completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.	y revealing
On comp	. Any rev
mportant Note: 1	2

Leamin Acha	Libra g Res arya	sour	ce (tre	(CBCS			SC		
V											

	Acharya mamutos												
USN													

Fifth Semester B.E. Degree Examination, July/August 2022 Aerodynamics - II

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Derive an expression for Area ratio as a function of Mach number with usual notation. 1
 - b. Calculate the dynamic pressure of the flow if $V_{\infty} = 175$ m/s, $P_{\infty} = 1$ atm and $T_{\infty} = 298$ K.
 - What will be the percentage error if the flow is treated as incompressible?

Draw a neat diagram showing the variation of pressure along the convergent nozzles and convergent – divergent duct for various back pressure and explain. (20 Marks)

Module-2

- a. Derive the Prandtl Meyer equation for Normal shock ware in perfect gas. 3 (10 Marks)
 - b. Derive the expression for Rankine Hugonist equation of a normal shock wave. (10 Marks)

- Derive the expression for Static Pressure Ratio across the shock in terms of upstream Mach (10 Marks)
 - b. Derive the expression for temperature ratio across the shock in terms of upstream Mach Number.

Module-3

- a. Write the Density ratio and Pressure ratio across the oblique shock wave (Rankine -Hugonist Equation). (10 Marks)
 - b. Discuss the Relations for a Moving Normal shock wave.

(10 Marks)

(10 Marks)

18AE/AS52

With a neat sketch, explain the shock polar diagram and characteristics of Flow through oblique shocks. (20 Marks)

Module-4

- a. Derive the expression for Pressure Co-efficient for Linearized flow. (10 Marks)
 - Derive Small Perturbation theory using Linearized Velocity Potential equation. Also write the conclusion. (10 Marks)

- a. Derive the expression for Pressure Co-efficient for Linearized Supersonic flow (Ackert's 8 Supersonic Airfoil theory). (10 Marks)
 - b. Derive the Prandtl Glauert rule using Linearized Subsonic flow.

Module-5

With a neat sketch, explain Blow down wind tunnel (Open circuit) and Blow down wind tunnel (Closed circuit). Discuss the advantages and disadvantages. (20 Marks)

- 10 Explain the Flow Visualization Technique used in Wind tunnels. With a neat sketch, explain the following:
 - a. Shadow Technique b. Interferometer Technique c. Schlieren Technique.

* * * * *