USN	
-----	--

15EC43

Fourth Semester B.E. Degree Examination, July/August 2022 Control Systems

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define control system. What are the requirements of a good control system? (04 Marks)
 - b. For the mechanical system shown in Fig.Q1(b).
 - (i) Draw the mechanical network
 - (ii) Write the differential equations
 - (iii) Draw an electrical network based on Force-Voltage Analogy

Fig.Q1(b)

(06 Marks)

c. Draw the signal flow graph shown in Fig.Q1(c). Determine the transfer function using Mason's gain formulae.

(06 Marks)

OR

- a. Define the following terms related to signal-flow graph with a neat schematic:
 - (i) Forward path
 - (ii) Feedback loop
 - (iii) Self loop
 - (iv) Source node

(04 Marks)

- b. For the mechanical system shown in Fig.Q2(b).
 - (i) Draw equivalent mechanical network.
 - (ii) Write the performance equations.
 - (iii) Draw torque-current analogy.

Fig.Q2(b)

(06 Marks)

c. Obtain the transfer function of the control system whose block diagram is shown in Fig.Q2(c) using block diagram reduction techniques.

(06 Marks)

Module-2

- 3 a. Draw the transient characteristics of a control system to a unit step input and define the following:
 - (i) Delay time
- (ii) Rise time

(iii) Peak time

- (iv) Settling time
- (v) Maximum overshoot

(06 Marks)

- b. A unity feedback control system has an open-loop transfer function $G(s) = \frac{5}{s(s+1)}$, find the rise time, percentage overshoot, peak time and settling time for a step input of 10 units.

 (06 Marks)
- c. Determine the static error coefficients for a unity feedback system given by

$$G(s) = \frac{K}{s^2(s+20)(s+30)}$$
 (04 Marks)

OR

- 4 a. The response of a serve mechanism is $c(t) = 1 + 0.2e^{-60t} 1.2e^{-10t}$ when subjected to a unit step input. Obtain an expression for closed loop transfer function. Determine the undamped natural frequency and damping ratio. (04 Marks)
 - b. A second order control system is represented by a transfer function given below:

$$\frac{\theta_0(s)}{T(s)} = \frac{1}{Js^2 + Fs + K}$$

where $\theta_0(s)$ = proportional output; T = input torque. A step unit of 10 N-m is applied to the system and test results are given below:

- (i) Maximum overshoot is 6%.
- (ii) Peak time is 1 sec
- (iii) The steady state value of the output is 0.5 radian.

Determine the values of J, F and K.

(06 Marks)

c. Find K_p , K_v and K_a for the unity feedback system represented by the following open loop transfer function $G(s) = \frac{100}{s^2(s+2)(s+5)}$. Determine the steady state error when input is $r(t) = 1 + t + 2t^2$.

Module-3

a. For system s⁴ + 22s³ + 10s² + s + K = 0, find K_{mar} and 'ω' at K_{mar}. (04 Marks)
b. A given system shown in Fig.Q5(b) oscillates with frequency 2 rad/sec. Find the value of K_{mar} and P. No poles are in RHS.

Fig.Q5(b) (06 Marks)

c. The open loop transfer function of control system is given by

G(s)H(s) =
$$\frac{K(s+1)}{s(s-1)(s^2+5s+20)}$$
.

Determine the valid break away points.

(06 Marks)

OR

- 6 a. What are the necessary and sufficient conditions for a system to be stable according to Routh-Hurwitz criterion. (04 Marks)
 - b. A feedback control system has open loop transfer function

$$G(s)H(s) = \frac{K}{s(s+4)(s^2+4s+20)}$$

Plot complete root locus for K = 0 to ∞ . Indicate all the points on it.

(10 Marks)

c. Examine the stability of given equation using Routh's method $s^3 + 6s^2 + 11s + 6 = 0$.

(02 Marks)

Module-4

- 7 a. Plot the polar plot for the transfer function given $G(s)H(s) = \frac{1}{s(Ts+1)}$. (06 Marks)
 - b. For a certain control system $G(s)H(s) = \frac{K}{s(s+2)(s+10)}$. Sketch the Nyquist plot and hence calculate the range of value of 'K' for stability. (10 Marks)

OR

- 8 a. List the limitations of lead and lag compensations. (06 Marks)
 - b. A unity feedback control system has $G(s) = \frac{80}{s(s+2)(s+20)}$. Draw the Bode plot. Determine GM, PM, ω_{gc} and ω_{pc} . (10 Marks)

Module-5

- 9 a. Define the following terms:
 - (i) State variable (iii) State space (iv) State trajectory (04 Marks)
 - b. Construct the state model using phase variables if the system is described by the differential equation

$$\frac{d^3y(t)}{dt^3} + 4\frac{d^2y(t)}{dt^2} + 7\frac{dy(t)}{dt} + 2y(t) = 5U(t)$$

where y(t) = output; U(t) = input to the system. Draw the state diagram.

(06 Marks)

c. Consider a system having state model

$$\begin{bmatrix} \dot{\mathbf{X}}_1 \\ \dot{\mathbf{X}}_2 \end{bmatrix} = \begin{bmatrix} -2 & -3 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 3 \\ 5 \end{bmatrix} \mathbf{U} \quad \text{and} \quad \mathbf{Y} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

with D = 0 obtain its transfer function.

(06 Marks)

OR

10 a. With a block diagram, explain sampled-data control system.

(04 Marks)

b. Consider a matrix 'A' given below:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{bmatrix}$$

Determine: (i) Eigen values (ii) Eigen vectors (iii) Modal matrix (06 Marks)

c. Obtain the appropriate state model for a system represented by an electric circuit shown in Fig.Q10(c).

(06 Marks)