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Preface

Gas turbines are very important components of modern infrastructure and 
are widely used in power generation. In particular, gas turbines are used for 
propulsion in jet engines that power most commercial and military aircraft. 
Faults in gas turbine engines can result in major problems, such as delays 
and cancellations of flights. Engine in-flight shutdowns (IFSDs) are par-
ticularly problematic and can have an impact on flight safety. Unscheduled 
engine removals add to the cost of air transport.

A systematic analysis of engine data has shown that most engine 
 malfunction is preceded by a so-called single fault, which is a fault in one 
engine module or component. These single faults occur as sharp changes in 
measurement deviations in the jet engine, when compared to a baseline good 
engine. In this book, we present and illustrate a number of algorithms for 
fault diagnosis in gas turbine engines. These methods focus on the aspects of 
filtering or cleaning the measurement data and on fault isolation algorithms 
that use simple engine models for finding the type of fault in the engine. 
Novel methods for detecting the damage by finding the time location of a 
sudden change in the signal are also given. These methods include those 
based on Kalman filters, neural networks, and fuzzy logic and a hybrid soft 
computing approach.

The book provides a discussion of the different methods in data filtering, 
trend shift detection, and fault isolation developed over the past decade. 
Each method is demonstrated through numerical simulations that can be 
easily done by the reader using worksheets such as MS Excel or through 
MATLAB®. The book provides a variety of new research tools for use in the 
condition monitoring of jet engines. Though the measurements and  models 
are specific to a turbofan engine, the algorithms given in this book will 
be useful to all engineers and scientists working on fault diagnosis of gas 
turbine engines. The data cleaning algorithms based on nonlinear signal 
processing shown in this book are also applicable to condition and health 
monitoring problems in general, and as in all such problems, sharp changes 
in measurement data herald the onset of a fault.

This book will be useful for engineers and scientists interested in gas 
turbine diagnostics. It will also be of interest to researchers in signal pro-
cessing and those working on the fault isolation of systems. The algorithms 
presented in this book have broad appeal and can be used for condition and 
health monitoring of a variety of systems.

I acknowledge Dr. Allan Volponi and Hans Depold, Pratt & Whitney, 
who introduced me to the field of gas turbine diagnostics. I am grateful to 
my students Rajeev Verma, Niranjan Roy, Buddhidipta Dan, Payuna Uday, 
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V.N.  Guruprakash, and V.P. Surendar for testing the algorithms and 
generating the numerical results. I am also grateful to K. Bhanu Priya for 
helping typeset the document. Finally, I am grateful to the Indian Institute of 
Science for furnishing an ambient atmosphere for doing research.

Prof. Ranjan Ganguli
Bangalore

MATLAB® is a registered trademark of The MathWorks, Inc. For product 
information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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1

1
Introduction

Diagnostics of gas turbine engines is important because of the high cost 
of engine failure and the possible loss of human life. In this book, we will 
focus on aircraft or jet engines, which are a special class of gas turbine 
engines. Typically, physical faults in a gas turbine engine include prob-
lems such as erosion, corrosion, fouling, built-up dirt, foreign object dam-
age (FOD), worn seals, burned or bowed blades, etc. These physical faults 
can occur individually or in combination and cause changes in perfor-
mance characteristics of the compressors, and in their expansion and 
 compression efficiencies. In addition, the faults cause changes in the tur-
bine and exhaust system nozzle areas. These changes in the performance 
of the gas turbine components result in changes in the  measurement 
parameters, which are therefore dependent variables. This chapter intro-
duces some basic concepts that are necessary for an understanding of 
gas turbine  diagnostics. First, the importance of signal processing in 
noise removal from  measurements is highlighted. Next, the typical gas 
turbine  diagnostic process is explained. The widely used linear filters 
and the median  filter are then introduced. This is followed by an outline 
of the  least-squares approach and the Kalman filter. Finally, the role of 
influence coefficients  and the basics of vibration-based diagnostics are 
highlighted.

1.1 Background

Many problems in jet engines manifest themselves as changes in the gas 
path measurements [1–3]. Typical gas path measurements are exhaust gas 
temperature (EGT), low rotor speed (N1), high rotor speed (N2), and fuel flow 
(WF). These measurements are also called cockpit parameters, as they are 
displayed to the pilot. Some newer engines also have additional pressure and 
temperature probes between the compressors and turbines. However, the 
cockpit parameters are present in both newer and older engines, and there-
fore fault detection and isolation systems should be able to work for older 
engines, which are more susceptible to damage. Jet engine gas path analysis 
works on deviations in gas path measurements from an undamaged baseline 
engine to detect and isolate faults. These deviations in the measurements 
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from baseline are known as measurement deltas and are plotted vs. time, 
and the resulting computer graphics (known as trend plots) are used by 
power plant engineers to visually analyze the condition of the engine and 
its different modules. Unfortunately, noise contaminates the measurement 
deltas, thereby reducing the signal-to-noise ratio. This can hide key features 
in the signal from a person observing the data. A key objective of gas turbine 
diagnostics is to make decisions about the existence and location of faults 
from the noisy data.

A typical measurement delta has two main features. The first is because of 
long-term deterioration that can be considered to vary in time as a low-degree 
polynomial, with a linear approximation being very satisfactory [4, 5]. The 
second feature of the measurement delta is sudden step-like changes due 
to so-called single faults. Depold and Gass [6] conducted a statistical study 
of airline data and discovered that the main cause of many engine in-flight 
shutdowns was these single faults, which were preceded by a sharp change 
in one or more of the measurement deltas. Such a sharp trend change can 
also happen if the engine is repaired and tested on the ground in a test cell. 
Therefore, a typical jet engine measurement delta signal can be assumed to 
be a linear long-term deterioration along with sudden step changes due to 
a single-fault or a repair event.

The power plant engineer does not solely rely on observing trend plots 
to monitor the engine condition. Various diagnostic algorithms have been 
developed to estimate engine condition and identify faults from the health 
signals using weighted least squares [7, 8], Kalman filter [9], neural network 
[6, 10–12], fuzzy logic [13], and Bayesian [14] approaches. However, while all 
these algorithms attempt to handle uncertainty in the measurement del-
tas, their performance is often degraded as the noise in the data increases. 
This is also true for system identification of jet engines [15] that is done 
to produce better control and diagnostics models. In addition, these esti-
mation and pattern recognition algorithms are often optimal for Gaussian 
noise models and can degrade when non-Gaussian outliers are present in 
the data [16].

Classical signal processing has been dominated by the assumption of 
a Gaussian random noise model for defining the statistical properties of 
a real process. However, many real-world processes are characterized 
by impulsive noise that causes sharp spikes and outliers in the data. For 
example, data can be corrupted by impulsive noise during acquisition and 
transmission through communication channels [17]. Phenomena  such 
as atmospheric noise is also impulsive in nature. Fault detection and 
isolation methods that are optimized for random Gaussian noise can 
 suffer  severe  performance degradation under non-Gaussian noise. 
Therefore, signal processing of the measured data can be very useful for 
improving gas turbine diagnostics. In particular, impulsive noise should 
be removed.
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3Introduction

1.2 Signal Processing

In signal processing, filtering methods are used to preprocess the data to 
reduce noise. The term noise here is used in a general sense and includes 
any corruption to the signal that hinders the pattern recognition or state 
estimation process or leads to false artifacts being observed during visu-
alization. Traditionally, smoothing methods used by the gas turbine 
industry are moving averages and exponential smoothing [6]. The mov-
ing average is a special case of the finite impulse response (FIR) filter, and 
the exponential average is a special case of the infinite impulse response 
(IIR) filter. These filters will be explained later in this chapter. Depold and 
Gass [6] first addressed the problem of finding a filter that preserves the 
sharp trend shifts in gas path measurements due to a single fault. They 
showed that the exponential average filter has a faster reaction time than 
the widely used 10-point average and is therefore a better filtering method 
for processing data prior to trend detection and fault isolation. They also 
developed some rules of thumb to remove outliers from gas turbine mea-
surements. These rules were based on the logic that a shift in any one 
measurement without shifts in the other measurements would indicate an 
outlier.

However, both the FIR and IIR filters are linear filters and remove noise 
while blurring the edges in the signal. In addition, the human visual system 
is acutely sensitive to high frequency in the spatial form of edges [18]. Most 
of the low frequency in an image is discarded by the visual system before 
it can even leave the retina. Unfortunately, the presence of sporadic high-
amplitude impulsive noise in a signal can confuse the human visual system 
into seeing patterns where none are really present. Such noise can also trig-
ger an automated trend detection system to give a false alarm. Therefore, it is 
necessary to remove any such high-amplitude noise while preserving edges 
from the measurement deltas before subsequent data processing operations 
for fault detection and isolation.

Substantial research efforts have been conducted in the field of image pro-
cessing to find suitable alternatives to linear filters that are robust or resis-
tant to the presence of impulsive noise. Among these works, the approach 
that has received the most attention is that of median filters. Median filters 
are a well-known and useful class of nonlinear filters in the image process-
ing field [19–24]. They are useful for removing noise while preserving fine 
details in the signal. However, they are not well known in engineering health 
monitoring applications. Ganguli [25] used FIR-median hybrid (FMH) filters 
[20] for removing noise from gas turbine measurements while preserving 
trend shifts. In this study, step changes were considered in a constant signal 
as a representation of a single-fault event. Results showed that the FMH fil-
ter preserved the sharp trend shifts in the signal while the moving average 
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4 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

and exponential average filter smoothed the trend shifts. The problem of 
deterioration was not addressed. Furthermore, the FMH filter used in this 
study required up to 10 points of forward data and therefore had a 10-point 
time lag. Since jet engines often get only 1  or 2  points in each flight, the 
10-point time lag is very large and is more suitable for engines with online 
diagnostics systems or for systems where data are obtained rapidly. The cost 
of high-rate data acquisition remains quite high. In applications other than 
gas turbine engines, Nounou and Bakshi [26] used the FIR-median hybrid 
(FMH) filter to remove noise from chemical process signals. Manders et al. 
[27] used a median filter of length 5 to remove noise in temperature data 
for monitoring the cooling system of an automobile engine having installed 
thermocouples and pressure sensors. Ogaji et  al. [28] used FMH filters to 
remove noise from data measured by a global positioning system (GPS) that 
directly measures relative displacement and position coordinates for a tall 
building.

Nonlinear filters are not limited to median type filters. A special class of 
neural networks called the autoassociative neural network (AANN) [29, 30] 
has been used for noise filtering, using sensor replacement and gross error 
detection and identification. Lu et al. [11, 31] used autoassociative neural 
networks for noise filtering gas path measurements. The AANN performs 
a unitary mapping, which maps the input parameters onto themselves. 
The AANN is also capable of removing any outliers in the data, and per-
formed better at preserving trend shifts than the moving average or expo-
nential average filter. To train the AANN, noisy data are input to it and 
mapped to noise-free data at the output nodes. The number of input nodes 
and output nodes is equal to the number of measurements. The AANN has 
an input and output layer, two hidden layers, and a bottleneck layer. Thus, 
the data go to the input layer, then a hidden layer, then a bottleneck layer, 
followed by a hidden layer and the output layer. Lu et al. [11] used eight 
measurement nodes for the hidden layer and five nodes for the bottleneck 
layer, resulting in an 8-9-5-9-8  AANN architecture. The neural network 
therefore learns the noise characteristics of the data and is trained to give 
noise-free data from noisy data. We will discuss the AANN in more detail 
in Chapter 9.

Many filtering algorithms use a fixed-noise detection threshold 
obtained at a presumed noise density level. For example, wavelet-based 
noise removal methods [26, 32, 33] use orthogonal wavelet analysis, which 
finds coefficients related to undesired features in the signal. Nounou and 
Bakshi [26] showed that wavelet-based noise removal methods could be 
superior to the FMH filter for processing signals with sharp trend shifts. 
The wavelet-based noise removal has three parts: (1) orthogonal wavelet 
transform, (2) thresholding of wavelet coefficients, and (3) inverse wave-
let transform. By setting to zero the wavelet coefficients at the highest 
orthogonal level of decomposition, noise can be removed from the signal. 
However, finding a threshold depends on the noise level and nature of 
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5Introduction

the noise and is a difficult problem. Neural network-based filtering meth-
ods are also sensitive to the noise levels in the training data. For example, 
the AANN used by Lu et  al. [11] was trained with representative noisy 
data using  simulated signals. However, when the noise characteristic 
becomes different from that used in algorithm development, which can 
happen in practical  applications, the performance of these algorithms can 
show degradation.

1.3 Typical Gas Turbine Diagnostics

Urban [34] states the scope of gas turbine diagnostics in his research paper 
as follows: “Therefore, it follows that if physical problems result in degraded 
component performance, which in turn produce changes in the measurable 
engine parameter, then it is possible to utilize these measurable changes to 
isolate the degraded component characteristics, in whatever combination, 
and permit correction of the causative problems.”

Figure 1.1 shows a schematic representation of the gas turbine diagnos-
tics process. The measurement deltas are processed using smoothing algo-
rithms based on moving or exponential averages [6]. In some cases, the 
diagnostics function may be completely performed by power plant engi-
neers. In these cases, the measurement deltas are visualized using com-
puter graphics and the power plant engineer uses his or her experience to 
detect engine deterioration or faults. In case a fault or severe performance 
degradation is detected, the power plant engineer may suggest prognostics 
and maintenance action. In other cases, the power plant engineer may also 
have access to automated fault detection and isolation software that can 
estimate the condition of the different modules and also detect and isolate 
other faults. In addition, expert systems may be available for interpreting 

Measurement
Deltas

Data
Smoothing

and Filtering

Automated
Fault Detection

and Isolation

Automated
Fault

Resolution and
Prognostics

Human Fault
Resolution and

Prognostics

Trend Plots
and Human

Visualization

FIGURE 1.1
Schematic representation of gas turbine diagnostics process. (From Ganguli, R., Journal of 
Propulsion and Power 19(5):930–937, 2003. With permission.)
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6 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

the output of the fault detection and isolation algorithms for suggesting 
maintenance and prognostics action. In general, both the automated and 
human components of the diagnostics system should be used for the best 
possible decisions.

Figure 1.2 shows a schematic of a turbo engine that has five modules: fan, 
low-pressure compressor (LPC), high-pressure compressor (HPC), low-
pressure turbine (LPT), and high-pressure turbine (HPT). Air is sucked 
into the engine through the fan and compressed in the LPC and HPC. 
Then, the compressed air is mixed with a fuel and burned in the burner. 
Following this, the hot gases are passed through the turbines and power is 
generated during this process. Finally, the hot gases are sent out through 
the exhaust.

Faults in the gas turbine engine cause efficiency deterioration for the 
engine modules. The engine state is monitored using at least the four basic 
sensors: exhaust gas temperature (EGT), fuel flow (WF), low rotor speed (N1), 
and high rotor speed (N2). The measurements that are taken at altitude at a 
given temperature are then converted to standard day sea level conditions, 
and then the baseline measurement of an undamaged engine at the same 
condition (usually from a thermodynamics-based performance model) is 
subtracted from the measurements to yield the measurement deltas ΔEGT, 
ΔWF, ΔN1, and ΔN2. The measurement deltas are then used for estimating 
the engine state. Various fault isolation algorithms are used to find the mod-
ule where the fault has occurred. These include Kalman filter, neural net-
works, and fuzzy logic-based methods, some of which will be discussed in 
later chapters.

We can observe from Figure 1.1 that a key component of the diagnostics 
system is the smoothing or filtering function. While much research has been 
expended on the fault detection and isolation function, not much work has 
been done to improve the data smoothing and filtering function [6, 11, 25, 31]. 
The next two sections give a brief background on linear filters and the non-
linear median filter. Several variations of the median filter will be discussed 
in this book for application to gas turbine diagnostics.

Fan

N1

LPC LPT
EGT

HPC HPT

N2 WF

Burner

N2 N1

FIGURE 1.2
Schematic representation of gas turbine engine modules and sensor measurements. (From 
Ganguli, R., Journal of Propulsion and Power 19(5):930–937, 2003. With permission.)
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7Introduction

1.4 Linear Filters

The finite impulse response (FIR) filter can be represented as

 y k b i x k i( ) ( ) ( 1)
i

N

1
∑= − +

=

 (1.1)

where x(k) is the kth input measurement and y(k) is the kth output. N is the 
filter length and {b(i)} is the sequence of weighting coefficients, which define 
the characteristics of the filter and sum to unity. When all the weights {b(i)} 
are equal, the FIR filter reduces to the special case of the mean or average 
filter, which is widely used for data smoothing. For example, the 10-point 
moving average has the form

 y k x k x k x k x k( )
1

10
( ( ) ( 1) ( 2) ( 9))= + − + − + + −�  (1.2)

Each of the 10 weights for this filter is equal to 1/10.
Exponentially Weighted Moving Average (EWMA) is a popular IIR filter 

that smoothes a measured data point x(k) by exponentially averaging it with 
all previous measurements y(k−1).

 y(k) = ax(k) + (1 − a)y(k − 1) (1.3)

The parameter a is an adjustable smoothing parameter between 0 and 1 
with values such as 0.15 and 0.25 being routinely used in applications [6]. The 
exponential average filter has memory since it retains the entire time history 
by using the output of the last point. While linear filters are often used to 
smooth data before fault diagnosis, they can also smooth out important sig-
nal features. This problem is alleviated by the use of nonlinear filters such as 
the median filter.

1.5 Median Filters

Several median type filters are discussed in this book in Chapters 2–4, 6, 
and 7. Here, we introduce the standard median filter, which is well known 
in image processing.

Standard median (SM) filters are a popular and useful class of nonlinear 
filters. The success of median filters is based on two properties: edge pres-
ervation and noise reduction with robustness against impulsive type noise. 
Neither property can be achieved by traditional linear filtering without using 
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8 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

time-consuming and often ad hoc data manipulation. The median filter hav-
ing length or window of N = 2K + 1 can be represented as [19]

 y(k) = median(x(k − K), x(k − K + 1), …, x(k), …, x(k + K − 1), x(k + K)) (1.4)

where x(k) and y(k) are the kth sample of the input and output sequences, 
respectively. To compute the output of a median filter, an odd number of 
sample values are sorted and the median value is used as the filter output. 
The median filter thus uses both past and future values of x(k) for predicting 
the current output point. The above filter for discrete time k and window 
length N = 2K + 1 can be written in compact form as

 y = median(x−k , …, x−1 , x0 , x1, …xk ) (1.5)

Since the output of a median filter is always one of the input samples, it is 
possible that certain signals can pass through the median filter without being 
altered. This has been shown to hold for median and many median-based fil-
ters. Since such signals define the nature of a filter, these are referred to as a root 
signal. A root is a signal that is not modified by further filtering. Thus, a signal 
is a root signal of the SM filter in Equation (1.5) if for all signal values it satisfies

 x0 = median(x−k , …, x−1 , x0 , x1, …xk ) (1.6)

Repeated median filtering of any finite length signal will result in a root sig-
nal after a finite number of passes. It has been shown that if an SM filter has filter 
window width 2K + 1 and the signal has length P, then at most 3[(P – 2)/2(K + 2)] 
passes of the filter are required to produce a root signal [35]. However, this 
bound is rather conservative in practice. Typically, after 5–10 filtering passes 
only slight, if any, changes take place in the filter output and the filter is said to 
have converged. Some of the filters discussed in the following chapters address 
this convergence problem of the median and accelerate the signal processing.

It is important to determine if a filter will drive any input signal to one of 
these roots after a sufficient but finite number of passes. If it does, the filter is 
said to have convergence property. The important fact is that the step edges, 
ramp edges of sufficient extent, and constant regions are root signals of the 
median filter. This means that such signals are preserved even after repeated 
filtering, which is very important to the feature preservation property of the 
median type filters. Note that step edges are typical of faults in gas turbine 
measurements, and ramp edges are typical of long-term deterioration trends 
in engines. Therefore, median type filters are well suited to preprocess gas tur-
bine measurements. We have used the word preprocess to highlight the func-
tion of signal processing algorithms in gas turbine diagnostics. The processing 
of the measurements to extract information about the engine state is typically 
performed by least-squares and Kalman filter type algorithms. Software 
packages based on these algorithms have been developed by gas  turbine 
 manufacturers. These algorithms are discussed in the next two sections.
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9Introduction

1.6 Least-Squares Approach

The mathematics of gas path analysis ranges from being relatively simple 
to very sophisticated. Probably the simplest approach involves the weighted 
least-squares approach propounded by Doel [7, 36]. This approach is used in 
General Electric’s TEMPER software and is discussed below.

The measurement process can be mathematically written as

 z = h(x) + v (1.7)

where z is a measurement vector and x is a state vector. For example, fuel 
flow is a typical measurement and compressor efficiency is a typical state. 
The nonlinear relation between x and z is captured by h(x). If the measure-
ment is error-free, i.e., there is no error, then

 z = h(x) (1.8)

The problem of finding x given z is then a typical inverse problem. In real-
ity, the diagnostics problem is complicated by the presence of noise, and thus 
v is added as a vector of random error. The inverse problem then becomes 
more complicated and difficult to solve. Inverse problems with noise are sim-
ilar to pattern recognition problems in many ways.

In gas turbine diagnostics, and in many other problems in engineering, 
a key simplification involves linearization. Thus, we can write

 z = Hx + v (1.9)

Here H is a matrix and x is a vector. To make the mathematics simpler, 
we typically assume that the measurement error is Gaussian in nature. Also, 
the mean of the error is assumed to be zero, leading to zero mean white 
noise. The Gaussian assumption is also made for the state vector x. Since x 
and z are defined as deviations from baseline condition, this assumption is 
reasonable if suitable data are used.

We now define the covariance matrix of the state vector as

 P = E(xx T ) (1.10)

and of the measurement error as

 R = E(vv T ) (1.11)

where E is the expected value operator.
We also assume that the measurement error is statistically independent of 

the engine state:

 E(xvT ) = 0 (1.12)
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10 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

The optimal estimate of the state can now be found from the measurements 
by minimizing the quadratic form:

 J x P x z Hx R z Hx
1
2

T T1 1{ }( ) ( )= + − −− −  (1.13)

The optimal state vector is then obtained by setting dJ = 0 for an arbitrary dxT:

 x P H R H H R zˆ T T1 1 1 1( )= +− − − −  (1.14)

The above approach is a weighted least-squares approach as the matrices 
P and R are used as weights to bring in the probabilistic nature of the system. 
These matrices are very important and some key statements need to be made 
about them.

 1. The diagonal of R contains the variance of the measurement errors.
 2. The off-diagonal elements of R contain the covariance between the 

measurements and are typically assumed to be zero.
 3. Most off-diagonal elements of P are assured to be zero. However, 

some elements are likely to be nonzero. For instance, the fan flow 
capacity and fan efficiency are typically related.

The matrices H, R, and P are crucial for gas path analysis. These matrices 
need to be available for the gas path analysis to yield results once the mea-
surement z is obtained. The weighted least-squares method has a tendency 
of smearing the effect of a measurement over several states. For example, 
consider a situation where there is 1% deterioration in the high-pressure tur-
bine efficiency. This is of course an idealized and simulated situation where 
no other changes were present. The ideal measurements can be obtained 
using z = Hx. However, when the least-squares method is applied with the 
measurement z, the efficiency change will be distributed over other mod-
ules and components due to measurement uncertainty. Another problem 
with the least-squares approach is that engine modules or states that are 
not modeled will be assigned to modeled components. The sensitivity of the 
least-squares algorithm depends on the relative magnitude of the P and R 
matrices. This feature of dependence on the probability matrices is common 
of the gas path analysis algorithms. A good knowledge of the measurement 
statistics is needed for the algorithm to perform well. Also, since a linear 
model is assured between z and x, the algorithm is valid only when measure-
ment deviations are small.

There are two main situations in which gas path analysis is used. They 
are on-wing on the airplane and in the test cell on the ground. In the on-
wing situation, the data acquisition rate can range from a minimum of 
once per flight to much more regular intervals, such as every flight hour. 
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11Introduction

Some modern engines may have even faster rates of data acquisition. The 
advantage of on-wing monitoring is the ability to use the time history of the 
measurements. A test cell analysis, in contrast, is a snapshot analysis and 
does not yield this time history.

One way to include this time history is to use the Kalman filter, which we 
discuss in the next section. However, this feature can be incorporated in the 
least-squares approach by using smoothed analysis results for module dete-
rioration and sensor error to give a priori estimates to analyze the new data. 
In TEMPER, exponential smoothing is used on the module deterioration and 
sensor error analysis results. Note that exponential smoothing is the IIR filter 
discussed earlier, and this filter has memory.

There is a key difference between the on-wing and the test cell. In the on-
wing case, the measurement delta compares the present measurement value 
with the corresponding value in the recent past. On the other hand, for the 
test cell case, the measurement delta is the difference between the current 
measurement and a fixed baseline engine. Therefore, the on-wing case com-
pares the engine to itself, while in the test cell case, the engine is compared 
to a set of similar engines.

There is one situation in gas path analysis that needs special mention. 
Sometimes, a sensor can show a large sudden change from its baseline value. 
Also, there can be a large shift in a module component. For example, for-
eign object damage can cause a large shift in a single component. Any large 
change in either the measurement or the module performance will violate 
the least-squares assumptions. Therefore, such cases will result in a large 
solution residual. To salvage this situation, a single cause of the large resid-
ual can be found. For example, TEMPER uses this approach if the solution 
residual becomes greater than the 95% confidence limit. This algorithmic 
approach is known as fault logic.

When fault logic is activated, a new weighted least-squares analysis is con-
ducted for each sensor error and module fault. The standard deviation of 
the sensor or the module being considered is increased by 100%. If we have 
identified the correct fault, the solution residual will suddenly come back to 
normal range. This approach can alleviate one of the shortcomings of the 
least-squares analysis. The reader will observe that most of the complication 
in gas path analysis is caused by sensor error. However, since sensor error is 
realistic and inevitable, the gas turbine diagnostic algorithms must address 
this issue. A key risk associated with gas path algorithms lies in the possibil-
ity of misdiagnosis or false alarms. Inappropriate and unnecessary main-
tenance action can be triggered by such results. Doel [7] goes on to suggest 
that “the use of emerging technologies such as expert systems, fuzzy logic 
and neural networks might generate further gains.” These will be discussed 
in later chapters. While the least-squares method is used in the TEMPER 
software of GE, the software that Pratt & Whitney created for engine health 
monitoring typically uses a type of Kalman filter. We introduce the Kalman 
filter in the next section.
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12 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

1.7 Kalman Filter

The Kalman filter was developed in the 1960s and was used in gas tur-
bine diagnostics in the late 1970s. Broadly speaking, there are two types of 
Kalman filters: discrete time and continuous time. The Kalman filter can be 
viewed as a generalization of the weighted least-squares approach discussed 
in the previous section.

The Kalman filter is an optimal estimator and estimates states of a linear 
dynamical system perturbed by Gaussian noise. Much of the development 
of the Kalman filter application for gas turbine diagnostics was done by 
Volponi and coworkers [9, 12]. We will discuss this work briefly in the cur-
rent section. Consider the relationship between the measurement deviations 
and the state deviations:

 z = Hx + v

We assume that x and v are independent and Gaussian. The optimal estima-
tion problem is equivalent to minimizing

 J z Hx R z Hx x P x
1
2

T
x

T
x

1 1{ }( ) ( )( ) ( )= − − + − µ − µ− −  (1.15)

We can see that the quadratic form here has a structure very similar to that 
given before in the section of least squares. The first term is a measure of 
measurement error and the second term is a measure of state error. The first 
term in Equation (1.15) is weighted by the inverse of the noise covariance, 
and the second term is weighted by the inverse of the state covariance. The 
optimal estimator is then given by

 x P H R H H R z Pˆ T T
x0

1 1 1 1
0

1( )= +  + µ− − − − −  (1.16)

The optimal estimator can be put in predictor-corrector form:

 

x P H R H H R z H

x P H HP H R z H

ˆ

ˆ

x
T T

x

x
T T

x

0
1 1 1 1

0 0
1

[ ]

[ ]

= µ + +  − µ

= µ + +  − µ

− − − −

−  (1.17)

Here, the first term (μx) is the predictor and the second term is the corrector.
The term [z − Hμx ] is called the residual. The term P0H T [HP0H T + R]−1 is 

called the gain. Writing in a generalized form,

 x x D z Hxˆ ( )= + −  (1.18)
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13Introduction

We are now ready to formally define the discrete time Kalman filter. 
Consider a given discrete time k; then the system model is given as

 xk = φ(k)xk−1 + ωk (1.19)

where xk is the state vector at discrete time (also called epoch) k, φ(k) is the 
state transition matrix, and ωk is the process noise vector.

Along with the system model, there exists the measurement model 
given by

 zk = Hkxk + vk (1.20)

Here zk is the measurement vector, Hk is the geometry matrix, and vk is the 
measurement noise vector. The following assumptions are made:

 1. vk and ωk are Gaussian and zero mean.
 2. Rk = cov (vk, vk) > 0.
 3. Qk = cov (ωk, ωk) ≥ 0.
 4. Cov (ωk, vj) = 0; i.e., there is no correlation between process and 

 measurement noise.
 5. μx = E(x0), or the initial guess of the state is known.
 6. P0 = cov (x0, x0) = P0 > 0.

The discrete time Kalman filter equations are then given by five equations 
given below:

 

x k k k x

P k k k P k Q

D P k k H H P k k H R

x x k k D z H x k k

P D H P k k

ˆ 1 1 ˆ

1 1 1

1 1

ˆ ˆ 1 ˆ 1

1 1

k

k
T

k

k k
T

k
T

k
T

k

k k k k

k k k

1

1 1 1 1 1
1

1 1 1 1

1 1 1

( )
( )

( )
( )

( ) ( )

( ) ( )
( )[ ]

( )

( ) ( )

+ = ϕ +

+ = ϕ + ϕ + +

= + + +

= + + − +

= − +

+

+ + + + +
−

+ + + +

+ + +

 (1.21)

These equations were stated in the above form by Volponi and form the basis 
of the application of the Kalman filter to gas path analysis. The first of the 
five equations represents an extrapolation of the state vector from the kth 
epoch to the (k + 1)th epoch. The transition matrix acts as an operator for this 
extrapolation. The second equation shows the extrapolation of the covari-
ance matrix P from the kth epoch to the (k + 1)th epoch. The third equation 
involves calculation of the Kalman gain. The fourth equation represents the 
state update, and the fifth equation represents the covariance update.
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14 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

The abstract notation of the Kalman filter will become clearer when we use 
it for the typical engine performance diagnostic application. This will be done 
in Chapter 8, where issues of multiple faults, single faults, and sensor faults 
will be discussed. The Kalman filter appears to be a precise mathematical 
construct. However, being a predictor-corrector method, it works best when 
the initial or guess estimate is close to the actual answer. In this behavior, 
it is  similar to many numerical methods, such as the Newton-Raphson method. 
Also, the Kalman filter performance depends on the matrices P, Q, and R. 
These so-called numerics need to be selected judiciously for it to perform well.

However, the appropriate selection of these numerics is a nontrivial prob-
lem. Fortunately, the H matrix is available for gas turbine engines from the 
engine model. This matrix contains the very important and useful influence 
coefficients and is discussed in the next section.

1.8 Influence Coefficients

In gas turbine diagnostics, we typically want to know the state vector con-
taining the engine fault delta. Typically, there are two parameters for a given 
module, which results in a total of 10 states. Thus, for the fan module, there is 
a change in fan efficiency and flow capacity. The compressor modules, i.e., the 
LPC and HPC, also have changes in efficiency and flow capacity  associated with 
them. On the other hand, the turbine modules LPT and HPT have  efficiency 
and an area associated with them. All 10 states are deltas or changes from a 
baseline position or value of the state. This engine state  vector can be written as

 

x

FC

FC

FC

A

A

e

FAN

FAN

LPC

LPC

HPC

HPC

HPT

4

LPT

5

=

∆η
∆
∆η
∆
∆η
∆
∆η

∆η











































Here η refers to the efficiency of the modules and FC to the flow capacity. 
Also,  A4  and A5  are area changes associated with the HPT and the LPT. 
Similarly, there are measurement deltas. Generally, it is a good idea to work 
with percent deltas, as this avoids the use of physical variables that  may 
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15Introduction

have different units. The use of 1% measurement deltas automatically 
 nondimensionalizes and normalizes the number.

 

=

∆
∆
∆
∆
∆
∆
∆































z

N
N
WF
T
P
T
P

1
2

3
3
25
25

Here ΔN1 and ΔN2 are the low and high spool speed deltas, ΔWF is the change 
in the fuel flow, ΔT3 and ΔP3 are the changes in the HPC exit temperature and 
pressure, and ΔT25  and ΔP25  are the deltas of temperature and pressure 
between the LPC and HPC. Each measurement delta is normalized as follows:

 N
N N

N
1 100

1 1
1

mean base

base
∆ = −

 (1.22)

These changes are from a baseline good engine. We now come to the engine 
fault influence coefficient matrix, which is defined in

 z = Hexe (1.23)

Here the subscript e refers to engine fault, compared to sensor fault, which 
will be discussed later. A typical such matrix is given by Volponi as

 

N
N
WF
T
T
T
P
PB

ETA
FC
ETA
FC
ETA
FC
ETA

A
ETA

A

1
2

25
3
49
25

0.28 0.37 0.11 0.24 0.01
0.03 0.05 0.15 0.04 0.23
0.25 0.34 0.12 0.48 0.83
0.26 0.36 0.23 0.28 0.24
0.02 0.02 0.26 0.01 0.51
0.19 0.26 0.29 0.28 1.02
0.82 1.13 0.17 0.95 0.79
0.02 0.03 0.02 0.00 0.22

0.00 0.01 0.01 0.46 0.25
0.29 0.35 0.10 0.00 0.20
0.05 1.11 0.28 0.02 0.63
0.01 0.33 0.08 0.38 0.39
0.00 0.15 0.31 0.09 0.02
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16 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

An ideal solution for no sensor noise would be

 x H zˆ e e
1= −

 (1.24)

More realistic solutions are

 

ˆ

ˆ

x H R H H R z

x P H H P H

e e
T

e e
T

e
T

e
T

e e
T

= ( )

=

− − −1 1 1

0 0

or

++( )−
R z

1

 (1.25)

The influence coefficients can be expanded to include sensor faults. A typical 
sensor fault delta vector is given as
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The sensor influence coefficient matrix can then be written as

 z = Hsxs (1.26)

Here the subscript s represents sensor error. In expanded form,
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17Introduction

The engine and sensor faults can then be combined to yield

 z H x H x H H

x

x

Hxe e s s e s

e

s

[ ]= + =



















=� �  (1.27)

Typically, the engine/sensor influence coefficients H, measurement covari-
ance matrix R, and measurement deltas z are known. The initial guess x̂0 and 
the state transition matrix φ need to be estimated as accurately as possible. 
The state covariance P0 and process noise covariance Q are free parameters. 
Q is often set to zero.

1.9 Vibration-Based Diagnostics

Continuous vibration monitoring of aircraft engines during flight has 
become routine since the 1970s. The development of the  piezoelectric 
 accelerometer and use of trend monitoring was important for the 
 deployment of such systems. Typically, the health of a rotating system 
such as a gas  turbine is manifested by its vibration level. The amplitude 
of vibration at the (1/rev) frequency directly indicates the state of  balance 
of the  machinery. We have already seen that the state of the engine is 
 indicated by measurements such as pressure and temperature. Also, debris 
 monitoring, which involves the level of contamination in the oil system, 
is a good indicator of damage. However, pressure and temperature are 
point measurements and are thus local in nature. In contrast, vibration is a 
global phenomenon and contains information about the whole system. In 
fact, the problem is that raw vibration signals contain too much informa-
tion about the system.

A typical vibration monitoring system must provide overall vibration and 
(1/rev) amplitude and phase data. A detailed spectral analysis can be often 
avoided by comparing (1/rev) data with the overall vibration level data. If 
the (1/rev) data and the overall vibration level have the same amplitude, then 
it can be concluded that the (1/rev) vibration constitutes the majority of the 
vibration signal and the other vibration components are much less in mag-
nitude. On the other hand, if there is a large difference between (1/rev) data 
and the overall amplitude, it is time to do a detailed vibration analysis.

Typically, an accelerometer is placed at some points on the gas turbine, 
as shown in Figure  1.3. Here a gas turbine is shown schematically. It has 
two major modules: gas generator (GG) and the power turbine (PT). The gas 
generator is divided into five submodules: the compressor front frame (CFF), 
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18 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

the compressor rotor and stator, the compressor rear frame (CRF), the high-
pressure turbine (HPT), and the turbine mid frame (TMF). The first acceler-
ometer in Figure 1.3 is mounted on the CRF and the second is on the turbine 
rear frame (TRF).

The vibration data obtained from such accelerometers are stored and 
trended with time. Various diagnostic algorithms have been developed for 
vibration monitoring. Chapter 12 provides a case study of vibration monitor-
ing approach for a turbine blade.

Accl. 1

Gas Generator Power Turbine

Accl. 2

FIGURE 1.3
Accelerometer on the gas turbine.
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2
Idempotent Median Filters

Signal processing plays an important role in gas turbine diagnostics. In this 
chapter, we use a special type of median filter called the center weighted 
idempotent median (CWIM) filter to process gas turbine health signals for 
improved visualization and analysis. The filter requires only two forward 
data points. Thus, the CWIM filter is useful for gas turbines where data are 
available slowly. The filter is described in this chapter and then demonstrated 
on signals containing both deterioration and sharp trend shifts. A key advan-
tage of this filter is that it does not need a priori knowledge of the noise char-
acteristics of the signal. The idea of using the CWIM filter for gas turbine 
diagnostics was proposed by Ganguli [37] and is discussed in this chapter.

2.1 Weighted Median Filter

The simple median filter was introduced in Chapter 1 as a basic nonlinear 
filter that is good for removing non-Gaussian outliers. The weighted median 
(WM) filter is a generalization of the standard median filter where nonnega-
tive integer weights are assigned to each position in the filter window. WM 
filters provide a number of free parameters in the form of weights that can be 
tuned to design a filter to perform specific tasks. WM filters have been suc-
cessfully used in image processing where edges are very important details. 
The WM filter output is given as [19]

 y(k) = median(w(k − K)* x(k − K), … w(k)* x(k), … w(k + K)* x(k + K)) (2.1)

where * stands for duplication. Duplication means that the sample x(k) is 
repeated w(k) times in the array before taking the median. For example, 
3*x(k) is the same as x(k), x(k), x(k); i.e., the sample x(k) is repeated three times. 
There are N = 2K + 1 weights for the WM filter. If we assume that Equation 
(2.1) is defined for the kth sample, we can write the definition of the WM filter 
in more compact form as

 y = median(w−k * x−k, … , w−1 * x−1, w0 * x0, w1 * x1, … wk * xk ) (2.2)

Symmetric WM filters are widely used in nonlinear signal process-
ing to avoid bias effects. A symmetric WM filter has weights satisfying 
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the relationship w−i = wi, i = 1, 2, …, K. It should be noted that WM filters with 
positive integer weights are limited to low-pass capabilities. Low-pass filters 
remove high-frequency noise. Arce and Parades [38] generalized the weights 
to negative weights by using the following definition:

 
y median w w x w w x wk k k= ( ) ( )− − − − −− * sgn , , * sgn ,� 1 1 1 00 0 0

1 1

* sgn ,

* sgn

w x

w w

( )(
( )xx w w xk k k1, , * sgn� ( ) )  (2.3)

Here the weight signs are uncoupled with the weight magnitudes and 
merged with observation samples. This extension to negative weights 
allows the use of the weighted recursive median (WRM) filter to do band-
pass or high-pass filtering and suppress desired frequencies, respectively. 
The weights of the filter could be optimized for specialized application 
[38]. However, in our application to gas turbine diagnostics, we look for a 
low-pass filter contaminated with high-frequency Gaussian noise. Hence, 
we consider positive integer weights only. Finding appropriate weights for 
signals obtained from gas turbine engines is an issue that is addressed in 
this chapter in a simple manner. Later in this book, a more sophisticated 
approach is used to optimally obtain median filter weights.

2.2 Center Weighted Median Filter

A subclass of the symmetric weighted median filter is the center weighted 
median (CWM) filter. In the CWM filter, all samples inside the filter window 
are assigned unit weights except the center sample. Thus, a CWM filter with 
window size 2K + 1 has a weight w0 = 2L + 1 for the center sample, and all 
other weights are wi = 1 for each i ≠ 0, where L and K are nonnegative integers.

 y = median (x−k , … x−1 , 2L + 1 * x0, x1, … xk ) (2.4)

Different CWM filters are produced by different values of L. When L = 0, 
the CWM filter reduces to the standard median filter, as all weights are equal 
to unity. When L ≥ K, the CWM becomes the identity filter since the number 
of duplications of the center sample results in the median becoming equal 
to the center sample. Root structures for the CWM filter have the following 
theorems associated with them:

Theorem 2.1

The minimum length of a constant neighborhood of CWM of window length 
2K + 1 and center weight 2L + 1 is 2K + 1 – L.
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21Idempotent Median Filters

Theorem 2.2

An edge is a root of any CWM filter.

Proofs of these theorems can be found in [22]. The second theorem shows 
that a step change in the signal is not disturbed by the CWM filter.

2.3 Center Weighted Idempotent Median Filter

When L = K – 1, the CWM filter is an idempotent filter [39], which produces 
root signals after a single filtering pass. This avoids the need for repeated 
passes that are needed by other types of median-based filters to converge to 
the root signal. Thus, a center weighted idempotent median (CWIM) filter of 
window length 2K + 1 can be defined as

 y = median(x−k , … x−1 , 2K − 1 * x0 ,x1 , …,xk) (2.5)

2.3.1 Filter Design for Gas Path Measurements

The approach of designing a filter to preserve certain image details while 
discarding others is known as optimal filtering under structural constraints 
[22]. The CWM filter has two design parameters that must be determined in 
order to meet certain requirements. These are the center weight 2L + 1 and 
the window length 2K + 1. A typical design objective is to find a CWM filter 
to preserve certain signal structures, for example, the smallest length con-
stant neighborhood, which is a set of adjacent points having similar values.

Using the theorems stated earlier, we could design a filter for specific 
applications. For gas path measurement deltas, we can assume that any one 
point that is not a part of a trend or constant neighborhood is a spurious 
data point representing impulsive noise. However, any two or more points 
that represent a trend are assumed to reflect a genuine trend. This is a very 
conservative assumption and ensures that any fine details in the image last-
ing over one point are preserved. We want a filter with minimum need for 
forward data. This can be accomplished by using a filter of small window 
length (for example, a three-point filter). However, larger window lengths 
lead to better noise attenuation. As a compromise, we select a five-point filter 
with window length N = 2K + 1 = 5. This results in K = 2 and a time delay of 
only two data points in the signal.

From Theorem 2.1, we see that the minimum length of a constant neigh-
borhood of CWM of window length 2K + 1 and center weight 2L + 1 is 
K + 1 – L. Therefore, for preserving constant neighborhoods of minimum 
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22 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

length 2, we need K + 1 – L = 2; this yields L = 1. The center weight is then 
equal to 2L + 1 = 3. The corresponding filters with K = 2 and L = 1 are

 y = median(x−2 , x−1 , 3 * x0 , x1 , x2) (2.6)

The above filter is also an idempotent filter since L = K + 1. Therefore, it 
should converge to a root signal in only one pass and not need repeated 
passes like the conventional median filters described in Chapter 1. We shall 
use the five-point CWIM filter with triple duplication of the center sample 
described by Equation (2.6) for our results in this chapter. The filter has the 
following desirable properties:

 1. It preserves constant neighborhoods of minimum length equal to 2.
 2. It does not preserve constant neighborhoods of length less than 2.

From Theorem 2.2, an edge is always preserved by the CWM filter. It there-
fore preserves fine details in the signal but removes spurious impulsive noise. 
Recall that the fine details in the signal are typically caused by single-fault 
events. Once the filter has been created, we test it for gas turbine applications.

2.4 Test Signal

Gas path measurement deltas are obtained by subtracting the baseline mea-
surements for a good engine from the actual measurements. The baseline 
measurements often come from an engine model, and various correction fac-
tors are used to reduce the measured data to standard sea level conditions 
[40]. Since both the engine model and the correction factors are mathematical 
model idealizations, they are sources of errors in the gas path measurements 
deltas. Therefore, gas path measurement deltas contain high levels of uncer-
tainty due to sensor errors and modeling approximations.

A typical twin spool gas turbine (Figure 1.2) consists of five modules: fan 
(FAN), low-pressure compressor (LPC), high-pressure compressor (HPC), 
high-pressure turbine (HPT), and low-pressure turbine (LPT). Air coming 
into the engine is compressed in the FAN, LPC, and HPC modules, com-
busted in the burner, and then expanded through the HPT and LPT modules 
producing power. The sensors N1, N2, WF, and EGT provide information 
about the condition of these modules and are used for diagnostics of gas 
turbine engines. In this chapter, we will use only these four measurements 
to analyze the filter.

Table 2.1 shows influence coefficients for a commercial gas turbine engine 
at a fixed power condition with η = −2% from a baseline good engine. These 
influence coefficients are taken from [12]. The numbers in this table are 
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23Idempotent Median Filters

the  fingerprints or fault signatures for the module faults. As an example, 
a 2% efficiency decrease in the high-pressure compressor corresponds to a 
13.6°C increase in exhaust gas temperature, a 1.6% increase in the fuel flow, a 
0.11% decrease in high rotor speed, and a 0.10% increase in low rotor speed. 
Test signals are created for the four measurements with the fingerprint chart 
numbers as a guide for the maximum measurement deltas. Using synthetic 
test signals allows us to evaluate the filter performance since the final answer 
is known.

2.4.1 Ideal Signal

The signals in Figures  2.1–2.4 contain 250 data points for the ΔEGT, ΔWF, 
ΔN2, and ΔN1 measurements, respectively. In each figure, an ideal, noisy, 
and CWIM FIR and IIR filtered signal are shown. The FIR and IIR filters 
have been discussed in Chapter 1. The ideal test signals used in this study 
are obtained by putting together linear deterioration signals superimposed 
with edges representing a single-fault or maintenance event. A number of 
combinations of the deterioration and fault signals are studied. This simu-
lated fault time history idealizes a real-life scenario within a compressed 
timescale. The maximum amplitude values used for each signal are ΔEGT = 
15.4°C, ΔWF = 1.91%, ΔN2 = –0.74%, and ΔN1 = –1.99%, which corresponds 
to, for example, an HPT fault of η = −1.41%, an HPT fault of η = −1.48%, an 
HPT fault of η = −1.31%, and an LPT fault of η = −1.97%, respectively (from 
Table 2.1).

2.4.2 Noisy Signal

Random noise is added to the simulated measurements using standard 
 deviations for ΔEGT, ΔN1, ΔN2, and ΔWF of 4.23°C, 0.25%, 0.17%, and 0.50%, 
respectively. These numbers are obtained from typical airline data given 
in [12]. Impulsive noise is also added to the ideal signal. The impulses are 
selected at eight levels: σ, 1.5σ, 1.75σ, and 2σ, and –σ, –1.5σ, –1.75σ, and –2σ. 
These points are placed in an arbitrary way to simulate spurious data that 

TABLE 2.1

Fingerprints for Selected Gas Turbine Faults for η = –2%

Faults ΔEGT°(C) ΔWF% ΔN2% ΔN1%

High-pressure compressor 13.6 1.6 –0.11 0.1
High-pressure turbine 21.77 2.58 –1.13 0.15
Low-pressure compressor 9.09 1.32 0.57 0.28
Low-pressure turbine 2.38 –1.92 1.27 –1.96
Fan –7.72 –1.4 –0.59 1.35

Source: Ganguli, R., Journal of Propulsion and Power 19(5):930–937, 2003. With 
permission.
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FIGURE 2.1
Ideal, noisy, and filtered data for deviations in exhaust gas temperature. (From Ganguli, R., 
Journal of Propulsion and Power 19(5):930–937, 2003. With permission.)

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
21

 1
6 

M
ar

ch
 2

01
6 



25Idempotent Median Filters

4 Ideal Data

3

∆W
F(

%) 2

1

0

–1

4

3

2

1

0

–1

4

3

2

1

0

–1

4

3

2

1

0

–1

4

3

2

1

0

–1

Noisy Data

∆W
F(

%)

CWIMF Filtered Data

∆W
F(

%)

FIR Filtered Data

∆W
F(

%)

IIR Filtered Data

∆W
F(

%)

0 50 100
Epoch (k)

150 200 250

FIGURE 2.2
Ideal, noisy, and filtered fuel flow deviations. (From Ganguli, R., Journal of Propulsion and Power 
19(5):930–937, 2003. With permission.)
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FIGURE 2.3
Ideal, noisy, and filtered deviations in N2. (From Ganguli, R., Journal of Propulsion and Power 
19(5):930–937, 2003. With permission.)
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FIGURE 2.4
Ideal, noisy, and filtered deviations in N1. (From Ganguli, R., Journal of Propulsion and Power 
19(5):930–937, 2003. With permission.)
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follow no theoretical noise model. The noisy signal is shown in Figures 2.1–2.4 
for the four measurements. Both random and impulsive noises are included 
in that signal. It can be observed that noise causes problems in differentiat-
ing between a healthy and damaged engine and also hides important fea-
tures of the data.

After noise is added to this signal, it allows us to test the performance of a 
filter in the presence of trend shifts that can represent a single-fault precur-
sor to a major maintenance event and also ramps, which models long-term 
deterioration over time. The stationary regions simulate a healthy engine. 
The test signals used here are relatively more complex than those found in 
actual practice. However, they serve to illustrate the CWIM, FIR, and IIR fil-
ters over a range of signal-to-noise ratios and for different deterioration rates 
and trend shifts.

2.5 Error Measure

Consider the basic measurement deltas ΔEGT, ΔN1, ΔN2, and ΔWF. We can 
write any of these measurement deltas as follows:

 z = z0 + θ (2.7)

where θ is noise and z0 is the measurement delta, which is also called the 
ideal signal. In reality, such a pure signal would be contaminated by noise 
and outliers, and therefore z is the polluted or corrupted signal. A filter Ψ 
performs the following operation that returns the filtered signal from the 
corrupted signal:

 z z zˆ 0( )( )= Ψ = Ψ + θ  (2.8)

In the next section, we evaluate the CWIM, FIR, and IIR filters using sim-
ulated data. The following root mean square error measure based on the 
L2 norm will be used to analyze the filter performance over a sample of M 
points by comparing the filtered signal with the ideal signal:

 
M

z z
1 ˆk k

k

M
0 2

1
∑ ( )Θ = −

=

 (2.9)

2.5.1 Numerical Simulations

Numerical studies are conducted to qualitatively and quantitatively  evaluate 
the CWIM filter and the traditional linear filters using the test signals. 
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29Idempotent Median Filters

Figures 2.1–2.4 show the ideal, noisy, and filtered signals for ΔEGT, ΔWF, ΔN2, 
and ΔN1, respectively. It is verified that the ideal signal for each of the four 
cases is indeed a root signal of the CWIM filter. This is not surprising since 
constant regions, step edges, and ramp edges of sufficient extent are root 
signals of median filters, as mentioned by Senel et al. [21]. The FIR filter used 
in these figures uses a 10-point moving average (Equation (1.2)), and the IIR 
filter uses a = 0.25 in Equation (1.3).

The results also show that the CWIM filter works best in removing outli-
ers and not in removing Gaussian noise. Thus, for the ΔEGT and ΔWF sig-
nals, which have high levels of Gaussian noise, the CWIM filtered signal 
still contains more random noise than the FIR and IIR filtered signals. For 
the ΔN2 and ΔN1 signals, which have low random noise levels, the filtered 
signal appears much less noisy. This is not surprising since the CWIM filter 
used here falls under the class of the “gentle filter,” which removes outliers 
while not affecting other features to a large extent [19]. In contrast, the FIR 
and IIR filters remove Gaussian noise. However, fault isolation algorithms 
such as the Kalman filter, which is used for gas path state estimation, are 
only optimal under a Gaussian noise environment. We have already seen 
this in the discussion presented in Chapter 1, where added Gaussian noise 
was assumed in the measurements. Therefore, such algorithms can handle 
the Gaussian noise present in the data, but may have problems with non-
Gaussian outliers.

It can be observed from Figures 2.1–2.4 that considerable noise is reduced 
for each signal after CWIM filtering, and that trend changes and deterio-
ration history are more clearly visible. For the ΔEGT signal, in Figure  2.1, 
the three points where trend shifts occur are clearly identified. In addition, 
the linear variations simulating engine deterioration are also preserved. The 
impulsive outliers in the data are successfully removed. However, the FIR 
filter smoothes out the trend shifts. The FIR filter takes nine points to start, 
resulting in some impulsive noise in the signal between k = 1 and k = 9 not 
being smoothed. In contrast, the IIR filter needs one point to start and the 
CWIM filter needs two points. The IIR filter also reduces random noise but 
smoothes out the trend shifts in the signal. For the ΔWF signal in Figure 2.2, 
the three points where the trend shifts occur are clearly identified after 
CWIM filtering. The linear characteristics in the signal are also preserved.

For the ΔN2 signal in Figure 2.3, the step edges are clearly preserved and 
their temporal locations enhanced in the signal after CWIM filters. In addi-
tion, the fine detail due to a small trend shift between k = 50 and k = 100 is 
also brought out in the filtered signal. Such fine detail is very difficult to 
decipher in the noisy signal. Finally, the ΔN1 signal in Figure 2.4 shows that 
the step edges and deterioration features are clearly brought out. The results 
also show that the CWIM filter works best in removing outliers and not 
in removing Gaussian noise. Thus, for the ΔEGT and ΔWF signals, which 
have high levels of Gaussian noise, the CWIM filtered signal still contains 
more random noise than the FIR and IIR filtered signals. For the ΔN2 and 
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30 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

ΔN1 signals, which have low random noise levels, the filtered signal appears 
much less noisy. Recall that the CWIM filter falls under the class of the gen-
tle filter, which removes outliers while not affecting other features to a large 
extent [19]. The impulses that corrupted the signal and prevented proper 
visualization have been removed by the CWIM filter. The removal of impul-
sive noise is important for improved visualization, as the human visual sys-
tem is very sensitive to high frequency in the form of edges. The removal of 
the impulsive noise also makes the filtered signal more amenable to auto-
mated fault detection and isolation. The results shown in Figures  2.1–2.4 
are  qualitative  and represent one of many possible noisy samples. For a 
more quantitative understanding, 1000 samples of noisy random data about 
the ideal signals shown in Figures 2.1–2.4 were taken for each of the four 
measurements and the average root mean square error calculated. These 
results are shown in Table 2.2. For each of the four measurements there is a 
reduction in noise of about 58–60% for the CWIM filtered signal compared 
to the noisy signal.

To illustrate the benefit of the CWIM filter over the linear filter, Figure 2.5 
compares the noise reduction in ΔEGT using the FIR, IIR, and CWIM filters. 

0.2

0.15
0.156

0.135

0.102

0.064

Θ 0.1

0.05

0
Noisy FIR IIR CWIM

FIGURE 2.5
Average root mean squared error for noisy and FIR, IIR, and CWIM filtered ΔEGT data. (From 
Ganguli, R., Journal of Propulsion and Power 19(5):930–937, 2003. With permission.)

TABLE 2.2

Average Root Mean Square Error for Noisy and CWIM 
Filtered Data

  ΔEGT ΔWF ΔN2 ΔN1

Noisy 0.156 0.0046 0.0062 0.0091
Filtered 0.064 0.0019 0.0025 0.0037

Source: Ganguli, R., Journal of Propulsion and Power 19(5):930–937, 
2003. With permission.
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31Idempotent Median Filters

Compared to the noisy signal, the FIR filter shows a noise reduction of 
13%, the IIR filter of 35%, and the CWIM filter of 59%. Therefore, the non-
linear CWIM filter can be recommended for noise removal from gas path 
measurements.

2.6 Summary

A nonlinear filter known as the center weighted idempotent median (CWIM) 
filter is analyzed for improved visualization and noise removal in gas tur-
bine engine path measurements. A typical gas turbine engine measure-
ment delta signal is created using linear deterioration superimposed with 
occasional trend shifts. The four measurements considered are exhaust gas 
temperature, fuel flow, low rotor speed, and high rotor speed. The CWIM 
filter is specially designed for noise removal in gas turbine engine measure-
ment signals. This filter results in a noise reduction of about 60% in all four 
measurements used in this chapter. The CWIM filter retains the trend shifts 
and other features in the signal while removing noise. It helps in generat-
ing a signal that is more suited to the human visual system by removing 
high-amplitude impulsive noise that can lead to a person observing patterns 
where none are really present.

Filtering gas path measurements using the CWIM filter prior to fault detec-
tion and isolation are likely to improve the performance of state estimation 
algorithms such as the Kalman filter, which are optimal for Gaussian noise 
and can show performance degradation in the presence of non-Gaussian 
outliers. The linear FIR and IIR filters typically used for smoothing gas tur-
bine engine signals are found to smooth out the key features in the signal. 
For the exhaust gas path temperature signal, the noise reductions by the FIR, 
IIR, and CWIM filters are 13, 35, and 59%, respectively. The CWIM filter is 
therefore recommended for preprocessing gas turbine engine measurement 
deltas before performing fault detection or visualization. The CWIM filter 
involves a very slight increase in complexity relative to the simple median 
filter, and is suited for engines where data are coming slowly. The follow-
ing chapters will illustrate other nonlinear filters useful for gas turbine 
diagnostics.
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3
Median-Rational Hybrid Filters

Diagnostic applications typically involve the detection and isolation of 
a  system fault based on comparison between a good baseline system and 
a damaged system. Many diagnostic systems are designed based on math-
ematical models for the good and bad systems using methods that fall under 
the broad class of model-based diagnostics. A health signal can be interpreted 
as a measurement delta between the damaged measurement z(d) and undam-
aged measurement z(u) and written as Δ = z(d) − z(u). Under ideal conditions, 
the system has no fault, i.e., Δ = 0. When a fault occurs, Δ assumes a nonzero 
value whose magnitude depends on the size and location of the fault. In this 
idealized system, the nonzero value of the measurement deviation, along 
with other measurement deviations, can be used to detect and isolate the 
fault. For commercial aircraft engines, only few data points are received for 
each flight. Therefore, it is important to keep the forward data point require-
ment to minimum. In Chapter 2, we looked at the “gentle” center weighted 
idempotent median (CWIM) filter for gas turbine diagnostics. In this chapter, 
we explore other filters with a low time delay for gas turbine applications.

Figure 3.1 shows a schematic of the gas turbine diagnostic process, which 
uses the engine measurement deltas to detect and isolate faults and then 
suggests prognostic action based on nondestructive testing, boroscope, and 
manual inspections of the fault module. It is clear that if the fault module is 
correctly identified, the cost of maintenance for the airline comes down.

The present chapter discusses the filter architecture shown in Figure 1.1, 
which is enclosed in the dotted rectangle in Figure 3.1. In this chapter, the 
median filter is used to remove non-Gaussian outliers and the rational filter 
is used to remove Gaussian noise. The hybridization of these filters and their 
application to gas turbine diagnostics were proposed by Verma and Ganguli 
[41] and are discussed in this chapter.

3.1 Test Signals

The gas path signal is modeled using (1) step and (2) ramp edges. Consider 
the time series for 25 points shown in the ideal step signal in Figure 3.2. This 
step signal simulates an abrupt fault. The onset of the fault is at discrete time 
k = 12. The noisy signal can be expressed as
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 Δ = Δ0 + αε + θ (3.1)

where Δ0 is the pure signal, ε and θ are added Gaussian noise and outliers, 
respectively, and α is a parameter that allows control of the level of noise in 
the noisy health signal Δ.

Figure 3.2 shows the ideal step signal along with a noisy test signal with 
α = 0.2. The outlier signal contains five points represented by θ = –1 at k = 7, 
θ = 0.75 at k = 10, θ = –0.75 at k = 14, θ = 1 at k = 18, and θ = –1.5 at k = 22. These 
outliers are placed in an arbitrary way along the time series and do not 
follow any noise model. Lu et al. [11] calls these wild points, which tend 
to occur in gas path sensor measurements. Such wild points can lead to 
 significant deterioration in the performance of fault detection and iso-
lation  algorithms and therefore need to be removed through a  filtering 
process.

Figure 3.3 shows the ideal and noisy test signal for a ramp edge  simulating 
engine deterioration. The outliers are placed at the same location as for the 
step signal. Table  3.1 shows the fingerprint chart for a large  commercial 
engine similar to the United Technologies PW4000-94 engine in cruise 
 condition with engine pressure ratio of 1.29 [25]. The fingerprints are fault 
signatures of the engine at a given steady flight condition and relate the 
faults in a given module to changes in the gas path measurements. For the 
fingerprints shown in Table  3.1, the measurement uncertainties for ΔEGT, 
ΔWF, ΔN2, and ΔN1 are 4.23°C, 0.50%, 0.17%, and 0.25%, respectively [25]. 
These values were obtained by a study of airline data and were also used 
for the CWIM filter in Chapter 2. Using these values for the four measure-
ments, the signal-to-noise ratios are obtained by dividing the fingerprints 
in Table 3.1 with the corresponding measurement uncertainty. These results 
are shown in Table 3.2, where it can be seen that the signal-to-noise ratios 

Borescope
Nondestructive

Tests, Inspection

Fault Detection and
Isolation (Kalman filter,
neural network, fuzzy

logic etc.)

Measurement
Deltas Median Filter

Outlier Removal Gaussian Noise
Removal

Rational Filter

FIGURE 3.1
Schematic of noise and outlier removal in gas turbine diagnostics process. (From Verma, R., 
and Ganguli, R., IEEE/ASME Transactions on Mechatronics 10(4):461–464, 2005. With permission.)
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35Median-Rational Hybrid Filters

range from a low of 0.56 to a high of 7.84. Since the ideal test signals in 
Figures 3.2 and 3.3 have a maximum value of 1, a noise level of 0.10 leads to 
a signal-to-noise ratio of 10 and a noise level of 0.4 leads to a signal-to-noise 
ratio of 2.5.

Also note that the ideal signal varies from zero in the initial stage to  values 
between 0 and 1 for the ramp edge in Figure 3.3. Therefore, wide ranges of 
signal-to-noise ratios are addressed using the variation in α from 0.1 to 0.4. 
Results shown later in this chapter will vary the noise level from 0.10 to 0.4 
to allow for evaluation of the filter over a broad range of noise levels likely 
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Noisy data
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Rational �lter

–1
5 10 15

Epoch (k)
20 25

–0.5

0.5

1

1.5

0

Noisy data
Median + rational

FIGURE 3.2
Ideal, noisy, and filtered signal for engine abrupt fault. (From Verma, R., and Ganguli, R., 
IEEE/ASME Transactions on Mechatronics 10(4):461–464, 2005. With permission.)
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FIGURE 3.3
Ideal, noisy, and filtered signal for engine deterioration. (From Verma, R., and Ganguli, R., 
IEEE/ASME Transactions on Mechatronics 10(4):461–464, 2005. With permission.)

TABLE 3.1

Fingerprints for Selected Gas Turbine Faults for η = –2%

Faults ΔEGT ΔWF ΔN1 ΔN2

High-pressure compressor 13.6 1.6 –0.11 0.1
High-pressure turbine 21.77 2.58 –1.13 0.15
Low-pressure compressor 9.09 1.32 0.57 0.28
Low-pressure turbine 2.38 –1.92 1.27 –1.96
Fan –7.72 –1.4 –0.59 1.35

Source: Verma, R., and Ganguli, R., IEEE/ASME Transactions on 
Mechatronics 10(4):461–464, 2005. With permission.
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37Median-Rational Hybrid Filters

to occur in gas turbine applications. Note that the actual fault data for gas 
turbines are very difficult to obtain, and the use of simulated data allows the 
evaluation of the filter performance as the ideal signal is known. Furthermore, 
the types of signals used here have been used in the  literature by Lu et al. [11] 
to evaluate a filtering approach based on autoassociative  neural networks. 
The autoassociative neural networks and their use for  signal denoising are 
discussed in Chapter 9.

Error measures are needed to quantify the noise removal capability of the 
filter. The mean square error (MSE) is a well-known measure that provides 
information about the filter accuracy and is defined as

 ∑( )
=

∆ − ∆

=

MSE
N

i

N 0 2

1

 (3.2)

where N is the number of samples, Δ is the noisy or filtered signal value, and 
Δ0 is the ideal or pure signal value. The noise reduction is defined in terms 
of percent as

 Θ = −) )

)

( (

(
)( MSE MSE

MSE
100MSE

noisy filtered

noisy
 (3.3)

The test signal and the error measure are used to evaluate the rational and 
median-rational filters.

3.2 Rational Filter

The filters used in this chapter are the rational filter and the median 
 filter. The median filter was discussed in Chapter 1. Recall that the simple 
median filter used in this chapter is obtained by taking the median of a set 

TABLE 3.2

Signal-to-Noise Ratios for Fingerprints of Gas Turbine Faults in Table 3.1

Faults ΔEGT ΔWF ΔN1 ΔN2

High-pressure compressor 3.215 3.2 0.65 0.40
High-pressure turbine 5.15 5.16 6.65 0.60
Low-pressure compressor 2.14 2.64 3.35 1.12
Low-pressure turbine 0.56 3.84 7.47 7.84
Fan 1.82 2.80 3.47 5.40

Source: Verma, R., and Ganguli, R., IEEE/ASME Transactions on Mechatronics 
10(4):461–464, 2005. With permission.
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38 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

of measurements. We now introduce the rational filter. The working of the 
rational filter is based on a nonlinear operator, which is able to attenuate the 
Gaussian noise in a signal, while preserving the edge to a good extent [42]. 
It is described by a rational function, which is defined in algebra as the ratio 
of two polynomials.

 w

w

ˆ
( )

1
2

( )
1k

k k k k k

k k

1 1 1 1
2

1 1
2

∆ =
∆ + ∆ + ∆ κ ∆ − ∆ + −





κ ∆ − ∆ +

− + − +

− +

 (3.4)

Here ∆̂k is the filtered signal value at discrete time k. The values of data at 
k – 1, k, and kth time are Δk–1, Δk, and Δk+1 and these points are the backward 
predictor, current value, and forward predictor, respectively. The parameters 
κ and w take positive values and are used to control the filter. The rational 
filter differs from the linear finite impulse response (FIR) filter mainly for 
the scaling, which is introduced on the Δk–1 and Δk+1 terms. Such terms are 
divided by a factor proportional to the edge sensing term. When κ = 0, the 
rational filter acts as the following linear filter:

 
∆ = ∆ + ∆ + − ∆− +w wˆ ( ) (1 2 )k k k k1 1  (3.5)

The sum of the coefficients or weights of the above filter is 1. The filter 
shows low-pass behavior for 0 < w < 1/3. For w = 1/3, the filter becomes a 
moving average filter. When κ → ∞, the filter has no effect, and ∆ ≅ ∆ˆ

k k. For 
intermediate values of κ, the (Δk–1 − Δk+1)2 term perceives the presence of a 
detail and accordingly reduces the smoothing effect of the operator. This 
filter has good edge preserving capability, which is required for gas turbine 
diagnostic problems. It has a time delay of only one point due to the forward 
predictor point Δk+1.

3.3 Median-Rational Filter

We now turn to the median filter, which belongs to a group of nonlinear 
filters called order statistics filters, which are based on sorting of the sig-
nal sample. The order statistics filters select one of the sorted neighborhood 
samples of the input signal vector in each sampling period. The three-point 
median filter can be written as

 medianˆ , ,k k k k1 1( )∆ = ∆ ∆ ∆− +  (3.6)

The median filter shown in Equation (3.6) has a one-point time delay 
and uses a forward and backward predictor. As mentioned in Chapter 1, 
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39Median-Rational Hybrid Filters

the  median filter is widely used in signal and image processing for the 
 capability of  outlier removal while preserving edges. However, the median 
is a selection filter, which means that its output is limited to one of the input 
samples. Therefore, the median is not very good at removing Gaussian or 
random noise since each element of the input sample contains random noise. 
However, the median filter is conceptually very simple, though long-length 
median filters involve sorting operations that can be computationally expen-
sive. Therefore, in this chapter, we use only a three-point median filter to 
avoid forward point requirements and keep the computational expenses 
down. Note that the CWIM filter discussed in Chapter 2 has a two-point 
time delay.

This median-rational filter preprocesses the signal with a median filter 
before using the rational filter. We propose and use this combination in this 
chapter for denoising of gas path measurement deltas. First, the measure-
ment delta is passed through the median filter. During this phase, the outli-
ers in the data are removed. In the next phase, the median preprocessed data 
are sent through the rational filter. The rational filter can be defined using the 
outputs of the median filter from Equation (3.6) as

 yk−1 = median(Δk−2, Δk−1, Δk)

 yk = median(Δk−1, Δk, Δk+1) (3.7)

 yk+1 = median(Δk, Δk+1, Δk+2)

The evaluation of the filtered value using the above formulas is very fast if 
one defines the denominator of the rational filter as a variable dk and then 
uses it for the calculation of the median plus rational filter output as shown 
below:

 = κ − +− +d y y
w

( )
1

k k k1 1
2

 (3.8)

 ∆ = + + −− +y y y d
d

ˆ [ 2]
k

k k k k

k

1 1
 (3.9)

The three-point median involves a simple sorting operation of three num-
bers and then taking the middle value. Therefore, the median plus rational 
approach is computationally efficient with a two-point time delay requiring 
points within a five-point window, including the k – 2, k – 1, k, k + 1, and k + 2 
discrete time points. In this filter, κ has been fixed at 0.01 and w at 0.16, as 
suggested by Ramponi, who obtained these values as optimal for a   signal 
contaminated with Gaussian noise [42]. This is a good assumption for 
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40 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

the median plus rational approach as the data are first subjected to a median 
 filter that removes outliers, and the rational filter is then used on a signal 
with trend shift and Gaussian noise.

3.4 Numerical Simulations

Simulations are performed using the test signal shown in Figures 3.2 and 3.3, 
which contain the step signal and the ramp signal simulating abrupt fault 
and engine deterioration, respectively. The noisy data shown in these figures 
use α = 0.2 and added outliers that were discussed earlier. Figures 3.2 and 3.3 
also show the results of processing the noisy signal using the rational and 
median plus rational filters, respectively.

From Figure 3.2, we see that the rational filter is able to preserve the trend 
shift while reducing Gaussian noise to some extent, but is unable to discard 
the outliers. The median plus rational approach results in the outliers being 
removed from the signal and Gaussian noise being reduced while  preserving 
the trend shift. Figure 3.3 shows that for a linear signal, the rational filter 
is unable to remove outliers. However, the median plus rational approach 
results in outlier removal along with removal of some Gaussian noise. The 
visual quality of the signals is considerably improved after the application of 
the median plus rational filter. Since monitoring trend plots of gas path mea-
surement deltas form an important diagnostic tool for airline power plant 
engineers, the use of the nonlinear filters for smoothing the data can greatly 
increase their capability of finding faults by visual inspections of the gas 
path sensor data themselves.

The above results are qualitative and provide visual information about the 
filters. However, they represent only one of many possible noisy data sam-
ples. To obtain quantitative results, 1000 samples of noisy data are  created 
about the ideal step and ramp signals in Figures 3.2 and 3.3, and the noise 
reduction after filtering is calculated. Tables  3.3 and 3.4 show the noise 
reduction based on the mean square error (MSE) for the step signal and 
the ramp signal, respectively. The noise level added to the ideal signal varies 

TABLE 3.3

Noise Reduction (%) with Filters for Engine Abrupt Fault Signal Based on MSE

α 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Rational 46.93 46.95 46.99 47.05 47.13 47.21 47.29
Median 86.39 83.21 79.41 75.36 71.43 67.94 65.04
Median + rational 88.37 85.96 83.11 80.11 77.23 74.68 72.58

Source: Verma, R., and Ganguli, R., IEEE/ASME Transactions on Mechatronics 
10(4):461–464, 2005. With permission.
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41Median-Rational Hybrid Filters

from low (α = 0.10) to high (α = 0.40). The rational filter reduces noise by 47% 
for the step signal and about 48% for the ramp signal. The noise reduction 
is almost constant across the noise levels. The median filter reduces the 
noise level by 65–86% for the step signal and 70–96% for the ramp signal. 
For the median filter, the noise reduction decreases with increasing levels 
of Gaussian noise in the data. The median filter works better when the data 
have outliers and low levels of Gaussian noise. The median plus rational 
filter reduces noise by 73–88% for the step signal and 77–96% for the ramp 
signal. The median plus rational filter gives more noise reduction than the 
median filter at all noise levels. However, the advantage increases at higher 
levels of Gaussian noise where the random noise-removing ability of the 
rational filter is useful.

The above results show that for gas path measurement data, which often 
contain high levels of outliers and random noise, it is advantageous to use 
the median plus rational filter to preprocess the data before performing fault 
detection and isolation functions. This filter is useful for jet engines where 
data are obtained very slowly, for example, at one or two points per flight.

3.5 Summary

Simulated diagnostic test signals are used to evaluate the denoising  capability 
of nonlinear filters for smoothing gas turbine health signals. Linear filters 
such as the moving average, which are widely used in the gas turbine indus-
try, tend to smooth out the sharp edges in the signal, which is often a precur-
sor to an abrupt fault. Linear filters are also not good at removing outliers. 
The effect of both Gaussian noise and outliers of non-Gaussian origin are 
considered. The nonlinear filters used in this chapter are the rational filter 
and median filter.

The median and rational filters show good edge preservation capability. 
However, the rational filter is not good for outlier removal though it preserves 
the edges in the health signal. If the data are preprocessed by a median filter 
and then sent through a rational filter, both outliers and Gaussian noise are 
removed while preserving the edges in the signal, which are often precur-
sors to abrupt faults.

TABLE 3.4

Noise Reduction (%) with Filters for Engine Deterioration Signal Based on MSE

α 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Rational 48.44 48.39 48.34 48.3 48.27 48.25 48.23
Median 95.38 91.56 86.91 82 77.31 73.13 69.6
Median + rational 96.18 93.38 89.96 86.33 82.85 79.74 77.11
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42 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

The median plus rational filter results in noise reduction of 73–96% for 
the noisy signals and is also conceptually simple and computationally effi-
cient when implemented in a small window of three points. Furthermore, 
the  filter has a two-point time delay, making it suitable for gas turbine 
 diagnostics where few points are obtained for each flight and the cost of 
transmitting additional points is high. The median plus rational filter is 
therefore recommended for preprocessing gas turbine measurement deltas 
before  performing fault detection and isolation functions.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
23

 1
6 

M
ar

ch
 2

01
6 



43

4
FIR-Median Hybrid Filters

We have seen in the previous chapter that linear filters can smooth out sharp 
edges in the signal that may indicate the onset of a single fault. Nonlinear 
filters such as median filters are able to preserve edges while simultaneously 
reducing noise and handle non-Gaussian noise such as outliers. Median 
filters are a well-known class of nonlinear filters in the image processing 
field. Median filters suffer from some shortcomings that can be alleviated 
by  FIR-median hybrid (FMH) filters that combine the noise removal  ability of 
FIR filters with the edge-preserving and outlier-removing ability of median 
filters. The FMH filter has been recently applied to the analysis of biomedi-
cal signals. In this chapter, a special FMH filter tuned to linear and step 
variations in a signal (typical of gas turbine health signals) is identified and 
shown to be superior to the currently used linear filters. In contrast to the 
filters discussed in Chapters 2 and 3, the FMH filter in this chapter has a 
long time delay and is suitable for engines where data are available at high 
speeds, such as for online health monitoring systems that can get real-time 
data. The application of FMH filters for gas turbine diagnostics was sug-
gested by Ganguli [43] and forms the basis of this chapter.

4.1 FIR-Median Hybrid (FMH) Filters

FMH filters combine the desirable properties of the FIR filter for noise 
removal in constant signals and the capability of median filters to preserve 
edges, and can be written as [44]

 x median x x xˆ , , ,k k k M k1 2 �( )( ) ( ) ( )= Φ Φ Φ  (4.1)

where Φi is the ith FIR subfilter operating on the input signal. The length 
k and number M of FIR subfilters are selected to allow for an acceptable 
 compromise between noise reduction and edge preservation. Typically, 
M is kept small in Equation (4.1) to allow for simple implementation. The 
large number of compare and swap operations needed by the median filter 
is eliminated in the FMH filter by taking the median over the outputs of a 
few FIR substructures. FMH filters are much faster than median filters of 
the same length. The median filter is a special case of the FMH filter where 
the lengths of all the FIR substructures are 1.
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4.2 Weighted FMH Filter

By weighting the different FIR substructures, the resulting FMH filter can 
be tailored for different problems. The general weighted FMH filter has the 
form [48]

 x median w x w x w xˆ , , ,k k k M k1 1 2 2 �( )( ) ( ) ( )= ∗ Φ ∗ Φ ∗  (4.2)

where ∗ denotes duplication, wi ≥ 0, and ∑wi is odd. There are many pos-
sibilities for the weights of the filter, and the actual weights depend on the 
application in question. The two extremes in weightings range from all the 
weights being equal to 1 (no duplication) to the idempotent filters that pro-
duce the root signal from noisy input in one filter pass.

A popular choice of number of subfilters is five, with the center filter 
being the current point itself. A five-point weighted FMH filter structure 
with weight symmetry with respect to the center point of the window of 
the filter is used in this study. This filter structure was chosen because it is 
general enough to be uniformly applicable and not too complicated to be 
 implemented or analyzed [44].

The two types of subfilters mainly used as substructures are the average 
and the ramp predictors that are zero- and first-order FIR filters, respectively. 
The FIR subfilters characterize the root signals of FMH filters. For example, 
FMH filters with only mean filters as substructures have root signals that 
consist of steps and constant levels. When FMH filters with first-order sub-
structures are used, root signals involving linear variations such as ramps 
can be considered. Higher-order polynomials can also be used to create FIR 
subfilters for more complex signals.

The weighted FMH filter with length 2I + 1 and five FIR substructures can 
be written as

 x median w y w y w y w y w yˆ , , , ,k 1 1 2 2 3 3 4 4 5 5( )= ∗ ∗ ∗ ∗ ∗  (4.3)

where
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45FIR-Median Hybrid Filters

The current point is contained in y3, y1 is the backward zero-order FIR 
 predictor, y2 is the backward first-order FIR predictor, y4 is the forward zero-
order predictor, and y5 is the forward first-order predictor. The predictive 
subfilters can be designed in a way such that they act as optimal predictors 
for an ith-order polynomial signal corrupted by Gaussian white noise. The 
weights for the optimal first-order filter of length I can be written as

 h
I i
I I

4 6 2
1i ( )= − +

−
 (4.4)

The filter discussed above has a very large number of possibilities 
 depending on the weights selected. However, as mentioned in [48], it is not 
possible to analyze all the possible weighted filters, given the very large 
number of possibilities. The basic idea behind selecting useful weights is to 
amplify the importance of some of the subfilters in the median  operation. 
Thus, if the center point is given more weight, the current data point is given 
more importance in the median, resulting in an increase in the number of 
signals the filter can handle at the cost of noise removal. If the zero-order 
subfilters are given more weights, the edges are preserved at the cost of 
restricting the root signals of the filter.

Two filter structures are interesting, one the center weighted FMH 
(CWFMH) filter and the other the subfilter weighted FMH (SWFMH) filter. 
These two filters are analyzed in detail in [44]. It is found that the CWFMH 
filter (w1 = 1, w2 = 1, w3 = 3, w4 = 1, w5 = 1) leaves edges intact and preserves 
 sinusoidal signals, so it is useful for continuous-wave signals. The SWFMH 
filter with weights (w1 = 2, w2 = 1, w3 = 1, w4 = 2, w5 = 1) preserves edges while 
removing high-frequency noise from stationary signals.

The SWFMH filter discussed above is very well suited for gas turbine 
health signals that have sharp edges and linear components. It is compared 
to the traditional smoothing approaches based on FIR (averaging) filters and 
IIR (exponential) filters, along with the standard median filter. The SWFMH 
has been used for removing noise from biomedical EEG signals and EOG 
signals while preserving features. In this chapter, we will demonstrate the 
application of the SWFMH filter for gas turbine signals.

4.3 Test Signal

The test signal used in this study is obtained using a linearized model of a 
gas turbine at a given power condition obtained from published  literature 
[12]. An ideal root signal for ΔEGT with implanted high-pressure compres-
sor (HPC) and high-pressure turbine (HPT) faults is used in this study 
and is shown in Figure 4.1. A known root signal is a standard method for 
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46 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

evaluating different filters since the final answer is known. The other root 
signals for ΔN2, ΔN1, and ΔWF can be similarly derived from the engine 
model. However, to test the filters, we use the ΔEGT signal.

4.3.1 Root Signal

The signal in Figure 4.1 contains 200 data points. From point k = 1–25 there 
is no fault, representing a healthy engine. At data point k = 26, there is a sud-
den onset of a η = −2% HPC fault. Such an event can be triggered by an event 
such as foreign object damage and is a single fault. The root cause for this 
fault is identified and the HPC module repaired at point k = 50. However, 
after some time of fault-free operation, an HPT fault starts developing due 
to deterioration. However, unlike the HPC fault, which occurred suddenly, 
the HPT fault develops slowly over time (approximated by a linear function) 
from points k = 75−150; from k = 150 the HPT fault remains steady at η = –2% 
and is finally repaired at k = 175, after which normal operation resumes.

This simulated fault time history idealizes a real-life scenario within a 
compressed timescale. In the ideal scenario, the measurement delta is clearly 
defined at each point. After noise is added to this signal, it allows us to test 
the performance of the filter in the presence of edges that can  represent 
a   single-fault precursor to a major maintenance event and also a ramp, 
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FIGURE 4.1
Root and noisy signal for exhaust gas temperature measurement delta indicating an HPC fault 
and HPT fault. (From Ganguli, R., Mechanical Systems and Signal Processing 16(6):967–978, 2002. 
With permission.)
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47FIR-Median Hybrid Filters

which  models long-term deterioration over time. The stationary regions 
simulate a healthy engine.

4.3.2 Gaussian Noise

Zero mean Gaussian white noise is added to the simulated measurements 
using standard deviations for ΔEGT, ΔN1, ΔN2, and ΔWF of 4.23°C, 0.25%, 
0.17%, and 0.50%, respectively. These values are obtained from typical airline 
data given in [11] and have been used in earlier chapters. The noisy signal is 
shown along with the root signal for ΔEGT in Figure 4.1. It is clear that noise 
causes problems in differentiating between a healthy and damaged engine 
and also hides important features of the data.

4.3.3 Outliers

Outliers are added to the root signal. The outliers are selected at three  levels: 
σ, 2σ, and 3σ. The σ outlier is equal to 4.23°C and is added at k = 10, 80, and 
140 and subtracted at k = 40 and 120; the 2σ outlier is equal to 8.46°C and is 
added at k = 20, 100, and 190 and subtracted at k = 30 and 170; and the 3σ out-
lier is equal to 12.69°C and is added at k = 110 and 160 and subtracted at k = 60 
and 130. These points are selected in an arbitrary way to simulate gross out-
liers that follow no noise model. They are directly added to the root signal.

4.3.4 Error Measure

Consider the basic measurement deltas ΔEGT, ΔN1, ΔN2, and ΔWF. Then we 
can write any of these measurement deltas as follows:

 z = z0 + ε + θ (4.5)

Here ε accounts for Gaussian noise, θ represents non-Gaussian outliers, and 
z0 is the pure measurement delta, also called the root signal. In reality, such a 
pure signal would be contaminated by noise and outliers, and therefore z is 
the polluted or corrupted signal. A filter Ψ performs the following operation 
that returns the filtered signal from the corrupted signal:

 z z zˆ 0( )( )= Ψ = Ψ + ε + θ  (4.6)

In the next section, we evaluate numerical results using the simulated 
data for the FIR moving average filter, the IIR exponential average filter, the 
median filter, and the nonlinear SWFMH filter. The following RMS error 
measure is used to analyze the filter performance over a sample of N points 
by comparing the filtered signal with the root signal:

 
N

z z
1 ˆk k

k

N
0 2

1∑ ( )Θ = −
=

 (4.7)
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48 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

4.4 Numerical Simulations

The traditional FIR and IIR filters are compared with the median and SWFMH 
filters. The FIR filter used in this chapter has window length I = 10 and equal 
weights. It is therefore equivalent to the 10-point moving average that is 
 commonly used in industry. The IIR filter used in this chapter is the expo-
nential filter with a = 0.15, which is one of the exponential smoothing filters 
suggested in [6]. The SWFMH filter used here has been discussed  earlier in 
Equation (4.3). For applications with the median SWFMH filter, it is best to start 
with a small filter window and slowly increase the filter window. This helps to 
preserve features and reduce noise [19]. For the median filter, we start with a 
length of I = 3, and then increase the filter length to I = 5, 7, and 9. Note that the 
median filter must have an odd length. The filter length of the five underlying 
FIR structures of the SWFMH filter is started at I = 2 and increased in incre-
ments of 1 to I = 10. Thus, the SWFMH filter starts with a window length of 
2I + 1 = 5 for I = 2 and ends with a window length of 2I + 1 = 21 for I = 10.

The results of filtering on the root signal embedded with Gaussian noise 
and the outliers are shown in Figures  4.2–4.5 for the FIR, IIR, median, 
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FIGURE 4.2
Effect of FIR filters on noisy signal contaminated with outliers. , root signal; , 
noisy signal; , filtered signal. (From Ganguli, R., Mechanical Systems and Signal Processing 
16(6):967–978, 2002. With permission.)
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FIGURE 4.3
Effect of IIR filters on noisy signal contaminated with outliers. (From Ganguli, R., Mechanical 
Systems and Signal Processing 16(6):967–978, 2002. With permission.)
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FIGURE 4.4
Effect of median filter on noisy signal contaminated with outliers. (From Ganguli, R., Mechanical 
Systems and Signal Processing 16(6):967–978, 2002. With permission.)
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50 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

and SWFMH filters, respectively. The linear FIR and IIR filters are applied 
only once, as is the practice in industry, as repeated applications will smooth 
out features in the signal. The linear filters reduce Gaussian noise but also 
distort the edges in the signal. The linear filters are unable to reject the outli-
ers, which get absorbed into the filter predictions.

In contrast, the median filter does a good job at preserving the signal fea-
tures and effectively eliminates outliers because of the nonlinear nature of 
the median operation. However, it suffers from the problem of streaking, 
resulting in the horizontal lines approximating parts of the signals, espe-
cially along the ramp. The SWFMH filter is able to reproduce the root signal 
to a large extent from the noisy data. It effectively eliminates the outliers and 
preserves the sharp edges and the ramp features of the signal. The streaking 
problem of the median filter is also greatly diminished.

The above results are shown for one particular noisy signal. To get a sta-
tistical measure of the effectiveness of each filtering method, 1000 samples 
of noisy data with outliers are generated and filtered in a manner discussed 
above. The average RMS error defined by Equation (4.7) is calculated for each 
filter and normalized by the average RMS error for the noisy signal. These 
results are shown in Figure 4.6.
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FIGURE 4.5
Effect of SWFMH filters on noisy signal contaminated with outliers. (From Ganguli, R., 
Mechanical Systems and Signal Processing 16(6):967–978, 2002. With permission.)
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51FIR-Median Hybrid Filters

Compared to the noisy signal, the FIR filter shows a noise reduction of 
20%, the IIR filter of 32%, the median filter of 53%, and the SWFMH filter 
of 64%. Thus, the SWFMH filter gives excellent results in reducing noise in 
the signal while preserving the step changes and linear deterioration that 
are typical gas turbine health signals. The SWFMH filter is considerably 
superior to the widely used FIR filters and IIR filters [6]. Their use in the 
gas turbine industry for removing noise and outliers from health signals is 
therefore recommended.

4.5 Summary

The FIR-median hybrid filters are evaluated for removing noise and outli-
ers from gas turbine measurement deltas. The measurement deltas are the 
deviations between the sensor measurements and a good baseline engine. 
A test signal derived from a linearized model of an engine at a fixed power 
condition is used to evaluate the FIR, IIR, median, and subfilter weighted 
FIR-median hybrid (SWFMH) filter.

It is found that the weighted median FIR hybrid filters provide an effec-
tive way to remove both Gaussian noise and outliers from measurement 
deltas, while preserving the edges in the signal. They are also able to cap-
ture the linear change in signals that can come from long-term engine 
deterioration.
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FIGURE 4.6
Filtering errors for different filters for noisy signal contaminated with outliers, normalized by 
error in noisy signal contaminated by outliers. (From Ganguli, R., Mechanical Systems and Signal 
Processing 16(6):967–978, 2002. With permission.)
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52 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

The FIR, IIR, median, and SWFMH filters result in a noise reduction of 20, 
32, 53, and 64%, respectively. The SWFMH filter is therefore recommended 
for noise removal in gas turbine health signals. It is particularly useful 
for cases where the data points are rapidly available, which is the case for 
many newer engines. They can also be used for online condition monitoring 
 systems where real-time analysis is possible.
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5
Transient Data and the Myriad Filter

In this chapter, we look at the myriad filter as a substitute for the moving 
average filter, which is widely used in the gas turbine industry. In contrast 
to previous chapters, which used steady-state signals, the current chapter 
considers transient signals. Typically, most gas turbine diagnostics are con-
ducted with steady-state measurement data. Some gas turbine problems 
such as misscheduled nozzle and compressor blade movement due to con-
trol system faults appear only during transient processes [45]. The three ideal 
test signals used in this study include the step signal, which simulates a 
single fault in the gas turbine, while ramp and quadratic signals simulate 
long-term deterioration. Further, an adaptive weighted myriad filter algo-
rithm that adapts to the quality of incoming data is studied. The filters are 
demonstrated on clean and simulated deteriorated engine data obtained 
from an acceleration process from idle to maximum thrust condition. These 
data were simulated using a transient performance prediction code. The 
deteriorated engine had single-component faults in the low-pressure turbine 
(LPT) and intermediate-pressure compressor (IPC). The signals are obtained 
from T2 (IPC total outlet temperature) and T6 (LPT total outlet temperature) 
engine sensors with their nonrepeatability values, which were used as noise 
levels. The weighted myriad filter shows greater noise reduction and out-
lier removal when compared to the sample myriad and FIR filter in the gas 
turbine diagnosis. Adaptive filters such as those considered in this chapter 
are also useful for online health monitoring, as they can adapt to changes in 
quality of incoming data.

5.1 Steady-State and Transient Signals

The test signals used in this chapter are for transient data. It is possible to use 
both steady-state and transient data for diagnostics. However, good steady-
state data may not be available under all operating conditions. For example, 
military engines can operate up to 70% of the time in unsteady conditions 
[46]. In addition, some faults may be amplified under transient conditions. 
Several authors have looked at engine diagnostics with transient data [46–49]. 
Some  studies address the problem of fault detection, and a few have 
looked at assessment of the fault magnitude. Neural networks and genetic 
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algorithms have been used for the fault isolation problem. While the neural 
approach is robust to the presence of some level of noise in data, all fault isola-
tion  algorithms benefit from prior signal processing. Since transient data are 
acquired online at a reasonably high rate, we study an online adaptive signal 
processing method in this chapter, which can be useful for data cleaning prior 
to fault isolation and visual display to human engineers. Simulation of engine 
performance in real-time using a piecewise linear-state variable engine model 
(SVM) was used along with a Kalman filter to estimate engine performance 
[47]. This real-time Kalman filter can detect engine faults such as hardware 
failure, foreign object damage, etc. Such real-time systems can benefit if their 
signals are preprocessed by the myriad filter discussed in this chapter.

Linear filtering algorithms used in practical applications are limited to the 
cases of Gaussian noise and show performance degradation in the presence 
of impulsive contamination. This issue has been adequately discussed in the 
previous chapters. The class of myriad filters has been proposed for filtering 
highly noisy data [50–52]. In this chapter, we look at the myriad filter as a sub-
stitute for the moving average filter, which is widely used in the gas turbine 
industry. The idea of using the myriad filter for gas turbine diagnostics was 
first proposed by Surender and Ganguli [53] and is discussed in this chapter.

5.2 Myriad Filter

Myriad filters are nonlinear filters whose development was motivated by the 
properties of α-stable distributions, a family of heavy-tailed densities that 
have been proposed for robust non-Gaussian signal processing in impul-
sive noise environments [16]. Using the α-stable noise model leads to a noise 
removal processor that performs nonlinear operations on the data and is 
good at outlier removal. Myriad filters have a solid theoretical basis, and are 
inherently more powerful than median filters. However, they are also more 
complicated.

The myriad filter is defined as a running-window filter outputting the 
sample myriad of the elements in the window. In the case that all the weights 
are unitary [16], this filter is referred to as the unweighted myriad filter, or 
simply the myriad filter. The myriad filter is then defined as

 ∏ ( )β = + − β 










β
=

K xˆ arg minK i

i

N
2 2

1
 (5.1)

The myriad is the argument β that minimizes the product expression in 
the above equation. The myriad filters can be controlled by adjusting the 
linearity parameter K [51]. The larger the value of K, the closer the behavior 
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55Transient Data and the Myriad Filter

of the myriad is to a linear estimator. As the myriad moves away from the 
linear region (large values of K) to lower values, the estimator becomes more 
nonlinear and resistant to the presence of impulsive noise.

We use a five-point myriad filter that represents a small window. Distortion 
to sharp edges in the signal that can precede single fault is minimal. This fil-
ter can be evaluated by using the following polynomial, which is obtained 
from Equation (5.1) by using N = 5:

 

f K x K x K x

K x K x

2
1

2 2
2

2 2
3

2

2
4

2 2
5

2

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )

β = + − β ∗ + − β ∗ + − β

∗ + − β ∗ + − β
 (5.2)

The myriad is the value β that minimizes f(β), where it lies between [x1, x5], 
where x1 and x5 are the minimum and maximum values in the sample. We 
see from Equation (5.2) that f(β) for the five-point myriad filter is a polyno-
mial in β of order 10. In general, f(β) for an N-point myriad is a polynomial 
of order 2N. To find the value of the myriad, we need to find the roots of 
f'(β) and the value of β among the root values that give the lowest f (β). In 
this chapter the myriad filters are compared to finite impulse response (FIR) 
moving average filters of equal length. The FIR filter is defined as

 ∑=
=

x w xˆ i i

i

N

1

 (5.3)

where the weights sum to 1. When the weights are equal, a moving average 
filter is obtained. The five-point moving average FIR filter is defined as

 = + + + +
x

x x x x xˆ
5

1 2 3 4 5  (5.4)

where each weight is equal to 1/5. Note that the myriad filter becomes the 
moving average as K → ∞. Defining fi(β) = (K2 + (xi – β)2), Equation (5.2) can 
be written as

 ∏( ) ( )β = β
=

f fi

i 1

5

 (5.5)

Then

 �( )′ β = ′ + ′ + + ′ =f f f f f f f f f f f f f f f f 01 2 3 4 5 1 2 3 4 5 1 2 3 4 5  (5.6)

Dividing by f1 f2 f3 f4 f5 gives

 �
′

+
′

+ +
′

=
f
f

f
f

f
f

01

1

2

2

5

5
 (5.7)
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56 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

where ( )′= − − βf x2i i . Now Equation (5.7) can be written as a moving average 
FIR filter.

 
( ) ( ) ( )

− β

+
− β

+ − β

+
− β

+ + − β

+
− β

=x

x

K

x

x

K

x

x

K
1 1

...

1

01

1
2

2

2

2
2

2

5

5
2

2

 (5.8)

As K→ ∞,
( )− βx

K
i

2

2 → 0, this yields

 
( )

β =
+ + + +x x x x x

5
1 2 3 4 5  (5.9)

Thus, we see that this filter is analogous to the FIR filter, unlike the median 
filters, and may be used in the same manner as the moving average is used 
in the gas turbine industry.

5.3 Numerical Simulations

The signals that are considered for preliminary numerical experiments are (1) 
step signal, (2) ramp signal, and (3) quadratic signal, as shown in Figure 5.1. 
Later in this chapter, more realistic gas path signals are considered. However, 
the numerical experiments conducted here allow selection of the value of the 
parameter K, which is critical to the performance of the myriad filter. The 
step signal simulates a single-fault event in the gas turbine. The ramp and 
quadratic signal simulate long-term deterioration. The signal is created using

 x = x0 + αε + θ (5.10)

where x0 is the root signal, ε accounts for Gaussian noise, and θ for non-
Gaussian outliers. Here α is a parameter called noise level that allows us to 
control the level of noise in the data. A Ψ filter performs the following opera-
tions that return the filtered signal from the corrupted signal:

 y = Ψ(x) = Ψ(x0 + αε + θ)  (5.11)

The following error measure will be used to analyze the myriad filter perfor-
mance over a sample of N points by comparing the filtered signal with the 
root signal:

 ∑ ( )
=

−

=

MAE
y x

N
i

N 0

1

 (5.12)
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57Transient Data and the Myriad Filter

The mean absolute error (MAE) is widely used in signal processing and 
is particularly sensitive to the presence of outliers and edges in the data. 
The three ideal test signals are shown in Figure  5.1, which shows a sig-
nal from discrete time k = 1 until k = 25. These signals correspond to the 
step change in the measurements, a linear variation, and a quadratic varia-
tion. Five outliers are added to test the robustness of the filter to impulses: 
θ(7) = –1.0, θ(18) = 1.0, θ(10) = 0.75, θ(14) = –0.75, and θ(22) = –1.5. Gaussian 
noise at   various levels is added for the numerical experiments. Since the 
maximum value of the test signals is 1 and the minimum value is 0, by 
varying the noise level between 0 and 0.4, a wide variety of signal-to-noise 
ratios found in typical gas path measurements can be simulated as shown 
in Figure 5.2.

The effects of the linearity parameter K on MAE are on the step, ramp 
edge, and quadratic signals for the five-point filter. The simulation results for 
step, ramp, and quadratic signals for different values of K on MAE are shown 
in Figure 5.2 with various noise levels in the data. For the five-point filter, 
low values of K (such as K = 0.01) cause the myriad performance to become 
worse than the FIR at higher noise levels. For high values of K, such as K = 5, 

2

1x
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0 5 10
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15
k

20 25

2

1x

0
0 5 10

Quadratic

15
k

20 25

2

1x

0
0 5 10

Ramp

15
k

20 25

FIGURE 5.1
Test signals. (From Surender, V.P., and Ganguli, R., Journal of Engineering for Gas Turbine and 
Power 127(2):329–339, 2005. With permission.)
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FIGURE 5.2
Effect of linearity parameter K on five-point myriad filter for MAE. (a) Step signal. (b) Ramp signal. (c) Quadratic signal. (From Surender, V.P., and 
Ganguli, R., Journal of Engineering for Gas Turbine and Power 127(2):329–339, 2005. With permission.)
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59Transient Data and the Myriad Filter

the myriad filter approaches the FIR filter in performance. Since gas path sig-
nals have reasonably low levels of noise and have more possibility for outlier 
contamination, a value of K = 0.1 is selected.

5.4 Gas Turbine Transient Signal

The trajectories for a clean and deteriorated engine are presented  during 
an acceleration process. The deteriorated engine had single- component faults 
in low-pressure turbine (LPT) and intermediate-pressure compressor (IPC) 
implanted, respectively. The signals of LPT fault and IPC fault on T2 and 
T6 during transients are obtained from [54]. These ideal signals are shown 
in Figures 5.3 and 5.4. The noise level α of 0.004 is the level of noise used in 
[54]. We use α = 0.004 and α = 0.008 to simulate conditions with normal data 
and low-quality data, respectively. Outliers are also added to the signals. The 
noisy signals are shown in Figures 5.5(a), 5.6(a), and 5.7(a). Tables 5.1 and 5.2 
show the MAE values on the T2 measurements.

Results for both the clean and degraded engines are shown. Tables 5.3 and 
5.4 show the MAE values for the T6 measurements. There is considerable 
reduction in the MAE using the myriad filter with K = 0.1, compared to the 
FIR filter. Again, results for both the clean and degraded engines are shown. 
The results for the weighted myriad filter shown in these tables will be dis-
cussed later in this chapter.

5.5 Weighted Myriad Algorithm

A problem in the myriad filter discussed above is in the selection of the lin-
earity parameter K. Weighted myriad filters provide a way to avoid the selec-
tion of the linearity parameter.

Consider a set of observations { } =xi i
N

1 and a set of filter weights { } =Wi i
N

1. 
Define the observation vector x x xx , , , N

T
1 2[ ]∆ …  and the weighted vector 

w w ww , , N
T

1 2[ ]∆ … .
For a given K > 0, the weighted myriad filter (WMyF) output is given by

myriad K w x w x w x Gˆ w, x ; , , , arg min , w,xK N N K1 1 2 2 ( )( ) ( )β ∆ = ββ� � … �  (5.13)

The function

 ∏( ) ( )β ∆ + − β





=

G K w x, w, xK i i

i

N
2 2

1

 (5.14)
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60 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

is called the weighted myriad objective function, since it is minimized 
by the weighted myriad and �w xi i  denotes the weighting operation in 
Equation (5.13).

Using negative weights results in potential instability of the filter, so it 
is defined using positive weights: wi ≥ 0, i = 1, 2, ... N. The WMyF output is 
the value of β at its global minimum of GK(β). For wi ≥ 0 and K > 0, G(β) > 0 
for all β. Furthermore, Gk(β) is a polynomial in β of degree 2N. The myriad 
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FIGURE 5.3
Clean and degraded signals during LPT fault on acceleration process. (From Surender, V.P., and 
Ganguli, R., Journal of Engineering for Gas Turbine and Power 127(2):329–339, 2005. With permission.)
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61Transient Data and the Myriad Filter

β̂ is defined as the minimum value of GK(β) and occurs at one of the roots 
of  ′GK(β).

 ′GK(β) = 0 (5.15)

Differentiating Equation (5.14) gives

 ∏∑ ( )( ) ( )′ β = β − + β −





=
≠

=

G w x K w x2K j j l l

l
l j

N

j

N
2 2

11

 (5.16)
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FIGURE 5.4
Clean and degraded signals during IPC fault on acceleration process. (From Surender, V.P., and 
Ganguli, R., Journal of Engineering for Gas Turbine and Power 127(2):329–339, 2005. With permission.)
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(a) Noisy data on LPT T2 engine for α = 0.008.
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FIGURE 5.5
Clean and degraded signals during LPT fault on acceleration process for T2. (a) Noisy data on 
LPT T2 engine for α = 0.008. (b) Filtered data on LPT T2 engine for α = 0.008. (From Surender, 
V.P., and Ganguli, R., Journal of Engineering for Gas Turbine and Power 127(2):329–339, 2005. 
With permission.)
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(a) Noisy data on LPT T6 engine for a = 0.008.
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(b) Filtered data on LPT T6 engine for a = 0.008.
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FIGURE 5.6
Clean and degraded signals during LPT fault on acceleration process for T6. (a) Noisy data on 
LPT T6 engine for α = 0.008. (b) Filtered data on LPT T6 engine for α = 0.008. (From Surender, 
V.P., and Ganguli, R., Journal of Engineering for Gas Turbine and Power 127(2):329–339, 2005. 
With permission.)
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(a) Noisy data on IPC T2 engine for α = 0.008.
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(b) Filtered data on IPC T2 engine for α = 0.008.
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FIGURE 5.7
Clean and degraded signals during IPC fault on acceleration process for T2. (a) Noisy data on 
IPC T2 engine for α = 0.008. (b) Filtered data on IPC T2 engine for α = 0.008. (From Surender, 
V.P., and Ganguli, R., Journal of Engineering for Gas Turbine and Power 127(2):329–339, 2005. 
With permission.)
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65Transient Data and the Myriad Filter

TABLE 5.1

MAE for T2 Engine with α = 0.004

Filter 

LPT T2 IPC T2

Degraded Clean Degraded Clean

FIR 0.1149 0.1101 0.1085 0.109
Myriad 0.074 0.0694 0.0666 0.069
WMyF 0.0549 0.0503 0.0483 0.0503

Source: From Surender, V.P., and Ganguli, R., Journal of Engineering for 
Gas Turbine and Power 127(2):329–339, 2005. With permission.

TABLE 5.3

MAE for T6 Engine with α = 0.004

Filter 

LPT T6 IPC T6

Degraded Clean Degraded Clean

FIR 0.1162 0.1111 0.1066 0.1148
Myriad 0.0681 0.0648 0.0588 0.0671
WMyF 0.0521 0.0498 0.0459 0.0519

Source: From Surender, V.P., and Ganguli, R., Journal of Engineering for 
Gas Turbine and Power 127(2):329–339, 2005. With permission.

TABLE 5.2

MAE for T2 Engine with α = 0.008

Filter 

LPT T2 IPC T2

Degraded Clean Degraded Clean

FIR 0.1237 0.1136 0.1222 0.1277
Myriad 0.0829 0.0735 0.0817 0.0871
WMyF 0.0669 0.055 0.0635 0.0722

Source: From Surender, V.P., and Ganguli, R., Journal of Engineering for 
Gas Turbine and Power 127(2):329–339, 2005. With permission.

TABLE 5.4

MAE for T6 Engine with α = 0.008

Filter 

LPT T6 IPC T6

Degraded Clean Degraded Clean

FIR 0.1260 0.1247 0.1203 0.1254
Myriad 0.0773 0.0791 0.0729 0.0782
WMyF 0.0634 0.0638 0.0593 0.0645

Source: From Surender, V.P., and Ganguli, R., Journal of Engineering for 
Gas Turbine and Power 127(2):329–339, 2005. With permission.
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66 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

This is a polynomial of degree 2N – 1 with as many as 2N – 1 real roots. Using 
Equations (5.14) and (5.16), we get

 ∑ ( )
( )( ) ( )′ β = ′ β

β −

+ β −=

G G
w x

K w x
2K K

j j

j jj

N

2 2

1

 (5.17)

Since ( )′ β >G 0K , the filter output β̂ must satisfy

 ∑ )
)

(
(
β −

+ β −
=

=

w
K

x

w
K

x

ˆ

1 ˆ
0

j
j

j
jj

N
2

2

2
1

 (5.18)

The above equation shows that even if the value of K is changed, the same 
filter output is obtained provided the weights are suitably scaled. Therefore,

 ) )( (β = β =if
K K

ˆ w , x ˆ w , x
w w

K K1 2
1

1
2

2

2
21 2  (5.19)

Thus, the filter output depends on w/K2. Thus, the problem of finding the 
optimal linearity parameter K is avoided by using the weighted myriad filter. 
However, the problem of finding the appropriate value of K is now replaced 
by finding the appropriate weight vector. In general, the myriad is the global 
minima among several local minimum points of G′(β). To compute the myr-
iad, one needs to find the roots of polynomial G(β), and test all the local 
minima to find the global minima.

5.6 Adaptive Weighted Myriad Filter Algorithm

For applications where the statistics of the signal are unknown or time vary-
ing, the adaptive algorithm is very useful. For gas path measurements, his-
torical data are often used to obtain representative numbers for measurement 
uncertainty. However, it is likely that the uncertainty changes for differ-
ent outliers and engines and for different operating conditions. The adap-
tive algorithm avoids the need for this simplification. An adaptive steepest 
descent method algorithm is used to optimize the filter weights. The update 
is computationally comparable to the least mean absolute deviation (LMAD) 
algorithm.

In order to find the optimal weights, the steepest descent method can be 
used to minimize the MAE cost function J(w) [16], where

 { }( ) ( )= −J K E y dw, w,xK  (5.20)
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and E{.} is the statistical expectation and d is the desired signal. Here d can 
be generated by an onboard model of the engine. The following algorithm is 
used to update the filter weights:

 ( ) ( ) ( )+ = − µ ∂
∂







w n P w n
J

w
n1i i

i
 (5.21)

where wi(n) denotes the ith weight at the nth iteration, μ > 0 is the step size of 
the update, and P[.] is defined as

 [ ] ∆
>

≤






P u u

u u

u
,

, 0

0, 0
 (5.22)

In practice, P[u] is set to a small positive value u ≤ 0. Differentiating Equation 
(5.20), we obtain

 ( ) ( ) ( ) ( )∂
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= − 
∂
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 (5.23)

Since lack of knowledge of signal statistics makes evaluation of statistical 
expectation E difficult, an instantaneous estimate for the gradient is used. 
Putting Equation (5.23) into Equation (5.21) yields

 ( ) ( ) ( ) ( )+ = − µ  
∂
∂









w n P w n e n
y
w

n1 sgni i
i

 (5.24)

where e(n) = y(n) – d(n) is the error at the nth iteration. To find 
∂
∂

y
wi

 for a given 
K, we can write Equation (5.17) as

 ∑ )
)

(
() )( (′ =
−

+ −=

G y G y w x
w y x
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j j

j jj
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2 2
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 (5.25)

Consider K, the other weights, and input vector x are constant. Then

 G'(y) = 2G(y,wi) H(y,wi) (5.26)

where

 H y w
w y x

K w y x
, i

j j

j jj

N

2 2

1
∑ ( )

( )( ) ∆
−

+ −=

 (5.27)

Since G(y) = 0,

 G(y, wi) H(y, wi) = 0 (5.28)
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Since G(y, wi) ≥ 0,

 H(y, wi) = 0 (5.29)

Differentiating the above equation with respect to wi yields
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Putting Equation (5.32) and Equation (5.33) in Equation (5.31) we get
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 (5.34)
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Putting Equation (5.34) into Equation (5.24) yields
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 (5.35)

We can remove the denominator from the update term in the above equation, 
as it does not affect the direction of the gradient estimate or the values of the 
final weights. This leads to
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 (5.36)

where e(n) = y(n) − d(n) is the error at the nth iteration, d is the desired signal, 
y(n) is the WMyF output at the nth iteration, n is the number of iterations, μ is 
the step size, and wi(n) denotes the ith weight at the nth iteration. P(u) is set to 
a small positive value ε if u < 0. The derivation of the algorithm is condensed 
from [16]. The above algorithm is started with weights equal to 1 at iteration 
n = 1, K = 0.1, and μ = 5.0 × 10–3. The proposed schematic of the adaptive filter 
is shown in Figure 5.8.

In applications where the non-Gaussian process naturally arises in  practice, 
the myriad-based algorithms lead to significant advantages. In gas  turbine 

Model

Weighted
Myriad

Observed
x (n)

d (n)
desired

y (n)
–

+
+

output

e (n)
error

FIGURE 5.8
Schematic for adaptive filter optimization. (From Surender, V.P., and Ganguli, R., Journal of 
Engineering for Gas Turbine and Power 127(2):329–339, 2005. With permission.)
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applications, the presence of outliers in the data is well known. The weighted 
myriad filters have the potential to perform significantly better than both 
linear and median filters in Gaussian and non-Gaussian environments. For 
applications where the statistical characteristics of the underlying signals may 
be unknown or varying, adaptive algorithms are used. A disadvantage of the 
myriad filter is its complicated definition and implementation  compared to 
the linear filters. However, once implemented, this is hidden from the user.

5.7 Numerical Simulations

This adaptive algorithm was evaluated through a computer simulation 
example involving denoising gas turbine measurements contaminated with 
Gaussian noise. The trajectories for a clean and deteriorated engine are con-
sidered for this problem. In our simulation example, the degraded signal 
and clean signal were chosen that had single-component faults: low-pressure 
turbine (LPT) and intermediate-pressure compressor (IPC) faults. The signal 
is corrupted by adding noise level α = 0.004 [54], yielding the noisy observed 
signal. A further noise level of α = 0.008 was also used.

The objective of this adaptive algorithm is to train the weighted  myriad 
to converge the filter weights that minimize the absolute value of the error 
signal e(n) between the filter output signal y(n) and desired signal d(n). 
This adaptive algorithm is a simple, fast, and practical weighted  myriad  filter 
algorithm. This achieves a lower MAE than the FIR and sample myriads 
at comparable convergence speeds, as shown in the results in Tables 5.1–5.4.

The weighted myriad filter has the best outputs and lowest mean errors. 
The effects of the five-point filter are plotted with α = 0.008 for the noisy 
data and weighted myriad in Figures 5.5–5.7. In this case, we took both the 
degraded signal and the clean signal for a T2 LPT engine sensor signal. 
Figure  5.5(a) shows the noisy data, for both degraded and clean engines. 
The weighted myriad filtered data are shown in Figure 5.5(b) for the degraded 
and clean engine signal.

Similarly, the effects of LPT T6 for both degraded and clean signals are 
 plotted along with noisy data in Figure 5.6(a) and for the weighted myriad 
data in Figure  5.6(b). The results for the IPC engine sensor signal for the 
T2 engine for degraded and clean signals are also plotted in Figure  5.7. 
Figure  5.7(a) shows the noisy data, for both degraded and clean engines, 
and Figure 5.7(b) shows the filtered data. From these figures, and results in 
Tables 5.1–5.4, it is clear that considerable noise reduction is obtained using 
the weighted myriad filter. The outcomes of different filters, such as FIR, 
sample myriad, and weighted myriad, are compared and studied.

From Figure  5.9(a), we can see that the weighted myriad filter 
shows much better performance and outlier removal than the FIR filter, 
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for α = 0.008. (b) Sample myriad filter using outliers on IPC T6 engine for α = 0.008. (From 
Surender, V.P., and Ganguli, R., Journal of Engineering for Gas Turbine and Power 127(2):329–339, 
2005. With permission.)
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which is not able to remove the outliers. The sample myriad filter results 
are plotted in Figure 5.9(b) for different values of K. It is clear from the 
results that the sample myriad can be controlled by adjusting the lin-
ear  parameter K, whereas the adaptive weighted myriad filter provides 
a way to avoid the selection of the linear parameter K. However, a low 
value of K = 0.1 appears to work quite well for the signals in this study. 
Note that the sample myriad used the value K = 0.1, and the values of K 
that give good results may change for different types of signal and noise 
characteristics.

This chapter therefore offers two approaches for denoising gas path sig-
nals. The first is based on the sample myriad and uses a suitable value of 
K based on representative signals and known statistics of the system. Our 
results show that K = 0.1 works quite well for signals polluted by outliers. 
This approach is suitable for ground-based diagnostic systems. The sample 
myriad filter is implemented as a MATLAB® program using built-in func-
tions that calculate the roots of polynomials and are simple and fast. The 
second approach is the powerful weighted myriad approach that adapts 
to changes in both signals and their statistics, and is especially suitable for 
online applications. The adaptive myriad is implemented using the weight 
update Equation (5.36) using MATLAB. While the adaptive myriad is a 
 useful tool for outlier-contaminated gas path measurements, the optimum 
weightings are not known until all the available data are processed. Thus, 
there is a lag caused by the filter. Engine faults result in a change in engine 
state  measured over many samples and should not affect the myriad fil-
ter. Abrupt faults will not be impacted by filters with low window length, 
and gradual faults that develop slowly over time will also not be impacted. 
However, any intermittent faults may be impacted, as they can appear as 
outliers to the filter.

5.8 Summary

In this chapter, we looked at the myriad filter as a substitute for the  moving 
average filter, which is widely used in the gas turbine industry. Results 
with transient gas path measurement signals show that the myriad filter 
has good noise reduction qualities when compared to moving average FIR 
filters. There is considerably more noise reduction obtained by the myriad 
filter than with the FIR filters. The results show that there is good outlier 
removal by the weighted myriad filter, which is an important element of a 
 filter. The adaptive weighted myriad filter shows even greater noise reduc-
tion than  the sample myriad and FIR filter in the gas turbine diagnosis. 
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73Transient Data and the Myriad Filter

The  use  of such a filter prior to performing fault isolation and detection 
 functions is likely to lead to improved performance of the diagnostic system. 
This filter is particularly suited for online and real-time gas turbine diagnos-
tic  systems where engine data, both steady state and transient, are continu-
ously and  rapidly available.
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6
Trend Shift Detection

The last few chapters focused on noise removal from gas turbine signals. The 
signal processing algorithms ranged from simple “gentle smoothers” like the 
CWIM filter suitable for trend plots to the sophisticated adaptive myriad filter 
for real-time transient data analysis. In this chapter, we address the problem 
of locating the discrete time or epoch when the sudden change in the gas 
turbine signal occurs. Trend shift detection is posed as a two-part problem: 
filtering of the gas turbine measurement deltas followed by the use of edge 
detection algorithms. Measurement deltas are deviations in engine gas path 
measurements from a good baseline engine and are a key health signal used 
for gas turbine performance diagnostics. Just like in the previous chapters, 
the measurements used in this chapter are exhaust gas temperature, low rotor 
speed, high rotor speed, and fuel flow, which are called cockpit measurements 
and are typically found on most commercial gas turbines. In this chapter, 
a cascaded recursive median (RM) filter, of increasing order, is used for the 
purpose of noise reduction and outlier removal, and a hybrid edge detector 
that uses both gradient and Laplacian of the cascaded (RM) filtered signal is 
used for the detection of step change in the measurements. Simulated results 
with test signals indicate that cascaded RM filters can give a noise reduction 
of more than 38% while preserving the essential features of the signal. The 
cascaded RM filter also shows excellent robustness in dealing with outli-
ers, which are quite often found in gas turbine data, and can cause spurious 
trend detections. Suitable thresholding of the gradient edge detector coupled 
with the use of the Laplacian edge detector for cross-checking can reduce 
the system false alarms and missed detection rate. Further reduction in the 
trend shift detection false alarm and missed detection rate can be achieved by 
selecting gas path measurements with higher signal-to-noise ratios.

The FIR-median hybrid filter discussed in Chapter 4 worked well only 
when the length of the window was quite large and had a 10-point delay 
in processing a newly arriving point. Such a system would be useful if the 
data were received at over 10 points per flight by the monitoring system. In 
general, more than two comparable readings in a single aircraft flight is very 
unusual. Timely alerting would require a near-real-time mode of transmis-
sion that can be very expensive.

In this chapter, we use the cascaded recursive median filter to remove 
noise from signals. Unlike the nonrecursive filters discussed in the earlier 
chapters, the recursive filters converge very fast and do not need repeated 
passes. They are also good at removing outliers like other median filters. 
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The use of recursive median filters in cascades is a recent research devel-
opment in the field of nonlinear signal processing. In addition, we use a 
gradient and Laplacian-based edge detector to minimize false alarms and 
missed detections. This chapter is based on the concept of coupling recursive 
median filters with an edge detector, which was proposed for gas turbine 
diagnostics by Ganguli and Dan [55].

6.1 Problem Formulation

Consider the four basic (cockpit) measurements from an aircraft gas turbine 
engine: EGT, WF, N1, and N2. Almost all engines, including older engines, have 
these measurements. Some newer engines may be fitted with  additional pres-
sure and temperature sensors. Therefore, we concentrate on these four mea-
surements. Deltas for each of these are obtained by subtracting the baseline 
measurements for a good engine from the actual measurement. The  baseline 
measurements often come from an engine model, and  various correction 
 factors are used to reduce the measured data to standard sea level conditions. 
But these gas path measurement deltas contain high levels of uncertainty due 
to sensor errors, high-frequency noise, and modeling assumptions.

For a typical engine, the measurement deltas slowly increase with time due 
to deterioration as the number of flights increases. While deterioration accu-
mulates over many flights, faults are more abrupt or step changes. For a trend 
shift to be detectable, it must show up beyond the scatter band caused by 
noise for the measurements. In general, the trend shift can be any amount 
depending on the impending fault. In this chapter, a step change in measure-
ment deltas of 2% or more is interpreted as a large enough trend shift imply-
ing a single-fault event. Thus, we can write the measurement deltas as follows:

 z = z0 + θ (6.1)

where θ is noise and z0 is the baseline measurement delta. Hence, given the 
real noisy measurement deltas, our problem is fast detection of trend shift in 
the presence of noise in the data. Noise is added to the simulated measurement 
deltas using the typical standard deviations for ΔEGT, ΔWF, ΔN1, and ΔN2 as 
4.23°C, 0.50%, 0.25%, and 0.17%, respectively. These values are representative 
of airline data and are obtained from Lu et al. [11, 31]. It is also possible that 
there are non-Gaussian outliers or wild points, as stated by Lu et al., in the 
data. We have used these noise statistics in previous chapters.

Note that the problem formulation above is idealized and does not account 
for engine-to-engine variation, measurement bias, and gradual engine dete-
rioration, among others. However, the problem allows for an illustration of 
the proposed algorithms.
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77Trend Shift Detection

6.2 Image Processing Concepts

Our objective is to detect trend shifts in gas turbine measurement deltas. 
To do so, we borrow ideas from image processing [56]. Images are two-
dimensional signals composed of pixels with different levels of bright-
ness. Images are often contaminated with Gaussian as well as impulsive 
noise. The need for detection of edges (pixels with higher brightness than 
the neighborhood) has led to significant research on nonlinear filtering and 
edge detection.

Typical edge detection methods [57–59] use gradient (first derivative) or 
Laplacian (second derivative) operators to detect edges in images that are 
essentially discontinuities in the pixel values. In many machine vision appli-
cations, it is useful to separate out the regions of the image corresponding 
to the objects of interest, from the regions of the image corresponding to 
the background. At the edge, the magnitude of the gradient peaks and the 
Laplacian goes through a zero crossing. Thresholding the gradient is a way 
to perform the segmentation of the image on the basis of different regions 
or colors in the foreground and background of the image. Thus, a grayscale 
image can be interpreted in black and white.

However, in order to use such derivative operators for edge detection, the 
image needs to be preprocessed using some smoothing filter to suppress 
noise. This is because noise in the image gets amplified due to derivative 
operations. Unfortunately, linear smoothing methods blur the sharp edges 
in the image, and are not good at removing impulsive noise. Therefore, 
 nonlinear filters such as median filters are often used to preprocess images 
[60–70].

This image processing research is applicable to the diagnostics problem 
because the gas turbine measurement delta signal can be viewed as a one-
dimensional image. In the following sections, we introduce the concepts of 
the cascaded recursive median filters and edge detection in greater detail.

6.3 Median Filter

Recall that median filters are an important class of nonlinear filters. 
Nonlinear filters are multiscale in nature and possess the special ability of 
reducing noise without affecting the various features of the signal, which 
may represent a fault in the engine. An N-point median filter takes N points 
surrounding the central point and gives their median as the output; i.e., if zk 
denotes the input signal, then the output of the median filter is

 yk = median(zk−n, zk−n+1, … , zk , … , zk+n−1, zk+n ) (6.2)
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where N = 2n + 1 is the window length of the filter. Since the median does not 
cause much blurring to edges, it can be applied iteratively. However, a very 
large number of iterations can be required by the median filter to converge 
to a root signal [60]. A root signal is a signal that does not change on further 
passes of the median filter, which means that for the entire signal

 zk = median(zk−n, zk−n+1, … , zk , … , zk+n−1, zk+n ) (6.3)

In addition, individual spikes do not affect the median value, so median 
 filters remove impulsive noise quite well. For example, the median filter can 
discard gross outliers. Since a median filter takes previous as well as future 
input values for calculating a particular output, it has an associated time lag. 
But at the same time, it is much more effective than a linear filter in elimi-
nating high-frequency Gaussian noise while preserving the essential signal 
features.

6.4 Recursive Median Filter

A modified version of these median filters is the recursive median (RM) filter 
[61–63]. Recursive median filters possess superior noise attenuation capabil-
ity compared to their nonrecursive counterparts [62]. An RM filter uses some 
previous output values, instead of previous values for arriving at the next 
output, i.e., for an RM filter,

 yk = median (yk−n, yk−n+1, … , xk , … , zk+n−1, zk+n ) (6.4)

where N = 2n + 1 is the window length of the filter. Some fundamental prop-
erties of RM filters are:

 1. Any input signal reduces to a root signal after one or very few RM 
filter steps, or equivalently, the output will not be modified by further 
application of the same filter. The RM filter is therefore more efficient 
than the median filter that can require many iterative passes to con-
verge to the root. Recursive filters also ease hardware implementation.

 2. The RM filter output is always made up of monotone sequence 
(edges) linked together with ‘‘constant neighborhoods’’ having a 
length of at least n + 1 if the window length of the filter is 2n + 1.

Recursive median filters also have a higher immunity to impulsive noise 
or outliers in the data than median filters. Recursive median filters can be 
improved further when they are arranged in a cascade of increasing order.
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79Trend Shift Detection

6.5 Cascaded Recursive Median Filter

Bangham [64] observed that better noise removal is possible, compared to 
the recursive median filter, if we apply more than one RM filter sequentially 
on the same set of data points with the window lengths of the  filter increas-
ing. These are called cascaded RM filters and also the recursive median sieve 
[64–69]. Cascaded recursive median filters also make for easier software 
[65] and hardware implementation [66]. Alliney [67] gives analytical results 
showing the advantages of the cascaded RM filters. Consider one m-point 
RM filter and one n-point RM filter cascaded together. Passing the input sig-
nal through the m-point RM filter and the corresponding  output through 
the n-point RM filter gives the final output signal, with quite large noise 
reduction and at the same time maintaining good feature representation. 
The results obtained are best if we use RM filters of increasing window size, 
i.e., 2n + 1, n = 1, 2, …, arranged in a cascade. For example, a  three-point and 
five-point recursive median filter can be  cascaded as follows:
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 (6.5)

The use of median filters of increasing order, arranged in a cascade, is 
especially profitable when one wants to remove disturbances superimposed 
on rectangular impulse trains or sharp changing signals. However, the use 
of the five-point RM filter results in a three-point time delay. This can 
be observed by considering the following logic:

 1. The five-point RM output yk
2 is a function of +yk 2

1 .
 2. The output +yk 2

1  from the three-point RM filter is a function of +zk 3.

Recently, Yli-Harja et al. [70] have shown that cascaded median filters can 
be implemented in hardware in a straightforward and compact  manner. 
They  are therefore useful for online applications also. Alliney [67] also 
 mentions that the resulting signals after passing through the  cascaded recur-
sive median filters appear to be very satisfactory from a visual point of view. 
He speculates that some relationship could exist between the   nonlinear 
filtering algorithms and the human visual cognition process. The human 
visual  system tends to give very high importance to edges in images and 
signals, in a manner similar to that of the  nonlinear filters.
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80 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

6.6 Edge Detection

Edge detectors are a collection of image preprocessing methods used to 
locate changes in the image intensity function. Images are composed of pix-
els and edges are pixels where this function (brightness) changes abruptly. 
There are many methods for edge detection in images. However, among 
them the most widely used are the gradient-based edge detector and the 
Laplacian edge detector. These methods allow us to locate changes in the 
intensity function using derivatives. The gradient and Laplacian edge detec-
tors are defined below.

6.6.1 Gradient Edge Detector

An edge is a monotone sequence surrounded by constant neighborhoods of 
different values. As a result, a sharp peak in the gradient characterizes an 
edge. In general, comparing the magnitude of the gradient to a threshold 
can identify candidate edge points in a signal. Thresholding ensures that all 
points having a local gradient above the threshold must represent an edge. 
Thresholds are typically set based on an estimated signal-to-noise ratio. The 
Canny edge detector [57], for example, uses gradients for edge detection. If 
the threshold is set low, then all edge points in a signal will be detected. 
However, nonedge points, including regions of high noise, will also be 
falsely detected. These false alarms can be minimized by using a filtering 
operation that removes noise but leaves the edge intact.

6.6.2 Laplacian Edge Detector

The gradient at an edge reaches a maximum. Similarly, the Laplacian at an 
edge equals zero. Therefore, there is a change in the sign of the Laplacian 
before and after the edge occurs. In general, it is much easier and more 
 precise to find a zero crossing than a maximum point. In addition, while 
the  gradient depends on the steepness of the edge, the Laplacian does not. 
The Marr edge detector [58] uses the zero crossing of the Laplacian for 
edge detection.

A key problem in edge detection is that the gradient and Laplacian tend to 
amplify the effect of high-frequency noise in the data. In addition, the  presence 
of impulsive noise or outliers can cause spurious edges to be detected.

Therefore, a smoothing or filtering method is generally used on the  signal 
before performing edge detection. We will use the cascaded  recursive 
median filter for smoothing the gas path measurement deltas. We also use 
the  gradient and Laplacian edge detector simultaneously for improved 
edge detection accuracy. Chou and Bennamoun [59] recently suggested the 
use of such a hybrid edge detector combining the first- and second-order 
 differential edge detectors. They showed that for two-dimensional medical 
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81Trend Shift Detection

images their combination of two differential edge detectors gave accurate 
edge localization and showed robustness to noise.

6.7 Numerical Simulations

Simulated data for the test signal are used to test the cascaded RM filter for 
noise reduction. The filtered test signal is then used to test the combination 
of the gradient edge detector and the Laplacian edge detector for trend shift 
detection.

6.7.1 Test Signal

The test signal stretches over 20 discrete time points, and it assumes that 
some fault arises in the engine at discrete time k = 11 and continues until 
k = 20, resulting in an individual 2% change in the ΔWF, ΔN1, and ΔN2 mea-
surements and a 13.6°C change in ΔEGT. The ΔEGT signal is selected in terms 
of actual temperature, as percent changes are unavailable from the literature. 
A  13.6°C change in ΔEGT corresponds to a 2% high-pressure compressor 
(HPC) performance loss using faults defined in Lu et al. [11], Volponi et al. 
[12], and Ganguli [13]. The ideal test signals, along with a signal with added 
Gaussian noise, are shown in Figures 6.1–6.4. The standard deviations for the 
Gaussian noise added to ΔWF, ΔN1, ΔN2, and ΔEGT are 0.5%, 0.25%, 0.17%, 
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FIGURE 6.1
Ideal, noisy, and cascaded recursive median filtered signal for ΔEGT. (From Ganguli, R., and 
Dan, B., Journal of Engineering for Gas Turbine and Power 126(1):55–61, 2004. With permission.)
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FIGURE 6.2
Ideal, noisy, and cascaded recursive median filtered signal for ΔWF. (From Ganguli,  R., 
and  Dan,  B., Journal of Engineering for Gas Turbine and Power 126(1):55–61, 2004. With 
permission.)
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FIGURE 6.3
Ideal, noisy, and cascaded recursive median filtered signal for ΔN1. (From Ganguli,  R., 
and  Dan,  B., Journal of Engineering for Gas Turbine and Power 126(1):55–61, 2004. With 
permission.)
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83Trend Shift Detection

and 4.23°C, respectively. These values are obtained from a comprehensive 
study of airline data and are reported by Lu et al. and Ganguli.

6.7.2 Noise Reduction

Figures 6.1–6.4 show the results of passing the noisy data through the three-
point RM filter and the five-point RM filter, cascaded together. It is clear that 
the cascaded RM filter, of increasing order, removes a considerable amount of 
high-frequency noise, while preserving the sharp trend shifts. Since a trend 
shift can identify the temporal location of a fault, preserving them is very 
important for fault detection. In addition, by removing noise while preserv-
ing signal features, the cascaded RM filter enables better visualization of the 
signal. Figures 6.1–6.4 give a qualitative idea of noise reduction in the data 
due to passage through the cascaded recursive median filter.

To obtain a quantitative idea of the noise reduction, we look at the root 
mean square (RMS) error in the signal, which is a measure of the difference 
between the noisy or filtered and the ideal signal and is given as

 ∑( )Θ = −
=

M
z z

1
i i

i

M
0 2

1

 (6.6)

The error is a measure of noise in the signal, M is the number of points in the 
signal sample, and zi is the ith measurement delta. If Θ is zero, all the noise 
has been eliminated, and the real signal is identical to the ideal signal.
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FIGURE 6.4
Ideal, noisy, and cascaded recursive median filtered signal for ΔN2. (From Ganguli, R., and 
Dan, B., Journal of Engineering for Gas Turbine and Power 126(1):55–61, 2004. With permission.)
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84 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

To obtain the error measure Θ, we create 5000 samples of noisy data for the 
test signal. The error is then calculated as the average value for all the noisy 
signals. It is found that for all four measurements there is a reduction in the 
noise Θ of about 38% after filtering, compared to the noisy signal. It should 
be noted that this substantial noise reduction is obtained while preserving 
the trend shifts in the signal, which are needed for fault detection.

6.7.3 Outlier Removal

While all other results in this chapter are obtained assuming Gaussian 
noise, we illustrate the power of the cascaded RM filter to remove outliers in 
Figure 6.5. An outlier can be defined as a data point that appears to be incon-
sistent with the rest of the data. Here the noisy signal for ΔWF in Figure 6.2 
is further contaminated by adding the value 1% at k = 5 and subtracting 1% at 
k = 15 to the noisy signal. Since the standard deviation for ΔWF is 0.5, these 
are equivalent to a 2σ addition and subtraction. It is clear from Figure 6.5 that 
the cascaded RM filter discards the outlier points easily.

The results of using the exponential average filter are also shown in 
Figure 6.5. This filter has the form

 yk = azk + (1−a)yk−1 (6.7)

The results in Figure 6.5 use a = 0.25. It can be observed that the exponential 
average creates a smoothing out of the trend shift. The cascaded RM filter 
has an advantage in removing outliers and maintaining the trend feature 
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FIGURE 6.5
Noisy signal with outliers at k = 5 and k = 15 along with cascaded recursive median filtered 
signal and exponential average filtered signal. (From Ganguli, R., and Dan, B., Journal of 
Engineering for Gas Turbine and Power 126(1):55–61, 2004. With permission.)
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85Trend Shift Detection

and temporal information in the filtered data. Note, however, that Figure 6.5 
does not indicate the time delay of three points in the RM filter when com-
pared to the exponential filter.

6.8 Trend Shift Detection

A key factor in any edge detection algorithm is establishing where the detec-
tion threshold should be set. The measurement deltas entering the edge 
detector are preprocessed by the cascaded RM filter. For all results, we use 
a combined gradient/Laplacian edge detector. This edge detector detects 
an edge if the gradient exceeds a predetermined threshold value and the 
Laplacian changes sign at that point. Figure 6.6 shows a schematic represen-
tation of the trend shift detection algorithm.

Laplacian

Laplacian
Changes

Sign?No No

YesYes

Gradient

5-point Recursive Median Filter

3-point Recursive Median Filter

Measurement Delta for Discrete Times
k – 4, k – 3, k – 2, k – 1, k, k + 1, k + 2, k + 3, k + 4

Gradient
Exceeds

�reshold?

Trend Shift Detected at
Discrete Time k

FIGURE 6.6
A schematic view of trend shift detection algorithm. (From Ganguli, R., and Dan, B., Journal of 
Engineering for Gas Turbine and Power 126(1):55–61, 2004. With permission.)
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86 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

To understand the mechanism of edge detection, consider the gradient and 
Laplacian of the ΔWF measurement (Figure 6.2) shown in Figures 6.7 and 6.8, 
respectively. Note that the trend shift takes place between discrete time k – 1 
and k of 10 and 11, respectively.

For discrete signals, we need to calculate the derivative by finite  difference 
approximation. Using a backward difference calculation of the gradient, 
we have

 ∇k = zk − zk−1 (6.8)

where zk and zk−1 are the measurement deltas at discrete time k and k  – 1. 
Therefore, the gradient shows a peak at k = 11 for the trend shift. The Laplacian 
is then calculated as

 ∇ = ∇ − ∇ −k k k
2

1  (6.9)

The Laplacian changes sign between k and k + 1 of 11 and 12, respectively. 
Therefore, we can say that a trend shift occurs at discrete time k if

 T sign signandk k k
2

1
2( ) ( )∇ > ∇ ≠ ∇ +  (6.10)

where T is a threshold selected from numerical experiments discussed 
later in this chapter. There is an additional time delay of one point in our 
 formulation above since ∇ +k 1

2  is required.
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FIGURE 6.7
Absolute value of gradient for ideal, noisy, and cascaded recursive median filtered signal in 
Figure 6.3. (From Ganguli, R., and Dan, B., Journal of Engineering for Gas Turbine and Power 
126(1):55–61, 2004. With permission.)
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87Trend Shift Detection

The use of the RM filters introduces a three-point time delay, as discussed 
earlier. Thus, the total time delay for the edge detection algorithm is four 
points.

The ideal data in Figure 6.7 show a trend shift at point 11, which is validated 
at point 12 by the zero crossing of the Laplacian in Figure 6.8. However, the 
noisy data show gradient values that are nonzero at many points, and show 
several zero crossings of the Laplacian. For the filtered signal, the noise is 
greatly reduced, and so are the spurious edge indicators for the gradient and 
the Laplacian. All future results are obtained with the filtered signal and the 
algorithm defined in Figure 6.6.

6.8.1 Threshold Selection

To empirically obtain a threshold on the gradient edge detector, we take 
5000 samples of noisy data for each measurement, assume a threshold T, and 
 calculate the number of false alarms and the missed detections. A missed 
detection occurs when the trend shift, which has occurred, is not detected. 
A false alarm occurs when a point where the trend shift does not occur is 
flagged as a trend shift point. The thresholds are varied over a range of  values 
to evaluate the number of false alarms and missed detections given by the 
edge detector. The false alarms are measured by removing the trend shift in 
the test signal, which makes it a signal for a healthy engine with added noise.

Figures 6.7–6.10 show the results of the numerical experiments for ΔEGT, 
ΔWF, ΔN1, and ΔN2, respectively. As the threshold value is increased, 
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FIGURE 6.8
Laplacian of ideal, noisy, and cascaded recursive median filtered signal in Figure 6.3. (From 
Ganguli, R., and Dan, B., Journal of Engineering for Gas Turbine and Power 126(1):55–61, 2004. 
With permission.)
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FIGURE 6.9
Missed detections and false alarms for trend shift detection with varying values of thresh-
old on ΔEGT. (From Ganguli, R., and Dan, B., Journal of Engineering for Gas Turbine and Power 
126(1):55–61, 2004. With permission.)
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FIGURE 6.10
Missed detections and false alarms for trend shift detection with varying values of thresh-
old on ΔWF. (From Ganguli, R., and Dan, B., Journal of Engineering for Gas Turbine and Power 
126(1):55–61, 2004. With permission.)
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89Trend Shift Detection

the number of false alarms decreases but the number of missed  detections 
increases. Measurements with better signal-to-noise ratio (SNR) can be 
used to obtain threshold values, which gives both reduced false alarms and 
missed detection rates. In our study, the SNRs for ΔEGT, ΔWF, ΔN1, and ΔN2 
are 3.215, 4, 8, and 11.764, respectively. These nondimensional values are 
obtained by dividing the maximum trend shift magnitude by the standard 
deviation of a given measurement (for ΔEGT, 13.6/4.23; for ΔWF, 2/0.50; for 
ΔN1, 2/0.25; and for ΔN2, 2.0/0.17).

A quantitative idea of these numerical experiments can be obtained from 
Table  6.1. Analyzing Figures  6.9–6.12 and the underlying data, a suitable 
threshold value is chosen for each case, such that there are no false alarms 

TABLE 6.1

False and Missed Detections with Thresholds Obtained from Numerical 
Experiments

Measurements Threshold Missed Detections (%) False Alarms (%)

EGT 11.5°(C) 70.72 0.00
WF 1.40% 43.82 0.00
N1 0.60% 0.00 0.00
N2 0.40% 0.00 0.00

Source: Ganguli, R., and Dan, B., Journal of Engineering for Gas Turbine and Power 
126(1):55–61, 2004. With permission.
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FIGURE 6.11
Missed detections and false alarms for trend shift detection with varying values of thresh-
old on ΔN1. (From Ganguli, R., and Dan, B., Journal of Engineering for Gas Turbine and Power 
126(1):55–61, 2004. With permission.)
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90 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

and minimum missed detections for the 5000 data samples used in these 
evaluations.

6.8.2 Testing of Trend Detection Algorithm

Once the threshold values have been selected, the trend detection algorithm 
defined in Figure 6.6 can be tested. Using the threshold values in Table 6.1, 
the percentage of false alarms and missed detections is calculated over 5000 
new samples of noisy data and are given in the Table 6.1. These noisy sam-
ples are different from those used for creating the thresholds. For the ΔEGT 
and ΔWF measurement, there are a considerable number of missed detec-
tions, if the threshold is selected to minimize false alarms. However, for the 
rotor speeds ΔN1 and ΔN2, we can obtain thresholds such that the false and 
missed detections are both zero. The high rotor speed ΔN2 turns out to be 
the best measurement to monitor for trend detection.

It should be noted that other measurements besides rotor speed might pro-
vide an indication of engine distress for certain type of faults. In general, 
rotor speed shifts are small, and so the true signal-to-noise ratio would be 
different for different faults. The ΔEGT and ΔWF signals are then more likely 
to reflect engine health. In general, the establishment of detection thresholds 
is a trade-off between false alarms and missed detections. These thresholds 
can also be set or tuned by the end user or by some automated system based 
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FIGURE 6.12
Missed detections and false alarms for trend shift detection with varying values of thresh-
old on ΔN2. (From Ganguli, R., and Dan, B., Journal of Engineering for Gas Turbine and Power 
126(1):55–61, 2004. With permission.)
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91Trend Shift Detection

on historical data. Individual sensor signal-to-noise ratios will determine the 
achievable false alarm and missed detection ratio.

Finally, we point out that one of the benefits of the trend shift detection 
approach proposed in this chapter is that it will work regardless of whether 
the trend shift is from zero or from some other nonzero quasi-steady-state 
measurement value. This is because of the use of gradient information for 
edge detection.

It should also be pointed out that there are specific trend shift cases that the 
algorithm developed in this chapter alone would not detect. This includes 
intermittent shifts that the median filter would discard as outliers. It also 
includes gradual trend shifts that occur over several samples that the edge 
detector would not necessarily detect. The cascaded RM filter with edge 
detection is best suited for sharp trend shifts in gas path measurements.

6.9 Summary

Fast and effective trend shift detection requires filtering of the data for 
removing the high-frequency noise while preserving the sharp edges. 
Among nonlinear filters, cascaded recursive median filters, of increasing 
order, are found to have the capability of noise removal with accurate sig-
nal feature preservation. They are also very fast converging; i.e., only one 
pass is required to obtain the accurate root signal, and are well suited for 
software and hardware implementations. For testing the filters, simulated 
faulty data, indicating the effect of the fault in the engine on ΔEGT, ΔWF, 
ΔN1, and ΔN2, are passed sequentially through a three-point RM filter and 
five-point RM filter. A substantial noise reduction of about 38% is found after 
a single pass. The task of trend shift detection is accomplished by using a 
combination of a gradient edge detector and a Laplacian edge detector. This 
combination is also found to be very effective. A suitable choice of thresh-
old value for the gradient of the filtered data, along with the Laplacian edge 
detector used for cross-checking, can be chosen to minimize false alarms. 
For the particular faults and noise levels considered in this chapter, only the 
low and high rotor speeds were found to be able to give zero false alarms 
and zero missed alarms. In general, measurements with less noise are more 
suited to trend  detection. One of the benefits of the trend shift detection 
approach  proposed in this chapter is that it will work regardless of whether 
the trend shift is from zero or from some other nonzero quasi-steady-state 
 measurement value.
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7
Optimally Weighted Recursive 
Median Filters

The previous chapters have showcased a number of signal processing 
approaches for gas turbine diagnostics. In general, the filters have become 
more complex and powerful from Chapter 2 to Chapter 6. The issue of non-
Gaussian noise remains an important aspect for filters developed for fault 
detection. For example, Yoshida [71] points out that non-Gaussian noise 
occurs in health signals because damage tends to be concentrated in a spe-
cific part of the structure. He used a Monte Carlo filter to address the issue of 
non-Gaussian noise in structural damage detection for structures following 
earthquakes. However, the computer time requirements for such a filtering 
method can be very large.

We have seen in the earlier chapters that median filters can be used to 
preprocess health signals before subjecting them to fault detection and isola-
tion algorithms. There is a possibility of significantly enhancing the median 
filters for diagnostics preprocessing applications. Progressive improvements 
in advancing median type algorithms were made over the last decade. 
In Chapter 6, the use of recursive median filters was studied, and it was 
found that such filters have excellent noise removal properties. Comparing 
wavelets with recursive median filters for denoising frequency time series 
for improved operational diagnostics, it was found that wavelets provide 
greater levels of noise reduction, and recursive median filters provide good 
results and are much simpler to develop and implement. Moreover, the non-
linear nature of the median type filters makes them useful for the removal 
of outliers [66, 67].

Figure  1.1 shows a schematic of a gas turbine diagnostics system. We 
address the noise removal function in this chapter. Noise removal enhances 
both the automated and human-driven actions for diagnostics. In this 
chapter, the weighted recursive median filter is introduced for diagnostics 
 applications. The concept of determining the optimal weights for different 
types of health signals is explored. A comprehensive study of this filter struc-
ture shows superior performance compared to the filters discussed earlier. 
The optimally weighted recursive median filters are the tools that can be of 
great use for denoising of signals before performing fault detection and iso-
lation functions. This chapter is based on the research by Uday and Ganguli 
[72], who proposed the use of the optimally weighted recursive median filter 
for gas turbine diagnostics.
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7.1 Weighted Recursive Median Filters

The performance of the recursive median filter can be greatly improved by 
the use of weights. This allows the filter to be tuned to particular types of 
signals and to reduce the blurring and streaking effects that are observed 
in the recursive median filter. Moreover, recasting the RM filter in this form 
provides faster implementation. The weighted recursive median filter can be 
represented as [38]

� � � � � � �= − − − + − + + − + − + +y median w y w y w x w x w x( , , , , , , )k k n k n k n k n k k k n k n k n k n1 1 1 1  
 (7.1)

Here ∘ stands for duplication and w are the integer weights. Duplication 
implies that the data point is repeated. For example, yk = median

y x x2 , 3 ,k k k1 1( )− +� �  is same as yk = median(yk−1 , yk−1, xk , xk , xk , xk+1 ). Weighted RM 
filters can be of two types based on the weights used:

 1. Weighted symmetric recursive median filters
 2. Weighted asymmetric recursive median filters

Symmetrically weighted filters are structures in which the weights are cho-
sen to be symmetric, i.e., wn–i = wn+i [73]. However, in the nonsymmetric struc-
ture, the weight values do not follow any particular pattern. Nonsymmetric 
filters may have advantages over symmetric filters and will be discussed 
later in this chapter. Signal processing literature has proposed adaptive 
approaches to weighting these filters based on mathematical methods. Such 
approaches are quite complicated and require a mathematical model of the 
system.

The primary focus of this chapter is to explore the possibilities provided by 
the weighted filters for noise reduction in health signals. We find the weights 
that offer the best denoising performance for typical health signals using an 
optimization approach.

7.2 Test Signals

In this chapter, an ideal root signal ΔEGT with implanted HPC or HPT faults 
is used to test the filters. The other root signals for ΔN1, ΔN2, and ΔWF can be 
similarly derived from the engine model [11].

Consider the basic measurement deltas ΔEGT, ΔN1, ΔN2, and ΔWF. In all 
practical applications, a certain level of noise is always present in the mea-
sured signal. As a result, these measurement deltas can be expressed as
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 z = z0 + ε (7.2)

where ε represents the noise, z0 is the pure measurement delta, also called 
the root signal, and z is the noisy or corrupted signal. Hence, a filter Ψ is 
required to remove the noise and return the filtered signal for proper dam-
age detection.

 = Ψ = Ψ + εz z zˆ ( ) ( )0  (7.3)

For a comprehensive study of the role of weighted recursive median filters 
in eliminating noise from gas path measurements, four different signals are 
considered. These signals form the basic representation of the most common 
types of health signals:

 1. Step signal (indicating an abrupt fault)
 2. Ramp signal (indicating a gradual fault)
 3. Combination signal (comprising both abrupt and gradual faults)
 4. Transient gas path signal (obtained from [54], used in Chapter 5 with 

myriad filter)

While the first three signals simulate steady-state gas path measure-
ments, the transient type signal can sometimes provide information about 
the engine that is not true in steady-state signals. Each of the first three sig-
nals comprises 200 data points. The root signal in Figure 7.1 depicts a step 
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FIGURE 7.1
Step signal representing an HPC fault and its repair. (From Uday, P., and Ganguli, R., Journal of 
Engineering for Gas Turbines and Power 132(4):2010. With permission.)
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signal, and it represents a single fault, which may be triggered by an event 
such as foreign object damage. Data point k = 60 represents the onset of this 
fault. The damage caused is identified as a 2% fall in HPC efficiency and 
the HPC module is repaired at point k = 140. In Figure 7.2, the development 
of the HPT fault is illustrated by use of the ramp signal. This fault differs 
from the HPC such that the fault does not occur suddenly; it develops due to 
engine deterioration. Again, the maximum value of ΔEGT here corresponds 
to a 2% fall in HPT efficiency. Here, the growth is gradual (approximated by a 
linear function) from points k = 40 – 116. From k = 116 the HPT fault remains 
steady and is finally repaired at k = 140. The step and ramp signals represent 
the two types of faults considered individually.

Figure 7.3 shows a combination signal, wherein both types of faults may 
occur one after the other. This is a more practical case since any gas turbine 
is susceptible to both faults. Figure 7.4 represents a transient signal of a dete-
riorated engine with a single-component fault in the intermediate-pressure 
compressor (IPC) implanted. This signal is obtained from [54] and is also 
used in [53].

In the ideal scenario, the measurement delta is clearly defined at each 
point. However, to efficiently test the performance of the filters, these 
signals have been subjected to certain noise levels by using additive 
white Gaussian noise with varying signal-to-noise ratios (SNRs). Hence, 
the  performance of weighted recursive median filters is studied for high-
noise  (SNR = 0.1), medium-noise (SNR = 0.3), and low-noise (SNR = 1.5) 
signals.
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FIGURE 7.2
Ramp signal representing an HPT fault and its repair. (From Uday, P., and Ganguli, R., Journal 
of Engineering for Gas Turbines and Power 132(4):2010. With permission.)
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FIGURE 7.3
Combination signal (step and ramp) representing an HPC fault and its repair followed by an 
HPT fault and its repair. (From Uday, P., and Ganguli, R., Journal of Engineering for Gas Turbines 
and Power 132(4):2010. With permission.)
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FIGURE 7.4
Transient gas path signal representing IPC fault and transient data. (From Uday, P., and 
Ganguli, R., Journal of Engineering for Gas Turbines and Power 132(4):2010. With permission.)
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7.3 Numerical Simulations

The weighted RM filter is first compared to the finite impulse response (FIR), 
infinite impulse response (IIR), and simple median filter, and then to the 
traditional or unweighted RM filter. The recursive median filter used in this 
chapter is a five-point filter with no weights, and the weighted recursive 
median filters used here were discussed earlier in Equation (7.1). To obtain a 
quantitative idea of the noise reduction, we look at two types of error criteria. 
The root mean square (RMS) error is a measure of the difference between the 
filtered and the ideal signal. This is given as

 ∑= ∆ − ∆
=

RMS
N

z z
1

( ˆ )i i

i

N
0 2

1

 (7.4)

Here N is the number of data points in the sample. The minimum absolute 
error (MAE), which is more sensitive to outliers, is also used to test the filters 
[38]. We will add outliers to the test signals later in the chapter. In the MAE 
criterion, the error is defined as

 ∑= ∆ − ∆
=

MAE
N

z z
1 ˆ

i

N

i i

1

0  (7.5)

Tables  7.1 and 7.2 summarize the results obtained on passing the test sig-
nals through the different filters for the mean RMS and MAE estimates, 
respectively.

Since random noise is added to the signals, each noisy signal is different 
and a large number of such signals should be filtered to arrive at an accurate 
estimate of the noise reduction given by the filter. Therefore, we use 1000 
samples of noisy data to arrive at the mean RMS and MAE values. We see 
that the RM filter performs better than the SM filter for all cases.

We now consider the five-point weighted median filter defined as

 y median w y w y w x w x w x, , , ,k k k k k k2 2 1 1 0 1 1 2 2( )= − − − − + +� � � � �  (7.6)

The filter in Equation (7.6) has five integer weights. The five-point filter 
keeps the time delay to only two points since xk+1 and xk+2 are needed by 
the filter. For many engines, data are available at a few points during each 
flight. Therefore, the low filter length keeps the time delay to a minimum 
while providing sufficient filter length for noise removal, say, in comparison 
to a three-point filter. If data are available more rapidly, longer-length filters 
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TABLE 7.1

Mean RMS Error Estimates of Five-Point Filters on Test Signals

Signal Type SNR Value
Simple 

Median (SM)
Recursive 

Median (RM)

Weighted 
Recursive 

Median (WRM)

0.1 0.5441 0.4678 0.3806
Step 0.3 0.5327 0.4532 0.3731
  1.5 0.462 0.3974 0.3242

0.1 0.5602 0.5594 0.4554
Ramp 0.3 0.5581 0.5475 0.4481
  1.5 0.4989 0.4889 0.399

0.1 0.5971 0.594 0.4911
Combination 0.3 0.5848 0.5738 0.4826
  1.5 0.529 0.5134 0.4099

0.1 0.5287 0.4352 0.3446
Transient signal 0.3 0.5187 0.4243 0.3376
  1.5 0.4509 0.3764 0.2944

Source: Uday, P., and Ganguli, R., Journal of Engineering for Gas Turbines and Power 132(4):2010. 
With permission.

TABLE 7.2

Mean MAE of WRM Filter of Different Window Length on Test Signals

Signal Type SNR Value
Simple 

Median (SM)
Recursive 

Median (RM)

Weighted 
Recursive 

Median (WRM)

0.1 0.4277 0.3576 0.2872
Step 0.3 0.4190 0.3459 0.2806
  1.5 0.3638 0.3031 0.2428

0.1 0.4460 0.4311 0.3506
Ramp 0.3 0.4268 0.4210 0.3444
  1.5 0.3856 0.3739 0.3054

0.1 0.4660 0.4560 0.3790
Combination 0.3 0.4503 0.4403 0.3728
  1.5 0.3999 0.3930 0.3300

0.1 0.4227 0.3454 0.2736
Transient signal 0.3 0.4156 0.3373 0.2664
  1.5 0.3608 0.2982 0.2328

Source: Uday, P., and Ganguli, R., Journal of Engineering for Gas Turbines and Power 132(4):2010. 
With permission.
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can be considered. To obtain the optimal weights we solve the following 
 optimization problem. Minimize

 
∑

=− −
=f w w w w w

RMS

M
( , , , , ) i

M

2 1 0 1 2
1  (7.7)

Here M = 1000 samples of noisy data are used to obtain a mean RMS error, 
and the weights are design variables of the filter that need to be determined 
for minimum error. For applications with the weighted filter, all combina-
tions of design variables or weights are computed using integer values {1, 2, 
3, and 4}. It is found that using higher weights yields the same filter as lower 
weights because of duplication in the median operation. For example, the 
weights (4, 1, 3, 2, and 4) give the same result as the weights (8, 2, 6, 4, and 8) 
in terms of median value. However, the lower weight set is more efficient. 
Through exhaustive numerical search of the design space, it is observed that 
several groups of weights could be used to reduce the mean RMS error to 
below that produced by the standard recursive median filter. For computer 
implementation, the weighted recursive median filter is placed inside a loop 
of 1000 iterations to obtain the average reduction in noise for a given weight 
set. This loop is then placed inside a nested loop of depth 5, which varies the 
weights from 1 to 4 in intervals of 1. Thus, the noise removal in terms of RMS 
error for all the integer weights is obtained and the weights corresponding 
to the minimum values of RMS error are selected. A similar exercise is per-
formed using the MAE criteria by minimizing the objective function

 
∑

=− −
=f w w w w w

MAE

M
( , , , , ) i

M

2 1 0 1 2
1  (7.8)

Here M = 1000 samples of noisy data are used to obtain a mean MAE and the 
weights are design variables of the filter that need to be determined for mini-
mum error. The optimum set of weights is arrived at by determining the lowest 
RMS and MAE error values that could be achieved for each signal. These opti-
mum weights are shown in Table 7.3 for the RMS error and the MAE error. The 
same set of weights gives both the lowest RMS and MAE errors in these cases.

The weighted recursive median (WRM) filter results in Tables 7.1 and 7.2 
correspond to the optimal weights in Table 7.3. We see that the WRM filter 
shows a significant improvement in noise removal compared to the other 
filters. An interesting observation is the lack of one universal sequence of 
weights that minimizes the error. This implies that there exists an exclu-
sive group of weights for each signal that can completely minimize errors. 
Most  general steady-state signals will be similar to the combination sig-
nal, and therefore the weight set (2, 2, 2, 1, 3) can be used for such signals. 
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On the other hand, the weights (4, 1, 2, 3, 4) can be used for the transient 
signals. Physically, the weights mean that certain samples in the signal are 
given more importance than others. The weights are sensitive to the signal 
type rather than to noise levels. Figures 7.5–7.8 visually represent the effects 
of the weighted recursive median filter on the test signals with SNR of 1.5. 

TABLE 7.3

Optimal Weights for Five-Point Weighted Recursive 
Median (WRM) Filter Using Both RMS and MAE Criteria

Signal Type SNR Value Weights

0.1 [4,1,3,2,4]

Step 0.3 [4,1,3,2,4]
  1.5 [4,1,3,2,4]

0.1 [2,1,2,1,2]
Ramp 0.3 [2,1,2,1,2]
  1.5 [2,1,2,1,2]

0.1 [2,2,2,1,3]
Combination 0.3 [2,2,2,1,3]
  1.5 [2,2,2,1,3]

0.1 [4,1,3,2,4]
Transient signal 0.3 [4,1,3,2,4]

1.5 [4,1,3,2,4]

Source: Uday, P., and Ganguli, R., Journal of Engineering for Gas 
Turbines and Power 132(4):2010. With permission.
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FIGURE 7.5
Effect of weighted RM filters on noisy step signal with SNR = 1.5. (From Uday, P., and 
Ganguli, R., Journal of Engineering for Gas Turbines and Power 132(4):2010. With permission.)
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FIGURE 7.6
Effect of weighted RM filters on noisy ramp signal with SNR = 1.5. (From Uday, P., and 
Ganguli, R., Journal of Engineering for Gas Turbines and Power 132(4):2010. With permission.)
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FIGURE 7.7
Effect of weighted RM filters on noisy combination signal with SNR = 1.5. (From 
Uday,  P.,  and  Ganguli, R., Journal of Engineering for Gas Turbines and Power 132(4):2010. With 
permission.)
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These figures clearly illustrate the capability of the weighted RM filters to 
preserve sharp edges or trend shifts in a signal and to remove noise from 
stationary regions.

7.4 Test Signal with Outliers

The signal in Figure 7.9 considers the combination signal with added noise 
(SNR = 1.5) and outliers. Outliers represent the impulsive noise that may be 
present in a signal. Here, the outliers are selected at three different levels. The 
first is equal to 4.23°C and is added at k = 10, 80, and 140 and  subtracted at 
k = 40 and 120. The 8.46°C outlier is added at k = 20, 100, and 190 and sub-
tracted at k = 30 and 170. The last outlier has a value of 12.69°C, and this is 
added at k = 110 and 160 and subtracted at k = 60 and 130. Similarly, outliers 
are added to the step, ramp, and transient signals. The weights obtained after 
putting in the outliers are the same as shown in Table 7.3. This is  primarily 
because all median architectures are good at removing outliers, and the 
weights serve to address the ideal signal characteristics.

The weighted recursive median filter is able to efficiently discard these 
outliers while preserving signal features that can be easily observed from 
Figures 7.9–7.12. Results in Tables 7.4 and 7.5 show that the simple median 
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FIGURE 7.8
Effect of weighted RM filters on noisy realistic signal with SNR = 1.5. (From Uday, P., and 
Ganguli, R., Journal of Engineering for Gas Turbines and Power 132(4):2010. With permission.)
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FIGURE 7.9
Effect of weighted RM filters on noisy combination signal with outliers. (From Uday, P., and 
Ganguli, R., Journal of Engineering for Gas Turbines and Power 132(4):2010. With permission.)
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FIGURE 7.10
Effect of weighted RM filters on noisy step signal with outliers. (From Uday, P., and Ganguli, R., 
Journal of Engineering for Gas Turbines and Power 132(4):2010. With permission.)
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FIGURE 7.11
Effect of weighted RM filters on noisy ramp signal with outliers. (From Uday, P., and Ganguli, R., 
Journal of Engineering for Gas Turbines and Power 132(4):2010. With permission.)
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FIGURE 7.12
Effect of weighted RM filters on noisy realistic signal with outliers. (From Uday, P., and 
Ganguli, R., Journal of Engineering for Gas Turbines and Power 132(4):2010. With permission.)
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106 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

TABLE 7.4

RMS Error of Different Filters on Test Signal Containing Outliers

Signal Type SNR Value
Simple 

Median (SM)
Recursive

Median (RM)

Weighted
Recursive

Median (WRM)

0.1 0.5632 0.4819 0.3977
Step 0.3 0.5523 0.4750 0.3866
  1.5 0.4788 0.4133 0.3424

0.1 0.6016 0.5730 0.4922
Ramp 0.3 0.5900 0.5646 0.4795
  1.5 0.5272 0.4961 0.4311

0.1 0.6332 0.6113 0.5291
Combination 0.3 0.6238 0.5994 0.5183
  1.5 0.5500 0.5249 0.4632

0.1 0.5292 0.4372 0.3392
Transient signal 0.3 0.5182 0.4281 0.3362
  1.5 0.4502 0.3752 0.2968

Source: Uday, P., and Ganguli, R., Journal of Engineering for Gas Turbines and Power 132(4):2010. 
With permission.

TABLE 7.5

MAE Estimate of Different Filters on Test Signal Containing Outliers

Signal Type SNR Value
Simple 

Median (SM)
Recursive 

Median (RM)
Weighted Recursive 

Median (WRM)

0.1 0.4422 0.3666 0.2998
Step 0.3 0.4346 0.3618 0.2918
  1.5 0.3761 0.3156 0.2570

0.1 0.4594 0.4511 0.3754
Ramp 0.3 0.4495 0.4439 0.3667
  1.5 0.3996 0.3897 0.3275

0.1 0.4850 0.4791 0.4102
Combination 0.3 0.4774 0.4692 0.4011
  1.5 0.4200 0.4112 0.3576

0.1 0.4249 0.3466 0.2705
Transient signal 0.3 0.4155 0.3397 0.2671
  1.5 0.3610 0.2967 0.2354

Source: Uday, P., and Ganguli, R., Journal of Engineering for Gas Turbines and Power 132(4):2010. 
With permission.
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107Optimally Weighted Recursive Median Filters

and RM filters do not provide the same degree of immunity to noise and 
 outliers. This superior performance of the weighted filter makes it highly 
suitable for denoising of engine health signals, where the features of the orig-
inal signal are critical to engine maintenance.

7.5 Performance Comparison

This section summarizes the filter performance of the structures used in 
this chapter. To get a statistical measure of the effectiveness of each method, 
1000 samples of noisy data are generated and filtered as discussed previously. 
Using the MAE definition, as given in Equation (7.5), we can define a  parameter 
for efficiency measurement of these filters in terms of noise reduction as

 ρ = −MAE MAE
MAE

100
noisy filtered

noisy

( ) ( )

( )  (7.9)

Table  7.6 clearly illustrates this improvement by comparing the perfor-
mance of the three filters studied in this work.

We observe that the simple median filter provides a noise reduction of only 
39 to 46%; the traditional recursive structure brings about a reduction of 41 
to 56%, while the weighted structure improves this considerably to values 
ranging from 51 to 65%. This leads to significant accuracy in obtaining the 
root signal from the contaminated one.

TABLE 7.6

Percentage Noise Reduction Provided by Different Filters for Test Signals

Signal Type SNR Value ρ (Median)% ρ (RMF)% ρ (Weighted RMF)%

0.1 45.63 54.54 63.49
Step 0.3 45.54 55.04 63.53
  1.5 45.84 54.90 63.87

0.1 43.34 45.48 55.46
Ramp 0.3 44.73 45.48 55.40
  1.5 42.64 44.38 54.57

0.1 40.93 42.20 51.96
Combination 0.3 41.53 42.80 51.62
  1.5 39.06 41.57 50.94

0.1 46.55 56.32 65.40
Transient signal 0.3 46.03 56.20 65.41
  1.5 46.18 55.52 65.27

Source: Uday, P., and Ganguli, R., Journal of Engineering for Gas Turbines and Power 132(4):2010. 
With permission.
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108 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

In order to clearly observe the superiority of the weighted filter, we use 
another parameter, η, which is defined as

 η = −MAE MAE
MAE

100(SM)
(SM) (WRMF)

(SM)  (7.10)

 η = −MAE MAE
MAE

100RMF
RMF WRMF

RMF
( )

( ) ( )

( )  (7.11)

Table 7.7 summarizes the improvement provided by the weighted filters 
over the simple median and recursive median filters. It is seen that weighted 
RM filters improve the effectiveness of the median filters by a maximum 
of 36%, and of the unweighted RM filters by 22%. These results prove that 
the weighted filter provides several advantages over the standard filters in 
terms of feature preservation and noise reduction. Note that these advan-
tages are provided by a numerically efficient filter that is very easy to imple-
ment. For  the numerical results, the filters are implemented in MATLAB®. 
The results of this chapter clearly show that optimization can lead to a better 
filter for diagnostic systems with negligible increase in complexity and cost. 
Tables 7.8 and 7.9 show the improvements in performance of the weighted 
filter over the other filters for signals that are contaminated with Gaussian 
noise as well as non-Gaussian outliers. From Table  7.8, we can  see  that 
the  simple median filter reduces noise by about 46–65%, the recursive median 
filter by about 56–66% and the WRM filter by about 65–70%.

TABLE 7.7

Improvement in Performance of Weighted RM Filters over Other Filters

Signal Type SNR Value η(SM) (%)  η(RMF) (%)

0.1 32.85 19.69
Step 0.3 33.03 18.88
  1.5 33.26 19.89

0.1 21.39 18.67
Ramp 0.3 19.31 18.19
  1.5 20.80 18.32

0.1 18.67 16.89
Combination 0.3 17.26 15.38
  1.5 19.49 16.03

0.1 35.27 20.29
Transient signal 0.3 35.90 21.02
  1.5 35.48 21.93

Source: Uday, P., and Ganguli, R., Journal of Engineering for Gas Turbines and Power 
132(4):2010. With permission.
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109Optimally Weighted Recursive Median Filters

TABLE 7.8

Percentage Noise Reduction Provided by Different Filters for Noisy Test Signal 
Contaminated with Outliers

Signal Type SNR Value ρ(Median)% ρ(RMF)% ρ(Weighted RMF)%

0.1 51.84 60.07 67.35
Step 0.3 51.90 59.96 67.70
  1.5 53.17 60.70 68.00

0.1 57.16 57.93 64.99
Ramp 0.3 57.39 57.92 65.24
  1.5 58.24 59.27 65.77

0.1 62.85 63.30 68.58
Combination 0.3 62.92 63.56 68.85
  1.5 64.83 65.57 70.06

0.1 46.16 56.08 65.72
Transient signal 0.3 46.14 55.97 65.38
  1.5 46.16 55.75 64.89

Source: Uday, P., and Ganguli, R., Journal of Engineering for Gas Turbines and Power 132(4):2010. 
With permission.

TABLE 7.9

Improvement in Performance of Weighted RM Filters over Other Filters 
for Noisy Test Signals Contaminated with Outliers

Signal Type SNR Value η(SM) (%)  η(RMF) (%)

0.1 32.30 18.22
Step 0.3 32.86 19.35
  1.5 31.67 18.57

0.1 18.28 16.78
Ramp 0.3 18.42 17.39
  1.5 18.04 15.96

0.1 15.42 14.38
Combination 0.3 15.98 14.51
  1.5 14.86 13.04

0.1 36.34 21.96
Transient signal 0.3 35.82 21.37
  1.5 34.79 20.66

Source: Uday, P., and Ganguli, R., Journal of Engineering for Gas Turbines and Power 
132(4):2010. With permission.
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110 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

7.6 Three- and Seven-Point Optimally Weighted RM Filters

In this section, the effect of integer weight on the three-point WRM filter and 
the seven-point WRM filter is shown. Optimal weights for different health 
signals are obtained. The three-point filter is useful for turbines where data 
are obtained slowly, and the seven-point filter where data are available rap-
idly. The effect of window length on the optimal weights of WRM filters 
developed for gas turbine diagnostics is brought out. The idea of using a 
three- and seven-point WRM filter was proposed by Guruprakash and 
Ganguli [74] and is discussed in this section.

7.6.1 Numerical Analysis

To obtain the optimal weights we solve the following optimization  problem; 
for the three-point WRM filter yk = median � � �w y w x w x( , , )1 1 0 0 1 1− −  the optimi-
zation problem is to minimize

 
∑

=−
=f w w w

RMS

M
( , , ) i

M

1 0 1
1  (7.12)

where w−1, w0, and w1 are the three integer design variables.
For the seven-point filter yk = median � � � �w y w y w y w x( , , ,3 3, 2 2 1 1 0 0− − − − − −

� � �w x w x w x, , )1 1 2 2 3 3 , we need to minimize

 
∑

=− − −
=f w w w w w w w

RMS

M
( , , , , , , ) i

M

3 2 1 0 1 2 3
1  (7.13)

where w−3 , w−2 , w−1 , w0    , w1 , w2 , w3 are the seven integer design variables. Here, 
M = 1000 samples of noisy data are simulated to obtain a mean RMS error, and 
the weights are design variables that are obtained for minimum error. It can 
be observed that the three-point filter has a time lag of 1 (it requires a forward 
data point x1) and the seven-point filter has a time lag of 3 (it needs x1 , x2, x3). 
The five-point filter � � � � �= − − − −y median w y w y w x w x w x( , , , , )k 2 2 1 1 0 0 1 1 2 2  has 
a time lag of 2 (it needs x1 and x2) [72].

For many turbines, only a few data points are available per flight. So the 
three-point filter is suitable for trend monitoring and diagnostics of such tur-
bines. Some recent engines have higher rates of data acquisition. For such 
turbines, the seven-point filter is useful. For application with the weighted fil-
ter, all combinations of weights are computed using integer values {1, 2, 3, 4}. 
Through exhaustive numerical search of the design space, it is observed 
that several groups of weights could be used to reduce the RMS  error. 
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111Optimally Weighted Recursive Median Filters

Thus, weights corresponding to minimum values of RMS error are selected. 
Table 7.10 shows the RMS error of three-point WRM and  seven-point WRM 
filters, along with results of the five-point filter from [72]. We can see that the 
error reduces as the window length increases.

Similarly, MAE criteria with objective functions are used to minimize 
the error of three-point and seven-point filters. For the three-point filter, we 
minimize

 
∑

=−
=f w w w

MAE

M
( , , ) i

M

1 0 1
1  (7.14)

For the seven-point filter, the objective function is

 
∑

=− − −
=f w w w w w w w

MAE

M
( , , , , , , ) i

M

3 2 1 0 1 2 3
1  (7.15)

Here, M = 1000 samples of noisy data are simulated to obtain a mean MAE 
and the weights are design variables that are obtained for minimum error. 
Table 7.11 shows the MAE of the three-point WRM filter and the seven-point 
WRM filter along with the five-point filter.

Optimal sets of weights are obtained by considering the minimum error 
from RMS and MAE criteria for both three-point WRM and seven-point 
WRM filters. Table 7.12 shows the optimal set of weights for three-point and 

TABLE 7.10

Mean RMS Error of WRM Filter of Different Window Length on Test Signals

Signal Type SNR Value
Three-Point 
WRM Filter

Five-Point 
WRM Filter

Seven-Point 
WRM Filter

0.1 0.5573 0.3806 0.3689
Step 0.3 0.5208 0.3731 0.3597
  1.5 0.5019 0.3242 0.3166

0.1 0.6854 0.4554 0.4331
Ramp 0.3 0.6547 0.4481 0.4232
  1.5 0.6193 0.3990 0.4109

0.1 0.7157 0.4911 0.4813
Combination 0.3 0.6994 0.4826 0.4698
  1.5 0.6279 0.4099 0.3988

0.1 0.5468 0.3446 0.3118
Transient signal 0.3 0.5293 0.3376 0.3042
  1.5 0.5816 0.2944 0.2758

Source: Guruprakash, V.N., and Ganguli, R., ASME Journal of Engineering in Gas Turbine and 
Power 133(10): article 104502, 2011. With permission.
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112 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

seven-point WRM filters, respectively. For a given signal type and filter length, 
the optimal weights obtained using both RMS and MAE measures remain 
the same, even though the signal-to-noise ratios change. Figures  7.13–7.16 
show the filtering effect of the three-point WRM filter. Figures 7.17–7.20 show 
the filtering effect of the seven-point WRM filter. It can be observed that 

TABLE 7.11

Mean MAE of WRM Filter of Different Window Length on Test Signals

Signal Type SNR Value
Three-Point 
WRM Filter

Five-Point 
WRM Filter

Seven-Point 
WRM Filter

0.1 0.4658 0.2872 0.2714
Step 0.3 0.4291 0.2806 0.2697
  1.5 0.4098 0.2428 0.2388

0.1 0.5487 0.3506 0.3447
Ramp 0.3 0.5312 0.3444 0.3379
  1.5 0.5149 0.3054 0.3017

0.1 0.5913 0.3790 0.3682
Combination 0.3 0.5839 0.3728 0.3602
  1.5 0.5551 0.3300 0.3025

0.1 0.4982 0.2736 0.2604
Transient signal 0.3 0.4569 0.2664 0.2418
  1.5 0.4213 0.2328 0.2114

Source: Guruprakash, V.N., and Ganguli, R., ASME Journal of Engineering in Gas Turbine and 
Power 133(10): article 104502, 2011. With permission.

TABLE 7.12

Optimal Set of Weights for Three-Point and Seven-Point WRM Filter

Signal Type SNR Value
Three-Point 
WRM Filter

Five-Point 
WRM Filter

Seven-Point 
WRM Filter

0.1 [4 2 2] [4 1 3 2 4] [4 3 3 2 2 2 1]
Step 0.3 [4 2 2] [4 1 3 2 4] [4 3 3 2 2 2 1]
  1.5 [4 2 2] [4 1 3 2 4] [4 3 3 2 2 2 1]

0.1 [4 3 3] [2 1 2 1 2] [4 2 4 2 1 4 2]
Ramp 0.3 [4 3 3] [2 1 2 1 2] [4 2 4 2 1 4 2]
  1.5 [4 3 3] [2 1 2 1 2] [4 2 4 2 1 4 2]

0.1 [4 4 3] [2 2 2 1 3] [4 3 2 2 2 1 4]
Combination 0.3 [4 4 3] [2 2 2 1 3] [4 3 2 2 2 1 4]
  1.5 [4 4 3] [2 2 2 1 3] [4 3 2 2 2 1 4]

0.1 [4 1 4] [4 1 3 2 4] [4 4 2 3 1 4 2]
Transient signal 0.3 [4 1 4] [4 1 3 2 4] [4 4 2 3 1 4 2]
  1.5 [4 1 4] [4 1 3 2 4] [4 4 2 3 1 4 2]

Source: Guruprakash, V.N., and Ganguli, R., ASME Journal of Engineering in Gas Turbine and 
Power 133(10): article 104502, 2011. With permission.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
37

 1
6 

M
ar

ch
 2

01
6 



113Optimally Weighted Recursive Median Filters

the seven-point filter is a good smoother. However, even the three-point filter 
is able to remove a substantial amount of noise from the signal.

7.6.2 Signal with Outliers

To further evaluate the performance of three-point WRM and seven-point 
WRM filters, the combination signal is used as a test signal with SNR = 1.5, 
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FIGURE 7.13
Effect of three-point WRM filter on noisy step signal with SNR = 1.5.
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FIGURE 7.14
Effect of three-point WRM filter on noisy ramp signal with SNR = 1.5.
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114 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

and outliers are considered at three different levels, as shown in Figure 7.21. 
The first level is equal to 4.23°C and is added at k = 10, 80, and 140 and sub-
tracted at k = 40 and 120. The next level is an 8.46°C outlier that is added 
at k = 20, 100, and 190 and subtracted at k = 30 and 170. The last level has 
a value of 12.69°C, and this is added at k = 110 and 160 and subtracted at 
k = 60 and 130. Outliers are added to the rest of the test signals in a simi-
lar way and are shown in Figures  7.22–7.24. The effect of the three-point 
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FIGURE 7.15
Effect of three-point WRM filter on noisy combined signal with SNR = 1.5.
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FIGURE 7.16
Effect of three-point WRM filter on noisy transient signal with SNR = 1.5.
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115Optimally Weighted Recursive Median Filters

WRM filter on signals with outliers is shown in Figures 7.25–7.28. Filtered 
signals that are passed through the seven-point WRM signal are shown in 
Figures 7.29–7.32.

The three-point and seven-point WRM filters effectively attenuate the outli-
ers from the test signals, keeping the signal feature unchanged. As expected, 
the long window seven-point filters show better performance. Table  7.13 
shows the RMS error of three-point WRM and seven-point WRM filters with 
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FIGURE 7.17
Effect of seven-point WRM filter on noisy step signal with SNR = 1.5.
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FIGURE 7.18
Effect of seven-point WRM filter on noisy ramp signal with SNR = 1.5.
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116 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

an outlier in the test signal. The error for the five-point WRM is also shown 
in the table. It can be observed that the error decreases as the filter window 
length increases.

Table 7.14 shows the MAE of three-point WRM and seven-point WRM fil-
ters with an outlier in the test signal, along with the five-point results. It can 
be seen that the filters perform well and are good tools for preprocessing 
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FIGURE 7.19
Effect of seven-point WRM filter on noisy combined signal with SNR = 1.5.
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FIGURE 7.20
Effect of seven-point WRM filter on noisy transient signal with SNR = 1.5.
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117Optimally Weighted Recursive Median Filters

gas turbine measurement deltas before using them for fault detection and 
isolation.

We have shown that optimally weighted recursive median architectures are 
powerful tools for improved gas turbine diagnostics. An adaptive approach 
to weight generation based on incoming online data can be explored. Other 
types of faults with different magnitudes (both bias and slope) should be 
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FIGURE 7.21
Combination signal with noise and outliers.
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FIGURE 7.22
Step signal with noise and outliers.
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118 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

evaluated. Besides the abrupt faults and gradual faults considered in this 
chapter, other faults, such as intermittent faults and increase of noise caused 
by faults, are also possible and need to be addressed. We also note that the 
current approach can be used as a complement and preprocessor to other gas 
path denoising approaches [75].
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FIGURE 7.23
Ramp signal with noise and outliers.
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FIGURE 7.24
Transient signal with noise and outliers.D
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FIGURE 7.25
Combination signal including outliers after filtering with three-point WRM filter.
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FIGURE 7.26
Step signal including outliers after filtering with three-point WRM filter.
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FIGURE 7.27
Ramp signal including outliers after filtering with three-point WRM filter.
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FIGURE 7.28
Transient signal including outliers after filtering with three-point WRM filter. (From 
Guruprakash, V.N., and Ganguli, R., ASME Journal of Engineering in Gas Turbine and Power 
133(10): article 104502, 2011. With permission.)
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FIGURE 7.29
Combination signal including outliers after filtering with seven-point WRM filter.
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FIGURE 7.30
Step signal including outliers after filtering with seven-point WRM filter.
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FIGURE 7.31
Ramp signal including outliers after filtering with seven-point WRM filter.
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FIGURE 7.32
Transient signal including outliers after filtering with seven-point WRM filter. (From 
Guruprakash, V.N., and Ganguli, R., ASME Journal of Engineering in Gas Turbine and Power 
133(10): article 104502, 2011. With permission.)
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7.7 Summary

In this chapter, a new optimally weighted recursive median (WRM) filter 
for denoising health signals is proposed. Test signals for abrupt and  gradual 
faults are used for a gas turbine engine diagnostic problem, along with a 
 transient signal. A five-point WRM filter is developed, and the weights are 

TABLE 7.13

RMS Error of WRM Filter of Different Window Length on Test Signal with Outliers

Signal Type SNR Value
Three-Point 
WRM Filter

Five-Point 
WRM Filter

Seven-Point 
WRM Filter

0.1 0.6164 0.3977 0.3689
Step 0.3 0.5951 0.3866 0.3597
  1.5 0.5782 0.3424 0.3166

0.1 0.7372 0.4922 0.4331
Ramp 0.3 0.6991 0.4795 0.4232
  1.5 0.6783 0.4311 0.4109

0.1 0.8341 0.5291 0.4813
Combination 0.3 0.7847 0.5183 0.4698
  1.5 0.7019 0.4632 0.3988

0.1 0.6547 0.3392 0.3118
Transient signal 0.3 0.6330 0.3362 0.3042  

1.5 0.5958 0.2968 0.2758

TABLE 7.14

MAE Error of WRM Filter of Different Window Length on Test Signal with 
Outliers

Signal Type SNR Value
Three-Point 
WRM Filter

Five-Point 
WRM Filter

Seven-Point 
WRM Filter

0.1 0.5147 0.2998 0.2897
Step 0.3 0.4995 0.2918 0.2824
  1.5 0.4724 0.2570 0.2488

0.1 0.6012 0.3754 0.3604
Ramp 0.3 0.5854 0.3667 0.3541
  1.5 0.5664 0.3275 0.3114

0.1 0.6447 0.4102 0.4005
Combination 0.3 0.6289 0.4011 0.3987
  1.5 0.6010 0.3576 0.3419

0.1 0.5625 0.2705 0.2671
Transient signal 0.3 0.5302 0.2671 0.2593
  1.5 0.5117 0.2354 0.2287
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124 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

optimized for typical diagnostic signals by minimizing the error norms 
between the noisy and root signals. The WRM filter provides better  denoising 
results than the simple median filter and recursive median filter. The WRM 
filter also improves the visual quality of the signals by removing the noise 
and outliers while preserving important features of the root signal, such as 
sharp edges and gradual shifts. The WRM filter is presented as a preproces-
sor for denoising health signals prior to fault detection and  isolation in gas 
turbine engines.

The optimal integer weights of three- and seven-point weighted  recursive 
median filters are also obtained for signals representative of gas turbine engine 
faults. Objective functions based on the root mean square and  minimum 
absolute error criteria are created and used for the optimization problem. 
The design variables are the integer weights of the filter. Fortunately, the 
optimal weights are the same for a given signal type and filter length, even 
when the signal-to-noise ratio is varied. It is found that the filters  perform 
well with noisy data and with data containing non-Gaussian outliers. The 
three-point filter is useful for many engines, as it has a  limited  one-point time 
delay that is good for situations where data are obtained slowly. The seven-
point filter is useful for engines where data are obtained rapidly. Increasing 
the window length reduces the error given by the filter. Both  filters are good 
 preprocessing tools for gas turbine diagnostics.

Further chapters of the book focus on fault isolation. It should be noted 
that the filters presented in Chapters 2–7 can be hybridized in various ways, 
depending on the applications.
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8
Kalman Filter

In the previous chapters, we focused on filters for removing non-Gaussian 
noise and outliers from gas turbine signals. The present chapter showcases 
the Kalman filter for fault detection and isolation techniques in gas turbines. 
The goal of gas turbine performance diagnostics is to accurately detect, iso-
late, and assess the changes in engine module performance, engine system 
malfunctions, and instrumentation problems from knowledge of measured 
parameters taken along the engine’s gas path. Discernable shifts in engine 
speed, temperature, pressure, fuel flow, etc., provide the requisite informa-
tion for determining the underlying shift in engine operation from a pre-
sumed nominal state. Historically, this type of analysis was performed 
through the use of a Kalman filter or one of its derivatives to simultaneously 
estimate several engine faults. The present chapter outlines the Kalman  filter 
methodology, its relative merits and weaknesses. Some basic background 
on the Kalman filter and the related weighted least-squares approach have 
been provided in Chapter 1. The typical use of the Kalman filter in Chapter 1 
was for gas path analysis, which is also called multiple-fault analysis. In 
this approach, the Kalman filter distributes the measurement shifts among 
a variety of module efficiencies, flow capacities, and areas. In this chapter, 
the Kalman filter will be used to solve the problem of isolating a single fault 
to the component level. The single faults under consideration include the 
engine modules, engine system, and instrumentation faults. The use of the 
Kalman filter as a single-fault isolator was proposed by Volponi, Depold, 
Ganguli, and Daguang, and the present chapter is largely based on this 
paper [12]. Furthermore, the use of the Kalman filter for sensor fault estima-
tion will also be discussed in this chapter.

8.1 Kalman Filter Approach

Kalman filter methods were introduced as a fault isolation and assessment 
technique for relative engine performance diagnostics in the late 1970s and 
early 1980s [76, 77]. The success enjoyed in these early programs encouraged 
the use of these techniques in subsequent years. Kalman filters have become 
a popular approach in many current engine performance analysis programs. 
Some type of Kalman filter is used in a large number of engine diagnosis 
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software, such as Auto Analysis, MAP III (Pratt & Whitney customer test 
cell data), TEAM III (Pratt & Whitney customer flight data), STORM (Pratt & 
Whitney self-tuning onboard real-time model), TEMPER (GE customer test 
cell data), GEM (GE customer flight data), COMPASS (Rolls Royce customer 
flight data), and GPA (Hamilton standard analysis program). A detailed dis-
cussion of the Kalman filter is available from [78–82]. We will briefly review 
the basic mathematics of the Kalman filter, already discussed in Chapter 1, to 
facilitate the application to single-fault and sensor fault isolation.

The typical approach followed in engine fault diagnostics involves the use 
of a linearized model approximation evaluated at a selected engine operating 
point. This provides a matrix relationship between changes in engine com-
ponent performance (independent parameters) and the resulting changes in 
typically measured engine parameters, such as spool speeds, internal tem-
peratures and pressures, fuel flow, etc. (dependent parameters). This rela-
tionship can be compactly represented as

 z = Hx + v (8.1)

where z is a vector of measured parameter deltas, x is a vector of fault  deltas, 
H is a matrix of fault influence coefficient relationships between changes 
in engine component performance, and v is a random vector  representing 
the uncertainties inherent in the measurement process. In addition to the 
 precision of the individual sensors, we also need to address the potential 
for  sensor bias and drift. Therefore, the fault vector given in the model 
above often relates components directly related to sensor error in addition 
to engine fault deltas.

The fault vector x given in the model can be partitioned into an engine 
fault vector (xe) and a sensor (error) fault vector xs, i.e., x = [ xe ⋮ xs ]T, where
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We may rewrite Equation (8.1) as
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127Kalman Filter

We see that the matrix H is partitioned into two parts: a matrix of engine fault 
influence coefficients (He) and a matrix of sensor fault influence coefficients 
(Hs). The generation of these matrices and their interpretation are discussed 
in great detail in [9, 83]. The generation of the influence coefficients is done 
using gas path performance modules. Since this book focuses on signal pro-
cessing and fault isolation, it is assumed that the influence coefficients are 
available for a given engine based on thermodynamic models. The model, 
as given in Equation (8.3), has often been used to track slowly occurring 
changes in engine performance from revenue flight data, by the use of a 
Kalman filter-based methodology. Revenue flight data are typical commer-
cial airline flight data; an estimate of these performance shifts, x̂, is given by
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where x  represents an a priori estimate of the engine/sensor fault deltas and 
D is the (Kalman) gain matrix referred to as the diagnostic matrix. The diag-
nostic matrix is computed as a function of several quantities: the engine/
sensor influence coefficients H, the measurement covariance matrix R, and 
a positive semidefinite weighting matrix P0. The diagnostic matrix is com-
puted as
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where Pe
0  and Ps

0  are weighting submatrices for the engine and sensor fault 
estimation, respectively. A detailed discussion on the generation of the P0 
and R matrices can be found in reference [9]. Some information was also 
given in Chapter 1.

The use of the predictor/corrector methods like the Kalman filter to esti-
mate sensor error allows a more reliable and consistent gas turbine module 
performance analysis. The Kalman filter approach can be applied in a snap-
shot analysis or as a continuing recursive analysis as new engine data are 
made available over time. In either case, the simultaneous determination of 
both engine faults and measurement errors by this methodology has been 
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128 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

successfully applied to a large number of commercial and military families 
of engines with varying instrumentation suites for three decades.

In this chapter, we consider the problem of fault isolation, given the prem-
ise that a fault event has been detected. The problem of detection becomes 
one of recognizing a step or rate change in a gas path parameter or a col-
lection of parameters. The problems associated with fault detection and the 
mechanisms that can be applied to accomplish this task have been reported 
in [6]. We have also discussed the trend shift problem in detail in Chapter 6. 
The types of faults considered in this chapter include engine performance 
faults, engine system faults, and instrumentation faults.

8.2 Single-Fault Isolation

The Kalman filter can be tailored to behave as a single-fault isolator (SFI). 
This is a snapshot type of analysis, since it operates on a set of measurement 
deltas without any a priori information or prehistory. The analysis seeks to 
identify a root cause on the basis of a single-measurement delta set. Root 
causes are single-fault events and are predefined for the system. They  consist 
of coupled faults within the major modules of the engine, certain system 
faults such as handling and environmental control system (ECS) bleed leaks 
and failures, variable stator vane malfunctions, TCC malfunctions, and cer-
tain instrumentation faults. A single fault is assumed to occur in isolation. At 
any given time, there will be one and only one root cause occurrence. There 
is a finite but low  probability of two or more faults occurring at the same 
time. However, we assume that a typical multiple-fault isolator discussed in 
Chapter 1 is also processing the data and could be used for such an event. 
Moreover, algorithmic  development needs such assumptions to keep the 
problem manageable. The aim of the single-fault isolator is to identify the cor-
rect root cause once a trend shift is detected. Root causes can be thought of as 
state variables, x1 , x2 , ⋯ xn. They are represented within this system as vectors 
of measurement deltas, �∗ ∗ ∗z z z, , , n1 2 , which are calculated by applying influ-
ence  coefficients. As an illustration, consider the following 12 root causes.

1 FAN Coupled FAN (–1% η, –1.25% FC)
2 LPC Coupled FAN (–1% η, –1.10% FC)
3 HPC Coupled FAN (–1% η, –0.80% FC)
4 HPT Coupled FAN (–1% η, +0.75% FP4)
5 LPT Coupled FAN (–1% η, +1.65% FP45)
6 2.5 BLD Stability bleed leak (1%)
7 2.9 BLD Start bleed (1%)
8 FP14 Fan discharge area (1%)
9 FP8 Core discharge area (1%)
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129Kalman Filter

10 TCC Turbine case cooling (on)
11 HPCSVM HPC stator vane misrigging
12 P49Error P49 indication problem (2%)

These root causes can exist at varying levels. The state representation of 
the root cause will be in the form of a 1% cause to be consistent with other 
influences. An example of the influence coefficients for these root causes is 
depicted in Table 8.1.

The actual root cause may appear as some multiple of the influences rep-
resented in Table 8.1. For instance, a 2.5 bleed root cause may manifest itself 
as a stuck open bleed (≈15% 2.5 bleed fault) or a partial bleed leak, say, 2% 
2.5 bleed faults. These two faults will be treated the same by the Kalman 
estimator. The difference between the two faults is one of magnitude. The 
magnitude is estimated by the Kalman filter. However, the ability to estimate 
correctly depends on the signal-to-noise ratio for the given fault. In this par-
ticular case, a 2% 2.5 bleed may get confused with an LPC fault or a 2.9 bleed 
fault. On the other hand, a stuck 2.5 bleed (14.77%) has a significantly higher 
SNR and is estimated correctly. Another key factor that governs the accuracy 
of the estimator is the number of measured parameters. We will consider 
systems that have between four and eight measurements during the flight, 
which is typical of most engines.

Given the definitions above for root cause influences, a typical set of pos-
sible single faults may be constructed. Consider the following single-fault 
definitions depicted in Table 8.2. If we represent these 11 faults as x1 , x2 , ⋯ x11 

TABLE 8.1

Sample Root Cause Influences

T49C2 
°C

WF 
Percent

N2C2 
Percent

N1C2 
Percent

P25Q2 
Percent

T25C2 
°C

T3C2 
°C

P3Q2 
Percent

FAN 3.86 0.7 0.3 –0.68 –2 –1.95 –1.58 –0.03
LPC –4.54 –0.66 –0.29 –0.14 1.18 0.11 –2.62 0.01
HPC –6.8 –0.8 0.06 –0.05 –0.83 –0.71 –3.66 0.17
HPT –10.88 –1.29 0.57 –0.08 –1.29 –1.14 4.03 1.26
LPT –1.19 0.96 –0.63 0.98 3.4 3.45 –1.42 0.11
2.5 BLD –3.07 –0.49 –0.16 0 1.04 0.85 –0.86 0
FP14 1.22 0.21 0.07 –0.24 –0.67 –0.73 0.15 –0.01
FP8 –0.61 –1.39 –0.17 –0.64 –1.06 –1.31 –2.62 –1.09
2.9 BLD –4.22 –1.06 –0.29 –0.06 0.68 0.63 0.6 0.02
TCC 17.75 2.1 –0.9 0.12 2.14 1.86 –4.38 –1.11
HPSCVM –0.95 –0.11 0.39 0 –0.08 –0.09 0.34 0.09
P49 error –0.33 –1.7 –0.25 –0.46 –0.55 0.63 0.21 –1.22

Source: Volponi, A.J., et al., ASME Journal of Engineering for Gas Turbine and Power 125(4):917–924, 
2000. With permission.
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130 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

and the matrix of influences by H*, an 11 × 8 matrix, then a set of expected 
measurement delta vectors, �∗ ∗ ∗z z z, , ,1 2 11, would be calculated by

 Z H x ifor 1, 2, 11i
T

i( )= =∗ ∗ �  (8.6)

Each ∗Zi  would be an 8 × 1 vector of measurement deltas.
Recall from Chapter 1 that the general form of the discrete Kalman filter 

estimator that is used in multiple-fault analysis is as follows, at time k + 1:
State extrapolation:

 ( ) ( )+ = Φ +x k k k xˆ 1| 1 ˆ k

Covariance extrapolation:

 ( ) ( ) ( )+ = Φ + Φ + + +P k k k P k Q1| 1 1k
T

k 1

Kalman gain:

 
( )( ) ( )= + + ++ + + + +

−
D P k k H H P k k H R1| 1|k k

T
k k

T
k1 1 1 1 1

1

State update:

 
( ) ( )= + + − + + + + +x x k k D z H x k kˆ ˆ 1| ˆ 1|k k k k1 1 1 1

Covariance update:

 [ ][ ]= − ++ + +P I D H P k k1|k k k1 1 1

TABLE 8.2

Single-Fault Problem Set

Fault Percent

FAN –2
LPC –2
HPC –2
HPT –2
LPT –2
2.5 BLD (low and high) 2 and 14.77
2.9 BLD (low and high) 6.74 and 15.45
HPCSVM –6
P49 error 2

Source: Volponi, A.J., et al., ASME Journal of Engineering 
for  Gas Turbine and Power 125(4):917–924, 2000. 
With permission.
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For the single-fault isolator we make the following adjustments:

 
( )

Φ =

=

=

+

+

+
∗

I

Q

H M H

0

k

k

k c
T

1

1

1

Mc = measurement configuration vector = diag(m1, m2, …, m8). Thus, Mc is a 
diagonal matrix assuming eight potential measurements, where

 

=





m

1 if jth measurement is available

0 otherwise
j

The effect of the measurement configuration matrix is to zero the rows of 
the root cause influence matrix corresponding to the measurements that are 
not available. The resulting matrix of influences is 8 × 9 for this example.

The single-fault isolation is obtained by processing the general Kalman 
equations iteratively to provide a snapshot analysis for each of the root 
causes under consideration (11 in this example). Each “call” to the Kalman 
filter will be made with a different P0 matrix chosen to accentuate the kth 
root cause. Since these are snapshot analyses, the covariance update calcu-
lation is not required. The a priori state estimate is also assumed to be zero. 
An SFI analysis is performed typically after a trend shift has been detected 
in the measurement deltas at some discrete time, say, between time k and 
k  +  1. The  delta-delta (Zk+1 – Zk) constitutes the input measurement delta, 
Z, to the SFI.

The SFI is evaluated iteratively for each single fault (11 in the above exam-
ple). This process yields estimates for each single fault under consideration. 
It is necessary to rank each of these estimates and determine the top two or 
three single faults. The measure used to compare estimates for this purpose 
of ranking is a normalized measurement error norm, which is described 
below. The single fault admitting the minimum error is deemed the most 
likely, the second smallest error the next likely, and so forth.

As mentioned above, the normalized measurement error will take into 
consideration the measurement nonrepeatability of the system. It is assumed 
that these are known a priori or computed from data during initialization of 
the diagnostic system. However the values are obtained, they are assumed 
to be known and are passed to the Kalman filter in the form of a positive 
definite matrix R containing the variances of the measurement deltas (cor-
rected quantities). Thus, if we represent the measurement delta-delta vector 
between time k and k + 1 assuming that a trend shift has been detected during 
this time period by z = [ z1 , z2 , ⋯, z8 ], then the �( ) = σ σ σ diag R , , ,1

2
2
2

8
2  repre-

sents the individual variances. For definiteness, assume we have calculated 

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

3:
02

 1
6 

M
ar

ch
 2

01
6 



132 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

the nth single-fault estimate. The associated normalized measurement error 
norm, en, is calculated as follows:

 =x nˆ SFI estimate for the th root causen

 
∑

∑
=

−
σ





























=

=

e

z z

z
n

k k

k

k

k

*

2
1

8

2

1

8

2 1/2

 (8.7)

 zk
* = kth element of the vector ( )∗M H x̂c

T
n

Sometimes, the estimated value for some single faults may be opposite in 
polarity than what would be reasonably expected. For example, an HPT sin-
gle fault of magnitude –2% might yield an estimated value of +0.5% for an 
LPC SFI. Since a sudden shift in observed gas path parameters has taken 
place during engine operation, it is unlikely that the condition of any given 
module has improved. Therefore, a positive shift in performance does not 
merit serious consideration. Thus, some preprocessing is necessary before 
the error is ranked for the fault isolation process. Each of the SFI estimates 
is analyzed, and only those faults that show a reasonable polarity are 
 shortlisted. Ordering the errors from minimum to maximum yields

 �≤ ≤ ≤e e ei i in1 2  (8.8)

corresponding to the single-fault estimates

 �≤ ≤ ≤x x xˆ ˆ ˆi i in1 2  (8.9)

in order of likelihood. Typically, the first ranked single fault is selected as the 
underlying fault and is reported to the user. In some cases, it is better to 
report the first and second single faults, since erroneous fault identification 
is possible for situations where the associated error norms are close.

In some situations, the SFI experiences confusion between two single 
faults. The aliasing of single faults depends on the faults themselves, their 
relative magnitude with respect to the noise in the measurements, and the 
number of measurements available for the analysis. All of these factors can 
contribute to a confounding between two single faults. Some preprocessing 
of the SFI results may be required to reduce the possibility of false alarms. 
The rules to be applied are empirically motivated and would be suggested 
by computer simulation test cases.
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133Kalman Filter

8.3 Numerical Simulations

A set of noisy measurements for each of the 11 single faults under consid-
eration (xi = 1, 2, …, 11) is generated using Equation (8.1). These noisy mea-
surement vectors (zk) are then used in the SFI process. Then, the results are 
ranked and tabulated for first, second, and third ranked faults. These results 
are shown in Tables 8.3 and 8.4 for eight- and four-measurement set systems, 
respectively, where the four bleed leak faults have been combined into two 
faults.

TABLE 8.3

Single-Fault Problem Set Results for Eight Measurements

Fault 1st Top 2 Top 3

FAN 100% 100% 100%
LPC 90% 100% 100%
HPC 100% 100% 100%
HPT 100% 100% 100%
LPT 100% 100% 100%
2.5 BLD 85.00% 100% 100%
2.9 BLD 96.70% 100% 100%
HPCSVM 100% 100% 100%
P49err 100% 100% 100%
Total 96.90% 100% 100%

Source: Volponi, A.J., et al., ASME Journal of Engineering for Gas 
Turbine and Power 125(4):917–924, 2000. With permission.

TABLE 8.4

Single-Fault Problem Set Results for Four Measurements

Fault 1st Top 2 Top 3

FAN 100% 100% 100%
LPC 90% 90% 100%
HPC 100% 100% 100%
HPT 100% 100% 100%
LPT 100% 100% 100%
2.5 BLD 50.00% 75% 95%
2.9 BLD 80% 100% 100%
HPCSVM 100% 100% 100%
P49err 100% 100% 100%
Total 91.10% 96.10% 99.40%

Source: Volponi, A.J., et al., ASME Journal of Engineering for Gas 
Turbine and Power 125(4):917–924, 2000. With permission.
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134 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

The results in the tables show the percentage of time the implanted fault 
is correctly determined as the first, second, and third choice. The results 
demonstrate a 96.9 and 91.1% accuracy for the first choice fault isolation for 
eight- and four-measurement systems, respectively. If we weaken the accu-
racy criteria to being correct within the top two choices, the relative precision 
of the isolation increases to 100 and 96.1%, respectively. In either case, the 
isolation accuracy is quite good.

We see that 91% success rate is possible with only four measurements. 
It is then natural to ask the question: What is the need for adding more 
 instrumentation? There are several answers to this question. The first 
answer is that a multiple-fault performance assessment would not per-
form as well with fewer measurements. But even for the single-fault case, 
the “more is better” argument remains valid if we consider the robust-
ness of the  system. One measure of robustness would be a hard coupled 
 relationship in the implanted faults beyond that which is assumed in the 
 numerical model (i.e., the influences coefficient H*). Figures  8.1 and 8.2 
show the effect on first-choice accuracy for eight- and four-measurement 
systems,  respectively, when the coupling factors for the compression 
modules FAN, LPC, and HPC are randomly varied [9]. The LPC and HPC 
clearly exhibit greater robustness to modeling assumptions in the eight-
measurement system.

In the next chapter, we will briefly discuss artificial neural networks 
(ANNs) and their usage in engine performance diagnostics. For the  purpose 
of making a direct comparison with the Kalman filter methodology, we 
will consider the single-fault isolation problem. The identical computer 
 simulation test will be used as the vehicle for the evaluation.
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FIGURE 8.1
Coupling factor impact on eight-measurement system. (From Volponi, A.J., et al., ASME Journal 
of Engineering for Gas Turbine and Power 125(4):917–924, 2000. With permission.)

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

3:
02

 1
6 

M
ar

ch
 2

01
6 



135Kalman Filter

8.4 Sensor Error Compensation

We have seen two clear applications of the Kalman filter in gas turbine 
 diagnostics. Broadly, these can be called the multiple-fault isolators (MFIs) 
and the single-fault isolator (SFI). Recall the measurement model for the MFI:

 z = Hexe + Hsxs + v (8.10)

This equation gives the engine/sensor model at some given engine operating 
point. Typically, raw engine data that are obtained during flight or during 
ground tests are normalized to standard day conditions. Next, corrections 
are applied to each parameter for nonnormal conditions and effects such as 
engine service bleed, Reynolds and Mach number effects, test cell geometry, 
and nozzle area deviations [83]. The corrected values are then compared to 
a reference set of baseline values and the measurement delta is calculated. 
The above equation is an undetermined system, as the number of unknowns 
is more than the number of equations. These are m equations due to m mea-
surements, but for each of these measurements, there is an associated sensor 
fault state. However, since z contains corrected quantities, it leads to a func-
tional dependence on the engine inlet parameters used to normalize them 
and the base power parameter, e.g., ΔWF = f(T2, P2, EPR). Here T2, P2, and EPR 
are the engine inlet total temperature, pressure, and overall engine pressure 
ratio, respectively. Since these three parameters also contain errors, the total 
number of sensor fault deltas is the number of measured parameters plus 3 
or m + 3. So in total, the number of unknowns for the diagnostic problem is 
ne + m + 3, where ne is the number of engine states.
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FIGURE 8.2
Coupling factor impact on four-measurement system. (From Volponi, A.J., et al., ASME Journal 
of Engineering for Gas Turbine and Power 125(4):917–924, 2000. With permission.)
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136 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

In the Kalman filter MFI, we have m measurements and ne + m + 3 states. 
It is clear that such a problem does not have a unique algebraic solu-
tion. However, an estimate of the unknown states can be obtained by the 
 predictor-corrector Kalman filter. We should point out that the Kalman 
filter requires a reasonably good answer as a guess. However, this is dif-
ficult to get for the engine state, though some empirical estimates have been 
developed based on engine component deterioration as a function of cycles. 
However, for sensor faults, the problem of getting good initial estimates is 
extremely difficult, since there are no good models for predicting bias and 
drift. Due to this, Kalman filters are often tailored to favor the problem of 
engine fault estimation. However, this type of approach works only when 
the measurement errors are small. For such Kalman filter designs, any large 
sensor error can corrupt all parameter estimates and make them unusable. 
We will discuss sensor compensation in this section following the method 
described by Volponi [83].

If we assume that only one large measurement error is there, then the situ-
ation is salvageable. Typically, a sensor error occurs in one measurement at a 
given time, and so this assumption is reasonable. From the Kalman filter 
equations derived earlier, we get
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Rewriting Equation (8.11) yields
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Here ŝ j is the estimated measurement error in the jth engine measurement. 
If ŝ j is small, then êj will be a reasonable estimate of the jth engine fault. 
However, if ŝ j is large, there can be misassessment of some or all the engine 
faults. A decision has to be made to determine if the given sensor delta is 
sufficiently large.

Consider a threshold Tj and then calculate
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n n

n
 (8.13)

Now the kth sensor is the one with the highest exceedance, and therefore sk 

is likely to be a sensor error. We need to find the alternate initial value of ′sk.
Define an index set Ωk to be the nonzero rows of the kth column of the Hs 

matrix:

 Ωk = {n|hnk ≠ 0} (8.14)

Then Equation (8.12) can be written as
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The above equation can be written in compact form as

 êi = ei + aisk + bi (8.16)

where
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D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

3:
02

 1
6 

M
ar

ch
 2

01
6 
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Note that φi, ai, and bi are independent of sk, which means that any change 
to sk affects all estimates of the engine in a linear manner. In a similar man-
ner, the second part of Equation (8.12) yields

 = + α + βs s sˆi i i k i  (8.18)

where
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Now we choose a new initial value that minimizes the engine and the sensor 
fault deviation from the expected value, i.e., minimize
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However, we have the following relations:
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Now we put these equations in Equation (8.21) and get
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where [DHs]k stands for the kth column of the matrix product DHs. Also, · is 
the vector dot product and  is the Euclidean norm. Thus, sk can be adjusted 
to get the initial value of the kth sensor fault.

This recovery, in case of large sensor error, works well where there is 
engine deterioration and a priori estimates reflect that condition. Recovery 
from large sensor error is an important part of typical gas turbine diagnos-
tics computer programs.

8.5 Summary

In this chapter, we outlined a Kalman filter-based methodology for fault 
detection and isolation in gas turbines. Test results have suggested that the 
Kalman filter method is highly accurate for isolating single gas turbine fault 
symptoms.
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140 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

The Kalman filter is a linear model-based estimator and is suitable in those 
cases where a linear model is available and is known to be a reasonably accu-
rate representation of the input-output relationship. Fortunately, this require-
ment is satisfied in the engine performance diagnostics application. Years of 
results from standard gas path analysis software have shown that influence 
coefficients are fairly accurate and robust linear models. The Kalman filter 
approach utilizes all model information available, a priori estimate infor-
mation, measurement noise information, etc., and can be easily configured 
to operate with different measurement suites and fault configurations. For 
example, it can work for both single-fault and multiple-fault isolation sys-
tems. Adaptive measures are also available to allow real-time reconfigura-
tion of the Kalman filter to changing measurement noise levels. An approach 
to compensate for large sensor error is also discussed in this chapter.
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9
Neural Network Architecture

In Chapter 8 we focused on the Kalman filter and its methodology for fault 
isolation in gas turbines. The present chapter presents the neural networks for 
fault detection and isolation techniques in gas turbines. Also, a comparison is 
made between the Kalman filter and neural networks for the fault isolation 
problem. A special type of neural network named the autoassociative neural 
network (AANN), which is useful for sensor validation, is also discussed.

In the past decade, artificial neural networks (ANNs) have been employed 
as a pattern recognition device for gas turbine diagnostics. Both Kalman fil-
ter and neural network-based methods have enjoyed reasonable success. The 
single faults under consideration in this chapter include the engine modules, 
engine system, and instrumentation faults.

9.1 Artificial Neural Network Approach

An artificial neural network (ANN), usually called neural network (NN), is a 
mathematical model or computational model that is inspired by the struc-
ture or functional aspects of biological neural networks. A neural network 
consists of an interconnected group of artificial neurons, and it processes 
information using a connectionist approach to computation. In most cases, 
an ANN is an adaptive system that changes its structure based on external 
or internal information that flows through the network during the learning 
phase. Modern neural networks are nonlinear curve-fitting and statistical 
data modeling tools. They are often used to model complex relationships 
between inputs and outputs or to find patterns in data.

The fault isolation problem can be considered to be a pattern classification 
problem. In such a problem, N-dimensional vectors in an N-dimensional 
space represent the system response. The system response for different 
faults tends to be partitioned into different regions of this space and can be 
regarded as patterns. Pattern recognition involves learning these partitions 
from simulated or real data, so that a given system response can be classified 
as a particular fault. Neural networks represent a powerful pattern recogni-
tion technique, and have been applied for fault detection of complex systems 
such as aerospace vehicles [84], nuclear power plants [85], and chemical pro-
cess facilities [86], among others. A key advantage of neural networks over 
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other methods is their ability to recognize relationships between patterns 
despite the presence of noise contamination or partial information [87].

Most applications of ANN to fault diagnostics follow a common theme. 
The ANN is trained offline on fault signatures relating the changes in sys-
tem measurements from a good baseline to system faults. Typically, faults 
are embedded into the computer simulations, or real fault data are used, 
or a combination of both. In case simulated data are used, noise must be 
added to make the simulations realistic. Such a training process where the 
ANN is presented input and output data by the system designer is known 
as supervised learning. Once the ANN has been properly trained using this 
process of supervised learning, it can analyze data that are different from 
those it was originally exposed to during the training sessions. When the 
trained ANN is placed online, it recognizes a similar response from the 
actual system.

The discussion below involves the use of two types of neural networks 
for engine fault diagnostics: a feed-forward ANN trained using a back- 
propagation (BP) algorithm and a hybrid neural network. The use of such 
networks for gas turbine diagnostics was proposed by Volponi, Depold, 
Ganguli, and Daguang [12] in 2003, and the present chapter is largely based 
on this paper.

9.1.1 Back-Propagation (BP) Algorithm

While there are several types of neural networks, multilayer feed-forward 
networks trained using the back-propagation algorithm have emerged as 
the most widely used. Figure 9.1 illustrates the schematic of a feed-forward 
neural network, which consists of an input layer, an output layer, and one or 
more hidden layers. The number of neurons in the input and output layers is 
determined by the number of input measurements and output parameters. 
The number of hidden layer nodes is selected based on a convergence crite-
rion and the characteristic of the input-output mapping relationship.

A three-layer feed-forward network is used for the present chapter, as 
shown in Figure 9.1. The feed-forward network is trained using supervised 
learning, which involves presenting input-output pairs to the ANN and then 
using the BP algorithm to learn the relationship between the inputs and out-
puts by minimizing the following error measure:

 ∑=
=

E Ek

k

N

1

 (9.1)

in which Ek represents the root mean square error associated with the kth 
training sample and N represents the number of samples that are used for 
training the network. The BP algorithm uses a gradient search to perform 
the nonlinear optimization needed to minimize the error [88].
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143Neural Network Architecture

To improve the ANN’s ability to deal with data scatter, the input data were 
normalized using the following formula:

 Yin = Yim / (Yi max · σi )

where Yi is the ith monitoring parameter; n, m, and max are the normalized, 
measured, and maximum possible values, respectively; and σi is the stan-
dard deviation of the ith monitoring parameter.

The standard deviations and the influence coefficients used for the ANN 
testing are the same as those used for the Kalman filter described in pre-
vious chapters. For comparison of fault isolation results with 4 inputs and 
8 inputs, 20 training cases and 50 testing cases were generated. The training 
cases were used for the BP algorithm to train the neural network. Once the 
neural network was trained, the test cases were used to evaluate the per-
formance of the neural network. Data used for training were not used for 
testing the neural network. The diagnostic results were considered for the 
three highest outputs, which represent the three most likely faults. The test 
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FIGURE 9.1
Architecture of three-layer feed-forward ANN. (From Volponi, A.J., et al., ASME Journal of 
Engineering for Gas Turbine and Power 125(4):917–924, 2000. With permission.)
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results for eight and four measurements using the BP ANN are shown in 
Tables 9.1 and 9.2, respectively. For both the eight- and four-measurement 
cases, the Kalman single-fault isolator (SFI) results shown in Tables  8.3 
and 8.4 in Chapter 8 are better than the BP ANN results.

For the eight-measurement case, the Kalman SFI has 100% accuracy in fault 
isolation among the top three choices, compared to 95.7% for the BP ANN. For 
the four-measurement case, the Kalman SFI has an accuracy of 99.4% in fault 
isolation among the top three choices, compared to 94.6% for the BP ANN.

TABLE 9.1

SFI Accuracy: ANN, Eight Measurements

Fault 1st Top 2 Top 3

FAN 100% 100% 100%
LPC 60% 80% 90%
HPC 100% 100% 100%
HPT 100% 100% 100%
LPT 100% 100% 100%
2.5 BLD 80% 85% 85%
2.9 BLD 86.70% 86.70% 86.70%
HPCSVM 90% 100% 100%
P49err 100% 100% 100%
Total 90.70% 94.60% 95.70%

Source: Volponi, A.J., et al., ASME Journal of Engineering 
for  Gas Turbine and Power 125(4):917–924, 2000. 
With permission.

TABLE 9.2

SFI Accuracy: ANN, Four Measurements

Fault 1st Top 2 Top 3

FAN 100% 100% 100%
LPC 90% 90% 90%
HPC 90% 100% 100%
HPT 100% 100% 100%
LPT 100% 100% 100%
2.5 BLD 75% 75% 75%
2.9 BLD 86.70% 86.70% 86.70%
HPCSVM 100% 100% 100%
P49err 100% 100% 100%
Total 93.50% 94.60% 94.60%

Source: Volponi, A.J., et al., ASME Journal of Engineering 
for  Gas Turbine and Power 125(4):917–924, 2000. 
With permission.
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9.1.2 Hybrid Neural Network Algorithm

The BP ANN is handicapped relative to the Kalman SFI in some ways. For 
example, while the Kalman SFI uses influence coefficients in the form of a 
matrix to define the model, the BP ANN uses data generated from influence 
coefficients to learn the model.

A hybrid NN is a network architecture where one or more ANN func-
tions are replaced by an algorithm that includes domain knowledge [89]. The 
objective is to substitute features in the neural network architecture that are 
already analytically understood. This avoids the need for training the ANN 
to learn information that is already known. For example, instead of using 
training data based on influence coefficients, the hybrid ANN uses the influ-
ence coefficients as part of the network model.

A Gaussian nearest-neighbor function was substituted for the ANN fea-
ture identification function, and the fault mapping function was ignored for 
this hybrid NN algorithm. The output of the network was the root sum of 
the squares number of standard deviations from a perfect match of the fault 
pattern. The output of the network was used directly to rank the faults.

A test was made to determine if the neural network mapping to the faults 
could also be optimized. Up to 72 weightings were available between the 
eight-measurement features and the nine faults. Thirty-six weightings were 
available with four measurements. While it was demonstrated that the 
weightings could be optimized, the tests were run with all the weightings set 
to unity. The results from the hybrid neural network are shown in Tables 9.3 
and 9.4, for eight and four measurements, respectively.

The accuracy of the hybrid neural network compares favorably with the 
Kalman SFI. For the eight-measurement case, both the Kalman SFI and 

TABLE 9.3

SFI Accuracy: Hybrid NN, Eight Measurements

Fault 1st Top 2 Top 3

FAN 100% 100% 100%
LPC 90% 100% 100%
HPC 100% 100% 100%
HPT 100% 100% 100%
LPT 100% 100% 100%
2.5 BLD 90% 100% 100%
2.9 BLD 100% 100% 100%
HPCSVM 100% 100% 100%
P49err 100% 100% 100%
Total 97.80% 100% 100%

Source: Volponi, A.J., et al., ASME Journal of Engineering 
for  Gas Turbine and Power 125(4):917–924, 2000. 
With permission.
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146 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

the hybrid ANN show fault isolation accuracy among the top three choices 
of 100%. For the four-measurement case, the Kalman SFI shows fault isola-
tion accuracy among the top three choices of 99.4%, compared to 98.4% for 
the hybrid ANN.

In general, the hybrid ANN gives better results than the BP ANN. This may 
be because the hybrid uses the influence coefficients for each fault within the 
network, whereas the BP ANN has to learn the influence coefficients from 
the training data.

9.2 Kalman Filter and Neural Network Methods

Feed-forward neural networks are typically made of interconnected 
 nonlinear neurons and are particularly useful where the input-output 
 relationship is nonlinear. The Kalman filter and the hybrid neural network 
assume a linearized model of the system. In the present chapter, the lin-
ear model takes the form of influence coefficients. For a feed-forward ANN, 
BP  learning  for  linear problems in engine fault diagnostics will generally 
result in poor  performance compared to a Kalman filter or hybrid ANN 
approach.

Learning in neural networks involves mapping an input to an output. 
The inputs and outputs can be generated from models, from real data, or 
a   combination of both. ANNs can therefore also be model-free estimators, 
a quality that is very useful if modeling information such as influence coef-
ficients is not available. Kalman filters, on the other hand, are model-based 

TABLE 9.4

SFI Accuracy: Hybrid NN, Four Measurements

Fault 1st Top 2 Top 3

FAN 90% 100% 100%
LPC 90% 90% 100%
HPC 100% 100% 100%
HPT 100% 100% 100%
LPT 100% 100% 100%
2.5 BLD 70% 90% 86.70%
2.9 BLD 86.70% 86.70% 100%
HPCSVM 70% 100% 100%
P49err 100% 100% 100%
Total 91.10% 97.80% 98.40%

Source: Volponi, A.J., et al., ASME Journal of Engineering 
for  Gas Turbine and Power 125(4):917–924, 2000. 
With permission.
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147Neural Network Architecture

estimators, and are suitable for problems in engine performance diagnostics 
where influence coefficients are available as the model.

Neural networks are not limited to multilayer neurons with BP training. 
Self-organizing maps based on competitive learning [90], simulated annealing 
based on statistical thermodynamics [91], Boltzmann learning [92], and radial 
basis functions [93] are some of the other developments in ANN that may be 
applicable to engine diagnostics. Combining the Kalman filter approach with 
some of the ANN methods may yield superior results for the engine diagnos-
tic problem than those obtainable within either methodology acting alone.

9.3 Autoassociative Neural Network

We saw in the previous chapter that in addition to degradation in the engine 
components, there also exists the possibility of change or degradation in the 
sensors.

In case a sensor fails, it would be nice to get a good estimate of the faulty 
sensor. As discussed in Chapter 8, the Kalman filter logic can be suitably 
adjusted to get this estimate. The AANN is a special type of neural network 
that is very suitable for sensor validation. Its use for gas turbine diagnostics 
was suggested by Guo and Saus [94].

The basic architecture of the AANN is shown in the Figure 9.2. The net-
work consists of an input layer, an output layer, and three hidden layers.

The input and output layers have the same number of sensors, which are 
equal to the number of gas turbine measurements. The middle layer, which 
typically has a low number of neurons, is called the bottleneck layer. The 
measurement data are compressed into the bottleneck layer and then regen-
erated or expanded thereafter. The number of neurons in the bottleneck layer 
represents the degrees of freedom of the measurement set, i.e., the minimum 
number or principal components of the measurements.

Sensor
inputs

Sensor
outputs

FIGURE 9.2
Autoassociative neural network for sensor validation.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

3:
05

 1
6 

M
ar

ch
 2

01
6 



148 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

The AANN is trained to learn the relationship between the sensor mea-
surements. The different sensor measurements are typically related to one 
another by some mathematical relationship. If any one sensor measurement 
is out of line, the inconsistency will be visible from these equations. The 
AANN uses the learned relationship between the sensors to recreate an esti-
mate of the incorrect measurement.

Standard algorithms such as the back-propagation algorithm can be used 
to train the network. The sigmoid activation function can be used, and the 
training should ensure that the desired sensor measurement is returned for 
both normal data and training data.

Sensor failure is detected as follows: Each normal network output, say, 
ẑi, is compared with the corresponding input zi. Let us call this ε = −z zˆi i i . 
If any single εi changes substantially compared to a given threshold for that 
sensor Ti, but the other error estimates ε = −z zˆj j j , j ≠ i, stay low, then the ith 
sensor measurement is faulty.

After a faulty sensor is detected, the corresponding measurement is 
removed from the input layer. The AANN now retains the capacity to syn-
thesize this missing faulty sensor measurement from the other sensor data. 
This estimated value also comes in handy if it is used for control functions.

We can see that the AANN uses the concept of dimensional reduction. Due 
to physics, it is generally not possible for the sensor measurements to be com-
pletely independent of each other. There is some redundancy between the 
sensor measurements. However, the process of coming up with the appro-
priate number of neurons in the three hidden layers is key to the proper 
functioning of the AANN.

9.4 Summary

Numerical simulations show that the back-propagation neural network, the 
hybrid neural network, and the Kalman filter method are highly accurate for 
isolating single gas turbine faults. Furthermore, the results also indicate that 
these methodologies compare favorably in terms of accuracy, with a very 
slight advantage going to the Kalman filter approach.

Each method has its own advantages and disadvantages. The ANN is inher-
ently nonlinear and can be used in applications where model information is 
scarce or lacking altogether. The ANNs are, however, data driven and there-
fore must be trained. The training is typically performed offline in a super-
vised fashion, meaning that the input-output relationship is known. This 
means that the underlying faults in the training data are already known. This 
could be a drawback if real engine data were used for training, since the pre-
cise nature of the fault may or may not be known. If the engine configuration 
or sensor noise levels change, the ANN approach requires that the ANN be 
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149Neural Network Architecture

retrained. Once trained, the ANN architecture provides a numerically simple 
and hence fast diagnostic operator suitable for real-time application.

The hybrid neural network, like the Kalman filter, is a model-based method 
that uses influence coefficients as the primary linear model in a neural network 
architecture framework. For the single-fault isolation problem referenced in 
this chapter, the hybrid NN closely resembles a weighted least-squares solu-
tion. This explains the close agreement between the hybrid NN and Kalman 
filter in the single-fault isolation numerical simulations.

The autoassociative neural network uses the concepts from principal 
 component analysis to learn the relationship between the sensor mea-
surements. It is a useful tool for detection of sensor faults and for getting 
a  reasonable estimate of their value.
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10
Fuzzy Logic System

Chapters 8 and 9 introduced the Kalman filter and the neural network for 
fault isolation in gas turbine engines, respectively. Fuzzy expert  systems are 
robust and are being increasingly used for diagnostics and other applica-
tions [95–98]. Recently, it has been proven that classical feed-forward  neural 
networks of the type used in engine diagnostics can be  approximated to an 
arbitrary degree of accuracy by a fuzzy logic system, without having to go 
through the laborious training process needed by a neural network [99]. In 
addition, fuzzy rules follow human language-based reasoning processes 
and are much easier to interpret and understand than neural networks that 
have a black box nature [100]. In this chapter, it is shown that fuzzy logic 
systems can be used for engine module fault isolation under high levels of 
uncertainty. In addition, fault isolation results from the fuzzy logic systems 
are compared with results from neural  networks and Kalman filter methods. 
The application of fuzzy logic to gas turbine diagnostics, which is discussed 
in this chapter, was  introduced by Ganguli [13, 101].

10.1 Module and System Faults

Most damages to a typical, twin-spool gas turbine engine shown in 
Figure 1.2 manifest themselves as changes in either the module efficiency or 
flow capacity/area. The FAN, LPC, and HPC modules have flow capacities 
associated with them. The HPT and LPT modules have areas associated with 
them. Besides the five modules, the engine can experience system faults such 
as bleed leaks and failures, variable stator vane malfunctions, and certain 
instrumentation faults. The fault models for the nine single faults considered 
in this chapter are shown in Table 10.1.

Besides the five module faults, other faults considered are the start bleed 
leak (2.9 BLD), stability bleed leak (2.5 BLD), P49 indication problem (P49ER), 
and stator vane misrigging (HPCSVM). It is assumed that one and only one 
single fault occurs at a given time. The fingerprints for each of the nine faults 
are shown in Table 10.2.

Figures 10.1 and 10.2 show an example of a fingerprint chart for the low-
pressure turbine fault and 2.5 bleed fault, respectively. Figures 10.1 and 10.2 
are obtained from the fingerprint charts in Table  10.2. From these charts, 
it appears that it would be difficult for a human engineer to look at  several 
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such charts and identify the correct fault from the measurement deltas. 
However, this task is well suited for a fuzzy logic system.

10.2 Fuzzy Logic System

A fuzzy logic system is a nonlinear mapping of an input feature vector into 
a scalar output [102]. Fuzzy set theory and fuzzy logic provide the  framework 
for the nonlinear mapping. Fuzzy logic systems have been widely used in engi-
neering applications because of the flexibility they offer designers and their 
ability to handle uncertainty. A fuzzy logic system can be expressed as a linear 
combination of fuzzy basis functions and is a universal function approximater.

TABLE 10.1

Description and Modeling of Single Faults

Fault Description Model

FAN Damage in fan module –2% η, –2.5% FC
LPC Damage in LPC module –2% η, –2.2% FC
HPC Damage in HPC module –2%η, –1.6% FC
HPT Damage in HPT module –2% η, +1.5% FP4
LPT Damage in LPT module –2% η, +3.3% FP45
2.5 BLD Stability bleed leak 2%
2.9 BLD Start bleed leak 2%
HPCSVM HPC stator vane misrigging –6%
P49ER P49 indication problem 2%

Source: Ganguli, R., Journal of Propulsion and Power 18(2):440–447, 2002. 
With permission.

TABLE 10.2

Fingerprints for Selected Gas Turbine Faults

Measurement 
Faults

ΔEGT, 
±°C

ΔWF, 
%

ΔN2, 
%

ΔN1, 
%

ΔP25, 
%

ΔT25, 
±°C

ΔT3, 
±°C

ΔP3, 
%

HPC 13.60 1.6 –0.11 0.1 1.66 1.41 7.31 –0.34
HPT 21.77 2.58 1.13 0.15 2.59 2.28 –8.05 –2.52
LPC 9.09 1.32 0.57 0.28 –2.35 –0.22 5.23 –0.01
LPT 2.38 –1.92 1.27 –1.96 –6.80 –6.90 2.84 –0.22
FAN –7.72 –1.40 –0.59 1.35 3.99 3.91 3.15 0.05
2.5 bleed 6.15 0.99 0.31 0.01 –2.08 –1.71 1.73 0.01
2.9 bleed 8.43 2.12 0.58 0.12 –1.36 –1.27 –1.20 –0.04
HPCSVM –5.71 –0.69 2.33 –0.02 –0.51 –0.54 2.05 0.54
P49ER –0.65 –3.40 –0.49 –0.92 –1.11 0.03 –0.42 –2.44

Source: Ganguli, R., Journal of Propulsion and Power 18(2):440–447, 2002. With permission.
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FIGURE 10.2
Fingerprint chart for LPT fault. (From Ganguli, R., Journal of Propulsion and Power 18(2):440–447, 
2002. With permission.)
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FIGURE 10.1
Fingerprint chart for 2.5 bleed fault. (From Ganguli, R., Journal of Propulsion and Power 
18(2):440–447, 2002. With permission.)
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A typical multi-input single-output (MISO) fuzzy logic system performs a 
mapping using four basic components: rules, fuzzifier, inference engine, and 
defuzzifier. Here

 f : V ∈ Rm → W ∈ R (10.1)

where

 V = V1 × V2 × ⋯ × Vn ∈ Rm (10.2)

is the input space and V ∈ R is the output space.
A fuzzy logic system maps inputs to outputs using four basic components: 

rules, fuzzifier, inference engine, and defuzzifier are shown in Figure 10.3. 
Once the rules governing the fuzzy logic system have been fixed, the fuzzy 
logic system can be expressed as a mapping of inputs to outputs.

Rules can come from experts or can be obtained from numerical data. 
In either case, engineering rules are expressed as a collection of IF-THEN 
statements, such as “IF u1 is HIGH, and u2 is LOW, THEN v is LOW.” 
To  formulate such a rule we need an understanding of:

 1. Linguistic variables vs. numerical values of a variable (e.g., HIGH 
vs. 3.5%).

 2. Quantifying linguistic variables, e.g., may have a finite number of 
linguistic terms associated with them, ranging from NEGLIGIBLE 
to VERY HIGH, which is done using fuzzy membership functions.

 3. Logical connections between linguistic variables, e.g., AND, OR, etc.
 4. Implications such as “IF A, THEN B.” It is also necessary to combine 

more than one rule.

The fuzzifier maps crisp input numbers into fuzzy sets. It activates rules 
that are expressed in terms of linguistic variables. An inference engine of the 
fuzzy logic system maps fuzzy sets to fuzzy sets and determines the way in 
which the fuzzy sets are combined. In several applications, crisp numbers 

Fuzzi�er Defuzzi�er
Fuzzy

Inference
Engine

Fuzzy
Rule Base

Fuzzy
sets in W

Fuzzy
sets in V

y is Wx in V

FIGURE 10.3
Schematic representation of a fuzzy logic system. (From Ganguli, R., Journal of Propulsion 
and Power 18(2):440–447, 2002. With permission.)
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155Fuzzy Logic System

are needed as an output of the fuzzy logic system. In those cases, a defuzzi-
fier is used to calculate crisp values from fuzzy values.

Fuzzy sets. A fuzzy set F is defined on a universe of discourse U and 
is characterized by a degree of membership μ(x), which can take on 
values between 0 and 1. A fuzzy set generalizes the concept of an 
ordinary set whose membership function takes only two values, 
zero and unity.

Linguistic variables. A linguistic variable u is used to represent the 
numerical value x, where x is an element of U. A linguistic variable is 
usually partitioned into a set of terms T(u), which cover its universe 
of discourse.

Membership functions. The most commonly used shapes for mem-
bership functions μ(x) are triangular, trapezoidal, piecewise linear, 
or Gaussian. The designer selects the type of membership  function 
used. There is no requirement that membership functions overlap. 
However, one of the major strengths of fuzzy logic is that  membership 
functions can overlap. Fuzzy logic systems are robust because deci-
sions are distributed over more than one input class. For  convenience, 
membership functions are normalized to  1, so  they take values 
between 0 and 1, and thus define the fuzzy set [103].

Inference engine. Rules for the fuzzy system can be expressed as

 
= =

�

�

R x F x F x F

y C i M

: IF is AND is AND AND is

THEN 1, 2, 3

i m m

i

1 1 2 2

 (10.3)

 where m and M are the number of input variables and rules, xi and 
y are the input and output variables, and Fi ∈ Vi and Ci ∈ W are fuzzy 
sets characterized by membership functions ( )µ xFi  and ( )µ xCi , 
respectively. Each rule can be viewed as a fuzzy implication:

 F1, 2, ⋯, m = F1 × F2 × ⋯ × Fm → Ci
  (10.4)

 which is a fuzzy set in V × W = V1 × V2 × ⋯ × Vm × W with membership 
function given by

 ( ) ( )( ) ( ) ( )µ = µ ∗µ ∗ ∗µ ∗µ�x y x x x y,R F F F m C1 2i m i1 2  (10.5)

 where ∗ is the T-norm with x = [ x1, x2, ⋯, xm ] ∈ V and y ∈ W. This sort 
of rule is suitable for many applications. The algebraic product is 
one of the most widely used T-norms in applications, and leads to a 
product inference engine. In pattern recognition problems, the out-
puts are often crisp sets and μCi(y) = 1 is often used for the product 
inference formula [102].
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10.3 Defuzzification

Popular defuzzification methods include maximum matching and centroid 
defuzzification. Centroid defuzzification is widely used for fuzzy control 
problems where a crisp output is needed. Maximum matching is often used 
for pattern matching problems where we need to know the output class. 
Suppose there are K fuzzy rules and among them Kj rules (j = 1, 2, …, L, 
where L is the number of classes) produce class Cj. Let Dp

i  be the measure-
ments of how the pth pattern matched the antecedent conditions (IF part) of 
the ith rule, which is given by the product of membership grades of the pat-
tern in the regions that the ith rule occupies:

 ∏= µ
=

Dp
i

li
i

m

1
 (10.6)

where m is the number of inputs and µli  is the degree of membership of mea-
surement l in the fuzzy regions that the ith rule occupies. Let ( )D Cp j

max  be the 
maximum matching degree of the rules (rules jl, l = 1, 2, …, Kj) generating 
class Cj:

 D C Dmaxp j
l

K

p
jmax

1

j
l( ) =

=
 (10.7)

Then the system will output class ∗Cj  provided that

 )( )(=∗D C D Cmaxp j
j

p j
max max  (10.8)

If there are two or more classes that achieve the maximum matching 
degree, we will select the class that has the largest number of fired fuzzy 
rules (a fired rule has a matching degree of greater than zero).

10.4 Problem Formulation

10.4.1 Input and Output

Inputs to the fuzzy logic systems are measurement deltas and outputs are 
engine module faults. We have eight measurements represented by z and 
nine engine faults represented by ξ. The objective is to find a functional map-
ping between z and ξ. Mathematically, this can represented as

 ξ = F(z) (10.9)
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where

  ξ = {FAN, LPC, HPC, HPT, LPT, 2.5 BLD, 2.9 BLD, HPCSVM, P49ER}T

and

 z = {ΔEGT, ΔWF, ΔN2, ΔN1, ΔP25, ΔT25, ΔP3, ΔT3}T (10.10)

Each measurement delta has uncertainty coming from both modeling errors 
and measurement errors, which makes the preceding inverse problem 
 difficult to solve.

A schematic representation of the intelligent system for gas turbine 
fault isolation is shown in Figure 10.4. The gas turbine in its normal state 
of  operation can be viewed as an input-output system operating in steady 
state. When a  single fault occurs, there is a sharp change in the gas path 
sensor measurements reflecting the change in the gas turbine. This change 
in sensor measurement can then be compared to the baseline engine with-
out faults to obtain a measurement residual. The residuals generated by the 
faulty  system then are subjected to automated reasoning by fuzzy logic to 
yield fault information.

10.5 Fuzzification

Here FAN, LPC, HPC, HPT, and LPT are fuzzy sets denoting the five engine 
modules. In addition, 2.5 BLD, 2.9 BLD, HPCSVM, and P49ER are fuzzy sets 
denoting the four system faults. Each fuzzy set has degrees of membership 
ranging from 0 to 1. In this chapter, we are only interested in isolating the 
fault and in its magnitude. Therefore, we do not further decompose the 
 module fuzzy sets using linguistic variables.

The measurement deltas ΔEGT, ΔN1, ΔN2, ΔWF, ΔP25, ΔT25, ΔP3, and ΔT3 
are also treated as fuzzy variables. To get a high degree of resolution, they 

SensorsGas
Turbine

Fault

Outputs Residuals Fault
Information

Inputs
Residual

Generation
Automated
Reasoning

FIGURE 10.4
Schematic representation of intelligent fault isolation system for gas turbine. (From 
Ganguli, R., Journal of Propulsion and Power 18(2):440–447, 2002. With permission.)
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158 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

are further split into linguistic variables. For example, consider ΔEGT as a 
linguistic variable. It can be decomposed into a set of terms:

 T(ΔEGT) =  {very high–, high–, medium high–, medium–, medium low–, 
low medium–, low–, negligible, low+, low medium+, medium 
low+, medium+, medium high+, high+, very high+} (10.11)

where each term in T(ΔEGT) is characterized by a fuzzy set in the universe 
of discourse U(ΔEGT) = {–25°C, 25°C}, which is selected to include values 
 spanning the fingerprint charts in Table 10.2, while maintaining symmetry. 
A total of 15 fuzzy sets are used to partition the numerical variables. It is 
found that a courser partition does not give very accurate results. A trial 
and error process and a careful study of the fingerprint charts were used 
to obtain the number of fuzzy sets. This process can be labeled heuristic 
reasoning.

The other seven measurement deltas are defined using the same set of 
terms as ΔEGT, spanning the following universes of discourse:

 U(ΔWF) = {–4, 4%}; U(ΔN2) = {–3, 3%}; U(ΔN1) = {–3, 3%};

 U(ΔP25) = {–6, 6%}; U(ΔT25) = {–10, 10°C}; (10.12)

 U(ΔT3) = {–10, 10°C}; U(ΔP3) = {–3, 3%}

Since the influence coefficients on which the fingerprints are based 
represent a linear model, the diagnostic system should be limited to 
small  measurement deltas. In addition, measurement deltas larger than cov-
ered by the universe of discourse will represent a large fault indicative of a 
 catastrophic failure.

Fuzzy sets with Gaussian membership functions are used. These fuzzy 
sets can be defined using the following equation:

 ( )µ = ( )( )− − σx e x m0.5 2

 (10.13)

where m is the midpoint of the fuzzy set and σ is the uncertainty (standard 
deviation) associated with the variable.

Table 10.3 gives the linguistic measure associated with each fuzzy set and 
the midpoint of the set for each measurement delta.

The midpoints are selected to span the region ranging from a perfect 
engine (all measurement deltas are zero) to one with significant damage.

 
( )

( )

µ = < <

µ = < <

( )− − σ
− +

+ −

x e m x x m

x m x x m

OR

1 OR

x m
VH VH

VH VH

0.5 2

 (10.14)
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159Fuzzy Logic System

Here mVH+ represents the midpoint corresponding to fuzzy set VH+. The 
standard deviations for the measurement deltas are representative of airline 
data [11] and are shown in Table 10.4. For illustration, Figure 10.5 shows the 
membership functions for each of the 15 fuzzy sets for ΔN2.

The membership functions for the other fuzzy sets are similar in appear-
ance. The midpoints for these fuzzy sets are obtained through heuristic 
reasoning.

TABLE 10.3

Midpoints of Gaussian Fuzzy Sets

Measurement Deltas

Linguistic 
Measure Symbol

ΔEGT, 
±°C

ΔWF, 
%

ΔN1 
and ΔN2, %

ΔP25, 
%

ΔT25 
and ΔT 3, °C

ΔP3, 
%

Very high– VH– –20 –3 –2 –6 –10 –3
High– H– –15 –2.5 –1.5 –4.5 –7.5 –2.5
Medium high– MH– –12.5 –2.25 –1.25 –3 –5 –2.25
Medium– M+ –10 –2 –1 –2.5 –2.5 –1.5
Medium low– ML– –7.5 –1.5 –0.5 –2 –1.75 –0.75
Low medium– LM– –5 –1 –0.25 –1.5 –1.25 –0.5
Low– L– –2.5 –0.75 –0.125 –0.5 –0.25 –0.25
Negligible N 0 0 0 0 0 0
Low+ L+ 2.5 0.75 0.125 0.5 0.25 0.25
Low medium+ LM+ 5 1 0.25 1.5 1.25 0.5
Medium low+ ML+ 7.5 1.5 0.5 2 1.75 0.75
Medium+ M+ 10 2 1 2.5 2.5 1.5
High+ H+ 12.5 2.25 1.25 3 5 2.25
Medium high+ MH+ 15 2.5 1.5 4.5 7.5 2.5
Very high+ VH+ 20 3 2 6 10 3

Source: Ganguli, R., Journal of Propulsion and Power 18(2):440–447, 2002. With permission.

TABLE 10.4

Measurement Uncertainty

Measurement Delta Standard Deviation

ΔEGT 4.23°C

ΔN1 0.25%

ΔN2 0.17%

ΔWF 0.50%

ΔP25 0.46%

ΔT25 1.12°C

ΔT3 1.99°C

ΔP3 0.24%

Source: Data from Ganguli, R., Journal of Propulsion 
and Power 18(2):440–447, 2002.
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160 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

10.6 Rules and Fault Isolation

Rules for the fuzzy system are obtained by fuzzification of the numerical 
values in the fingerprint charts using the following procedure [104, 105]:

 1. A set of eight measurement deltas corresponding to a given mod-
ule fault is input to the fuzzy logic system (FLS) and the degree 
of   membership of the elements of ΔEGT, ΔWF, ΔN2, ΔN1, ΔP25, 
ΔT25, ΔT3, and ΔP3 is obtained. Therefore, each measurement has 
15 degrees of memberships based on the linguistic measures in 
Table 10.3.

 2. Each measurement delta is then assigned to the fuzzy set with the 
maximum degree of membership.

 3. One rule is obtained for each module fault by relating the measure-
ment delta with the maximum degree of membership to a module 
fault.

These rules are tabulated in Table 10.5. The linguistic symbols used in this 
table are defined in Table 10.3. These rules can be read as follows for the FAN 
module:

IF
ΔEGT is medium low– AND
ΔWF is medium low– AND
ΔN2 is medium low– AND
ΔN1 is medium high+ AND

1.2

1.0

0.8

0.6

0.4µ(
∆N

2)

∆N2 (%)

0.2

0.0

–0.2
–2.25 –1.25

VH– H–

M– M+

H+

L–
ML–

ML+ MH+

VH+

LM– LM+
L+

MH–

–0.25 0.75 1.75

FIGURE 10.5
Fuzzy sets for high rotor speed (N2) measurement delta. (From Ganguli, R., Journal of Propulsion 
and Power 18(2):440–447, 2002. With permission.)
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161Fuzzy Logic System

ΔP25 is high+ AND
ΔT25 is medium high+ AND
ΔT3 is medium+ AND
ΔP3 is negligible

THEN
Problem in FAN module

The rules for the other faults can be similarly interpreted. These rules 
 provide a knowledge base and represent how a human engineer would 
interpret data to isolate an engine fault using fingerprint charts.

The fuzzy rules in Table 10.5 represent a fuzzified model of the fingerprints 
shown in Table 10.2. Because Gaussian fuzzy sets asymptotically approach-
ing zero far from the midpoint are used, all of the rules fire at some level. For 
any given input set of measurement deltas, the fuzzy rules are applied using 
product implication. Once the fuzzy rules are applied for a given measure-
ment, we have degrees of membership for each of the nine faults. For fault 
isolation, we are interested in the most likely fault. The fault with the highest 
degree of membership is selected as the most likely fault.

10.7 Numerical Simulations

The fuzzy system is tested using simulated data developed from the fin-
gerprint charts. For each fault, 1000 data sets are generated. Noise is added 
to the simulated measurement deltas using the typical standard deviations 

TABLE 10.5

Rules for Fuzzy System

Measurement 
Faults ΔEGT ΔWF ΔN2 ΔN1 ΔP25 ΔT25 ΔT3 ΔP3

HPC MH+ ML+ L– L+ LM+ LM+ H+ L–
HPT VH+ H+ MH– L+ M+ M+ H– H–
LPC M+ ML+ ML+ LM+ M– L– MH+ N
LPT L+ M– MH+ VH– VH– H– M+ L–
FAN ML– ML– ML– MH+ H+ MH+ M+ N
2.5 bleed LM+ LM+ LM+ N ML– ML– ML+ N
2.9 bleed ML+ MH+ ML+ L+ LM– LM– LM– N
HPCSVM LM– L– VH+ N L– L– ML+ LM+
P49ER N VH– ML– M– LM– N L– H–

Source: Ganguli, R., Journal of Propulsion and Power 18(2):440–447, 2002. With permission.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

3:
06

 1
6 

M
ar

ch
 2

01
6 



162 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

shown in Table 10.4. Testing with noisy data allows an analysis of the robust-
ness of the system.

Table 10.6 shows the test results from the fuzzy system. The accuracy of 
fault detection is shown for the nine faults for four different sensor suites. 
Here, basic four refers to ΔEGT, ΔWF, ΔN1, and ΔN2 sensors only, which are 
present in almost all operational gas turbine engines. The other results show 
the effect of the addition of P25 and T25 sensors between the LPC and the 
HPC, and P3 and T3 sensors before the burner.

With the four basic measurements, the average success rate is about 89%. 
However, there is considerable variation is the fault isolation accuracy for 
the different faults. In particular, the bleed faults and the LPC are not iso-
lated well. In these cases, the bleed faults are sometimes confused with the 
LPC and vice versa. The confusion between the LPC module fault and the 
bleed fault is because of the similarity in the directions of the fingerprints, 
which can be seen in the fuzzy rules. In the cases where the random error 
is high, the fingerprints for the LPC look very similar to those of the bleeds 
and vice versa.

Placing additional sensors to measure P25 and T25 results in the fault iso-
lation accuracy increasing from 86 to 95%. There is a marked increase in the 
isolation accuracy for the 2.5 and 2.9 bleed faults. In case additional sensors 
besides the basic four were used to measure P3 and T3, the average fault 
isolation accuracy increases from 89 to 96%. In particular, the isolation accu-
racy increased from 82 to 94% for the LPC fault. In addition, there is also 
an increase in the isolation accuracy for the 2.5 and 2.9 bleed faults. It can 
be seen that the T3 and P3 sensors result in a greater improvement in fault 

TABLE 10.6

Fault Isolation Results (%) from Fuzzy System

Basic Four Basic Four

Measurement Faults

Basic +P25 +P3 All

Four +T25 +T3 Eight

HPC 92 100 98 100
HPT 100 100 100 100
LPC 82 85 94 94
LPT 100 100 100 100
FAN 100 100 100 100
2.5 bleed 69 78 82 89
2.9 bleed 61 93 94 99
HPCSVM 100 100 100 100
P49ER 100 100 100 100
Average success rate 89 95 96 98

Source: Ganguli, R., Journal of Propulsion and Power 18(2):440–447, 2002. 
With permission.
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163Fuzzy Logic System

isolation accuracy than the T25 and P25 sensors. However, when all eight 
sensors (basic four + P25 + T25 + T3 + P3) are used, the average fault isolation 
accuracy rises to 98%.

Table  10.7 compares results obtained using the fuzzy logic system with 
those obtained using neural network and Kalman filters in the previous two 
chapters. The same test cases were used for these results. There is a close 
agreement between the results. The fuzzy system and the Kalman filter give 
better results with the eight-sensor suite than with the neural network. This 
may be because the fuzzy system and the Kalman filter include the knowl-
edge of the fingerprint charts in their rule base and influence coefficient 
matrix, respectively, whereas the neural network has to learn the relation-
ships from the simulated training data.

The results discussed until now were obtained for test data generated using 
standard deviations given in Table 10.4 and that were also used in creating the 
membership functions for the FLS. Figures 10.6–10.10 show results obtained 
for the FLS for test data generated for various levels of uncertainty. Here σ0 
is the baseline standard deviation given in Table 10.4. Results are obtained 
for uncertainty ranging from 25% of the baseline value to 150% of the base-
line value. Figure 10.6 shows the influence of measurement uncertainty for a 
system with only the four basic parameters. For very low uncertainty levels 
(σ/σ0 = 0.25) the FLS shows 100% accuracy in fault isolation. As the measure-
ment data deteriorate, the fault isolation success rate falls for the HPC, LPC, 
2.5 bleed, and 2.9 bleed faults. The turbine and fan modules and HPCSVM 
and P49ER faults are isolated with 100% accuracy even with low-quality data.

The inclusion of P25 and T25 sensors results in some improvement in the 
fault isolation accuracy, as shown in Figure 10.7. Similarly, the inclusion of P3 

TABLE 10.7

Comparison of Fault Isolation Accuracy (%), Neural Network, Fuzzy System, and 
Kalman Filter

  Basic Four All Eight

Measurement Faults Fuzzy Neural Kalman Fuzzy Neural Kalman

HPC 92 90 100 100 100 100
HPT 100 100 100 100 100 100
LPC 82 90 90 94 60 90
LPT 100 100 100 100 100 100
FAN 100 100 100 100 100 100
2.5 bleed 69 75 50 89 80 85
2.9 bleed 61 87 80 99 87 97
HPCSVM 100 100 100 100 100 100
P49ER 100 100 100 100 100 100
Average success rate 89 93 91 98 91 97

Source: Ganguli, R., Journal of Propulsion and Power 18(2):440–447, 2002. With permission.
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FIGURE 10.6
Fault isolation success rate with increasing uncertainty in data (basic four measurements only). 
(From Ganguli, R., Journal of Propulsion and Power 18(2):440–447, 2002. With permission.)
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FIGURE 10.7
Fault isolation success rate with increasing uncertainty in data (basic four  measurements + P25 
+ T25). (From Ganguli, R., Journal of Propulsion and Power 18(2):440–447, 2002. With permission.)
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FIGURE 10.8
Fault isolation success rate with increasing uncertainty in data (basic four measure-
ments + T3 + P3). (From Ganguli, R., Journal of Propulsion and Power 18(2):440–447, 2002. With 
permission.)

0
0

50

Su
cc

es
s R

at
e

100

0.5

HPC
LPC
2.5 BLD
2.9 BLD
HPT, LPT, FAN, HPCSVM, P49ER

1 1.5
σ/σ0

2

FIGURE 10.9
Fault isolation success rate with increasing uncertainty in data (all eight measurements). 
(From Ganguli, R., Journal of Propulsion and Power 18(2):440–447, 2002. With permission.)
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and T3 sensors over and above the basic four results in some improvement 
in accuracy, as shown in Figure 10.8.

Finally, inclusion of all eight sensors shows considerable improvement in 
fault isolation accuracy, as shown in Figure 10.9. For uncertainty levels lower 
than σ0, the fault isolation accuracy is significantly improved.

Thus, it is very important to focus on data cleaning and rectification meth-
ods, as well as improved sensors to remove potential outliers in the data. 
Recall that some of the first few chapters focused on such data clearing 
methods. The reader can now appreciate the importance of these methods. 
In addition, the robust nature of the FLS is clear from the fault isolation accu-
racy deteriorating gradually as uncertainty levels increase.

Finally, the average success rates for the four different measurement suites 
are summarized in Figure  10.10. Note that the importance of having the 
additional sensors becomes even more important as data quality falls. The 
FLS is able to identify the correct fault despite the presence of considerable 
uncertainty in the measurement.

The current study demonstrated the effectiveness of the fuzzy logic 
approach in the isolation of single faults following a sharp trend change. 
However, the study makes several assumptions and simplifications:

 1. Unmodeled single faults, sensor faults, and multiple faults are not 
addressed.
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FIGURE 10.10
Comparison of average fault isolation success rate for different sensor suites and uncertainty 
in data. (From Ganguli, R., Journal of Propulsion and Power 18(2):440–447, 2002. With permission.)
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167Fuzzy Logic System

 2. Only module faults are considered and pure combustor performance 
problems are neglected.

 3. The relationship between the module efficiencies and flow capaci-
ties/areas are considered fixed at the values provided by engine 
manufacturers.

 4. The robustness of the system to noise in the measured data is ana-
lyzed by scaling all of the uncertainties to the same factor. The 
effect of scaling the uncertainty individually per measurement is 
neglected.

 5. Missing measurements are not considered.
 6. A “winner takes all” approach is used to find the most likely fault, 

and the possibility of using “beliefs” from the output of the system 
to study the possible confounding between the first and second most 
likely faults is not considered.

10.8 Summary

An FLS is developed for gas turbine engine performance diagnostics. It 
takes measurement deviations from a baseline model of four basic (cock-
pit) measurements (EGT, WF, N1, and N2) and analyzes deterioration in five 
modules (FAN, LPC, HPC, HPT, and LPT) and four system faults (2.5 bleed, 
2.9 bleed, HPCSVM, P49Error). These measurements are available on most 
gas turbines. The FLS is based on fingerprint charts provided by engine 
manufacturers and widely used by airline engineers.

Results show that the FLS has a success rate of about 90% in isolating the 
faulty engine module with four cockpit measurements. In cases where the 
FLS is confounded, it was due to large uncertainty in the data. The FLS there-
fore can be used as a robust expert system for automating the process of 
interpreting gas turbine performance fingerprint charts.

Additional pressure and temperature sensors between the compressors 
(P25 and T25) or before the burner (P3 and T3) improve the fault isolation 
accuracy to about 95%. When all eight sensors are used together, the FLS 
shows an accuracy of 98% in fault isolation. Additional sensors become more 
important as data quality deteriorates. Therefore, additional sensors besides 
the four cockpit sensors are useful and recommended for accurate and 
robust fault isolation. It is shown that the fuzzy logic approach to gas turbine 
diagnostics is competitive with the Kalman filter approach.
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11
Soft Computing Approach

In the last three chapters we focused on Kalman filters, neural networks, 
and fuzzy logic systems for fault isolation in gas turbines, respectively. Fuzzy 
systems are also universal function approximations in a manner similar to 
that in neural networks. Fuzzy systems also address the issue of uncertainty 
using a built-in fuzzifier, whereas a neural network learns the noise charac-
teristics of the data through training. It was shown in Chapter 10 that fuzzy 
systems provide accurate fault isolation results for gas turbine diagnostics. 
However, the neural and fuzzy methods for diagnostics are highly con-
figuration dependent, meaning that if the underlying model used to obtain 
fault signatures or the measurement uncertainties of the signal changed, the 
diagnostic systems have to be redeveloped. Since there are many different 
engines operating with different airlines, there are likely to be many pos-
sible combinations of fault signatures and measurement uncertainties for the 
fault isolation systems that need to be developed. Very often the process of 
redeveloping the underlying numerics or rules for the diagnostic system is 
a trial and error process that can be very tedious and requires considerable 
human effort.

In this chapter, we describe a genetic fuzzy system [106–108] that allows 
for easy development of the rule base for an engine given fault signature and 
measurement uncertainties [109]. Unlike conventional fuzzy logic applica-
tions, where rules are generated based on operators’ experience or general 
knowledge of the system in a heuristic way, in such a system, optimization 
techniques such as genetic algorithms are used to tune the fuzzy member-
ship functions and rules. Typically, if Gaussian fuzzy sets are used, the num-
ber of fuzzy sets, their midpoints, and standard deviations can be used as 
design variables. Genetic algorithms are used to maximize the performance 
of a fuzzy system through automatically selecting the number of fuzzy sets 
and membership functions based on the fault signatures of the engine and 
measurement uncertainties to achieve the goal of minimizing the number 
of design variables. The genetic fuzzy system thus automates the creation of 
the fuzzy system, greatly reducing the human effort needed. Furthermore, 
a radial basis function neural network (RBFNN) preprocessor is used for 
denoising signals typical of path measurements. The advantages of using 
such a signal processing algorithm prior to fault isolation by a genetic fuzzy 
system are shown.
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11.1 Gas Turbine Fault Isolation

A twin-spool gas turbine is shown in Figure 1.2 with five modules, among 
which are the FAN, LPC, and HPC modules, which have efficiencies and the 
flow capacities associated with them, and the HPT and LPT modules, which 
have efficiencies and areas associated with them. The fingerprints or fault 
signatures relating a change in measurement deltas for four basic param-
eters with the faulty module are given in Table 3.1. The four basic parameters 
found in almost all engines are exhaust gas temperature (EGT), low rotor 
speed (N1), high rotor speed (N2), and fuel flow (WF). The fault signatures in 
Table 3.1 assume the  following couplings between module efficiencies and 
flow capacities:

 1. FAN Coupled FAN (–2% η, –2.5 FC)
 2. LPC Coupled LPC (–2% η, –2.2% FC)
 3. HPC Coupled HPC (–2% η, –1.6 FC)
 4. HPT Coupled HPT (–2% η, –1.5 FP4)
 5. LPT Coupled LPT (–2% η, +3.3% FP45)

Here FC is the flow capacity, FP4 is the high-pressure turbine area, and 
FP45 is the low-pressure turbine area. Each fault is modeled as a 2% 
decrease in efficiency from the baseline good engine. Since the fault signa-
tures are derived from influence coefficients, they are only approximately 
correct because they do not account for uncertainties in the measurement 
process. Each gas path measurement is associated with an uncertainty. 
One measure of this uncertainty is the standard deviations from revenue 
service data. As  given  in  the  previous chapters, typical standard devia-
tions for ΔEGT, ΔN1, ΔN2, and ΔWF are 4.23°C, 0.25%, 0.17%, and 0.50%, 
respectively.

11.2  Neural Signal Processing—Radial Basis 
Function Neural Networks

Since gas turbine measurements are often contaminated with noise and out-
liers, it is useful to perform a data cleaning function prior to fault isolation. 
In this chapter, we use a radial basis function neural network (RBFNN) for 
removing noise from simulated signals. Radial basis networks are an alter-
native to the more widely used multilayer perceptron networks trained 
using the back-propagation algorithm and take much less computer time for 
training [110–112].
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171Soft Computing Approach

The RBFNN model consists of three layers: an input layer, a hidden 
(kernel) layer, and an output layer. The nodes within each layer are fully 
connected to the previous layer. The input variables are each assigned to 
a node in an input layer and pass directly to the hidden layer without 
weights. The hidden nodes or units contain the RBFs, also called transfer 
functions. An RBF is symmetrical about a given mean or center point in 
a multidimensional space. In the RBFN, a number of hidden nodes with 
RBF activation functions are connected in a feed-forward parallel archi-
tecture. The parameters associated with the RBFs are optimized during 
training. These parameter values are not necessarily the same throughout 
the network, nor are they directly related to or constrained by the actual 
training vectors. When the training vectors are presumed to be accurate, 
i.e., nonstochastic, and it is desirable to perform a smooth interpolation 
between them, then linear combinations of RBFs can be found that give 
no error at the training vectors. The methods of fitting RBFs to data, for 
function approximation, are closely related to distance weighted regres-
sion. The  RBF expansion for one hidden layer and an arbitrary RBF is 
 represented by the equation

 ∑= − − σ
=

y x w c x( ) exp( )k ki i i

i

H
2

1

 (11.1)

where yk = kth output, wki = weight from the ith kernel node to the kth out-
put node, ci = centroid of the ith kernel node, σi = width of the ith kernel 
node, and H = number of kernel nodes. The parameters of the RBF wki, ci, 
and σi are commonly chosen by first selecting randomly or uniformly the ci 
and then using singular value decomposition (SVD) to solve for wki and σi. 
This approach is not the most satisfactory. A better approach involves using 
K-means clustering to determine the ci, a K-nearest heuristic to determine the 
σi, and multiple linear regressions to determine the wki. The K-means cluster-
ing algorithm finds a set of cluster centers and a partition of the training data 
into subsets. Each cluster center is then associated with one of the H kernels 
or centers in the hidden layer. After the centers are established, the width of 
each kernel is determined to cover the training points to allow a smooth fit 
of the desired network outputs.

11.3 Fuzzy Logic System

A fuzzy logic system (FLS) is a nonlinear mapping of an input feature 
 vector into a scalar output [101]. A typical FLS maps crisp inputs to crisp 
outputs using four basic components: rules, fuzzifier, inference engine, 
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172 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

and defuzzifier. Once the rules driving the FLS have been fixed, the FLS can 
be expressed as a mapping of inputs to outputs. The output of the FLS is 
kept as fuzzy sets, as they are easier to interpret linguistically for diagnostic 
and prognostic action. Rules for the fuzzy system are obtained by fuzzifica-
tion of  the numerical values in the fingerprint charts using the following 
procedure:

Algorithm 11.1

 1. Each measurement delta is divided into N fuzzy sets whose geom-
etry is selected by the designer.

 2. A set of four measurement deltas corresponding to a given module 
fault is input to the FLS, and the degree of membership of the ele-
ments of ΔEGT, ΔWF, ΔN2, and ΔN1 is obtained.

 3. Each measurement delta is then assigned to the fuzzy set with the 
maximum degree of membership.

 4. One rule is obtained for each module fault by relating the measurement 
deltas with a maximum degree of membership to a module fault.

For any given input set of measurement deltas, the fuzzy rules are applied 
using product implication. Once the fuzzy rules are applied for a given 
 measurement, we have degree of membership for FAN, LPC, HPC, HPT, 
and LPT. For fault isolation, we are interested in the most likely fault. The 
fault with the highest degree of membership is selected as the most likely 
fault.

The main problem in Algorithm 11.1 is in the selection of the number 
and type of fuzzy sets in step 1. Typically, designers select the number and 
geometry of the fuzzy sets based on knowledge of the problem. For example, 
the measurements may be classified into five fuzzy sets named very low, 
low, medium, high, and very high. In case Gaussian functions are selected 
as membership functions, the midpoints and standard deviations asso-
ciated with each Gaussian fuzzy set need to be selected so that the entire 
measurement range is spanned by the fuzzy sets and there is some inter-
section between the sets. Thus, the designer must manually iterate over 
Algorithm 11.1 to obtain a fuzzy system that has good performance.

11.4 Genetic Algorithm

Genetic algorithms (GAs) are a probabilistic search method [113–115]. A brief 
introduction to GA is given below. The genetic algorithm is motivated by 
the  hypothesized natural process of evolution in biological populations, 

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

3:
07

 1
6 

M
ar

ch
 2

01
6 



173Soft Computing Approach

where genetic information stored in chromosomal strings evolves over 
generations to adapt favorably to a static or changing environment. The 
algorithm is based on elitist reproduction strategy, where members of the 
population, who are deemed most fit, are selected for reproduction and are 
given the opportunity to strengthen the chromosomal makeup of progeny 
generation. This approach is facilitated by defining a fitness function or a 
measure indicating the goodness of a member of the population in the given 
generation during the evaluation process.

To represent designs as chromosome-like strings, the design variable is 
 converted to its binary equivalent and thereby mapped into a fixed-length 
string of 0s and 1s. A number of such strings constitute a population of 
designs, with each design having a corresponding fitness value. This  fitness 
value could be the objective function F(X) for a function maximization 
 problem. Thus, the GA can be used to solve optimization problems of the 
form:

Maximize F(X)
Subject to Xi

(min) ≤ Xi ≤ Xi
(max)

The starting population is selected randomly in the domain lying between 
the minimum and maximum values of X, and then the following genetic 
operators are applied to improve results.

 1. Reproduction. Individuals are selected and the probability of selec-
tion is based on their fitness value. The new population pool has 
higher average fitness value than the previous pool.

 2. Crossover. In the two-point crossover approach, two mating parents 
are selected at random; the random number generator is invoked 
to identify two sites on the strings, and the strings of 0s and 1s 
enclosed between the chosen sites are swapped between the mating 
strings.

 3. Mutation. A few members from the population pool are taken accord-
ing to the probability of mutation pm, and a 0 to 1 or vice versa is 
switched at a randomly selected mutation site on the chosen string.

The process of reproduction, crossover, and mutation constitutes one gen-
eration of the GA. After several generations, the GA is stopped and the best 
point among the values taken as the optimal point. Being a probabilistic 
search method, GAs are very good at finding global maxima. Furthermore, 
GAs need only function values and not gradient information, which 
makes them easy to use for real systems where accurate gradient informa-
tion is difficult to obtain, and local minima may occur. However, they are 
 computationally expensive.
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174 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

11.5 Genetic Fuzzy System

There are two main problems in the generation of fuzzy systems [106]. The 
first is that it is difficult to select the appropriate number of fuzzy sets. The 
second is selection of the membership functions. The rules need to be cre-
ated for a given number of fuzzy sets and type of membership functions. 
However, if the number of fuzzy sets or type of membership function 
changes, the rules can change. Therefore, any change in the membership 
functions or the  number of fuzzy sets leads to a change in the rule base; 
the process of designing a fuzzy system is iterative and can become very 
cumbersome for a human designer. It is therefore desirable to create an auto-
mated procedure for the design of fuzzy systems. A genetic algorithm is 
used to facilitate the design of the fuzzy system. The approach is discussed 
below:

Algorithm 11.2

 1. Define maximum and minimum values for a measurement delta 
Δz by Δz(max) and Δz(min), respectively.

 2. Define the universe of discourse for Δz to be the set of real num-
bers between the minimum and maximum values, U(Δz) = [Δz (min), 
Δz (max)].

 3. Define L(Δz) = Δz(max) – Δz(min) as the length of the universe of discourse.
 4. Divide U into N Gaussian fuzzy sets F1, F2, …, FN and define the 

midpoint of fuzzy point F1 by Δz(min) and of fuzzy set FN by Δz(max), 
respectively. These fuzzy sets can be defined using the following 
equation:

 µ =
− −

σ




x e( )

x m
0.5

2

 (11.2)

  where m is the midpoint of the fuzzy set and σ is the uncertainty 
(standard deviation) associated with the variable.

 5. Assuming the fuzzy sets are equally spaced, calculate the midpoints 
of fuzzy set F2 as Δz(min) + Δm, set F3 as Δz(min) + 2*Δm, and set Fi as 
Δz(min) + (i – 1)Δm, where

 ∆ = ∆
−

m
L z
N
( )

1
 (11.3)

 6. Allow the fuzzy sets for the measurement delta Δz to move together 
along the number line by an amount x. This allows the midpoints 
of the  fuzzy sets to change, along with the values Δz(min) and Δz(max). 
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175Soft Computing Approach

However, the distance L(Δz) remains constant. With this definition, 
the midpoints of the fuzzy sets are defined once N and x are selected. 
Select the standard deviation of the fuzzy set for measurement Δz as 
the measurement uncertainty of Δz.

Algorithm 11.3

 1. Define the maximum and minimum values for each measurement 
ΔEGT, ΔN1, ΔN2, and ΔWF from the fault signatures as shown in 
Table 2.1. Thus for ΔEGT, the maximum and minimum values are 
21.77 and –7.72°C, respectively.

 2. Define the range spanned by each variable as L1 = L(ΔEGT), L2 = 
L(ΔN1), L3 = L(ΔN2), and L4 = L(ΔWF).

 3. Choose N fuzzy sets to partition each measurement. To start the 
algorithm, use N = 2.

 4. Let x1, x2, x3, and x4 define the tuning variables associated with 
ΔEGT, ΔN1, ΔN2, and ΔWF, respectively. To start the algorithm, 
select random values satisfying –25% Li ≤ xi ≤ 25% Li, i = 1, 4. Choose 
σ for ΔEGT, ΔN1, ΔN2, and ΔWF as 4.23°C, 0.25%, 0.17%, and 0.50%, 
respectively.

 5. Generate the fuzzy system from the numerical data using the con-
ventional procedure outlined in Algorithm 11.1.

 6. Using a sample of 100 noisy data points, calculate the success rate as

 =S
N
N

100 C

T

  where NC is the number of correct classifications and NT is the total 
number of classifications.

 7. Use GA to solve the optimization problem by taking the best solu-
tion from Ngen

(max) generations:
Maximize S(x1, x2, x3, x4).
Subject to –25% Li ≤ xi ≤ 25% Li, i = 1, 4.

 8. Increase N by 1:
 a. If N < N(max), g 0 to 3.
 b. Else select N with highest success rate S (if highest S is obtained 

by more than one value of N, select the lowest N that gives the 
highest S).

The only values that need to be the input to the genetic fuzzy system (GFS) 
are the values of measurement deltas corresponding to each fault, and the 
fault signature based on the linearized influence coefficients at the current 
operating point. For the standard deviations of the Gaussian fuzzy sets, 
we use the measurement uncertainty data that can be obtained by a statistical 
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176 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

analysis of engine data. If the measurement uncertainties change, the GFS 
can be tuned to the different numerics. Thus, we get an automatic  system 
that greatly reduces the need of manual manipulation.

11.6 Numerical Simulations

In this chapter, a maximum of nine generations of the GA are used for each 
N value of the fuzzy sets. The population size, crossover probability, and 
mutation probability are chosen as 20, 0.8, and 0.1, respectively. The maxi-
mum number of fuzzy sets is selected as 10.

Since genetic algorithms are computationally intensive, the issue about 
computation time is important for practical implementation. As an example, 
the code implementing the algorithm in this chapter takes about 3–5 min-
utes to run on MATLAB® on a PC with the full nine generations of GA. 
However, in many cases, the convergences occur in two or three generations 
given that we use only four design variable has a starting population of 20. 
Each design variable is represented by a 10-bit string.

As mentioned earlier, a standard approach in the design of the optimal 
fuzzy system is to consider the midpoints and standard deviations of each 
fuzzy set as design variables. If there are N fuzzy sets and M measurements, 
the maximum number of midpoint design variables is N*M, and the maxi-
mum number of standard deviation design variables is N*M. The total num-
ber of design variables is therefore 2*N*M. For the case with N = 6 and M = 4, 
we would have a total of 2*6*4 = 48 design variables, leading to high com-
puter time requirements.

The algorithm in this chapter uses some prior knowledge of the problem to 
reduce the number of design variables dramatically. The standard deviations 
are thus selected to be equal to the measurement uncertainties. In this man-
ner, the fuzzifier is able to act as a filter that addresses noise in the data in 
a direct manner. By making the requirement that the universe of discourse 
only spans the neighborhood of the measurements, the region where fuzzy 
set discretization is needed is optimized. Using a uniform distribution of 
fuzzy sets leads to so-called design variable linking in optimization and 
allows the midpoints to be defined using only two variables for each mea-
surement: the number of fuzzy sets N and the translation variable x. For 
a given number of fuzzy sets, the number of design variables is equal to 
the number of measurements, which is four in this case. The fuzzy system 
is tested using simulated data developed from the fault signatures shown 
in Table 3.1. For each module, 100 noisy data sets are generated for module 
faults with 2% deterioration in efficiency. Noise is added to the simulated 
measurement deltas using the typical standard deviations for ΔEGT, ΔN1, 
ΔN2, and ΔWF as 4.23°C, 0.25%, 0.17%, and 0.50%, respectively.
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177Soft Computing Approach

Figure  11.1 shows the success rate for the optimal GFS as the number 
of fuzzy sets is increased from 2  to 9. For each value of N in this figure, 
the optimal values of x are calculated using Algorithm 11.3. For only two 
fuzzy sets, the success rate is about 80% and quickly rises as the number of 
sets increases. The number N = 6 is selected by Algorithm 11.3 as the point 
where the GFS is optimal with a minimum number of sets. Figure 11.2 shows 
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FIGURE 11.1
Change in fault isolation success rate for increasing number of fuzzy sets. (From Verma, R., 
et al., Applied Mathematics and Computation 172(2):1342–1363, 2006. With permission.)
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FIGURE 11.2
Evolution of success rate for a fuzzy system with six sets with generation of genetic algo-
rithm. (From Verma, R., et al., Applied Mathematics and Computation 172(2):1342–1363, 2006. With 
permission.)
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178 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

the success rate of the fuzzy system with six sets as the GA generations prog-
ress. In this case, only two generations were needed to achieve a success rate 
of 100%, and the values of x corresponding to the second generation of GA 
are selected by Algorithm 11.3 as the optimal fuzzy system.

Tables 11.1–11.5 provide the midpoints of the fuzzy sets for the four mea-
surements as the number of fuzzy sets increases from two to six. The start-
ing values in Table 11.1 show two fuzzy sets with midpoints centered near 
the maximum and minimum values of the measurements. The values in 
Table 11.5 correspond to the case where N = 6 in Figure 11.1 and Ngen = 2 in 
Figure 11.2.

Figure 11.3 shows the starting case with two fuzzy sets, which is a crude 
discretization. Figures 11.4, 11.5, and 11.6 show the cases with three, four, and 
five fuzzy sets, respectively. In Figure 11.7, the optimal level of discretization 
with six fuzzy sets is achieved.

TABLE 11.1

Midpoints of Two Fuzzy Sets

ΔEGT (°C) –7.69   21.8

ΔN1 (%) –1.93 1.38

ΔN2 (%) –1.1 1.3

ΔWF (%) –1.89   2.61

Source: Verma, R., et  al., Applied Mathematics 
and Computation 172(2):1342–1363, 2006. 
With permission.

TABLE 11.2

Midpoints of Three Fuzzy Sets

ΔEGT (°C) –8.16  6.58 21.33

ΔN1 (%) –2.4 –0.75 0.91

ΔN2 (%) –1.57 –0.37 0.83

ΔWF (%) –2.36 –0.11 2.14

Source: Verma, R., et  al., Applied Mathematics and Computation 
172(2):1342–1363, 2006. With permission.

TABLE 11.3

Midpoints of Four Fuzzy Sets

ΔEGT (°C) –8.31 1.52 21.18 11.35

ΔN1 (%) –2.55 –1.45 0.76 –0.35

ΔN2 (%) –1.72 –0.92 0.68 –0.12

ΔWF (%) –2.51 –1.01 1.99 0.49

Source: Verma, R., et  al., Applied Mathematics and Computation 
172(2):1342–1363, 2006. With permission.
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FIGURE 11.3
Discretization of universe of exhaust gas temperature using two fuzzy sets. (From Verma, R., 
et al., Applied Mathematics and Computation 172(2):1342–1363, 2006. With permission.)

TABLE 11.4

Midpoints of Five Fuzzy Sets

ΔEGT (°C) –7.82 –0.44 6.92 14.3 21.67

ΔN1 (%) –2.06 –1.23 –0.4 0.42 1.25

ΔN2 (%) –1.23 –0.63 –0.03 0.57 1.17

ΔWF (%) –2.02 –0.89 0.23 1.36 2.48

Source: Verma, R., et  al., Applied Mathematics and Computation 
172(2):1342–1363, 2006. With permission.

TABLE 11.5

Midpoints of Six Fuzzy Sets

VL L ML MH H VH

ΔEGT (°C) –9.62 –3.72 2.17 8.07 13.97 19.87

ΔN1 (%) –2.23 –1.56 –0.9 –0.24 0.42 1.08

ΔN2 (%) –1.21 –0.72 –0.25 0.23 0.71 1.19

ΔWF (%) –2.25 –1.35 –0.45 0.45 1.35 2.25

Source: Verma, R., et  al., Applied Mathematics and Computation 172(2):1342–1363, 2006. With 
permission.
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FIGURE 11.4
Discretization of universe of exhaust gas temperature using three fuzzy sets. (From Verma, R., 
et al., Applied Mathematics and Computation 172(2):1342–1363, 2006. With permission.)
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FIGURE 11.5
Discretization of universe of exhaust gas temperature using four fuzzy sets. (From Verma, R., 
et al., Applied Mathematics and Computation 172(2):1342–1363, 2006. With permission.)
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FIGURE 11.6
Discretization of universe of exhaust gas temperature using five fuzzy sets. (From Verma, R., 
et al., Applied Mathematics and Computation 172(2):1342–1363, 2006. With permission.)
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FIGURE 11.7
Discretization of universe of exhaust gas temperature using six fuzzy sets.
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In Table 11.5 each fuzzy set is assigned a linguistic value of very low (VL), 
low (L), medium-low (ML), medium-high (MH), high (H), and very high 
(VH). These linguistic measures are shown in Figure 11.7 for the six ΔEGT 
fuzzy sets. The fuzzy rule base for the case with six fuzzy sets is shown in 
Table 11.6. Table 11.6 is the result of fuzzification of the numerical data in 
Table 2.1. These rules can be read as follows for the FAN module:

IF
ΔEGT is very low AND
ΔN1 is very high AND
ΔN2 is low AND
ΔWF is very low

THEN
Problem in FAN module

The rules for the other modules can be similarly interpreted. These rules 
provide a knowledge base and represent how a human engineer would 
interpret data to isolate an engine fault using fingerprint charts.

Table  11.7 shows the success rate of the fuzzy set with 100 noisy data 
points. The noisy data points for testing are different from data used for 
developing the rule base of the fuzzy system. The average success rate is 
100%, compared to 98.2% for the manually designed fuzzy system discussed 
in Chapter 10. The manually designed fuzzy system showed some problems 
in differentiating between faults in the LPC and those in the HPC. It is clear 
that GFS is able to identify the correct fault despite the presence of consider-
able uncertainty in measurements.

The effect of noise on the GFS is shown in Figure 11.8, and the results are 
compared with data from the fuzzy system from Chapter 10. Here the noise 
ratio is defined as σ/σ0, where σ0 is the baseline noise level used for develop-
ing the GFS and σ is the noise level in the simulated data used for testing. It is 
clear that both systems show a decline in the average fault isolation  success 
rate with increasing noise levels in the data. However, the GFS appears to 

TABLE 11.6

Rules for Optimal Fuzzy System with Six Fuzzy Sets

ΔEGT ΔN1 ΔN2 ΔWF

FAN VL VH L VL
LPC ML MH H MH
HPC MH MH ML H
HPT VH MH VL VH
LPT L VL VH VL

Source: Verma, R., et al., Applied Mathematics and Computation 172(2):1342–
1363, 2006. With permission.
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183Soft Computing Approach

show a somewhat better performance as the noise level increases. This is due 
to the optimal nature of the fuzzy system developed and the use of formal 
optimization methods rather than a trial and error process in maximizing 
the success rate. The result of applying a neural network preprocessor to the 
GFS is discussed below.

To study the signal processor, we assume time series of 100 discrete points. 
From k = 0 to k = 50, the signal changes linearly from 0 to sign (Δz) σ0/2. 
From k = 50 to k = 51, the signal changes by Δz. From k = 51 to 100 the signal 
changes from Δz to Δz + sign (Δz) σ0/2. This simulates a single-fault situation, 
where a step jump equal to the measurement deltas corresponding to the 
module faults is added to a linearly varying signal. As an example, the ΔEGT 

TABLE 11.7

Results for Optimal Fuzzy System and Manually Designed System

Module
Success Rate (%)

(Optimal)
Success Rate (%) 

(Manually Designed)

HPC 100 94
HPT 100 100
LPC 100 97
FAN 100 100
LPT 100 100
Average success rate 100 98.2

Source: Verma, R., et al., Applied Mathematics and Computation 172(2):1342–1363, 
2006. With permission.
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FIGURE 11.8
Success rate in fault isolation with increasing noise levels in data.
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variation for an HPC fault is simulated using a linear variation from 0°C 
at k = 1 to 4.23/2 = 2.115°C at k = 50, followed by a change to 13.6 + 4.23/2 = 
15.715°C at k = 51, and a linear variation thereafter to 13.6 + 4.23 = 17.83°C. 
Figure 11.9 shows the noisy signal and RBF filtered signal.

For determining the RBF unit centers, we use a K-means clustering algo-
rithm. The K-means clustering algorithm finds a set of clusters each with 
centers from the given training data. The cluster centers become the centers 
of the RBF units. The number of clusters is a design parameter and deter-
mines the number of RBF units, i.e., nodes, in the hidden layer. We have used 
H = 20. When the RBF centers have been established, the widths of each RBF 
can be calculated.

The width of any RBF distance to the nearest p RBF units, where p is a 
design parameter for the RBFN, for unit t is given by

 ∑∑σ = −












==
p

x x
1

( )i ki kj
k

r

j

p

ˆ ˆ

1

2

1

 (11.4)

where ∧x
ki
 and ∧x

kj
 are the kth entries of the centers of the ith and jth hidden 

units. We have used p = 5. When the centers and widths of the RBF units 
have been chosen, then the N = 100 training samples are processed through 
the hidden nodes to generate an H × N matrix, called A. Let T be the M × N 
desired output matrix for the training patterns and M = 100 the number of 
output nodes. The objective is to find the weights that minimize the error 
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FIGURE 11.9
Noisy and filtered ΔEGT signal simulating HPC fault.
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185Soft Computing Approach

between the actual output and the desired output of the network. Essentially, 
we are trying to minimize the objective (cost) function

 −T WA

where W is the M × H matrix of weights on the connections between the hid-
den and output nodes of the network. We train the RBF network with added 
Gaussian noise at σ0 = 4.23°C, 0.25%, 0.17%, and 0.50%, respectively, for ΔEGT, 
ΔN1, ΔN2, and ΔWF.

Noise is added to the ideal signal using a baseline value σ0 of typical stan-
dard deviations for ΔEGT, ΔN1, ΔN2, and ΔWF as 4.23°C, 0.25%, 0.17%, and 
0.50%, respectively. The filtered signals in Figures 11.9 and 11.10 show con-
siderable noise reduction while preserving the nature of the step edge. These 
data represent one noisy signal for each measurement. The visual quality of 
the data is considerably improved. Similar results are obtained for all the sig-
nals corresponding to the faults in Table 2.1. To summarize these results con-
cisely, the following noise reduction measure is defined based on the mean 
absolute error (MAE) criteria:

 ∑= ∆ − ∆
=

MAE
N

z z
1noisy

i
noisy

i
ideal

i

N
( ) ( ) ( )

1

 (11.5)

 ∑= ∆ − ∆
=

MAE
N

z z
1filtered

i
filtered

i
ideal

i

N
( ) ( ) ( )

1

 (11.6)
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FIGURE 11.10
Noisy and filtered ΔWF signal simulating HPC fault.
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 = −
N

MAE MAE
MAE

100R

noisy filtered

noisy

( ) ( )

( )  (11.7)

For each signal, 100 samples of noisy test data are created and the noise 
reduction calculated. These values are summarized in Table 11.8 and show a 
noise reduction averaging between 75 and 81%. Results in this chapter clearly 
demonstrate the power of the soft computing framework for automated deci-
sion making under uncertainty. The approach uses the concept of hybrid-
ization in soft computing, where using different techniques such as neural 
networks, genetic algorithms, and fuzzy logic together gives  better results 
than if each method were used individually. The hybridization process uses 
the strengths of each different approach to attack the problem.

11.7 Summary

A novel genetic fuzzy system (GFS) is discussed in this chapter for fault iso-
lation in gas turbine engines. The GFS has better performance than a manu-
ally designed fuzzy system because GFS automatically selects the number 
of fuzzy sets and membership functions based on the fault signatures of 
the engine and measurement uncertainties. This minimizes the computa-
tional demand of the model generation and allows problems with realistic 
 dimensions to be considered. The fault signatures are derived from influ-
ence coefficients. A radial basis function neural network (RFBNN) is also 
studied for data cleaning prior to fault isolation. RBFNN shares the universal 
approximation capability, and takes much less training time and offers much 
better performance than the traditional linear filter.

For simulated faults considered in this chapter, the GFS achieved a  success 
rate of 100% for the five module faults (HPC, LPC, FAN, HPT, and LPT) 

TABLE 11.8

Noise Reduction Using Radial Basis Neural Network

ΔEGT (°C) ΔN1 (%) ΔN2 (%) ΔWF (%)

HPC 78.84 67.03 67.38 81.87
HPT 84.24 72.07 83.38 83.71
LPC 77.5 74.34 78.48 77.95
FAN 74.8 82.43 79.04 80.62
LPT 68.76 83.83 84.68 82.95
Average 76.83 75.94 78.59 81.42

Source: Verma, R., et al., Applied Mathematics and Computation 172(2):1342–1363, 2006. 
With permission.
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187Soft Computing Approach

and four measurements (ΔEGT, ΔN1, ΔN2, and ΔWF). In contrast, a manually 
developed fuzzy system achieved a success rate of 98% with some confound-
ing between the LPC and HPC module faults.

The trial and error process used to design a fuzzy system leads to con-
siderable human labor and is often suboptimal. Different turbine engines 
can have different numerics, such as influence coefficients and measurement 
uncertainties, and it is a tedious process to develop a fuzzy system for each 
case.

The GFS automates the process of design of the fuzzy system. As noise 
levels in data increase, the GFS retains its edge over the manually designed 
fuzzy system, giving a 2–5% higher success rate with the same numerics.

A radial basis neural network prefilter achieved 75–81% noise reduction 
for simulated signals with linear deterioration and step changes. When the 
 neural network is used to prefilter signals prior to fault isolation, the  accuracy 
of the GFS is further improved for lower-quality data by 2–4%.
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12
Vibration-Based Diagnostics

The previous chapters have considered diagnostics based on gas path 
 measurements. In this chapter, we look at a problem where vibration char-
acteristics are used for gas turbine diagnostics. The present chapter focuses 
on turbine blade damage. Turbine blades undergo cyclic loading causing 
structural deterioration, which can lead to failure. It is important to know 
how much damage has taken place at any particular time to monitor the 
 condition or health of the blade and to avoid any catastrophic failure of the 
blades. Several studies look at damage at a given time during the operational 
history of the structure. This is typically called diagnostics and involves 
detection, location, and isolation of damage from a set of measured variables. 
The detection function is most fundamental, as it points out if the damage is 
present or not. However, some level of damage due to microcracks and other 
defects is always present in a structure. The important issue of indicating 
when to detect damage depends on how much life is left in the structure. It is 
not advantageous to detect small levels of damage in a structure. It would 
be useful if damage detection were triggered some time before final failure.

The subject of prognostics involves predicting the evolution of structural 
or vibration characteristics of the system with time and is important for 
prediction of failure due to operational deterioration. Some recent studies 
have considered dynamical systems approaches to model damage growth 
based on differential equations [116], while others have used physics-based 
models [117].

The stiffness of the structure is gradually reduced with crack growth, 
and stiffness is related to the vibrational characteristics of the structure. 
The decreased frequency shows that stiffness of the structure is decreasing, 
and thus serves as a damage indicator for monitoring crack growth in the 
structure. Selected studies have looked at modeling turbine blades as rotat-
ing Timoshenko beams with twist and taper [118–120]. Some studies have 
addressed damage in such beams using vibrational characteristics [121, 122]. 
However, these studies typically address damage at a given time point in 
the operational history and do not look at the effect of damage growth on 
the vibrational characteristics. In additions, turbine blades are designed 
to sustain a considerable amount of accumulated damage prior to failure. 
Therefore, it is desirable to indicate that a blade is damaged at the point when 
its operational life is almost over.

To study the structural dynamic behavior of the damaged beam, a damage 
model needs to be integrated into the finite element analysis. A number of 
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damage models are available in [123]. Some use a fracture mechanics-based 
approach to include a crack in the finite element formulation [124]. The effect 
of damage growth can be modeled using crack growth models such as the 
Paris law [125]. Another approach is to use a phenomenological model devised 
from experimental measurements, which relates the loss of stiffness at the 
continuum level of the structure to the growth of damage. For example, most 
steam turbine rotor fractures are caused by low cycle fatigue (LCF) [126]. The 
high strains that cause LCF typically occur during the cold start and sliding 
parameter stop phases of steam turbine operation. Due to high-strain rates 
implicit in LCF, it is typically accompanied by plastic deformation. LCF is 
also the most significant life-reducing failure mechanism for military  aircraft 
engines due to the throttle changes experienced during operation [127]. 
Therefore, the study of LCF effect on turbine blades is an important problem.

Most work on LCF is based on linear damage accumulation theory 
[126]. However, this theory results in crude damage accumulation calcula-
tions, and the predicted results are quite different in practice. In reality, LCF 
damage accumulation is a nonlinear process. Continuum damage mechanics 
(CDM) provides a way to describe the entire failure process from microrup-
ture initiation and visual crack formation to structure failure. A  damage 
model based on CDM for LCF damage analysis is chosen in this chapter. 
LCF occurs after a relatively low number of cycles (typically <10,000) of high-
stress amplitude. The CDM models are easier to include in finite element 
analysis. They permit the finite element analysis and damage growth analy-
sis to be effectively decoupled.

The CDM models use a damage variable D = 1 – E/E0, which ranges from 
D = 0 for the undamaged material to D = 1 for complete failure. The CDM 
models the evolution of D from 0 to 1. Since it is very difficult to measure D 
in an operational turbine blade, another damage indicator that is dependent 
on D needs to be used. Frequency is one such indicator, and several methods 
have been developed in recent years for frequency measurement of turbine 
blades.

The simplest method of determining frequencies is by using blade-mounted 
strain gauges. Typically, blade mounted gauges can be used to detect the blade 
tip deflection. Lawson and Ivey [128] mention that two strain gauges per blade 
can be used to detect the first four modes of blade vibration. They developed 
an electronic circuit to energize the blade-mounted strain gauges and amplify 
the resulting signal. This system was developed for on-rotor operation.

Another promising approach for determining vibration characteristics of 
rotating engine blades is the use of blade tip timing methods. These meth-
ods have evolved because of the disadvantages of blade-mounted strain 
gauges, which include a complex installation procedure, a limited number 
of gauges, and the possibility of failure of the strain gauges due to high tem-
perature experienced in the turbines. Strain gauges can also require complex 
telemetry of slip ring systems and can interface with the mechanical proper-
ties of the bladed assembly [129]. Tip timing methods typically use optical 
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191Vibration-Based Diagnostics

probes mounted on the engine casing and can measure the motion of each 
blade. These probes measure the time of arrival (TOA) of each blade rela-
tive to a once-per-revolution (OPR) or multiple-per-revolution (MPR) probe 
mounted  on the rotor shaft. The difference between the TOA of a vibrat-
ing blade and the computed TOA of a nonvibrating blade provides the raw 
data that is used to determine the instantaneous blade displacement. Optical 
systems can be used to obtain vibration amplitude using curve fitting and 
frequencies using Fourier analysis. According to Carrington et al. [129], tip 
timing data acquisition is now in its fourth generation and is sufficiently 
advanced. Very recent work has also looked at the potential of a dual-use 
capacitance probe sensor to measure tip timing and tip clearance as alterna-
tives to optical devices [128]. It is therefore possible to measure the frequen-
cies of turbine blades quite accurately using the tip timing method.

The present chapter incorporates a CDM-based damage model for LCF 
damage into the finite element analysis of a rotating turbine blade. Numerical 
results are obtained to track the changes in frequencies with damage growth. 
A method of detecting the final stage of damage based on placing thresholds 
on the frequency change is proposed. The material discussed in this chapter 
was first proposed by Kumar, Roy, and Ganguli in their paper [130].

12.1 Formulations

12.1.1 Modeling of Turbine Blade

The turbine blade is modeled as a tapered, twisted, and rotating Timoshenko 
beam. The geometry of the beam is defined in Figure 12.1(a), the degrees of 
freedom for the element in Figure 12.1(b), the cross section in Figure 12.1(c), 
and the finite element used is shown schematically in Figure 12.1(d).

The total strain energy U of a beam of length l, due to bending and shear 
deformation (in-plane and out-of-plane directions), including rotary inertia 
and rotation effects, is given by
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where
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FIGURE 12.1
(a) An element of tapered and twisted beam. (b) Degrees of freedom of an element. (c) Angle 
of twist y. (d) Rotation of tapered beam. (From Kumar, S., et al., Mechanical Systems and Signal 
Processing 21(1):480–501, 2007. With permission.)
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The kinetic energy T of the element, including the effect of shear deforma-
tion and rotary inertia, is given by
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The deformations can be discretized in terms of shape functions. Cubic 
polynomials are used for the out-of-plane bending wb and in-plane bending vb. 
Cubic polynomials are also used as shape functions for the shear deformations 
ws and vs. Using the energy expressions and the finite element discretization, 
the element level mass and stiffness matrices are calculated. After assembling 
the matrices and applying the cantilever boundary conditions we obtain

 K M 02( )[ ] [ ]− ω Φ =  (12.6)

The stiffness and mass matrices are obtained by using expressions for the 
strain energy and kinetic energy. The details of the formulation can be found 
in [120], and the finite element model is validated by comparing with the 
results in [120].

12.1.2 Fatigue Damage Model

There are many models for predicting damage growth due to fatigue. Some 
LCF models proposed in the past have limited validity to particular cases 
[123, 124]. The physical meaning of the model parameters is also not clear. For 
engineering applications, models based on continuum damage mechanics 
appear useful. They do not require detailed models of crack growth using 
fracture mechanics, but capture the nonlinear nature of damage growth. 
They are based on the continuum damage variable D, which can be defined 
[131] as D = 1 – E/E0.

In continuum damage mechanics, a damaged coupled potential is used as 
a starting point:

 ( )Ψ = Ψ ε πT D, , ,e ij
e  (12.7)

For linear elasticity and isotropic damage, coupled damage constitutive 
equations are [132]

 σ = ρ ∂Ψ
∂εij

ij
e  (12.8)
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or

 ( ) ( )ε = +
−

σ −
−

σ δv
E D

v
E D

1
1 1ij

e
ij ij ij  (12.9)

The damage strain energy release rate variable Y associated with D is 
defined by
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where Rv is expressed for fatigue load as

 ( ) ( )= + + − σ
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where σH is the hydrostatic stress defined by σH = σkk /3, σeq is the Von Mises 
equivalent stress defined by σ = S S3. 2ij ijeq , and Sij is the stress deviator by 
Sij = σij − σHδij.

Assuming plastic deformation and microplastic deformation to cause 
damage and internal energy dissipation, the dissipate potential φ is

 ( )( )ϕ = ϕ σ + ϕ π ε + ϕπ� �R D Y p T D, , , , , , ,P D e  (12.12)

where

 ϕ =
σ −

−
− σ

R
D1p Y

eq  (12.13)

There is little information about microplastical dissipation potential φπ, 
which is not considered here. Then the coupled damage constitutive equa-
tions and the dynamic damage evolution law can be derived from the plastic 
dissipated potential φp and the damage dissipated potential φD as follows:

 ε = ε + εij ij
e

ij
p  (12.14)
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∂
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 = −λ ∂ϕ
∂

�D
Y

D  (12.17)

where λ is a nonnegative proportion factor, which can be obtained from the 
consistency condition, φp = 0.

Fatigue damage is mainly caused by accumulated plastic strain. According 
to the CDM theory, the LCF damage evolution law can be described by a 
suitable dissipation potential. At the basis of the damage potential function 
Equation (12.18), this is sufficient to model all the main properties within the 
hypothesis of isotropy damage.

 ( )
ϕ =

− α
�Y

S
p
D2 1

2

0
0  (12.18)

The damage character of LCF is conceded and a dissipation potential φ is 
chosen as follows:

 
( )( )

ϕ = ∆

−
( )− α

�Y
S

p

N N2 1 f

N

2

0
1 f

 (12.19)

The term (1 – N/Nf ), other than (1 – D), reflects the influence of accumu-
lated plastic strain, and α is a parameter that describes the extent of accumu-
lated damage; here it is the plastic strain increment per cycle, which can be 
determined from monotonic tensile and cyclic tensile stress-strain curves. 
Equation (12.19) can be written as

 
( )( )

= − ∂ϕ
∂

= −





∆

−
( )− α

� �
D

Y
Y
S

p

N N1 f

N
0

1 f
 (12.20)

From Equations (12.10) and (12.20) one can get

 
( )( )( )

= −
∆σ

−
∆

−
( )− α

� �
D

R
ES D

p

N N2 1 1

v

f

N

eq
2

0
2 1 f

 (12.21)

According to Lemaitre’s hypothesis of strain equivalence, the cyclic stress-
strain relationship coupled with damage should be written as follows:

 )(∆σ
−

= ∆K p
1 D

Meq  (12.22)
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Equations (12.21) and (12.22) give the general constitutive equation for 
LCF damage:

 
( )( )

= − ∆

−
( )− α

� �
D

K R
ES

p

N N2 1

v

f

N

2

0
1 f

 (12.23)

In the case of the proportional loading per cycle, Rv can be considered con-
stant with respect to time, and the damage during one cycle may be obtained 
through the integration of Equation (12.23):

 
( )( )( )

δ
δ

= ∆

+ −

+

− α
D
N

K R
ES

p

M N N2 2 1 1

v
M

f

N

2

0

2 1

1 f
 (12.24)

Integrating Equation (12.24) with the initial conditions, ==D D| ,N N 00

==D| 1N N f , gives

 ( )− = ∆
+ α

+

D
K R

ES
p
M

1
2 2 1

1v
M

0

2

0

2 1

 (12.25)

and

 ( )− = ∆
+ α

− −


















+ α

D D
K R

ES
p
M

N
N2 2 1

1
1 1v

M

f

N

0

2

0

2 1 f

 (12.26)

Comparison of Equation (12.25) with Equation (12.26) gives the general 
LCF damage accumulation law:

 ( )= − − −







α

D D
N
N

1 1 1
f

N

0

f

 (12.27)

There are three parameters in the above model: D0, Nf, and Nf α. These 
parameters can be determined from experiments. The damage model for 
steam turbine blade material 2Cr13 martensitic stainless steel is derived 
using experiments. In [133], a material testing machine was used for strain-
controlled fatigue tests. There are several methods for measuring the dam-
age variable D. For LCF, the best mechanisms include elasticity modulus 
followed by the cycle stress amplitude method. For measurements based on 
elastic stiffness, a specimen of the material needs to be machined to run 
mechanical tests. Here D = 1 – (E/E0) is used. This method needs accurate 
strain measurements. Typically, strain gauges are used and E is most accu-
rately measured during unloading. Another approach that is used by [133] is 
called the cycle stress amplitude method. The one-dimensional law of cyclic 
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197Vibration-Based Diagnostics

plasticity at stabilization may be written as a power relationship between the 
amplitude of stress range Δσ and the amplitude of strain range Δε at cycles:

 ∆ε = ∆σ



Kc

M

 (12.28)

The above relationship is for an undamaged material. Kc and M are mate-
rial parameters. For damaged material, the relationship becomes

 ( )∆ε = ∆σ
−









K D1c

M

 (12.29)

For a cyclic test at a constant amplitude of strain Δε, an initial stress being 
Δσ0, the damage D may be assumed to be zero, and hence

 Δσ0 = Kc Δ ε 1/M (12.30)

and also from Equation (12.29),

  Δσ = (1 − D)Kc Δ ε 1/M (12.31)

Combining Equations (12.30) and (12.31) we obtain

 = − ∆σ
∆σ

D 1
0

 (12.32)

The models developed for damage growth are as follows:

 1. For low strain of ±0.35 per cycle the number of cycles (Nf) to produce 
fatigue crack resulting in failure was 6230 and the model was

 ( ) = − −



D N

N
1 0.906 1

6230

0.058

 (12.33)

 where D is the damage level in the structure after N cycles. For N = 
Nf = 0.9, D = 0.21, with 623 cycles left to final failure.

 2. For moderate strain of ±0.5 per cycle the number of cycles (Nf) to pro-
duce fatigue crack resulting in failure was 1950 and the model was

 ( ) = − −



D N

N
1 0.903 1

1950

0.064

 (12.34)

 For N/Nf = 0.9, D = 0.27, with 195 cycles left for failure.
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198 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

 3. For high strain of ±0.70 per cycle the number of cycles (Nf) to produce 
fatigue crack resulting in failure was 844 and the model was

 ( ) = − −



D N

N
1 0.923 1

844

0.113

 (12.35)

 For N/Nf = 0.9, D = 0.23, with 84 cycles left for failure.

Note that the high-strain conditions where LCF happens occur only occa-
sionally in the life of the actual machine. For example, the average design life 
of a steam turbine is about 30 years. Assuming the frequency of both cold 
start and sliding parameter stop is three times per year, the total number of 
cold starts and sliding parameter stops is 90 times in 30 years [126].

The damage curves are shown in Figure 12.2. The plots show that D var-
ies quickly at the last stages of the whole cycling and slowly at the middle 
stage, from 10% to 80% of the total cycles, which is a characteristic of LCF 
damage. High strain leads to faster failure of the material. In general, the LCF 
damage curve can be divided into three stages. Stage 1 occurs up to N/Nf = 0.1, 
when damage value increases due to changes in the dislocation substruc-
tures. In stage 2, there is a slow increase in damage value up to N/Nf = 0.8. In 
stage 3, the damage increases more quickly to 1 due to the beginning of dam-
age localization and formation of fatigue microcracks. From a condition moni-
toring viewpoint, it is useful to know when the blade has reached stage 3. 

1

0.9 Low strain damage, ε = 0.35
Moderate strain damage, ε = 0.5
High strain damage, ε = 0.7

0.8

0.7

0.6

0.5

D
am
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e (

D
)
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0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5

Cycle Ratio (N/Nf)
0.6 0.7 0.8 0.9 1 1.1

FIGURE 12.2
Damage variations with number of cycles for different strain load cases. (From Kumar, S., et al., 
Mechanical Systems and Signal Processing 21(1):480–501, 2007. With permission.)
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199Vibration-Based Diagnostics

The midpoint of stage 3 of N/Nf = 0.9 is therefore selected as the time where 
the life of the blade is almost over and the blade needs to be replaced.

12.1.3 Beam with Fatigue Damage

We want to know if fatigue damage can be detected in turbine blades before 
it becomes catastrophic by monitoring natural rotating frequencies. For the 
numerical results, the damage model discussed in the fatigue damage model 
is included in the finite element model in modeling of the turbine blade. The 
stiffness (E) of the beam and the fatigue damage growth, with number of 
cycles, is related with the expression [131] D(N) = 1 – (E/E0). Thus, Young’s 
modulus for each case, i.e., for low-, moderate-, and high-strain models, can 
be written as follows:

For low-strain model:

 ( ) = −
















E N E

N
0.906 1

62300

0.058

 (12.36)

For moderate-strain model:

 ( ) = −
















E N E

N
0.903 1

19500

0.064

 (12.37)

For high-strain model:

 ( ) = −
















E N E

N
0.923 1

8440

0.113

 (12.38)

The expression of Young’s modulus for three cases (i.e., low, moderate, 
and high strains) is used in energy expressions to obtain stiffness and mass 
matrices for the damaged beam at any given point in time N.

12.2 Numerical Simulations

The baseline undamaged blade has a length of 0.254 m, depth at root of 
0.000865 m, breath at root of 0.0173 m, twist of 45°, ρ = 7800kg/m3, and E = 
2.1‰ 1011 N/m2. The beam is divided into 25 elements of equal length, result-
ing in elements of length equal to 4% of the beam length. The root, inboard, 
and outboard locations have five elements each. For numerical results, 20% 
length of the beam is damaged for each of three locations, i.e., considering 
stiffness reduction in 20% length of the beam in each of the root, inboard, 
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200 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

and outboard locations. The stiffness reduction with the number of the 
cycles according to Equations (12.35) and (12.38) for the high-strain loading 
case is given in Table 12.1.

12.2.1 Finite Element Simulations

A finite element analysis of the beam considering reduction in stiffness 
at root, inboard, and outboard locations is carried out. It is found that for 
25 elements the finite element solution converges even with considerable 
reduction in stiffness at the selected root, inboard, and outboard locations. 
Figure  12.3 shows the results of a convergence study for damage at root, 
inboard, and outboard locations as the number of finite elements increases 
to 25. In these cases, the damage value of D = 0.99 is considered at each level. 
The frequencies were normalized with the values obtained with 25 finite 
elements. A computer program is written for the calculation of the modal 
frequencies separately, considering stiffness reduction at root, inboard, and 
outboard locations and for different strain conditions.

Young’s modulus values in Table 12.1 are used in energy expressions to get 
the mass and stiffness matrix. The eigenvalue problem is then solved to get 
the modal frequencies. The graphs in Figure 12.4 show the variation of fre-
quencies with number of cycles for high-strain loading conditions. The data 
in the figures are normalized with respect to a baseline undamaged blade. 
For the root location in Figure 12.4, the maximum change is in the fourth 
mode frequency. For the inboard location, the third mode changes most, and 
for the outboard location, the higher mode changes most.

Figure  12.4 also shows results for the low-strain case, and it is evident 
from the figure that damage at the root location causes maximum frequency 

TABLE 12.1

Reduction in Stiffness with Number 
of Cycles for High-Strain Condition

 N/Nf E/E0

0 0.923
0.2 0.9
0.4 0.871
0.6 0.832
0.8 0.77
0.9 0.712
0.97 0.612
0.999 0.423
0.9999 0.326

Source: Kumar, S., et al., Mechanical Systems 
and Signal Processing 21(1):480–501, 
2007. With permission.
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201Vibration-Based Diagnostics

change in the first mode, while damage at the inboard and outboard loca-
tions affects the third and sixth modes, respectively. The moderate strain 
results are also shown in Figure  12.4. Here the root and inboard damage 
locations affect the third mode, and the outboard damage location affects 
the higher modes. These graphs give the deterioration curves for frequency 
with respect to damage and show that rotating frequencies can be used as a 
virtual indicator of the damage variable D.

Tables 12.2–12.4 show the actual rotating frequencies in Hertz as the dam-
age growth progresses. These results are for the high-strain case and are 
based on the underlying data in Figure  12.4. They show that measurable 
changes in the frequencies occur due to LCF damage. Consider the location 
N/Nf = 0.9, which is slightly before complete failure of the material. Table 12.5 
shows the reduction in frequencies at these points in Hertz. The table shows 
that damage growth at the root location is easier to detect since it affects the 
lower modes. Outboard damage affects the higher modes to a greater extent.

12.2.2 Damage Detection

The reduction in frequency Δω can be considered to be a health residual, 
which can be tracked for condition monitoring of the turbine blade. Ideally, 
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FIGURE 12.3
Convergence trend with number of elements for different locations of the blade. (From 
Kumar, S., et al., Mechanical Systems and Signal Processing 21(1):480–501, 2007. With permission.)
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FIGURE 12.4
Frequency variations with number of cycles for stiffness reduction at different locations and strain cases of the blade. (From Kumar, S., et  al., 
Mechanical Systems and Signal Processing 21(1):480–501, 2007. With permission.)
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TABLE 12.2

Modal Frequencies (Hz) for Reduction in Stiffness at Root Location of the Beam for High-Strain Condition

N/Nf 0 0.2 0.4 0.6 0.8 0.9 0.97 0.999 0.9999

Mode 1 165.99 165.16 164.35 160.34 157.44 153.43 151.81 136.34 120.84
Mode 2 298.23 296.4 294.319 292.03 285.36 280.43 268.34 242.06 222.33
Mode 3 635.75 633.44 630.95 625.83 618.3 610.84 598.08 568.04 549.72
Mode 4 1061 1057.34 1052.4 1045.8 1034.23 1022.99 1002.4 957.46 929.48
Mode 5 1544.12 1540.18 1535.22 1527.69 1515.62 1503.67 1481.66 1428.76 1391.09
Mode 6 2403.38 2397.82 2390.81 2380.28 2362.85 2345.16 2310.72 2221.29 2151.31
Mode 7 2955.1 2948.42 2939.81 2927.39 2906.61 2885.31 2843.53 2733.22 2646.56
Mode 8 4146.55 4136.28 4122.74 4103.51 4070.1 4035.28 3965.2 3783.75 3654.61
Mode 9 4996.86 4985.54 4970.65 4949.48 4912.88 4874.68 4797.22 4586.11 4421.04
Mode 10 6207.42 6190.74 6169.01 6138.42 6086.5 6033.97 5933.46 5702.74 5556.83

Source: Kumar, S., et al., Mechanical Systems and Signal Processing 21(1):480–501, 2007. With permission.
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TABLE 12.3

Modal Frequencies (Hz) for Reduction in Stiffness at Inboard Location of the Beam for High-Strain Condition

N/Nf 0 0.2 0.4 0.6 0.8 0.9 0.97 0.999 0.9999

Mode 1 171.42 169.67 169.07 168.65 165.85 164.54 163.69 155.97 145.54
Mode 2 300.38 296.89 299.78 297.23 294.56 290.50 287.83 269.31 255.32
Mode 3 637.40 635.54 631.90 628.15 620.45 612.45 598.34 562.40 536.74
Mode 4 1063.11 1060.04 1055.82 1049.87 1039.34 1028.62 1008.21 955.79 919.25
Mode 5 1548.80 1546.16 1542.16 1536.96 1527.48 1517.86 1498.82 1448.92 1410.14
Mode 6 2405.46 2400.38 2393.76 2384.55 2368.69 2352.65 2321.48 2243.40 2186.17
Mode 7 2953.70 2946.47 2937.04 2923.93 2901.42 2878.73 2834.77 2726.88 2649.36
Mode 8 4146.70 4136.44 4123.05 4104.23 4072.09 4039.24 3974.47 3808.27 3684.87
Mode 9 4992.09 4979.55 4963.22 4940.33 4901.29 4861.51 4783.67 4586.87 4440.85
Mode 10 6212.24 6196.72 6176.45 6147.90 6099.08 6049.07 5950.95 5706.31 5534.49

Source: Kumar, S., et al., Mechanical Systems and Signal Processing 21(1):480–501, 2007. With permission.
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TABLE 12.4

Modal Frequencies (Hz) for Reduction in Stiffness at Outboard Location of the Beam for High-Strain Condition

N/Nf 0 0.2 0.4 0.6 0.8 0.9 0.97 0.999 0.9999

Mode 1 177.89 176.96 172.20 171.42 169.76 169.22 168.30 166.78 166.10
Mode 2 304.94 304.66 304.01 304.01 302.52 302.47 302.20 301.50 300.07
Mode 3 643.57 643.01 641.91 641.91 641.22 638.11 634.75 626.66 617.21
Mode 4 1070.88 1069.79 1068.76 1068.76 1062.68 1059.22 1050.99 1024.61 999.16
Mode 5 1549.26 1545.91 1542.33 1542.33 1527.05 1515.47 1492.51 1424.29 1367.43
Mode 6 2401.17 2394.42 2385.67 2385.67 2350.85 2327.21 22,279.32 2151.52 2056.57
Mode 7 2950.25 2941.48 2930.12 2930.12 2885.85 2855.87 2796.34 2641.55 2532.72
Mode 8 4134.33 4120.42 4102.24 4102.24 4034.36 3991.72 3911.27 3728.72 3610.68
Mode 9 4979.44 4961.59 4939.70 4939.70 4856.66 4803.74 4702.62 4470.47 4323.60
Mode 10 6203.51 6185.76 6162.79 6130.82 6077.88 6024.68 5922.72 5663.77 5454.94

Source: Kumar, S., et al., Mechanical Systems and Signal Processing 21(1):480–501, 2007. With permission.
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TABLE 12.5

Reduction in Frequencies (Hz) at N/Nf = 0.9

Mode

High Strain Moderate Strain Low Strain

Root Inboard Outboard Root Inboard Outboard Root Inboard Outboard

1 12.56 6.88 8.67 0.85 0.15 0.75 8.06 4.26 0.24
2 17.8 9.88 2.47 8 6.95 1.26 13.4 12.5 2.28
3 24.89 24.95 5.46 13.65 13.25 3.04 19.8 17.58 5.74
4 38.01 34.69 11.66 19.34 19.97 6.56 20.71 15.15 16.49
5 40.45 31.13 33.79 21.04 17.2 18.3 29.86 27.1 36.92
6 58.22 52.81 73.96 29.8 30.18 41.23 35.56 38.37 47.23
7 69.79 74.99 94.38 35.6 42.56 52.78 56.09 54.87 73.76
8 111.27 107.46 142.61 55.96 60.89 81.52 61.62 66.77 89.46
9 122.18 130.59 174.7 61.69 74.05 99.43 88.95 83.08 92.4
10 173.45 162.67 178.89 88.86 92.33 102.22 106.18 103.61 124.6

Source: Kumar, S., et al., Mechanical Systems and Signal Processing 21(1):480–501, 2007. With permission.
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207Vibration-Based Diagnostics

the  residuals should only be affected by faults. However, even for an 
 undamaged system, the presence of disturbance noise and modeling errors 
causes residuals to become nonzero and interferes with the detection of faults.

The two main sources of errors in this problem are due to finite element 
modeling and the presence of measurement noise. Modern finite element 
methods are quite accurate. For example, Lawson and Ivey [128] compared 
measured and finite element simulated frequencies of compressor rotor 
blades. For the first three modes, the measured frequencies were 244, 736, 
and 1471 Hz and the simulated frequencies were 243, 740, and 1486 Hz, show-
ing a discrepancy of 0.4, 0.5, and 1.0%. Strain gauge signals were used for the 
measurements. So it is possible that some of the difference can be attributed 
to measurement noise and the rest to modeling errors. Finite element models 
can be further improved using model updating methods [134] to match with 
the experimental results, and the errors due to modeling can be minimized.

The second source of error is the presence of measurement noise. To some 
extent, processing the measurement by signal processing methods can 
reduce noise, as we have seen in the Chapters 2–7. Another way to make 
fault detection more robust is to establish thresholds on the residuals instead 
of just checking for nonzero values. A key problem in fault detection is the 
establishment of thresholds on the residuals that can be used to signal when 
damage has become sufficiently large to be dangerous. For example, for a 
scalar residual r(N) a threshold T can be established as:

If r(N) < T, then no fault.
If r(N) ≥ T, then fault.

A schematic representation of a residual generator is shown in Figure 12.5. 
Such a fault residual can be obtained from experiments, numerical simu-
lations, or in-service data. Typically, a threshold can be developed from 

Residual
Generator

faults

disturbances

noise

residuals

modeling errors

FIGURE 12.5
Schematic representation of a residual generator. (From Kumar, S., et al., Mechanical Systems and 
Signal Processing 21(1):480–501, 2007. With permission.)
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208 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

numerical simulation and then refined based on in-service performance. 
Table 12.5 can be used to develop frequency thresholds on the health residu-
als Δω = ωn – ωd.

Note that for an ideal undamaged blade, Δω = 0. However, a turbine 
blade can take considerable damage before final failure. Therefore, the Δω 
variations in Table  12.5 can be used to select a somewhat high threshold 
based on Nf = 0.9, where a possible end of life of the blade can be triggered. 
Considering the high-strain case, one can select the minimum Δω between 
the root, inboard, and outboard locations as the threshold. This will lead to 
many false alarms but minimize missed alarms. On the other hand, if the 
maximum Δω is selected, it will minimize false alarms and lead to more 
missed alarms. In general, threshold selection involves a trade-off between 
missed alarms and false alarms [135]. Furthermore, the presence of noise in 
the data can be addressed by slightly increasing the thresholds. Table 12.6 
shows the thresholds based on the maximum criteria after being increased 
by 5%, which is a conservative design and minimizes false alarms.

These residuals can then be used to develop a fault detection system as 
shown in Figure  12.6. Here each residual is tested separately against an 
individual threshold. A simple rule is that if any frequency threshold is 
exceeded, an alarm is indicated. Thus, if any of the outputs from the test box 
in Figure 12.6 is 1, an alarm is indicated by the diagnostic system.

For ideal data, the maximum thresholds in Table  12.6 will give zero 
false alarms. The effect of increasing noise on the success rate is shown in 
Figure 12.7. Here noisy data are generated by adding noise to the ideal sig-
nals in Table 12.5 using

 ( )( )∆ω = ∆ω + α( ) r1 100i i
noisy  (12.39)

TABLE 12.6

Frequency Thresholds for Damage Detection

Mode High Strain Moderate Strain Low Strain

1 13.19 0.89 8.46
2 18.69 8.4 14.07
3 26.19 14.33 20.79
4 39.91 20.31 21.74
5 42.47 22.09 38.76
6 77.66 43.29 49.59
7 99.09 55.42 77.45
8 149.74 85.59 93.87
9 183.43 104.4 97.02
10 187.83 107.33 130.83

Source: Kumar, S., et  al., Mechanical Systems and Signal 
Processing 21(1):480–501, 2007. With permission.
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209Vibration-Based Diagnostics

where α is a measure of noise and r is a random number between –1 and 1 
from a normal distribution. Here α = 1 corresponds to 1% noise in the 
measurement.

It is clear from Figure  12.7 that the detection algorithm has a very high 
accuracy with about 1–2% noise level in the data. According to Friswell and 
Jet [136], frequency can be measured to an accuracy up to 0.1%, so it can be said 
that the damage detection scheme based on maximum thresholds is robust.

Plant Residual
Generator

TEST

TEST

TEST

0/1

0/1

0/1

r1

r2

rN

FIGURE 12.6
A schematic representation of a fault detection system. (From Kumar, S., et  al., Mechanical 
Systems and Signal Processing 21(1):480–501, 2007. With permission.)
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FIGURE 12.7
Effect of increasing percent noise in data on damage detection success rate. (From Kumar, S., 
et al., Mechanical Systems and Signal Processing 21(1):480–501, 2007. With permission.)
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210 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

A schematic representation of the damage detection system is shown in 
Figure  12.8. Rotating frequencies are measured for the turbine blade and 
compared with undamaged results to obtain a frequency residual Δω. The 
residual is then low-pass filtered to remove noise. Appropriate thresholds 
are calculated for each frequency based on the strain level, CDM models, and 
finite element analysis. The residual is then threshold tested to determine if 
damage has occurred.

Vibration monitoring systems are very important for gas turbine diagnos-
tics. In the introduction, a brief outline of these systems for the complete gas 
turbine was given, largely adapted from [137–139]. The current chapter has 
shown an application to turbine blades.

12.3 Summary

The chapter has shown that frequencies can be used to detect damage in a 
turbine blade just before it becomes catastrophic. Though we have considered 
a steam turbine blade, the approach is also applicable to gas turbine blades. 

Steam turbine

Data acquisition
hardware

Residual generator

Filtering

�reshold tests

Fault detection

FEA   Model/Tests �reshold selection
CDM Models
FEA Models

Strains

T

Δω

Δω>T

ωu

ωd

FIGURE 12.8
A schematic representation of a fault detection system. (From Kumar, S., et  al., Mechanical 
Systems and Signal Processing 21(1):480–501, 2007. With permission.)
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211Vibration-Based Diagnostics

However, it should be noted that for any identification procedure, the error 
between the ideal and the estimation frequency also exists and is unavoidable. 
For example, the maximal reduction in percentage of natural  frequency at 
N / Nf = 0.9 occurs for mode 1 and is about 7.57%. Other frequency  reductions 
are about 4%. However, for modal parameter identification, an accuracy of 
about 7.57% is practically not easy to achieve using either frequency domain 
or time domain methods. Nevertheless, the accuracy of frequency measure-
ment continues to improve rapidly based on newer sensors and signal pro-
cessing methods. Using smart sensors leads to much less noise than strain 
gauges, etc., and therefore the identification of frequencies from the vibration 
data can be more accurate. Recent studies have looked at online estimation of 
frequencies. Oberholster and Heyns [140] developed a methodology for the 
online condition monitoring of axial-flow fan blades by using mode shapes 
and frequencies that were extracted from online blade vibration and strain 
signals. Further, filtering methods based on median and wavelet approaches 
can make the process of frequency extraction from raw data more accurate. 
In addition, though frequencies are not sensitive to small damage, this can 
be viewed as an advantage, as most real structures are designed to take con-
siderable damage before failure [141]. The suggested method in this chapter 
therefore depends on the availability of accurate sensors and signal process-
ing methods.

Though the current chapter has used frequencies as the damage indi-
cators, CDM models with finite element simulations can also be used to 
track changes in blade response, strains, acceleration, and other measur-
able  variables for the diagnostic applications. The effect of LCF damage on 
the rotating frequency of a turbine blade is studied. The turbine blade is 
modeled using a rotating Timoshenko beam with taper and twist and the 
frequencies obtained using finite element analysis. A damage model derived 
using continuum damage mechanics and identified from experimental data 
is used to accurately capture the nonlinear nature of LCF damage. It is found 
that LCF causes sufficient material degradation, resulting in stiffness loss 
as the damage growth progresses. The change in rotating frequency can 
be used as an indicator to track damage growth. Since turbine blades are 
capable of sustaining considerable accumulated damage before final failure, 
the simulated deterioration curves relating frequencies to damage are used 
to determine thresholds on the frequencies at the point where 90% of blade 
life is consumed. By placing suitable thresholds for the residual frequency, 
it is  possible to detect the onset of the final stage of damage in the structure 
before final failure.

The chapter marks a considerable advance over most works on damage 
detection, which do not address the issue of damage growth and focus on 
the identification and detection of damage at only one time point. Coupling 
of vibration-based methods with performance-based methods such as those 
discussed in earlier chapters is a good approach to increase the accuracy and 
reliability of gas turbine diagnostics.
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Index

2Cr13 martensitic stainless steel, 196
10-point average, 3, 7, 48
10-point time lag, 4

A

Abrupt fault, 40, 76, 118
ideal, noisy, and filtered signals, 35
noise reduction for, 40
step signal as indicator, 95
test signals for, 123

Absolute gradient value, 86
Acceleration

clean and degraded signals during 
IPC fault, 61, 64

clean and degraded signals during 
LPT fault, 60, 62

Accelerometer, 17, 18
Actual fault data, difficulty in 

obtaining, 37
Adaptive filters, 70, 75, 117

for online health monitoring, 53
optimization, 69
weight update equation for, 72

Adaptive learning, 141
Adaptive steepest descent method 

algorithm, 66
Adaptive weighted myriad filter 

algorithm, 53, 66–70
optimization schematic, 69

Additive white Gaussian noise, 96
Adjustable smoothing parameter, 7
Aircraft diagnostics, 1
Alpha-stable noise model, 54
Angle of twist, beam elements, 192
Artificial neural networks (ANNs), 134

adaptive learning with, 141
back-propagation (BP) algorithm, 

142–144
eight-measurement SFI accuracy, 144
four-measurement SFI accuracy, 144
methodology, 141–146
three-layer feed-forward 

architecture, 143

Auto Analysis software, 126
Autoassociative neural 

network (AANN) filters, 
4, 37, 147–148

architecture, 147
bottleneck layer, 147
degrees of freedom, 147
as model-free estimators, 146
for sensor validation, 147

Automated fault detection and 
isolation, 5

Automated fault resolution and 
prognostics, 5

Average predictor, 44
Average root mean square error, 30

B

Back-propagation (BP) algorithm, 
142–144, 148

comparison with Kalman SFI, 145
data generation from influence 

coefficients, 145
Backward first-order FIR predictor, 45
Backward predictor, 38
Backward zero-order FIR predictor, 45
Band-pass filter, 20
Baseline measurements, subtracting 

from actual, 22
Bayesian approaches, 2
Beam elements

angle of twist, 192
degrees of freedom, 192
with fatigue damage, 199
inboard location, 204
kinetic energy, 193
modal frequencies for root 

location of beam, 203
outboard location, 205
rotation, 192
tapered and twisted beam, 192
total strain energy, 191

Bias effects, avoiding with symmetric 
WM filters, 19



222 Index

Biomedical signal analysis, with FMH 
filter, 43

Blade-mountain strain gauges, 190
Blade tip timing methods, 190–191
Bleed leak faults, 151

combining, 133
fingerprint chart, 153
number of measurements 

needed, 162
Bottleneck layer, in ANNs, 147

C

Canny edge detector, 80
Cascaded recursive median 

filter, 75, 79, 84
absolute gradient value, 86
for EGT, 81
for fuel flow, 82
for high rotor speed, 83
for low rotor speed, 82
power to remove outliers, 84

Center weight, 21
Center weighted FMH (CWFMH) 

filter, 45
Center weighted idempotent median 

(CWIM) filter, 19, 21, 33
filter design for gas path 

measurements, 21–22
Center weighted median filter, 20–21
Centroid defuzzification, 156
Cockpit measurements, 75

baseline sources, 76
Combination signals, 113

after 3-point WRM filter, 119
after 7-point WRM filter, 121
comparative performance 

improvement, 109
as health signals, 95
HPC fault and repair, 97
MAE error, varying window 

lengths, 123
mean MAE, 99
mean RMS error, varying window 

lengths, 111
mean RMS error estimates, 99
with noise and outliers, 117
optimal weights, 3- and 7-point 

WRM, 112

percentage noise reduction, 107, 109
RMS error, varying window 

lengths, 123
and single-component faults, 96
weighted RM filter performance 

improvement, 108
Combined gradient/Laplacian edge 

detector, 85
Commercial airline flight data, 127
COMPASS software, 126
Compressor blade movement, 53
Compressor front frame (CFF), 17
Compressor rear frame (CRF), 18
Compressor rotor and stator, 18
Computational costs

minimizing with three-point median 
filter, 39

non-Gaussian noise fault 
detection, 93

Constant neighborhoods, 78
Continuous time Kalman filter, 12
Continuous vibration monitoring, 17
Continuous-wave signals, 45
Continuum damage mechanics (CDM), 

190, 191, 193
with finite element simulations, 211

Control system faults, 53
Convergence

median filter problems, 78
with recursive filters, 75

Convergence problems, median filter, 8
Convergence property, 8
Coupled damage constitutive equations, 

193–194
Coupled faults, 128
Coupling factor

impact on eight-measurement 
system, 134

impact on four-measurement 
system, 135

Covariance extrapolation, 130
Covariance matrix, of state vector, 9
Covariance update, 13, 130
Crack growth models, 190
Crossover operator, 173
Crossover probability, 176
Cubic polynomials, 193
CWIMF filtered data, 75

average root mean square error, 30
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exhaust gas temperature 
deviations, 24

fuel flow deviations, 25
N1 deviations, 27
N2 deviations, 26
noise reduction percentage, 31
recommendations, 31

Cyclic stress-strain relationship, 195

D

Damage curves, 198
Damage detection, 189, 201, 207–210

based on maximum thresholds, 209
frequency thresholds, 208
novel methods, ix
at root location, 201
success rate with increased noise 

levels, 209
Damage detection algorithm, 

accuracy, 209
Damage growth modeling, 189, 197

and change in rotating  frequency, 211
root location detection, 201

Damage model, integrating into finite 
element analysis, 189

Damage strain energy release rate 
variable, 194

Damage variations, by strain load 
case, 198

Damaged coupled potential, 193
Data acquisition, cost of high-rate, 4
Data acquisition rate, 10, 11
Data cleaning, ix, 170
Data points, 52

number in root signal, 46
Data smoothing and filtering, 5
Debris monitoring, 17
Defuzzification, 156
Defuzzifier, 154, 172
Degrees of freedom

in ANNs, 147
beam elements, 192

Design parameters, 21
Design variable linking, 176
Detection thresholds, tradeoffs, 90
Deterioration, 19, 28, 40, 139

ideal, noisy, and filtered signals, 36
measurement deltas, 2

noise reduction based on MSE, 41
quadratic signal representing, 53, 56
ramp edge simulating, 34, 53, 56, 96

Diagnostic algorithms, 2
Diagnostic matrix, 127
Diagnostics, 1

gas turbine engines, 1–2
importance, 1
vibration-based, 17–18

Dimensional reduction, 148
Discrete time Kalman filter, 12, 13

equations, 13
Discrete time location, 75
Drift, 126
Dynamical systems approaches, 189

E

Edge detection, 80
filtering followed by, 75
gradient edge detector, 77, 80
Laplacian edge detector, 77, 80–81
mechanism of, 86

Edge detection algorithm, four-point 
time delay, 87

Edge distortion, by linear filters, 50
Edge preservation, 3, 19

compromise with noise reduction, 43
by CWFMN filter, 45
by FMH filters, 45
by nonlinear filters, 43

Edges
MAE sensitivity to, 57
as root of CWM filter, 21
visual sensitivity to, 3

EGT sensor, 22
Eight-measurement system, 143, 144

accuracy with, 163
coupling factor accuracy, 134
fuzzy logic fault isolation success 

rates, 165
improved fault isolation accuracy 

with, 166
Elitist reproduction strategy, 173
Engine diagnosis software, 125–126
Engine fault, 15

as input to fuzzy logic problems, 156
simultaneous determination with 

measurement errors, 127
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Engine fault deviation, 138
Engine fault influence coefficient 

matrix, 15, 127
Engine fault vector, 126
Engine in-flight shutdowns (IFSDs), ix
Engine models, 22
Engine modules, 6, 141, 157

fault isolation with high 
uncertainty, 151

Engine service bleed, 135
Engine state changes, 72
Engine state vector, 14
Environmental control system (ECS) 

bleed leaks, 128
Error-free measurement, 9
Error measure, 28, 83, 84

numerical simulations, 28–31
in test signal, 47

Error minimization, with 3- and 
7-point weighted RM 
filters, 111

Error sources, 22
finite element modeling, 207
measurement noise, 207

Euclidean norm, 139
Exhaust gas temperature (EGT), 

1, 6, 76, 170
discretization of universe and 

number of fuzzy sets, 179–181
ideal, noisy

and cascaded recursive median 
signal, 81

and filtered data for deviations, 24
noisy and filtered signal, 184

Expert systems, 5. See also Fuzzy logic
fuzzy, 151

Exponential average filter, 3, 84
Exponential smoothing, 3

in TEMPER software, 11
Exponentially weighted moving average 

(FWMA) filter, 7

F

Failure prediction, 189
False alarms, 11, 80, 87

achievable detection ratio, 91
minimizing with Laplacian edge 

detectors, 76

minimizing with threshold 
selection, 90

numerical experiment thresholds, 89
percentage calculation, 90
reducing, 75
in SFI, 132
threshold value and, 87, 89
tradeoff with missed alarms, 208
tradeoffs with detection 

thresholds, 90
for trend shift detection, 88, 89, 90

Fan module, 6, 22
fingerprints, 23, 36
fuzzy set rules, 182

Fatigue damage, 195
beam with, 199

Fatigue damage model, 193–199
Fault detection, 33, 93

accuracy for fuzzy logic systems, 162
Kalman filter for, 125
with neural network methods, 141
problems with transient data, 53

Fault detection system, schematic 
representation, 209, 210

Fault influence coefficient 
relationships, 126

Fault isolation, ix, 1, 33, 128. See also 
Single-fault isolation (SFI)

data cleaning prior to, 170
for eight- and four-measurement 

systems, 134–135
by fuzzy logic, 160–161
fuzzy system results, 162
increasing accuracy by adding 

sensors, 162
intelligent system schematic, 157
Kalman filter for, 125
with neural network methods, 141
as pattern classification problem, 141
with soft computing approach, 170
success rate with increasing noise 

levels, 183
success rates for varying sensor 

suites, 166
Fault isolation accuracy, comparisons, 163
Fault isolation algorithms, 6
Fault logic, 11
Fault magnitude, transient data and, 53
Fault ranking, 134
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Fault repair
ramp signal, HPT fault, 96
step signal, HPC fault, 95

Fault signatures, 23, 170
approximate values, 170

Fault time history, 46
Feed-forward ANN, 142, 146

approximating with fuzzy logic 
systems, 151

Filter design, for gas path 
measurements, 21–22

Filter weights, updating, 67
Filtered signal, 29

for engine abrupt fault, 35
engine deterioration, 36
exhaust gas temperature 

deviations, 24
on IPC T2 engine, 64
on LPT T2 engine, 62
on LPT T6 engine, 63

Filtering errors, 51
Filtering methods, 3
Fingerprints, 161, 170

2.5 bleed fault, 153
dividing by measurement 

uncertainty, 34
for gas turbine faults, 23, 152
LPT fault, 153
selected gas turbine faults, 36
signal-to-noise ratios, 37

Finite difference approximation, 86
Finite element simulations, 189, 200–201

convergence, 200
as error sources, 207

Finite impulse response (FIR) filter, 3, 7
comparison with weighted RM 

filter, 98
FIR filter, 55

comparison with myriad filter, 71
comparison with weighted 

myriad, 70, 72
inability to remove outliers, 72
noise reduction statistics, 51

FIR filtered data, 50
average root mean squared error, 30
exhaust gas temperature 

deviations, 24
fuel flow deviations, 25
N1 deviations, 27

N2 deviations, 26
noise reduction percentage, 31
removal of Gaussian noise in, 29
smoothing of trend shifts, 29
window length, 48

FIR filters, effect on noisy signal 
contaminated with outliers, 48

FIR-median hybrid (FMH) filter, 3, 4, 75
FIR-median hybrid filters, 43

Gaussian noise, 47
numerical simulations, 48–51
root signal, 46–47
test signal, 45–47
weighted, 44–45

FIR moving average filter, 47
Fired fuzzy rules, 156
Fitness function, 173
Five-point filter, with no weights, 98
Five-point myriad filter, 53, 57

linearity parameter effects, 58
Five-point RM filter, 83
Five-point WRM filter, 123

error decrease with window 
length, 116

optimal weights, 101
Five-pointed weighted median 

filter, 98
Fixed-noise detection threshold, 4
Flight safety, ix
Flow capacities, 151, 170
FMH filters. See also FIR-median 

hybrid filters
for biomedical signal analysis, 43
weighted, 44–45

Foreign object damage (FOD), 
1, 11, 46, 54

step signal as indicator, 96
Forward data point requirements

avoiding, 39
minimizing, 33

Forward first-order predictor, 45
Forward predictor, 38
Forward zero-order predictor, 45
Four-measurement system, 143, 144

coupling factor accuracy, 134
fuzzy logic fault isolation 

success rates, 164
Fracture mechanics-based 

approach, 190
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226 Index

Frequency thresholds, for damage 
detection, 208

Fuel flow (WF), 1, 6, 75, 170
change in, 15
ideal, noisy

and cascaded recursive median 
signals, 82

and filtered deviations, 25
noisy and filtered HPC fault 

signal, 185
Fuzzification, 157–160
Fuzzifier, 154, 169, 171
Fuzzy inference engine, 154, 171
Fuzzy logic, ix, 2, 6

single-fault description and 
modeling, 152

Fuzzy logic system, 151, 160, 171–172
algorithm, 172
centroid defuzzification, 156
comparison of fault isolation 

accuracy, 163
configuration dependence, 169
crisp number outputs, 153–154
defuzzification, 156
defuzzifier, 154
fault isolation results, 162
fault isolation success rate with 

uncertainty, 164–166
fingerprints for selected gas turbine 

faults, 152
fired fuzzy rules, 156
four components, 154, 171–172
fuzzification, 157–160
fuzzifier, 154
fuzzy inference engine, 154
fuzzy rule base, 154
fuzzy sets, 155
fuzzy sets for high-rotor speed 

measurement delta, 160
Gaussian fuzzy set midpoints, 159
IF-THEN statements in, 154, 155
implications in, 154
inference engine, 155
inputs and outputs, 156–157
intelligent SFI schematic 

representation, 157
iterative design process, 174
linguistic variables in, 154, 155
logical connections, 154

maximum matching 
defuzzification, 156

measurement uncertainty, 159
membership functions, 155
methodology, 152–155
module and system faults, 151–152
numerical simulations, 161–167
pattern recognition problems, 155
problem formulation, 156–157
product inference formula, 155
quantifying linguistic variables 

in, 154
robustness analysis, 162, 167
rules and fault isolation, 160–161
schematic representation, 154
as universal function 

approximation, 169
winner-takes-all approach, 167

Fuzzy rule base, 151, 154, 160–161, 
171, 172

changes with genetic algorithms, 174
developing with genetic 

algorithms, 169
expressed as linguistic variables, 154
with six fuzzy sets, 182

Fuzzy set theory, 152
Fuzzy sets, 155

discretization of universe and 
number of, 179–181

fault isolation success with 
increasing number, 177

midpoints, 158, 178–179
number of, 177
selecting number and type, 172

Fuzzy system rules, 161

G

Gain, 12
Gas generator, 17, 18

five submodules, 17–18
Gas path analysis, 1

Kalman filter for, 125
matrices for, 10
on-wing and test cell uses, 10–11

Gas path measurements
changes in, 1
filter design for, 21–22

Gas turbine engine diagnostics, 1–2
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227Index

goals, 125
influence coefficients, 14–17
Kalman filter, 12–14
least-squares approach, 9–11
linear filters for, 7
median filters for, 7–8
noise and outlier removal 

schematic, 34
schematic, 93
signal processing and, 3–5
typical process, 5–6
vibration-based, 17–18

Gas turbine engine modules, 6
Gas turbine engines, modules and 

sensor measurements, 6
Gas turbine faults

fingerprints, 23
signal-to-noise ratios for 

fingerprints, 37
Gas turbine health signals, 52

SWFMH filter for, 45
Gas turbine modules, 17, 22, 170
Gas turbine transient signal, 59
Gas turbines, ix
Gaussian assumption, 9
Gaussian fuzzy sets, 169

midpoints, 159
Gaussian membership functions, 155
Gaussian noise, 12, 77, 84

attenuating with rational filters, 38
CWIM filter limitations in 

removing, 29
median filter limitations in 

removing, 39
reduction with rational filter, 40
removal by FIR and IIR filters, 29
removal by median-rational filter, 40

Gaussian random noise model, 2
General Electric, TEMPER software, 9
Genetic algorithms, 172–173

number of generations, 173, 176
success rate for six-set fuzzy 

system, 177
for transient fault isolation, 53–54

Genetic fuzzy system, 169, 174–176
algorithms, 174, 175
fault isolation success, 182–183
tuning variables, 175, 176

Genetic operators, 173

Gentle filter, 29, 30, 33
Gradient edge detector, 80

dependence on edge steepness, 80
thresholding, 75

Gradient search, 142
Gradual fault, 118

ramp signal as indicator, 95
test signals for, 123

H

H matrix, 14
Health residuals, 201, 207
Health signals, most common types, 95
Heuristic reasoning, 158, 159
Hidden layers, 148

in ANNs, 142
RBFNN model, 171

High-frequency noise, 76
reduction with SWFMH filter, 45

High-pass filter, 20
High-pressure compressor (HPC), 6, 22

fingerprints, 23, 36
High-pressure turbine (HPT), 6, 18, 

22, 170
fingerprints, 23, 36

High rotor speed (N2), 1, 6, 75, 170
ideal, noisy, and cascaded recursive 

median signals, 83
High spool speed delta, 15
High-strain condition

modal frequencies for stiffness 
reduction, 204, 205

outboard damage and, 201
High-strain model, 198, 199
HPC exit temperature, 15
HPC fault

combination signal and repair, 97
noisy and filtered EGT signal, 184
noisy and filtered WF signal, 185
root and noisy signal, 46
step signal, 95

HPT fault, 132
ramp signal and repair, 96
ramp signal as indicator, 96
root and noisy signal, 46
slow development over time, 46

Human fault resolution and 
prognostics, 5
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228 Index

Human visual system
edge importance, 79
sensitivity to edges, 3

Hybrid filters, ix
edge detectors, 80
FIR-median, 43
median-rational, 33–42
in soft computing, 186

Hybrid neural network algorithm, 
142, 145–146

I

Ideal signal, 23, 29
absolute gradient value for, 86
for engine abrupt fault, 35
engine deterioration, 36
exhaust gas temperature 

deviations, 24
for fuel flow, 82
fuel flow deviations, 25
for high rotor speed, 83
for low rotor speed, 82
N1 deviations, 27
N2 deviations, 26
variations in, 35

Idempotent filters, 21, 22
Idempotent median filters, 19

center weighted idempotent 
median filter, 21–22

center weighted median filter, 20–21
error measure, 28–31
test signal, 22–28
weighted median filter, 19–20

IF-THEN statements, 155
in fuzzy logic systems, 154

IIR exponential average filter, 47
IIR filtered data, 23, 50

average root mean squared error, 30
exhaust gas temperature 

deviations, 24
fuel flow deviations, 25
N1 deviations, 27
N2 deviations, 26

Image processing concepts, 77
Implications, in fuzzy logic systems, 154
Impulsive noise, 2, 28, 77

in ideal signal, 23
outliers signifying, 103

recursive filter immunity to, 78
reduction with median filters, 78
removing for improved 

visualization, 30
In-plane bending, 193
Index set, 137
Inference engine, 155
Infinite impulse response (IIR) filter, 3
Influence coefficients, 

1, 14–17, 22, 146, 158
in neural networks, 145

Input layer
in ANN, 142
ANNs, 147
RBFNN model, 171

Instantaneous blade displacement, 191
Instrumentation faults, 128, 141, 151
Intermediate-pressure 

compressor (IPC), 70
single faults in, 59

Intermittent faults, 72, 118
difficulty of detecting, 91

Internal energy dissipation, 194
Inverse wavelet transform, 4
IPC fault

clean and degraded signals on 
acceleration, 61, 64

transient signal, 97
Iterative design, 174

J

Jet engines, diagnostics, 1

K

K-means clustering algorithm, 171, 184
Kalman estimator, 129

accuracy, 129
Kalman filter, ix, 1, 2, 6, 12–14, 54, 125

abstract notation, 14
covariance extrapolation, 130
covariance update, 130
fault isolation accuracy 

comparisons, 163
general equations, 131
general form, 130
including time history in, 11
index set, 137
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229Index

initial estimates problem, 136
iterative processing, 131
Kalman gain, 130
methodology, 125–128
as model-based estimator, 145–146
multiple- and single-fault isolation 

with, 135, 136
and neural network methods, 

141, 146–147
numerical simulations, 133–134
problems with non-Gaussian 

outliers, 29
sensor error compensation, 135–139
for single-fault isolation, 125, 128–132
single-fault isolator, 144
as single-fault isolator (SFI), 128
single-fault problem set, 130
state extrapolation, 130
state update, 130

Kalman gain, 13, 130
Kalman gain matrix, 127
Kalman single-fault isolator

accuracy, 144
comparison with BP ANN, 145

Kinetic energy, beam elements, 193

L

Laplacian edge detector, 75, 76, 
80–81, 87

independence from edge 
steepness, 80

LCF damage accumulation law, 196
Least mean absolute deviation (LMAD) 

algorithm, 66
Least-squares approach, 1, 9–11

sensitivity, 10
Lemaitre’s hypothesis, 195
Linear damage accumulation 

theory, 190
Linear filters, 1, 6, 7

edge blurring by, 77
edge distortion by, 50
Gaussian noise reduction by, 50
performance degradation with 

impulsive contamination, 54
Linear parameter, adjusting, 72
Linearity parameter

adjusting for myriad filter, 54

avoiding with weighted myriad 
filter, 66

as myriad filter problem, 59
Linearization, 9
Linearized model approximation, 

engine fault diagnostics, 126
Linguistic variables, 154, 155, 158

EGT as, 158
rules expressed as, 154
values for fuzzy set, 182

Logical connections, between linguistic 
variables, 154

Low cycle fatigue (LCF), 190
effect on rotating frequency, 211
general accumulation law, 196
general constitutive equation, 196

Low-pass filter, 20
Low-pressure compressor (LPC), 6, 22

fingerprints, 23, 36
Low-pressure turbine (LPT), 

6, 22, 70, 170
fingerprints, 23, 36

Low rotor speed (N1), 1, 6, 75, 170
ideal, noisy, and cascaded recursive 

median filtered signal, 82
Low spool speed delta, 15
Low-strain model, 197, 199

damage at root location, 200–201
inboard and outboard location 

damage, 201
Lower weight set, efficiency, 100
LPT fault

clean and degraded signals during, 
60, 61, 62

fingerprint chart, 153

M

MAE error, 123. See also Minimum 
absolute error (MAE)

MAP III software, 126
Mass matrices, 193
MATLAB, ix, 176
Matrix of influences, 131
Maximum values, 174, 175
Mean absolute error (MAE), 98, 100, 185

minimizing cost function, 66
sensitivity to outliers and edges, 57
to T2 engine, 65
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230 Index

for T6 engine, 65
WRM filters, varying window 

lengths, 99, 112
Mean RMS, 98
Mean square error (MSE), 37, 40

noise reduction based on, 40, 41
Measurement configuration matrix, 131
Measurement deltas, 2, 5, 11, 21, 28, 157

1% measurement deltas, 15
features, 2
filtering followed by edge 

detection, 75
fuzzy sets for high rotor speed, 160
as fuzzy variables, 157
as key health signal, 75
long-term deterioration, 2
normalization, 15
preserving edges in, 3
sudden step-like changes, 2
trend shift detection in, 77
uncertainty in, 22

Measurement deviations, 12, 33
Measurement error, 157

estimated, 137
simultaneous determination of 

engine faults, 127
statistical independence, 9
variance of, 10

Measurement nonrepeatability, 131
Measurement residual, 136
Measurement vector, 9
Median filters, 1, 3, 6, 7–8, 37, 47

algorithm improvements, 93
center weighted, 20–21
center weighted idempotent, 21–22
comparison with weighted RM 

filter, 98
convergence problem, 8
edge preservation by, 43
effect on noisy signal contaminated 

with outliers, 49
idempotent, 19–31
of increasing order, 79
iterative application, 78
noise reduction statistics, 41, 108
preprocessing health signals with, 93
repeated, 8
as selection filters, 39
streaking problems, 50

three-point, 38, 39
for trend shift detection, 77–78
weighted, 19–20

Median-rational hybrid filters, 33, 
38–40

engine deterioration signals, 36
noise reduction advantages, 42
noise reduction statistics, 41
numerical simulations, 40–41
rational filter, 37–38
test signals, 33–37

Membership functions, 155, 159, 172
challenges for fuzzy logic, 174

Microcrack damage, 189
Microplastic deformation, 194
Microplastical dissipation potential, 194
Midpoints, 174

of fuzzy sets, 175, 176, 178, 179
Military engines, unsteady conditions 

with, 53
Minimum absolute error (MAE), 98
Minimum values, 174, 175
Misdiagnosis, 11
Misscheduled nozzle, 53
Missed detections, 87

achievable detection ratio, 91
numerical experiment thresholds, 89
percentage calculations, 90
threshold value and, 89
tradeoff with detection thresholds, 90
for trend shift detection, 88, 89, 90

Modal frequencies
stiffness reduction at inboard 

location of beam, 204
stiffness reduction at outboard 

location of beam, 205
stiffness reduction at root location of 

beam, 203
Model-based diagnostics, 33, 146–147
Model-free estimators, 146
Modeling assumptions, uncertain 

due to, 76
Modeling errors, 157, 207
Moderate-strain model, 197, 199
Module faults, 151

fuzzy logic for, 151–152
Monotone sequence, 78
Monte Carlo filter, 93
Moving averages, 3
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231Index

myriad filter as substitute for, 53, 54
MS Excel, ix
Multi-input single-output (MISO) fuzzy 

logic system, 154
Multilayer feed-forward networks, 142
Multiple-fault analysis, 125
Multiple-fault isolator, 128

measurement model, 135
Multiple faults, 14
Mutation operator, 173
Mutation probability, 176
Myriad

defined, 55
linearity parameter problem, 59

Myriad filter, 54–56
adaptive weighted myriad filter 

algorithm, 66–70
advantages, 69
comparison with FIR, 56, 71
complicated definition, 70
disadvantages, 70
filter output dependence, 66
linearity parameter effects, 58
numerical simulations, 56–59, 70–72
outlier removal with, 70
performance analysis, 56
as running-window filter, 54
step, ramp, quadratic signals, 57
as substitute for moving average 

filter, 53, 54, 72
test signals, 57
for transient data, 53
weighted myriad algorithm, 59–66

N

N1, 22
ideal, noisy, and filtered 

deviations, 27
N2, 22

ideal, noisy, and filtered 
deviations, 26

Natural rotating frequencies, 199
Negative weights, 20, 60
Neural network architecture, 141

ANN approach, 141–146
autoassociative neural 

network, 147–148
configuration dependence, 169

fault isolation accuracy 
comparisons, 163

hybrid neural network algorithm, 
145–146

Kalman filter comparisons, 146–147
mapped learning in, 146
supervised learning, 169

Neural network-based filtering, 5, 6
for transient fault isolation, 53–54

Neural network mapping, 145
Neural networks, ix, 2, 4

advantages, 141–142
Neural signal processing, 170–171
Newton-Raphson method, 14
Noise

attenuation at larger window 
lengths, 21

damage detection success rate with 
increased noise, 209

defined, 3
effects on residuals, 207
and engine health differentiation, 28
as error source, 207
fast trend shift detection with, 76
Gaussian, 12
increased with faults, 118
measurement delta 

contamination by, 2
pattern recognition despite, 142
removing high-amplitude, 3
robustness of median filters against, 7

Noise reduction
with cascaded RM filters, 75
compromise with edge 

preservation, 43
for engine abrupt fault signal, 40
engine deterioration signal, 41
with median filter, 41
with median-rational filter, 41
for noisy test signal with outliers, 109
by nonlinear filters, 43
optimally weighted recursive 

median filters, 107
with radial basis neural 

networks, 186
with rational filter, 41
RMS error as indicator of, 83
schematic, 34
in trend shift detection, 83–84
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232 Index

with weighted myriad filter, 53
Noisy combination signal

3-point WRM filter effects, 114
7-point WRM filter effects, 116
with outliers, 104
weighted RM filter effects, 102

Noisy ramp signal
3-point WRM filter effects, 113
7-point WRM filter effects, 115
with outliers, 105
weighted RM filter effects, 102, 105

Noisy realistic signal
with outliers, 105
weighted RM filter effects, 103

Noisy signal, 23, 28, 29
absolute gradient value for, 86
average root mean square error, 30
contaminated with outliers, 48–50
data points for fuzzy sets, 182
effect of FIR filters, 48
effect of SWFMH filters, 50
for EGT, 81
for engine abrupt fault, 35
engine deterioration, 36
exhaust gas temperature 

deviations, 24
expression, 33–34
filtering errors, 51
for fuel flow, 82
fuel flow deviations, 25
for high rotor speed, 83
for HPC and HPT fault, 46
on IPC T2 engine, 64
for low rotor speed, 82
on LPT T2 engine, 62
on LPT T6 engine, 63
median filter effects, 49
N1 deviations, 27
N2 deviations, 26
with outliers, 84, 109

Noisy step signal
3-point WRM filter effects, 113
7-point WRM filter effects, 115
with outliers, 104
weighted RM filter effects, 101

Noisy transient signal
3-point WRM filter effects, 114
7-point WRM filter effects, 116

Non-Gaussian noise, 93

Non-Gaussian outliers, 47
Nonedge points, 80
Nonlinear filters, ix, 3, 4

edge preservation by, 43
median filter, 6
preprocessing with, 77

Nonlinear mapping, 152
Nonlinear SWFMH filter, 47
Nonnegative integer weights, 19
Normalized measurement error 

norm, 131
calculating, 132

Nozzle area deviations, 135
Numerical simulations, ix

error measure, 28–31
fuzzy logic system, 161–167
Kalman filter, 133–134
median-rational hybrid filters, 40–41
optimally weighted recursive 

median filters, 98–103
for SFI, 133–134
soft computing approach, 176–186
trend shift detection, 81–85

O

Objective function, minimizing for 
GFS, 185

On-wing gas path analysis, 10–11
One-dimensional law of cyclic 

plasticity, 196–197
Online adaptive signal processing 

method, 54
Online condition monitoring 

systems, 52, 211
Optimal estimation problem, 12
Optimal state vector, 10
Optimal weights

5-point recursive WRM filter, 101
three- and seven-point WRM 

filters, 112
Optimally weighted recursive median 

filters, 93, 123
combination signal, HPC fault and 

repair, 97
combination signal after 3-point 

WRM filter, 119
combination signal with noise and 

outliers, 117
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233Index

comparison with median and 
recursive median filters, 108

effects on noisy combination 
signal, 102

effects on noisy combination signal 
with outliers, 104

effects on noisy ramp signal, 102
effects on noisy ramp signal with 

outliers, 105
effects on noisy realistic signal, 103
effects on noisy realistic signal with 

outliers, 105
effects on noisy step signal with 

outliers, 104
HPC fault step signal, 95
HPT fault ramp signal, 96
lower weight efficiency, 100
MAE estimate on test signal with 

outliers, 106
mean MAE, varying window 

lengths, 99
mean RMS error, varying window 

length, 111
mean RMS error estimate, 5-point 

filters, 99
numerical simulations, 98–103
optimal weights, 5-point WRM 

filter, 101
percentage noise reduction, 107
performance comparison, 107–109
performance improvement relative 

to other filters, 108, 109
ramp signal with noise and 

outliers, 118
RMS error on test signal with 

outliers, 106
RMS error with varying window 

lengths, 123
root signal accuracy, 107
seven-point filters, 110–123
step signal after 3-point WRM 

filter, 119
step signal with noise and 

outliers, 117
superior performance, 107
test signal with outliers, 103–104
test signals, 94–97
three-point filters, 110–123
transient signal, IPC fault, 97

transient signal with noise and 
outliers, 118

weight sensitivity to signal type, 100
weighted recursive median filters, 94
WRM filter effects on noisy step 

signal, 101
Optimization problem, 100, 110

genetic algorithms for, 173
weight optimization, 123–124

Order of likelihood, 132
Order statistics filters, 38
Orthogonal wavelet analysis, 4
Orthogonal wavelet transform, 4
Out-of-plane bending, 193
Outboard damage, 201
Outlier contamination, 59
Outlier removal, 50

FIR filter limitations, 70, 72
with median-rational filter, 40
by nonlinear filters, 43
with recursive RM filters, 75
schematic, 34
in trend shift detection, 84–85
with weighted myriad filter, 53

Outliers, 34, noisy combination 
signal with, 104

attenuation by 3- and 7-point WRM 
filters, 115

combination signal with noise 
and, 117

comparative percentage noise 
reduction, 109

comparative performance 
improvement, weighted RM 
filters, 109

impulsive noise representation by, 103
Kalman filter issues with, 29
MAE estimate on signal with, 106
MAE sensitivity to, 57, 98
median filter for removing, 19
myriad filter advantages, 70
noisy ramp signal with, 105
noisy realistic signal with, 105
noisy step signal with, 104
non-Gaussian, 47
ramp signal with noise and, 118
removal by CWIM filters, 29
removing from gas turbine 

measurements, 3
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234 Index

RMS error on signal with, 106
step signal with noise and, 117
in test signal, 47
transient signal with noise and, 118

Output later
in ANN, 142
ANNs, 147

P

P49 indication problem, 151
Paris law, 190
Partial bleed leak, 129
Pattern classification, 141
Pattern recognition, 141

for fuzzy logic systems, 155
Performance shifts, 127
Piecewise linear membership 

functions, 155
Piezoelectric accelerometer, 17. 

See also Accelerometer
Plastic deformation, 194
Plastic strain, accumulated, 195
Population size, 176
Positive weights, 60
Power turbine, 17, 18
Predictor-corrector methods,  14, 127, 136
Preprocessing, 8, 132

with median filter, 93
with WRM filter, 124

Probabilistic search methods, 172
Product inference formula, 155
Pure combustor performance 

problems, 167

Q

Quadratic signal, 56
deterioration shown by, 53, 56
effect of linearity parameter, 

5-point myriad filter, 58
for transient data, 57

Quantifying linguistic variables, 154

R

Radial basis function neural networks 
(RBFNN), 169, 170–171

noise reduction with, 186
parameter value optimization, 171
RBF unit centers, 184
three layers, 171

Ramp edges, 33
ideal and noisy test signal, 34

Ramp predictor, 44
Ramp signal, 40, 41, 46, 56

after 3-point WRM filter, 120
after 7-point WRM filter, 122
comparative performance 

improvement, 109
deterioration shown by, 53, 56
effect of linearity parameter, 5-point 

myriad filter, 58
as gradual fault indicator, 95
for HPT fault and repair, 96
as HPT fault indicator, 96
MAE error, varying window 

lengths, 123
mean MAE, 99

varying window lengths, 112
mean RMS error, varying window 

lengths, 111
mean RMS error estimates, 99
MSE for, 40
with noise and outliers, 118
optimal weights, 3- and 7-point 

WRM, 112
percentage noise reduction, 107, 109
RMS error, varying window 

lengths,  123
for transient data, 57
weighted RM filter performance 

improvement, 108
Random error, vector of, 9
Random noise, 28, 98

in CWIM filtered signal, 29
Rational filter, 37–38

limitations in outlier removal, 40
noise reduction statistics, 41
trend shift preservation with, 40

RBF unit centers, 184
Recursive median filters

fast convergence, 75
noise attenuation capabilities, 78
noise reduction statistics, 108
optimally weighted, 93
for trend shift detection, 78

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

3:
11

 1
6 

M
ar

ch
 2

01
6 



235Index

Reproduction operator, 173
Residual, 12

thresholds, 207
Residual generator, schematic 

representation, 207
Residuals, fuzzy logic reasoning, 157
Revenue flight data, 127
Reynolds and Mach number effects, 135
RMS error, WRM filter, varying 

window lengths, 123
Root cause influence matrix, 131
Root causes, 128–129

identifying based on single-
measurement set, 128

sample influences, 129
as state variables, 128

Root mean square (RMS) error, 83, 
98, 142

5-point filters, 99
Root signal, 8, 45, 47, 94, 95

comparing filtered signal with, 47
convergence to, 78
CWIM filter, 29
filtering results, 48–51
FIR-median hybrid filters, 46–47
for HPC and HPT faults, 46
number of data points, 46
reproduction from noisy data, 50

Rotary inertia effects, 193
Rotor speed measurements, 90
Running-window filter, 54

S

Sensor bias, 126
Sensor error, 11, 15, 16, 22, 76, 136

compensation with Kalman filter, 
135–139

highest exceedance, 137
recovery from large, 139

Sensor failure detection, 148
Sensor fault data vector, 16
Sensor fault deltas, total number, 135
Sensor fault deviation, 138
Sensor fault influence coefficients, 127
Sensor fault vector, 126
Sensor faults, 14, 16
Sensor influence coeefficient matrix, 16
Sensor measurements, 6

redundancy between, 148
Sensor validation

with ANN method, 147
ANNs for, 147

Seven-point optimally weighted RM 
filters, 110

combination signal after filtering 
with, 121

effect on noisy combined signal, 116
effect on noisy ramp signal, 115
effect on noisy step signal, 115
effect on noisy transient signal, 116
MAE, 116
mean MAE, varying window 

length, 112
numerical analysis, 110–113
objective function, 111
optimal weights, 112
ramp signal after filtering with, 122
step signal after filtering with, 121
transient signal after filtering 

with, 122
Shear deformation effects, 193
Signal features

noise reduction without affecting, 77
preservation with 3- and 7-point 

weighted RM filters, 115
preservation with cascaded RM 

filters, 75
preservation with median filters, 78
preservation with weighted RM 

filters, 103
Signal processing, 1, 3–5, 19

classical, 2
Signal-to-noise ratio (SNR), 2, 35, 96

calculating, 34
fingerprints of gas turbine faults, 37

Signal type, weight sensitivity to, 101
Simulated data, 37
Single-fault isolation (SFI), 125, 

128–132, 144
accuracy with fuzzy logic, 166
confounding between single 

faults, 132
coupling factor impact, eight-

measurement system, 134
dependent parameters, 126
eight-measurement ANN 

accuracy, 144
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236 Index

eight-measurement hybrid NN 
accuracy, 145

eight-measurement problem set 
results, 133

following sharp trend change, 166
four-measurement ANN 

accuracy, 144
four-measurement hybrid NN 

accuracy, 146
four-measurement problem set 

results, 133
independent parameters, 126
problem set, 130

Single faults, ix, 14, 22, 43, 46, 96
fuzzy logic description and 

modeling, 152
in LPT, 59
step signal representation of, 53

Singular value decomposition 
(SVD), 171

Sinusoidal signal preservation, 
by CWFMH filter, 45

Smoothing methods, 3, 5, 77
Soft computing approach, ix, 169

design parameters, 184
design variable linking, 176
fault isolation success and number 

of fuzzy sets, 177
fuzzy logic system, 171–172
fuzzy set midpoints, 178–179
gas turbine fault isolation, 170
genetic algorithms, 172–173
genetic fuzzy system, 174–176
hybridization, 186
neural signal processing, 170–171
noise reduction with RBNN 

approach, 186
noisy and filtered signal, HPC 

fault, 184
number of clusters, 184
numerical simulations, 176–186
optimal fuzzy system rules, 182, 183
radial basis function neural 

networks, 170–171
success rate and genetic fuzzy 

sets, 177
Solution residual, 11
Stability bleed leak, 151
Standard deviations, 143

of fuzzy sets, 176
Standard median (SM) filters, 7
Start bleed leak, 151
State deviations, 12
State estimate, 131
State extrapolation, 130
State update, 13, 130
State vector, 9, 14

covariance matrix, 9
Stator vane misrigging, 151
Steady-state signals, 95

versus transient signals, 53–54
Steam turbine design life, 198
Steam turbine rotor fractures, 190
Steepest descent method, 66
Step changes, 76
Step edges, 33

ideal, 34
preservation, 29

Step signal, 41, 56
as abrupt fault indicator, 95–96
after 3-point WRM filter, 119
after 7-point WRM filter, 121
effect of linearity parameter, 5-point 

myriad filter, 58
for HPC fault and repair, 95
MAE error, varying window 

lengths, 123
mean MAE, 99

varying window lengths, 112
mean RMS error, varying window 

lengths, 111
mean RMS error estimates, 99
MSE for, 40
with noise and outliers, 117
optimal weights, 3- and 7-point 

WRM, 112
percentage noise reduction, 107, 109
performance improvement 

comparisons, 109
RMS error, varying window 

lengths, 123
and single faults, 53
for transient data, 57
weighted RM filter 

performance, 108
Stiffness

frequency variations and strain 
level, 202
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237Index

reduction for high-strain 
condition, 200

reduction with crack growth, 190
Stiffness matrices, 193
Stiffness reduction

as damage indicator, 189
at root, inboard, and outboard 

locations, 200
Strain equivalence, 195
Strain load

damage variations with number of 
cycles, 198

frequency variations with 
number of cycles, stiffness 
reduction, 202

high-strain condition, 203
Streaking problems, in median filter, 50
Stuck open bleed, 129
Subfilter weighted FMH (SWFNH) 

filter, 45
Subfilters, amplifying importance 

of, 45
Supervised learning, 142, 146, 169
SWFMH filters

effect on noisy signal contaminated 
with outliers, 50

noise removal superiority, 52
for online condition monitoring, 52
root signal reproduction from noisy 

data, 50
superiority to FIR and IIR filters, 51

Symmetric WM filters, 19, 94
System faults, 128, 141

fuzzy logic applications, 151–152

T

TCC malfunctions, 128
TEAM III software, 126
TEMPER software, 9, 126

exponential smoothing, 11
Test cell gas path analysis, 10–11
Test cell geometry, 135
Test signals, 22–23

error measure, 47
fingerprints for gas turbine faults, 23
FIR-median hybrid filters, 45–47
Gaussian noise in, 47
ideal signal, 23

median-rational hybrid filters, 33–37
noisy signal, 23, 28
for optimally weighted recursive 

median filters, 94–97
with outliers, 103–104
outliers in, 47
for trend shift detection, 81, 83

Theorems
CWM constant neighborhood, 

minimum length, 20
edge definition, 21

Three-layer feed-forward ANN, 142
architecture, 143

Three-point median filter, 38, 39
Three-point optimally weighted RM 

filters, 110
combination signal after filtering 

with, 119
effect on noisy combined signal, 114
effect on noisy ramp signal, 113
effect on noisy step signal, 113
effect on noisy transient signal, 114
effects, 114–115
MAE, 116
mean MAE, varying window 

length, 112
numerical analysis, 110–113
objective function, 111
optimal weights, 112
ramp signal after filtering with, 120
step signal after filtering with, 119
transient signal after filtering 

with, 120
Three-point RM filter, 83
Three-point time delay, 79, 87
Threshold value

minimizing false alarms with, 90
and number of false alarms/missed 

detections, 87, 89
Thresholding

with gradient edge detector, 80
of gradients, 77
threshold selection, 87–90
of wavelet coefficients, 4

Time delay, 85
minimizing, 98
three-point, 79, 87

Time varying statistics, 66
Timoshenko beam, 189, 191
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238 Index

Tip timing data acquisition, 191
Total strain energy, beam, 191
Transfer functions, 171
Transient data

for IPC fault, 97
and myriad filter, 53
numerical simulations, 56–59, 70–72

Transient performance prediction 
code, 53

Transient signals
after 3-point WRM filter, 120
after 7-point WRM filter, 122
effect of IPC fault during, 61
effect of LPT fault during, 60
gas turbine, 59
as health signals, 95
IPC fault, 97
MAE error, varying window 

lengths, 123
mean MAE, 99
mean RMS error, varying window 

lengths, 111
mean RMS error estimates, 99
with noise and outliers, 118
optimal weights, 3- and 7-point 

WRM, 112
percentage noise reduction, 107
RMS error, varying window 

lengths, 123
steady-state versus, 53–54
weighted RM filter performance 

improvement, 108
Trapezoidal membership functions, 155
Trend monitoring, 17
Trend plots, 2, 5
Trend shift detection, ix, 75–76, 77, 

85–91, 128, 131
algorithm schematic, 85
algorithm testing, 90–91
cascaded recursive median filter 

for, 79
edge detection and, 80–81
false alarms, 88, 89, 90
fast, in presence of noise, 76
gradient edge detector for, 80
gradual, 91
image processing concepts, 77
Laplacian edge detector for, 

80–81, 87

median filter and, 77–78
missed detections, 88, 89, 90
noise reduction, 83–84
numerical simulations, 81–85
outlier removal, 84–85
problem formulation, 76
recursive median filter for, 78
test signal, 81, 83
threshold selection, 87–90

Trend shift detection algorithm, 85
algorithm testing, 90–91

Trend shifts, 19
preservation with rational filter, 40
preservation with weighted 

filters, 103
sharp, 91
smoothing with FIR filter, 29

Triangular membership functions, 155
Tuning variables, 175, 176
Turbine blade

blade location and convergence 
trend, 201

damage tolerance before final 
failure, 208

LCF damage effects on rotating 
frequency, 211

multiple-per-revolution (MPR) 
probe, 191

once-per-revolution (OPR) 
probe, 191

root, inboard, and outboard location 
elements, 199

time of arrival (TOA), 191
vibration monitoring case study, 

18, 210
Turbine blade damage, 189
Turbine blade modeling, 191–193
Turbine mid frame (TMF), 18
Twin spool gas turbine, 22, 170

U

Uncertainty, 170
accuracy with low, 163
dividing fingerprints by, 34
fault isolation with high, 151
in fuzzy logic, 157, 159
fuzzy logic fault isolation success 

rates, 164–166
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in gas pas measurements, 76
in measure, 126
in measurement deltas, 22

Universal function approximator, 152
Unscheduled engine removals, ix
Unsteady conditions, in military 

engines, 53

V

Variable stator vane malfunctions, 
128, 151

Vector dot product, 139
Vector of random error, 9
Vibration-based diagnostics, 1, 17–18, 

189–191
beam with fatigue damage, 199
convergence trend with number of 

elements, 201
damage detection, 201, 207–210
damage strain energy release rate 

variable, 194
damage variations by strain load 

case, 198
effect of noise on success rate, 208
fatigue damage model, 193–199
finite element simulations, 200–201
formulations, 191–199
frequency thresholds for damage 

detection, 208
high-strain condition, 200
internal energy dissipation, 194
number of cycles and stiffness 

reduction, 200
numerical simulations, 199–200
plastic and microplastic 

deformation, 194
reduction in frequencies, 206
residual generator schematic, 207
stiffness reduction with number of 

cycles, 200
threshold selection tradeoff, 208
trade-offs between missed and false 

alarms, 208
turbine blade modeling, 191–193

Vibration monitoring systems, 210

W

Wavelet-based noise removal methods, 4
Weight optimization, for neural 

network mapping, 145
Weight symmetry, 44
Weighted filters, for noise reduction in 

health signals, 94
Weighted FMH filter, 44–45

general form, 44
subfilters, 44
weight symmetry, 44

Weighted least squares method, 2, 9, 
10, 11

Weighted median filter, 19–20
symmetric, 19

Weighted myriad algorithm, 59–66
filter weight convergence, 70
performance comparisons with FIR 

filter, 70
Weighted myriad filter, noise reduction 

and outlier removal, 53
Weighted myriad objective function, 60
Weighted recursive median (WRM) 

filters, 20, 94, 100
lack of universal weight 

sequence, 100
mean MAE, varying window 

lengths, 99
WF sensor, 22
Window length, 21

and error decrease, 116
FIR filter, 48
MAE error of WRM filter with 

varying, 123
and mean MAE of WRM filters, 112
and mean RMS error, WRM 

filters, 111
and outlier attenuation, 115
for recursive filters, 79
RMS error of WRM filter with 

varying, 123

Y

Young’s modulus, 200
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