	Learnin
0	Learning Resource Centre Acharya Institu
É	Acharya Institutes

USN	
-----	--

18AE53

Fifth Semester B.E. Degree Examination, July/August 2022 Aircraft Structures – I

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain briefly about design considerations.

(05 Marks)

b. Briefly explain about triaxial and biaxial state of stresses.

(05 Marks)

c. A point in a strained material is subjected to a tensile stress of 500 N/mm² and 300 N/mm² in two mutually perpendicular planes. Calculate the normal, tangential, resultant stress and its obliquity on a plane making an angle of 30° with the axis of minor tensile stress. Also find the maximum shear stress.

(10 Marks)

OR

- 2 a. Explain the following:
 - (i) Maximum shear stress theory.
 - (ii) Strain energy theory.
 - (iii) Maximum normal stress theory.
 - (iv) Distortion energy theory.

(12 Marks)

- b. The principal stresses at a point in an elastic material are 200 N/mm² (Tensile), 100 N/mm²(Tensile) and 50 N/mm²(Compressive). If the stress at the elastic limit in simple tension is 200 N/mm², determine whether the failure of the material will occur according to:
 - (i) Maximum Principal strain theory.
 - (ii) Maximum stress theory.
 - (iii) Maximum strain energy theory.
 - (iv) Maximum shear strain energy theory.

Take Poisson's ratio as 0.3.

(08 Marks)

Module-2

a. Derive an expression for impact factor due to axial load.

(10 Marks)

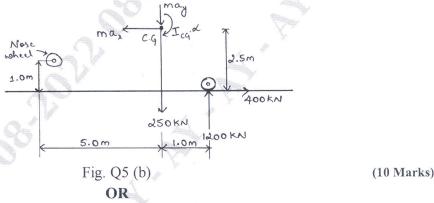
b. A Cantilever beam of width 50 mm, depth of 150 mm is 1.5 m long. It is stuck by a weight of 1000 N that falls from a height of 10 mm at its free end. Determine impact factor, instantaneous maximum deflection, maximum shear and maximum load. (10 Marks)

OR

4 a. Derive the equation for Goodman relationship.

(10 Marks)

b. With a neat sketch, explain the S-N diagram got by the results of fatigue test.


(10 Marks)

Module-3

5 a. Explain flight envelope with a neat sketch.

(10 Marks)

b. An aircraft having a weight of 250 kN and a tricycle undercarriage, lands at a vertical velocity of 3.7 m/s, such that the vertical and horizontal reaction on the main wheels are 1200 kN and 400 kN respectively. At this instant the nose wheel is 1.0 m from the ground as shown in the Fig. Q5 (b) The moment of inertia of the aircraft about its CG is 5.65×10⁸ NS²mm. Determine the inertia forces on the aircraft, time taken for its vertical velocity to become zero and its angular velocity at this instant.

6 a. List out the desirable properties of materials for aircraft application.

(10 Marks)

b. Explain about metallic and non-metallic materials used in aerospace.

(10 Marks)

Module-4

- 7 a. Derive the equilibrium equations for 3-D elastic material and reduce to 2-D plane stress condition. (10 Marks)
 - b. At a particular point in a structural member a 2D stress system exists where $\sigma_x = 60 \text{ N/mm}^2$, $\sigma_y = -40 \text{ N/mm}^2$ and $\tau_{xy} = 50 \text{ N/mm}^2$. If $E = 2 \times 10^5 \text{ N/mm}^2$ and Poisson's ratio = 0.3, calculate the direct strain in the x and y direction and the shear strain at the point. Also, calculate principal strain at the point and their inclination to the plane on which σ_x acts.

(10 Marks)

OR

8 a. Derive Clapeyron's three moment equation.

(10 Marks)

b. Explain the steps involved in the analysis of trusses using method of joints.

(10 Marks)

Module-5

9 a. State and explain Maxwell's Reciprocal theorem.

(10 Marks)

b. State and prove Castigliano's first theorem in a beam subjected to a load system.

(10 Marks)

OR

- 10 a. Derive an expression for crippling load for a column when one end is fixed and the other end is free. (12 Marks)
 - b. A 2 m long pin ended column of square cross section to be made of wood assuming E = 12 GPa and allowable stress being limited to 12 MPa, determine the size of column to support the following load safety: (i) 96 kN (ii) 200 kN. Use FOS as 3 and Euler's crippling load for buckling. (08 Marks)

* * * * *