viscoelastoplasticity with
isotropic and linear kinematic hardening, is modeled with the von-Mises
conditions and the Prandtl–Reuss flow rule. In the present dual formula-
tion, both displacements and stresses are first treated as primary variables.
We then eliminate the stress variables at a later stage and convert the prob-
lem to be only displacement dependent, so that it can be much easier
to solve. Therefore, the approach used in this chapter is eventually still
a displacement method.

Examples will be presented to examine the present ES-FEM-T3 and FS-
FEM-T4 formulations, and the numerical results and a posteriori error
estimations demonstrate some superior properties of ES-FEM-T3 and

439
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440 Smoothed Finite Element Methods

FS-FEM-T4 compared to standard FEM counterparts in solving viscoelasto-
plasticity problems.

11.2 Strong Formulation for Viscoelastoplasticity

11.2.1 Equilibrium Equation

The strong form of the governing equation for a viscoelastoplastic solid
that deforms in the “pseudo” time interval t ∈ [0, T] is expressed in the
form of equilibrium equation defined in the problem domain Ω bounded
by Γ. At any given time, we shall have

Ldσ + b = 0 in Ω, (11.1)

where all these terms are defined in Chapter 2.

11.2.2 Boundary Conditions

The boundary conditions on the Dirichlet boundary Γu is defined at any
given time instance as

u = w0 on Γu (11.2)

We note that the Dirichlet boundary condition considered here is in
general nonhomogeneous. The Neumann boundary condition can be
expressed as

σTn = t on Γt, (11.3)

which is also nonhomogeneous in general and should be enforced at all
times.

11.2.3 Constitution Equation, Yield Function, and Flow Rule

For viscoelastoplasticity problems, the constitutive equations, yield func-
tion, and flow rule must be properly defined and enforced at all times. In
the context of small strain, the total strain ε(u) is separated into two parts:

ε(u) = e(σ) + p(ξ), (11.4)

where e(σ) = c−1σ is the elastic strain vector and p(ξ) is the irreversible
plastic strain vector with ξ being an internal variable.
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S-FEM for Viscoelastoplasticity 441

To properly describe the evolution process for the plastic strain, it is
required to define admissible stresses, a yield function, and an associated flow
rule. In this work, we use the von-Mises yield function and the Prandtl–
Reuss flow rule, and the evolution process is modeled in the following
procedure.

Let p and ξ be the kinematic variables of the generalized strain P =
(p, ξ), and let Σ = (σ, α) be the corresponding generalized stress, where
α is the hardening parameter describing internal stresses. We define Υ as
the admissible stresses set, which is a closed, convex set, containing 0 and
defined by

Υ = {Σ : Φ(Σ) ≤ 0} , (11.5)

where Φ is the von-Mises yield function that is presented specifically for
different viscoelastoplasticity cases as follows:

Case a: Perfect viscoelastoplasticity
In this case, there is no hardening and the internal variables ξ, α are absent.
The von-Mises yield function can be simply given as

Φ(σ) = ‖dev(σ)‖ − σY , (11.6)

where σY is the yield stress; ‖x‖ is the norm of a vector x =
{x1 x2 · · · xn}T and computed by ‖x‖ =

√∑n
i=1 x2

i ; dev(x) is the
deviator vector of a vector x and computed using

dev(x) = x − tr(x)

d
I, (11.7)

in which d is the dimension of the problem (d = 2 for 2D and d = 3 for
3D); I = {1 1 0}T for 2D problems and I = {1 1 1 0 0 0}T for 3D
problems; and tr(x) is the trace operator defined by

tr(x) =
d∑

i=1

xi. (11.8)

The Prandtl–Reuss flow rule has the form of

ṗ =
{ 1

v (‖dev(σ)‖ − σY) if ‖dev(σ)‖ > σY ,

0 if ‖dev(σ)‖ ≤ σY ,
(11.9)

where v is the viscosity parameter and v > 0, and ṗ is the velocity of
plasticity strain.
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442 Smoothed Finite Element Methods

Case b: Viscoelastoplasticity with isotropic hardening
In the case of isotropic hardening, the material behavior is characterized
by a modulus of hardening H ≥ 0, and α ≡ αI ≥ 0 (I stands for isotropic)
becomes a scalar hardening parameter that relates to the scalar internal
strain variable ξ in the form of

αI = −H1ξ, (11.10)

where H1 is a positive hardening parameter.
The von-Mises yield function can then be written as

Φ(σ, αI) = ‖dev(σ)‖ − σY(1 + HαI). (11.11)

For the viscosity parameter v > 0, the Prandtl–Reuss flow rule becomes

(
ṗ
ξ̇

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
v

1(
1 + H2σ2

Y

)
⎛
⎝ ‖dev(σ)‖ − (1 + αIH

)
σY

−HσY
(‖dev(σ)‖ − (1 + αIH

)
σY
)
⎞
⎠

if ‖dev(σ)‖ >
(
1 + αIH

)
σY ,

(
0

0

)
if ‖dev(σ)‖ ≤ (1 + αIH

)
σY ,

(11.12)

where ξ̇ is the velocity of the scalar internal strain variable.

Case c: Viscoelastoplasticity with linear kinematic hardening
In the case of linear kinematic hardening, the internal stress α ≡ αK (K
stands for kinematic) relates to the internal strain ξ in the following simple
form of

αK = −k1ξ, (11.13)

where k1 is a positive parameter.
The von-Mises yield function is now written as

Φ
(
σ, αK

)
=
∥∥∥dev(σ) − dev

(
αK
)∥∥∥− σY . (11.14)

For the viscosity parameter v > 0, the Prandtl–Reuss flow rule has the
form of

(
ṗ
ξ̇

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2v

( ∥∥dev
(
σ − αK)∥∥− σY

− (∥∥dev
(
σ − αK)∥∥− σY

)
)

if
∥∥dev

(
σ − αK)∥∥ > σY ,

(
0
0

)
if
∥∥dev

(
σ − αK)∥∥ ≤ σY .

(11.15)
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S-FEM for Viscoelastoplasticity 443

The Prandtl–Reuss flow rule can be written in the following general
form [1]:

[
ṗ
ξ̇

]
= 1

v

[
σ −Πσ

α −Πα

]
, (11.16)

where the viscosity parameter v > 0, and Πσ and Πα are defined as the
projections of (σ, α) into the admissible stresses set Υ.

11.3 FEM for Viscoelastoplasticity: A Dual Formulation

11.3.1 Galerkin Weak Form

The viscoelastoplasticity problem defined in Section 11.2 can now be stated
in a weak formulation [1]: Seek u ∈ H

1(Ω; Rd) such that u = w0 on ΓD,
and for all v ∈ H

1
0(Ω; Rd) = {v ∈ H

1(Ω; Rd) : v = 0 on ΓD}, the following
equations are satisfied:

∫

Ω

(σ(u))T ε(v) dΩ =
∫

Ω

vTb dΩ+
∫

Γt

vTt dΓ (11.17)

and

[
ṗ

ξ̇

]
=
[
ε(u̇) − c−1σ̇

ξ(α̇)

]
= 1

v

[
σ −Πσ

α −Πα

]
. (11.18)

Equation 11.17 is the standard Galerkin weak form for the mechanics
problem of solids of viscoelastoplastic materials, which is subjected to the
constraint Equation 11.18.

11.3.2 Time Discretization Scheme

Equations 11.17 and 11.18 are formulated as a sort of time-dependent prob-
lem for the “time” t ∈ [0, T]. The generalized midpoint rule [1] is used here
as the time-discretization scheme. At each time step, with given variables
(u(t), σ(t), α(t)) at time t0 denoted as (u0, σ0, α0), a spatial problem needs to
be solved for unknowns at time t1 = t0 +Δt denoted as (u1, σ1, α1). Time
derivatives are then substituted by the backward difference quotients. For
instance, u̇ is substituted by (uϑ − u0)/ϑΔt where uϑ = (1 − ϑ)u0 + ϑu1

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
47

 1
0 

M
ay

 2
01

6 



444 Smoothed Finite Element Methods

with 1/2 ≤ ϑ ≤ 1. The weak statement for the time-discrete problem now
becomes: Seek uϑ ∈ H

1(Ω; Rd) such that uϑ = w0 on ΓD, and
∫

Ω

(σ (uϑ))T ε(v) dΩ =
∫

Ω

vTbϑΩ+
∫

Γt

vTtϑ dΓ, ∀v ∈ H
1
0(Ω; Rd) (11.19)

and

1
ϑΔt

[
ε(uϑ − u0) − c−1(σϑ − σ0)

ξ(αϑ − α0)

]
= 1

v

[
σϑ −Πσϑ

αϑ −Παϑ

]
(a)

(b)
(11.20)

where tϑ = (1 − ϑ)t0 + ϑt1, bϑ = (1 − ϑ)b0 + ϑb1 in which b0, t0, b1, and t1
are the body forces and surface forces at time t0, t1, respectively.

In the plastic phase, it is easy to define αϑ from the Equation 11.20b.
Therefore, the time discretization problem will reduce into solving Equa-
tions 11.19 and 11.20a which are in fact a dual formulation containing
both stress and displacement as field variables. To solve the system of
Equations 11.19 and 11.20a efficiently, we need to eliminate one variable.
This can be done by first expressing explicitly the stress σϑ in the form
of displacement uϑ using Equation 11.20a, and then substituting it into
Equation 11.19. The problem will then become only displacement depen-
dent, and we need to solve the resultant form of Equation 11.19, to which
our ES- and FS-FEM can be utilized. This solution process is briefly sum-
marized for different cases of viscoelastoplastic materials in the following
subsections.

11.3.3 Analytic Expression of the Stress Tensor

The Equation 11.20a, or the flow law, can be rewritten as

A − c−1σϑ

ϑΔt
= 1

v
(I −Π)σϑ, (11.21)

where A = ε(uϑ − u0)/(ϑΔt) + c−1σ0/(ϑΔt). Using the stress–strain (con-
stitutive) relation in elasticity, we obtain the expression of the elastic strain
vector in the form of

eϑ = c−1σϑ = 1

d2λ+ 2dμ
trσϑI + 1

2μ
devσϑ, (11.22)

where μ and λ are Lame’s constants.
By solving Equations 11.21 and 11.20b with the flow rule given in Equa-

tion 11.9, or 11.12 or 11.15, the explicit expressions for the stress vector σϑ
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S-FEM for Viscoelastoplasticity 445

for viscoelastoplasticity problems can be derived for the corresponding
three cases [1]:

In the elastic phase, for all cases we have

σϑ = C1tr(ϑΔtA)I + 2μdev(ϑΔtA). (11.23)

In the plastic phase,

Case a: Perfect viscoelastoplasticity
The plastic occurs when ‖dev(ϑΔtA)‖ > βσY and

σϑ = C1tr(ϑΔtA)I +
(

C2 + C3

‖dev (ϑΔtA)‖
)

dev(ϑΔtA), (11.24)

where

C1 = λ+ 2μ
d

, C2 = v
(βv + ϑΔt)

, C3 = ϑΔtσY

(βv + ϑΔt)
, (11.25)

in which β = 1/(2μ).

Case b: Viscoelastoplasticity with isotropic hardening
The plastic occurs when ‖dev(ϑΔtA)‖ > β(1 + αI

0H)σY and we have

σϑ = C1tr(ϑΔtA)I +
(

C3

(C2 ‖dev (ϑΔtA)‖) + C4

C2

)
dev(ϑΔtA), (11.26)

where

C1 = λ+ 2μ
d

, C2 = βv
(

1 + H2σ2
Y

)
+ ϑΔt

(
1 + βH1H2σ2

Y

)

C3 = ϑΔtσY
(
1 + αI

0H
)

, C4 = H1H2ϑΔtσ2
Y + v

(
1 + H2σ2

Y

)
,

(11.27)

in which αI
0 is the initial scalar hardening parameter.

Case c: Viscoelastoplasticity with linear kinematic hardening
The plastic occurs when ‖dev(ϑΔtA − βαK

0 )‖ > βσY and we obtain

σϑ = C1tr(ϑΔtA)I +
(

C2 + C3∥∥dev
(
ϑΔtA − βαK

0
)∥∥
)

dev
(
ϑΔtA − βαK

0

)

+ dev
(
αK

0

)
, (11.28)
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446 Smoothed Finite Element Methods

where αK
0 is the initial hardening parameter, and

C1 = λ+ 2μ
d

, C2 = ϑΔtk1 + 2v
ϑΔt + βϑΔtk1 + v/μ

, C3 = ϑΔtσY

ϑΔt + βϑΔtk1 + v/μ
.

(11.29)

By substituting the stressσϑ described explicitly in Equation 11.24 or 11.26
or 11.28 into Equation 11.19, we obtain a set of equations that depends only
on the displacement field, which can be solved using a numerical method
with a proper spatial discretization. In this chapter, we use ES-FEM for 2D
problems and FS-FEM for 3D problems.

11.3.4 Discretization in Space using FEM-T3/FEM-T4

Using a triangulation procedure, the domain Ω can be discretized into Ne

elements and Nn nodes such thatΩ =⋃Ne
i=1Ω

e
i andΩe

i ∩Ωe
j = ∅, i �= j. In the

discretized version of Equation 11.19, the spaces H
1(Ω; Rd) and H

1
0(Ω; Rd)

are replaced by finite dimensional subspaces H
1
h(Ω; Rd) ⊂ H

1(Ω; Rd) and
H

1
0,h(Ω; Rd) ⊂ H

1
0(Ω; Rd), respectively, as in the standard FEM procedures.

The discretized weak form becomes: Seek ũϑ ∈ H
1
h(Ω; Rd) such that ũϑ =

w0 on ΓD and
∫

Ω

(
σ̃ϑ

(
ε̃
(
ũϑ − u0

)+ c−1σ0

))T
ε̃(ṽ) dΩ =

∫

Ω

ṽTbϑ dx +
∫

Γt

ṽTtϑ dΓ,

∀ṽ ∈ H
1
0,h(Ω; Rd). (11.30)

Let (ϕ1, . . . ,ϕNnd) be the nodal basis of the finite dimensional space
H

1
h(Ω; Rd), whereϕj is the independent scalar shape function on the jth node

satisfying the Kronecker condition ϕj(j) = 1 and ϕj(l) = 0, j �= l; the dis-
cretized weak form now becomes: Seek ũϑ ∈ H

1
h(Ω; Rd) such that ũϑ = w0

on ΓD and

F̃j =
∫

Ω

(
σ̃ϑ

(
ε̃
(
ũϑ − u0

)+ c−1σ0

))T
ε̃(ϕj) dΩ−

∫

Ω

ϕjbϑ dΩ−
∫

Γt

ϕjtϑ dΓ = 0

(11.31)

for j = 1, . . . , Nnd, which produces a set of Nnd equations. F̃j in Equation
11.31 can be written as the sum of two parts:

F̃j
(
ũϑ
) = Q̃j

(
ũϑ
)− P̃j, (11.32)
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S-FEM for Viscoelastoplasticity 447

where part Q̃j depends on ũϑ and is given by

Q̃j
(
ũϑ
) = Q̃j =

∫

Ω

(
σ̃ϑ

(
ε̃
(
ũϑ − u0

)+ c−1σ0

))T
ε̃(ϕj) dΩ, (11.33)

and part P̃j that is independent of ũϑ:

P̃j =
∫

Ω

ϕjbϑ dΩ+
∫

Γt

ϕjtϑ dΓ. (11.34)

11.3.5 Iterative Solution

It is clear that Equation 11.31 is nonlinear in nature. In order to solve Equa-
tion 11.31, the widely used Newton–Raphson method is used. At each step
of the Newton iterations, the discrete displacement vector ũp

ϑ at the pth iter-
ation (i.e., expressed in the nodal basis by ũp

ϑ =∑Nnd
j=1 ϕjũj) is determined

from the iterative solution process:

D̃F
(

ũp
ϑ

)
ũp+1
ϑ = D̃F

(
ũp
ϑ

)
ũp
ϑ − F̃

(
ũp
ϑ

)
, (11.35)

where D̃F(ũp
ϑ) is in fact the system stiffness matrix whose entries are

defined as

(
D̃F
(

ũp
ϑ,1, . . . , ũp

ϑ,Nnd

))
rw

=
∂F̃r

(
ũp
ϑ,1, . . . , ũp

ϑ,Nnd

)

∂ũp
ϑ,w

, (11.36)

where r, w ∈ Ψdof is the set containing DOFs of whole problem domain.
In the numerical performance for the FEM-T3/FEM-T4, the system stiff-

ness matrix DF(ũp
ϑ) as well as the vector F̃(ũϑ) in Equation 11.31 are

expressed as a sum over all elements Ωe
i ∈ Ω. The entries of the local

stiffness matrix D̃F
i

for element Ωe
i are now defined by

D̃F
i
rw = ∂F̃i

r

∂ũp
ϑ,w

= ∂Q̃i
r

∂ũp
ϑ,w

= ∂

∂ũp
ϑ,w

⎛
⎜⎝

∫

Ωe
i

σ̃ϑ

⎛
⎝ε̃

⎛
⎝ ∑

l∈Ψ̃dof

ũp
ϑ,lϕl − u0

⎞
⎠+ c−1σ0

⎞
⎠

T

ε̃(ϕr) dΩ

⎞
⎟⎠ ,

(11.37)
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448 Smoothed Finite Element Methods

where r, w ∈ Ψ̃dof is the set containing DOFs of element Ωe
i , and

Q̃i
r =

∫

Ωe
i

(
σ̃ϑ

(
ε̃
(
ũϑ − u0

)+ c−1σ0

))T
ε̃(ϕr) dΩ. (11.38)

Now, by substituting the expression σ̃ϑ
(
ε̃
(
ũϑ − u0

)+ c−1σ0
)

in Equa-
tions 11.37 and 11.38 by explicit forms of Equations 11.23, 11.24, 11.26, and
11.28 for different cases of viscoelastoplasticity problems, we have

Case a: Perfect viscoelastoplasticity

Q̃i
r = Se

i

(
C1tr(ṽ)tr (ε̃(ϕr)) + C4

(
dev(ṽ)

)T
ε̃(ϕr)

)
, (11.39)

D̃F
i
rw = Se

i

(
C1tr (ε̃(ϕr)) tr (ε̃(ϕw)) + C4 (dev (ε̃(ϕr)))

T ε̃(ϕw)

−(C5)r
(
dev(ṽ)

)T
ε̃(ϕw)

)
, (11.40)

where Se
i = Ae

i for the FEM-T3 and Se
i = Ve

i for the FEM-T4; ṽ =
ε̃
(
ũϑ − u0

)+ c−1σ0; and

C4 =
{

C2 + C3
/∥∥dev(ṽ)

∥∥ if
∥∥dev(ṽ)

∥∥− βσY > 0,

2μ else,

C5 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C3
/∥∥dev

(
ṽ
)∥∥3
[
(dev (ε̃ (ϕr)))

Tdev
(
ṽ
)]ne

nd

r=1
if
∥∥dev

(
ṽ
)∥∥− βσY > 0,

{
0 · · · 0

}
︸ ︷︷ ︸

size of 1× ne
nd

T else,

(11.41)

in which ne
n is the number of nodes of an element (ne

n = 3 for FEM-T3,
ne

n = 4 for FEM-T4); and C1, C2, C3 are given in Equation 11.25.

Case b: Viscoelastoplasticity with isotropic hardening

Q̃i
r = Se

i

(
C1tr(ṽ)tr (ε̃(ϕr)) + C5

(
dev(ṽ)

)T
ε̃(ϕr)

)
, (11.42)

D̃F
i
rw = Se

i

(
C1tr (ε̃(ϕr)) tr (ε̃(ϕw)) + C5 (dev (ε̃(ϕr)))

T ε̃(ϕw)

−(C6)r
(
dev(ṽ)

)T
ε̃(ϕw)

)
, (11.43)
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S-FEM for Viscoelastoplasticity 449

with

C5 =
{

C3/
(
C2
∥∥dev(ṽ)

∥∥)+ C4/C2 if
∥∥dev(ṽ)

∥∥− β (1 + αI
0H
)
σY > 0,

2μ else,

C6 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C3/
(

C2
∥∥dev(ṽ)

∥∥3
) [

(dev (ε̃(ϕr)))
T dev(ṽ)

]ne
nd

r=1

if
∥∥dev(ṽ)

∥∥− β (1 + αI
0H
)
σY > 0,

{
0 · · · 0

}
︸ ︷︷ ︸

size of 1×ne
nd

T else,

(11.44)

where C1, C2, C3, C4 are determined by Equation 11.27.

Case c: Viscoelastoplasticity with linear kinematic hardening

Q
i
r = Se

i

((
C1tr(ṽ)tr (ε̃(ϕr))

) + C4
(
dev(ṽ)

)T
ε̃(ϕr)

+ c
(

dev
(
αK

0

))T
ε̃(ϕr)

)
. (11.45)

D̃F
i
rw = Se

i

(
C1tr (ε̃(ϕr)) tr (ε̃(ϕw)) + C4 (dev (ε̃(ϕr)))

T ε̃(ϕw)

−(C5)r
(
dev(ṽ)

)T
ε̃(ϕw)

)
, (11.46)

where

C4 =
{

C3/
∥∥dev

(
ṽ
)∥∥+ C2 if

∥∥dev
(
ṽ − βαK

0
)∥∥− βσY > 0,

2μ else,

C5 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C3/
∥∥dev

(
ṽ
)∥∥3
[
(dev (ε̃(ϕr)))

T dev
(
ṽ
)]ne

nd

r=1
if
∥∥dev

(
ṽ − βαK

0
)∥∥− βσY > 0,{

0 · · · 0
}

︸ ︷︷ ︸
size of 1×ne

nd

T
else,

(11.47)

c =
{

1 if
∥∥dev

(
ṽ − βαK

0
)∥∥− βσY > 0,

0 else,

in which C1, C2, C3 are determined by Equation 11.29.
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450 Smoothed Finite Element Methods

To properly apply the nonhomogeneous Dirichlet boundary conditions
for our nonlinear problem, we use the approach of Lagrange multipliers.
Combining the Newton iteration (Equation 11.35) and the set of boundary
conditions imposed through Lagrange multipliers λ, the extended system
of equations is obtained:

(
D̃F
(

ũp
ϑ

)
GT

G 0

)(
ũp+1
ϑ

l

)
=
(

b̃

w0

)
, (11.48)

where f̃ = D̃F
(

ũp
ϑ

)
ũp
ϑ − F̃

(
ũp
ϑ

)
and G is a matrix created from the given

Dirichlet boundary conditions such that Gũp+1
ϑ = w0.

The extended system of Equation 11.48 can now be solved for ũp+1
ϑ and λ

at each time step. The solving process is iterated until the relative residual

F̃
(

ũp+1
ϑ,z1

, . . . , ũp+1
ϑ,zm

)
for the m free nodes (z1, . . . , zm) ∈ Ξ (where Ξ is the set

of free nodes) is smaller than a given tolerance or the maximum number
of iterations is larger than a prescribed number.

11.4 S-FEM for Viscoelastoplasticity: A Dual Formulation

In establishing our S-FEM models, we use the same mesh as the FEM
models. On top of the element mesh, we will create a set of different types
of smoothing domains, and we could have a CS-FEM model (see Chapter
5), an NS-FEM model (see Chapter 6), an ES-FEM model (see Chapter 7), or
an FS-FEM model (see Chapter 8), and even an αFEM model (see Chapter
9). Based on any type of smoothing domain, we can establish the smoothed
Galerkin weak form for the viscoelastoplasticity problems.

11.4.1 Smoothed Galerkin Weak Form

Following the same procedure as that given in Chapter 4, the vis-
coelastoplasticity problem defined in Section 11.2 can now be stated in
a smoothed Galerkin weak formulation:

Seek uϑ ∈ H
1
h(Ω; Rd) such that uϑ = w0 on ΓD and

Ns∑
k=1

Ss
k

(
σϑ

(
εk (uϑ − u0) + c−1σ0

))T
εk(v)

=
∫

Ω

vTbϑ dx +
∫

Γt

vTtϑ dΓ, ∀v ∈ H
1
0,h(Ω; Rd), (11.49)
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S-FEM for Viscoelastoplasticity 451

where Ss
k = As

k for the ES-FEM-T3 and Ss
k = Vs

k for the FS-FEM-T4, and for
all smoothing domains we shall have

1
ϑΔt

[
ε (uϑ − u0) − c−1 (σϑ − σ0)

ξ (α, tϑ) − ξ (α, t0)

]
= 1

v

[
σϑ −Πσϑ

αϑ −Παϑ

]
, (11.50)

where tϑ = (1 − ϑ)t0 + ϑt1, bϑ = (1 − ϑ)b0 + ϑb1 in which b0, t0, b1, and t1
are the body forces and surface forces at time t0, t1, respectively.

Equation 11.49 is the smoothed Galerkin weak form for mechanics prob-
lem of solids of viscoelastoplastic materials, which is subjected to the
constraint Equation 11.50. Note that the time discretization and the iter-
ation procedure used in the S-FEM are exactly the same as those used in
the FEM. In the following section, we discuss two particular S-FEM mod-
els: ES-FEM-T3 and FS-FEM-T4 for viscoelastoplasticity for, respectively,
2D and 3D problems, owing to their outstanding performance and stabil-
ity both spatially and temporally, as our earlier studies have shown [5,6].
Both ES-FEM-T3 and FS-FEM-T4 were found to be the best linear model
for static and dynamic linear problems, geometric nonlinear problems,
and fracture mechanics problems. We now examine their performance for
material nonlinear problems.

11.4.2 ES-FEM-T3/FS-FEM-T4 for Viscoelastoplasticity

Using Equation 4.20, we can evaluate the smoothing strains for the
smoothing domain Ωs

k associated with the edge/face k by

εk = 1
As

k

ne
k∑

j=1

1
3

Ae
j ε̃j for the ES-FEM-T3,

εk = 1
Vs

k

ne
k∑

j=1

1
4

Ve
j ε̃j for the FS-FEM-T4,

(11.51)

where ε̃j is the compatible total strain used in the same FEM model for the
jth element sharing the edge/face k.

The discretized version of weak form for the viscoelastoplasticity prob-
lems using the ES-FEM-T3/FS-FEM-T4 follows Equations 11.49 and 11.50.
The iteration form of the discretized weak form now becomes: Seek
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452 Smoothed Finite Element Methods

uϑ ∈ H
1
h(Ω; Rd) such that uϑ = w0 on ΓD and

Fj =
Ns∑

k=1

Ss
k

(
σϑ

(
εk(uϑ − u0) + c−1σ0

))T
εk(ϕj) −

∫

Ω

ϕjbϑ dΩ−
∫

Γt

ϕjtϑ dΓ= 0,

(11.52)

for j = 1, . . . , Nnd, and the entries of the system stiffness matrix DFrw
become

(
DF
(

up
ϑ,1, . . . , up

ϑ,Nnd

))s

rw
=

∂Fr

(
up
ϑ,1, . . . , up

ϑ,Nnd

)

∂up
ϑ,w

. (11.53)

In ES-FEM-T3/FS-FEM-T4, the system stiffness matrix DF(up
ϑ) as well as

the vector Fj(uϑ) are expressed as a sum over all the smoothing domains
Ωs

k . The local stiffness matrix DF
s
rw for the smoothing domain Ωs

k is now
defined by

DF
k
rw = ∂F

k
r

∂up
ϑ,w

= ∂Q
k
r

∂up
ϑ,w

= ∂

∂up
ϑ,w

⎛
⎜⎜⎝

∫

Ωs
k

σϑ

⎛
⎜⎝εk

⎛
⎜⎝ ∑

l∈Ψdof
k

up
ϑ,lϕl − u0

⎞
⎟⎠+ c−1σ0

⎞
⎟⎠

T

εk(ϕr) dΩ

⎞
⎟⎟⎠ ,

(11.54)

where

Q
k
r =

∫

Ωs
k

(
σϑ

(
εk (uϑ − u0) + c−1σ0

))T
εk (ϕr) dΩ, (11.55)

and r, w ∈ Ψdof
k is the set containing DOFs of the elements attached to the

common edge/face k. For example in ES-FEM-T3, for the boundary edge

m shown in Figure 7.2, Ψdof
k is the set containing DOFs of nodes {A, B, C}

and the total number of DOFs for the kth smoothing domain is N
dof
k = 3d;

for the inner edge k presented in Figure 7.2,Ψdof
k is the set containing DOFs

of nodes {D, E, F, G} and the total number of DOFs N
dof
k = 4d. In FS-FEM-

T4, for the face k as shown in Figure 8.1,Ψdof
k is the set containing DOFs of
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S-FEM for Viscoelastoplasticity 453

nodes {A, B, C, D, E} and the total number of DOFs for this kth smoothing

domain is N
dof
k = 5d.

Note that the bandwidth of the stiffness matrix for the ES-FEM-T3/FS-
FEM-T4 is larger than that of the FEM counterparts, because the number of
nodes related to the smoothing domains associated with inner edges/faces
is four and five, respectively, which is one larger than that related to the
element in the FEM model. The computational cost of ES-FEM-T3/FS-FEM-
T4 is therefore larger than that of FEM counterparts for the same meshes.
Only when the solution accuracy is taken into account, the computational
efficiency of of ES-FEM-T3/FS-FEM-T4 can be much higher than that of
FEM counterparts.

Now, substituting the expression σϑ
(
εk (uϑ − u0) + c−1σ0

)
in Equations

11.54 and 11.55 using these explicit forms of Equations 11.23, 11.24, 11.26,
and 11.28 for different cases of plasticity materials, and by just replacing ε

by εk in all these equations, we have

Case a: Perfect viscoelastoplasticity

Q
k
r = Ss

k

(
C1tr (vk) tr (εk(ϕr)) + C4 (dev (vk))

T εk(ϕr)
)

, (11.56)

DF
k
rw = Ss

k

(
C1tr (εk(ϕr)) tr (εk(ϕw)) + C4 (dev (εk(ϕr)))

T εk(ϕw)

−(C5)r (dev (vk))
T εk(ϕw)

)
, (11.57)

where vk = εk (uϑ − u0) + c−1σ0; and

C4 =
{

C2 + C3/‖dev (vk)‖ if ‖dev (vk)‖ − βσY > 0,

2μ else,

C5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C3/‖dev (vk)‖3
[
(dev (εk(ϕr)))

T dev (vk)
]N

dof
k

r=1

if ‖dev (vk)‖ − βσY > 0,

{0 · · · 0}︸ ︷︷ ︸
size of 1×N

dof
k

T
else,

(11.58)

in which parameters C1, C2, C3 are given by Equation 11.25.
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454 Smoothed Finite Element Methods

Case b: Viscoelastoplasticity with isotropic hardening

Q
k
r = Ss

k

(
C1tr(vk)tr (εk(ϕr)) + C5 (dev(vk))

T εk(ϕr)
)

, (11.59)

DF
k
rw = Ss

k

(
C1tr (εk(ϕr)) tr (εk(ϕw)) + C5 (dev (εk(ϕr)))

T εk(ϕw)

−(C6)r (dev(vk))
T εk(ϕw)

)
, (11.60)

where

C5 =
{

C3/(C2 ‖dev(vk)‖) + C4/C2 if ‖dev (vk)‖ − β (1 + αI
0H
)
σY > 0,

2μ else,

C6 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

C3/
(

C2 ‖dev(vk)‖3
) [

(dev (εk(ϕr)))
T dev(vk)

]N
dof
k

r=1

if ‖dev(vk)‖ − β(1 + αI
0H)σY > 0,{

0 · · · 0
}

︸ ︷︷ ︸
size of 1×N

dof
k

T else,

(11.61)

in which C1, C2, C3, C4 are defined in Equation 11.27.

Case c: Viscoelastoplasticity with linear kinematic hardening

Q
k
r = Ss

k

(
(C1tr (vk) tr (εk (ϕr))) + C4 (dev (vk))

T εk (ϕr)

+ c
(

dev
(
αK

0

))T
εk(ϕr)

)
, (11.62)

DF
k
rw = Ss

k

(
C1tr (εk (ϕr)) tr (εk (ϕw)) + C4 (dev (εk (ϕr)))

T εk (ϕw)

− (C5)r (dev(vk))
T εk(ϕw)

)
, (11.63)

where

C4 =
{

C3/‖dev(vk)‖ + C2 if
∥∥dev

(
vk − βαK

0
)∥∥− βσY > 0,

2μ else,

C5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C3/‖dev(vk)‖3
[
(dev (εk(ϕr)))

T dev (vk)
]N

dof
k

r=1

if
∥∥dev

(
vk − βαK

0
)∥∥− βσY > 0,{

0 · · · 0
}

︸ ︷︷ ︸
size of 1×N

dof
k d

T else,
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S-FEM for Viscoelastoplasticity 455

c =
{

1 if
∥∥dev

(
vk − βαK

0
)∥∥− βσY > 0,

0 else,
(11.64)

in which C1, C2, C3 are given in Equation 11.29.
Similar to the FEM models, to properly apply the nonhomogeneous

Dirichlet boundary conditions for our nonlinear problem, we use the
approach of Lagrange multipliers, which gives the extended system
of equations: (

DF
(

up
ϑ

)
GT

G 0

)(
up+1
ϑ

λ

)
=
(

b

w0

)
, (11.65)

where λ is the vector of Lagrange multipliers for our ES-FEM-T3/FS-FEM-

T4 models, f = DF
(

up
ϑ

)
− F

(
up
ϑ

)
and G is a matrix created from the given

Dirichlet boundary conditions such that Gup+1
ϑ = w0.

The extended system of Equations 11.65 can now be solved for up+1
ϑ and

λ at each time step. The solving process is iterated in exactly the same way
as that in the FEM model.

We note that the shape functions for elements in the ES-FEM-T3/FS-
FEM-T4 is the same as that in the standard FEM and therefore the
force vector P̃j in the ES-FEM-T3/FS-FEM-T4 is computed in exactly the
same way as in the FEM. In other words, the ES-FEM-T3/FS-FEM-T4
changes only the stiffness matrix and the terms related to the stiffness
matrix. Figures 11.1 through 11.3 present the macro flowchart to solve the
viscoelastoplasticity problems using the ES-FEM-T3/FS-FEM-T4.

11.5 A Posteriori Error Estimation

In order to estimate the accuracy of the solution of ES-FEM-T3/FS-FEM-
T4, in comparison with that of FEM for the viscoelastoplasticity problems,
a quantitative, fair, and accurate assessment of the numerical solutions
is needed. In this assessment for viscoelastoplasticity material, we use the
following efficient a posteriori error estimation to measure the error in stress
solution [1,7]:

ηh =

∥∥∥�
σ

R − �
σ

∥∥∥
L2(Ω)∥∥∥�

σ

∥∥∥
L2(Ω)

=

⎛
⎜⎝Ne∑

i=1

∫

Ωe
i

(
�
σ

R − �
σ)T(

�
σ

R − �
σ) dΩ

⎞
⎟⎠

1/2

⎛
⎜⎝Ne∑

i=1

∫

Ωe
i

�
σ

T�
σ dΩ

⎞
⎟⎠

1/2 , (11.66)
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456 Smoothed Finite Element Methods

Given: Dimension d, coordinate X → φφ, A, loads and boundary conditions b, t, w0
 Elastic parameters:  λ, μ, β, ν
 Plastic parameters: σr, H, H1, k1, αI

0, αK
0,

 Initial variables: σ0, u0, ul
ϑ

Begin

Each step: t0, t1, ϑ, Δt = t1 – t0

Compute constants Ci:
*Perfectviscoelastoplasticity:

*Viscoelastoplasticity with isotropic hardening:

*Viscoelastoplasticity with linear kinematic harding

C1 = λ + 2μ/d, C2 = v/(βv + ϑΔt), C3 = ϑΔtσy/(βv + ϑΔt)

C1 = λ + 2μ/d, C2 = vβ(1 + H2σy
2) + ϑΔt(1 + βH1H2σy

2)
C3 = ϑΔtσy (1 + α1

0H), C4 = H1H2ϑΔtσy
2 + v(1 + H2σy

2)

C1 = λ + 2μ/d, C2 =

ε0k = trσ0I + devσ0
1

∫ ∫
~P = bT

ϑ φ dΩ +
Ω Γi

tT
ϑ φ dΓ

1

d2 λ + 2dμ 2μ

, C3 =
ϑΔtk1 + 2v

ϑΔt + βϑΔtk1 + v/μ
ϑΔtσr

ϑΔt + βϑΔtk1 + v/μ1

FIGURE 11.1 Flowchart to solve the elastoviscoplasticity problems using ES-FEM-T3/FS-
FEM-T4: part 1.

where �
σ is the “raw” results of stress in an element, and �

σ
R

is the recovery
stress in an element defined by

�
σ

R =
3∑

j=1

Nj(x)
�
σ(xj) for triangular elements,

�
σ

R =
4∑

j=1

Nj(x)
�
σ(xj) for tetrahedral elements,

(11.67)

where Nj(x) are the linear shape functions of triangles/tetrahedrons used
in the standard FEM, and �

σ(xj) are stress values at nodes of the element of
any numerical methods.
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S-FEM for Viscoelastoplasticity 457

Compute the compatible strains for jth element:

Compute the smoothed strains for kth edge/face:

*Perfectvisco-elastoplasticity:

*Viscoelastoplasticity with isotropic hardening:

*Viscoelastoplasticity with linear kinematic hardening

1 1
d2λ + 2 dμ 2 dμ

~εεj = [~εmn (φi)]; ~εmn (φi) = —12 (

–εk = —1
As

k
  ∑—13  Aj

e ~εj (ES-FEM) or –εk =  —
V s

k 
∑—14  V j

e ~εj (FS-FEM)

i = 1, … d (d +1); m, n = 1, … d

–vk = –εk(–up
ϑ – u0) +  ε0k

–σϑ = C1tr(–vk)I + (C2 + C3/||dev(–vk)||)dev(–vk)

–σϑ = C1tr(–vk)I + (C3/C2 ||dev(–vk)||) + C4/C2)dev(–vk)

–σϑ = C1tr(–vk)I + (C2 + C3/||dev(–vk – βααk
0)||)dev(–vk–βααk

0) + dev(αk
0)

αk
ϑ = αk

0 + k1 (–vk –

Or in the elastic phase –σϑ C1tr(–vk)I + 2μ dev(–vk)

σ0 = –σ1

α0
i = α1

i

α0
k = α1

k

u0 = –u1 –uϑ
p = –uϑ

p+1 Iteration
Newton–Raphson

1 2

tr–σϑI + dev–σϑ)

αϑ
1 = H1HΔtσr(||dev(–vk)||−σr) +

α0
1 v(1 + H2σy

2)

v(1 + H2σy
2) + H1H2Δtσy

2

∂φi

∂xm

∂φi

∂xn
+ )

nk
e

j=1

nk
e

1
j=1

FIGURE 11.2 Flowchart to solve the elastoviscoplasticity problems using ES-FEM-T3/FS-
FEM-T4: part 2.

Recall from Section 4.10.4 that for the S-FEM models, when comput-
ing the stresses �

σ(xj) at a node xj, we simply average (area-weighted)
the stresses of smoothing domains associated with the node, as shown
in Figure 4.10 for the ES-FEM-T3.

Similarly (see Section 4.10.6), for FEM-T3/FEM-T4 the stresses �
σ(xj) at a

node xj are the area-weighted averaged stresses of those of the elements
surrounding the node, as shown in Figure 4.11 for the FEM-T3.

In evaluating the integrals in Equation 11.66 for triangular/tetrahedral
elements, the Gauss integration rule in Sections 3.15.4 and 3.15.5 with a
proper mapping procedure is used for each element, respectively, and then
with a summation on all elements. In each element, a proper number of

Gauss points depending on the order of the recovery solution �
σ

R
will be

used to ensure accurate integration.
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458 Smoothed Finite Element Methods

–Qk
r (–up

ϑ) = (–σσϑ(–up
ϑy))T –εk

DFk
rw (–up

ϑ) = 

–up
ϑ

+1

–uϑ = –up
ϑ

+1

–u1 = , – σ1 = 
uϑ + (1 – ϑ)u0

–σϑ + (1 – ϑ)σ0

λ

d–Qk
r (–up

ϑ)
d–up

ϑ,w

=
DF (–up

ϑ)
G 0 w0

–1
GT f

f = DF (–up
ϑ)–up

ϑ – (–Q(–up
ϑ) – ~P)

Yes

1 2

No

End

ϑ ϑ

||–Q(–up
ϑ) – ~P)|| ≥ epsilon

αr
1 = , αK

1 = 
αr

ϑ + (1 – ϑ)αr
0 αK

ϑ + (1 – ϑ)αK
0

ϑ ϑ

FIGURE 11.3 Flowchart to solve the elastoviscoplasticity problems using ES-FEM-
T3/FS-FEM-T4: part 3.

11.6 Numerical Examples

Codes of ES-FEM-T3 and FS-FEM-T4 have been developed based on
the formulations given above, respectively, for 2D and 3D problems. In
this section, three numerical examples of 2D problems and four numer-
ical examples of 3D problems will be solved using these codes, and the
results will be presented to demonstrate the accuracy and properties
of ES-FEM-T3/FS-FEM-T4 for viscoelastoplasticity analyses. To demon-
strate convincingly the superior properties of ES-FEM-T3/FS-FEM-T4
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S-FEM for Viscoelastoplasticity 459

y yg(t)

g(t)(2,2)

2

B(0,1)

A(1,0)

2(0,0)
a

x

x

FIGURE 11.4 A plate with a circular hole subjected to time-dependent surface forces g(t)
and its quarter model with symmetric conditions imposed on the left and bottom edges.

methods, the results will be compared to those of the standard FEM
counterparts [1].

Example 11.6.1: Plate with a Circular Hole: 2D Perfect
Viscoelastoplasticity

Figure 11.4 represents a 2D solid of a square domain of Ω = [−2, 2] × [−2, 2]
with a central circular hole of radius a = 1 , subjected to time-dependent uni-
formly distributed surface forces g(t) = 500 t to outer normal at the top and
bottom edges. The rest of the boundary is set free at all times. Due to the sym-
metry, only the upper right quadrant of the 2D solid is modeled. Symmetric
conditions are imposed on the left and bottom edges of the quarter model, and
the inner boundary of the hole is traction free. Figure 11.5 shows a mesh of
the domain using 561 nodes and 1024 triangular elements. Assuming that the
material is of perfect viscoelastoplasticity with Young’s modulus E = 206, 900,
Poisson’s ratio v = 0.29, yield stress σY = 450, and the initial data for the stress
vector σ0 are set to zero.

The solution is computed in the time interval from t = 0 to t = 0.3 in 10 uni-
form time steps ofΔt = 0.03. Using the mesh shown in Figure 11.5, numerical
results are obtained and listed inTable 11.1. It is found that the material remains
elastic in the first six steps, between t = 0 and t = 0.18 for both ES-FEM-T3
and FEM-T3, because the number of iterations at these times is one. Table 11.1
also shows that after the materials undergo plastic deformation, the number
of iterations in Newton’s method required in both ES-FEM-T3 and FEM-T3 is
almost the same. The estimated errors ηh (using Equation 11.66) for ES-FEM-T3
are more than two times less than those of FEM-T3 using the same mesh. In
addition, Figure 11.6 compares the computational cost and efficiency between
FEM-T3 and ES-FEM-T3 for a range of meshes at t = 0.3. It is seen that with the
same mesh, the computational cost of ES-FEM-T3 is larger than that of FEM-T3,
as shown in Figure 11.6a. However, when the efficiency of computation in
terms of the solution error versus computational cost for a range of meshes is
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460 Smoothed Finite Element Methods

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

FIGURE 11.5 A domain discretization using 561 nodes and 1024 triangular elements
for the 2D solid with a circular hole subjected to time-dependent surface forces g(t).

considered, the ES-FEM-T3 is found more efficient than the FEM-T3, as shown
in Figure 11.6b.

Figure 11.7 shows the elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) obtained

using FEM-T3 and ES-FEM-T3 at t = 0.3. The plasticity domain first appears at

TABLE 11.1

Number of Iterations and the Estimated Error Using FEM-T3 and
ES-FEM-T3 at Various Time Steps for the 2D Solid with a Circular Hole

FEM-T3 ES-FEM-T3

Step Iterations ηh =
∥
∥
∥
�
σ R−�

σ

∥
∥
∥

L2(Ω)
∥
∥
∥
�
σ

∥
∥
∥

L2(Ω)

Iterations ηh =
∥
∥
∥
�
σ R−�

σ

∥
∥
∥

L2(Ω)
∥
∥
∥
�
σ

∥
∥
∥

L2(Ω)

1 1 0.1 1 0.0475
2 1 0.1 1 0.0475
3 1 0.1 1 0.0475
4 1 0.1 1 0.0475
5 1 0.1 1 0.0475
6 1 0.1 1 0.0475
7 3 0.1 3 0.0475
8 4 0.101 4 0.0476
9 4 0.103 4 0.0480
10 4 0.106 4 0.0486
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FIGURE 11.6 Comparison of the computational cost and efficiency between FEM-T3 and
ES-FEM-T3 for a range of meshes at t = 0.3 for the plate with a hole: (a) CPU time using the
same mesh and (b) computational efficiency.

the corner starting from point A(1, 0) and then at the other corner starting
from point B(0,1). The evolution process of the elastic shear energy density

‖dev(
�
σ

R
)‖2/(4μ) can be clearly observed from the ES-FEM-T3 results at some

different time steps (see Figure 11.8).
Table 11.2 compares the solution of the displacements of points A(1, 0) and

B(0, 1) using FEM-T3 and ES-FEM-T3 at different times. The results show that
the displacements of ES-FEM-T3 are larger than those of FEM-T3. This implies
that the ES-FEM-T3 model can reduce the overstiffness of the standard FEM-T3
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FIGURE 11.7 Elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) for the plate with a hole using

(a) FEM-T3 and (b) ES-FEM-T3 at t = 0.3 (mesh with 561 nodes and 1024 elements).
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FIGURE 11.8 Evolution of the elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) obtained using

ES-FEM-T3 at different time steps for the plate with a hole: (a) t = 0.12; (b) t = 0.18; (c) t = 0.24;
and (d) t = 0.3.
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S-FEM for Viscoelastoplasticity 463

TABLE 11.2

Horizontal Displacement uA at point A(1, 0) and Vertical
Displacement vB at point B(0, 1) using FEM-T3 and ES-FEM-T3 at
Various Time Steps for the 2D Solid with a Circular Hole

FEM-T3 ES-FEM-T3Number of

Time Steps uA(×10−3) vB(×10−3) uA(×10−3) vB(×10−3)

1 −0.312 0.4862 −0.316 0.4921
2 −0.624 0.9724 −0.632 0.9842
3 −0.936 1.4586 −0.949 1.4763
4 −1.248 1.9448 −1.265 1.9684
5 −1.560 2.4311 −1.581 2.4605
6 −1.871 2.9173 −1.897 2.9526
7 −2.184 3.4038 −2.214 3.4450
8 −2.503 3.9016 −2.536 3.9530
9 −2.823 4.4286 −2.861 4.4947
10 −3.159 4.9956 −3.183 5.0833

model using triangular elements. This property was found earlier for linear
elastic problems by Liu et al. [3].

Figure 11.9 shows the convergence of the elastic strain energy E =∫
Ω (

�
σϑ)

T �eϑ dΩ when the mesh is refined using both FEM-T3 and ES-FEM-T3
at a fixed time t = 0.3. The solution of ES-FEM-T3 using a very fine mesh with
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FIGURE 11.9 Convergence of the solution in elastic strain energy E = ∫
Ω(

�
σϑ)

T�eϑ dΩ
obtained using FEM-T3 and ES-FEM-T3 at for the 2D solid with a circular hole.

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
47

 1
0 

M
ay

 2
01

6 



464 Smoothed Finite Element Methods

28,730 DOFs is used as the reference solution for comparison purpose. The
results show clearly that the ES-FEM-T3 model is much softer and gives more
accurate results than the FEM-T3 model using the same mesh of triangular
elements, especially for the coarse meshes.

Example 11.6.2: Cook’s Membrane: Viscoelastoplasticity with
Isotropic Hardening

The widely used 2D Cook’s membrane problem is used here for viscoelasto-
plastic analysis. This benchmark problem, shown in Figure 11.10, refers
to a clamped airplane-wing-shaped panel subjected to an in-plane shear-
ing load g(t) = e3t /40 on the opposite end (x = 48) with vanishing vol-
ume force f . The domain is meshed with 289 nodes and 512 trian-
gular elements, as shown in Figure 11.10. Assume that the material
has viscoelastoplasticity with isotropic hardening with Young’s modulus
E = 2900, Poisson’s ratio v = 0.4, yield stress σY = 0.1, H = 1000, H1 = 1,
and the initial data for the stress vector σ0 and the scalar hardening parameter
αI

0 are set to zero.
The solution is computed in the time interval from t = 0 to t = 0.25 with 10

uniform time steps of Δt = 0.025, using the mesh shown in Figure 11.10. It
is found that the material remains elastic at the first two steps, between t = 0
and t = 0.05 for both ES-FEM-T3 and FEM-T3, as shown in Table 11.3. We also
found that the number of iterations in Newton’s method of both ES-FEM-T3
and FEM-T3 is almost the same (see Table 11.3). The estimated errors ηh using
Equation 11.66 for ES-FEM-T3 are about three times less than those of FEM-
T3. In addition, Figure 11.11 compares the computational cost and efficiency
between FEM-T3 and ES-FEM-T3 for a range of meshes at t = 0.25. It is seen

Thickness = 1 

16 

44 

48 

g(t) 

0 10 20 30 40 
0 

10 

20 

30 

40 

50 

60 (a) (b) 

FIGURE 11.10 Cook’s membrane problem. (a) Model together applied load and boundary
condition and (b) mesh with 289 nodes and 512 triangular elements.
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S-FEM for Viscoelastoplasticity 465

TABLE 11.3

Number of Iterations and the Estimated Error Using FEM-T3 and
ES-FEM-T3 at Various Times for the Cook’s Membrane Problem

FEM-T3 ES-FEM-T3

Number of
Time Steps Iterations ηh =

∥
∥
∥
�
σ R−�

σ

∥
∥
∥

L2(Ω)
∥
∥
∥
�
σ

∥
∥
∥

L2(Ω)

Iterations ηh =
∥
∥
∥
�
σ R−�

σ

∥
∥
∥

L2(Ω)
∥
∥
∥
�
σ

∥
∥
∥

L2(Ω)

1 1 0.197645 1 0.076465

2 1 0.197645 1 0.076465

3 3 0.197646 3 0.076469

4 3 0.197650 3 0.076469

5 3 0.197652 3 0.076466

6 3 0.197654 3 0.076453

7 3 0.197656 3 0.076431

8 4 0.197660 4 0.076402

9 4 0.197671 4 0.076366

10 4 0.197690 4 0.076325

that with the same mesh, the computational cost of ES-FEM-T3 is larger than
that of FEM-T3, as shown in Figure 11.11a. However, when the efficiency of
computation (computation time for the same accuracy) in terms of the solution
error versus computational cost for a range of meshes is considered, the ES-
FEM-T3 is more efficient than the FEM-T3, as shown in Figure 11.11b.

Figure 11.12 shows the elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) using

FEM-T3 and ES-FEM-T3 at t = 0.25 for the mesh as shown in Figure 11.10. The
evolution process of the elastic shear energy density is demonstrated using the
ES-FEM-T3 at four different time instances as shown in Figure 11.13.

Table 11.4 compares the solution of the displacements of point A(48,60)
using the FEM-T3 and ES-FEM-T3 at different time instances. The results
show that the displacements of ES-FEM-T3 are larger than those of
FEM-T3. This again verifies the fact that the ES-FEM-T3 model can
reduce the overstiffness of the standard FEM-T3 model using triangular
elements.

Figure 11.14 shows the convergence of the elastic strain energy E =∫
Ω(

�
σϑ)

T �eϑ dΩ when the mesh is refined using both FEM-T3 and ES-FEM-
T3 at t = 0.25. The solution of ES-FEM-T3 using a very fine mesh with as
much as 26,041 DOFs is used as reference solution for comparison. The results
again show clearly the finding that the ES-FEM-T3 model is much softer and
gives more accurate results than the FEM-T3 model using triangular elements,
especially for the coarse meshes.
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466 Smoothed Finite Element Methods
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FIGURE 11.11 Comparison of the computational cost and efficiency between FEM-T3 and
ES-FEM-T3 for a range of meshes at t = 0.25 for the Cook’s membrane problem: (a) CPU time
using the same mesh and (b) computational efficiency.

Example 11.6.3: Axisymmetric Ring: Viscoelastoplasticity with
Linear Kinematic Hardening

Figure 11.15 shows a thick axisymmetric ring, with an internal radius a = 1
and an external radius b = 2. The ring is subjected to time-dependent surface
forces g1(r ,ϕ, t) = ter on the inner circumference and g2(r ,ϕ, t) = −ter /4 on

the outer circumference with er = [cosϕ sinϕ
]T . There is no body force.
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FIGURE 11.12 Distribution of the elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) for the

Cook’s membrane problem using (a) FEM-T3 and (b) ES-FEM-T3 at t = 0.25 (mesh with
289 nodes and 512 elements).
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FIGURE 11.13 Evolution of the distribution of the elastic shear energy density

‖dev(
�
σ

R
)‖2/(4μ) using ES-FEM-T3 at four different times for the Cook’s membrane problem:

(a) t = 0.025; (b) t = 0.10; (c) t = 0.175; and (d) t = 0.25.
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468 Smoothed Finite Element Methods

TABLE 11.4

Displacement at point A(48, 60) using FEM-T3 and ES-FEM-T3 at Various
Time Steps for the Cook’s Membrane Problem

FEM-T3 ES-FEM-T3

Step uA vB uA vB

1 −0.0022 0.0031 −0.0023 0.0032
2 −0.0024 0.0033 −0.0025 0.0034
3 −0.0026 0.0035 −0.0027 0.0037
4 −0.0028 0.0038 −0.0029 0.0040
5 −0.0030 0.0041 −0.0031 0.0043
6 −0.0032 0.0044 −0.0034 0.0046
7 −0.0035 0.0048 −0.0036 0.0049
8 −0.0037 0.0052 −0.0039 0.0053
9 −0.0040 0.0056 −0.0042 0.0057
10 −0.0043 0.0060 −0.0045 0.0062

For this problem, the exact solution is available: [1]

u(r ,ϕ, t) = ur (r , t)er ,

σ(r ,ϕ, t) = σr (r , t)er ⊗ er + σϕeϕ ⊗ eϕ

= σr (r , t)

⎡
⎣ cos2 ϕ

sin2 ϕ
2 cosϕ sinϕ

⎤
⎦+ σϕ

⎡
⎣ sin2 ϕ

cos2 ϕ
−2 cosϕ sinϕ

⎤
⎦, (11.68)
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FIGURE 11.14 Convergence of the elastic strain energy E = ∫
Ω(

�
σϑ)

T�eϑ dΩ versus the
number of DOFs using FEM-T3 and ES-FEM-T3 at t = 0.25 for the Cook’s membrane problem.
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FIGURE 11.15 The axis symmetric ring subjected to time-dependent surface forces g1(t) on
the inner circumference and g2(t) on the outer circumference, and its quarter model with
symmetric conditions imposed on the left and bottom edges.

p(r ,ϕ, t) = Pr (r , t)(er ⊗ er − eϕ ⊗ eϕ) = Pr (r , t)

⎡
⎣cos2 ϕ− sin2 ϕ

sin2 ϕ− cos2 ϕ
4 cosϕ sinϕ

⎤
⎦,

where eϕ = [− sinϕ cosϕ
]T and

ur (r , t) =

⎧⎪⎪⎨
⎪⎪⎩

t
2μr

− 1
3
ψI(R(t))

(
r + 4a

μr

)
for r ≥ R(t),

t
2μr

− 1
3
ψI(R(t))

(
4r + 4a

μr

)
+ψI(r)r for r < R(t),

(11.69)

σr (r , t) =

⎧⎪⎪⎨
⎪⎪⎩

− t
r2 − 8

3
aψI (R(t))

(
1
4

− 1
r2

)
for r ≥ R(t),

− t
r2 − 8

3
aψI (R(t))

(
1 − 1

r2

)
+ 2aψI(r) for r < R(t),

(11.70)

σϕ(r , t) = ∂ (rσr )

∂r
, (11.71)

Pr (r , t) =

⎧⎪⎪⎨
⎪⎪⎩

0 for r ≥ R(t),

σy√
2
(
aψ+ k1

)
(

1 − R2

r2

)
for r < R(t),

(11.72)

I(r) = σy√
2(aψ+ k1)

(
ln r + 1

2

(
R2

r2 − R2

))
, (11.73)

and a = μ+ λ, ψ = 2μ/(2μ+ λ). With α = 4aψ/[3(aψ+ k1)], the radius
of the plastic boundary R(t) is the positive root of the following equation:

f (R) = −2α ln R + (α− 1)R2 − α+
√

2
σY

t . (11.74)
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470 Smoothed Finite Element Methods

Because of the axisymmetric characteristic of the problem, we only need to
model one-quarter of the ring, as shown in Figure 11.15, with symmetric condi-
tions imposed on the left and bottom edges.The quarter domain is meshed with
561 nodes and 1024 triangular elements, as shown in Figure 11.16. Assume
that the material has viscoelastoplasticity with linear kinematic hardening with
Young’s modulus E = 70, 000, Poisson’s ratio v = 0.33, yield stress σY = 0.2,
the hardening parameter k1 = 1, and the initial data for the displacement u0,
the stress vector σ0 and the hardening parameter αK

0 are set to zero.
Using the mesh as shown in Figure 11.16, the solution is computed in the

time interval from t = 0 to t = 0.22 with 11 uniform time steps of Δt = 0.02.
It is found that the material remains elastic at the first seven steps (when no
iterations are needed) that correspond to time intervals from t = 0 to t = 0.14,
as shown in Table 11.5. The material becomes plastic at t = 0.16, as predicted
by both ES-FEM-T3 and FEM-T3. Table 11.5 shows the exact error e and the
estimated error ηh for the stress solution at different times together with the
number of iterations used in Newton’s method. The results show that the ratio
e/ηh almost equals 1 for all the iterations, which implies that the estimated error
ηh using Equation 11.66 can be considered as a very accurate error estimator.
This example therefore asserts the reliability and accuracy of the estimated
error ηh by Equation 11.66. In addition, the results also show that the number
of iterations in Newton’s method of both ES-FEM-T3 and FEM-T3 is almost the
same, but the estimated errors ηh using Equation 11.66 for ES-FEM-T3 are about
3 times less than those of FEM-T3. Furthermore, Figure 11.17 compares the
computational cost and efficiency between FEM-T3 and ES-FEM-T3 for a range
of meshes at t = 0.22. It is seen that with the same mesh, the computational
cost of ES-FEM-T3 is larger than that of FEM-T3 as shown in Figure 11.17a.
However, when the efficiency of computation in terms of the solution error

0 0.5 1 1.5 2
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0.6

0.8

1

1.2
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FIGURE 11.16 Domain discretization of one-quarter of the axisymmetric ring using
561 nodes and 1024 triangular elements.
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TABLE 11.5

Number of Iterations and the Estimated Error in the Stress Solution Obtained using FEM-T3 and ES-FEM-T3 at Various Times for the
Axisymmetric Ring Problem

FEM-T3 ES-FEM-T3

Number of

Time Steps Iterations e =
∥
∥
∥σ−�

σ

∥
∥
∥

L2
∥
∥
∥
�
σ

∥
∥
∥

L2

ηh =
∥
∥
∥
�
σ R−�

σ

∥
∥
∥

L2
∥
∥
∥
�
σ

∥
∥
∥

L2

e
ηh

Iterations e =
∥
∥
∥σ−�

σ

∥
∥
∥

L2
∥
∥
∥
�
σ

∥
∥
∥

L2

ηh =
∥
∥
∥
�
σ R−�

σ

∥
∥
∥

L2
∥
∥
∥
�
σ

∥
∥
∥

L2

e
ηh

1 1 0.079725 0.0792 1.01 1 0.03342 0.0328 1.02
2 1 0.079725 0.0792 1.01 1 0.03342 0.0328 1.02
3 1 0.079725 0.0792 1.01 1 0.03342 0.0328 1.02
4 1 0.079725 0.0792 1.01 1 0.03342 0.0328 1.02
5 1 0.079725 0.0792 1.01 1 0.03342 0.0328 1.02
6 1 0.079725 0.0792 1.01 1 0.03342 0.0328 1.02
7 1 0.079725 0.0792 1.01 1 0.03342 0.0328 1.02
8 3 0.083988 0.0816 1.03 4 0.03376 0.0331 1.02
9 4 0.089265 0.0874 1.02 4 0.03372 0.0340 0.99
10 5 0.095374 0.0933 1.02 4 0.03269 0.0330 0.99
11 5 0.102883 0.1004 1.02 5 0.03206 0.0324 0.99
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FIGURE 11.17 Comparison of the computational cost and efficiency between FEM-T3 and
ES-FEM-T3 for a range of meshes at t = 0.22 for the axisymmetric ring problem: (a) CPU time
using the same mesh and (b) computational efficiency.

versus computational cost for a range of meshes is considered, the ES-FEM-T3
is more efficient than the FEM-T3 as shown in Figure 11.17b.

Figure 11.18 shows the solution in terms of elastic shear energy density

‖dev(
�
σ

R
)‖2/(4μ) obtained using both FEM-T3 and ES-FEM-T3 at t = 0.22. It

is shown that the plastic domain first appears at the inner circumference and
extends toward the outer circumference. The development of the elastic shear

energy density ‖dev(
�
σ

R
)‖2/(4μ) is demonstrated using the ES-FEM-T3 solution

at different time instances as shown in Figure 11.19.
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FIGURE 11.18 Elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) for the axis-symmetric ring

problem using (a) FEM-T3 and (b) ES-FEM-T3 at t = 0.22 (mesh with 561 nodes and 1024
triangular elements).
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FIGURE 11.19 Evolution of the elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) using ES-FEM-

T3 at some different time steps for the axis-symmetric ring problem: (a) t = 0.04; (b) t = 0.1;
(c) t = 0.16; and (d) t = 0.22.
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474 Smoothed Finite Element Methods

TABLE 11.6

Horizontal Displacement at point A(1, 0) and Vertical Displacement at
point B(0, 1) using FEM-T3 and ES-FEM-T3 at Various Times for the
Axisymmetric Ring Problem

FEM-T3 ES-FEM-T3

Time Iterations uA vB uA/vB Iterations uA vB uA/vB

1 1 0.0376 0.0381 0.9866 1 0.0379 0.0380 0.9979

2 1 0.0752 0.0763 0.9866 1 0.0759 0.0760 0.9979

3 1 0.1129 0.1144 0.9866 1 0.1138 0.1141 0.9979

4 1 0.1505 0.1525 0.9866 1 0.1518 0.1521 0.9979

5 1 0.1881 0.1907 0.9866 1 0.1897 0.1901 0.9979

6 1 0.2257 0.2288 0.9866 1 0.2276 0.2281 0.9979

7 1 0.2634 0.2669 0.9866 1 0.2656 0.2662 0.9979

8 3 0.3049 0.3097 0.9845 3 0.3077 0.3091 0.9955

9 4 0.3586 0.3653 0.9817 4 0.3620 0.3642 0.9941

10 5 0.4305 0.4385 0.9819 4 0.4356 0.4386 0.9931

11 5 0.5336 0.5386 0.9906 4 0.5382 0.5422 0.9927

Table 11.6 shows the solution in terms of the ratio of radial displacements
between points A(1, 0) and B(0, 1) using FEM-T3 and ES-FEM-T3 at various
time instances. Because our problem is axial-symmetric, such a ratio should be
unity. It is found that the results obtained using the ES-FEM-T3 is more symmetric
than those of the FEM-T3. This finding is also supported by the solution of the

elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) shown as a contour plot in Figure

11.20 obtained using a coarse mesh with 45 nodes and 64 triangular elements.
Figure 11.21 shows the convergence of the elastic strain energy E =∫
Ω (

�
σϑ)

T �eϑ dΩ when the mesh is refined using both FEM-T3 and ES-FEM-T3
at a fixed time t = 0.22. The results again verify the finding that the ES-FEM-T3
model is much softer and gives much more accurate results than the FEM-T3
model using the same triangular elements.

Example 11.6.4: A 3D Solid with a Cylindrical Hole:
Perfect Viscoelastoplasticity

Figure 11.22 shows a thick “plate” with the dimensions in the xOy plane as
[−2, 2] × [−2, 2] and the thickness in the z-direction as [−0.5, 0.5]. Because
of the bulky geometry, the “plate” is treated as a 3D solid. The 3D solid has
a central cylindrical hole in the z-direction with a radius of a = 1 and is sub-
jected to time-dependent forces g(t) = 100t in the y -direction on the two outer
surfaces. Because of its symmetry, only the upper right quadrant of the solid
is modeled. Symmetric conditions are imposed on the symmetric planes, and
the inner boundary of the hole is traction free. Figure 11.23 shows the mesh
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FIGURE 11.20 Distribution of the elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) for the axis-

symmetric ring problem using (a) FEM-T3; and (b) ES-FEM-T3 at t = 0.22 (mesh with 45
nodes and 64 triangular elements).

for the model with 2007 nodes (6021 DOFs) and 8998 tetrahedral elements.
Assume that the material has perfect viscoelastoplasticity withYoung’s modulus
E = 206, 900, Poisson’s ratio v = 0.29, yield stress σY = 550, and the initial
data for the stress vector σ0 are set to zero.

Using the mesh as shown in Figure 11.23, the solution is computed in the
time interval from t = 0 to t = 1.0 with 10 uniform time steps of Δt = 0.1.
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FIGURE 11.21 Convergence of the elastic strain energy E = ∫
Ω(

�
σϑ)

T�eϑ dΩ versus the
number of DOFs using FEM-T3 and ES-FEM-T3 at t = 0.22 for the axis-symmetric ring
problem.
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476 Smoothed Finite Element Methods

x
a

g(t)y(a) (b) (c)  
y

g(t)

x

A

B

2

2

(0,0,0.5)

(2,2,0.5)

FIGURE 11.22 A 3D solid block with a cylindrical hole subjected to time-dependent surface
forces: (a) 3D full geometric model; (b) model with forces viewed from the positive direction
of the z-axis; and (c) one-eighth of the model with forces and symmetric boundary conditions.

It is found that the material remains elastic in the first seven steps (where no
iterations are needed), between t = 0 and t = 0.7 for both FS-FEM-T4 and
FEM-T4, as shown in Table 11.7. The number of iterations used in Newton’s
method of both FS-FEM-T4 and FEM-T4 is almost the same (seeTable 11.7). The
estimated errors ηh using Equation 11.66 for FS-FEM-T4 are about 30% less
than those of FEM-T4. In addition, Figure 11.24 compares the computational
cost and efficiency between FEM-T4 and FS-FEM-T4 for a range of meshes at
t = 1. It is seen that with the same mesh, the computational cost of FS-FEM-T4
is larger than that of FEM-T4 as shown in Figure 11.24a. However, when the
efficiency of computation in terms of the solution error versus computational
cost for a range of meshes is considered, the FS-FEM-T4 is more efficient than
the FEM-T4 as shown in Figure 11.24b.

Figure 11.25 shows the distribution of the elastic shear energy density

‖dev(
�
σ

R
)‖2/(4μ) at t = 1.0 obtained using both FEM-T4 and FS-FEM-T4.

0 0 
0.5 

1 
1.5 

2 

0.5 
1 y

z

x

1.5 
2 

–0.2 
0 

0.2 
0.4 
0.6 

FIGURE 11.23 Mesh with 2007 nodes and 8998 tetrahedral elements for the 3D solid block
with a cylindrical hole subjected to time-dependent surface forces g(t).
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S-FEM for Viscoelastoplasticity 477

TABLE 11.7

Number of Iterations and the Estimated Error using FEM-T4 and FS-FEM-
T4 at Various Times for the 3D Solid with a Cylindrical Hole

FEM-T4 FS-FEM-T4

Number of
Time Steps Iterations ηh =

∥
∥
∥
�
σ R−�

σ

∥
∥
∥

L2
∥
∥
∥
�
σ

∥
∥
∥

L2

Iterations ηh =
∥
∥
∥
�
σ R−�

σ

∥
∥
∥

L2
∥
∥
∥
�
σ

∥
∥
∥

L2

1 1 0.1260 1 0.0853
2 1 0.1260 1 0.0853
3 1 0.1260 1 0.0853
4 1 0.1260 1 0.0853
5 1 0.1260 1 0.0853
6 1 0.1260 1 0.0853
7 1 0.1260 1 0.0853
8 4 0.1256 3 0.0849
9 4 0.1255 4 0.0845
10 4 0.1264 4 0.0848

The evolution process of the elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ)

is demonstrated using the FS-FEM-T4 at four different time instances in Fig-
ure 11.26. It is shown that the plasticity domain first appears at the corner
starting from point A(0, 1, 0.5) and then at the other corner starting from point
B(1, 0, 0.5).

Figures 11.27 and 11.28 show, respectively, the convergence of displace-
ments at points A, B and the elastic strain energy E = ∫

Ω (
�
σϑ)

T �eϑ dΩ when
the mesh is refined at a fixed time t = 1. The results from both FEM-T4 and
FS-FEM-T4 models are plotted. The solution of the FS-FEM-T4 using a very fine
mesh with 17,991 DOFs and 29,543 elements is used as the reference solution
for comparison. The results show clearly that the FS-FEM-T4 model is softer
and gives more accurate results than the FEM-T4 model using the same mesh
of tetrahedral elements.

Example 11.6.5: A 3D L-shaped Block: Perfect Viscoelastoplasticity

Consider the 3D square block with a cubic hole subjected to the outer sur-
face traction q as shown in Figure 11.29a. Due to the symmetric property of
the problem, only one-eighth of the domain is modeled, which becomes a 3D
L-shaped block with the length of 2a for the long edge, a for the short edge,
and a/2 for the thickness as shown in Figure 11.29b. The symmetric conditions
are imposed on the cutting boundary planes. Figure 11.30 gives a discretiza-
tion of the domain using 2327 nodes and 10,584 tetrahedral elements. The 3D
L-shaped block is subjected to time-dependent outer pressures q(t) = 120t in
the x-direction and the data of length a = 1. Assume that the material has per-
fect viscoelastoplasticity with Young’s modulus E = 206, 900, Poisson’s ratio
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478 Smoothed Finite Element Methods
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FIGURE 11.24 Comparison of the computational cost and efficiency between FEM-T4
and FS-FEM-T4 for a range of meshes at t = 1 for the thick plate with a cylindrical hole:
(a) CPU time using the same mesh and (b) computational efficiency.

v = 0.29, yield stress σY = 500, and the initial data for the stress vector σ0 are
set to zero.

The solution is calculated in the time interval from t = 0 to t = 1.0 in 10
equal steps ofΔt = 0.1. Using the mesh as shown in Figure 11.30, the material
remains elastic in four first steps, between t = 0 and t = 0.4 for both FS-FEM-T4
and FEM-T4 as shown in Table 11.8. Table 11.8 also shows that the number of
iterations in Newton’s method of both FS-FEM-T4 and FEM-T4 is the same, but
the estimated errors ηh using Equation 11.66 of FS-FEM-T4 are about 30% less
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FIGURE 11.25 Distribution of the elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) (the gray

stone) of the 3D solid block with a cylindrical hole at t = 1.0 (mesh with 2007 nodes and 8998
tetrahedral elements); (a) FEM-T4 and (b) FS-FEM-T4.

than those of FEM-T4. In addition, Figure 11.31 compares the computational
cost and efficiency between FEM-T4 and FS-FEM-T4 for a range of meshes at
t = 1. It is seen that with the same mesh, the computational cost of FS-FEM-T4
is larger than that of FEM-T4 as shown in Figure 11.31a. However, when the
efficiency of computation in terms of the solution error versus computational
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FIGURE 11.26 Evolution of the elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) using FS-FEM-

T4 at four different time instances for the thick plate with a cylindrical hole: (a) t = 0.1; (b)
t = 0.4; (c) t = 0.7; and (d) t = 1.0.
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FIGURE 11.27 Displacements at points A and B versus the number of DOFs used in FS-
FEM-T4 and FEM-T4 for the 3D solid block with a cylindrical hole: (a) x-displacement of
node A and (b) y-displacement of node B.
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FIGURE 11.28 Convergence of the elastic strain energy E = ∫
Ω(

�
σϑ)

T�eϑ dΩ freedom at a
fixed time t = 1 of the 3D solid block with a cylindrical hole.

cost for a range of meshes is considered, the FS-FEM-T4 is more efficient than
the FEM-T4 as shown in Figure 11.31b.

Figure 11.32 shows the elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) at t =

1.0, which is also almost the same for FEM-T4 and FS-FEM-T4. The evolution

of the elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) is demonstrated by using

a
(a) (b)

x

y a
a

q q q

2a
2a

2a 2a a a

FIGURE 11.29 (a) A 3D block with a cubic hole subjected to surface traction q and (b) the
3D L-shaped problem modeled from one-eighth of the 3D block with a cubic hole (the length
of the long edge is 2a, that of the short edge is a, and the thickness is a/2 and symmetric
conditions are imposed on the cutting boundary planes).
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482 Smoothed Finite Element Methods
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FIGURE 11.30 A domain discretization using 2327 nodes and 10,584 tetrahedral elements
for the 3D L-shaped problem.

FS-FEM-T4 at different time steps as shown in Figure 11.33 in which the plastic
domain first appears at the re-entrant corner.

Figure 11.34 shows the convergence of the elastic strain energy E =∫
Ω (

�
σϑ)

T �eϑ dΩ versus the number of DOFs using FEM-T4 and FS-FEM-T4
at t = 1.0. The solution of FS-FEM-T4 using a very fine mesh including 15,390
DOFs and 24,777 elements is used as the reference solution. The results again
verify that the FS-FEM-T4 model is softer and gives more accurate results than
the FEM-T4 model using tetrahedral elements.

TABLE 11.8

Number of Iterations and the Estimated Error Using FEM and
FS-FEM at Various Time Steps for the 3D L-Shaped Problem

FEM FS-FEM

Step Iterations ηh =
∥
∥
∥
�
σ R−�

σ

∥
∥
∥

L2
∥
∥
∥
�
σ

∥
∥
∥

L2

Iterations ηh =
∥
∥
∥
�
σ R−�

σ

∥
∥
∥

L2
∥
∥
∥
�
σ

∥
∥
∥

L2

1 1 0.1343 1 0.0951
2 1 0.1343 1 0.0951
3 1 0.1343 1 0.0951
4 1 0.1343 1 0.0951
5 2 0.1343 2 0.0951
6 3 0.1344 3 0.0952
7 4 0.1351 4 0.0955
8 4 0.1358 4 0.0953
9 4 0.1365 4 0.0949
10 5 0.1385 5 0.0950
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FIGURE 11.31 Comparison of the computational cost and efficiency between FEM and FS-
FEM for a range of meshes at t = 1 for the 3D L-shaped problem: (a) CPU time using the same
mesh and (b) computational efficiency.

Example 11.6.6: Hollow Sphere: 3D Viscoelastoplasticity with
Isotropic Hardening

The domain of the hollow sphere is defined asΩ = B(0, 2)/B(0, 1.3) [the origin
O(0, 0, 0), inner radius a = 1.3, and outer radius b = 2.0]. The hollow sphere
is subjected to a uniform pressure g(r ,ϕ, t) = 50ter on the inner spherical
surface with er = [cosϕ sinϕ

]T . Because of the symmetric characteristics
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FIGURE 11.32 Elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) (the gray stone) of the 3D L-

shaped problem at t = 1.0 (mesh with 2327 nodes and 10,584 tetrahedral elements). (a) FEM
and (b) FS-FEM.

of the problem, only one-eighth of hollow sphere needs to be modeled as
shown in Figure 11.35, and symmetric conditions are imposed on the symmet-
ric planes. Assuming that the material has viscoelastoplasticity with isotropic
hardening with Young’s modulus E = 40, 000, Poisson’s ratio v = 0.25, yield
stress σY = 100, hardening parameter H = 3, H1 = 1; and the initial stress
vector σ0 and the scalar hardening parameter αI

0 are set to zero.
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FIGURE 11.33 Evolution of the elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) using FS-FEM

at different time steps for the 3D L-shaped problem: (a) t = 0.1; (b) t = 0.4; (c) t = 0.7; and
(d) t = 1.0.
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FIGURE 11.34 Convergence of the elastic strain energy E = ∫
Ω(

�
σϑ)

T�eϑ dΩ versus the
number of DOFs at t = 1 of the 3D L-shaped problem.
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FIGURE 11.35 One-eighth of the hollow sphere discretized by 2234 nodes and 10,385
tetrahedral elements.
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486 Smoothed Finite Element Methods

TABLE 11.9

Number of Iterations and the Estimated Error Using FEM-T4 and
FS-FEM-T4 at Various Time Steps for Hollow Sphere Problem

FEM-T4 FS-FEM-T4

Step Iterations ηh =
∥
∥
∥
�
σ R−�

σ

∥
∥
∥

L2
∥
∥
∥
�
σ

∥
∥
∥

L2

Iterations ηh =
∥
∥
∥
�
σ R−�

σ

∥
∥
∥

L2
∥
∥
∥
�
σ

∥
∥
∥

L2

1 1 0.1053 1 0.0745
2 1 0.1053 1 0.0745
3 1 0.1053 1 0.0745
4 1 0.1053 1 0.0745
5 1 0.1053 1 0.0745
6 1 0.1053 1 0.0745
7 1 0.1053 1 0.0745
8 2 0.1053 2 0.0745
9 3 0.1053 3 0.0744
10 3 0.1053 3 0.0744

Using the mesh as shown in Figure 11.35, the solution is computed using
both FS-FEM-T4 and FEM-T4 for the time interval from t = 0 to t = 1.0 with
10 uniform time steps of Δt = 0.1. It is found that the material remains elastic
in the first seven steps from t = 0 to t = 0.7 as shown in Table 11.9. The num-
ber of iterations used in Newton’s method for both FS-FEM-T4 and FEM-T4 is
almost the same. The estimated errors ηh using Equation 11.66 of FS-FEM-T4
are about 30% less than those of FEM-T4. In addition, Figure 11.36 compares
the computational cost and efficiency between FEM-T4 and FS-FEM-T4 for a
range of meshes at t = 1. It is seen that with the same mesh, the computational
cost of FS-FEM-T4 is larger than that of FEM-T4 as shown in Figure 11.36a.
However, when the efficiency of computation in terms of the solution error
versus computational cost for a range of meshes is considered, FS-FEM-T4 is
more efficient than FEM-T4 as shown in Figure 11.36b.

Figure 11.37 shows the distribution of the elastic shear energy density

‖dev(
�
σ

R
)‖2/(4μ) at t = 1.0 obtained using both FEM-T4 and FS-FEM-T4. The

evolution process of the elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) is shown

using the FS-FEM-T4 results at four different times in Figure 11.38. It is found
that the plastic domain first appears at the inner circumference and extends
outward.

Table 11.10 shows the results in terms of the differences of the radial displace-
ment components between points A(1.3, 0, 0) and B(0, 1.3, 0) using FEM-T4
and FS-FEM-T4 at various times. Because our problem is axial-symmetric, such
differences should be zero. It is seen from Table 11.10 that for this symmetric
problem, the results of FS-FEM-T4 produce more symmetric results than those
of FEM-T4.
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FIGURE 11.36 Comparison of the computational cost and efficiency between FEM-T4 and
FS-FEM-T4 for a range of meshes at t = 1 for the hollow sphere problem: (a) CPU time using
the same mesh and (b) computational efficiency.

Figure 11.39 shows the convergence of the elastic strain energy E =∫
Ω (

�
σϑ)

T �eϑ dΩ when the mesh is refined using both FEM-T4 and FS-FEM-T4
at a fixed time t = 1.0. The solution of FS-FEM-T4 using a very fine mesh
with 17,988 DOFs and 30,168 elements is used as the reference solution for
comparison. The results again confirm that the FS-FEM-T4 model is softer and
gives more accurate results than the FEM-T4 model using the same mesh of
tetrahedral elements.
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FIGURE 11.37 Distribution of the elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) for the

hollow sphere problem using (a) FEM-T4 and (b) FS-FEM-T4 at t = 1.0 (mesh with 2234
nodes and 10,385 elements).
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FIGURE 11.38 Evolution of the elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) using FS-FEM-

T4 at different time steps for the hollow sphere problem: (a) t = 0.1; (b) t = 0.4; (c) t = 0.7;
and (d) t = 1.0.
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S-FEM for Viscoelastoplasticity 489

TABLE 11.10

Radial Displacements at points A(1.3, 0, 0) and B(0, 1.3, 0) Obtained using
FEM-T4 and FS-FEM-T4 at Various Times for the Hollow Sphere Problem

FEM-T4 FS-FEM-T4
Number of

Time Step uA vB |uA − vB| uA vB |uA − vB|
1 0.0001664 0.0001658 6.45119E-07 0.0001682 0.0001680 1.87086E-07
2 0.0003328 0.0003315 1.29024E-06 0.0003364 0.0003364 0
3 0.0004992 0.0004973 1.93536E-06 0.0005046 0.0005040 5.61257E-07
4 0.0006656 0.0006630 2.58047E-06 0.0006728 0.0006720 7.48343E-07
5 0.0008320 0.0008288 3.22559E-06 0.0008410 0.0008400 9.35429E-07
6 0.0009984 0.0009945 3.87071E-06 0.0010092 0.0010081 1.12251E-06
7 0.0011648 0.0011603 4.51583E-06 0.0011774 0.0011761 1.3096E-06
8 0.0013312 0.0013260 5.15844E-06 0.0013456 0.0013441 1.49466E-06
9 0.0014980 0.0014922 5.80887E-06 0.0015142 0.00151251 1.6819E-06
10 0.0016667 0.0016603 6.46026E-06 0.0016850 0.00168311 1.84285E-06

Example 11.6.7: 3D Cook’s Membrane: Viscoelastoplasticity with
Linear Kinematic Hardening

The final example for this chapter is a 3D Cook’s membrane shown in Figure
11.40.The 3D solid is meshed with 2317 nodes and 9583 tetrahedral elements.
At the right end of the membrane, there is a time-dependent shear force g = 90t
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FIGURE 11.39 Convergence of the elastic strain energy E = ∫
Ω(

�
σϑ)

T�eϑ dΩ versus the
number of DOFs at t = 1 of the hollow sphere problem.
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FIGURE 11.40 The 3D Cook’s membrane subjected to a time-dependent shear force and
its discretization using 2317 nodes and 9583 tetrahedral elements.

and the other end is fixed. Assume that the material has viscoelastoplasticity
with linear kinematic hardening with Young’s modulus E = 70, 000, Poisson’s
ratio v = 0.3, yield stress σY = 400, and hardening parameter k1 = 2. The
initial data for the displacement u0, the stress vector σ0, and the hardening
parameter αK

0 are set to zero.

TABLE 11.11

Number of Iterations and the Estimated Error using FEM-T4 and FS-
FEM-T4 at Various Time Steps for the 3D Cook’s Membrane Problem

FEM-T4 FS-FEM-T4

Step Iterations ηh =
∥
∥
∥
�
σ R−�

σ

∥
∥
∥

L2
∥
∥
∥
�
σ

∥
∥
∥

L2

Iterations ηh =
∥
∥
∥
�
σ R−�

σ

∥
∥
∥

L2
∥
∥
∥
�
σ

∥
∥
∥

L2

1 1 0.1087 1 0.0735
2 1 0.1087 1 0.0735
3 1 0.1087 1 0.0735
4 1 0.1087 1 0.0735
5 1 0.1087 1 0.0735
6 3 0.1087 3 0.0735
7 3 0.1088 3 0.0735
8 3 0.1092 4 0.0738
9 4 0.1101 4 0.0745
10 4 0.1118 4 0.0755
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FIGURE 11.41 Comparison of the computational cost and efficiency between FEM-T4 and
FS-FEM-T4 for a range of meshes at t = 1 for the 3D Cook’s membrane problem: (a) CPU time
using the same mesh and (b) computational efficiency.

Using the mesh as shown in Figure 11.40, the solution is computed using
both FS-FEM-T4 and FEM-T4 models for the time interval from t = 0 to t = 1.0
with 10 uniform time steps ofΔt = 0.1. It is found that the material remains elas-
tic in the first five steps from t = 0 to t = 0.5 as shown inTable 11.11.The num-
ber of iterations used in Newton’s method for both FS-FEM-T4 and FEM-T4 is
almost the same.The estimated errors ηh using Equation 11.66 of FS-FEM-T4 are
about 30% less than those of FEM-T4. In addition, Figure 11.41 compares the
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FIGURE 11.42 Distribution of the elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) for the 3D

Cook’s membrane problem using FEM-T4 and FS-FEM-T4 at t = 1.0 (mesh with 2317 nodes
and 9583 tetrahedral elements). (a) FEM-T4 and (b) FS-FEM-T4.
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FIGURE 11.43 Evolution of the elastic shear energy density‖dev(
�
σ

R
)‖2/(4μ)obtained using

FS-FEM-T4 at four different time instances for the 3D Cook’s membrane problem: (a) t = 0.1;
(b) t = 0.4; (c) t = 0.7; and (d) t = 1.0.
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FIGURE 11.44 Convergence of the elastic strain energy E = ∫
Ω(

�
σϑ)

T�eϑ dΩ versus the
number of DOFs at t = 1 for the 3D Cook’s membrane problem.

computational cost and efficiency between FEM-T4 and FS-FEM-T4 for a range
of meshes at t = 1. It is seen that with the same mesh, the computational cost of
FS-FEM-T4 is larger than that of FEM-T4 as shown in Figure 11.41a. However,
when the efficiency of computation (computation time for the same accuracy)
in terms of the solution error versus computational cost for a range of meshes
is considered, the FS-FEM-T4 is more efficient than the FEM-T4 as shown in
Figure 11.41b.

Figure 11.42 shows the distribution of the elastic shear energy density

‖dev(
�
σ

R
)‖2/(4μ) at t = 1.0 obtained using both FEM-T4 and FS-FEM-T4. The

evolution of the elastic shear energy density ‖dev(
�
σ

R
)‖2/(4μ) is shown using

the FS-FEM-T4 results at four different time instances, and is shown in Fig-
ure 11.43. It is observed that the plastic domain first appears at the fixed
upper corner and then moves to the middle part of the lower boundary
face.

Figure 11.44 shows the convergence of the elastic strain energy E =∫
Ω (

�
σϑ)

T �eϑ dΩ using both FEM-T4 and FS-FEM-T4 at t = 1.0. The solu-
tion of FS-FEM-T4 using a very fine mesh with 17,307 DOFs and
26,084 elements is used as the reference solution. The results again
verify that the FS-FEM-T4 model is softer and gives more accurate
results than the FEM-T4 model using the same mesh of tetrahedral ele-
ments.
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494 Smoothed Finite Element Methods

11.7 Concluding Remarks

In this chapter, we presented dual formulations for viscoelastoplastic-
ity problems. Both the standard Galerkin weak form and the smoothed
Galerkin weak forms are derived. A general formulation for S-FEM mod-
els is also given by combining the model of Carstensen and Klose [1] with
the von-Mises conditions and the Prandtl–Reuss flow rule. In particular,
ES-FEM-T3 and FS-FEM-T4 are coded for solving the complicated non-
linear problems for 2D and 3D viscoelastoplasticity solids. The material
behavior considered includes perfect viscoelastoplasticity and viscoelasto-
plasticity with isotropic and linear kinematic hardening in a dual model,
with displacements and the stresses as the main variables. In our numeri-
cal procedure, however, we eliminate the stress variables and the problem
eventually becomes only displacement dependent, and hence the prob-
lem can easily be solved using ES-FEM-T3 and FS-FEM-T4. The numerical
results of ES-FEM-T3 and FS-FEM-T4 using triangular and tetrahedral
elements lead to the following remarks:

1. The displacement results of ES-FEM-T3/FS-FEM-T4 are larger
than those of FEM-T3/FEM-T4. These results reconfirm clearly
that ES-FEM-T3/FS-FEM-T4 models are softer than their FEM
counterparts.

2. The elastic strain energies of ES-FEM-T3/FS-FEM-T4 are much
more accurate than those of FEM-T3/FEM-T4, which is largely the
same finding as we found for linear elastic problems.

3. The a posteriori estimated error ηh used in this work is shown to be
reliable in estimating the error in the stress solution in ES-FEM-T3,
FS-FEM-T4, FEM-T3, and FEM-T4. For 2D problems, the a posteri-
ori estimated error ηh of ES-FEM-T3 is about 2–3 times smaller than
those of FEM-T3. For 3D problems, the a posteriori estimated error
ηh of FS-FEM-T4 is about 30% smaller than those of FEM-T4.

4. The bandwidth of the stiffness matrix of ES-FEM-T3 (FS-FEM-T4)
is about 4/3 (5/4) times larger than that of FEM counterparts, and
hence the computational cost of ES-FEM-T3/FS-FEM-T4 in numeri-
cal examples is larger than that of FEM for the same mesh. However,
when the efficiency of computation (computation time for the same
accuracy) is considered, the ES-FEM-T3 (FS-FEM-T4) is in fact more
efficient than FEM-T3 (FEM-T4).

5. For the coarse meshes, the results of ES-FEM-T3 are much more
accurate than those of FEM-T3.

6. For the axis-symmetric problems, the results of ES-FEM-T3/FS-
FEM-T4 are more symmetric than those of FEM-T3/FEM-T4.
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S-FEM for Viscoelastoplasticity 495

These examples have shown that the “star” quality of ES-FEM-T3 and
FS-FEM-T4 models has also been found for material nonlinear problems.
They are likely the best linear models for nonlinear problems in terms
of (1) adaptation to complicated geometry; (2) suitability for automati-
cally meshing; (3) stability; (4) solution accuracy; and (5) computational
efficiency.
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12
ES-FEM for Plates

12.1 Introduction

The numerical analysis of a plate using the FEM has played an important
role in engineering applications in structural engineering [1], because (1)
the plate is one of the most widely used essential structural components,
and (2) the FEM is so far one of the most important and robust numerical
methods. In recent years, mesh-free methods have also been developed
and applied to various problems for different types of plates [2]. In practi-
cal engineering applications, lower-order Reissner–Mindlin plate elements
are preferred due to its simplicity, efficiency and applicability to “thick”
plates. However, when applied to thin plates, these low-order plate ele-
ments often suffer from the so-called shear locking. In order to eliminate
shear locking, many attempts have been made and the selective reduced
integration scheme was proposed [3–6]. The idea of the selective reduced
integration scheme is to split the strain energy into two parts: the bending-
related term and the shear-related one. Two different integration rules are
then used, respectively, for the bending strain energy and the shear strain
energy. For example, for four-node quadrilateral elements with bilinear
shape functions, the reduced integration (using a single Gauss point) is
used to compute shear strain energy, while the full Gauss integration (using
2 × 2 Gauss points) is used for the bending strain energy. Such a selective
reduced integration scheme is very simple, easy to apply, and works well
for many cases. Unfortunately, the reduced integration often leads to rank
deficiency in the stiffness matrix, which can be observed as zero-energy
modes. Various improvements have also been made in the formulation,
and many numerical techniques have been developed to overcome the
shear locking problem, aiming to increase the accuracy and to ensure the
stability of the solution, such as the mixed formulation or hybrid elements
[7–17], enhanced assumed strain (EAS) methods [18–22], and assumed nat-
ural strain (ANS) methods [23–32]. Recently, the so-called DSG method [33]
was proposed to overcome the shear locking problem. The DSG is some-
what similar to the ANS methods in the aspect of modifying the strains
within the element, but is different in the aspect of removing collocation
points. The DSG method is found to work well for elements of different
orders and shapes [33].

497
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498 Smoothed Finite Element Methods

This chapter aims to extend the “star” performer ES-FEM-T3 to static,
free vibration and buckling analyses of plates, capitalizing on these
excellent features of the ES-FEM found from the previous chapters. The
ES-FEM formulation will be based on the Reissner–Mindlin plates, and
uses (again) only triangular meshes for the excellent geometric adap-
tation. In order to avoid the transverse shear locking and to improve
the accuracy, the ES-FEM-T3 is incorporated with the DSG method [33]
together with a stabilization technique [34]. The method was termed as
ES-FEM-T3 with the stabilized DSG method or ES-FEM-DSG3 for short.
The numerical examples will show that the ES-FEM-DSG3 method is free
of shear locking and is a strong competitor to other existing elements
found in the literature. The ES-FEM-DSG3 works well for both thin and
thick plates for various problems: static, free vibration and buckling, as
will be demonstrated in this chapter.

12.2 Weak Form for the Reissner–Mindlin Plate

Consider a plate under bending deformation. The middle (neutral) surface
of plate is chosen as the reference plane that occupies a domain Ω ⊂ R2 as
shown in Figure 12.1a. Let w be the transverse displacement (deflection),
and βT = [βx βy

]
be the vector of rotations, in which βx, βy are the rotations

of the middle plane around the y-axis and x-axis, respectively, with the
positive directions defined as shown in Figure 12.1b. The unknown vector
of three independent field variables at any point in the problem domain of
the Reissner–Mindlin plates can be written as

uT = [w βx βy
]
. (12.1)

x, u

z, w(a) (b)

x, u

βy βx

Middle plane

New
 m

idd
le

pla
ne

New m
iddle

plane

y-z planeO O
x-z plane

z, wz, w

y, v

y, v

FIGURE 12.1 Three-node triangular plate element and field variables for the Reissner–
Mindlin plates: (a) positive directions of displacement u, v, and w; and (b) positive directions
of βx and βy .
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ES-FEM for Plates 499

The curvature of the deflected plate is defined as

κ = Ldβ (12.2)

and the shear strains are defined as

γ = ∇w + β, (12.3)

where ∇ = [∂/∂x ∂/∂y
]T is the gradient operator.

The standard Galerkin weak form of the static equilibrium equations for
the Reissner–Mindlin plate can now be written as [1]

∫

Ω

δκTDbκ dΩ+
∫

Ω

δγTDsγ dΩ =
∫

Ω

δuTb dΩ, (12.4)

where b = [b(x, y) 0 0
]T is the distributed load applied on the plate. The

matrix Db is the material matrix related to the bending deformation, and
is given by

Db = Et3

12
(
1 − ν2

)
⎡
⎢⎢⎣

1 ν 0

ν 1 0

0 0 (1 − ν)/2

⎤
⎥⎥⎦, (12.5)

with E being the Young’s modulus and t the thickness of the plate. The
matrix Ds is the material matrix related to shear deformation, and has the
form of

Ds = kt

[
μ 0

0 μ

]
, (12.6)

with the shear modulus μ and the shear correction factor k = 5/6.
For the free vibration analysis of the Reissner–Mindlin plates, the stan-

dard Galerkin weak form can be derived from the dynamic form of the
energy principle [1,2]:

∫

Ω

δκTDbκ dΩ+
∫

Ω

δγTDsγ dΩ+
∫

Ω

δuTρ ü dΩ = 0, (12.7)

where ρ is the mass density of the material of the plate.
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500 Smoothed Finite Element Methods

For buckling analyses, nonlinear strain resulting from the in-plane
prebuckling stresses σ̂0 must be considered. The standard Galerkin weak
form becomes [2,35]

∫

Ω

δκTDbκ dΩ+
∫

Ω

δγTDsγ dΩ+ t
∫

Ω

∇Tδw σ̂0 ∇w dΩ

+ t3

12

∫

Ω

[∇Tδβx ∇Tδβy
] [σ̂0 0

0 σ̂0

][
∇βx

∇βy

]
dΩ = 0, (12.8)

where

σ̂0 =
[
σ0

x σ0
xy

σ0
xy σ0

y

]
. (12.9)

Equation 12.8 can be rewritten in a concise form of
∫

Ω

δκTDbκ dΩ+
∫

Ω

δγTDsγ dΩ+
∫

Ω

(
δεg)T τ εg dΩ = 0, (12.10)

where

τ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

tσ̂0 0 0

0
t3

12
σ̂0 0

0 0
t3

12
σ̂0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tσ0
x tσ0

xy 0 0 0 0

tσ0
xy tσ0

y 0 0 0 0

0 0
t3

12
σ0

x
t3

12
σ0

xy 0 0

0 0
t3

12
σ0

xy
t3

12
σ0

y 0 0

0 0 0 0
t3

12
σ0

x
t3

12
σ0

xy

0 0 0 0
t3

12
σ0

xy
t3

12
σ0

y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(12.11)

and εg is known as the geometrical strains:

εg =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂w/∂x 0 0
∂w/∂y 0 0

0 ∂βx/∂x 0
0 ∂βx/∂y 0
0 0 ∂βy/∂x
0 0 ∂βy/∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (12.12)
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ES-FEM for Plates 501

12.3 FEM Formulation for the Reissner–Mindlin Plate

In the FEM, the problem domainΩ for the middle (neutral) plane is meshed
with Ne finite elements such thatΩ =⋃Ne

i=1Ω
e
i andΩe

i ∩Ωe
j �= Ø, i �= j. The

finite element solution ũ = [w βx βy
]T of a displacement model for the

Reissner–Mindlin plate can then be expressed as

ũ =
Nn∑
I=1

⎡
⎣NI(x) 0 0

0 NI(x) 0
0 0 NI(x)

⎤
⎦

︸ ︷︷ ︸
NI(x)

d̃I , (12.13)

where Nn is the total number of nodes in the discretized model; NI(x) and
d̃I = [wI βxI βyI

]T are, respectively, the shape function and the nodal
DOFs for node I.

The curvature, shear strains, and geometrical strains are approxi-
mated as

κ̃ =
∑

I

B̃b
I d̃I ,

γ̃s =
∑

I

B̃s
I d̃I ,

ε̃g =
∑

I

B̃g
I d̃I ,

(12.14)

where

B̃b
I =

⎡
⎢⎣

0 ∂NI/∂x 0
0 0 ∂NI/∂y
0 ∂NI/∂y ∂NI/∂x

⎤
⎥⎦ , (12.15a)

B̃s
I =

[
∂NI/∂x NI 0
∂NI/∂y 0 NI

]
, (12.15b)

B̃g
I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂NI/∂x 0 0
∂NI/∂y 0 0

0 ∂NI/∂x 0
0 ∂NI/∂y 0
0 0 ∂NI/∂x
0 0 ∂NI/∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12.15c)
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502 Smoothed Finite Element Methods

The discretized system of equations of the Reissner–Mindlin plate using
the FEM for static analysis can then be expressed as

K̃d̃ = f̃, (12.16)

where

K̃ =
∫

Ω

(
B̃b
)T

DbB̃b dΩ+
∫

Ω

(
B̃s
)T

DsB̃s dΩ

=
Ne∑
i=1

∫

Ωe
i

(
B̃b
)T

DbB̃b dΩ+
Ne∑
i=1

∫

Ωe
i

(
B̃s
)T

DsB̃s dΩ (12.17)

is the global stiffness matrix, and the (global) load vector becomes

f̃ =
∫

Ω

NTb dΩ+ f̃b =
Ne∑
i=1

∫

Ωe
i

NTb dΩ+ f̃b, (12.18)

in which fb relates to the prescribed boundary loads.
For the free vibration, the force term vanishes, and we shall have

(K̃ − ω2M̃)d̃ = 0, (12.19)

where ω is the natural frequency of the free vibration, and M̃ is the global
“mass” matrix

M̃ =
∫

Ω

NTmNT dΩ =
Ne∑
i=1

∫

Ωe
i

NTmNT dΩ with m = ρ

⎡
⎢⎢⎢⎢⎢⎣

t 0 0

0
t3

12
0

0 0
t3

12

⎤
⎥⎥⎥⎥⎥⎦

(12.20)

For buckling analyses, we have

(K̃ − λcrG̃)d̃ = 0, (12.21)

where λcr is the so-called critical buckling load, and

G̃ =
∫

Ω

(
B̃g
)T

τ B̃g dΩ (12.22)

is the geometrical stiffness matrix.
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ES-FEM for Plates 503

12.4 ES-FEM-DSG3 for the Reissner–Mindlin Plate

This section formulates an ES-FEM with the stabilized DSG technique
using triangular element (ES-FEM-DSG3) for the Reissner–Mindlin plates
[36]. The formulation consists of the following ingredients:

1. The ES-FEM [37] using triangular elements for 2D solids
2. The shear-locking-free triangular finite element (DSG3) for the

Reissner–Mindlin plate proposed by Bletzinger et al. [33]
3. A stabilization technique proposed by Lyly et al. [34] to further

improve the stability and accuracy of the original DSG method.

With these key ingredients in place working nicely together, we can
expect our ES-FEM-DSG3 model to be stable, accurate, and work well for
both thin and thick plates. The following provides details of these technical
ingredients.

12.4.1 The DSG3 Formulation

Using a mesh of triangular elements, the approximation ũ = [w̃ β̃x β̃y
]T

for a three-node triangular element Ωe
i shown in Figure 12.2 for the

Reissner–Mindlin plate can be written, at the element level, as

ũ =
3∑

I=1

⎡
⎣NI(x) 0 0

0 NI(x) 0
0 0 NI(x)

⎤
⎦ d̃e

I , (12.23)

where d̃e
I = [w̃I β̃xI β̃yI

]T
is the “displacement” vector of the nodal

DOFs of ũ associated with node I, and NI(x) is linear shape function

y

d

b

η

ξ
c

1

2

3

xa

FIGURE 12.2 Three-node triangular plate element and local coordinates.
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504 Smoothed Finite Element Methods

defined, in natural coordinates (see Figure 3.9b), by

N1 = 1 − ξ− η, N2 = ξ, N3 = η. (12.24)

The curvatures of the deflection in the element are then obtained by

κ̃ = B̃bd̃e, (12.25)

where d̃e is the nodal displacement vector of the element and B̃b contains
the derivatives of the shape functions that are constants:

B̃b = 1
2Ae

i

⎡
⎣0 b − c 0 0 c 0 0 −b 0

0 0 d − a 0 0 −d 0 0 a
0 d − a b − c 0 −d c 0 a −b

⎤
⎦, (12.26)

with a = x2 − x1, b = y2 − y1, c = y3 − y1, d = x3 − x1, and Ae
i is the area

of the triangular element.
The geometrical strains are written as

ε̃g = B̃gd̃e, (12.27)

where

B̃g = 1
2Ae

i

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b − c 0 0 c 0 0 −b 0 0
d − a 0 0 −d 0 0 a 0 0

0 b − c 0 0 c 0 0 −b 0
0 d − a 0 0 −d 0 0 a 0
0 0 b − c 0 0 c 0 0 −b
0 0 d − a 0 0 −d 0 0 a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(12.28)

As reported in many previous publications on the Reissner–Mindlin ele-
ments, the shear locking often occurs when the thickness plate becomes
small, where the pure bending dominates the plate deformation. This is
because, based on the Reissner–Mindlin theory (using Equation 12.15b to
evaluate the shear strains), the transverse shear strains do not vanish under
the pure bending conditions. Such a conflict of the bending and shearing
strain fields under thin plate situations leads to the shear locking problem.
In order to overcome this conflict, Bletzinger et al. [33] have proposed the
DSG method to alter the shear strain field. The altered shear strains are in
the form of

γ̃ = B̃sd̃e, (12.29)
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ES-FEM for Plates 505

where

B̃s = 1
2Ae

i

⎡
⎢⎢⎢⎢⎣

b − c Ae
i 0 c

ac
2

bc
2

−b −bd
2

−bc
2

d − a 0 Ae
i −d −ad

2
−bd

2
a

ad
2

ac
2

⎤
⎥⎥⎥⎥⎦.

(12.30)

Equation 12.30 is now used in place of Equation 12.15b for evaluating the
shear strains. Substituting Equations 12.26 and 12.30 into Equation 12.17,
the global stiffness matrix now becomes

K̃DSG3 =
Ne∑
i=1

K̃eDSG3
i , (12.31)

where the element stiffness matrix K̃eDSG3
i for the DSG3 element becomes

K̃eDSG3
i =

∫

Ωe
i

(
B̃b)TDbB̃b dΩ+

∫

Ωe
i

(
B̃s)TDsB̃s dΩ

= (B̃b)TDbB̃bAe
i + (B̃s)TDsB̃sAe

i . (12.32)

Substituting Equation 12.28 into Equation 12.22, the global geometrical
stiffness matrix G̃DSG3 becomes

G̃DSG3 =
Ne∑
i=1

G̃eDSG3
i , (12.33)

where the element geometrical stiffness matrix G̃eDSG3
i is given as

G̃eDSG3
i =

∫

Ωe
i

(
B̃g)TτB̃g dΩ = (B̃g)TτB̃gAe

i . (12.34)

12.4.2 Improved Stability

It was suggested [34] that a stabilization term needs to be added to the
original DSG3 element to further improve the accuracy of approximate
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506 Smoothed Finite Element Methods

solutions and to stabilize shear force oscillations. Such a modification is
achieved by simply replacing Ds in Equation 12.32 by D̂s as follows:

K̃eDSG3
i =

∫

Ωe
i

(
B̃b)TDbB̃b dΩ+

∫

Ωe
i

(
B̃s)TD̂sB̃s dΩ

= (B̃b)TDbB̃bAe
i + (B̃s)TD̂sB̃s Ae

i , (12.35)

where

D̂s = kt3

t2 + αh2
e

[
1 0

0 1

]
, (12.36)

in which he is the length of the longest edges of the element and α is a stabi-
lization parameter that is a prespecified positive constant. In this chapter,
it is fixed at 0.05 for static problems and 0.1 for dynamics problems as sug-
gested in Ref. [34]. More details of the stabilization of the original DSG3
element can be found in Ref. [38].

12.4.3 Smoothing Operations for the Reissner–Mindlin Plates

In this section, the ES-FEM [37] is now formulated for the Reissner–Mindlin
plates with the stabilized DSG technique (DSG3) [34,38]. The formulated
ES-FEM-DSG3 will be stable and works well for both thin and thick plates
using only triangular elements.

Using the edge-based smoothing operation as in the ES-FEM, we obtain
the smoothed curvature, shear strain, and geometrical strain over the
smoothing domain Ωs

k associated with the kth edge:

κk = 1
As

k

∫

Ωs
k

κ̃(x) dΩ,

γk = 1
As

k

∫

Ωs
k

γ̃(x) dΩ,

ε
g
k = 1

As
k

∫

Ωs
k

ε̃g(x) dΩ,

(12.37)

where As
k is the area of the smoothing domain Ωs

k and is computed by
Equation 7.4.
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ES-FEM for Plates 507

Substituting Equations 12.25, 12.29, and 12.27 into Equation 12.37, the
smoothed strains for the smoothing domains of edge k can be expressed in
the following forms:

κk =
ne

k∑
I=1

B
b
I (xk)dI ,

γk =
ne

k∑
I=1

B
s
I (xk)dI ,

ε
g
k =

ne
k∑

I=1

B
g
I (xk)dI ,

(12.38)

where ne
k is the number of elements attached to edge k as detailed

in Section 7.3.1; B
b
I (xk), B

s
I (xk), and B

g
I (xk) are the smoothing gradient

matrices corresponding to the smoothing domain Ωs
k and are given,

respectively, by

B
b
I (xk) = 1

As
k

ne
k∑

j=1

1
3

Ae
j B̃

b
j ,

B
s
I (xk) = 1

As
k

ne
k∑

j=1

1
3

Ae
j B̃

s
j ,

B
g
I (xk) = 1

As
k

ne
k∑

j=1

1
3

Ae
j B̃

g
j ,

(12.39)

where the compatible gradient matrices B̃b
j (of 3 × 3 dimensions), B̃s

j (of

2 × 3 dimensions), and B̃g
j (of 6 × 3 dimensions) are obtained using

matrices given in Equations 12.26, 12.30, and 12.28, respectively.

12.4.4 Smoothed Galerkin Weak Forms for Reissner–Mindlin Plates

For the free vibration analysis of Reissner–Mindlin plates, the smoothed
Galerkin weak form can be written as [2]

Ns∑
k=1

As
kδκ

TDbκ +
Ns∑

k=1

As
kδγ

TDsγ +
∫

Ω

δuTρü dΩ = 0, (12.40)
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508 Smoothed Finite Element Methods

where Ns is the number of smoothing domains. In our ES-FEM, it is the
number of edges in the element mesh Ns = Neg. For static problems, we
simply drop the dynamic term in the foregoing equation.

For buckling analyses, the smoothed Galerkin weak form becomes

Ns∑
k=1

As
kδκ

TDbκ +
Ns∑

k=1

As
kδγ

TDsγ +
Ns∑

k=1

As
k
(
δεg)T τεg = 0. (12.41)

Note that the foregoing smoothed Galerkin weak form is applicable to
formulate other S-FEM models using corresponding smoothing domains
properly constructed.

12.4.5 Discretized System of Equations for ES-FEM-DSG3

The discretized system of equations of the ES-FEM-DSG3 method for
dynamic problems can be obtained using Equation 12.40:

K d + M̃d̈ = f̃. (12.42)

We note that the smoothed operations change only the stiffness matrix.
For static problems, we simply remove the dynamic term. For the free
vibration, the force term vanishes, and we thus set the external forces to
zero, leading to

(
K − ω2M̃

)
d = 0. (12.43)

For the buckling analysis, we use Equation 12.41, which gives

(
K − λcrG

)
d = 0. (12.44)

The global stiffness and geometrical stiffness matrices of the ES-FEM-
DSG3 method are assembled based on edge-based smoothed domains
using

K =
Neg∑
k=1

K
s
k , (12.45)

G =
Neg∑
k=1

G
s
k , (12.46)
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where the stiffness matrix K
s
k and the geometrical stiffness matrix G

s
k

associated with the edge-based smoothing domain Ωs
k are given by

K
s
k = (B

b)TDbB
b
As

k + (B
s)TD̂sB

s
As

k , (12.47)

G
s
k = B

gT
τ B

g
As

k . (12.48)

It is seen from Equations 12.47 and 12.48 that the stiffness matrices in
our ES-FEM-DSG3 method require no numerical integration, but a sim-
ple summation over all the edge-based smoothing domains. Note that the
rank of the ES-FEM-DSG3 model is similar to that of the DSG3 model. This
is because of the similarity in ranks of FEM-T3 and ES-FEM-T3, as exam-
ined in Chapter 7. Therefore, the stability of an ES-FEM-DSG3 model is
ensured.

12.5 Numerical Examples: Patch Test

Based on the formulation presented above, an ES-FEM-DSG3 code has
been developed. A series of tests are now conducted to examine the
method, starting from the usual patch test. The patch test for plate prob-
lems was introduced to examine the convergence of finite elements, and
it is used here to examine our ES-FEM-DSG3 models. A rectangular
patch shown in Figure 12.3 is used, and it is meshed with four triangu-
lar elements with one arbitrarily located interior node (the fifth node).
The deflection on the patch boundary is assumed to be a second-order
polynomial:

w = (1 + x + 2y + x2 + xy + y2)/2. (12.49)

4(0.2;0.12) 3(0.44;0.12)

5(0.3;0.06)

1(0.2;0) 2(0.44;0)

FIGURE 12.3 Rectangular plate patch used in the patch test. The patch is meshed with four
elements with an arbitrarily located interior node.
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510 Smoothed Finite Element Methods

TABLE 12.1

Patch Test Results for Fifth Node in Figure 12.3 Using ES-FEM-DSG3

Methods w5 βx5 βy5 mx5 my5 mxy5

DSG3 0.6422 1.1300 −0.6400 −0.0111 −0.0111 −0.0033

ES-FEM-DSG3 0.6422 1.1300 −0.6400 −0.0111 −0.0111 −0.0033

Exact 0.6422 1.1300 −0.6400 −0.0111 −0.0111 −0.0033

The ES-FEM-DSG3 code is then used to compute “displacement” (deflec-
tion and rotation) and “stress” (moments) fields. The patch test results for
the fifth node are listed in Table 12.1. It is shown that the ES-FEM-DSG3
model produces the correct fields within machine precision for the arbi-
trarily located interior node, implying that the ES-FEM-DSG3 passes the
patch test successfully.

12.6 Numerical Examples: Static Analysis

Example 12.6.1: Square Plates

We now use the ES-FEM-DSG3 code to solve the simple static problem of a
square plate. Figure 12.4a and b describes the models of the square plate with
length a and thickness t . The plate is subjected to a uniform load of b(x , y) = 1,
and is given for both clamped and simply supported boundary conditions. The
material parameters used are Young’s modulus E = 1.092 × 106 and Poisson’s
ratio ν = 0.3. Due to its symmetry, only the upper right quadrant of the square
plate is modeled. Symmetric conditions are imposed on the left and bottom
edges of the quarter model. Uniform meshes of N × N four-node quadrilateral
plate elements shown in Figure 12.4c and 2 × N × N three-node triangular
plate elements shown in Figure 12.4d, with N = 2, 4, 8, 16, and 32, are used
in the computation.

For the clamped plate, the convergence of the normalized deflection and the
normalized moment at the center point of the plate is computed, and the results
are plotted against the mesh density in terms of number of elements per edge
N, as shown in Figure 12.5. From the deflection results shown in Figure 12.5a,
it is seen that the ES-FEM-DSG3 model achieves the higher accuracy compared
to those using FEM-DSG3 (short for DSG3) and MIN3 [31] elements. For very
coarse meshes, the ES-FEM-DSG3 results are less accurate than that of the four-
node MITC4 plate element [23]. However, the ES-FEM-DSG3 results become
more accurate than that of the MITC4 element when the mesh gets finer, as
shown in Figure 12.5a. For the moment results shown in Figure 12.5b, the ES-
FEM-DSG3 model achieves higher accuracy compared to all these models for
all the meshes of different densities.
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(a)
L

y

x

L

L L

(b)

(c) (d)

y

x

FIGURE 12.4 Two square plate models and the representative meshes: (a) clamped plate;
(b) simply supported plate; (c) regular mesh using four-node quadrilateral plate elements;
and (d) regular mesh using three-node triangular elements.

Note that the plate used in Figure 12.5 is very thin with an aspect ratio
of t/L = 0.001. The results obtained using our ES-FEM-DSG3 model con-
verge to the exact solution when the meshes used become finer, as shown
in Figure 12.5a and b. This confirms that our ES-FEM-DSG3 method is free of
shear locking.

In terms of the relative strain energy error for the same thin plate
at t/L = 0.001, ES-FEM-DSG3 performs the best among all these models
compared as shown in Figure 12.6, where the relative strain energy error
is defined as

eE = |Enum − Eexact|
Eexact

× 100%, (12.50)

with the strain energies defined by

Enum = 1
2

�

d
T
num

�

Knum
�

dnum and Eexact = 1
2

∫

Ω

δκT Dbκ dΩ+ 1
2

∫

Ω

δγT Dsγ dΩ,

(12.51)
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FIGURE 12.5 Results obtained using the ES-FEM-DSG3 method in comparison with other
methods for the clamped square plate. The plate is very thin with t/L = 0.001: (a) central
deflection and (b) central moment.

in which
�

d is the vector of the nodal “displacement” vector computed using

any numerical model;
�

Knum is the system stiffness matrix of the corresponding
numerical model; κ and γ are the curvature and shear strain of the exact solution
of the same problem.
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FIGURE 12.6 Relative error in strain energy obtained using the ES-FEM-DSG3 method in
comparison with other methods for the clamped square plate.

For the simply supported plate, Figure 12.7 plots the convergence of the
normalized deflection and the normalized moment at the center of the plate.
In this case, we chose a thick plate with t/L = 0.01. It is seen that the ES-FEM-
DSG3 method is still superior to the DSG3 and MIN3 elements. In terms of
the deflection solution, the MITC4 element performed better than the ES-FEM-
DSG3 method. In terms of the moment solution, the ES-FEM-DSG3 method is
slightly more accurate than the next performer of MITC4 elements and, hence,
is the best among all these methods.

The relative strain energy error for the same thick plate with t/L = 0.01 is
given in Figure 12.8. It is seen that the ES-FEM-DSG3 method performed the
best. It is less accurate than that obtained using the MITC4 elements for coarse
mesh but more accurate for finer meshes. The ES-FEM-DSG3 method performs
much better than the other two models that use triangular elements.

Example 12.6.2: Skew Plate Subjected to a Uniform Load

Let us now consider a rhombic plate studied by Morley and provide a
very accurate reference solution for comparison [39]. The plate is sub-
jected to a uniform load b(x , y) = 1, and the dimensions of the plate and
boundary conditions are specified in Figure 12.9. The geometry and mate-
rial parameters used are length L = 100, thickness t = 0.1, Young’s modulus
E = 10.92, and Poisson’s ratio ν = 0.3. The aspect ratio of this plate is
t/L = 0.001 and, hence, is a very thin plate under practical engineering
considerations.
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FIGURE 12.7 Results obtained using the ES-FEM-DSG3 method in comparison with other
methods for the simply supported thick square plate (t/L = 0.01): (a) central deflection and
(b) central moment.

The convergence of the solution in the deflection and principal moments at
the central point is plotted in Figure 12.10, in which the principal moments are
obtained by solving

|m − λI| =
∣∣∣∣m11 − λ m12

m12 m22 − λ
∣∣∣∣ = (m11 − λ)(m22 − λ) − m2

12 = 0
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FIGURE 12.8 Relative error in strain energy solution of the ES-FEM-DSG3 method in
comparison with other methods for the simply supported thick square plate (t/L = 0.01).
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C C
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FIGURE 12.9 A simply supported rhombic plate: (a) mesh with four-node quadrilateral
plate elements and (b) mesh with three-node triangular plate elements.

or

λ2 − (m11 + m22)λ+ m11m22 − m2
12 = 0, (12.52)

which gives the maximum and minimum principle moments:

mmax = λ1 = (m11 + m22) +Δ
2

, mmin = λ2 = (m11 + m22) −Δ
2

,

(12.53)

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
52

 1
0 

M
ay

 2
01

6 



516 Smoothed Finite Element Methods

0 5 10 15 20 25 30 350.34

2.4

2.3

2.2

2.1

2

1.9

1.8

1.7

1.6

1.5

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52(a)

(b)

(c)

Number of element per edge

0 5 10 15 20 25 30 35
Number of element per edge

0 5 10 15 20 25 30 35
Number of element per edge

Ce
nt

ra
l d

efl
ec

tio
n 

w c
/(p

L4 /1
00

0D
)

Ce
nt

ra
l m

ax
 p

rin
ci

pa
l m

om
en

t
(M

m
ax

/q
L2 /1

00
)

Ce
nt

ra
l m

in
 p

rin
ci

pa
l m

om
en

t
(M

m
in

/q
L2 /1

00
)

Morley solution
3D solution

Reference solution

Q4BL
AC-MQ4
MITC4
MIN3
DSG3
ES-FEM-DSG3

Q4BL
AC-MQ4
MITC4
MIN3
DSG3
ES-FEM-DSG3

Reference solution
Q4BL
AC-MQ4
MITC4
MIN3
DSG3
ES-FEM-DSG3

ES-FEM-DSG3

ES-FEM-DSG3

ES-FEM-DSG3

FIGURE 12.10 Results of the ES-FEM-DSG3 method in comparison with other methods
for the rhombic plate: (a) central deflection; (b) central maximum principal moment; and
(c) central minimum principal moment.
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where m11, m22, and m12 are moments obtained in the Descartes coordinate
system and

Δ = (m11 + m22)2 − 4(m11m22 − m2
12). (12.54)

It is seen again that the ES-FEM-DSG3 method shows, in general, superior
performance compared to all the models found in Ref. [40], including those
using quadrilateral elements such as the MITC4 and AC-MQ4. Figure 12.10a
shows the results for the central deflection; the ES-FEM-DSG3 method gives the
best solution together with the AC-MQ4 model using quadrilateral elements.
Even the competitor MITC4 found in the previous square plate example is now
much less accurate than the ES-FEM-DSG3 method. This is because the ele-
ments used in this rhombic plate are quite skewed, and quadrilateral elements
are usually quite sensitive to mesh distortion. Although the AC-MQ4 becomes
now the competitor of the ES-FEM-DSG3 method in terms of the deflection,
when we look at the solution in moments, the ES-FEM-DSG3 method will give
a much more accurate solution, as shown in Figure 12.10b and c. This example
has clearly shown that the ES-FEM-DSG3 method performed the best and is far
better that all the other models in overall performance.

Figure 12.10 also shows clearly the edge-based smoothing effect that can be
observed from the difference of the two curves by the ES-FEM-DSG3 method
and the DSG3 method.

12.7 Numerical Examples: Free Vibration of Plates

In this section, we investigate the accuracy and efficiency of the ES-FEM-
DSG3 method used for computing the natural frequencies of plates. The
plate may have a combined boundary condition (BC) with free (F), simply
(S) supported, or clamped (C) edges. For convenience in discussion, we use
the usual notation convention for these boundary conditions. The symbol,
CFSF, for instance, represents a boundary condition for a plate whose four
edges are clamped, free, simply supported and free. To examine the accu-
racy of the solution precisely, the results of the ES-FEM-DSG3 method are
then compared to analytical solutions, together with some other numerical
results that are available in the literature.

Example 12.7.1: Square Plates

We consider square plates of length L and thickness t shown in Figure 12.4.
The material parameters are Young’s modulus E = 2.0 × 1011, Poisson’s ratio
ν = 0.3, and the density mass ρ = 8000. The square plate is modeled with
uniform meshes of 4, 8, 16, and 22 elements per side. The solutions of natural
frequencies are all nondimensionalized by  = (ω2ρL4t/D

)1/4, where D =
Et3/

(
12
(
1 − ν2)) is the flexural rigidity of the plate.
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518 Smoothed Finite Element Methods

TABLE 12.2

A Nondimensional Frequency Parameter of a Square Plate with SSSS Supports

Mode Number

t/L Methods 1 2 3 4 5 6

0.005 DSG3 5.5626 8.8148 11.8281 13.4126 18.1948 19.2897
4.7327 7.4926 8.2237 10.2755 11.6968 12.4915
4.5131 7.1502 7.3169 9.3628 10.3772 10.4461
4.4781 7.0905 7.1718 9.1455 10.1643 10.1814

ES-FEM-DSG3 4.9168 8.1996 9.4593 11.5035 14.2016 15.0164
4.5376 7.2981 7.4659 9.6486 10.8937 11.0280
4.4641 7.0870 7.1193 9.0582 10.1444 10.1489
4.4537 7.0565 7.0729 8.9731 10.0410 10.0422

Exact [41] 4.443 7.025 7.025 8.886 9.935 9.935
0.1 DSG3 4.9970 8.1490 9.4311 11.3540 14.1290 14.9353

4.4891 7.0697 7.2530 9.1263 10.2195 10.3361
4.3943 6.8227 6.8587 8.5447 9.4557 9.4616
4.3809 6.7854 6.8037 8.4543 9.3441 9.3457

ES-FEM-DSG3 4.7376 7.6580 8.4524 10.1882 12.1227 12.7533
4.4433 6.9495 7.0727 8.8487 9.8575 9.9221
4.3846 6.7922 6.8196 8.4744 9.3666 9.3698
4.3759 6.7692 6.7834 8.4173 9.2968 9.2976

Exact [41] 4.37 6.74 6.74 8.35 9.22 9.22

The first problem studied is thin (t/L = 0.005) and thick (t/L = 0.1) plates
with SSSS supports. Table 12.2 lists the six lowest modes obtained using
meshes of 4 × 4, 8 × 8, 16 × 16, and 22 × 22 rectangular elements as shown
in Figure 12.4c, and meshes of 2 × 4 × 4, 2 × 8 × 8, 2 × 16 × 16, and 2 ×
22 × 22 triangular elements as shown in Figure 12.4d. It is observed that
the results obtained using the ES-FEM-DSG3 method agree well with the
analytical results [41] and are more accurate than those of the DSG3 element
for both thin and thick plates.

The second problem is a CCCC square plate shown in Figure 12.4a. The
meshes used are the same as those for the SSSS plate case. Table 12.3 shows
the six lowest modes of the CCCC plate. It is found again that the results of the
ES-FEM-DSG3 are better than those of the DSG3.

The convergence of computed frequencies ( h/ exact) of SSSS and CCCC
plates is plotted in Figure 12.11. It is seen that the results obtained using the
ES-FEM-DSG3 methods are much more accurate and converge much faster
than those obtained using DSG3. The edge-based smoothing effect is clearly
observable from the difference between the two curves by the ES-FEM-DSG3
method and the DSG3 method.

The eight shape modes of free vibration of the CCCC square plate using
the ES-FEM-DSG3 method are plotted in Figure 12.12. We also note that no
spurious energy modes are found for the ES-FEM-DSG3 method.
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ES-FEM for Plates 519

TABLE 12.3

A Nondimensional Frequency Parameter of a CCCC Square Plate

Mode Sequence Number

t/L Methods 1 2 3 4 5 6

0.005 DSG3 8.4197 12.7720 14.9652 17.2579 21.3890 21.7600
6.7161 9.7867 10.5673 12.9981 14.5306 15.3143
6.1786 8.8759 9.0680 11.2452 12.2182 12.2992
6.0889 8.7239 8.8202 10.8567 11.8519 11.8845

ES-FEM-DSG3 6.9741 10.1934 11.4756 13.0548 15.4035 15.9360
6.1982 9.0117 9.2894 11.5616 12.7950 13.0357
6.0355 8.6535 8.7081 10.6584 11.7430 11.7720
6.0158 8.6075 8.6353 10.5252 11.6032 11.6293

Exact [55] 5.999 8.568 8.568 10.407 11.472 11.498
0.1 DSG3 6.8748 9.8938 11.0847 12.6362 15.1032 15.6402

5.9547 8.3618 8.6293 10.2985 11.3415 11.5397
5.7616 7.9935 8.0525 9.5772 10.4153 10.4697
5.7337 7.9381 7.9686 9.4589 10.2758 10.3246

ES-FEM-DSG3 6.2662 8.7952 9.6625 10.9112 12.6101 13.1360
5.8068 8.0861 8.2701 9.8397 10.7600 10.8960
5.7250 7.9211 7.9627 9.4499 10.2631 10.3126
5.7141 7.8990 7.9206 9.3896 10.1935 10.2411

Exact [55] 5.71 7.88 7.88 9.33 10.13 10.18

We compute further five sets of various boundary conditions for the square
plate: SSSF, SFSF, CCCF, CFCF, and CFSF. In these cases, regular meshes using
20 × 20 rectangular elements and 2 × 20 × 20 triangular elements are used,
and the first four lowest frequencies are computed and listed in Table 12.4. The
results obtained using the ES-FEM-DSG3 are mostly more accurate than those
of the DSG3, in comparison with the exact solution [42].

Example 12.7.2: Skew Plates

Let us consider the thin and thick cantilever rhombic plates with CFFF
supports. The geometry of the plate is illustrated in Figure 12.13 with
a skew angle of α = 60◦. The material parameters are Young’s modulus
E = 2.0 × 1011, Poisson’s ratio ν = 0.3, and density mass ρ = 8000. The
total number of DOFs used in this example is 1323 DOFs. Table 12.5
shows the six lowest modes of the CFFF rhombic plate. The solution of
the ES-FEM-DSG3 method is often found be closer to that of the semian-
alytical method using the pb-2 Ritz method [43], compared to the DSG3
element.
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520 Smoothed Finite Element Methods
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FIGURE 12.11 Convergence of normalized frequency h/ exact for thin plates with t/L =
0.005 obtained using ES-FEM-DSG3 and DSG3: (a) SSSS plate and (b) CCCC plate.

Example 12.7.3: Circle Plates

In this example, a circular plate with the clamped boundary shown in
Figure 12.14 is studied. The material parameters are Young’s modulus
E = 2.0 × 1011, Poisson’s ratio ν = 0.3, radius R = 5, and density mass
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ES-FEM for Plates 521

FIGURE 12.12 The first eight shape modes of the CCCC plate using ES-FEM-DSG3 with
t/L = 0.005. (a)–(h) 1 to 8 shape modes.

ρ = 8000. The plate is meshed with 848 triangular elements with 460 nodes.
Two aspect ratios, h/2∗R = 0.01 and 0.1, are considered. Table 12.6 lists the
results for a thin plate of h/2∗R = 0.01. It is seen that the frequencies obtained
from the ES-FEM-DSG3 method are closer to analytical solutions given in Refs.
[42,44], compared to those of the DSG3 model. The ES-FEM-DSG3 method is
a good competitor to quadrilateral plate elements such as the ANS solutions
(ANS4) [45] and the higher-order ANS solutions (ANS9) [46]. Table 12.7 lists
the results for the thick plate of h/2∗R = 0.1. It is shown again that the ES-
FEM-DSG3 results are very accurate in comparison to the ANS4 element that
used 432 quadrilateral elements (or 864 triangular elements). The first 16 shape
modes of the circular plate using the ES-FEM-DSG3 are plotted in Figure 12.15.
It is evident that no spurious zero-energy modes are observed.
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522 Smoothed Finite Element Methods

TABLE 12.4

A Nondimensional Frequency Parameter  = ωL2√
ρt/D of a Square Plate

(t/L = 0.005) with Various Boundary Conditions

Mode Number

BC Type Methods 1 2 3 4

SSSF DSG3 11.7720 28.3759 41.9628 61.5092
ES-FEM-DSG3 11.6831 27.8382 41.4312 59.6720
Exact [42] 11.685 27.756 41.197 59.066

SFSF DSG3 9.6673 16.3522 37.6792 39.5026
ES-FEM-DSG3 9.6425 16.1239 36.9054 39.2167
Exact [42] 9.631 16.135 36.726 38.945

CCCF DSG3 24.2848 41.7698 65.0068 80.9461
ES-FEM-DSG3 23.8947 40.1998 63.5127 77.8776
Exact [42] 24.020 40.039 63.493 76.761

CFCF DSG3 22.3437 27.1814 45.8829 62.5225
ES-FEM-DSG3 22.1715 26.4259 43.9273 62.9466
Exact [42] 22.272 26.529 43.664 64.466

CFSF DSG3 15.2788 21.0199 41.1975 50.3328
ES-FEM-DSG3 15.2035 20.5856 39.9697 49.7767
Exact [42] 15.285 20.673 39.882 49.500

a

aα

FIGURE 12.13 Cantilever CFFF skew plate.

Example 12.7.4: Triangular Plates

Let us consider cantilever clamped-free-free (CFF) triangular plates with various
shapes, as shown in Figure 12.16a and b. The material parameters are Young’s
modulus E = 2.0 × 1011, Poisson’s ratio ν = 0.3, and density mass ρ = 8000.
Nondimensional frequency parameter  =  a2(ρt/D)1/2/π2 of these trian-
gular square plates with aspect ratios t/a = 0.001 and 0.2 are calculated. The
mesh of 744 triangular elements with 423 nodes is used to compute the modes
for various skew angles: α = 0, 15, 30, 45, and 60.Table 12.8 gives the six low-
est modes of the thin triangular plate (t/a = 0.001). The first four frequencies
obtained using the ES-FEM-DSG3 method are shown in Figure 12.17, together
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ES-FEM for Plates 523

TABLE 12.5

A Nondimensional Frequency Parameter = (ωa2/π2)√ρt/D of a CFFF
Rhombic Plate

Mode Number

t/a Methods 1 2 3 4 5 6

0.001 DSG3 0.3988 0.9580 2.5996 2.6562 4.2551 5.2267
ES-FEM-DSG3 0.3976 0.9532 2.5785 2.6400 4.2209 5.1825
Ref. [43] 0.398 0.954 2.564 2.627 4.189 5.131

0.2 DSG3 0.3785 0.8262 2.0109 2.1918 3.1631 3.8302
ES-FEM-DSG3 0.3772 0.8192 1.9933 2.1785 3.1296 3.7937
Ref. [43] 0.377 0.817 1.981 2.166 3.104 3.760

(a) y

x
R

O

(b)

FIGURE 12.14 (a) The circle plate and (b) an initial mesh using three-node triangular
elements.

with the results obtained using the MITC4 finite element formulation [45] [the
ANS method (ANS4) using a mesh of 398 four-node quadrilateral elements
or 796 triangular elements], and those obtained using two other numerical
methods such as the Rayleigh–Ritz method [47] and the pb-2 Ritz method
[48]. From the results given in Table 12.8 and Figure 12.17, we found that
the frequencies of the ES-FEM-DSG3 are often bounded by the solutions of the
Rayleigh–Ritz and the pb-2 Ritz models.The results for thick plates are provided
in Table 12.9. It is found that the ES-FEM-DSG3 works well also for thick
plates.

Figure 12.18 plots the first 12 shape modes of free vibration of cantilever tri-
angular square plate obtained using the ES-FEM-DSG3: no spurious modes
are found. We note that our method using three-node triangular elements
worked naturally well for plates with irregular shapes. Therefore, the ES-FEM-
DSG3 is a very effective and robust numerical model for plates of complicated
geometries.
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524 Smoothed Finite Element Methods

TABLE 12.6

The Parameterized Natural Frequencies = (ωR2)√ρt/D of a Clamped
Circular Plate with t/2∗R = 0.01

Mode DSG3 ES-FEM-DSG3 ANS4 [45] ANS9 [46] Exact [42] Exact [44]

1 10.2941 10.2402 10.2572 10.2129 10.2158 10.216

2 21.6504 21.3966 21.4981 21.2311 21.2600 21.260

3 21.6599 21.4096 21.4981 21.2311 21.2600 21.260

4 35.9885 35.3012 35.3941 34.7816 34.8800 34.877

5 35.9981 35.3277 35.5173 34.7915 34.8800 34.877

6 41.1864 40.3671 40.8975 39.6766 39.7710 39.771

7 53.4374 52.0138 52.2054 50.8348 51.0400 51.030

8 53.5173 52.1013 52.2054 50.8348 51.0400 51.030

9 64.2317 62.3053 63.2397 60.6761 60.8200 60.829

10 64.4073 62.4665 63.2397 60.6761 60.8200 60.829

11 74.2254 71.6554 71.7426 69.3028 69.6659 69.666

12 74.3270 71.7269 72.0375 69.3379 69.6659 69.666

13 91.4366 87.7019 88.1498 84.2999 84.5800 84.583

14 91.5328 87.7861 89.3007 84.3835 84.5800 84.583

TABLE 12.7

The Parameterized Natural Frequencies = (ωR2)√ρt/D of a Clamped
Circular Plate with t/2∗R = 0.1

Mode DSG3 ES-FEM-DSG3 Exact [44] ANS4 [45]1 ANS4 [45]2

1 9.3012 9.2527 9.240 9.2605 9.2277

2 18.0038 17.8372 17.834 17.9469 17.8010

3 18.0098 17.8428 17.834 17.9469 17.8010

4 27.6010 27.2344 27.214 27.0345 26.6801

5 27.6082 27.2391 27.214 27.6566 27.2246

6 30.9865 30.5173 30.211 30.3221 29.8562

7 37.9464 37.2817 37.109 37.2579 36.3966

8 37.9817 37.3128 37.109 37.2579 36.3966

9 43.9528 43.0626 42.409 43.2702 42.1089

10 44.0324 43.1328 42.409 43.2702 42.1089

11 48.9624 47.8823 47.340 47.7074 46.0596

12 48.9793 47.8976 47.340 47.8028 46.0985

13 57.2487 55.7747 54.557 56.0625 53.9332

14 57.2776 55.8052 54.557 57.1311 54.7720

Note: The alternative form of MITC4 [45]1 using a consistent mass; the alternative form of
MITC4 [45]2 using a lumped mass.
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ES-FEM for Plates 525

FIGURE 12.15 The first 16 shape modes of a clamped circle plate using the ES-FEM-DSG3.
(a)–(p) 1 to 16 shape modes.

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
52

 1
0 

M
ay

 2
01

6 



526 Smoothed Finite Element Methods

a

a

(a) (b)

(c) (d)

a

a

α

FIGURE 12.16 Triangular cantilever plates and meshes: (a) square triangular plate,
(b) rhombic triangular plate, (c) a mesh of square triangular plates using three-node tri-
angular elements; and (d) a mesh of rhombic triangular plates using three-node triangular
elements.

12.8 Numerical Examples: Buckling of Plates

In the following examples, we analyze the buckling of plates. The factor of
buckling load is defined as K = λcrb2/(π2D), where b is the edge width of
the plate and λcr is the critical buckling load. The material parameters are
Young’s modulus E = 2.0 × 1011 and Poisson’s ratio ν = 0.3.

Example 12.8.1: Rectangular Plates Subjected to Uniaxial
Compression

We first consider a plate with length a, width b, and thickness t subjected to a
uniaxial compression. Simply supported (SSSS) and clamped (CCCC) boundary
conditions are used. The geometry and regular mesh of the plate are shown in
Figure 12.19. Table 12.10 gives the results of the buckling load factor obtained
using meshes of 4 × 4, 8 × 8, 12 × 12, 16 × 16, and 20 × 20 rectangular ele-
ments. Figure 12.20 plots the normalized buckling load K h/Kexact of a square
plate with the thickness ratio t/b = 0.01, where K h is the buckling load of the
numerical methods and Kexact is the buckling load of the analytical solution
[49]. It is evident that the ES-FEM-DSG3 method gives a much more accurate
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ES-FEM for Plates 527

TABLE 12.8

The Parameterized Natural Frequencies = (ωa2/π2)√ρt/D of Triangular
Plates with t/a = 0.001

Mode Number

α◦ Methods 1 2 3 4 5 6

0 DSG3 0.6252 2.3890 3.3404 5.7589 7.8723 10.3026
ES-FEM-DSG3 0.6242 2.3789 3.3159 5.7124 7.7919 10.1547
Rayleigh–Ritz [47] 0.624 2.377 3.308 5.689 7.743 —
Pb2 Rayleigh–Ritz [48] 0.625 2.377 3.310 5.689 7.743 —
Experimental [56] 0.588 2.318 3.239 5.540 7.518 —
ANS4 [45] 0.624 2.379 3.317 5.724 7.794 10.200

15 DSG3 0.5855 2.1926 3.4528 5.3481 7.3996 10.2498
ES-FEM-DSG3 0.5840 2.1833 3.4163 5.3020 7.3112 10.0779
Rayleigh–Ritz [47] 0.584 2.181 3.409 5.280 7.264 —
Pb2 Rayleigh–Ritz [48] 0.586 2.182 3.412 5.279 7.263 —
ANS4 [45] 0.583 2.181 3.413 5.303 7.289 10.095

30 DSG3 0.5798 2.1880 3.7157 5.5983 7.2814 10.7753
ES-FEM-DSG3 0.5766 2.1778 3.6539 5.5361 7.1628 10.5108
Rayleigh–Ritz [47] 0.576 2.174 3.639 5.511 7.108 —
Pb2 Rayleigh–Ritz [48] 0.578 2.178 3.657 5.518 7.109 —
ANS4 [45] 0.575 2.174 3.638 5.534 7.139 10.477

45 DSG3 0.6006 2.3564 4.2795 6.5930 7.8615 11.7850
ES-FEM-DSG3 0.5923 2.3359 4.1699 6.4424 7.6658 11.3496
Rayleigh–Ritz [47] 0.590 2.329 4.137 6.381 7.602 —
Pb2 Rayleigh–Ritz [48] 0.593 2.335 4.222 6.487 7.609 —
ANS4 [45] 0.588 2.324 4.126 6.381 7.614 11.224

60 DSG3 0.6497 2.7022 5.6491 8.3505 10.7757 14.6003
ES-FEM-DSG3 0.6261 2.6101 5.4283 7.7333 10.3756 13.3296
Rayleigh–Ritz [47] 0.617 2.576 5.376 7.524 10.285 —
Pb2 Rayleigh–Ritz [48] 0.636 2.618 5.521 8.254 10.395 —
ANS4 [45] 0.613 2.564 5.353 7.460 10.306 12.942

solution that converges to the exact solution much faster than the DSG3 ele-
ment. The performance of the ES-FEM-DSG3 method is also compared with
several other methods in the literature. Table 12.11 shows the factor values Kb
obtained using the ES-FEM-DSG3 method and 2 × 16 × 16 triangular elements,
together with other methods. The relative errors compared with exact results
are given in parentheses. It is found that the ES-FEM-DSG3 results agree well
with the analytical solution [49], spline finite strip methods [50,51], and the
radial point interpolation mesh-free method [35], and are much more accurate
than those of the DSG3 method.

The results of buckling load factors of SSSS, CCCC, and FCFC plates with
thickness-to-width ratios t/b = 0.05 and 0.1 are listed in Table 12.12. The
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FIGURE 12.17 The first four frequencies of ES-FEM-DSG3 in comparison with other
methods for the triangular plate with t/a = 0.001: (a) mode 1; (b) mode 2; (c) mode 3; and
(d) mode 4.

results obtained using the ES-FEM-DSG3 method are compared with those of
the DSG3 method, the radial point interpolation mesh-free method [35], and
the pb-2 Ritz method [52].

Simply supported rectangular plates with various thickness-to-width ratios
t/b = 0.05, 0.1, and 0.2 and length-to-width ratios a/b = 0.5, 1.0, 1.5, 2.0,
and 2.5 are analyzed. Table 12.13 and Figure 12.21 give the results of buckling
factors using the regular mesh of 16 × 16 rectangular elements. The DSG3 and
ES-FEM-DSG3 results are also compared to the pb-2 Ritz and the mesh-free
method [53]. It is seen that the ES-FEM-DSG3 results are in good agreement
with the mesh-free method and the pb-2 Ritz method [52]. Figure 12.22 plots
the axial buckling modes obtained using the ES-FEM-DSG3 method for sim-
ply supported rectangular plates with the thickness-to-width ratio t/b = 0.01
and various length-to-width ratios a/b = 1.0, 1.5, 2.0, and 2.5. No spurious
buckling modes are observed.

Example 12.8.2: Square Plates Subjected to Biaxial Compression

Buckling of a square plate subjected to biaxial compression is considered. The
geometry of the plates is shown in Figure 12.19b, and a mesh of 2 × 16 × 16
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ES-FEM for Plates 529

TABLE 12.9

The Parameterized Natural Frequencies = (ωa2/π2)√ρt/D of Triangular
Plates with the Aspect Ratio a/b = 1 and t/b = 0.2

Mode Number

α◦ Methods 1 2 3 4 5 6

0 DSG3 0.5830 1.9101 2.4176 3.9772 5.0265 5.9521
ES-FEM-DSG3 0.5823 1.9040 2.4083 3.9559 4.9954 5.8994
Pb2 Rayleigh–Ritz [48] 0.582 1.900 2.408 3.936 — —
FEM [57] 0.581 1.901 2.410 — — —
ANS4 [45] 0.582 1.915 2.428 3.984 5.018 5.944

15 DSG3 0.5449 1.7803 2.3959 3.6668 4.8504 5.6057
ES-FEM-DSG3 0.5441 1.7749 2.3854 3.6467 4.8208 5.5385
Pb2 Rayleigh–Ritz [48] 0.544 1.771 2.386 3.628 — —
FEM [57] 0.543 1.770 2.388 — — —
ANS4 [45] 0.545 1.764 2.420 3.608 4.820 5.431

30 DSG3 0.5339 1.7815 2.4356 3.6085 4.7829 5.4532
ES-FEM-DSG3 0.5328 1.7754 2.4206 3.5842 4.7444 5.3377
Pb2 Rayleigh–Ritz [48] 0.533 1.772 2.419 3.565 — —
FEM [57] 0.532 1.769 2.419 — — —
ANS4 [45] 0.532 1.773 2.437 3.591 4.765 5.323

45 DSG3 0.5412 1.8977 2.5304 3.7518 4.8188 5.4304
ES-FEM-DSG3 0.5391 1.8882 2.5004 3.7035 4.6800 5.2256
Pb2 Rayleigh–Ritz [48] 0.540 1.885 2.489 3.674 — —
FEM [57] 0.538 1.881 2.482 — — —
ANS4 [45] 0.541 1.884 2.518 3.748 4.740 5.292

60 DSG3 0.5634 2.0837 2.5355 4.0862 4.6612 5.9782
ES-FEM-DSG3 0.5588 2.0623 2.4356 3.8009 4.3393 5.5835
Pb2 Rayleigh–Ritz [48] 0.559 2.059 2.396 3.590 — —
FEM [57] 0.555 2.047 2.386 — — —
ANS4 [45] 0.559 2.095 2.483 3.910 4.517 5.763

triangular elements is used. Table 12.14 gives the buckling factor of the
square plate subjected to biaxial compression with three essential boundary
conditions (SSSS, CCCC, and SCSC). It can be seen that the ES-FEM-DSG3
results agree well with the analytical solution [49] and the spline finite strip
methods [50,51].

Example 12.8.3: Rectangular Plates Subjected to In-Plane Pure Shear

Consider first a simply supported plate subjected to in-plane shear as shown
in Figure 12.19c. The factors K of shear buckling loads of this plate are com-
puted using a mesh of 16 × 16 rectangular elements. The results for plates
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530 Smoothed Finite Element Methods

FIGURE 12.18 The first 12 shape modes of a square triangular plate with t/a = 0.001. (a)–(l)
1 to 12 shape modes.
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FIGURE 12.19 Rectangular plates: (a) axial compression, (b) biaxial compression, (c) shear
in-plane, and (d) a regular mesh using three-node triangular elements.
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ES-FEM for Plates 531

TABLE 12.10

The Factors K of Axial Buckling Loads along the x-Axis of Rectangular Plates
with Length-to-Width Ratios a/b = 1 and Thickness-to-Width Ratios t/b = 0.01

Plates Type Elements 4 × 4 8 × 8 12 × 12 16 × 16 20 × 20

SSSS DSG3 7.5891 4.8013 4.3200 4.1590 4.0889
ES-FEM-DSG3 4.7023 4.1060 4.0368 4.0170 4.0089

CCCC DSG3 31.8770 14.7592 11.9823 11.0446 10.6282
ES-FEM-DSG3 14.7104 11.0428 10.3881 10.2106 10.1410

Exact
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CCCC (ES-FEM-DSG3)

ES-FEM-DSG3

FIGURE 12.20 Normalized buckling load Kh/Kexact obtained using ES-FEM-DSG3 and
DSG3 for square plates with t/b = 0.01.

TABLE 12.11

The Factor Kb of Axial Buckling Loads along the x-Axis of Square Plates
with Thickness-to-Width Ratios t/b = 0.01

Liew Ansys Timoshenko Tham Vrcelj

BC Types DSG3 ES-FEM-DSG3 [35] [35] [49] [50] [51]

SSSS 4.1590 4.0170 3.9700 4.0634 4.00 4.00 4.0006
(3.97%) (0.4%) (−0.75%) (1.85%) (0.0%) (0.0%) (0.02%)

CCCC 11.0446 10.2106 10.1501 10.1889 10.07 10.08 10.0871
(9.68%) (1.4%) (0.8%) (1.18%) (0.0%) (0.1%) (0.17%)
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532 Smoothed Finite Element Methods

TABLE 12.12

The Factor Kb of Axial Buckling Loads along the x-Axis of a Square Plate
with Various Thickness-to-Width Ratios

t/b BC Types DSG3 ES-FEM-DSG3 RPIM [35] Pb-2 Ritz [52]

0.05 SSSS 3.9786 3.9412 3.9464 3.9444
CCCC 9.8284 9.5426 9.5819 9.5586
FCFC 3.8365 3.7654 3.8187 3.8005

0.1 SSSS 3.7692 3.7702 3.7853 3.7873
CCCC 8.2670 8.2674 8.2931 8.2921
FCFC 3.4594 3.4966 3.5138 3.5077

TABLE 12.13

The Factor Kb of Axial Buckling Loads along the x-Axis of Rectangular Plates
with Various Length-to-Width Ratios and Various Thickness-to-Width Ratios

a/b t/b DSG3 ES-FEM-DSG3 Mesh Free [53] Pb-2 Ritz [52]

0.5 0.05 6.0478 5.9873 6.0405 6.0372
0.1 5.3555 5.3064 5.3116 5.4777
0.2 3.7524 3.7200 3.7157 3.9963

1.0 0.05 3.9786 3.9412 3.9293 3.9444
0.1 3.7692 3.7402 3.7270 3.7865
0.2 3.1493 3.1263 3.1471 3.2637

1.5 0.05 4.3930 4.2852 4.2116 4.2570
0.1 4.0604 3.9844 3.8982 4.0250
0.2 3.2014 3.1461 3.1032 3.3048

2.0 0.05 4.1070 3.9811 3.8657 3.9444
0.1 3.8539 3.7711 3.6797 3.7865
0.2 3.2023 3.1415 3.0783 3.2637

2.5 0.05 4.3577 4.1691 3.9600 4.0645
0.1 4.0644 3.8924 3.7311 3.8683
0.2 3.2393 3.1234 3.0306 3.2421

with the thickness-to-width ratio t/b = 0.001 and length-to-width ratios a/b =
1.0, 2.0, 3.0, and 4.0 are listed in Table 12.15. The ES-FEM-DSG3 results are
compared to the exact solutions in Ref. [54] and the mesh-free solution [53]. It
can be found that the ES-FEM-DSG3 method agrees well with the exact solu-
tion. The results of the shear buckling load for the simply supported plate are
illustrated in Figure 12.23. Figure 12.24 plots the shear buckling modes of sim-
ply supported rectangular plates with the thickness-to-width ratio t/b = 0.01
and various length-to-width ratios a/b = 1.0, 2.0, 3.0, and 4.0. No spurious
buckling modes are found.
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FIGURE 12.21 Convergence of axial buckling load Kb of an SSSS plate with various length-
to-width ratios and various thickness-to-width ratios.
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FIGURE 12.22 Axial buckling modes of simply supported rectangular plates with thickness-
to-width ratios t/b = 0.01 and various length-to-width ratios: (a) a/b = 1.0; (b) a/b = 1.5;
(c) a/b = 2.0; and (d) a/b = 2.5.
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534 Smoothed Finite Element Methods

TABLE 12.14

The Factors K of Biaxial Buckling Loads of a Square Plate with
Thickness-to-Width Ratios t/b = 0.01 and Various Boundary Conditions

Plates Type DSG3 ES-FEM-DSG3 Timoshenko [49] Tham [50] Vrcelj [51]

SSSS 2.0549 2.0023 2.00 2.00 2.0008
CCCC 5.6419 5.3200 5.31 5.61 5.3260
SCSC 4.0108 3.8332 3.83 3.83 3.8419

TABLE 12.15

The Factors K of Shear Buckling Loads of Simply Supported Rectangular
Plates with Various Length-to-Width Ratios, Choose t/b = 0.01

a/b DSG3 ES-FEM-DSG3 Mesh Free [53] Exact [54]

1.0 9.5195 9.2830 9.3962 9.34
2.0 6.7523 6.4455 6.3741 6.34
3.0 6.5129 5.8830 5.7232 5.784
4.0 6.3093 5.6732 5.4367 5.59
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FIGURE 12.23 Shear buckling load for simply supported rectangular plates with various
length-to-width ratios.
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FIGURE 12.24 Shear buckling mode of simply supported rectangular plates using the
ES-FEM-DSG3 with various length-to-width ratios: (a) a/b = 1.0; (b) a/b = 2.0; (c) a/b = 3.0;
and (d) a/b = 4.0.

TABLE 12.16

The Factors K of Shear Buckling Loads of Rectangular Plates with
Length-to-Width Ratios a/b = 1, Thickness-to-Width Ratios t/b = 0.01, and
Various Boundary Condition

Plates Type DSG3 ES-FEM-DSG3 Timoshenko [49] Tham [50] Vrcelj [51]

SSSS 9.5195 9.2830 9.33 9.40 9.3847
CCCC 15.6397 14.6591 14.66 14.58 14.6601
SCSC 13.1652 12.5533 12.58 12.58 12.5997

We finally consider a square plate subjected to in-plane shear with three
boundary conditions: SSSS, CCCC, and SCSC.The ES-FEM-DSG3 result is given
in Table 12.16, together with those obtained using other methods. It can again
be seen that the ES-FEM-DSG3 method is very good in comparison to the
analytical solution [49] and the spline finite strip methods [50,51].
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536 Smoothed Finite Element Methods

12.9 Remarks

The ES-FEM using triangular elements is extended in this chapter for static,
free vibration, and buckling analyses of the Reissner–Mindlin plates, with a
stabilized DSG for overcoming the shear locking problem. In the ES-FEM-
DSG3 method, the approximations for the displacements and rotations
are the same as in the standard FEM. The bending, geometrical, and shear
strains are, however, smoothed over the smoothing domain associated with
the edges of the triangles. As a result, the stiffness matrices based on these
smoothed fields are obtained by simple summations. More importantly, the
ES-FEM uses only three-node triangular meshes and no additional DOFs
are required. Through the formulations and numerical examples, we note
the following:

• The ES-FEM-DSG3 method can improve significantly the perfor-
mance of the original FEM-DSG3 method.

• The ES-FEM-DSG3 method outperforms other existing models using
triangular elements and often even those using quadrilateral ele-
ments.

• For the free vibration analysis, the ES-FEM-DSG3 method often
produces more accurate results and does not have spurious modes.

• For the buckling analysis, the ES-FEM-DSG3 method is found to be
superior to the FEM-DSG3 method, and no spurious buckling modes
were found.

• The ES-FEM-DSG3 method works well with triangular elements and,
hence, is applicable to plates with complicated geometries.

• The ES-FEM-DSG3 method is free of shear locking and works well
for both thin and thick plates.

In summary, the ES-FEM-DSG3 is a simple, effective, and robust numer-
ical tool for the analysis of various problems of both thin and thick plates.
It remains still a “star.”
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13
S-FEM for Piezoelectric Structures

13.1 Introduction

One of the essential features of piezoelectric materials is the capability of
converting the energy between mechanical energy and electric energy. Due
to this attractive feature, piezoelectric materials are currently widely used
in various applications such as sensors, actuators, transducers, and active
damping devices for various engineering systems [1–4]. These materials
are also used to design “smart” structures in industrial, medical, military,
and communication areas (e.g., [2,5]). Because of the outstanding adap-
tation to complicated geometry, the FEM is currently the most popular
numerical tool for analyzing and designing piezoelectric structures [5–
12]. Since the work of Ref. [7] for piezoelectric analysis using the FEM,
most of the finite element models use displacement and electric potential
as primary functions of field variable, and both the functions and their
derivatives satisfy fully the compatibility conditions. These elements are,
however, often found to be less accurate and sensitive to mesh distortion
due to the overestimation or over stiffness of the stiffness matrix. Many
techniques have been proposed to improve the standard finite elements
such as the bubble/incompatible displacement method, mixed and hybrid
formulations [13–18], and formulation of the piezoelectric finite element
with drilling DOFs [19–21]. Special types of elements have also been pro-
posed for the analysis of piezoelectric plates [22,23]. Several mesh-free
methods [24] have also been used to analyze piezoelectric structures such
as the point collocation method (PCM) [25], the PIM [26], and the radial
point interpolation method (RPIM) [27,28].

This chapter extends the S-FEM formulation to solids of piezoelectric
materials. We start from the derivation of the standard Galerkin weak
form from the general formulation of Hamilton’s principle for dynamic
problems. The standard FEM formulation is then provided. Following the
procedure and principles given in Chapter 4 and the standard Galerkin
weak form, the smoothed Galerkin weak form is then presented, followed
by a general formulation of S-FEM models.

Due to the known excellent property of the “star” performer ES-FEM, it
is chosen to conduct a number of static and frequency analyses of piezo-
electric structures [29], using three-node triangular elements and hence

541
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542 Smoothed Finite Element Methods

the linear shape functions. On top of the triangular mesh, the problem
domain is subdivided into a set of smoothing domains associated with
edges of triangles. Both the smoothed strains and smoothed electric fields
are then obtained by applying the gradient smoothing technique over
these edge-based smoothing domains. Because the ES-FEM uses the linear
shape functions and the constant smoothed gradient fields, the compu-
tation of the stiffness matrix becomes a simple summation over these
edge-based smoothing domains. A number of numerical examples are
presented to demonstrate the accuracy, stability, and effectiveness of the
ES-FEM, and comparisons are made between the ES-FEM results and those
of the standard FEM, analytical solutions as well as experimental ones [29].

13.2 Galerkin Weak Form for Piezoelectrics

In this section, a finite element formulation for piezoelectricity is first estab-
lished based on the standard variational formulation [7,30]. Consider a
piezoelectric solid occupying a 2D space with domain Ω bounded by Γ.
The following Lagrangian energy functional L is defined as a summation
of kinetic energy, strain energy, dielectric energy, and external work within
the piezoelectric solid:

L =
∫

Ω

[
1
2
ρu̇Tu̇ − 1

2
εTσ + 1

2
WTE + uTb − ϕTqs

]
dΩ+

∑
uTFp −

∑
ϕTQp,

(13.1)
where u and u̇ are the vectors of mechanical displacement and velocity;
ϕ denotes the vector of the electric potential field φ at points; σ and ε are
the vectors of mechanical stress and strain; W and E are the vectors of
dielectric displacement and electric field; b and Fp denote the vectors of
the mechanical surface and point loads; and qs and Qp denote the vectors
of surface charges and point charges.

For the linear electroelastic problems, the constitutive equations can be
expressed in the following matrix form:

[
σ

W

]
=
[

cE −eT

e θε

] [
ε

E

]
, (13.2)

where cE denotes the matrix of elastic constants measured at constant
electric field; θε is the matrix of dielectric constants measured at constant
mechanical strain; and e is the piezoelectric matrix.

The strain–displacement relationships are expressed using the usual
compatibility equations:

ε = Ldu. (13.3)

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
54

 1
0 

M
ay

 2
01

6 



S-FEM for Piezoelectric Structures 543

The electric field–potential relationships (compatibility equations) for
the electrostatic state (compared to the mechanical fields) electric potential
field are expressed using

E = −gradφ. (13.4)

Applying now Hamilton’s variational principle, we have

δ

t2∫

t1

L dt = 0. (13.5)

Using a similar procedure as that given in Ref. [31], performing vari-
ational operations, and a little lengthy but simple manipulations, we
arrive at the following standard Galerkin weak form for general dynamic
problems:

∫

Ω

[
ρδuTü + {δεT δET} [ cE −eT

−e −θε

]{
ε

E

}
− δuTb + δϕTqs

]
dΩ

−
∑
δuTFp +

∑
δϕTQp = 0. (13.6)

When the mechanical field can also be treated as static, we can then drop
the mechanical inertial term, which leads to the standard Galerkin weak
form for static problems for piezoelectric solids.

∫

Ω

[{
δεT δET} [ cE −eT

−e −θε

]{
ε

E

}
− δuTb + δϕTqs

]
dΩ

−
∑
δuTFp +

∑
δϕTQp = 0. (13.7)

For stability reasons, we require, of course, the SPD property of the

material constant matrix
[

cE −eT

−e −θε

]
: the piezoelectric material must be

“stable” (see Remark 2.1).

13.3 Finite Element Formulation
for the Piezoelectric Problem

In an FEM setting, the problem domain is divided into various types of ele-
ments as discussed in Chapter 3. In this chapter, we consider 2D problems,
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544 Smoothed Finite Element Methods

and the problem domain Ω is discretized into Ne three-node triangular
finite elements such that Ω =⋃Ne

i=1Ω
e
i and Ωe

i ∩Ωe
j �= ∅, i �= j. The finite

element approximations for the variables of mechanical displacements
ũ(x) and electric potential φ̃(x) can be expressed as

ũ(x) =
Nn∑
I=1

[
NI(x) 0

0 NI(x)

]
d̃I , φ̃(x) =

Nn∑
I=1

NI(x)φ̃I , (13.8)

where Nn is the total number of nodes in the problem domains, d̃I =
[ũI ṽI]T is the nodal DOFs of ũ = [ũ ṽ]T associated with node I, and
NI(x) is the linear shape function for node I of a triangular element. Sub-
stituting the approximations (Equation 13.8) into Equations 13.3 and 13.4,
we obtain the compatible strain field

ε̃ = Ldũ =
Nn∑
I=1

B̃u
I d̃I , (13.9)

where

B̃u
I =

⎡
⎣∂NI/∂x 0

0 ∂NI/∂y
∂NI/∂y ∂NI/∂x

⎤
⎦. (13.10)

The (compatible) electric field becomes

Ẽ = −gradφ̃ = −
Nn∑
I=1

B̃φI φ̃I , (13.11)

where

B̃φI =
[
∂NI/∂x
∂NI/∂y

]
. (13.12)

Using Equations 13.8 and the Galerkin weak form (Equation 13.6), and
after a little lengthy but trivial manipulation, we arrive at a system of
piezoelectric dynamic equations:

[
m 0
0 0

]{ ¨̃d
¨̃
Φ

}
+
⎡
⎣ k̃uu k̃uφ(

k̃uφ
)T −k̃φφ

⎤
⎦{d̃

Φ̃

}
=
{

F
Q

}
, (13.13)
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S-FEM for Piezoelectric Structures 545

where

m =
Ne∑
i=1

∫

Ωe
i

ρ
(
Nu)T Nu dΩ, (13.14)

k̃uu =
Ne∑
i=1

∫

Ωe
i

(B̃u)TcEB̃u dΩ, (13.15)

k̃uφ =
Ne∑
i=1

∫

Ωe
i

(B̃u)TeTB̃φ dΩ, (13.16)

k̃φφ =
Ne∑
i=1

∫

Ωe
i

(B̃φ)TθεB̃φ dΩ, (13.17)

F =
Ne∑
i=1

∫

Ωe
i

(
Nu)T b dΩ+

∑
I∈SFp

Nu
I FpI , (13.18)

Q = −
Ne∑
i=1

∫

Ωe
i

(
Nφ
)T

qs dΩ−
∑

I∈SQp

NIQpI . (13.19)

In Equation 13.18, SFp = {I, FpI �= 0
}

is the set containing nodes in which
the mechanical point load FpI �= 0. In Equation 13.19, SQp = {I, QpI �= 0

}
is

the set containing nodes in which the point charge QpI �= 0. These matrices
of shape functions have the following form:

Nu =
[

N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

]
, Nφ = [N1 N2 N3] ,

Nu
I =

[
NI 0
0 NI

]
. (13.20)

The strain–displacement matrix for 2D plane stress/strain problems is
given by

B̃
u =

⎡
⎢⎣

∂N1/∂x 0 ∂N2/∂x 0 ∂N3/∂x 0
0 ∂N1/∂y 0 ∂N2/∂y 0 ∂N3/∂y

∂N1/∂y ∂N1/∂x ∂N2/∂y ∂N2/∂x ∂N3/∂y ∂N3/∂x

⎤
⎥⎦ .

(13.21)
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546 Smoothed Finite Element Methods

The electric–potential matrix for 2D plane stress/strain problems has the
form of

B̃
φ =

[
∂N1/∂x ∂N2/∂x ∂N3/∂x

∂N1/∂y ∂N2/∂y ∂N3/∂y

]
. (13.22)

For axisymmetric problems, we use

B̃
u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂r
0

∂N2

∂r
0

∂N3

∂r
0

N1

r
0

N2

r
0

N3

r
0

0
∂N1

∂z
0

∂N2

∂z
0

∂N3

∂z
∂N1
∂z

∂N1

∂r
∂N2

∂z
∂N2

∂r
∂N3

∂z
∂N3

∂r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B̃
φ =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂N1

∂r
∂N2

∂r
∂N3

∂r
N1

r
N2

r
N3

r
∂N1

∂z
∂N2

∂z
∂N3

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(13.23)

For convenience (not very rigorous), matrices B̃
u

and B̃
φ

are called the
“gradient matrix.” For static problems, we have

⎡
⎣ k̃

uu
k̃

uφ

(
k̃

uφ)T −k̃
φφ

⎤
⎦{d̃

Φ̃

}
=
{

F
Q

}
. (13.24)

13.4 S-FEM for the Piezoelectric Problem

The above equations are the basic formulae for the analyses of piezoelec-
tric solids using the standard FEM, which offer a base for our formulation
of the S-FEM models. An S-FEM model uses also a mesh of elements, but
with its unique way of evaluating the potential energy in the piezoelectric
solid. When three-node triangular elements are used, the shape functions
used in the S-FEM are identical to those used in the FEM. Therefore, the
mechanical displacement field and the electric potential field in the S-
FEM are also piecewise linear and continuous over the whole problem
domain. The differences will be the gradient (strain and electric) fields
used in evaluating the energy potentials: in the FEM we use the com-
patible strain and electric fields, but in the S-FEM we use the smoothed
strain and electric fields. In addition, we use the smoothed Galerkin
weak form.
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S-FEM for Piezoelectric Structures 547

13.4.1 Smoothed Galerkin Weak Form for Piezoelectrics

Following the procedure discussed in Chapter 4, and using the standard
Galerkin weak form given in Equation 13.6, the smoothed Galerkin weak
form for piezoelectric solids can be simply written as

Ns∑
i=1

As
i

{
δε̄T

i δĒ
T
i

} [ cE −eT

−e −θε

]{
ε̄i
Ēi

}
+

∫

Ω

[
ρδuTü − δuTb + δϕTqs

]
dΩ

−
∑
δuTFp +

∑
δϕTQp = 0. (13.25)

The smoothed strains and smoothed electric fields used in the fore-
going equation must be obtained by following the same principles as
given in Chapter 4 with at least the minimum number of linear inde-
pendent smoothing domains to ensure the stability and convergence of
the smoothed Galerkin weak formulation. Therefore, we can have various
S-FEM models such as CS-FEM, NS-FEM, ES-FEM, and even αFEM, as
discussed in earlier chapters. For mechanically static problems, we simply
drop the inertial term and have the following smoothed Galerkin weak
form for piezoelectric solids.

Ns∑
i=1

As
i

{
δε̄T

i δĒ
T
i

} [ cE −eT

−e −θε

]{
ε̄i
Ēi

}
+

∫

Ω

[
−δuTb + δϕTqs

]
dΩ

−
∑
δuTFp +

∑
δϕTQp = 0. (13.26)

13.4.2 Smoothed Mechanical Strain and Electric Fields

Using a set of properly formed smoothing domains, the smoothed
strains and smoothed electric fields over the kth smoothing domain Ωs

k
are assumed to be constants and are evaluated using, respectively, the
following equations (for 2D plane stress/strain problems):

ε̄k = 1
As

k

∫

Ωs
k

ε̃(x) dΩ = 1
As

k

∫

Ωs
k

Ldũ(x) dΩ = 1
As

k

∫

Γs
k

nu
k (x)ũ(x) dΓ, (13.27)

Ēk = 1
As

k

∫

Ωs
k

Ẽ(x) dΩ = − 1
As

k

∫

Ωs
k

gradφ̃(x) dΩ = − 1
As

k

∫

Γs
k

nφk (x)φ̃(x) dΓ,

(13.28)

where As
k is the area of the smoothing domainΩs

k ; Γs
k is the boundary of the

smoothing domain Ωs
k ; and nu

k and nφk are the matrices of outward normal
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548 Smoothed Finite Element Methods

components on the boundary Γs
k defined by

nu
k (x) =

⎡
⎢⎣

ns
kx 0
0 ns

ky
ns

ky ns
kx

⎤
⎥⎦ , nφk (x) =

[
ns

kx ns
ky

]T
, (13.29)

in which ns
kx and ns

ky are two components in the x- and y-directions of the
outward normal vector on the boundary Γs

k .
Using the smoothed strains, the vectors of the smoothed mechanical

stresses σ̄ and the smoothed dielectric displacements W̄ for the S-FEM can
be expressed as

[
σ̄

W̄

]
=
[

cE −eT

e θε

] [
ε̄

Ē

]
. (13.30)

13.4.3 Smoothed Stiffness Matrices Using the S-FEM

The smoothed strain (Equation 13.27) and the smoothed electric field
(Equation 13.28) in the smoothing domain Ωs

k can be written in terms of
the “smoothed gradient matrices” and vectors of discrete nodal variables:

ε̄k = 1
As

k

∫

Γs
k

nu
k ũ(x) dΓ =

∑
I∈Ss

k

B̄u
I (xk)d̄I , (13.31)

Ēk = − 1
As

k

∫

Γs
k

nφk (x)φ̃(x) dΓ = −
∑
I∈Ss

k

B̄φI (xk)φ̄I , (13.32)

where Ss
k is the set of nodes in all the elements associated with the

smoothing domainΩs
k ; B̄u

I (xk) and B̄φI (xk) are termed the smoothed strain–
displacement and electric gradient–potential matrices for the smoothing
domain Ωs

k . For convenience (not very rigorous), matrices B̄u and B̄φ are
called “smoothed gradient matrix.”

As presented in earlier chapters, there are two ways of computing
smoothed gradient matrices for the S-FEM using three-node triangular
elements. In the first and general way, the integration along the boundary
of smoothing domains and the values of shape functions is directly used,
which works for general n-sided polygonal elements including linear tri-
angular elements. In this case, we do not need to evaluate the compatible
strain–displacement and electric gradient–potential matrices. In the second
particular way, the smoothed gradient matrices are the area-weighted aver-
age of the compatible strain–displacement and electric gradient–potential
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S-FEM for Piezoelectric Structures 549

matrices of elements sharing the smoothing domain. In this case, we
need to evaluate the compatible strain–displacement and electric gradient–
potential matrices, and hence it only works for elements such as the linear
triangular elements whose compatible strain–displacement and electric
gradient–potential matrices are readily and cheaply available. Here, we
summarize the two ways.

In the first way, the smoothed gradient matrices B̄u
I (xk) and B̄φI (xk) for

2D plane stress/strain problems are computed by

B̄u
I (xk) = 1

As
k

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∫
Γs

k

NI(x)ns
kx dΓ 0

0
∫
Γs

k

NI(x)ns
ky dΓ

∫
Γs

k

NI(x)ns
ky dΓ

∫
Γs

k

NI(x)ns
kx dΓ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (13.33)

B̄φI (xk) = 1
As

k

⎡
⎢⎢⎢⎣

∫
Γs

k

NI(x)ns
kx dΓ

∫
Γs

k

NI(x)ns
ky dΓ

⎤
⎥⎥⎥⎦ . (13.34)

Using the linear shape function of triangles as in the FEM, the displace-
ment field in the S-FEM is linearly compatible along the boundary Γs

k .
Therefore, one Gaussian point is sufficient for the accurate line integration
along each segment of boundary Γs

k,p ∈ Γs
k . Hence Equations 13.33 and

13.34 can be further simplified to summation forms

B̄u
I (xk) = 1

As
k

ns
Γ∑

p=1

⎡
⎢⎢⎢⎢⎣

NI(xG
p )ns

kx,p(x
G
p ) 0

0 NI(xG
p )ns

ky,p(x
G
p )

NI(xG
p )ns

ky,p(x
G
p ) NI(xG

p )ns
kx,p(x

G
p )

⎤
⎥⎥⎥⎥⎦ lsk,p, (13.35)

B̄φI (xk) = 1
As

k

ns
Γ∑

p=1

⎡
⎣NI(xG

p )ns
kx,p(x

G
p )

NI(xG
p )ns

ky,p(x
G
p )

⎤
⎦ lsk,p, (13.36)

where xG
p and lsk,p are the midpoint (Gauss point) and the length of the

smoothing domain boundary segmentΓs
k,p ∈ Γs

k , respectively; ns
Γ is the total

number of boundary segments of Γs
k (e.g., ns

Γ = 3(AB, BI, IA) for bound-
ary edge m and ns

Γ = 4(FO, OD, DH, HF) for inner edge k as shown in
Figure 7.2).
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550 Smoothed Finite Element Methods

Equations 13.35 and 13.36 show clearly that no derivative of shape func-
tions is used in computing the gradients and only the shape function
values at some particular points along segments of the smoothing domain
boundary are required.

For axisymmetric problems, the smoothed strain–displacement and
electric gradient–potential matrices are computed, respectively, using

B̄u
I (xk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
As

k

ns
Γ∑

p=1
NI(xG

p )ns
kr,p(x

G
p )lsk,p 0

1
rs

k

∑ns
Γ

p=1 NI(xG
p )

ns
Γ

0

0
1

As
k

ns
Γ∑

p=1
NI(xG

p )ns
kz,p(x

G
p )lsk,p

1
As

k

ns
Γ∑

p=1
NI(xG

p )ns
kz,p(x

G
p )lsk,p

1
As

k

ns
Γ∑

p=1
NI(xG

p )ns
kr,p(x

G
p )lsk,p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(13.37)

B̄φI (xk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
As

k

ns
Γ∑

p=1
NI(xG

p )ns
kr,p(x

G
p )lsk,p

1
rs

k

∑ns
Γ

p=1 NI(xG
p )

ns
Γ

1
As

k

ns
Γ∑

p=1
NI(xG

p )ns
kz,p(x

G
p )lsk,p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (13.38)

where rs
k is determined at the central point of the kth smoothing domain

(which can be the kth node in NS-FEM, the center of the kth cell in CS-FEM,
and the midpoint of the kth edge in ES-FEM).

In the second way of area-weighted average, B̄u
I (xk) and B̄φI (xk) are

calculated simply by an assembly process similarly to the case of FEM:

B̄u
I (xk) = 1

As
k

ne
k∑

j=1

1
3

Ae
j B̃

u
j , B̄φI (xk) = 1

As
k

ne
k∑

j=1

1
3

Ae
j B̃
φ

j , (13.39)

where ne
k is the number of elements sharing the smoothing domain Ωs

k
(e.g., in an ES-FEM setting, ne

k = 1 for the boundary edges, and ne
k = 2

for inner edges as shown in Figure 7.2); B̄u
j and B̄φj are constant gradient

matrices of the jth element sharing the smoothing domainΩs
k . Note that the

matrices in Equation 13.39 are directly constructed from the area and the

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
54

 1
0 

M
ay

 2
01

6 



S-FEM for Piezoelectric Structures 551

usual “compatible” gradient matrices of the standard FEM using triangular
elements.

Once the smoothed gradient matrices B̄u
I (xk) and B̄φI (xk) are computed,

the discrete system of equations for S-FEM is obtained using the smoothed
Galerkin weak form (Equation 13.25):

[
m 0
0 0

]{ ¨̄d
¨̄Φ

}
+
[

k̄uu k̄uφ

(k̄uφ)T −k̄φφ

]{
d̄
Φ̄

}
=
{

F
Q

}
, (13.40)

where

k̄uu =
Neg∑
k=1

∫

Ωs
k

(
B̄u

k
)T cEB̄u

k dΩ =
Ned∑
k=1

(
B̄u

k
)T cEB̄u

k As
k , (13.41)

k̄uφ =
Neg∑
k=1

∫

Ωs
k

(
B̄u

k
)T eTB̄φk dΩ =

Ned∑
k=1

(
B̄u

k
)T eTB̄φk As

k , (13.42)

k̄φφ =
Neg∑
k=1

∫

Ωs
k

(
B̄φk
)T

θεB̄φk dΩ =
Ned∑
k=1

(
B̄φk
)T

θεB̄φk As
k . (13.43)

Equations 13.41 through 13.43 provide a simple way of computing the
stiffness matrices for the smoothing domains. Finally, we note that the trial
functions ũ(x), φ̃(x) are the same as those given in Equation 13.8, and thus
force vectors F, Q, and mass matrix m in the S-FEM are also computed
in the same way as in the FEM. In other words, S-FEM changes only the
stiffness matrices. For static problems, we shall have

⎡
⎣ k̄uu k̄uφ(

k̄uφ
)T −k̄φφ

⎤
⎦{d̄

Φ̄

}
=
{

F
Q

}
. (13.44)

13.5 Numerical Results

A 2D code has been developed based on the above-derived equations. In
this section, benchmark problems are examined for piezoelectrics using
the ES-FEM models that are established using the formulation given in
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552 Smoothed Finite Element Methods

Section 13.4, but with smoothing domains created based on the edges of
meshes of triangular elements (ES-FEM-T3). The ES-FEM is chosen because
of its excellent stability (both spatially and temporally) and accuracy for
various problems tested in earlier chapters. For comparison, other available
elements are also used in the examination. All these elements used are
denoted as follows:

• FEM-Q4—the standard four-node quadrilateral element of bilinear
shape function using 2 × 2 Gauss points

• FEM-T3—the standard three-node element with linear shape function
• ES-FEM-T3—the ES-FEM [32] using linear triangular elements

PVDF, PZT4, and PZT5 materials are used and their features are referred
to by

• PZT4 [15]

c11 = 139 × 103, c33= 113 × 103, c13= 74.3 × 103, c55= 25.6 × 103(N/mm2),

e15 = 13.44 × 106, e31 = −6.98 × 106, e33 = 13.84 × 106(pC/mm2),

θ11 = 6.00 × 109, θ33= 5.47 × 109(pC/GVmm).

• PVDF [25]

c11 = 2.18 × 10−3, c13 = 6.33 × 10−4, c33 = 2.18 × 10−3,

c55 = 7.75 × 10−4(N/μm2),

e31 = e33 = 4.6 × 10−8(N/Vμm),

θ11 = θ33 = 1.062 × 10−10(N/V2).

• PZT5 [25]

s11 = 16.4 × 10−6, s13 = −7.22 × 10−6, s33 = 18.8 × 10−6,

s55 = 47.5 × 10−6(mm2/N),

d31 = −172 × 10−9, d33 = 374 × 10−9, d15 = 584 × 10−9(mm/V),

ψ11 = 1.53105 × 10−8,ψ33 = 1.505 × 10−7(N/V2).
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S-FEM for Piezoelectric Structures 553

The constant matrices cE, e, and θε are used for the following cases:
Plane problems:

[
cE −eT

e θε

]
=

⎡
⎢⎢⎢⎢⎣

c11 c13 0 0 −e31
c13 c33 0 0 −e33
0 0 c55 −e15 0
0 0 e15 θ11 0

e31 e33 0 0 θ33

⎤
⎥⎥⎥⎥⎦ . (13.45)

Axisymmetric problems:

[
cE −eT

e θε

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 −e31
c12 c11 c13 0 0 −e31
c13 c13 c33 0 0 −e33
0 0 0 c44 −e24 0
0 0 0 e24 θ22 0

e31 e31 e33 0 0 θ33

⎤
⎥⎥⎥⎥⎥⎥⎦

. (13.46)

The following relations [15] are more convenient to use:

⎡
⎣ s11 s13 g31

s13 s33 g33
g31 g33 −f33

⎤
⎦ =

⎡
⎣c11 c13 e31

c13 c33 e33
e31 e33 −θ33

⎤
⎦

−1

(13.47)

and

d = ec−1
E , θσ =

[
ψ11 0

0 ψ33

]
, θε = θσ − ec−1

E eT . (13.48)

Example 13.5.1: Eigenvalues and Rank of the Stiffness Matrix

Using the 2D code, it is easy to verify that the ES-FEM-T3 model contains only
four zero eigenvalues including the three rigid body modes corresponding to
the mechanical movements and one zero eigenvalue of the constant potential
field. Hence an ES-FEM-T3 model always has a sufficient rank and no spurious
zero-energy modes, as long as a set of proper essential boundary conditions is
imposed for the piezoelectric solid. This implies that the ES-FEM-T3 model is
at least spatially stable (see Remark 1.2).

Example 13.5.2: Patch Test

The standard patch test considers a patch with linear primary field variables
(both mechanical and electric displacements) specified along all the edges
of the patch of the piezoelectric solid. Passing the patch test requires that a
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554 Smoothed Finite Element Methods

4(0.2; 0.12) 3(0.44; 0.12)

5(0.3; 0.06)

1(0.2; 0) 2(0.44; 0)

FIGURE 13.1 Standard patch for piezoelectrics.

constant distribution of all quantities for the derivatives of the primary field
variables is reproduced for a mesh with arbitrary internal nodes. For this test,
we use the rectangular patch [15] with geometry and mesh shown in Figure
13.1. The PZT4 material is used for this patch test.

The boundary conditions for mechanical displacement and electric potential
are assumed to be

u = s11σ0x , v = s13σ0y , φ = g31σ0y , (13.49)

where σ0 is an arbitrary stress parameter. Hence, the exact results in terms of
mechanical stresses and the dielectric displacements should be

σxx = σ0, σxy = σyy = Wx = Wy = 0. (13.50)

It is found from Table 13.1 that all the results produced by ES-FEM-T3 are
exactly to machine precision. This implies that ES-FEM-T3 has second-order
accuracy, and the errors will be on the terms of second order and above.
Together with stability, we know that the ES-FEM-T3 solution will converge
to the exact solution when the mesh is refined.

TABLE 13.1

Results of the Standard Patch Test

Results

Variable Exact ES-FEM-T3

u 2.3765e−06 2.3765e−06
v −1.8188e−07 −1.8188e−07
φ −1.0667e−09 −1.0667e−09
σxx 1.0 1.0
σyy 0 −3.7609e−15
σxy 0 −1.2924e−16
Wx 0 −6.0396e−14
Wy 0 3.6593e−13
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S-FEM for Piezoelectric Structures 555

Example 13.5.3: Singer-Player Piezoelectric Strip

This example examines the accuracy of ES-FEM-T3 under both mechanical
loading and electric potential boundary conditions. This problem was studied
previously in Ref. [25] for the performance of a so-called meshless PCM. We
consider here the shear deformation of a 1×1 mm piezoelectric strip under
the compressive stress σ0 = 5N/mm2 and an applied voltage V0 = 1000 V,
as shown in Figure 13.2.The material PZT-5 is used for this problem.The electric
field is applied on the left and right edges in order to create the polarization of
the material resulting in shear strain. The mechanical and electrical boundary
conditions are prescribed to the edges of the strip as follows:

∂φ

∂y
(x , y = ±h) = 0, σyy (x , y = ±h) = σ0, σxy (x = L, y) = 0,

σxy (x , y = ±h) = 0, φ(x = L, y) = −V0, σxx (x = L, y) = 0, (13.51)

φ(x = 0, y) = +V0, u(x = 0, y) = 0, v(x = 0, y = 0) = 0.

The analytical solution for this simple problem can be found easily and has
been given in Ref. [25]:

u = s13σ0x , v = d15V0x
h

+ s33σ0y , φ = V0

(
1 − 2

x
L

)
. (13.52)

y
σ0

σ0

+V0
–V0

h

x

L

FIGURE 13.2 Piezostrip subjected to a uniform mechanical loading and electric voltage.
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556 Smoothed Finite Element Methods

Using ES-FEM-T3, the computed results of the horizontal displacement u, the
vertical displacement v , and the electric potential φ at the central line (y = 0)
are plotted in Figure 13.3. It is seen that the results of ES-FEM-T3 agree well
with the exact solutions. This confirms again that ES-FEM-T3 can reproduce
linear fields and hence is of second-order accuracy.

Example 13.5.4: Cook’s Membrane

This benchmark problem, shown in Figure 13.4, refers to a clamped tapered
panel subjected to a distributed load on the tip edge of the panel, resulting
in a deformation dominated by bending. The PZT4 material is used in this
case. The mechanical boundary conditions are similar to the popular Cook’s
membrane [33].The boundary condition of the lower surface is prescribed with
zero voltage. The analytical solution of the problem is unknown, and hence
the reference solutions of the vertical displacement and the electric potential
at the center tip (A), 2.109 × 10−4 mm and 1.732 × 10−8 GV [21], are used
for comparison.

The convergences of the vertical displacement and electric potential at point
A are illustrated in Figure 13.5. It is shown that the results of ES-FEM-T3 are
much more accurate than those of FEM-T3 and FEM-Q4.

On the computational efficiency of the present method (computational time
for the same accuracy measured in displacement or electric potential errors),
a study is carried out in comparison with the FEM models. The code is run on
a PC with Intel® Core™ 2 Duo (CPU—2 GHz and RAM—2 GB), using the
full matrix solver. The computational cost consists of two items: overhead CPU
time for setting up the global stiffness matrix and the CPU time to solve the
algebraic system of equations. Figure 13.6 illustrates the errors in vertical dis-
placement and electric potential at point A against the total CPU time (seconds)
for Cook’s membrane problem. It is observed that the “overhead” computation
time (observed from a very small model and hence small CPU time) of ES-FEM-
T3 is a little longer than those of FEM-Q4 and FEM-T3, due to the additional
time to compute the global stiffness matrix. However, for larger models where
the solver time dominates, ES-FEM-T3 is more effective. More details of the
computational efficiency of ES-FEM-T3 can be found in Chapter 7. More thor-
ough studies using bandwidth solvers for solid mechanics problems can be
found in Ref. [24].

Example 13.5.5: Light Reflector: An MEMs Device

The purpose of this problem is to simulate the tilt angle of the reflected light
by a mirror of an MEM device. The device consists of two parallel bimorphs
made of the same PVDF material and connected by a mirror, as shown in
Figure 13.7. Each bimorph is of length L = 10μm and height H = 1μm.
The bimorph beam is divided into the top and bottom layers as shown in
Figure 13.8.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5
1

1.5
2

2.5
3

3.5
4(a)

(b)

(c)

× 10−5

x (mm)

D
isp

la
ce

m
en

t u
 (m

m
)

ES-FEM-T3
Exact solution

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2 × 10–3

× 10–6

x (mm)

D
isp

la
ce

m
en

t v
 (m

m
)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x (mm)

El
ec

tr
ic

 p
ot

en
tia

l ϕ
 (G

V)
 

ES-FEM-T3
Exact solution

ES-FEM-T3
Exact solution

FIGURE 13.3 Results at the central line (y = 0) using ES-FEM-T3 for the singer-player
piezoelectric strip: (a) horizontal displacement u; (b) vertical displacement v; and (c) electric
potential φ.
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558 Smoothed Finite Element Methods

48

16

44

B A

C
ϕ = 0

F = 1

FIGURE 13.4 The setting for Cook’s membrane problem.

The following boundary conditions are applied to layer 1 of the bimorph
beam:

φ(1)(x , y = 0) = V , σ
(1)
yy (x , y = 0) = 0, σ

(1)
xy (x , y = 0) = 0,

φ(1)(x , y = h) = 0, σ
(1)
yy (x , y = h) = σ(2)

yy (x , y = h),

σ
(1)
xy (x , y = h) = σ(2)

xy (x , y = h),

∂φ(1)

∂x
(x = 0, y) = 0, u(1)(x = 0, y) = 0, v (1)(x = 0, y) = 0,

∂φ(1)

∂x
(x = L, y) = 0, σ

(1)
xx (x = L, y) = 0, σ

(1)
xy (x = L, y) = 0.

(13.53)

Boundary conditions for layer 2 are

φ(2)(x , y = h) = φ(1)(x , y = h), u(2)(x , y = h) = u(1)(x , y = h),

v (2)(x , y = h) = v (1)(x , y = h), φ(2)(x , y = 2h) = V ,

σ
(2)
yy (x , y = 2h) = 0, σ

(2)
xy (x , y = 2h) = 0,

∂φ(2)

∂x
(x = 0, y) = 0, u(2)(x = 0, y) = 0, v (2)(x = 0, y) = 0,

∂φ(2)

∂x
(x = L, y) = 0, σ

(2)
xx (x = L, y) = 0, σ

(2)
xy (x = L, y) = 0.

(13.54)
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FIGURE 13.5 Convergence of results obtained using ES-FEM-T3 in comparison with other
methods for Cook’s membrane: (a) vertical displacement and (b) electric potential.

The centers of bimorphs are connected by a 1-μm-long mirror. Linear elastic
is assumed for the mirror material. When a voltage is applied, the bimorphs
displace vertically in opposite directions and rotate the mirror to achieve a
desired tilt angle. As a result, the direction of the reflected light can be changed
as desired when a proper voltage is applied.

Note that the analytical solution of this problem is not available; hence the
comparison is made with published data. Similarly to the analysis given in
Ref. [25], a mesh (80 × 20) of 1701 nodes is used. The tip displacements of
the bimorphs using FEM and ES-FEM are computed for several voltages. From
the tip displacement, the tilt angle of the mirror is found and compared to the
reference result in Ref. [25]. The tilt angle of the mirror could be calculated
by normal deflection of the beam at the point connection between the mirror
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FIGURE 13.6 Computational efficiency of ES-FEM-T3 in comparison with other methods
for Cook’s membrane: (a) displacement error and (b) electric potential error.

and beam in which the horizontal displacement of this point is supposed to be
zero.

The results of FEM-T3, FEM-Q4, and ES-FEM-T3 are given in Table 13.2.
The tilt angle is plotted in Figure 13.9. Similarly to the PCM [25], it is

Light

FIGURE 13.7 Bimorph MEM device.

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
54

 1
0 

M
ay

 2
01

6 



S-FEM for Piezoelectric Structures 561

y
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L

Layer 1

FIGURE 13.8 Geometry of a parallel bimorph.

TABLE 13.2

Results of the Tip Deflections (μm) on the Mirror

Applied Voltage (V) FEM-T3 FEM-Q4 ES-FEM-T3 Reference [25]

1.00 0.004794 0.004866 0.004808 0.004936
2.00 0.009588 0.009731 0.009614 0.009872
5.00 0.023971 0.024328 0.024034 0.024681
10.00 0.047942 0.048655 0.048068 0.049362
15.00 0.071913 0.072983 0.072102 0.074043
20.00 0.095884 0.097310 0.096136 0.098724
25.00 0.119855 0.121638 0.120169 0.123405
50.00 0.239710 0.243276 0.241339 0.246811

25

20

15

10

5

0
0 5 10 15 20 25

Applied voltage (V)

Ti
lt 

an
gl

e (
°)

30 35 40

PCM
FEM-T3
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45 50

FIGURE 13.9 Results of the tilt angle of the mirror obtained using ES-FEM-T3 in comparison
with other methods for the bimorph MEM device.

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
54

 1
0 

M
ay

 2
01

6 



562 Smoothed Finite Element Methods

also found that the tip displacements of the bimorphs and the tilt angle of the
mirror for FEM-T3, FEM-Q4, and ES-FEM-T3 models vary almost linearly with
applied voltages.

Note that the displacement of ES-FEM-T3 is larger than that of FEM-T3,
because the ES-FEM-T3 model is softer than the FEM-T3 model. For this prob-
lem, ES-FEM-T3 solutions are slightly “stiffer” than those of FEM-Q4 and PCM,
but “softer” than that of FEM-T3.

Example 13.5.6: Eigenvalue Analysis of a Piezoelectric Transducer

This example performs an eigenvalue analysis of a cylindrical transducer
using a piezoelectric wall made of PZT4 material with brass end caps, as
shown in Figure 13.10. On the inner and outer surfaces, the electrodes are
attached. This is the example problem given in Section 6.1.1 of the ABAQUS

Axis of symmetric

11 mm

Bottom brass cap

Electroded
surfaces

12.5 mm

3 mm

Top brass cap
Piezoelectric
ceramic PZT4

Plane
symmetric

1.5 mm

FIGURE 13.10 Configuration of a transducer.
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S-FEM for Piezoelectric Structures 563

(a) (b)

FIGURE 13.11 Domain discretization of the transducer: (a) using 136 rectangular elements
and (b) using 272 triangular elements.

manual [6]. This problem is also identical to the one that studied experimen-
tally in Ref. [34]. The transducer is modeled as an axisymmetric problem
and meshes with 136 rectangular elements and 272 triangular elements are
used, as shown in Figure 13.11. Homogeneous constraints of the potentials
on the inside surface are imposed. The frequencies correspond to those for
antiresonance. The ES-FEM-T3 is applied to analyze the eigenvalues of this
transducer. We note first that no spurious non-zero-energy modes were found.
This shows that ES-FEM-T3 is also temporally stable at least for this problem (see
Remark 1.3).

Table 13.3 shows the first five frequencies, and the relative error percentages
compared with experimental results are given in parentheses.Their correspond-
ing eigenmode shapes are plotted in Figure 13.12. It can be seen that these
eigenmode shapes are almost identical to those described in the ABAQUS
manual [6].

From Table 13.3, it is observed that the results of ES-FEM-T3 agree well
with the experimental results given in Ref. [34]. The relative error percentage
corresponding to each mode of ES-FEM-T3 is smaller than those of FEM-T3 and
FEM-Q4. This means that the eigenvalues of ES-FEM-T3 are better than those
of standard FEM using the same mesh.

TABLE 13.3

Eigenvalues (kHz) Obtained Using Different Methods with the Same
Number of 175 Nodes

Element Type Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

FEM-T3 19.98 (7.42%) 43.31 (24.01%) 62.78 (15.83%) 67.78 (7.08%) 94.23 (6.12%)
FEM-Q4 19.7 (5.91%) 42.9 (21.19%) 61.1 (12.73%) 66.7 (5.37%) 92.2 (3.83%)
ES-FEM-T3 18.74 (0.75%) 41.74 (17.91%) 59.21 (9.24%) 65.23 (3.05%) 89.85 (1.18%)
Experimental [34] 18.6 35.4 54.2 63.3 88.8
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(a) (b)

(c) (d)

(e)

FIGURE 13.12 The first five eigenmodes for the piezoelectric transducer obtained using ES-
FEM-T3. (a) 1st eigenmode; (b) 2nd eigenmode; (c) 3rd eigenmode; (d) 4th eigenmode; and
(e) 5th eigenmode.
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S-FEM for Piezoelectric Structures 565

13.6 Remarks

This chapter presents a general formulation for S-FEM models for solids of
piezoelectric materials. The standard Galerkin weak form is first derived
from the general formulation of Hamilton’s principle for dynamic prob-
lems. The smoothed Galerkin weak form is then presented, followed by a
general formulation of S-FEM models.

In particular, the ES-FEM using a triangular mesh (ES-FEM-T3) is coded
and applied to analyze various 2D piezoelectric structures. Using ES-FEM-
T3, displacements and electric potentials are approximated in the same
manner as in the standard FEM, but mechanical strains and electric field
are smoothed over the set of smoothing domains associated with the edges
of the mesh. We now note the following.

• The ES-FEM-T3 works well with triangular meshes with only
unknown DOFs at the nodes and no additional DOFs are required.

• The ES-FEM-T3 passes the standard patch test for plane piezoelectric
problems and hence is of second-order accuracy.

• The results of ES-FEM-T3 obtained agree well with analytical solution
as well as experimental results found in the published literature.

• The ES-FEM-T3 results are found more accurate than those of FEM-
T3, and are often found to be even more accurate than FEM-Q4 for
static and eigenvalue analyses of the transducers.

• The ES-FEM-T3 is very easy to implement into a standard finite ele-
ment program using triangular meshes that can be generated with
ease for problems with complicated geometry.

In summary, the ES-FEM-T3 may still keep its “star” performer title also
for piezoelectrics. We finally note that other S-FEM models can also be used
to simulate the piezoelectric structures for solutions of desired solutions.
For example, the NS-FEM can be used for upper bound solutions to static
and dynamic (with proper stabilization techniques) problems.
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14
S-FEM for Heat Transfer Problems

14.1 Introduction

In previous chapters, we have introduced a number of S-FEM models and
demonstrated the excellent properties and performance of these models for
mechanics problems of solids and structures. This chapter aims to extend
the formulations and applications of these S-FEM models for heat transfer
problems.

Heat transfer is a very important physical phenomenon in most of the
practical systems in engineering and science [1]. It is in fact one of the most
fundamental and common topics in the analyses and design of mechanical,
civil, electrical, chemical, and biological systems. We will start from the
general mathematical model for heat transfer problems in engineering,
and then provide simple models for bioheat transfer problems related to
hyperthermia treatments for cancer tumor.

In terms of numerical modeling, FEM [2,3] has been the major tool for
heat transfer problems in the past decades. This chapter provides a detailed
formulation for the standard FEM and the recent S-FEM models for gen-
eral heat transfer problems. We first introduce some weak forms for the
heat transfer problems that can be used for establishing the standard FEM
models. We next present the weak forms for S-FEM models. The discretized
system of equations for both FEM and S-FEM models is then derived. We
apply the NS-FEM for 1D, 2D, and 3D heat transfer problems to show
the upper bound property of NS-FEM models for heat transfer problems.
Finally, we will apply a 3D FS-FEM to solve a bioheat transfer problem
simulating the hyperthermia treatments of breast cancer.

Compared to the solid mechanics problems, the heat transfer problems
are easier to deal with, because the primary field variables (displacements)
for solid mechanics problems are vector fields, while that for heat trans-
fer problems is temperature, which is a scalar field. There are, of course,
essential differences in the physics of these two types of problems. For
experienced readers with both solid mechanics and heat transfer problems,
these weak forms, the FEM and S-FEM equations, for heat transfer prob-
lems can be written out easily based on the equations for solid mechanics
problems, without going through again the derivation process. For others,
this could be quite difficult to comprehend. We therefore choose to provide

569
© 2010 by Taylor and Francis Group, LLC



570 Smoothed Finite Element Methods

a complete but easy-to-understand derivation process for all these equa-
tions for heat transfer problems. Proper linkages between the formulations
given in this chapter and those in Chapter 3 (for FEM) and Chapter 4 (for
S-FEM) will also be provided, so that readers can have a better understand-
ing of the physics as well as the mathematical formulation for both solid
mechanics and heat transfer problems. For readers who are interested only
in heat transfer problems, this chapter can be read and followed through
quite easily and independently from the other chapters.

14.2 Strong-Form Equations for Heat Transfer Problems

Based on the physics of heat in a continuous solid or medium, the govern-
ing equation for general dynamic heat transfer problems can be written in
the form of [1,3]

ρc
∂T
∂t︸ ︷︷ ︸

heat change in time

= LT
d cLdT︸ ︷︷ ︸

heat conduction

− hTT︸︷︷︸
heat convection

+ Q︸︷︷︸
heat source

in Ω, (14.1)

where T is the unknown temperature field in the medium, c is the spe-
cific heat capacity, ρ is the density of the medium, and k is the thermal
conductivity of the medium, hT is the heat convection coefficient, Ld is
a differential operator (for the heat transfer problems, it is simply the
well-known gradient operator often denoted as ∇) given by

Ld = ∇ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂

∂x
for 1D,{

∂

∂x
∂

∂y

}T

for 2D,
{

∂

∂x
∂

∂y
∂

∂z

}T

for 3D,

(14.2)

and c is the matrix of heat conductive coefficients of the medium given by

c =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kx for 1D,[
kx 0

0 ky

]
for 2D,

⎡
⎢⎣

kx 0 0

0 ky 0

0 0 kz

⎤
⎥⎦ for 3D,

(14.3)

where ki (i = x, y, z) is the heat conductivity coefficient in the i-direction.
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S-FEM for Heat Transfer Problems 571

In Equation 14.1, Q is the heat source (or sink, when negative) provided
externally to the medium. It is therefore very clear that the terms in Equa-
tion 14.1 count for the balance of the possible terms in an idealized general
heat transfer situation at any point in the problem domain (medium) [1–3].

For static heat transfer problems, we simply drop the dynamic term and
obtain the strong-form governing equation as follows:

LT
d cLdT − hTT + Q = 0. (14.4)

We note that Equation 14.1 or 14.4 resembles Equation 2.20, but (1) T
is now a scalar and (2) we have one term containing T. We choose these
matrix-form equations so that we can accommodate easily a medium that
is generally anisotropic, meaning for example that the heat conductivi-
ties can depend on the direction of heat conduction. We note also that the
spatial operators in Equation 14.1 or 14.4 are still symmetric, and hence
the Galerkin formulations will work most efficiently, because the sym-
metry will be preserved. Of course, Equation 14.1 or 14.4 can only be
solved in a meaningful manner with properly defined boundary con-
ditions, so that the original heat transfer problem is well posed (see
Remark 1.1).

14.3 Boundary Conditions

For general heat transfer problems, the boundary Γ can in general con-
sist of three parts: Γ = ΓD ∪ ΓN ∪ ΓR, and the boundary conditions can be
Dirichlet, Neumann, and Robin, respectively, for each of these parts, and
can be expressed in detail as follows [1–3]:

T = TΓ on Dirichlet boundary ΓD, (14.5)

−LT
n cLdT = qΓ on Neumann boundary ΓN, (14.6)

−LT
n cLdT = hT(T − Ta) on Robin boundary ΓR, (14.7)

where TΓ is the fixed temperature on the Dirichlet boundary, qΓ is the
given heat supply on the Neumann boundary ΓN, and Ta is the known
temperature in the ambient fluid on the Robin boundary ΓR. Therefore,
TΓ, qΓ, and Ta are all given for the well-posed heat transfer problem before
it is to be solved. When qΓ = 0 for parts of the Neumann boundary, it is
sometimes also called adiabatic boundary. In Equations 14.6 and 14.7, the
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572 Smoothed Finite Element Methods

matrix LT
n is in fact the vector of the outwards normal given by

Ln = n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nx for 1D,{
nx ny

}T for 2D,{
nx ny nz

}T
for 3D,

(14.8)

where ni (i = x, y, z) is the i-direction components of unit outward normal
on the boundary. Equations 14.6 and 14.7 can be written explicitly for 3D
problems as

− nxkx
∂T
∂x

− nyky
∂T
∂y

− nzkz
∂T
∂z

= qΓ on Neumann boundary ΓN,

(14.9)

− nxkx
∂T
∂x

− nyky
∂T
∂y

− nzkz
∂T
∂z

= h(T − Ta) on Robin boundary ΓR,

(14.10)

which may be more familiar to many.
The statement of the strong formulation for heat transfer problems

becomes “to search for the temperature field function T that satisfies Equa-
tions 14.1 at any point in the problem domains and Equations 14.5 through
14.7 on the boundary.”

14.4 Weak Forms for Heat Transfer Problems

Obtaining the exact solution that satisfies the strong form of governing
equation 14.1 with boundary conditions given in Equations 14.5 through
14.7, is in general not possible, and can only be done for extremely simple
cases. We therefore seek approximate solutions, and want to do it in as
effective as possible ways. For this purpose, we often resort to various weak
formulations that are detailed in Ref. [4]. The weighted residual weak form
is a very general weak form and hence is a good starting point, as we have
done for the FEM for solid mechanics problems (see Chapter 3).

14.4.1 Weighted Residual Weak Form for Heat Transfer Problems

The weighted residual equation can be obtained by multiplying the gov-
erning equation 14.1 with a weight (or test) function w that is sufficiently
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S-FEM for Heat Transfer Problems 573

smooth, and integrating the weighted equation over the entire problem
domain [2–3]:

∫

Ω

w · ρc∂T
∂t

dΩ =
∫

Ω

w ·
(

LT
d cLdT

)
dΩ−

∫

Ω

w · hTT dΩ+
∫

Ω

w · Q dΩ. (14.11)

Performing the integration by parts and using the boundary conditions
given in Equations 14.6 and 14.7, the first term in Equation 14.11 becomes

∫

Ω

w ·
(

LT
d cLdT

)
dΩ =

∫

ΓN

w ·
(

LT
n cLdT

)
︸ ︷︷ ︸

−qΓ

dΓ+
∫

ΓR

w ·
(

LT
n cLdT

)
︸ ︷︷ ︸
−hT(T−Ta)

dΓ

+
∫

ΓD

w ·
(

LT
n cLdT

)
︸ ︷︷ ︸

−qD

dΓ−
∫

Ω

(Ldw)Tc (LdT) dΩ,

(14.12)

where qD is the unknown heat flux on ΓD. Substituting the foregoing
equation into Equation 14.11, we obtain

∫

Ω

ρc w
∂T
∂t

dΩ+
∫

Ω

(Ldw)T c (LdT) dΩ+
∫

Ω

hTwT dΩ

−
∫

Ω

wQ dΩ+
∫

ΓN

wqΓ dΓ+
∫

ΓR

wh(T − Ta) dΓ+
∫

ΓD

w · qD dΓ = 0.

(14.13)

Equation 14.13 is the weighted residual weak form for our heat transfer
problems. The reason for calling Equation 14.13 weak is the fact that the
order of derivatives on the field variable function T is reduced to one, from
the original two required in Equation 14.1. We note that in deriving the
weak-form equation 14.13, we used Equations 14.1, 14.6, and 14.7. There-
fore, our original problem stated in Equations 14.1 and 14.5 through 14.7 is
now stated as “To search for the temperature field function T that satisfies
Equation 14.5 and the weak-form equation 14.13, for a set of properly chosen
weight functions w.”

Here, we have not yet decided how the weight function w should be cho-
sen. We, of course, require any chosen w from the “proper set,” and all these
terms in Equation 14.13 must be “bounded” so that it can be evaluated.
Hence, Equation 14.13 is quite general. Different choices of the w set will
lead to different types of numerical methods with different properties (both
good and bad, stable and unstable). In other words, the weak-form equa-
tion 14.13 offers a general means to obtain a T, but without any promise on
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574 Smoothed Finite Element Methods

the quality of the T or whether a T can really be obtained. More discussions
in this direction can be found in Ref. [4] in the general context of mesh-free
methods. We now discuss a special choice of the w set, which leads to the
so-called Galerkin weak form that is with some “promises” and is used in
the FEM formulation.

14.4.2 Galerkin Weak Form for Heat Transfer Problems: Continuous Form

For our heat transfer problems, the temperature field that we want to obtain
from Equation 14.13 is a function defined in the problem domainΩ. In fact,
it must be the exact solution that satisfies Equations 14.1 and 14.5 through
14.7. To ensure this, we now choose an “arbitrary” variation of T as the
weight function:

w(x) = δT(x), (14.14)

where δT(x) satisfies also the Dirichlet boundary condition on ΓD, which
is said to be “admissible.” Equation 14.13 now becomes
∫

Ω

ρc(δT) · ∂T
∂t

dΩ+
∫

Ω

(δLdT)T c (LdT) dΩ+
∫

Ω

hT (δT) · T dΩ

−
∫

Ω

δTQ dΩ+
∫

ΓN

(δT) qΓdΓ+
∫

ΓR

(δT) hT(T − Ta) dΓ+
∫

ΓD

δT︸︷︷︸
=0

· qD dΓ = 0.

(14.15)

In the foregoing equation, we used the simple fact that the variational
operator and the spatial differential operator can swap orders, because
they operate with respect to different variables. The spatial differential
operator operates with respect to the coordinates, x, y, or z, while the vari-
ational operator operates on parameters that control the shape of function
T. Note also that the last term in Equation 14.15 will vanish because on ΓD,
T is given by boundary condition 14.5 and thus the variation of a given
quantity becomes zero (a given quantity cannot be “varied” any more). We
then finally have

∫

Ω

ρc(δT) · ∂T
∂t

dΩ+
∫

Ω

δ (LdT)T c (LdT) dΩ+
∫

Ω

hT(δT) · T dΩ

−
∫

Ω

δTQ dΩ+
∫

ΓN

(δT) qΓ dΓ+
∫

ΓR

(δT) hT(T − Ta) dΓ = 0. (14.16)

Equation 14.16 is the well-known Galerkin weak form for heat transfer
problems, which promises that the exact solution that satisfies the original
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S-FEM for Heat Transfer Problems 575

problem stated in Equations 14.1 and 14.5 through 14.7 satisfies Equation
14.16. We can also go backwards: A T that satisfies Equations 14.5 and
14.16 will satisfy Equations 14.1 and 14.5 through 14.7 as long as T has
sufficient smoothness for the differential operations in Equations 14.1 and
14.5 through 14.7. In fact, the weak statement (Equation 14.16) is more
general in terms of admission of data: it allows us to find solutions for some
less “regular” heat source (in domain or on the boundary) that cannot be
expressed in the strong statements.

The admissible conditions for T in Equation 14.16 need some further
elaborations. Heuristically, we require that (1) T has to satisfy Equation
14.5, because it has been used as one of the conditions in deriving the
Galerkin weak form given in Equation 14.16, and (2) using such a T, all the
terms in Equation 14.16 have to be bounded. Mathematically, we simply
require T ∈ H

1
0(Ω; R1)(see Chapter 3). This admissible condition essentially

ensures that Equation 14.16 has a unique solution as long as the original
problem is well posed with “stable” medium [e.g., the material constant
matrix c is SPD or strictly positive ki (i = x, y, z)].

Note that the continuous form of the Galerkin weak form given in Equa-
tion 14.16 is still difficult to solve for the exact solution: we did not make
much progress in this regard. However, it provides a convenient platform
for us to now seek an approximate solution. The idea is to discretize the
problem domain for easy approximations of T in a finite dimension and
try to find an approximated T that satisfies Equations 14.5 and 14.16 and
converges to the exact solution when the discretization is refined.

14.4.3 Galerkin Weak Form: Discrete Form

We now discretize the problem domainΩusing elements (for FEM settings)
or nodes (in mesh-free settings). We then somehow create an approxima-

tion of T denoted as
�

T such that it satisfies the admissible condition of
�

T ∈ H
1
0,h(Ω; R1) as well as the following equation:

∫

Ω

ρc
(
δ

�

T
)

· ∂
�

T
∂t

dΩ+
∫

Ω

δ
(

Ld
�

T
)T

c
(

Ld
�

T
)

dΩ+
∫

Ω

hT

(
δ

�

T
)

· �

T dΩ

−
∫

Ω

δ
�

TQ dΩ+
∫

ΓN

(
δ

�

T
)

qΓ dΓ+
∫

ΓR

(
δ

�

T
)

hT(
�

T − Ta) dΓ = 0. (14.17)

Such a
�

T is then regarded as an approximate solution. Equation 14.17
is the Galerkin weak form in discrete form for heat transfer problems,
which promises a unique approximate solution that converges to the
exact solution of the original well-posed problem stated in Equations 14.1
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576 Smoothed Finite Element Methods

and 14.5 through 14.7 when the discretization is refined, and hence
H

1
0,h(Ω; R1) → H

1
0(Ω; R1).

14.4.4 Smoothed Galerkin Weak Form: Discrete Form

We are now ready to establish the smoothed Galerkin for heat transfer prob-
lems. We first discretize the problem domain Ω using elements (for FEM
settings) or nodes with background cells (in mesh-free settings). On top of
the mesh of elements/cells, we then further divide the problem domain
into smoothing cells, as detailed in Section 4.5.1. Next, we somehow create
an approximation of T denoted as T such that it satisfies the admissible
condition of T ∈ H

1
0,h(Ω; R1) as well as the following equation:

∫

Ω

ρc
(
δT
)

· ∂T
∂t

dΩ+
∫

Ω

δ
(

LdT
)T

c
(

LdT
)

dΩ+
∫

Ω

hT

(
δT
)

· T dΩ

−
∫

Ω

δTQ dΩ+
∫

ΓN

(
δT
)

qΓ dΓ+
∫

ΓR

(
δT
)

hT(T − Ta) dΓ = 0. (14.18)

It is clear that the temperature gradient (LdT) is now replaced by the

“smoothed temperature gradient”
(

LdT
)

over the smoothing domains.
These smoothing domains can be cell-based (Chapter 5), node-based
(Chapter 6), edge-based (Chapter 7), face-based (Chapter 8), and partially
node-based (αFEM, Chapter 9). In any such set of smoothed domains, the
smoothed temperature gradient becomes constant in each of the smooth-
ing domains. Therefore, the “smoothed” Galerkin weak form for the heat
transfer equation can be rewritten as

∫

Ω

ρc
(
δT
)

· ∂T
∂t

dΩ+
Ns∑
i=1

As
i δ
(

LdT
)T

c
(

LdT
)

+
∫

Ω

hT

(
δT
)

· T dΩ

−
∫

Ω

δTQ dΩ+
∫

ΓN

(
δT
)

qΓ dΓ+
∫

ΓR

(
δT
)

hT(T − Ta) dΓ = 0, (14.19)

where As
i is the area of the ith smoothing domain and Ns is the number

of smoothing domains. A T ∈ H
1
0,h(Ω; R1) that satisfies Equation 14.19 is

then regarded as an approximate solution. Equation 14.19 is the smoothed
Galerkin weak form in discrete form for heat transfer problems, which
promises a unique approximate solution that converges to the exact solu-
tion of the original well-posed problem stated in Equations 14.1 through
14.7 when the discretization is refined, and hence H

1
0,h(Ω; R1) → H

1
0(Ω; R1),
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S-FEM for Heat Transfer Problems 577

and the smoothing domains satisfy the conditions listed in Table 4.2. The
proof of this can be generated in a similar way to that given in Ref. [4] or
in Chapter 4.

We note that in the smoothed Galerkin weak form, we do not necessar-
ily require T ∈ H

1
0,h(Ω; R1). We can have much more relaxed admissible

conditions: T ∈ G
1
0,h(Ω; R1), meaning that the assumed temperature func-

tions can be in proper G space [4–8]. Such a relaxation is very useful in
establishing models in much more general mesh-free settings [4,5]. In this
book, however, our S-FEM models are all based on the finite element set-
tings, and hence we have the stronger (hence sufficient) requirement of
T ∈ H

1
0,h(Ω; R1).

14.5 FEM Equations

In an FEM setting, we divide the problem domain into elements. Based
on these elements we create nodal shape functions, as in the FEM (see
Chapter 3). Using these nodal shape functions, the FEM solution for the
temperature at any point x ∈ Ω can be approximated in the following form:

T̃(x) =
Nn∑
i=1

Ni(x)T̃i = N(x)T̃, (14.20)

where T̃ is the vector of unknown nodal temperatures at all the nodes in
the problem domain:

T̃ =
[
T̃1 T̃2 · · · T̃Nn

]T
, (14.21)

in which T̃i is the FEM solution for the nodal temperature at the ith node.
The matrix N contains nodal shape functions for all the nodes in the
problem domain:

N(x) = [N1(x) N2(x) · · · NNn(x)
]

, (14.22)

where Ni is the shape function for the ith node. Note that because the nodal
shape function Ni is locally supported only by the elements connected to
the node, it is zero in all the other elements. Therefore, N(x) is very sparse
for any given x ∈ Ω.

The variation of T̃(x) is given by

δT̃(x) =
Nn∑
i=1

Ni(x)δT̃i = N(x)δT̃. (14.23)
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578 Smoothed Finite Element Methods

Substituting Equations 14.20 and 14.23 into Equation 14.16, we obtain

∫

Ω

ρc
(

NδT̃
)T

N
∂T̃
∂t

dΩ+
∫

Ω

δ
(

LdNT̃
)T

c(LdN) T̃ dΩ

+
∫

Ω

hT

(
NδT̃

)T
NT̃ dΩ−

∫

Ω

(
NδT̃

)T
Q dΩ+

∫

ΓN

(
NδT̃

)T
qΓ dΓ

+
∫

ΓR

(
NδT̃

)T
hT

((
NT̃
)T − Ta

)
dΓ= 0 (14.24)

or

(
δT̃
)T

⎡
⎢⎢⎢⎢⎣

∫

Ω

ρcNTN
∂T̃
∂t

dΩ+
∫

Ω

(LdN)Tc (LdN) T̃ dΩ+
∫

Ω

hTNTNT̃ dΩ

−
∫

Ω

NTQ dΩ+
∫

ΓN

NTqΓdΓ+
∫

ΓR

NThT

(
NT̃ − Ta

)
dΓ

⎤
⎥⎥⎥⎥⎦ = 0.

(14.25)

Due to the arbitrary nature of the variation of the nodal temperature δT̃,
the only way to have Equation 14.25 to be always satisfied is to have

∫

Ω

ρcNTN
∂T̃
∂t

dΩ+
∫

Ω

(LdN)T c (LdN) T̃ dΩ+
∫

Ω

hTNTNT̃ dΩ

−
∫

Ω

NTQ dΩ+
∫

ΓN

NTqΓ dΓ+
∫

ΓR

NThT

(
NT̃ − Ta

)
dΓ = 0. (14.26)

Because T̃ is the nodal temperature that is not a function of coordinates,
we will now further have

∫

Ω

NTρcN dΩ

︸ ︷︷ ︸
M̃

∂T̃
∂t

+
∫

Ω

(LdN)Tc(LdN) dΩ

︸ ︷︷ ︸
K̃

T̃ +
⎛
⎜⎝

∫

Ω

NThTN dΩ+
∫

ΓR

NThTN dΓ

⎞
⎟⎠

︸ ︷︷ ︸
C̃

T̃

−
⎛
⎜⎝

∫

Ω

NTQ dΩ−
∫

ΓN

NTqΓ dΓ+
∫

ΓR

NThTTa dΓ

⎞
⎟⎠

︸ ︷︷ ︸
F̃

= 0 (14.27)
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S-FEM for Heat Transfer Problems 579

or simply

M̃
∂T̃
∂t

+ K̃T̃ + C̃T̃ = F̃, (14.28)

which is the FEM equation for dynamic heat transfer problems. The matrix
M̃ is the global thermal mass (heat capacity) matrix given by

M̃ =
∫

Ω

ρcNTN dΩ. (14.29)

The matrix C̃ is the “heat damping” matrix induced by heat convection
evaluated using

C̃ =
∫

Ω

hTNTN dΩ+
∫

ΓR

hTNTN dΓ, (14.30)

and

F̃ =
∫

Ω

NTQ dΩ+
∫

ΓR

hTNTTa dΓ−
∫

ΓN

NTqΓ dΓ (14.31)

is the heat flux vector for all the nodes in the problem domain.
In Equation 14.28, the global thermal stiffness (heat conduction) matrix

K̃ is computed using

K̃ =
∫

Ω

(LdN)T︸ ︷︷ ︸
B̃T

c (LdN)︸ ︷︷ ︸
B̃

dΩ =
∫

Ω

B̃TcB̃ dΩ, (14.32)

where B̃ is the gradient-temperature matrix (an analogue of the strain–
displacement matrix defined in Equation 3.68). Because N is very sparse,
B̃ must also be very sparse and, hence, so too is the K̃ matrix. In addition,
K̃ will also be banded if the nodes in the problem domain are properly
numbered. Making use of the sparseness in actual computations, we will
not actually form the “global” matrices N and B̃ for the entire problem
domain, because they contain mostly zero for large models. Rather, we
form those for each element and compute the element stiffness matrix K̃e

IJ :

K̃e
IJ,i =

∫

Ωe
i

B̃T
I cB̃J dΩ, (14.33)
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580 Smoothed Finite Element Methods

where Ωe
i is the domain of the element. The global stiffness matrix K̃ can

then be formed easily by assembling the entries given in Equation 14.33.
The integration in Equation 14.33 is performed using the Gauss integration
scheme based on elements (see Section 3.15).

Note that the evaluation of the matrices M̃ and C̃ and the vector F̃ is
similar to the case of K̃: by an assembly using elemental matrix and vectors.
It can be easily seen from Equations 14.32, 14.29, and 14.30 that the matrices
K̃, M̃, and C̃ are all symmetric and banded if the nodes in the problem
domain are properly numbered, which implies that Equation 14.28 can
be solved very efficiently using standard routines for a set of first-order
differential equations with respect to time.

14.6 S-FEM Equations

In an S-FEM model, we divide the problem domain into elements, and
based on these elements we create nodal shape functions, as in the FEM
(see Chapter 3). Using these nodal shape functions, the S-FEM solution for
the temperature at any point x ∈ Ω can be approximated in the following
form:

T(x) =
Nn∑
i=1

Ni(x)Ti = N(x)T, (14.34)

where T is the vector of the nodal temperatures at all the nodes in the
problem domain:

T = [T1 T2 · · · TNn

]T , (14.35)

in which Ti is the S-FEM solution for the nodal temperature at the ith
node. The matrix N contains nodal shape functions and has the same form
of Equation 14.22 and hence has the same sparseness.

The variation of the T(x) is given by

δT(x) =
Nn∑
i=1

Ni(x)δTi = N(x)δT. (14.36)
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S-FEM for Heat Transfer Problems 581

Substituting Equations 14.34 and 14.36 into Equation 14.19, we obtain

∫

Ω

ρc
(
NδT

)T
N

∂T
∂t

dΩ+
Ns∑
i=1

kAs
i
(
δT
)T (

LdN
)T · (LdN

)
T

+
∫

Ω

hT
(
NδT

)T
NT dΩ−

∫

Ω

(
NδT

)T
Q dΩ+

∫

ΓN

(
NδT

)T
qΓ dΓ

+
∫

ΓR

(
NδT

)T
hT

((
NT
)T − Ta

)
dΓ = 0 (14.37)

or

(
δT
)T
⎡
⎢⎢⎢⎢⎢⎣

∫

Ω

ρcNTN
∂T
∂t

dΩ+
Ns∑
i=1

kAs
i
(
LdN

)T (
LdN

)
T +

∫

Ω

hTNTNT dΩ

−
∫

Ω

NTQ dΩ+
∫

ΓN

NTqΓ dΓ+
∫

ΓR

NThT
(
NT − Ta

)
dΓ

⎤
⎥⎥⎥⎥⎥⎦

= 0.

(14.38)

Due to the arbitrary nature of δT, the only way to have Equation 14.25
to be always satisfied for any δT is to have

∫

Ω

ρcNTN
∂T
∂t

dΩ+
Ns∑
i=1

kAs
i
(
LdN

)T (
LdN

)
T +

∫

Ω

hTNTNT dΩ

−
∫

Ω

NTQ dΩ+
∫

ΓN

NTqΓ dΓ+
∫

ΓR

NThT
(
NT − Ta

)
dΓ = 0. (14.39)

Because T is the nodal temperature vector that is not a function of
coordinates, we will now further have

∫

Ω

NTρcN dΩ

︸ ︷︷ ︸
M̃

∂T
∂t

+
Ns∑
i=1

As
i
(
LdN

)T
c
(
LdN

)
︸ ︷︷ ︸

K

T +
⎛
⎝∫

Ω

NThTN dΩ+
∫

ΓR

NThTN dΓ

⎞
⎠

︸ ︷︷ ︸
C̃

T

−
⎛
⎝∫

Ω

NTQ dΩ−
∫

ΓN

NTqΓ dΓ+
∫

ΓR

NThTTa dΓ

⎞
⎠

︸ ︷︷ ︸
F̃

= 0 (14.40)
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582 Smoothed Finite Element Methods

or

M̃
∂T
∂t

+ KT + C̃T = F̃, (14.41)

which is the set of discretized equations for the S-FEM models. The matrices
M̃, C̃, and F̃ are exactly the same as those in Equations 14.29 through 14.31.
The global “smoothed” thermal stiffness (heat conduction) matrix K is
defined as

K =
Ns∑
i=1

As
i
(
LdN

)T
︸ ︷︷ ︸

B
T

c
(
LdN

)
︸ ︷︷ ︸

B

. (14.42)

For the same sparseness argument given for the FEM model, we know
that BI will be very sparse, and hence we will not perform the above
summation in the actual computations. Instead, we perform an assem-
bly, similar to what we do in the FEM, using the entries computed based
on smoothing domains:

K
s
IJ,k = As

kB
T
I cBJ , (14.43)

where As
k is the area of the kth smoothing domain. The evaluation of

the smoothed gradient matrix BI used in Equation 14.43 is performed
using a given type of smoothed domains, and will be discussed in more
detail in Section 14.7. Compared to Equation 14.33, the S-FEM model uses
(1) assembly over all the smoothing domains rather than elements, and
(2) a smoothed gradient-temperature matrix instead of the (compatible)
gradient-temperature matrix.

We observe that the S-FEM model changes only the stiffness matrix, and
all the other matrices and vector are the same as the FEM counterparts using
the same mesh. We note also that in computing the smoothed stiffness
matrix, no numerical integration is needed, and only a summation over
the smoothing domains is required. If cell-based smoothing domains are
used, we have the CS-FEM model (see Chapter 5). Likewise, we can have
the NS-FEM model (see Chapter 6), the ES-FEM model (see Chapter 7),
and the FS-FEM model (see Chapter 8). If partially node-based smoothing
domains are used, we have an αFEM model (see Chapter 9). Equation 14.41
is a unified S-FEM equation of all these models for heat transfer problems.

For steady-state heat transfer problems, we simply drop the dynamic
term and have the following discrete system of equations:

[
K + C̃

]
T = F̃, (14.44)
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S-FEM for Heat Transfer Problems 583

which is a set of simple algebraic equations with [K + C̃] being SPD that
can be solved easily using standard routines for the linear algebraic system
of equations.

For dynamic problems, we need to solve Equation 14.41 that is a set of
first-order differential equations with respect to time. Such a differential
equation has been well studied and can be solved in a number of well-
established methods, such as the forward difference method, the backward
difference method, the Crank–Nicholson method, and so on. In this chapter,
we use the simple backward difference method, where the temperature
gradient with respect to time is given by

∂T
∂t

= Tm − Tm−1

Δt
, (14.45)

where the superscript “m” stands for the mth time step. Substituting
Equation 14.45 into Equation 14.41 results in[

M̃ +Δt(K + C̃)
]

T
m = ΔtF̃m + M̃Tm−1. (14.46)

The history of the nodal temperature can then be computed by solving
Equation 14.46 with the time marching forward.

The FEM solution can be obtained by solving Equation 14.44 for the static
problem or Equation 14.46 for the dynamic problems in the same manner
but with K being replaced by K̃.

14.7 Evaluation of the Smoothed Gradient Matrix

We now evaluate the smoothed gradient matrix BI needed in Equa-
tion 14.43:

BI = (LdN
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂NI

∂x
for 1D,

{
∂NI

∂x
∂NI

∂y

}T

for 2D,

{
∂NI

∂x
∂NI

∂y
∂NI

∂z

}T

for 3D,

(14.47)

where NI(x) is the shape function for node I. Because the smoothing is
performed over a smoothing domain Ωs

k bounded by Γs
k , we will have

bIp = ∂NI

∂p
= 1

As
k

∫

Γs
k

NI(x)np(x) dΓ, (14.48)
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584 Smoothed Finite Element Methods

where p = x for 1D problems, p = {x, y} for 2D problems, and p = {x, y, z}
for 3D problems.

Using the Gauss integration (see Section 3.15) along each segment of
boundary Γs

kof the smoothing domain Ωs
k that may be node-, edge-,

face-, or cell-based, the above equations can be rewritten in the following
summation forms:

bIp = 1
As

k

Nsg∑
q=1

⎡
⎣ nG∑

r=1

wrNI(xqr)np(xqr)

⎤
⎦ , (14.49)

where Nsg is the number of segments of the boundary Γs
k , nG is the number

of Gauss points distributed in each segment, xqr is the rth Gauss point on
the qth segment of the boundary Γs

k , and wr is the corresponding weight
for the Gauss point.

Note that when linear triangular or tetrahedral elements are used, the
smoothed gradient matrix for NS- and ES-FEM models can be evaluated
in a simple way as discussed in Chapters 6 and 7.

14.8 Numerical Example

In this section, we present a number of 1D, 2D, and 3D examples solved
using NS-FEM and FS-FEM methods, together with FEM using the same
mesh. To examine quantitatively the properties of S-FEM models for heat
transfer problems, the error indicator in temperature norms is defined as

eT =

√√√√√
∑Nn

i=1

(
Texact

i − T
nume
i

)2

∑Nn
i=1 (Texact

i )2
, (14.50)

where the subscript “i” denotes the ith node, superscript “exact” denotes
the exact or analytical solutions, and superscript “nume” denotes a numer-
ical solution obtained using a numerical method that can be an FEM or an
S-FEM model. When the exact solution is not available, a reference solution
computed using the FEM with a very fine mesh is used instead. To study
the bound property, the equivalent thermal energy of the whole system for
heat transfer problem [9] is defined as follows:

Ue =
Ns∑

k=1

As
k

(
LdT

)T
c
(

LdT
)

. (14.51)
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S-FEM for Heat Transfer Problems 585

The examples presented in this section are similar to some of those
presented in Refs. [10–12].

14.8.1 1D Thermal Fin

The first example studied here is a simple 1D thermal fin with length L and
a uniform cross-sectional area subjected to a uniformly distributed heat
source Q, as shown in Figure 14.1. We consider the adiabatic condition
over the circumference of the fin, and there is no heat convection on the
surface of the fin. Therefore, hT is set to zero. The temperature on the left end
of the fin is fixed at TΓ and heat flux qΓ is provided at the right end. In the
computation, the related parameters are set as L = 1.0 m, k = 5.0 W/m ◦C,
qΓ = 200 W/m2, Q = 100 W/m3, TΓ = 0◦, and hT = 0.

The exact solution for the temperature distribution along the 1D thermal
fin can be given analytically as

T(x) = − Q
2k

x2 + qΓ + Q
k

x + TΓ. (14.52)

Using the foregoing equation, the exact solution in equivalent energy can
be calculated easily and given as

Ue =
Ns∑
i=1

As
i

(
LdT

)T
c
(

LdT
)

= 12, 666.6666 ( J m−3 ◦C). (14.53)

The solution convergence in energy is examined using the NS-FEM mod-
els with different numbers of uniformly distributed nodes, and the results
of the equivalent energy computed using Equation 14.51 are plotted in
Figure 14.2. For comparison, the results obtained using the FEM with the
same meshes are also plotted. It can be clearly seen that as long as more
than three nodes (two elements) are used, the equivalent energy solution
of NS-FEM is always larger than that of the exact solution, while the FEM’s
solution is always a lower bound. This echoes the finding in Chapter 6
for solid mechanics problems. This important upper bound property of

∂TΓN : −k         = qΓ∂xΓD: T = TΓ

L
0

Q

Smoothing domain

Node iMid-element-point

x

FIGURE 14.1 A 1D thermal fin subjected to a uniformly distributed heat source. The
circumference of the fin is adiabatic.

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
55

 1
0 

M
ay

 2
01

6 



586 Smoothed Finite Element Methods
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FIGURE 14.2 A 1D thermal fin subjected to a uniformly distributed heat source. The
circumference of the fin is adiabatic.

the NS-FEM for heat transfer problems is an important complement to the
standard FEM. We can now easily bound the exact solution for both sides
using NS-FEM together with FEM using the same mesh.

14.8.2 Heat Transfer in a 2D Solid

A 2D heat transfer problem of a rectangular plate shown in Figure 14.3
is now studied. The parameters used in the computation are length
L = 0.05 m, height H = 0.01 m, h = 1500 W/m2 ◦C, Ta = 200◦C, TΓ = 0◦C,
kx = 15 W/m ◦C, ky = 10 W/m ◦C, and qΓ = −4000 W/m2. As no exact
solution is available for this problem, a reference solution is obtained

0.05 m
ΓD

Adiabatic boundary: ΓR, qΓ = 0

y

x

0

ΓR

ΓN0.
01

 m
 

FIGURE 14.3 Heat transfer in a 2D solid.
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S-FEM for Heat Transfer Problems 587

using ABAQUS© with a very fine mesh of 329,217 nodes for comparison
purposes.

14.8.2.1 Temperature and Its Gradients

Figure 14.4 presents temperature distributions along the bottom edge
obtained using NS-FEM and FEM with linear triangular elements, together
with the reference solution. It can be seen that the NS-FEM solutions
are in much better agreement with the reference solution, compared to
the FEM.

Figure 14.5 plots the contour of the temperature gradients in the y-
direction computed using NS-FEM and FEM using the same mesh of linear
triangular elements, together with the reference solution. It shows clearly
that the distribution of the temperature gradient computed using NS-FEM
agrees well with the reference solution, and is more accurate than the FEM
solution.

14.8.2.2 Bound Property of Solutions

As discussed in Chapter 6, the NS-FEM can provide an upper bound and
the compatible FEM gives a lower bound in energy norm for the exact
solution to elasticity problems of multiple dimensions. To show the bound

0 0.01 0.02 0.03 0.04 0.05
0

40

80

120

160

200

x (m)

Te
m

pe
ra

tu
re

 (°
C)

FEM-T3
NS-FEM-T3
Reference

FIGURE 14.4 Temperature distributions along the bottom edge of the 2D solid obtained
using NS-FEM-T3 and FEM-T3 with linear triangular elements, together with the reference
solution.
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588 Smoothed Finite Element Methods

–9000 –8000 –7000 –6000 –5000 –4000 –3000 –2000 –1000 –500

Reference 
(6084 nodes) 

NS-FEM-T3
(369 nodes) 

FEM-T3
(369 nodes) 

FIGURE 14.5 Contour of the temperature gradients in the y-direction computed using NS-
FEM-T3 and FEM-T3 with linear triangular elements, together with the reference solution
obtained using a fine mesh.

property of the NS-FEM for 2D heat transfer problems, four models with
regularly distributed 33, 105, 369, and 1377 nodes are created to analyze
the heat transfer in the 2D medium shown in Figure 14.3. In this analy-
sis, we compute first the temperature distribution and then evaluate the
equivalent thermal energy in the whole domain.

Figure 14.6 shows the equivalent thermal energy defined in Equation
14.51 computed using NS-FEM and FEM using the same meshes, together
with the reference solution. It is clearly shown that NS-FEM gives the upper
bound and FEM gives the lower bound solutions for this 2D heat transfer
problem with homogeneous essential boundary conditions (TΓ = 0). It is
also observed that with the increase of DOFs, the equivalent energy of the
NS-FEM model and the FEM model converges to the reference solution,
respectively, from above and below.

14.8.2.3 Accuracy and Convergence Rate

We now further examine the accuracy and convergence rate of NS-FEM in
comparison with FEM using the four models created in Section 14.8.2.2.
Figure 14.7 plots the convergence curves of error in the temperature solu-
tion obtained using NS-FEM and linear FEM when the average nodal
spacing h is reduced. The convergence rate, R, is estimated via linear regres-
sion. It is seen that the NS-FEM achieves better accuracy, compared to the
linear FEM. It is also found that the NS-FEM achieves a higher convergence
rate with R = 1.93 than that of the linear FEM with R = 1.78.
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FIGURE 14.6 Convergence of the equivalent energy defined in Equation 14.51 computed
using NS-FEM-T3 and FEM-T3 using the same meshes.
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FIGURE 14.7 Convergence curves for the solution error in the temperature field obtained
using NS-FEM-T3 and linear FEM-T3 when the average nodal spacing h is reduced.
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ΓR
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FIGURE 14.8 3D heat conduction in a beam.

14.8.3 A 3D Heat Conduction Beam

We now consider 3D problems. The first example considered here is a
simple 3D heat conduction beam as shown in Figure 14.8. The room tem-
perature TΓ is prescribed onto the left surface of the beam, heat flux qΓ
is given on the right surface, and heat convection occurs between the top
surface and the ambience with a convection coefficient h. The parameters
used in the computation are

Geometry: L = 0.1 m, H = 0.01 m, and B = 0.01 m
Heat conductivity: Q = 0, kx = 15 W/m ◦C, ky = 10 W/m ◦C, and

kz = 5 W/m ◦C
Heat convection coefficient: h = 1500 W/m2 ◦C
Heat source: Q = 0
Boundary conditions: TΓ = 0, Ta = 400 ◦C, and qΓ = −2000 W/m2

The beam is meshed with 508 nodes using the four-node tetrahedral (T4)
elements. The same mesh is used for both NS-FEM and FEM models. The
reference solution is obtained using a very fine mesh with 14,843 nodes
that has about 30 times more nodes compared with the coarse model.

14.8.3.1 Temperature Distribution

The temperatures at the nodes on the bottom edge (AB edge in Figure 14.8)
are computed using NS-FEM and FEM and the results are listed in Table
14.1, together with linear FEM and reference solutions. It can be found that

TABLE 14.1

Comparison of the Solutions of Temperature (◦C) along the AB Edge

x (m) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Reference 286.30 371.77 393.03 398.28 399.58 399.91 400.02 400.20 400.81 403.16
NS-FEM-T4 287.84 372.16 392.88 398.26 399.57 399.90 400.02 400.20 400.80 403.21
FEM-T4 283.47 371.43 392.91 398.25 399.57 399.91 400.02 400.20 400.80 403.11
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S-FEM for Heat Transfer Problems 591

NS-FEM and FEM solutions are in very good agreement with those of the
reference ones. This shows that the NS-FEM model works well also for
this 3D heat transfer problem. This finding is consistent with those in the
previous chapters: NS-FEM gives at least a similar accuracy for the results
of the primary variables that is temperature in this case. For the gradient
of the primary variables, the S-FEM solution will be much better, as will
be shown in the following.

14.8.3.2 Distribution of Temperature Gradients

In the design of many engineering systems with thermal effects, the temper-
ature gradient is a very important consideration. Because such information
is difficult to obtain via physical experiments, it is often much more pre-
ferred to predict the gradient distribution using numerical means. Figure
14.9 plots the distribution of the y-component of the temperature gradient
(◦C/m) in the 3D beam obtained using NS-FEM and FEM, together with
the reference solution. It can be clearly observed that the result obtained

(a)
28,000

(b)

26,000
24,000
22,000
20,000
18,000
16,000
14,000
12,000
10,000
8000
6000
4000
2000
0

–500

(c)

FIGURE 14.9 Distribution of the y-component of the temperature gradient (◦C/m) in the
3D beam. (a) NS-FEM using 508 nodes; (b) reference solution using 14,843 nodes; and (c) FEM
using 508 nodes.
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592 Smoothed Finite Element Methods

using NS-FEM is in very good agreement with the reference one. On the
overall distribution, the NS-FEM solution is much more accurate than the
FEM solution, compared to the reference solution, especially in the high
gradient zone. Figure 14.10 shows the distribution of the z-component of
the temperature gradient (◦C/m) in the 3D beam, and similar observations
can be made. This is because of the well-known fact that the FEM using
tetrahedral elements is overly stiff and produces a constant gradient field
within the elements, which can lead to inaccurate results, especially in the
high gradient zone. To examine this quantitatively, the minimum and max-
imum of the temperature gradients in the 3D beam are computed using
NS-FEM-T4 and FEM-T4 with the same mesh, and the computed results
in Figure 14.11 in comparison with the reference solution. It reveals that
the NS-FEM can obtain a significantly better accuracy than the linear FEM
for the maximum gradients. This is because the NS-FEM uses the gradient
smoothed operations. Hence the model behaves much “softer” compared
with the FEM model and hence produces a much more accurate solution
in terms of temperature gradient. A similar phenomenon has also been
observed in Chapter 6 for solid mechanics problems.

14.8.3.3 Solution Bound

As seen in the 1D and 2D examples, the NS-FEM can produce upper
bound solutions for “flux driving” heat transfer (or force driving for solid

(a)
80,000

(b)

70,000
60,000
50,000
40,000
30,000
20,000
10,000
5000
2500
1000
500
6

(c)

FIGURE 14.10 Distribution of the z-component of the temperature gradient (◦C/m) in the
3D beam. (a) NS-FEM using 508 nodes; (b) reference (FEM) solution using 14,843 nodes; and
(c) FEM using 508 nodes.
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FIGURE 14.11 The minimum and maximum of the temperature gradients in the 3D beam
obtained using NS-FEM-T3 and FEM-T3 in comparison with the reference solution. (a) x-
direction; (b) y-direction; and (c) z-direction.

mechanics) problems. To examine the same important property for 3D
problems, four 3D models of the heat conduction beam are built with irreg-
ularly distributed nodes (163, 508, 1147, and 2605), and both NS-FEM and
FEM are used to compute the results using all these four models. Figure
14.12 shows the convergence process of the solution in terms of the equiv-
alent energy with the increase of DOFs, where the reference solution is
obtained using ABAQUS® with a very fine mesh of second-order elements
with 14,843 nodes. It can be clearly observed that the equivalent thermal
energy solution of NS-FEM is larger than that of the reference solution.
On the contrary, the FEM solution is smaller than the reference one. This
finding confirms that NS-FEM can also provide upper bound solutions for
3D heat transfer problems [13], NS-FEM is an important complement to
the fully compatible FEM.

14.8.4 An Engine Pedestal

We now apply the NS-FEM to a more practical 3D problem: a real engine
pedestal with complex geometries. The pedestal part is made of a super-
alloy material, and detailed dimensions and processing parameters can
be found in Ref. [14]. Using our in-house 3D NS-FEM and FEM codes, the
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FIGURE 14.12 Convergence process of the solution in terms of the equivalent energy for
the 3D heat conduction beam problem.

heat transfer analysis is conducted. Figure 14.13 shows the geometry of the
engine pedestal and the setting of the problem. The boundary conditions
are defined in Equations 14.5 through 14.7. The parameters and conditions
used are the same as the 3D conduction beam studied in Section 14.8.3.
The problem domain is divided into a mesh of tetrahedral elements with

Dirichlet boundary

Neumann boundary

Robin boundary

Adiabatic boundary

C
D

y

x
z

90°

o

1
2 3 4 5 6 7 8

9
10

FIGURE 14.13 The geometry of the engine pedestal and the setting of the problem. The
boundary conditions are defined in Equations 14.5 through 14.7.
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S-FEM for Heat Transfer Problems 595

TABLE 14.2

Comparison of the Solutions of Temperature (◦C) along the CD Arc Line

Node ID 1 2 3 4 5 6 7 8 9 10

Reference 266.62 277.35 282.46 288.12 293.94 299.55 304.53 308.81 314.54 316.47
NS-FEM-T4 269.89 281.34 285.66 290.89 296.68 302.20 307.16 311.06 316.22 318.74
FEM-T4 262.93 273.46 278.50 284.36 290.31 296.36 301.42 306.23 311.94 313.79

754 nodes. Both NS-FEM-T4 and FEM-T4 are used in the computation for
this 3D problem, and the results will be output at 10 evenly distributed
points along the CD arc edge (see Figure 14.13). For comparison purposes,
a reference solution is obtained using the FEM with a very fine mesh of
30,222 nodes.

14.8.4.1 Temperature Distribution

Table 14.2 shows the temperature solution obtained at the nodes located
on the CD arc edge, together with the reference solution. It can be observed
that the temperature results obtained using NS-FEM-T4 are always larger
than those of the linear FEM-T4 and reference ones, and linear FEM solu-
tions are the smallest, showing again the upper bound property of the
NS-FEM and the lower bound property of the FEM. Note that, for this
particular problem, the temperatures obtained are all positive, and hence
the bound property (which is usually observed in the energy norm) can
also be observed even for the temperature solution. This may not be true
in general.

14.8.4.2 Temperature Gradients

Figure 14.14 plots the contour of temperature gradients (◦C/m) in the x-
direction obtained using the NS-FEM-T4 and the linear FEM-T4, together
with the reference solution. It can be clearly seen for this 3D problem that
temperature gradients obtained using the NS-FEM agree well with the
reference ones, and the results are more accurate than those of the FEM,
especially in the high gradient regions. Figure 14.15 shows the results of
temperature gradients in the z-direction. It can be observed again that the
NS-FEM-T4 result is more accurate than the result of the linear FEM-T4,
in comparison with the reference one, especially in the high temperature
gradient regions. For quantitative analysis, Figure 14.16 shows the mini-
mum and maximum of the temperature gradients in the 3D engine pedestal
obtained using NS-FEM-T4 and FEM-T4, in comparison with the reference
solution. It can be clearly seen that the NS-FEM-T4 results of temperature
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FIGURE 14.14 Contour of temperature gradients in the x-direction. (a) NS-FEM solution
using 754 nodes; (b) reference (FEM) solution using 30,222 nodes; and (c) FEM solution using
754 nodes.

gradients are very close to the reference results, and are much more accurate
than those of the FEM-T4.

14.8.4.3 Solution Bound

To further confirm the upper bound property for 3D problems with com-
plicated geometry, four models for this complex problem are generated
with irregularly scattered 754, 1389, 2447, and 3287 nodes. Figure 14.17
plots the convergence of the numerical solutions in terms of equivalent
energy obtained using NS-FEM-T4 and FEM-T4, where the reference one
is obtained using a very fine mesh of 30,222 nodes. It can be observed that
for this complicated 3D engine pedestal, the NS-FEM-T4 produces again
an upper bound solution in equivalent energy norm with homogeneous
essential boundary conditions (TΓ = 0), and the solution converges from
above to the reference solution with the increase in DOFs. On the contrary,
the FEM solution approaches the reference solution from below. Note that
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FIGURE 14.15 Distribution of temperature gradients in the z-direction. (a) NS-FEM solution
using 754 nodes; (b) reference (FEM) solution using 30,222 nodes; and (c) FEM solution using
754 nodes.
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FIGURE 14.16 The minimum and maximum of the temperature gradients in the 3D engine
pedestal obtained using NS-FEM-T4 and FEM-T4, in comparison with the reference solution.
(a) x-direction; (b) y-direction; and (c) z-direction.
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FIGURE 14.17 Convergence of the equivalent energy obtained using NS-PIM-T4 and FEM-
T4. The reference one obtained using FEM with a very fine mesh of 30,222 nodes.

because the reference solution is obtained using the FEM, by itself it is an
underestimation of the exact solution. Therefore, the true exact solution
should be higher than the reference solution shown in Figure 14.17, and
hence is closer to the NS-FEM-T4 solution.

Figures 14.2 (1D), 14.6 (2D), 14.12 (3D), and 14.17 (3D) have all shown
that with the increase of DOFs, the equivalent thermal energy of the FEM
model and the present NS-FEM model converges to the reference solution,
with FEM from below and NS-FEM from above. This finding is very sim-
ilar to what we have found in Chapter 6 for solid mechanics problems.
Therefore, it is also possible to develop an αFEM for heat transfer prob-
lems for nearly exact solutions, as we have done in Chapter 9 for the solid
mechanics problems.

14.9 Bioheat Transfer Problems

The modeling of bioheat transfer in the human body is very important
in many aspects, including the development of medical technology in
treating diseases such as tumor. The hyperthermia treatment has been
found effective with little side effects in some cancer treatments. It uses the
thermal energy to kill cancer cells without causing much damage to the
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S-FEM for Heat Transfer Problems 599

surrounding tissues [15–17]. In a hyperthermia treatment, the temperature
needs to be increased to above 42◦C on the tumor, but without much change
in the healthy tissue [9,18,19]. Therefore, the major challenge in such a
hyperthermia treatment is to properly control the temperature distribution
to maximize the treatment effects and minimize the damage. The FEM has
been often used in the simulation of hyperthermia treatments to predict
the temperature distribution. However, because of the overly stiff feature
of the FEM model, we can have accuracy problems in the FEM predicted
solution.

In this subsection we first derive the strong-form equation for bioheat
transfer problems and then apply the FS-FEM-T4 to study one particular
3D bioheat transfer example of hyperthermia treatment for a breast cancer.

14.9.1 The Pennes’ Bioheat Transfer Model

Bioheat transfer in the living tissue is, in reality, quite complicated, com-
pared to the heat transfer problems in engineering systems, owing mainly
to the complicity of the living tissues. There are a number of models avail-
able to analyze the bioheat transfer in the living tissue [13]. Pennes’ bio-heat
model is one of the simplest models that consider various heat source terms
in idealized situations. It considers two major biology-related mechanisms:
blood perfusion and metabolism that regulate the temperature distribution
in the living tissues. As suggested by Pennes [20–24], the thermal energy
balance for a perfused tissue can be written in matrix form as

ρc
∂T
∂t

= LT
d cLdT + Qb + Qr + Qm inΩ. (14.54)

In Equation 14.1, Qb is the heat exchanged between the blood and tissue.
In Pennes’ model, it is assumed that the net rate of heat exchange between
blood and tissue is proportional to the product of the volumetric perfusion
rate and the difference between the arterial blood temperature and the
local tissue temperature [20]. Based on this assumption, the term Qb can
be expressed simply as follows:

Qb = cbωb(Tb − T), (14.55)

where cb is the specific heat of blood, ωb is the blood perfusion rate, and
Tb is the body core temperature that is set as a constant of 37◦C. Therefore,
blood is regarded as a local heat “regulator” by a “heat convection-like”
mechanism. When Qb is positive, the blood acts like a heat source to the
tissue, and when Qb is negative, the blood becomes a heat sink.

In Equation 14.1, Qm is the volumetric heat source provided to the tissue
via metabolism, and Qr stands for the externally supplied heat source that
represents the heat applied during the hyperthermia treatment.
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600 Smoothed Finite Element Methods

Substituting Equation 14.55 into Equation 14.1, the bioheat transfer
equation can be written as

ρc
∂T
∂t

= LT
d cLdT + ωbcb(Tb − T) + Qr + Qm

= LT
d cLdT − ωbcb︸︷︷︸

hT

T + ωbcbTb + Qr + Qm︸ ︷︷ ︸
Q

, (14.56)

which is Equation 14.1 for the general dynamic heat transfer problems with

hT = ωbcb, (14.57)

Q = ωbcbTb + Qr + Qm. (14.58)

For static heat transfer problems, we have Equation 14.4. The boundary
conditions have the same form of Equations 14.5 through 14.7.

We have successfully converted the bioheat transfer problem into a stan-
dard heat transfer problem that we have dealt with in Sections 14.2 through
14.7.All these equations that developed in these sections can be now simply
applied directly to solve bioheat transfer problems.

14.9.2 Hyperthermia Treatment: A 3D Bioheat Transfer Case Study

We finally present a 3D model simulating the hyperthermia treatment of a
cancer in a female breast. The geometry of the 3D breast is simplified as a
half-sphere with a diameter of 180 mm, as shown in Figure 14.18. On the
base of the sphere, we assume that the temperature is kept by the human
body at 37◦C; hence a Dirichlet boundary condition is applied there with
TΓ = 37◦C. On the surface of the sphere, a heat convection boundary condi-
tion is applied.All the parameters used in the computation are summarized
in Table 14.3.

TABLE 14.3

Details of Parameters used in the Hyperthermia Treatment Problem

c Specific heat of tissue
4200 J/kg ◦C

ρ Density of tissue
1000 kg/m3

ki Thermal conductivity of ωb Blood perfusion rate
(i = x, y, z) tissue ki = 0.5 W/m ◦C 0.5 kg/m3

cb Specific heat of blood
4200 J/kg ◦C

Qm Volumetric heat
33, 800 W/m3

Tb Body core temperature 37◦C TΓ Temperature of the human
body 37◦C

Ta Known ambient temperature
10◦C

hT Ambient heat transfer
coefficient 100 W/m2
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Heat convection
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ZC
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–k       = h(T – Ta)∂T
∂n

T = 37°C

FIGURE 14.18 Geometry of the 3D breast is simplified as a half-sphere of diameter 180 mm.

The breast cancer is also simplified as a small sphere of radius r = 7.1 mm,
and it is located at (x0 = −23 mm, y0 = 30 mm, z0 = 0), as shown in Figure
14.19. Therefore the heat source is also applied over the region of the
cancer:

Qr(x, y, z, t) =
{

TC(t) in the cancel region,

0 elsewhere,
(14.59)

Applied heat source 

ZC

YC
XC

Section X-X 

FIGURE 14.19 Location of the heat source distributed in a small sphere of r = 7.1 mm.
The center of the heat source is (x0 = −23 mm, y0 = 30 mm, z0 = 0).
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FIGURE 14.20 Time history P(t) of the applied heat source over the cancer region.
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FIGURE 14.21 Transient temperature distribution at t = 10 s. (a) FS-FEM model using 1692
nodes; (b) FEM model using 1692 nodes; and (c) reference (FEM) solution using 14,900 nodes.
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S-FEM for Heat Transfer Problems 603

where TC(t) is the time history of the applied heat source that is plotted in
Figure 14.20. Both FS-FEM-T4 and FEM-T4 are used in the simulation of
the dynamic heat transfer problem with a time step Δt = 0.01 s.

Figure 14.21 shows the contours of the temperature distribution obtained
using FS-FEM and FEM using the same mesh of tetrahedral elements
with a total of 1692 nodes. Because the exact solution for this problem
is not available, a very fine FEM model with 14,900 nodes is used to
obtain the reference solution for comparison. It is shown that the over-
all solution obtained using the FS-FEM is much closer to the reference
solution.

To examine the difference quantitatively, the time history of the max-
imum temperature (found at the center of the tumor) is also computed
using FS-FEM and FEM using the same mesh with 668 nodes, and the
results are plotted in Figure 14.22, together with the reference solution.
Figure 14.22 shows clearly that the temperature of the FEM solution rises
much more slowly than that of the reference solution. The FS-FEM solution,
however, respond much better. At the steady state, the FS-FEM solution
has about 2.5◦C error in temperature; the FEM has about 5.5◦C. The dif-
ference between FS-FEM and FEM using the same mesh is about 3.0◦C,
which is very significant for the hyperthermia treatment. In conclusion,
the FS-FEM is much more reliable for the modeling of bioheat transfer
problems.

60
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FIGURE 14.22 Time history of the maximum temperature (registered at the center of the
cancer tumor) obtained using different FS-FEM and FEM models with time step t = 0.01 s.
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604 Smoothed Finite Element Methods

14.10 Remarks

In this chapter, we presented formulations for the S-FEM models for heat
transfer problems. We then used some of the S-FEM models to solve heat
transfer problems in engineering and biosystems. We now close the chapter
by stating the following remarks.

1. The S-FEM model changes only the stiffness (conductivity) matrix of
the discrete model.

2. The NS-FEM model can provide upper bound to the exact solution in
terms of equivalent energy of the system for a flux driving the heat
transfer problem of all dimensions, as long as the mesh is sufficiently
fine to provide sufficient softening effects. For other types of prob-
lems, the NS-FEM and FEM should bound the solution in a norm
from both sides of the exact solution.

3. The FS-FEM can produce a much more accurate solution compared to
the FEM counterpart using the same mesh. Hence it is much more reli-
able for problems requiring high precision in temperature prediction,
such as the simulation of hyperthermia treatments. More detailed
studies for ES-FEM and FS-FEM for heat transfer problems can be
found in Ref. [21], where the outstanding performances of ES-FEM
and FS-FEM have been reported.

4. The S-FEM models work very well with a linear triangular mesh, and
have been found to be less sensitive to the mesh distortion.

5. The S-FEM models have been applied also to thermoelastic prob-
lems with very important findings [10–12]. The strain energy of the
thermoelastic problems can also be properly bounded using NS-FEM
together with FEM models of the same mesh.
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15
S-FEM for Acoustics Problems

15.1 Introduction

In previous chapters, we have introduced a number of S-FEM models
and demonstrated the excellent properties and outstanding performance
of these models for problems of solid and structural mechanics, fracture
mechanics, and heat transfer. This chapter aims to extend further the
applications of these S-FEM models for acoustics problems.

Acoustics is one of the most relevant topics that are very close to our
daily life. We communicate verbally, we play and listen to music, and
we are bothered every minute by the noise. All these activities related
to directly the sound transmitting in the form of acoustic waves. Acous-
tics is a classic research topic that studies various aspects of the acoustic
waves since ancient times from at least 3000 BC, when the Chinese invented
the Guqin to produce desired music by design. Mathematical models for
acoustics problems have been already well established, and the strong-
form governing equations, such as the well-known Helmholtz equation,
represent the physics of all linear acoustics problems. Various analyti-
cal methods for solving the acoustic equations with simple settings have
also been developed. During the past several decades, many powerful
computational methods have been developed for solving very compli-
cated acoustic, aero-acoustic, and structural-acoustics problems [1–10].
The standard FEM and the boundary element method (BEM) are cur-
rently the most well-developed and widely-used methods in solving these
acoustics problems, and some software packages are now commercially
available.

When a numerical method such as the FEM is used, one of the well-
known issues of solving acoustics problems governed by the Helmholtz
equation is the so-called numerical “pollution” that is caused by the
discretization errors in the phase (dispersion error) and the amplitude
(dissipation error) [11–13]. In using a discrete numerical method to solve
acoustics problems, the dispersion error is much more difficult to deal with
compared to the dissipation error. Many numerical methods can often pro-
vide acceptable results for problems in a lower frequency range. In the
higher frequency range, however, the dispersion error can grow signifi-
cantly and the numerical results can deviate substantially from the exact
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608 Smoothed Finite Element Methods

solution even to a well-posed acoustic problem. Often, an extremely fine
mesh beyond the usual “rule of thumb” must be used. On the other hand,
using such a very fine mesh will lead to a dramatic increase of the compu-
tational cost, especially for large-scale 3D acoustics problems, and hence it
is not always a viable option.

Instead of using a fine mesh (hence more elements), using a higher
order of elements seems to be more effective, and it has been reported that
using high-order elements can reduce the dispersion error [6,14]. Another
approach is the Galerkin/least-squares FEM [10,15] with a stabilization
term. In recent years, mesh-free methods have been developed and applied
to many engineering problems, including the acoustics problems [16]. The
element-free Galerkin (EFG) method [17] has been used to solve acoustics
problems; it has been found that the EFG is also affected by the disper-
sion error, but these effects are relatively lower compared to FEM [18].
The discontinuous FEM [19] has also been used for acoustics problems
and is found to give significant improvement in accuracy, but at a higher
computational cost. More effective ways include the use of semiexact mod-
els [3–5]. However, these types of semiexact models have limitations for
different types of problems.

Acoustics problems governed by the Helmholtz equation are typical
wave propagation problems with characteristics controlled by frequency
or wave number. The root of the dispersion error in a numerical method for
a wave propagation problem is the error in approximating the “acoustic
stiffness” of the system and hence the natural frequencies of the acous-
tic media. If a fully compatible displacement method, such as the FEM, is
used, the model behaves always very “stiff,” as we have seen in the pre-
vious chapters for solid mechanics problems, resulting in shifting of the
eigenvalues of the system, which can be observed as the phase shifts for
wave propagation problems. Therefore, a numerical model that provides
a good approximation for the stiffness of the system is crucial in effec-
tively reducing the dispersion errors mentioned above. In the past, this is
achieved by increasing either the number of elements or the order of ele-
ments in FEM settings, which works to a certain extent but is not treating
the root of the dispersion error problem.

In this chapter, we first derive both the standard Galerkin and the
smoothed Galerkin weak forms for acoustics problems. We then provide
the general formulations for both FEM and S-FEM models for acoustics
problems. The “star” performers ES-FEM and FS-FEM are next chosen for
analyzing a number of 2D and 3D acoustics problems, respectively. Because
it has been found that the ES-FEM and FS-FEM can provide a very “close-
to-exact” stiffness for solid mechanics and heat transfer problems, it can
tackle right to the root of the dispersion error problem. Therefore, it is nat-
ural to expect that the ES-FEM and FS-FEM can overcome the dispersion
error in the numerical solutions for acoustics problems.
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S-FEM for Acoustics Problems 609

Note that the formulations given in this chapter have some similarities to
those for heat transfer problems presented in Chapter 14. The difference is
that the field variable for the acoustics problem is acoustic pressure, while
that for heat transfer problems is temperature. In addition, the acoustics
problems focus more on wave propagation phenomena, in which the wave
number becomes a major player in the “game,” and the “culprit” of the
dispersion error. For wave propagation problems, such a dispersion error
can “pollute” very far. In the heat transfer problem, however, our concern
is more on the distribution of the temperature field that may change with
time.

This chapter is written rather independently of other chapters, and hence
readers who are only interested in acoustics problems can read directly this
chapter. Proper cross-references will be provided for necessary additional
materials.

15.2 Mathematical Model of Acoustics Problems

Consider an acoustic (fluid) media defined in domainΩwith boundary Γ.
The boundary is decomposed into three portions such that Γ = ΓD ∪ ΓN ∪
ΓR, whereΓD,ΓN , andΓR denote, respectively, boundary segments with the
Dirichlet, Neumann, and Robin (admittance) boundary conditions. These
boundary conditions are quite similar to those for heat transfer problems
discussed in Chapter 14. The acoustic wave equation can be written as
follows:

Δp − 1
c2

∂2p
∂t2 = 0 in Ω, (15.1)

where p denotes the unknown field variable of (acoustic) pressure in the
media, c is the speed of an acoustic wave traveling in the media that is
known for a given media, and t is the time. The notation Δ denotes the
Laplace operator with respect to coordinates given by

Δ = LT
d Ld, (15.2)

where Ld is a differential operator (for the acoustics problem, it is the
gradient operator often denoted as ∇) given by

Ld = ∇ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂

∂x
for 1D,{

∂

∂x
∂

∂y

}T

for 2D,
{

∂

∂x
∂

∂y
∂

∂z

}T

for 3D.

(15.3)
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610 Smoothed Finite Element Methods

Using Equation 15.2, Equation 15.1 can be rewritten as

LT
d Ldp − 1

c2
∂2p
∂t2 = 0 in Ω, (15.4)

which is the time-domain governing equation for acoustics problems that
is quite similar to Equation 14.1 for heat transfer problems.

In the acoustics problem, we are often concerned with the character-
istics of the acoustic fields in the design of an acoustic system. We thus
study acoustics problems frequently in the so-called frequency domain,
and we shall convert Equation 15.4 to the frequency domain. To that end,
we assume that the acoustic pressure p is a small harmonic perturbation
around a steady state in the media expressed by

p = Pejωt (15.5)

where j = √−1, ω is the angular frequency, and P is the amplitude of the
acoustic pressure. Substituting Equation 15.5 into Equation 15.4, we obtain
the well-known Helmholtz equation:

ΔP + k2
wP = 0, (15.6)

where kw is the wave number that relates to the frequency and wave speed
in the form of

kw = ω
c

. (15.7)

Since c is a material (media) constant, controlling the wave number is
effectively the same as controlling the frequency. Equation 15.6 is the well-
known governing equation for acoustics problems in the frequency (or
wave-number) domain.

In general, the acoustic pressure P is complex-valued in the frequency
domain, and the real and imaginary parts relate to the amplitude and
the phase of the pressure wave field. The Dirichlet, Neumann, and Robin
boundary conditions can be described as follows:

P = PD on ΓD, (15.8)

∇P · n = −jρωvn on ΓN, (15.9)

∇P · n = −jρωAnP on ΓR, (15.10)

where vn, ρ, An, and n represent, respectively, the normal velocity on the
boundary ΓN , the density of the medium, the admittance coefficient on

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
06

 1
1 

M
ay

 2
01

6 



S-FEM for Acoustics Problems 611

boundaryΓR, and the unit vector of the outwards normal on the boundary.
The unit normal vector n is given by

Ln = n =

⎧⎪⎨
⎪⎩

nx for 1D,{
nx ny

}T for 2D,{
nx ny nz

}T for 3D,
(15.11)

with ni (i = x, y, z) being the i-direction components of the unit outwards
normal on the boundary.

The acoustic particle velocity (amplitude) v in an ideal fluid media relates
to the gradient of acoustic pressure p by

∇P + jρωv = 0. (15.12)

15.3 Weak Forms for Acoustics Problems

Quite similar to the heat transfer problems described in Chapter 14, the
Galerkin weak form for our acoustics problems can be derived easily as
follows. Our formulation here is for the acoustics equation in the frequency
domain, and starts with the weighted residual weak form.

15.3.1 Weighted Residual Weak Form for Acoustics Problems

The weighted residual equation is first obtained by multiplying the strong-
form equation 15.6 in the frequency domain with a weight or test function
w in the entire domain addressed by

−
∫

Ω

w
(
ΔP + k2

wP
)

dΩ = 0, (15.13)

where we deliberately add in a minus sign that does not affect balance of the
equation, but helps us later to derive a “nicer looking” form of equations.
Integrating by part or using Green’s theorem, we have

∫

Ω

∇w · ∇P dΩ− k2
w

∫

Ω

w · P dΩ−
∫

Γ

w (∇P · n) dΓ = 0. (15.14)
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612 Smoothed Finite Element Methods

Applying the boundary conditions shown in Equations 15.8 and 15.10,
we obtain
∫

Ω

∇w · ∇P dΩ− k2
w

∫

Ω

w · P dΩ+ jρω
∫

Γn

w · vn dΓ+ jρωAn

∫

ΓR

w · P dΓ = 0.

(15.15)

This is the weighted residual weak form for acoustics problems in the
frequency domain. Here, we have not yet decided how the weight function
w should be chosen. Different choices of w will lead to different numerical
methods with different properties. More discussions in this direction can
be found in Ref. [16]. We now discuss a special choice of w that leads to the
so-called Galerkin weak form.

15.3.2 Galerkin Weak Form for Acoustics Problems

For our acoustics problem, the pressure is a function defined in the problem
domainΩ. In the continuous form, it is in fact the exact solution that satisfies
Equation 15.6 and the Dirichlet boundary condition onΓD. We now choose
an “admissible” variation of P as the weight function:

w(x) = δP(x), (15.16)

where δP(x) satisfies also the Dirichlet boundary condition onΓD. Equation
15.15 now becomes

∫

Ω

(δ∇P) · ∇P dΩ− k2
w

∫

Ω

δP · p dΩ

+ jρω
∫

Γn

δP · vn dΓ+ jρωAn

∫

ΓR

δP · P dΓ = 0. (15.17)

This is the well-known Galerkin weak form for the acoustics problem in
the frequency domain. Equation 15.17 is equivalent to (and more general
than) Equations 15.6, 15.9, and 15.10, provided P and δP(x) are admissible,
by which we mean that they are continuous and satisfy the Dirichlet bound-
ary condition. Mathematically, we require P, δP ∈ H

1
0(Ω) (see Chapter 3, but

the space is for complex-valued functions) for the standard Galerkin weak
form given in Equation 15.17.

Note that solving Equation 15.17 is as difficult as solving the original
strong-form equations. However, Equation 15.17 provides a good plat-
form to establish a discrete FEM model for an approximate solution that
converges to the exact solution of the original strong form when the
discretization is refined.
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S-FEM for Acoustics Problems 613

15.3.3 Galerkin Weak Form: Discrete Form

We now discretize the problem domainΩ using elements for FEM settings.

We then somehow create an approximation of P denoted as
�

P such that it

satisfies the admissible condition of
�

P ∈ H
1
0,h(Ω), as well as the following

equation:

∫

Ω

(
δ∇�

P
)

· ∇�

P dΩ− k2
w

∫

Ω

δ
�

P · �

P dΩ

+ jρω
∫

Γn

δ
�

P · vn dΓ+ jρωAn

∫

ΓR

δ
�

P · �

P dΓ = 0. (15.18)

Such a
�

P is then regarded as any approximate solution. Equation 15.18 is
the Galerkin weak form in discrete form for acoustics problems, which
promises a unique approximate solution that converges to the exact solu-
tion of the original well-posed problem stated in Equations 15.6, 15.8, and
15.10, when the discretization is refined so that H

1
0,h(Ω) → H

1
0(Ω).

15.3.4 Smoothed Galerkin Weak Form: Discrete Form

In creating a smoothed Galerkin model, we first discretize the problem
domain Ω using elements (for FEM settings) or nodes with background
cells (in mesh-free settings). On top of the mesh of elements, we then further
divide the problem domain into smoothing domains, as detailed in Section
4.5.1. We next somehow create an approximation of P denoted as P̄ such that
it satisfies the admissible condition of P̄ ∈ H

1
0,h(Ω), as well as the following

equation:

∫

Ω

(
δ∇P

)
· ∇P dΩ− k2

w

∫

Ω

δP̄ · P̄ dΩ

+ jρω
∫

Γn

δP̄ · vn dΓ+ jρωAn

∫

ΓR

δP̄ · P̄ dΓ = 0. (15.19)

It is clear that the pressure gradient ∇P is now replaced by the “smoothed
pressure gradient” ∇P over the smoothing domains. These smoothing
domains can be cell-based (Chapter 5), node-based (Chapter 6), edge-
based (Chapter 7), face-based (Chapter 8), and partially node-based (αFEM,
Chapter 9). In any such set of smoothed domains, the smoothed pressure
gradient becomes constant in each of the smoothing domains. Therefore,
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614 Smoothed Finite Element Methods

the “smoothed” Galerkin weak form for the acoustics problems can be
rewritten as

Ns∑
k=1

As
k

(
δ∇P

)
· ∇P − k2

w

∫

Ω

δP̄ · P̄ dΩ

+ jρω
∫

Γn

δP̄ · vn dΓ+ jρωAn

∫

ΓR

δP̄ · P̄ dΓ = 0, (15.20)

where As
k is the area of the kth smoothing domain and Ns is the number

of smoothing domains. A P̄ ∈ H
1
0,h(Ω) that satisfies Equation 15.20 is then

regarded as an approximate solution of an S-FEM model. Equation 15.20 is
the smoothed Galerkin weak form in discrete form for acoustics problems,
which promises a unique approximate solution that converges to the exact
solution of the original well-posed problem stated in Equations 15.6, 15.8,
and 15.10, when the discretization is refined so that H

1
0,h(Ω) → H

1
0(Ω), and

the smoothing domains satisfy the conditions listed in Table 4.2. The proof
of this can be generated in a similar way to that given in Refs. [16,20].

We note that in the smoothed Galerkin weak form, we do not necessarily
require P̄ ∈ H

1
0,h(Ω). We can have much more relaxed admissible condi-

tions: P̄ ∈ G
1
0,h(Ω), meaning that the assumed pressure functions can be

in proper G space [20–23]. Such a relaxation is very useful in establishing
models in much more general mesh-free settings [19,20]. In this book, how-
ever, our S-FEM models are all based on the FEM settings, and hence we
have the stronger (hence sufficient) requirement of P̄ ∈ H

1
0,h(Ω).

15.4 FEM Equations

We now discretize the problem domain into Ne elements with Nn nodes as
in the FEM (see Chapter 3). Using these elements, a set of nodal shape func-
tions can be created using the standard FEM procedure. For our acoustics
problem, the pressure P is the field variable and it is a scalar field. At any
point x ∈ Ω, it can be approximated using the FEM shape functions in the
following general form:

P̃(x) =
Nn∑
i=1

Ni(x)P̃i = N(x)P̃, (15.21)
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S-FEM for Acoustics Problems 615

where P̃ is the vector of unknown nodal pressures at all the nodes in the
problem domain arranged as

P̃ = [P̃1 P̃2 · · · P̃Nn

]T
, (15.22)

in which P̃i (i = 1, . . . , Nn) is the pressure (amplitude) at the ith node. The
matrix N contains nodal shape functions for all the nodes in the problem
domain:

N(x) = [N1(x) N2(x) · · · NNn(x)
]

, (15.23)

where Ni (i = 1, . . . , Nn) is the shape function for the ith node. Because
the nodal shape function Ni is locally supported, only by the elements
connected to the node, it is zero at any point in all the other elements.
Therefore, N(x) is very sparse for any given x ∈ Ω.

Using Equation 15.21, we should have

δP̃(x) =
Nn∑
i=1

Ni(x)δP̃i = N(x)δP̃. (15.24)

Substituting Equations 15.21 and 15.24 into the standard Galerkin
weak-form equation 15.18, we obtain

δP̃

⎧⎨
⎩

∫

Ω

(∇N)T · ∇N dΩP̃ − k2
w

∫

Ω

NT · N dΩ P̃

+ jρω
∫

Γn

NT · vn dΓ+ jρω
∫

ΓR

AnNT · N dΓ P̃ = 0

⎫⎪⎬
⎪⎭ . (15.25)

Owing to the arbitrary nature of the variation of the nodal pressure δP,
the only way to ensure that Equation 15.25 is always satisfied is to have

∫

Ω

(∇N)T · ∇N dΩ

︸ ︷︷ ︸
K̃

P̃ − k2
w

∫

Ω

NT · N dΩ

︸ ︷︷ ︸
M̃

P̃ + jρω
∫

ΓR

AnNT · N dΓ

︸ ︷︷ ︸
C̃

P̃

= −jρω
∫

Γn

NT · vn dΓ

︸ ︷︷ ︸
F̃

(15.26)
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616 Smoothed Finite Element Methods

or

[K̃ − k2
wM̃ + jρωC̃]P̃ = −jρωF̃, (15.27)

where

K̃ =
∫

Ω

(∇N)T︸ ︷︷ ︸
B̃T

(∇N)︸ ︷︷ ︸
B̃

dΩ =
∫

Ω

B̃TB̃ dΩ (acoustical stiffness matrix),

(15.28)

M̃ =
∫

Ω

NT · N dΩ (acoustical mass matrix), (15.29)

C̃ =
∫

ΓR

NT · NAn dΓ (acoustical damping matrix caused

by boundary admittance), (15.30)

F̃ =
∫

Γn

NT · vn dΓ (nodal acoustic force vector). (15.31)

In Equation 15.28, B̃ is the gradient-pressure matrix (an analogue of the
strain–displacement matrix defined in Equation 3.68) or simply the gradi-
ent matrix. Because N is very sparse, B̃ will also be very sparse and so is the
K̃ matrix. In addition, K̃ will also be banded if the nodes in the problem
domain are properly numbered. Making use of the sparseness in actual
computations, we will not actually form the “global” matrices N and B̃
for the entire problem domain, because they contain mostly zero for large
models. Rather, we form those for each element and compute the element
stiffness matrix K̃e

IJ :

K̃e
IJ,i =

∫

Ωe
i

B̃T
I B̃J dΩ, (15.32)

where Ωe
i is the domain of the element. The global stiffness matrix K̃ can

then be formed easily by assembling the entries given in Equation 15.32.
The integration in Equation 15.32 is performed using the Gauss integration
scheme based on elements (see Section 3.15).

Note that the evaluation of matrices M̃ and C̃ and the vector F̃ are similar
to K̃: by an assembly using elemental matrix and vectors. It can be easily
seen from Equations 15.28, 15.29, and 15.30 that the matrices K̃, M̃, and C̃
will all be symmetric and banded if the nodes in the problem domain are
properly numbered, which implies that Equation 15.27 can be solved very
efficiently using standard routines of the linear equation solver.
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S-FEM for Acoustics Problems 617

15.5 S-FEM Equations

In an S-FEM model, we divide the problem domain into elements, and
based on these elements we create nodal shape functions, as in the FEM
(see Chapter 3). Using these nodal shape functions, the S-FEM solution for
the pressure at any point x ∈ Ω can be approximated in the following form:

P̄(x) =
Nn∑
i=1

Ni(x)P̄i = N(x)P̄, (15.33)

where P̄ is the solution of the nodal pressure at all the nodes in the problem
domain:

P̄ = {P̄1 P̄2 · · · P̄Nn

}T , (15.34)

in which P̄i (i = 1, . . . , Nn) is the S-FEM solution for the nodal pressure
(amplitude) at the ith node. The matrix N contains nodal shape func-
tions and has the same form of Equation 15.23 and hence has the same
sparseness.

The variation of the P̄(x) is given by

δP̄(x) =
Nn∑
i=1

Ni(x)δP̄i = N(x)δP̄. (15.35)

Substituting Equations 15.33 and 15.35 into Equation 15.20, using the
arbitrary nature of the variation of the nodal pressure δP̄, we obtain

Ns∑
k=1

As
k∇N

T · ∇N

︸ ︷︷ ︸
K̄

P̄ − k2
w

∫

Ω

NT · N dΩ

︸ ︷︷ ︸
M̃

P̄ + jρω
∫

ΓR

AnNT · N dΓ

︸ ︷︷ ︸
C̃

P̄

= −jρω
∫

Γn

NT · vn dΓ

︸ ︷︷ ︸
F̃

(15.36)

or

[K − k2
wM̃ + jρωC̃]P̄ = −jρωF̄, (15.37)
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618 Smoothed Finite Element Methods

which is the set of discretized equations for the S-FEM models. The matrices
M̃, C̃, and F̃ are exactly the same as those in Equations 15.29, 15.30, and
15.31. The global “smoothed” acoustic stiffness matrix K is defined as

K̄ =
Ns∑

k=1

As
k
(∇N

)T
︸ ︷︷ ︸

B̄T

(∇N
)

︸ ︷︷ ︸
B̄

=
Ns∑

k=1

As
kB̄TB̄, (15.38)

where B̄ is the “smoothed” gradient-pressure matrix or simply smoothed
gradient matrix. For the same sparseness argument given for the FEM
model, we know that B̄I will be very sparse, and hence we will not perform
the above summation in the actual computations. Instead, we perform an
assembly, similar to what we do in the FEM, but using the entries computed
based on smoothing domains:

K
s
IJ,k = As

kB̄T
I B̄J , (15.39)

where As
k is the area of the kth smoothing domain. The evaluation of the

smoothed gradient matrix B̄I used in Equation 15.39 is performed exactly
in the same way as in Section 14.7. Compared to Equation 15.32, the S-FEM
model uses (1) assembly over all the smoothing domains rather than ele-
ments; (2) a smoothed gradient matrix instead of the (compatible) gradient
matrix.

We observe that the S-FEM model changes only the stiffness matrix, and
all the other matrices and vectors are the same as the FEM counterparts
using the same mesh. We note also that, in computing the smoothed stiff-
ness matrix, no numerical integration is needed, and only a summation
over the smoothing domains is required. If cell-based smoothing domains
are used, we have the CS-FEM model (see Chapter 5). Similarly, we shall
have the NS-FEM model (see Chapter 6), the ES-FEM model (see Chapter 7),
and the FS-FEM model (see Chapter 8). If partially node-based smoothing
domains are used, we have an αFEM model (see Chapter 9). Equation 15.37
is a unified S-FEM equation of all these models for acoustics problems.

In the S-FEM models, we can compute the smoothed velocity. This can
be done with the help of Equation 15.12:

v̄(xk) = 1
As

k

∫

Ωs
k

v(x) dΩ = − 1
jρωAs

k

∫

Ωs
k

∇P dΩ = − 1
jρωAs

k

∫

Γs
k

P · n dΓ.

(15.40)

Using the FEM shape function for field variable interpolation in the
form of Equations 15.33, the smoothed velocity (or the smoothed pressure
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S-FEM for Acoustics Problems 619

gradient) for edge k can be obtained using

v̄(xk) = − 1
jρω

∑
I∈ns

k

B̄I(xk)P̄I , (15.41)

where ns
k is the total number of nodes contributing to the smoothing

domain.

15.6 Error in a Numerical Model

It is well known that the major concern of computing acoustics (or other
wave propagation) problems using an FEM model is the control of the
error caused in the discretized model. For wave propagation problems,
controlling errors in a discretized model is much more involved, and con-
trolling the so-called interpolation error is not sufficient. This is because
the simulated waves are “dispersive,” that is, the wave number of the
numerical solution is bound to be different from the exact wave num-
ber [14]. Such a numerical dispersive error reduces with the refinement
of the mesh. There is a so-called rule of thumb that states that a “mini-
mum” number of elements are needed per wavelength to obtain a stable
solution to the Helmholtz equation. However, such a rule is more for the
interpolation error, because such an error can effectively be controlled by
refining the mesh. However, increasing the number of elements is not
always productive in reducing the dispersive error, especially for higher
dimensional problems at high frequency. Below is the detailed argument
on this important issue.

For the convenience in the argument, we need to first quantify the error
in a precise manner. We use the gradient field of acoustic pressure P (or
the velocity) as the global error indicator for the numerical solutions. The
numerical error indicator can be defined in the form of the L2 norm of the
velocity error:

en =
√√√√

∫

Ω

(
v∗exact

i − v∗h
i

)T (
vexact

i − vh
i

)
dΩ

.=

√√√√√
NQ∑
i=1

AQ
i

(
v∗exact

i − v∗h
i

)T (
vexact

i − vh
i

)
, (15.42)

where v∗ is the complex conjugate of velocity v, the superscript exact
denotes the exact solution, h denotes the numerical solution obtained from
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620 Smoothed Finite Element Methods

a numerical method that can be S-FEM or FEM, AQ
i is the area/volume of

the quadrature domain that is defined by

AQ
i =

{
area/volume of the element, Ae

i , for FEM,
area/volume of the smoothing domain, As

k , for S-FEM,
(15.43)

and NQ is the number of quadrature domains that is defined by

NQ =
{

Number of the elements, Ne, for FEM,
Number of the smoothing domains, Ns, for S-FEM. (15.44)

It can be shown that the relative velocity error is bounded by [17]

γe = en

ee
=

√∫
Ω

(
v∗exact − v∗h

)T (vexact − vh
)

dΩ

√∫
Ω

vTv dΩ
≤ C′

1

(
kwh
pn

)

+ C′
2φ

(
kwh
pn

)2

, (15.45)

where pn is the order of the interpolation used in the elements, C′
1 and C′

2
are constants independent of the wave number kw and the characteristic
length of mesh size h. Note that in our numerical analysis, the integration
in Equation 15.45 is performed in the same way as in Equation 15.42.

It is clearly shown that the relative error is bounded by two terms: the
first term is the interpolation error, which defines the difference between the
interpolation and the exact solution; the second term is generally known as
the dispersive error, which relates to the numerical error in approximating
the phase of the wave. It is shown in Refs. [13,18] that if kwh < 1, the relative
error for acoustics problems can be expressed by

γe ≤ C1kwh + C2k3
wh2. (15.46)

It is clearly seen that the error bound in the second terms depends heavily
on the wave number kw and mesh size h. The interpolation error (relates to
kwh) is called the preasymptotic estimate, and the dispersive error (relates
to k3

wh2) is called asymptotic estimate [24]. The interpolation error can be con-
trolled by keeping kh

w constant. This is in fact the usual “rule of thumb” that
prescribes the relation between the wave number and mesh size. Because
of the presence of the second term in Equation 15.46, following the rule of
thumb and keeping kwh constant alone are not sufficient to control the error,
because the dispersive error will increase proportionally with the increase
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S-FEM for Acoustics Problems 621

of kw. Therefore, following the usual “rule of thumb” is necessary for a
numerical model, but is not sufficient. In this chapter, we rely mainly on
the “right-stiffness” behavior of ES-FEM/FS-FEM to suppress the disper-
sive error and hence to improve the solution accuracy. It will be shown
in the next section that the accuracy of acoustics problem is improved
significantly as compared with the standard FEM using the same mesh.

15.7 Numerical Examples

We choose now ES-FEM and FS-FEM for solving 2D and 3D acoustics
problems, respectively. This is because the ES-FEM/FS-FEM models have
been found in previous chapters to have “close-to-exact” stiffness [25,26],
which is essential to reduce the dispersive error. In this section, a number
of acoustic examples problems will be used to examine the effectiveness
of ES-FEM/FS-FEM. Two examples with analytical solutions will be used
first to validate and to investigate in great detail the accuracy and conver-
gence of the ES-FEM solution. ES-FEM/FS-FEM is then used to solve two
practical problems: one is the 2D problem of acoustic fields in a car pas-
senger compartment (ES-FEM), and the other is the 3D problem of noise in
an engine chamber (FS-FEM). The examples presented in this section are
similar to those reported in Ref. [27].

In our analysis, we often use nondimensional quantities. Suppose that
l is the length of the problem domain (or media), and the Cartesian 2D
coordinates are nondimensionalized by

ξ = x/l, η = y/l. (15.47)

Similarly, the wave number kw is also nondimensionalized by

κ = kwl, (15.48)

where κ is the dimensionless wave number. Note that as per usual conven-
tion in FEM or S-FEM, the mesh size h is already relative to the dimension
of the problem l, by default.

15.7.1 Problem with the Dirichlet Boundary Condition

Consider that a time-harmonic wave propagates in a 1D domainΩ = (0, 1).
The governing Helmholtz equation has the form of

d2P

dξ2 + κ2P = 0 in Ω (0 ≤ ξ ≤ 1). (15.49)
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622 Smoothed Finite Element Methods

The Dirichlet boundary condition for the field variable pressure is given
for the left end of the domain as

P (0) = 1, (15.50)

and the Neumann boundary condition for the pressure gradient is given
for the right end of the domain and is described as follows:

dP
dξ

(1) = 0. (15.51)

Because this 1D problem is very simple, we can easily obtain the
analytical solution that is given as follows:

P (ξ) = cos(κξ) + tan κ sin(κξ). (15.52)

It is very easy to verify that Equation 15.52 satisfies Equations 15.49 and
15.51. In our numerical analysis, we model the 1D problem as a 2D problem
with a very elongated domain meshed with triangular elements, as shown
in Figure 15.1. The boundary conditions 15.50 will be applied on the whole
left edge of the elongated 2D domain, and the boundary conditions 15.51
will be applied on the whole right edge. Because the original problem is
1D, the pressure field is independent of the y-coordinate. To simulate this,
we apply

dP
dη

= 0 on both the upper and lower edges of the 2D domain. (15.53)

In the computation, the following parameters are used: the density of
fluid is 0.004 kg/m3, the speed of sound in the media is 340 m/s, and the
mesh is uniform with a nodal spacing controlled at 0.03. A typical 2D mesh
for solving this 1D problem is given in Figure 15.1. In this study, we will
keep the aspect ratio of the elements unchanged, meaning that when we
increase the mesh density in the ξ-direction, we will do the same in the η-
direction. Solutions at three different frequency values [400 Hz (κ = 7.39),
800 Hz (κ = 14.78), and 1200 Hz (κ = 22.18)] will be computed using ES-
FEM-T3. For the purpose of comparison, linear FEM-T3 solutions are also
computed using the same mesh and settings. When plotting the solution,
we use those along the bottom edge of the elongated 2D domain.

FIGURE 15.1 A typical 2D mesh for solving the 1D example problems.
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S-FEM for Acoustics Problems 623

The numerical results of acoustic pressure using ES-FEM and FEM at
different frequency values are plotted in Figure 15.2, together with the exact
solutions. It can be found that (1) for the problem of low frequency at 400 Hz
(low wave number), ES-FEM and FEM give similar results, both of which
are in very good agreement with the exact solution as shown in Figure
15.2a; (2) with the increase of frequency, the numerical solutions of ES-
FEM and FEM depart from the exact solution. Compared to FEM, ES-FEM
produces much more accurate results, owing to the very “close-to-exact”
stiffness of the ES-FEM model, as shown in Figure 15.2b and c.

The convergence and accuracy of the ES-FEM are next examined using
four models with different numbers of uniformly distributed nodes (103,
365, 1369, and 5297 nodes). The frequencies are set at 400 Hz (κ = 7.39)
and 800 Hz (κ = 14.78). The results obtained from both ES-FEM and
FEM in terms of the global error defined in Equation 15.42 are plotted
together in Figure 15.3. From Figure 15.3 it can be found that at low
frequency (400 Hz), ES-FEM achieves greater accuracy and a similar con-
vergence rate compared with FEM; with the increase of frequency, ES-FEM
can achieve much better accuracy and a higher convergence rate. These
results also show that the error of the ES-FEM solution is less sensi-
tive to the increase of frequency compared with FEM, which is in line
with our predictions based on the error analysis and the theorem for
ES-FEM.

Figure 15.4 plots the relative error of the numerical results against non-
dimensional wave number (with a fixed mesh size), obtained using both

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1–1.5
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FEM-T3
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x/L

FIGURE 15.2 Exact and numerical solutions for the acoustic pressure at different excitation
frequencies for the time-harmonic 1D problem. (a) 400 Hz; (b) 800 Hz; and (c) 1200 Hz.
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FIGURE 15.2 (Continued)

ES-FEM and FEM with exactly the same settings. The cases of κh = 1 and
κ3h2 = 1 are also indicated in Figure 15.4. It can be observed that the relative
errors at low wave numbers obtained from FEM and ES-FEM are all small.
With the increase of wave number, the relative errors increase dramatically
for the FEM solution, but the relative error for the ES-FEM solution is much
smaller than that of FEM, although it also increases a little. These findings
again show clearly that ES-FEM is much less sensitive to the wave number
(or frequency), compared to FEM.
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FIGURE 15.3 Comparison of accuracy and convergence of the velocity field at different
frequencies between ES-FEM and FEM.
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FIGURE 15.4 Relative error in numerical solutions in relation to nondimensional wave
numbers obtained using ES-FEM and FEM based on the same T3 mesh.

15.7.2 Problem with the Neumann Boundary Condition

We next consider the problem of a rectangular chamber filled with water
as shown in Figure 15.5. The dimensions of this chamber are length l = 1 m
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FIGURE 15.5 A thin acoustic chamber filled with water with the Neumann boundary
conditions at two ends.

and width b = 0.1 m. The left edge of the chamber is excited by a harmonic
motion with a given normal velocity of vn = 10 m/s (amplitude). The right
edge of the chamber is a rigid wall, and the normal velocity of the media
(water) there is set as vn = 0. The density of water ρ is 1000 kg/m3 and the
speed of sound in water is 1500 m/s. Since the chamber is very elongated,
the exact solution for the 1D problem is an excellent reference. The 1D
analytical solution for this problem can be obtained very easily, and the
pressure and velocity fields are given as follows:

P = −jρcvn
cos[κ(1 − ξ)]

sin(κ)
, (15.54)

v = vx = vn sin[κ(1 − ξ)]
sin(κ)

. (15.55)

At free status, the 1D chamber has natural frequencies of

f = c
2

√(m
l

)2 +
(n

b

)2
, m = 0, 1, 2, . . . n = 0, 1, 2, . . . (15.56)

where f denotes the natural frequencies of this chamber, and m and n are
integers but cannot be zero simultaneously. Note that in the vicinity of
the above natural frequency values, the problem becomes ill-conditioned.
Therefore, significant increases in solution error in a numerical method are
expected, which serves as a good test for numerical models.

15.7.3 Convergence Study

Four models with 103, 365, 1369, and 5297 uniformly distributed nodes are
also created for this problem to examine the convergence of the solution.
Figure 15.6 plots the convergence curves for the global relative error in
the velocity solution defined in Equation 15.42 for both ES-FEM and FEM.
The excitation frequencies are 2000 and 4000 Hz. It can be found that the
solutions of both models converge, and the ES-FEM gives more accurate
results than the FEM.
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FIGURE 15.6 Comparison of convergence of the solutions obtained using FEM and ES-FEM.

15.7.4 Accuracy of the Acoustic Pressure Field

The numerical solutions of acoustic pressure along the x-axis computed
using ES-FEM and FEM and the same mesh are listed in Table 15.1 (for
2000 Hz or κ = 8.38) and Table 15.2 (for 4000 Hz or κ = 16.76). In Tables
15.1 and 15.2, the local relative error in acoustic pressure ep is defined as

ep =
∣∣Pexact − Pnum

∣∣
Pexact × 100%, (15.57)

TABLE 15.1

Comparison of the Solutions of Acoustic Pressure along the ξ-Axis (at 2000 Hz)

Local Error ep (%)
Coordinates ES-FEM FEM Exact Solution

[x1, x2] (m) (×107) (×107) (×107) ES-FEM FEM FEM/ES-FEM

(0.1, 0.0) −0.56109 −0.60532 −0.53523 4.83157 13.09530 2.71036
(0.2, 0.0) −1.58860 −1.56680 −1.58230 0.39815 0.97959 2.46032
(0.3, 0.0) −1.56910 −1.50540 −1.58230 0.83423 4.86001 5.82576
(0.4, 0.0) −0.51549 −0.46131 −0.53523 3.68813 13.81089 3.74468
(0.5, 0.0) 0.87790 0.88393 0.86603 1.37062 2.06690 1.50800
(0.6, 0.0) 1.69270 1.65210 1.69420 0.08854 2.48495 28.06667
(0.7, 0.0) 1.39190 1.34180 1.40130 0.67081 4.24606 6.32979
(0.8, 0.0) 0.17373 0.15555 0.18105 4.04308 14.08451 3.48361
(0.9, 0.0) −1.15890 −1.13230 −1.15900 0.00863 2.30371 267.00000
(1.0, 0.0) −1.72110 −1.68090 −1.73210 0.63507 2.95595 4.65455
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628 Smoothed Finite Element Methods

TABLE 15.2

Comparison of the Solutions of Acoustic Pressure along the ξ-Axis (at 4000 Hz)

Local Error ep (%)
Coordinates ES-FEM FEM Exact Solution

[x1, x2] (m) (×107) (×107) (×107) ES-FEM FEM FEM/ES-FEM

(0.1, 0.0) −1.43650 −1.37890 −1.40130 2.51195 1.59852 0.63636
(0.2, 0.0) 1.48190 2.43840 1.15900 27.86022 110.38827 3.96222
(0.3, 0.0) 1.16790 1.09270 1.15900 0.76790 5.72045 7.44944
(0.4, 0.0) −1.69360 −2.56670 −1.40130 20.85920 83.16563 3.98700
(0.5, 0.0) −0.86094 −0.79144 −0.86603 0.58774 8.61287 14.65422
(0.6, 0.0) 1.84960 2.65960 1.58230 16.89313 68.08443 4.03030
(0.7, 0.0) 0.52565 0.47927 0.53523 1.78988 10.45532 5.84134
(0.8, 0.0) −1.94490 −2.71580 −1.69420 14.79754 60.29985 4.07499
(0.9, 0.0) −0.17319 −0.16049 −0.18105 4.34134 11.35598 2.61578
(1.0, 0.0) 1.94790 2.73470 1.73210 12.45886 57.88349 4.64597

where Pexact is the exact (or reference) pressure solution and Pnum is the
numerical solution. From Tables 15.1 and 15.2, it can be clearly observed
that the ES-FEM solutions are much (around 2–30 times) more accurate
that those of the FEM model.

Figure 15.7a plots the relative error in pressure defined in Equation 15.57
along the x-axis obtained using both ES-FEM and FEM, at a frequency of
2000 Hz (κ = 8.38). Figure 15.7b plots the acoustic particle velocity repre-
senting the gradient of acoustic pressure. It is clearly shown that at the
maximum velocities where the gradient of pressure is highest, large errors
in pressure solution are registered. For this problem, the excitation point
is at the left end with a normal velocity (or pressure gradient) given as
vn = 10. At the right end, the velocity (or pressure gradient) is set to zero.
Therefore, the error in the pressure solution is generally large near the
left end and smaller at the right end. These findings are true for both ES-
FEM and FEM. However, the relative errors in pressure for ES-FEM are
much smaller than that for FEM. Figure 15.8 gives the same plots as Figure
15.7, but with a higher excitation frequency of 4000 Hz (κ = 16.76). Similar
observations can be made, except that the errors in pressure are larger, and
it is clearer that the ES-FEM is much more accurate than the FEM. This is
because the edge-based gradient smoothing operation used in the ES-FEM
made the model “softer,” leading to more accurate solutions.

15.7.5 Natural Frequency Analysis

Natural frequency analysis for acoustic systems is routinely performed
in the design of engineering structures, such as music halls, car passen-
ger compartments, aircraft cabins, etc., because sound quality design has
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FIGURE 15.7 (a) Distribution of the relative error in acoustic pressure obtained using
ES-FEM and FEM and (b) velocity distribution along the ξ-axis (2000 Hz).

become more and more important. Natural frequency analysis provides
the inherent acoustic characteristics for such systems or products, in the
form of natural frequencies (or natural frequencies) and acoustic modes (or
eigenmodes). The eigen or natural frequencies are the essential indicators of
the “stiffness” of acoustic systems. It is known that the FEM model behav-
iors are “overly stiff,” which can be clearly observed from the higher values
of the predicted natural frequencies. We therefore conduct an acoustic nat-
ural frequency analysis using ES-FEM, in comparison with the FEM using
the same mesh.

We consider again the same 2D acoustic chamber. It is now discretized
with linear elements of an average mesh size of 0.025 m that satisfies the
usual “rule of thumb” for the frequency limit at 9554 Hz. Table 15.3 lists
the first 20 natural frequencies obtained from ES-FEM and FEM with the
same mesh. The analytical solutions obtained using Equation 15.56 are
also listed in Table 15.3. It can be found from Table 15.3 that the error in
natural frequencies obtained using ES-FEM is largely less than 1%, but
those obtained using FEM can be more than 6%. The ES-FEM solution is
about 4–60 times more accurate than the FEM solution. This example is a
very convincing indication that the ES-FEM model has a very close-to-exact
stiffness for acoustic systems. These findings echo those given in Section
7.7 for structural vibration problems.
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FIGURE 15.8 (a) Distribution of the relative error in acoustic pressure obtained using ES-
FEM and FEM and (b) velocity distribution along the ξ-axis (4000 Hz).

15.7.6 Error Control for ES-FEM Models

To properly control the error in an ES-FEM model, a more detailed study
on the relative error in the velocity field defined in Equation 15.45 is con-
ducted. Four models with different numbers of uniformly distributed (103,
365, 1369, and 5297) nodes are employed in this study. The results for
the relative error obtained for different excitation frequencies using the
ES-FEM are plotted in Figure 15.9. It is found that at lower frequencies,
the relative error is smaller, and a larger mesh size can be used. With the
increase of frequency, the relative error increases, but the level of error can
be controlled using more nodes for the ES-FEM according to the excitation
frequency.

To devise an effective means for such an error control, the relation
between the frequency (or nondimensional wave number κ) and mesh size
needs to be studied in more detail. Based on Equation 15.46, the numer-
ical error is related to two nondimensional terms: κh and κ3h2. Keeping
κh < 1 and constant while varying the wave number and mesh size, the
relative error will increase linearly with wave number κ due to the pres-
ence of the term κ3h2. On the other hand, keeping κ3h2 constant while
varying the wave number and mesh size, the relative error shall depend

© 2010 by Taylor and Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
06

 1
1 

M
ay

 2
01

6 



S-FEM for Acoustics Problems 631

TABLE 15.3

Natural Frequencies in a 2D Chamber Calculated using FEM and
ES-FEM with the Same Mesh

Error of FEM
Error of ES-FEM Error of

Mode Exact (Hz) FEM (Hz) FEM (%) (Hz) ES-FEM (%) Error of ES-FEM

1 750.0 750.2 0.02933 750.0 0.00000 —
2 1500.0 1501.8 0.12000 1500.0 0.00000 —
3 2250.0 2256.1 0.27111 2250.1 0.00444 61.0
4 3000.0 3014.5 0.48333 3000.3 0.01000 48.3
5 3750.0 3778.3 0.75467 3750.6 0.01600 47.2
6 4500.0 4549.2 1.09333 4501.0 0.02222 49.2
7 5250.0 5328.5 1.49524 5251.6 0.03048 49.1
8 6000.0 6117.8 1.96333 6002.3 0.03833 51.2
9 6750.0 6918.8 2.50074 6753.3 0.04889 51.2

10 7500.0 7733.2 3.10933 7504.6 0.06133 50.7
11 7500.0 7836.2 4.48267 7582.0 1.09333 4.1
12 7537.4 7878.3 4.52278 7618.4 1.07464 4.2
13 7648.5 8004.3 4.65189 7726.9 1.02504 4.5
14 7830.2 8211.0 4.86322 7904.5 0.94889 5.1
15 8077.7 8494.0 5.15370 8147.0 0.85792 6.0
16 8250.0 8562.9 3.79273 8256.1 0.07394 51.3
17 8385.3 8848.0 5.51799 8448.8 0.75728 7.3
18 8746.4 9267.3 5.95559 8804.2 0.66084 9.0
19 9000.0 9409.7 4.55222 9007.9 0.08778 51.9
20 9154.9 9746.6 6.46321 9207.3 0.57237 11.3

only on the term κh and, hence, can be well controlled. Based on these sim-
ple analyses, a numerical examination is conducted to reveal the relation
between the relative error and κh and κ3h2, using both ES-FEM and FEM.
Figure 15.10 plots the relative errors obtained by keeping, respectively,
κh and κ3h2 constant. It is clearly seen that when κ3h2 is kept constant,
the relative errors for both ES-FEM and FEM are quite small. Especially,
the error in the ES-FEM solution is very small and well under control.
When κh is kept constant, the relative errors of both ES-FEM and FEM
increase noticeably. It can be concluded that keepingκ3h2 constant is a much
more efficient way to obtain accurate results for both ES-FEM and FEM
models. We also observed that keeping κh constant in ES-FEM achieves
a similar accuracy as keeping κ3h2 constant in FEM. In other words, the
dispersive error in the ES-FEM solution is quite negligible compared to the
FEM solution.
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FIGURE 15.9 The relative error in the velocity field at different frequency values is obtained
using ES-FEM.
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FIGURE 15.10 Comparison of relative error obtained using ES-FEM-T3 and FEM-T3 by
keeping κh and κ3h2 constant.
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S-FEM for Acoustics Problems 633

15.7.7 Sensitivity to Nodal Irregularity

To evaluate the influence of the mesh irregularities on the solution accu-
racy, a test is conducted to compute the numerical results using both a
regular mesh and an irregular mesh. The irregularly distributed nodes are
generated based on the regularity with random alternations to the nodal
coordinates. The coordinates of the irregular nodes are computed using
the following expression:

x′ = x +Δx · rc · βir,

y′ = y +Δy · rc · βir,

where x′ and y′ are the coordinates of the irregular nodes; x and y are
original regular coordinates; Δx and Δy are the initial regular nodal spac-
ing in the x- and y-directions; rc is a computer-generated random number
between −1.0 and 1.0, and βir is a prescribed irregularity degree whose
value is varied between 0.0 and 0.5. A bigger value of βir leads to a more
irregular node distribution. Figure 15.11 presents the result of two mesh
models of different nodal irregularity.

This nodal sensitivity study is performed at a frequency of 4000 Hz.
The acoustic pressure distributions along the x-axis (bottom edge) are
computed using both ES-FEM and FEM with different types of meshes.
The results are plotted in Figure 15.12a and b, together with the exact
solution. The results show that the accuracy of the FEM results signifi-
cantly deteriorates when the irregular mesh is used. When the ES-FEM is
used, the accuracy of acoustic pressure for irregular nodes changes only
a little as compared with regular nodes. These findings imply that the
present ES-FEM works well even with the distorted elements. The FEM,
however, is well known and is confirmed here to be sensitive to mesh
distortions.

(a)

(b)

FIGURE 15.11 Two mesh models of different nodal irregularity; (a) regular mesh (βir = 0.0)
and (b) irregular mesh with βir = 0.4.
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FIGURE 15.12 Acoustic pressure distribution obtained using ES-FEM and FEM along the
ξ-axis (bottom edge) of the elongated 2D chamber (4000 Hz); (a) full range distribution and
(b) zoomed-in distribution.

15.7.8 The 2D Car Acoustic Problem

We now consider a practical problem of acoustic pressure distribution
in a car passenger compartment [7]. The compartment is excited by the
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S-FEM for Acoustics Problems 635

vibrating engine. The geometry of the passenger compartment is 3D and
can be approximately considered as prismatic. For simplicity, it is sim-
plified as a 2D problem. Figure 15.13a illustrates the 2D geometry of the
problem domain, and the setting of the problem. The front panel of the
passenger compartment is subjected to a given velocity of 0.01 m/s, sim-
ulating the vibration coming from the engine. The roof of the passenger
compartment is attached with absorbing material with an admittance of
0.00144 m3/(Pa s). The citation frequencies are 200 and 400 Hz. Figure
15.13b shows the mesh used in this study with 305 nodes and an average
spacing of 0.1 m that satisfies the usual “rule of thumb” for the considered
frequency values.

Figure 15.14 plots the contour of the acoustic pressure within the pas-
senger compartment for an excitation frequency of 200 Hz. Contour Figure
15.14a is obtained using ES-FEM, while contour Figure 15.14b is obtained
using FEM. Because the analytical solution is unavailable for this problem,
a reference solution obtained using FEM with a very fine mesh (22,524
nodes) is plotted in Figure 15.14c for comparison. Figure 15.15 plots the
same set of results but for the excitation frequency of 400 Hz. From Fig-
ures 15.14 and 15.15, it is found that the pressure contours obtained using
ES-FEM are much closer to those using FEM for both the cases of 200 and
400 Hz.

v = 0.01 m/s

Absorbing material

The defined path ab

L = 3.153 m

a 
b 

Driver’s ear position 

(a) 

(b) 

FIGURE 15.13 A 2D car passenger compartment model: (a) geometry, boundary conditions;

the results on the
→
ab path will be examined and (b) triangular mesh used in the simulation.
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FIGURE 15.14 Acoustic pressure distribution (200 Hz): (a) EF-FEM (305 nodes); (b) FEM
(305 nodes); and (c) reference solution obtained using FEM with 22,524 nodes.

To examine the results quantitatively, the real part of pressure distributed

along the defined path
→
ab are computed using both ES-FEM and FEM. The

results are plotted in Figure 15.16. It is shown clearly in Figure 15.16a that
the errors of the real part of the pressure obtained from ES-FEM and FEM
are all quite close to the reference result, at the frequency of 200 Hz. For the
frequency of 400 Hz, the results obtained from the ES-FEM are still very
close to the reference result. In contrast, the FEM solution is very far from
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FIGURE 15.15 Acoustic pressure distribution (400 Hz): (a) EF-FEM (305 nodes); (b) FEM
(305 nodes); (c) reference solution obtained using FEM with 22,524 nodes.
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FIGURE 15.16 Distribution of the real part of acoustic pressure along the path
→
ab marked in

(a) 200 Hz and (b) 400 Hz.

the reference solution. This 2D practical problem demonstrates also that
the ES-FEM is much more accurate than FEM, using the same mesh.

Frequency response is now computed over a full frequency range from
1 to 800 Hz with intervals of 1.0 Hz. In this case, we examine the response
(sound pressure level) at the driver’s ear point (see Figure 15.13b). The
boundary conditions for this 2D car problem are the same as the previ-
ous one including the Neumann and admittance boundary conditions.
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S-FEM for Acoustics Problems 639

The average mesh size is now 0.1 m, which gives the frequency limit of
541 Hz (based on the usual “rule-of-thumb”). The computed results are
plotted in Figure 15.17 for both ES-FEM and FEM using the same mesh.
As the analytical solution is unavailable, the reference solution using FEM
with 22,524 nodes is obtained for comparison. As shown in Figure 15.17,
the ES-FEM produces much more accurate results compared to FEM over
the full frequency range. We also note that when the frequency exceeds
400 Hz, which is a little smaller than the 541 Hz that is the limit for the
FEM to produce acceptable results based on the rule of thumb, the FEM
solution deviates clearly away from the reference solution. The ES-FEM is
good up to 550 Hz, which is slightly beyond the limit of 541 Hz. This find-
ing shows that when ES-FEM is used, the rule of thumb can still be used
as a reasonably good gauge on mesh density needed for solutions at the
desired frequency. In other words, the error in the ES-FEM solution is newly
controlled by the interpolation error, and hence the “usual” rules apply.

15.7.9 The 3D Engine Chamber Problem

In this final example, we apply FS-FEM to a practical 3D problem using a
3D in-house code developed by Liu’s group [27]. In this 3D example, we
consider the acoustical pressure distribution in a car engine chamber, with
the vibration of the engine being the major noise source. The geometry of
the 3D car engine chamber and the settings of the problem are shown in
Figure 15.18a. The engine is located at the center of the chamber floor, and
a velocity excitation of 0.01 m/s on the surface of the engine is applied to

0 100 200 300 400 500 600 700 800
65

70

75

80

85

90

95

100

105

110

Frequency

ES-FEM-T3
FEM-T3
Reference

Re
sp

on
se

 (d
B,

 re
f =

 2
e–

5)

FIGURE 15.17 Acoustic frequency response registered at the driver’s ear for the 2D car
problem obtained using ES-FEM and FEM with the same mesh.
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v = 0.01 m/s
on the engine surface 

Absorbing sheet(a) 

(b) 

FIGURE 15.18 Acoustics in a 3D engine chamber: (a) geometry and problem setting and
(b) mesh of tetrahedral elements.

simulate the vibration on the engine surface. A sheet of absorbing material
with an admittance of 0.00144 m3/(Pa s) is attached to the engine hood. The
3D model is discretized using tetrahedral elements with 1211 nodes. The
mesh is relatively “regular” and the average nodal spacing is controlled
at 0.05 m. The analyses are performed using both FEM and FS-FEM at a
frequency of 400 Hz. A similar example has also been studied in Ref. [8]
using a meshless method.

Figure 15.19 plots the distribution of the real part of the acoustic pressure
obtained using FS-FEM (Figure 15.19a) and FEM (Figure 15.19b), all using
1211 nodes. The reference results are obtained using the FEM with a very
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S-FEM for Acoustics Problems 641

fine mesh of 21,197 nodes, and the results are plotted in Figure 15.19c.
Figure 15.19 reveals that for this 3D case, the overall contour lines of the
FS-FEM solution are much closer to the reference solutions, compared to
those of FEM results, especially in the high pressure gradient regions.

Pressure(a)
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FIGURE 15.19 Distribution of the real part of acoustic pressure computed using different
models (frequency=400 Hz): (a) FS-FEM using 1211 nodes; (b) FEM using 1211 nodes; and
(c) reference solution using 21,197 nodes.
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FIGURE 15.19 (Continued)

15.8 Remarks

In this chapter, both the standard and smoothed Galerkin weak forms for
Helmholtz equations are first presented, and the S-FEM models are then
formulated for acoustics problems. Aiming to solve the dispersive error,
the “star” performers ES-FEM and FS-FEM are chosen to solve a number
of acoustics problems. The accuracy, convergence, and error control in ES-
FEM and FS-FEM are examined in detail. The following remarks may be
made from our study:

a. The S-FEM models use triangular types (triangular for 2D and
tetrahedral for 3D) of elements and can be effectively applied for
acoustics problems as long as the softening effects of S-FEM can be
well made use of.

b. ES-FEM and FS-FEM have a lot of similarity to the FEM model, and
can be implemented in a straightforward way with little change to
the FEM code for acoustics problems.

c. ES-FEM and FS-FEM are much less sensitive to the wave number,
compared with FEM, and hence can effectively suppress the disper-
sive error. Hence, they can achieve higher accuracy than the FEM,
especially for larger wave number.

d. ES-FEM and FS-FEM can also provide a much better solution in
frequency response and natural frequencies for acoustics problems.
This is because the edge-based and face-based gradient smoothing
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techniques used in ES-FEM and FS-FEM produce a close-to-exact
stiffness in the model.

e. The usual rule of thumb cannot be applied to the FEM model
for high-frequency excitations, but it is still applicable to the ES-
FEM and FS-FEM models. This means that the error in the ES-FEM
and FS-FEM models is still largely controlled by the interpolation
error for the problem governed by Helmholtz equations such as the
acoustics problems.

f. ES-FEM is found to be less sensitive to distortion of element,
compared to FEM.

g. For the practical acoustics problems, ES-FEM and FS-FEM are
much more accurate than FEM with the same nodes. We have also
shown that the ES-FEM can be applied to problems of complicated
geometry due to the use of triangular mesh.

The S-FEMs have been applied to many other more complicated acous-
tics problems. A coupled ES/FS-FEM has been recently developed for
structural-acoustics problems [28]. The ES-FEM is also coupled with the
BEM method for fluid–structure interaction problems [29]. In addition, a
coupled FS-FEM and FEM model has also been developed for the analysis
of 3D structural-acoustics problems [30].

Using the upper bound property of NS-FEM [31], further studies on using
NS-FEM for obtaining the lower bound for natural frequencies of structures
or acoustic media and upper bound for transient dynamics problems have
also been conducted recently [32]. Following Ref. [33], an αFEM has also
been formulated for acoustics problems, and it is found that the α FEM can
control very well both the interpolation and the dispersion errors [34].

Finally, we may note that because of the features of ES-FEM-T3 and FS-
FEM-T4 for acoustics problems, these models are “star” performers and
may be the best linear model for complicated acoustics problems, in terms
of (1) adaptation to complicated geometry; (2) suitability for automatically
meshing [35]; (3) stability; (4) solution accuracy; (5) computational effi-
ciency; and (6) suppression of dispersion errors. We can also quite safely
expect that they should work well for other types of wave propagation
problems.
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