Librarian Learning Resource Centre Acharya Institutes								CBCS SCH						BME		
N							1									

18AE/AS42

Fourth Semester B.E. Degree Examination, July/August 2022 Aerodynamics - I

Time: 3 hrs.

US

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. State the law of Conservation of mass. Derive an expression for one dimensional form of continuity equation. (06 Marks)
 - b. Define and explain the Compressibility.

(04 Marks)

c. Define Mach number. Explain the classification of the flow regimes based on Mach number with a neat sketch. (10 Marks)

OR

- 2 a. Obtain the relation between Stream function and Velocity potential stating its inference.
 (04 Marks)
 - b. Define the following: i) Path line ii) Stream line iii) Streak line. (06 Marks)
 - c. Derive the integral form of momentum equation for a control volume fixed in space.

(10 Marks)

Module-2

- 3 a. Derive the relation to calculate the Aerodynamic forces N' and A' and the momentum M'_{LF} in terms of P, θ and τ . (10 Marks)
 - b. Consider the velocity field given by $u = \frac{Y}{(X^2 + Y^2)}$ and $v = \frac{-X}{(X^2 + Y^2)}$. Calculate the

equation of stream line passing through the point (0, 4). (04 Marks)

- c. Define the term: i) Centre of Pressure ii) Co-efficient of Pressure
 - iii) Aerodynamic center.

(06 Marks)

OR

4 a. With a neat sketch, explain in detail the Airfoil nomenclature.

(08 Marks)

b. With a neat sketch, explain the wing planform geometry.

(06 Marks)

c. Explain different types of drag.

(06 Marks)

Module-3

- 5 a. Write short notes on the following:
 - i) Kutta condition
- ii) Kelvin's Circulation theorem.

(08 Marks)

- b. Obtain an expression for the following for a lifting flow over cylinder:
 - i) Stream function
- ii) Location of stagnation points
- iii) Pressure co-efficient.

Also explain with a neat sketch, the location of stagnation point for different values of 'Γ'.

(12 Marks)

OR

6 a. Derive the relation for Lift co-efficient and lift slope for a Cambered airfoil based on Classical thin Airfoil theory. (10 Marks)

b. Consider the lifting flow over a circular cylinder with a diameter of 0.5m. The free stream velocity is 25m/s and the maximum velocity on the surface of the cylinder is 75m/s. The free stream conditions are those for a standard altitude of 3km. Calculate the lift per unit span on the cylinder. (Assume $\rho = 0.90926 \text{ kg/m}^3$ at 3km altitude, Maximum velocity occurs at when $\theta = 90^\circ$).

Module-4

7 a. Explain in detail about Lifting surface theory and Vortex lattice method. (10 Marks)

b. Prove that induced drag co-efficient is directly proportional to square of lift co-efficient using elliptical lift distribution. (10 Marks)

OR

8 a. Explain and derive Prandtl's lifting theory and its limitations.

b. Explain the following:

i) Biot – Savart law ii) Helmholtz's theorem

iii) Downwash.

(08 Marks)

(12 Marks)

Module-5

9 a. Explain in detail about Lift enhancing devices. (10 Marks)

b. Briefly explain Simplified horse – shoe vortex model and formation flight. (10 Marks)

OR

10 a. What is Swept Wing? Bring out the aerodynamic characteristics of swept wing, with relevant graphs and sketches. (10 Marks)

b. Write short note on the following:

i) Transonic Area Rule ii) Super Critical Airfoil.

(10 Marks)