Fifth Semester B.E. Degree Examination, July/August 2022 Theory of Vibrations

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Discuss the types of vibration.

(08 Marks)

b. Represent the periodic motion given in the following Fig.Q.1(b) by harmonic series.

(12 Marks)

Fig.Q.1(b)

OR

2 a. Add the following harmonic motions and check the solution graphically:

 $x_1 = 2\cos(wt + 0.5)$

 $x_2 = 5\sin(wt + 1.0).$

(08 Marks)

b. Find the Fourier series expansion for the impact force generated by the forging hammer shown in Fig.Q.2(b). (12 Marks)

Fig.Q.2(b)

Module-2

3 a. Determine equivalent stiffness of spring combinations:

i) Springs in series

ii) Springs in parallel.

(08 Marks)

b. An oscillating system with a natural frequency of 3.98Hz starts with an initial displacement of $x_0 = 10$ mm an initial velocity of $\dot{x}_0 = 125$ mm/sec. Calculate all the vibratory parameters involved and the time taken to reach the first peak. (12 Marks)

OR

4 a. Derive differential equation of damped free vibration.

(10 Marks)

b. A spring-mass-dashpot system is given an initial velocity of XW_n where W_n is the undamped natural frequency of the system. Find the equation of motion for the system when i) $\xi = 2.5$ ii) $\xi = 1$ iii) $\xi = 0.5$. (10 Marks)

Module-3

5 a. Discuss the necessity of vibration isolation.

(06 Marks)

b. A mass of 10kg suspended from one end of helical spring, the other end is fixed. The stiffness of spring is 10N/mm. The viscous damping causes the amplitude to decrease 1/10th of initial value in four complete oscillations. If a periodic force of 150cos 50tN is applied at the mass with vertical direction. Find the amplitude of forced vibration. What is its value at resonance? (14 Marks)

OR

- 6 a. With neat figure, explain construction and working of
 - i) Vibrometer ii) Fullarton tachometer.

(10 Marks)

b. An accelerometer with a damped natural frequency of vibration of 160Hz has a suspended mass of 0.02kg. When it is mounted on an engine, which is undergoing an acceleration of 10m/sec² at an operating speed of 6500rpm, the acceleration recorded in the instrument is 9.75m/sec², determine damping constant and the spring stiffness of the accelerometer.

(10 Marks)

Module-4

- 7 a. Derive expression for displacements in two degree of freedom system subjected to free vibration interms of initial conditions. (10 Marks)
 - b. A two degrees of freedom vibrating system as shown in below Fig.Q.7(b). Determine:
 - i) The two natural frequencies of vibrations.
 - ii) Ratio of amplitudes of motion of m₁ and m₂ for the two modes of vibration.
 - iii) Modal vector and modal shapes.
 - iv) Locate the nodes for each mode of vibration.

(10 Marks)

OR

8 a. Derive expression for equivalent length in geared system.

- (10 Marks)
- b. With respect to below Fig.Q.8(b) assume $l_1 = l$ and $l_2 = 2l$, $m_1 = m_2 = m$. Obtain the natural frequencies of the double pendulum and sketch its mode shapes. (10 Marks)

Module-5

9 a. State and prove Maxwell reciprocal theorem.

(06 Marks) (14 Marks)

b. Determine the influence coefficients for the system shown in below Fig.Q.9(b).

OR

- Determine the natural frequency and the mode shape of the system shown in below Fig.Q.10 by Holzer's method. (20 Marks)
 - Fig.Q.10

* * * * :