s on the remaining blank pages.	s written eg, $42+8 = 50$, will be treated as malpractice.
Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.	of identification, appeal to evaluator and /or equations written eg, $42+8$

Librarian Learning Resource Centre Acharya Institutes						9	G	BC	S	80		VI.			
USN															

18AE61

Sixth Semester B.E. Degree Examination, July/August 2022 **Aircraft Performance**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

1	a.	Explain basic parameters of flight in steady	unaccelerated ingnt.	(08 Marks)
	b.	With a graphical approach method, explain	4	
		i) Thrust available and Thrust required		
		ii) Power available and power required		(12 Marks)

2	a.	Derive the equation which shows,	V_{α} for a given T_R depend on T_R/W , W	V/s , C_{D_O} and K .
				(10 Marks)
	h	Evolain the effects of altitude on no	ower available and power required	(10 Marks)

3	a.	Define Gliding flig	angle.	(10 Marks)			
	b.	With neat sketch,	illustrate absolute	ceiling and	service ceiling	. Explain the	method to
		calculate it.	A.A.	,			(10 Marks)

4	a.	Explain the climb performance using Hodograph diagram.	(10 Marks)
	b.	Derive Rate of climb using analytical approach and explain briefly.	(10 Marks)

- Obtain an expression for calculating the stalling velocity with help of $(C_{L \text{ max}})$. 5
 - Derive the Aerodynamic relations associated with maximum

- Derive the Range and Endurance equation for a jet propelled aircraft. 6 (14 Marks) Write a short note on: i) Effect of Head wind ii) Effect of Tail wind. (06 Marks)

Module-4

Derive the equations to calculate the ground roll for accelerated flight for takeoff condition. 7 (20 Marks)

For an accelerated flight, considering an aircraft landing, derive the equation to calculate the approach distance. (20 Marks)

Module-5

- Explain the following: i) Level Turn ii) Minimum Turn Radius iii) Maximum Turn Rate. (10 Marks)
 - Explain the limiting case for large load factor, with necessary equation. (10 Marks)

- With neat sketches, explain the pull up and pull out Maneuvers. (10 Marks) 10
 - Draw the V-n diagram and explain all the parameters in detail.

(10 Marks)