Librarian Learning Resource Centre Acharya Institutes	٠	CBCS	SCHEME
USN			

15AE71

Seventh Semester B.E. Degree Examination, July/August 2022 Control Engineering

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define Control System. Compare open loop and closed loop control system.
 - (08 Marks)

b. Explain the various requirements of an ideal control system.

(08 Marks)

OR

2 a. Determine the transfer function of the system.

(08 Marks)

Fig.Q.2(a)

b. Draw the torque-voltage and torque-current electrical analogous circuits and verify by writing mesh and node equations. (08 Marks)

Fig.Q.2(b)

Module-2

3 a. Convert the given block diagram to signal flow graph and determine C(S)/R(S). (08 Marks)

Fig.Q.3(a)

b. Find the overall gain C(S)/R(S) for the signal flow graph.

(08 Marks)

Fig.Q.3(b)

OR

4 a. Find K_p , K_v , K_a and steady state error for a system with open loop transfer:

 $G(S)H(S) = \frac{10(s+2)(s+3)}{s(s+1)(s+5)(s+4)} : \text{ where the input is } r(t) = 3+t+t^2.$ (10 Marks)

b. Assuming r(t) = 0.1t and it is desired that $e_{ss} \le 0.005$, find the range of values of K for error to be within specified limit for given system. (06 Marks)

Module-3

Sketch the root locus for a unity feedback control system given as $G(S) = \frac{K}{S(S^2 + 4S + 13)}$.

(16 Marks)

OR

The open loop T.F of an unity feedback system is: $G(S) = \frac{K}{S(1+0.1S)(1+S)}$. Determine the value of 'K' so that gain margin is +30db. What is the corresponding phase margin?

(16 Marks)

Module-4

Sketch the polar plot for the given system $G(S)H(S) = \frac{1}{1+0.1S}$. (16 Marks)

OR

8 Explain the Nyquist criterion and the procedure for using the Nyquist criterion. (16 Marks)

Module-5

- 9 Explain the below controllers:
 - i) PI Controller
 - ii) PID Controller.

(16 Marks)

OR

10 Consider the system with state equation:

$$\begin{bmatrix} \dot{x} \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \dot{u}(t)$$

Estimate the controllability by

- i) Kalman's test
- ii) Gilberts test.

(16 Marks)

* * * * *