Librarian	
Learbish Resource Centre	
Acharva institutes	
ACIAIVE	

15EE53

Fifth Semester B.E. Degree Examination, July/August 2022 Power Electronics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain the reverse recovery characteristics of diode.

(06 Marks)

b. Explain freewheeling diode with switched RL load.

(06 Marks)

c. Write a note on peripheral effects of power converters.

(04 Marks)

OR

2 a. Explain any three types of power electronic circuits.

(08 Marks)

b.

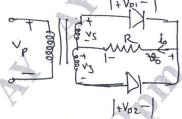


Fig.Q.2(b)

For the rectifier shown in Fig.Q.2(b) V_m is 100V, and resistance 20Ω , find V_{dc} , I_{dc} , P_{ac} and efficiency form factor. (08 Marks)

Module-2

3 a. With the sketch, explain working of P-channel depletion type MOS-FET.

(06 Marks)

b. Explain anti saturation base drive control.

(06 Marks)

c. How optocoupler can be used for isolation of gate and base drive?

(04 Marks)

OR

4 a. Explain switching characteristics of MOS-FET.

(08 Marks)

b.

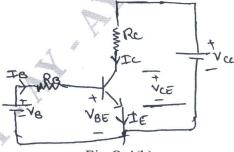


Fig.Q.4(b)

The bipolar transistor as shown in Fig.Q.4(b) is specified to have β_F in the range of 8 to 40. The load resistance is $R_C = 11\Omega$. The DC supply voltage $V_{CC} = 200V$. The i/p voltage to the base circuit is 10V. If $V_{CE(sat)} = 1V$ and $V_{BE(sat)} = 1.5V$. Find the value of R_B that results in saturation with an ODF of 5, β_f power loss in transistor. (08 Marks)

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages

Module-3

- 5 a. With neat sketch explain the static V-I characteristics of SCR. What are the significance of latching current, holding current and breakover voltage? (08 Marks)
 - b. Mention and explain various methods of turn on used for thyristors.

(08 Marks)

OR

6 a. With the help of two transistor model of SCR, derive the expression for anode current.

(08 Marks)

b. Ten thyristor are used in a string to withstand a DC voltage of $V_8 = 15 kV$. The maximum leakage current and recovery charge differences of thyristors are 10 mA and $150 \mu C$ respectively. Each thyristor has a voltage sharing resistance $R = 56 K\Omega$ and capacitance of $C_1 = .5 \mu F$. Determine: i) Maximum study state voltage sharing $V_{DS(max)}$ ii) The study state voltage derating factor iii) Maximum transient voltage sharing $V_{DT(max)}$ iv) The transient voltage derating factor. (08 Marks)

Module-4

- 7 a. With a neat sketch, explain the operation of single phase dual converter. (08 Marks)
 - b. Explain single phase full wave controller with resistive load and derive RMS value of output voltage. (08 Marks)

OR

- 8 a. Single phase fullwave controller has a resistive load of $R=10\Omega$ and the i/p voltage $V_S < 120V$ (rms), 60Hz. The delay angle of thyristor, T_1 and T_2 are equal, $\alpha_1 = \alpha_2 = \alpha = \pi/2$. Determine RMS output voltage, Input power factor, average current of thyristors I_A , and RMS current of thyristors. (08 Marks)
 - b. With a neat sketch and waveform explain the operation of three phase full wave controller.
 (08 Marks)

Module-5

9 a. With the help of circuit diagram and waveform explain the operation of step-up chopper.

(08 Marks)

- b. Input to the step-up chopper is 200V. The output required is 600V, if the conducting time of thyristor is 200µS, find:
 - i) Chopping frequency
 - ii) Pulse width is halved for constant frequency of operation find new (V_o) output voltage. (08 Marks)

OR

- 10 a. Explain the operation of single phase bridge inverter. (08 Marks)
 - b. A single phase full bridge inverter has a resistive load of $R = 10\Omega$ and DC input voltage $V_s = 220V$ calculate:
 - i) rms output voltage of its fundamental frequency.
 - ii) The average rms and peak current of each transistor switch. (08 Marks)

* * * *