|--|

18CS43

Fourth Semester B.E. Degree Examination, July/August 2022 Operating Systems

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Distinguish between the following terms:
 - i) Multi programming and multitasking.
 - ii) Multi processor systems and clustered systems. (10 Marks)
 - b. Define Operating Systems. Explain dual mode of operating systems with a neat diagram.
 (05 Marks)
 - c. Explain about system calls with an example of handling a user application invoking the open() system call. (05 Marks)

OR

- 2 a. What is a process? Illustrate with a neat diagram the different states of a process and control block (05 Marks)
 - b. Discuss the implementation of IPC using message passing systems in detail. (10 Marks)
 - c. List and explain the services provided by OS for the user and efficient operation of system.
 (05 Marks)

Module-2

- 3 a. Give a brief description about multithreading and explain the different multi threading models. (05 Marks)
 - b. Discuss the issues that come with multithreaded programming.

(10 Marks)

c. Explain CPU scheduling criteria.

(05 Marks)

OR

4 a. Calculate the average waiting time and the average turnaround time by drawing the Gantt chart using FCFS, SRTF, RR (q = 2ms) and priority algorithms. Lower priority number represents higher priority.

-	Process	Arrival Time	Burst Time	Priority
	P_1	0	9	3
	P ₂	1	4	2
	P_3	2	9	1
	P ₄	3	5	4

(12 Marks)

b. What is critical section problem? What are the requirements for the solution to critical section problem? Explain Peterson's solution. (08 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-3

What is a deadlock? What are the necessary conditions for the deadlock to occur? (05 Marks) 5 How to prevent the occurrence of deadlock, explain in detail.

b. Consider the following snapshot of a system:

owing snapshot of a system.												
Process	Allocation			Max			Available					
110003	٨	R	C	D	A	В	C	D	A	В	C	D
	A	D	0	1	1	2	1	2	3	3	2	1
P_0	2	0	U	1	4	Z 1111	1	2				
P ₁	3	1	2	1	5	2	5	2			- 4	
Pa	2	1	0	3	2	3	1	6			A	-
D.	1	3	1	2	1	4	2	4				
Г3	1	1	2	-	2	6	6	5			1	
P_{4}	1 1	4	3	1	3	0	0	3		1		

Answer the following using Banker's algorithm.

Is the system in safe state? If so, give the safe sequence.

If process P₂ requests (0, 1, 1, 3) resources can it be granted immediately? i) ii)

OR

Explain paging hardware with TLB. 6

(05 Marks)

Explain segmentation in detail.

(05 Marks)

Discuss structure of page table with suitable diagrams.

(10 Marks)

Module-4

Describe the steps in handling page faults. 7

(06 Marks)

Consider the page reference string: 1, 0, 7, 1, 0, 2, 1, 2, 3, 0, 3, 2, 4, 0, 3, 6, 2, 1 for a memory with 3 frames. Determine the number of page faults using FIFO, optimal and LRU (14 Marks) replacement algorithms. Which algorithm is most efficient?

Explain the different allocation methods. 8

(10 Marks)

Discuss the various directory structures with required diagrams. b.

(10 Marks)

Module-5

Explain access matrix method of system protection with domain as objects and its 9 implementation.

b. A drive has 5000 cylinders numbered 0 to 4999. The drive is currently serving a request at 143 and previously serviced a request at 125. The queue of pending requests in FIFO order is: 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130. Starting from current head position, what is the total distance travelled (in cylinders) by disk arm to satisfy the requests using (10 Marks) FCFS, SSTF, SCAN, LOOK and C-LOOK algorithms.

OR

With a neat diagram, explain the components of a Linux system.

(08 Marks)

Explain the different IPC mechanisms available in Linux.

(06 Marks)

Discuss about scheduling in Linux.

(06 Marks)