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ix

Preface

Computational.methods.of.nanotechnology.continue.to.contribute.to.the.progress.of.inno-
vations.in.areas.ranging.from.electronics,.microcomputing,.and.biotechnology.to.medi-
cine,.consumer.supplies,.aerospace,.environment,.and.energy.production.

Nowadays,.finite.element.methods.(FEMs).are.widely.used.in.computational.nanotech-
nology.and.nanoscience..Computational Finite Element Methods in Nanotechnology. can.be.
used.for.new.developments.and.future.interdisciplinary.research.by.engineers,.scientists,.
biologists,.and. information.business.managers.. It.also.provides.an. introduction. to.key.
concepts.in.a.manner.that.is.easily.digestible.to.a.beginner.in.the.field..This.book.may.
also.serve.as.a.single.source.of.reference.to.the.veteran.in.the.field..It.is.intended.for.a.
broad.audience.working.in.the.fields.of.physics,.chemistry,.biology,.medicine,.material.
science,. quantum. science,. electrical. and. electronic. engineering,. medicine,. optical. sci-
ence,. computer. science,. mechanical. engineering,. chemical. engineering,. and. aerospace.
engineering..The.book.has.been.written.for.professionals,.researchers,.and.students.who.
would.like.to.discover.the.challenges.and.opportunities.concerning.the.development.of.
the.next.generation.of.nanoscale.computational.nanotechnology.using.FEMs..In.addition,.
it.emphasizes.the.importance.of.FEMs.for.computational.tools.in.the.development.of.effi-
cient.nanoscale.systems.

This.book.has.16.chapters.and.2.appendices..Indeed,.the.book.also.contains.vast.recent.
applications. of. microscale. and. nanoscale. modeling. systems. with. FEMs. using. Comsol.
Multiphysics.and.MATLAB®.

Chapter.1.presents.an.overview.to.computational.methods.in.nanotechnology..It.describes.
the.latest.developments.in.nanotechnology,.which.offer.the.possibility.for.revolutionary.
advances.in.fundamental.sciences.and.engineering..It.also.focuses.on.nanoscale.structures.
relevant.to.nanotechnology,.modeling.methods,.and.FEMs.for.nanoscale.circuits.

Chapter. 2. presents. a. novel. finite. element. (FE)-based,. thermo-electrical-mechanical-.
coupled.model.to.study.mechanical.stress,.temperature,.and.electric.fields.in.nano/micro-
electronics..First,.the.governing.equations.of.electricity,.heat.transfer,.mechanical.behavior,.
and.piezoelectricity.are.provided..A. rigorous. framework.of. coupling. these.phenomena.
is. then.derived..Two.case.studies.are.presented. that. illustrate. the.application.of. the.FE.
model.in.nano/microelectronics..The.first.case.study.describes.thermal.stress.modeling.in.
wafer-level.three-dimensional.(3D).integration..The.second.case.study.presents.modeling.
of.material.degradation.in.heterostructure.field-effect.transistors.

Chapter.3.presents.an.integration.of.distributed.element,.lumped.element,.and.system.
level.methods. for. the.design,.modeling,.and.simulation.of.nano/microelectro.mechani-
cal.systems.(N/MEMS)..The.authors.show.that.the.benefits.of.lumped.elements.are.com-
putational.efficiency.and.ease.of.parameterization;.however,.such.lumped.models.must.
preexist..For.models. that.do.not.preexist,.or. if. the.analysis.of. single.component. is.nec-
essary,.distributed.element.methods.are.often.beneficial..However,.distributed.elements.
are.computationally.expensive,.especially. for.devices.with.a.multitude.of.multiphysical.
components..Often,.reduced.order.methods.are.used.to.minimize.the.degrees.of.freedom.
for.a.more.efficient.model.at.the.expense.of.trading.off.some.accuracy..The.integration.of.
both. distributed. and. lumped. element. methods. can. be. useful. for. modeling. micro-. and.
nanosystems..Although.the.authors.conclude.that.not.every.N/MEMS.can.be.represented.
using.the.methods.discussed.here,.a.large.number.of.devices.can.be.efficiently.explored.
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x Preface

using.these.methods..The.examples.they.provide.include.parameterized.lumped.carbon.
nanotubes.(CNTs);.novice-friendly.design,.simulation,.and.layout.of.MEMS;.an.automated.
lumped-to-distributed.verification.method;.and.the.design.exploration.of.a.nanomechani-
cal.material.property.tester.

Chapter.4.provides.some.descriptions.and.challenges.in.nanorobotic.science.with.a.real.
view.on.the.simulation.of.nanorobotic.systems.and.macro-dimensions.that.is.applicable.
to.small-scale.nanorobots..It.presents.different.types.of.nanorobots.and.their.applications..
It.focuses.on.macroscale.nanorobots,.where.the.FEM.can.be.applied,.and.develops.differ-
ent.methods.of.manipulation.at. the.nanoscale.using.these.nanorobots.. It.also.describes.
manipulation. at. the. nanoscale. using. macroscale. nanorobots,. called. nanomanipulation..
The. authors. introduce. relatively. comprehensive. models. for. these. devices. and. classify.
effective.parameters.in.nanomanipulation..In.addition,.they.provide.an.example.of.nano-
sized.robots.and.study.the.linear.and.nonlinear.behavior.of.electrical.nanogenerators.

Chapter.5.presents.FEMs.to.illustrate.the.simulation.of.structures.and.processes.such.
as.dislocations,.growth.of.epitaxial.films,.and.precipitation..Important.parameters.can.be.
computed.from.these.simulations,.which.include.domain.deformations.and.region.of.sta-
bility.of.dislocations.in.thin.plates.and.critical.thickness.for.the.formation.of.misfit.dislo-
cations..Further,.new.structures/phenomena.like.“zero.stiffness.material.structures”.and.
“reversible.plastic.deformation.due.to.elasticity”.can.also.be.discovered.using.simulations.
at.the.nanoscale..In.all.examples.considered.in.the.chapter,.the.assumptions.involve.limi-
tations.of.the.methodologies,.and.precautionary.measures.to.be.undertaken.are.stated.in.
order.to.plan.for.better.strategies.

Chapter.6.presents.modeling.of. the.self-positioning.nanostructures.that. is.performed.
by.the.continuum.mechanics.theory,.the.FEM,.and.the.atomic-scale.FEM.with.consider-
ation.of.cubic.crystal.anisotropy..The.authors.derive.the.continuum.mechanics.solution.for.
multilayer.thin.film.structures.subjected.to.initial.strains.under.generalized.plane.strain.
conditions..The.chapter.applies.FE.modeling.to.estimate.the.curvature.radius.of.self-posi-
tioning.hinges.. It.also.develops.an.atomic-scale.FE.procedure. to.model.self-positioning.
nanostructures..The.results.are.then.compared.through.modeling.of.bilayer.self-position-
ing.nanostructures.

Chapter.7.presents.FEMs.applicable.to.the.modeling.and.designing.of.nanocomposites,.
which.can.be.used.to.predict.the.mechanical,.thermal,.optical,.and.morphological.proper-
ties.of.nanocomposites.

Chapter. 8. presents. the. use. of. FEMs. to. anticipate. the. characteristics. of. carbon. nano-
tubes.(CNTs).and.their.composites..The.author.models.discrete.molecular.structures.as.an.
equivalent. truss.element.by.equating.the.molecular.potential.energy.of.nanostructured.
materials.with.the.mechanical.strain.energy.of.the.truss.element.model..This.modeling.
method.applies.to.a.graphene.sheet..The.chapter.shows.that.the.FE.model.performs.very.
well.and.gives.good.results..As.the.FE.model.comprises.a.small.number.of.elements,. it.
performs.under.minimal.computational.time..The.model.has.also.been.used.to.investi-
gate.the.properties.of.single-walled.carbon.nanotubes.(SWCNTs).and.multi-walled.carbon.
nanotubes.(MWCNTs)..The.obtained.values.of.Young’s.modulus.agree.very.well.with.the.
corresponding. theoretical. results,.which.demonstrate. that. the.proposed.FE.model.may.
provide.a.valuable.tool.for.studying.the.mechanical.behavior.of.CNTs.and.nanocompos-
ites..The.author.shows.that.the.obtained.values.of.Young’s.modulus.agree.very.well.with.
the.corresponding.theoretical.results.and.experimental.measurements.that.are.available.in.
the.literature..The.results.demonstrate.that.the.proposed.FE.model.may.provide.a.valuable.
tool.for.studying.the.mechanical.behavior.of.CNTs.and.nanocomposites.
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xiPreface

Chapter.9.summarizes.the.recent.progress.made.in.using.FEM.to.analyze.the.electric.
field.formed.in.needleless.electrospinning.and.the.relationship.between.the.electric.field.
and.needleless.electrospinning.performance..The.authors.show.that.the.FEM.is.an.effec-
tive.method.to.calculate.electric.fields.and.intensity.profiles.in.needleless.electrospinning..
The.chapter.provides.a.visualized.electric.field.profile,.which.greatly.assists.in.correlating.
with.electrospinning.experiments.

Chapter.10.presents.how.molecular.dynamic.(MD).simulations.can.be.integrated.into.
the.FEM..A.new.type.of.FE.is.required.for.force.fields.that.include.multibody.potentials..
These.elements. take. into.account.not.only.bond.stretch.but.also.bending,. torsion,.and.
inversion.without.using.rotational.degrees.of.freedom..Since.natural.lengths.and.angles.
are. implemented. as. intrinsic. material. parameters,. the. developed. molecular. dynamic.
finite. element. method. (MDFEM). starts. with. a. conformational. analysis.. By. means. of.
CNTs.and.elastomeric.material,.the.authors.demonstrate.that.this.pre-step.is.needed.to.
find.an.equilibrium.configuration.before.the.structure.can.be.deformed.in.a.succeeding.
loading. step.. The. chapter. presents. the. theoretical. background. of. the. MDFEM. as. well.
as.guidelines. for. its. implementation.and.usage..The.authors.conclude. that,.apart. from.
mesh.generation.techniques,.which.are.not.covered,.all.important.aspects.of.MDFEM.are.
discussed.from.a.finite.element.analysis.(FEA).software.user’s.point.of.view:.what.time.
integration.schemes.are.usually.available.and.when.to.use.which;.what.the.difference.is.
between.natural.and.equilibrium.bond.lengths.and.angles;.how.to.obtain.an.equilibrium.
configuration,.or.when.inversion.energy.is.important;.and.how.it.can.be.transformed.to.
torsion.energy..Two.examples.demonstrate.the.accuracy.and.efficiency.of.the.introduced.
MDFEM.elements..MDFEM.provides.a.framework.that.performs.more.than.simple.MD.
simulations..Conventionally,.MD.programs.are.used.in.chemistry.and.physics.to.perform.
conformational.studies.based.on.force.fields..The.aim.is.to.determine.equilibrium.states.
rather. than. to. study. the. response.of.atomic.structures.under.mechanical. loading..The.
main.benefit.of.MDFEM.is.that.concurrent.multiscale.simulations,.i.e.,.a.combination.of.
continuum.and.atomistic.regions,.are.feasible..Complex.models.can.be.developed.to.pre-
dict.the.properties.of.composites.containing.nanoparticles,.which.determine.the.behavior.
of.the.macroscopic.material..For.such.models,.parametric.studies.in.terms.of.computer-
aided.material.design.can.be.carried.out.to.analyze.the.influence.of.changes.in.the.atomic.
structure,. namely,. the. particle. size,. distribution,. or. the. particle–matrix. interface.. The.
results.can.then.be.used.to.identify.the.basic.mechanisms.that.lead.to.the.enhancement.
of. characteristic.values.of. such.composites.and.subsequently.exploited. to. improve. the.
manufacturing.processes..Chapter.10.also.consists.of.two.appendices.(Appendix.10A—the.
Newton–Raphson.method,.and.Appendix.10B—stiffness.matrices.of.MDFEM.elements),.
which.provide.additional.information.

Chapter.11.presents.a.brief.background.of.the.current.applications.of.FEA.in.nanomate-
rials.and.systems.used.in.medicine.and.dentistry..The.authors.examine.the.processes.used.
for.the.production.of.nanocoatings.and.further.analysis.related.to.the.factors.affecting.the.
nanoindented.biomaterials.by.FEA.

Chapter.12.presents.the.application.of.FEA.and.its.usefulness.in.medicine,.with.a.spe-
cial.focus.on.nanomedicine..The.author.provides.examples.of.reports.based.on.this.tech-
nique..The.chapter.shows.that.FEM.is.mainly.helpful.to.study.the.nanostructure.of.several.
organs.in.the.human.body.in.both.physiological.and.pathological.conditions.and.to.study.
nanosystem.drug.delivery.and.targeting.

Chapter.13.presents.a.few.examples.of.the.potentialities.of.the.FEM.numerical.approach.
for. the. design. of. microfluidics. systems. for. biotechnology.. The. author. concludes. that.
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xii Preface

microflows,.chemical.and.biochemical.reactions,.and.concentration.transport.can.be.mod-
eled. by. using. FEM. methods.. However,. as. pointed. out. in. the. introduction. to. the. chap-
ter,.much.remains. to.be.done. in. the.domain.of.multiphase.microflows,.where. tracking.
interface. motion. and. pinning. is. essential,. and. in. the. domain. of. the. transport. of. large,.
deformable.particles.(e.g.,.vesicles.and.globules),.where.modeling.the.steric.aspects.and.
deformation.associated.to.the.local.shear.is.a.real.challenge.

Chapter. 14. concludes. that,. with. a. nontraditional. geometry. composed. of. nano-scale.
sensing.and.amplification.nodes.on.thick.absorption.layers,.the.nano-injection.detectors.
offer.high-sensitivity.photon.detection.and.amplification..However,.due.to.their.nonplanar.
design,.type-II.band.alignment,.and.the.coupled.detection/amplification.mechanisms,.the.
design.and.development.of.nano-injection.devices.require.detailed,.nonlinear,.3D.FEM.
simulations..The.authors.provide.the.FEM.simulation.a.multiphysics.environment.for.sta-
tionary,.parametric,.and.transient.simulations,.all.based.on.the.drift–diffusion.equations.
in.2D.and.3D..The.model.incorporates.several.nonlinearities.such.as.the.incomplete.ion-
ization. of. dopants,. bimolecular. recombination,. Auger. recombination,. nonlinear. mobil-
ity,. impact. ionization,. thermionic. emission,. hot. electron. effects,. surface. recombination.
effects,. and. temperature. effects.. Furthermore,. once. the. devices. are. optimized. through.
simulations,. the. nano-injection. devices. are. fabricated. through. micro-. and. nanofabrica-
tion..The.measurements.show.amplification.factors.reaching.10,000.with.low.dark.current.
densities.and.Fano.noise.suppression..The.passivated.nano-injection.devices.have.band-
widths.exceeding.3.GHz.with.a.jitter.of.15.ps..To.form.focal.plane.array.infrared.cameras,.
320-by-256.pixel.arrays.of.nano-injection.detectors.are.hybridized..Also,.with.a.pixel.level.
responsivity.exceeding.2500.A/W,.the.nano-injection.focal.plane.arrays.show.a.noise.level.
of.28.electrons.at.a.frame.rate.of.1950.fps..These.imagers.show.two.orders.of.magnitude.
improved.signal-to-noise.ratio.compared.to.commercial.SWIR.imagers.at.thermoelectric.
cooling. temperatures..All.of. these.demonstrate. the.capabilities.of.nano-injection.detec-
tors.and.imagers.and.make.them.excellent.candidates.for.demanding.applications.such.
as.optical.tomography,.satellite.imaging,.nanodestructive.material.inspection,.high-speed.
quantum. computing. and. cryptography,. night. vision. imaging,. and. machine. vision. for.
.process.control.

Chapter. 15. presents. the. use. of. the. spatial. motion. of. the. coupler. from. the. traditional.
spatial.four-bar.linkage.(SFL).as.an.output.link.(OL).and,.in.particular,.as.a.carrier.of.the.
bioreactor.chamber..Also,.the.authors.provide.the.use.of.SFL.with.two.spherical.joints.and.
two.degrees.of.freedom.(DoF),.wherein.the.full.rotation.of.the.coupler.or.the.bioreactor.
chamber,.respectively,.around.its.own.axis.is.performed.by.a.second.actuator..The.module.
of.the.bioreactor.chamber.with.the.actuator.is.connected.to.the.coupler.of.the.mechanism.
through.a.fixed.connection.

Chapter.16.demonstrates. that.automatic.meshing.and. its.associated.nano-objects. is.a.
convenient.way.to.produce,.in.2D.and.3D.as.well,.full.spaces.without.any.vacuum..As.a.
consequence,.it.lets.the.boundaries.display.their.specific.behavior..This.is.compatible.not.
only.with.all.the.geometrical.shapes,.circles,.spheres,.and.so.on.but.also.with.the.shapes.
extracted.from.experimentation.as.shown.with.the.bean.in.the.chapter..Also,.the.authors.
conclude.that.automatic.meshing.can.be.seen.as.a.way.to.be.filled.with.nanoparticles.and.
implement.empty.spaces.between.objects.

Two. different. applications. are. described. all. along. the. chapter:. first,. computation. of.
mean.values.of.physical.constants.of.heterogeneous.material,.for.instance,.thermal.and.
electric.conductivity,.permittivity,.etc..with.or.without.the.grain.joins.influence;.second,.
evaluation. of. capillary. flows. leading. to. an. inside. knowledge. of. permeability,. and. it.
letting.out.of.the.computation.of.the.nanoparticles.which.acts.only.by.their.surfaces,.but.
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keeping.them..On.these.geometries,.it.is.possible.to.use.all.the.classical.FEMs.used.for.
drying,.sintering,.microwave.heating,.and.so.on..As.a.consequence,.when.a.problem.is.
solved.in.a.small.domain,.it.is.possible.to.enlarge.the.solution.to.larger.domains,.just.by.
matrix.association..Comsol.Multiphysics.and.MATLAB.softwares.are.used.(run.on.an.HP.
Z800,.16.proc,.64.Gbits).

Finally,.the.book.concludes.with.two.appendices..Appendix.A.shows.common.material.
and.physical.constants,.with.the.consideration.that.the.material.constants.values.varied.
from.one.published.source.to.another.due.to.many.varieties.of.most.materials.and.also.
because.conductivity.is.sensitive.to.temperature,.impurities,.moisture.content,.as.well.as.
the.dependence.of.relative.permittivity.and.permeability.on.temperature.and.humidity.
and.the.like..Appendix.B.provides.common.symbols.and.useful.mathematical.formulas.

COMSOL.and.COMSOL.Multiphysics.are.registered.trademarks.of.COMSOL.AB..For.
details.visit.www.comsol.com

MATLAB. is. a. registered. trademark. of. The. MathWorks,. Inc.. For. product. information,.
please.contact:

The.MathWorks,.Inc.
3.Apple.Hill.Drive
Natick,.MA,.01760-2098.USA
Tel:.508-647-7000
Fax:.508-647-7001
E-mail:.info@mathworks.com
Web:.www.mathworks.com

Sarhan	M.	Musa
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1

1
Overview of Computational 
Methods in Nanotechnology

Orion Ciftja
Prairie View A&M University, Prairie View, Texas

Sarhan M. Musa
Prairie View A&M University, Prairie View, Texas

1.1 Introduction

If one considers which research areas in physics, chemistry, and engineering experienced 
the strongest growth in the last 10 years, then it is likely that material sciences and 
nanotechnology stand out as front runners. While it is fair to say that material sciences have 
always been important, it is also true to state that until very recently they were somehow 
limited in scope. Before the nanotechnology revolution, all material sciences research 
was basically dominated by physics and engineering. The major driving force behind 
such research were attempts in computer and information technologies to miniaturize 
transistors and electronic processors. Essentially, all was a top-down strategy: start with a 
macroscopic device and then try to make it smaller and smaller.

Nanotechnology introduced an absolute change in this mindset. Namely, the new 
nanoscale branch of modern material sciences is now more concerned with a bottom-
up strategy. Nowadays, one wants to manipulate atoms/molecules in such a way as to 
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2 Computational Finite Element Methods in Nanotechnology

form new artificial nanostructures with defined properties either by self-assembly or 
by self-organization. At present, nanotechnology reaches from nanoelectronics to bio-
medical applications, and the importance of the field can in no way be underestimated. 
Nanotechnology offers unlimited possibilities for advancement in many physical and 
engineering sciences. It also offers unprecedented possibilities for development of novel 
technologies, as well. A wide variety of nanomaterials are now used in engineering, phar-
maceutical, biomedical products, as well as other industries. While nanoscale materials 
possess more novel and unique physical–chemical properties than bulk materials, they 
are not easy to study. Therefore, studies of nanomaterials have generated intense scientific 
curiosity, attracting much attention for the last few years.

Together with the experimental developments in nanotechnology, the fundamental 
techniques of theory and modeling have seen a revolution that parallels the advances on 
which the field of nanotechnology is based. The last two decades have seen the develop-
ment of density functional theory (DFT), classical Monte Carlo (MC) techniques, quantum 
Monte Carlo (QMC) methods, molecular dynamics (MD) simulations, and fast multigrid 
algorithms. New insights have come from the application of these and other new theoreti-
cal and computational tools. Advances in computing and combination of new theoretical 
methods with high computer power have made possible the simulation of complex sys-
tems with million degrees of freedom.

Advances in nanotechnology have created a more pressing need for a better quantita-
tive understanding of nanoscale systems. Absence of quantitative models and robust 
computational methods applied to newly observed nanoscale phenomena increasingly 
limits a quicker progress in the field. The use of the full potential of novel theoretical 
and modeling tools has the great beneficial effect to seriously accelerate widespread 
applications in many areas of nanotechnology. Realizing this potential, however, will 
require long-term fundamental research and expanded educational opportunities to 
train the next generation of scientists and engineers whose job is to overcome funda-
mental theoretical and computational challenges in nanotechnology. Although our abil-
ity to synthesize and fabricate various nanostructures such as quantum dots, quantum 
wires, carbon nanotubes, molecular magnets, etc., has constantly improved, we have not 
reached yet the phase of being able to incorporate them together in larger functional 
systems or devices.

From a theoretical and modeling perspective, it is not easy to study or model the prop-
erties of systems that span the whole range from macroscopic to microscopic length and 
time scales. It is also not easy to determine the transport mechanisms of various devices at 
the nanoscale. Studies of nanointerfaces generally are quite difficult, and it is not easy to 
describe with reasonable accuracy the response of nanoscale structures to external probes 
such as electric field, magnetic field, radiation, etc. Nevertheless, even though some of 
the challenges given earlier appear insurmountable, opportunities for research and dis-
covery in nanotechnology outweigh the risks by far and large. New tools and techniques 
are giving us the ability to put atoms and molecules where we want them. Researchers 
are discovering new properties that emerge at nanometer length scales that are differ-
ent from the properties of both individual atoms/molecules and bulk materials. Scientists 
and engineers have successfully synthesized and characterized a broad range of funda-
mental nanosystems with potentially useful properties. There is a convergence in length 
scales between inorganic nanostructures and biomolecules such as DNA and proteins. 
Nanostructures such as quantum dots are being used as biosensor assays. Overall, these 
are exciting times for the field of nanotechnology.
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3Overview of Computational Methods in Nanotechnology

Latest nanotechnology developments offer the possibility for revolutionary advances 
in fundamental sciences and engineering. Nanotechnology raises research issues that are 
fundamental to a growing number of disciplines and the potential for applications of enor-
mous economic and social significance. The basic theoretical approaches and modeling 
methods that go on par with such scientific developments have seen a revolution that par-
allels the experimental advances on which the field of nanotechnology is based. Advances 
in computing and combination of new theoretical methods with high computer power 
have shed more light on the properties of various nanoscale systems, but at the same time, 
these works indicate that current algorithms and numerical methods must be made more 
efficient and, perhaps, new ones should be invented. Clearly, the nanotechnology revolu-
tion has created an urgent need for more robust computational methods to understand the 
properties of matter at the nanoscale.

In this chapter, we will give a brief overview of some modeling challenges faced in the 
field of nanoscale research and will describe some of the most important computational 
methods already in use in various nanotechnology disciplines.

1.2 Nanoscale Structures Relevant to Nanotechnology

In recent years, interest in the area of nanotechnology has exploded worldwide including 
many institutes, laboratories, and universities where researchers from different disci-
plines have been working together in many aspects of nanotechnology. Nanotechnology 
represents a compelling case to bring groups of multidisciplinary scientists to work 
together on understanding phenomena at the nanoscale. Only this approach will allow 
us to have a share in the nanotechnology research, create strong educational programs, 
institute interdisciplinary research areas, spark additional collaborations between sci-
entists, and at the end harvest all the expected benefits. This approach stimulates the 
formation of alliances and teams of scientists with diverse background to meet the chal-
lenge of developing a broad quantitative understanding of structure and dynamics at the 
nanoscale. Such cohesion between different disciplines is key to sparking additional col-
laboration across disciplinary boundaries and addressing some critical research issues 
in this fast-evolving field.

Given the rapid expansion of the field of nanotechnology, it is practically impossible to 
mention all the nanoscale structures or devices that are currently used or studied. Because 
of this, in this work, we are not even attempting to give a detailed description. On the 
contrary, we will focus our attention on few important nanoscale devices that, in our view, 
are relevant to the field of nanotechnology. We have placed in this category structures 
such as carbon nanotubes/composites, quantum dots, and quantum wires, just to men-
tion a few. The key idea of our approach is to give a rather brief overview of the proper-
ties of such structures and then describe various computational methods used to study 
their properties. Well-characterized nanoscale elements like the ones mentioned earlier 
need to be quantitatively understood. Just as knowledge of the atom allows us to make 
and manipulate larger structures, knowledge of important nanoscale elements will allow 
us to reliably manufacture larger artificial structures with prescribed properties. Such 
nanoscale elements will be the centerpiece of new functional nanomechanical, nanoelec-
tronic, and nanomagnetic devices. Thus, a quantitative understanding of the electronic, 
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4 Computational Finite Element Methods in Nanotechnology

magnetic, transport, and mechanical properties of key nanoscale elements is crucial to 
building novel technological devices.

Without a coherent description of some of these key nanoscale elements, overall prog-
ress in the field of nanotechnology will be limited. In the following, we focus our attention 
basically on three groups of nanoscale structures relevant to nanotechnology:

 1. Carbon nanotubes and composite systems
 2. Electronic quantum dots
 3. Quantum wires and nano-metal–oxide–semiconductor field-effect transistor 

(nano-MOSFET) devices

These important nanoscale structures are well defined by experiment and tractable using 
standard theoretical and computational tools. Moreover, they have been demonstrated to 
hold promise in future nanotechnologies. All computational methods devised to study 
the properties of these nanoscale structures attempt to solve accurately problems such as 
understanding the response of nano-building blocks and nanodevices to external probes, 
explore novel theories and models to predict behavior and reliability of nanosensors and 
devices, understand classical and quantum transport in nanostructures, and so on.

1.3 Modeling Methods

Studies of nanoscale structures offer great promise but require new theoretical 
approaches and computationally intensive studies. MD simulation methods can handle 
systems with tens of thousands of atoms; however, to fully exploit their power, algo-
rithms need to be made scalable and fully parallelized. Such methods are especially use-
ful in providing benchmarks for those systems, where experimental data are unreliable 
or hard to reproduce. Lack of clear prescriptions for obtaining reliable results that apply 
to nanostructures is another challenging problem for experiment and theory. While new 
experiments will need to be designed to ensure reproducibility and the validity of the 
measurements, the theoretical challenge is to construct new theories that would cross-
check such conclusions.

DFT methods with standard exchange functionals are only partially satisfactory when 
calculating band structures of metals and, especially, semiconductors. Standard DFT fails 
even totally when describing van der Waals complexes (physisorption) or single-walled 
carbon nanotubes (SWCNTs), a behavior which is well known to many physicists. Within 
the DFT, the band structure calculations are generally routine task in solid-state physics; 
however, the accuracy of such calculations, especially with regard to band gaps, deterio-
rates when applied to nanoscale structures.

While great strides have been made in classical MC and QMC simulation methods, a 
number of fundamental issues remain. In particular, the diversity of time and length scales 
remains a great challenge at the nanoscale. Intrinsic quantum attributes like transport and 
charge transfer are difficult to incorporate into a classical description, and at best, MC 
simulation methods are effective and easy to implement only at zero or very low tempera-
tures. Even though the QMC method and its variants, variational Monte Carlo (VMC), dif-
fusion Monte Carlo (DMC), and Green’s function Monte Carlo (GFMC), are currently the 
most accurate methods that can be extended to systems in the nanoscience range, major 
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5Overview of Computational Methods in Nanotechnology

improvements are needed. Many nanosystems are driven more by entropy (temperature) 
than by energy. Modifications of current methods that are entropy (temperature) or free-
energy friendly are badly needed. Current methodologies for free energy (temperature-
dependent methods) such as the path integral Monte Carlo (PIMC) method are usually 
extremely complex and not friendly.

In contrast, continuum methods have had much success in the macroscale modeling 
and simulation of nanostructures. Finite element methods (FEM) are now the standard 
numerical analysis tool to study diverse problems. Therefore, the logical approach taken 
by many researchers in the desire to create truly multiple-scale simulations that exist at 
disparate length and time scales has been to couple various methods like MD, MC, and 
FEM in some manner and apply them to nanostructures. Unfortunately, the coupling of 
these methods is neither easy nor straightforward.

1.3.1  Modeling of Carbon Nanotubes and Nanocomposites

Carbon nanotubes are molecular-scale tubes of graphitic carbon with outstanding prop-
erties and unique characteristics. They are among the strongest fibers known and have 
remarkable electronic properties. For these reasons, they have attracted huge theoretical 
and experimental interest. Technological applications have also been forthcoming though 
at somehow slower pace given the relative high production costs of manufacturing high-
quality nanotubes. The current huge interest in carbon nanotubes is a direct consequence 
of the synthesis of buckminsterfullerene, C60, and other fullerenes, in 1985. The discov-
ery that carbon could form stable, ordered structures other than graphite and diamond 
stimulated researchers worldwide to search for other new forms of carbon. The research 
was given new impetus when it was shown that C60 could be produced in a simple arc-
evaporation apparatus readily available in virtually all laboratories. The fullerene-related 
carbon nanotubes generated this way contained at least two layers, often many more, and 
ranged in outer diameter from about 3–30 nm. The bonding in carbon nanotubes is sp2, 
with each atom joined to three neighbors, as in graphite. The nanotubes can therefore be 
considered as rolled-up graphene sheets (graphene is an individual graphite layer). The 
strength of the sp2 carbon–carbon bonds gives carbon nanotubes amazing mechanical 
properties such as very high stiffness, very high breaking strain, etc. These properties, 
coupled with the lightness of carbon nanotubes, give them great potential in applications 
such as aerospace.

The electronic properties of carbon nanotubes are also extraordinary. Especially notable 
is the fact that nanotubes can be metallic or semiconducting depending on their structure. 
Thus, some carbon nanotubes have conductivities higher than that of copper, while others 
behave more like silicon. There is great interest in the possibility of constructing nanoscale 
electronic devices from nanotubes, and some progress is being made in this direction. 
However, in order to construct a useful device, we would need to arrange many thousands 
of nanotubes in a defined pattern, and we do not yet have the degree of control necessary 
to achieve this task.

Thus, a lot of research is being done to design new nanoelectronic devices utilizing 
the extraordinary properties of SWCNTs. The design work comprises the exploration of 
a systematic functionalization concept for SWCNTs, the description of possible junctions 
between semiconducting and metallic parts of a nanotube, and the construction of more 
complex nanoelectronic devices.

In particular, a great deal of research has been focused to understand the electrical 
properties of carbon nanotubes and carbon-nanotube composites. Electrical properties of 
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6 Computational Finite Element Methods in Nanotechnology

carbon nanotubes depend on aromatic structure and wrap style. Several studies [1,2] have 
indicated that nanotubes possess excellent electromagnetic properties. For example, one 
can use controlled dispersion of specifically designed carbon nanotubes into supporting 
polymer matrices. Experiments have shown that the percolation (onset of conductivity) 
for these nanocomposites is less than one-half of 1% by volume. The electrically conduc-
tive polymer nanocomposite materials, compared to conductive metal-filled systems, offer 
substantial weight savings, flexibility, durability, low-temperature processability, and tai-
lored reproducible conductivity. The material’s enhanced high-frequency absorption capa-
bility suits the cable shielding very well [3]. So far, the main challenge in such studies is 
to develop modeling methods capable of bridging the gap between nanoscale level struc-
tures and their micro-/macro-level counterparts.

A carbon nanotube consists of a large number of atoms. Thus, modeling of nanotubes 
requires sophisticated numerical tools, powerful computer processors, and three-
dimensional visualization. The work generally begins with modeling of a single 
nanotube for its electrical conductivity and continues with modeling of the interactions 
of a nanotube with the surrounding polymer molecules in a polymer-based composite. 
Among the many available software for nanoscale modeling, we mention NWChem, ADF, 
ABINIT, VASP, and Spartan. Bridging the gap between nanoscale modeling and micro/
macro modeling is a very challenging research task. The major challenge is to develop 
reliable methods for calculating effective properties that are passed on from nanotube 
level to nanocomposite level. Possible approaches include (1) accurate data management 
between two levels of computer codes, nanoscale computer code and microscale computer 
code, and (2) establishment and incorporation of constitutive relations into finite element 
software code to predict nanomaterial properties. Specific approaches of transferring 
modeling parameters (electrical conductivity) include the application of “exact scaling 
laws” [4] for electrical conductivity properties of polymer nanocomposites to bridge the 
orientation distribution of macromolecules of composites.

Finite element codes like ANSYS, COMSOL, and Nastran are available and have been 
applied to simulate electromagnetic field and a single electrode. Research work in finite 
element areas begins the modeling of a nanocomposite shell in electromagnetic field. 
Available electrical properties of nanocomposite materials derived from experimental 
data are then applied in conjunction with the finite element modeling. Results obtained 
from the finite element analysis are used as benchmarks for further studies. When 
computational modeling results become available, one starts the work of bridging the 
nanoscale to macroscale gap. Tasks may include data management, establishment of 
constitutive relations, probability theories, and other emerging methods. Studies of the 
influence of external factors such as electric field, magnetic field, and radiation effects on 
carbon-nanotube polymer-based composites and carbon-nanotube thin films are crucial 
to understand a variety of possible applications. This includes aerospace applications in 
which devices made from these materials would serve, for instance, as radiation shielding. 
While external factors will cause some degradation of given properties of these materials, 
it is also possible that they may enhance other desirable properties.

1.3.2  Modeling of Electronic Quantum Dots

The properties of electronic materials, such as single or coupled two-dimensional (2D) 
semiconductor quantum dots in presence of external factors such as electric field, mag-
netic field, or radiation, are not easy to investigate.
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7Overview of Computational Methods in Nanotechnology

Semiconductor quantum dots are fabricated nanostructures in which charge carriers, 
such as electrons, are confined in a small spatial region usually in 2D. In heterostructures, 
such as GaAs/AlGaAs, the number, N, of electrons in the dot can be changed by adjusting 
the external electric potential of the metallic electrodes (gates). In many cases, the confine-
ment potential of the electrons in the dot is quasi-parabolic and the number of trapped 
electrons varies from N = 1 or 2 to thousands of electrons [5–9]. The Bohr radius (size) of 
quantum dots is much larger than the Bohr radius of “real atoms.” This implies that elec-
tromagnetic radiation with wavelength of the order of Bohr radius and ordinary magnetic 
fields (of the order of 1 T) controls the energy deposition and magneto-transport proper-
ties of quantum dots [10,11].

While the response of a quantum dot system to an electromagnetic field must be care-
fully investigated, the effects of a stationary magnetic field can be anticipated. From the 
theoretical point of view, a magnetic field applied perpendicular to the 2D quantum dot 
plane will change the nature of single-electron levels from those of the harmonic oscil-
lator to Landau levels. In the presence of a perpendicular magnetic field, the electronic 
spectrum will consist of discrete energy levels and will strongly depend on the applied 
perpendicular magnetic field which also affects the electron’s spin [12–14]. Exposure to 
radiation will qualitatively change the magneto-transport properties of a quantum dot. 
The simplest effect that arises naturally when radiation illuminates a quantum dot will be 
the tunneling of electrons from the parent quantum dot. First, the electron moves away 
from parent quantum dot, but if the radiation field is properly tuned, the electron can be 
driven back to his parent quantum dot, and phenomena such as quantum interference 
and tunneling may occur. It is useful to think of a “nano-machine” where the quantum 
dot provides the electron and the electromagnetic field accelerates the system. We can also 
think in terms of a “nano-interferometer” where the electronic wave function consists 
of two pieces as a result of tunneling from the parent quantum dot. One component of 
the electronic wave function is accelerated away from the quantum dot by the radiation; 
however, there is a second component of the wave function that remains bound to the 
quantum dot. When the two components superimpose, a “nano-interferometer” induced 
by a properly tuned external radiation may be created.

While the magneto-transport properties of isolated 2D quantum dots containing few 
(N = 1, 2, 3,…) electrons have recently been investigated both experimentally and theoreti-
cally [10–18], small arrays of quantum dots in which electrons in different quantum dots are 
weakly coupled to each other represent new challenges. From the modeling perspective, 
as a first step, one considers small (e.g., linear or other regular) arrays of few (N = 2, 3, …) 
quantum dots each containing a small number (N = 1, 2, …) of electrons. The inter-dot 
distance between nearest neighbor quantum dots can be experimentally adjusted. A given 
energy barrier separates the electrons of one quantum dot from tunneling to the other 
quantum dot. A two-well potential (with finite range) can be used to model the coupling 
of any two harmonic wells centered at a distance, d, apart. It is essential that electrons be 
allowed to tunnel between the dots. The tunneling properties of the electrons crucially 
depend on the energy barrier height or equivalently the inter-dot distance, d, and will 
certainly be affected by external factors.

Computational studies of the properties and the response to magnetic field and radia-
tion of arrays of few weakly coupled quantum dots are very important. The study of 
weakly coupled arrays of quantum dots is a subject of great fundamental and practical 
interest since the magneto-transport properties of arrays of quantum dots can be dra-
matically and fundamentally different from the properties of the individual quantum 
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8 Computational Finite Element Methods in Nanotechnology

dots that constitute them. While each individual quantum dot in the system still retains 
the set of well-defined charge states like in an atom, tunneling of electrons between two 
dots may fundamentally change the individual properties of each of the quantum dots 
including charging effects or Coulomb oscillations. Thus, one might reasonably expect 
novel magneto-transport features for the case of weakly coupled arrays of quantum 
dots. In principle, the interplay between quantum confinement, electronic correlation, 
inter-dot coupling, magnetic field, and external radiation should manifest itself in many 
interesting physical phenomena with possible technological applications. The simplest 
model able to capture the essential behavior of such a system should, at least, consider 
the following:

 1. Arrays of n = 2, 3, quantum dots at equal distance, d, each containing N = 1, 2, … 
electrons

 2. Inter-dot coupling between electrons much weaker than intra-dot coupling
 3. Confined 2D electrons in each individual quantum dot
 4. Magnetic field perpendicular to the 2D plane of the quantum dot
 5. Parabolic confining potential with a finite range for the electrons in each of the 

individual quantum dots with a finite energy barrier separating the harmonic 
wells of one quantum dot from the other

 6. Electrons in each of the individual quantum dots that interact with a Coulomb 
potential

 7. External radiation (electromagnetic field, lasers, etc.)

Even though the model introduced earlier is quite idealized, one can immediately note the 
computational challenges faced when dealing with the case. At an elementary level, one 
might initially use standard quantum chemistry methods or molecular physics methods 
which rely on knowledge of individual quantum dots. Single-electron or reliable wave 
functions for electrons in an isolated quantum dot can be extracted from exact numerical 
diagonalization methods [15,16], Hartree–Fock methods [17], DFT methods [18], and QMC 
methods [19–21]. While the study of arrays of coupled quantum dots is a difficult prob-
lem, the analogy between real atoms and quantum dots (“artificial atoms”) provides us 
with a powerful set of methods from molecular physics such as the valence bond Heitler–
London (HL) approach or the linear combination of atomic orbitals (LCAO) approach [22]. 
For arrays or coupled systems of quantum dots, one can use prior results for isolated semi-
conductor quantum dots and their wave functions [23]. These wave functions or similar 
wave functions from literature can be used to construct the initial HL and/or LCAO wave 
functions, which would describe the arrays of coupled quantum dots.

On the other hand, quantum calculations involve multivariable integrations; therefore, 
QMC simulations should be employed, as the next step. Among several computational 
methods, the QMC methods have the greatest advantage of all since they are not biased 
by approximations, are very accurate, and can be extended to larger systems in a straight-
forward manner. They are also known to give very reliable results for strongly correlated 
electronic systems of this nature.

1.3.3  Modeling of Quantum Wires and Nano-MOSFET Devices

Another challenging problem from the modeling perspective is the study of the proper-
ties of MOSFET devices at the ballistic quantum regime. In this regime, the interconnected 
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9Overview of Computational Methods in Nanotechnology

wires of a nanoscale transistor are so thin that they can transport so few electrons that the 
whole system behaves as a quantum wire with electrons manifesting unusual transport 
properties. As transistor devices become smaller in size and hence faster in switching, the 
interconnect wires become narrower and hence more resistive and slower in transmit-
ting signals. Since the advent of 250 nm technology at 1997, the signal transmission delay 
caused by interconnect wires has dominated the total delay and transistor miniaturiza-
tions. As we approach the next decade of the microelectronics revolution, microprocessors 
and related devices will not only get smaller and more powerful but also more difficult to 
understand and manufacture.

Numerical simulations are currently used to guide the development of analytical the-
ories necessary for the understanding of ballistic field-effect transistors and the effects 
of external factors (magnetic field, electric field, radiation, etc.) on nano-MOSFET devices 
on the ballistic regime [24,25]. The developed analytical models provide insights into the 
performance of nano-MOSFETs near the scaling limits in the nano-regime and a unified 
framework for assessing and comparing a variety of novel transistors. As illustrated by 
recent engineering advances, it is evident that the MOSFET channel lengths continue to 
shrink rapidly toward the sub-10 nm dimensions called for by the International Technology 
Roadmap for Semiconductors [26,27]. Coupled with the use of high-mobility channel mate-
rials [28,29], nanoscale channel lengths open up the possibility of near-ballistic MOSFET 
operation with channel lengths essentially behaving as quantum wires.

For these reasons, accurate modeling studies of the ballistic operation in nano-MOSFETs 
are of paramount importance. The operation of a nano-MOSFET in the ballistic regime has 
recently been explored by simple, analytical models [30,31], as well as by detailed numeri-
cal simulations [32–36]. When considering a 10 nm sized transistor, we have to bear in 
mind that we are dealing with a small number of charge carriers. Control of charge and 
electrical current on a single-electron level will be required. Moreover, quantum phenom-
ena will increasingly start to dominate the overall behavior of such structures. Finally, 
tinny structures have a large surface-to-volume ratio which is very challenging for con-
ventional semiconductor devices. It is for certain that new theoretical concepts need to be 
developed and novel computational methods be introduced.

So far, modeling work in this direction has been focused on the following:

• Development of a ballistic, analytical model for nano-MOSFETs in the nanoscale 
regime incorporating external parameters (electric field, magnetic field, radiation, 
induced defects, etc.)

• Employment of ballistic models to further explore the physical properties of nano-
MOSFETs in the quantum wire regime

• Quantification of the usefulness of the ballistic model in exploring new nanoma-
terials and nanostructures

• Quantification of the reliability implications for nano-MOSFETs in the ballistic 
nano-regime with specific emphasis on hot-electron injection

Analytical theories and quantum simulation methods (similar to those used for quan-
tum dots) are used to investigate the properties of nano-MOSFETs in the ballistic regime. 
Semiclassical ballistic Boltzmann transport theory [34,37] and the nonequilibrium quantum 
transport Green’s function formalism [38,39] are the main theoretical tools. A combined the-
oretical and modeling effort along these lines is the only alternative to capture the essential 
physics controlling the properties of nano-MOSFETs in the ballistic quantum regime.
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10 Computational Finite Element Methods in Nanotechnology

1.4  Finite Element Method for Capacitance Extraction 
of Interconnects in Microscale Circuits

Due to the complexity of electromagnetic modeling, researchers and scientists always look 
for the development of accurate and fast methods to extract the parameters of electronic 
interconnects. In recent years, we have observed a magnificent application and development 
in the complexity, density, and speed of operations of integrated circuits (ICs), multichip 
modules (MCMs), and printed circuit board (PCB). For example, MCMs are extensively 
used to reduce interconnection delay and crosstalk effects in complex electronic systems. 
Multiconductor transmission lines embedded in multilayered dielectric media are known 
as the basic interconnection units in ICs and MCMs and have been characterized with the 
distributed circuit parameters such as capacitance C matrices under quasi-TEM conditions. 
Also, these distributed circuit parameters are very important factors in the electrical behav-
ior and performance of other microwave integrated circuits (MICs) and very-large-scale 
integration (VLSI) chips.

In today’s electronic circuits, there is very high density of devices in the circuit which 
requires an extremely large number of very-high-speed interconnects. Additionally, for 
advances in nanofabrication of high-speed ICs, it is essential to examine the limitations 
due to the parasitic coupled mechanisms present in micro-/nanoscale silicon-IC processes. 
To optimize electrical properties of micro-/nanoscale IC interconnects such as minimi-
zation of the length of the interconnection lines, an adequate attention must be given to 
the geometrical size of their transverse cross sections; the estimation of the transmission 
line parameters requires accuracy for system design. Furthermore, the determination of 
interconnect capacitance turns out to be a great challenge to the design engineers to obtain 
an optimum interconnect capacitance to reduce the resistance–capacitance delay time for 
micro-/nanoscale ICs.

Furthermore, multiconductor multilayered structures are essential for micro-/nanoscale 
ICs, MCMs, and PCB systems due to the important effects on the transmission character-
istics of high-speed signals. Also, the transmission line effect on the micro-/nanoscale 
IC interconnects becomes extremely important for the transmission behavior of intercon-
nect lines on a silicon–silicon dioxide (Si–SiO2) semiconducting substrate. The conducting 
silicon substrate causes capacitive and inductive coupling effects in the structure. In this 
work, we will illustrate the power of the FEM through the design of micro-/nanoscale 
single and coupled interconnect lines on a Si–SiO2 substrate. We will focus our attention 
on the calculation of the capacitance per unit matrices of microscale single and coupled 
interconnect lines on a Si–SiO2 substrate, and we will determine the microscale quasi-
static spectral for the potential distribution of the silicon-IC.

Many researchers have presented various kinds of methods for solving the problem in 
microscale. These approaches include equivalent source and measured equation of dielec-
tric Green’s function and boundary integral equation approach [40–43], CAD and quasi-
static spectral domain [44–47], complex image method [48,49], quasi-stationary full-wave 
analysis and Fourier integral transformation [50], and conformal mapping methods [51]. 
We illustrate here that FEM with COMSOL is suitable and effective for modeling of inho-
mogeneous quasi-static microscale multiconductor interconnects in multilayered dielec-
tric media [52]. The future extension of this work will be the modeling of inhomogeneous 
quasi-static nanoscale multiconductor interconnects in multilayered dielectric media.
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11Overview of Computational Methods in Nanotechnology

The models are designed in 2D using electrostatic environment. In the boundary con-
dition of the model’s design, we use ground boundary which is zero potential (V = 0) for 
the shield. We use port condition for the conductors to force the potential or current to be 
one or zero depending on the setting. The microscale setup using FEM is suitable for the 
computation of electromagnetic fields in strongly inhomogeneous media, and it has high 
computation accuracy and fast computation speed.

1.4.1  Microscale Single Interconnect Line on Si–SiO2 Substrate

Figure 1.1 shows the geometry of the model microscale single interconnect line on Si–SiO2 
substrate. The value of the single-line capacitance (Cs) using FEM, namely, the value of Cs, 
is 4.43 × 10−11 F/m.

Furthermore, Figure 1.2 shows the potential distribution of the model in microscale 
with their variations in spectra peaks and full-width half maximum (FWHM) from 
(x, y) = (0, 500 μm) to (x, y) = (20 μm, 502 μm).

1.4.2  Microscale Coupled Interconnect Lines on Si–SiO2 Substrate

Figure 1.3 shows the geometry of the model with the parameter values for microscale 
coupled interconnect lines on Si–SiO2 substrate. The value of C11 and C22 which are the 
self-capacitance per unit length of line 1 and 2, respectively, is C11 = C22 = 4.457 × 10−11 F/m, 
and the value of the mutual capacitance C12 per unit length is C12 = C21 = 1.734 × 10−10 F/m.

Additionally, Figures 1.4 and 1.5 show the potential distribution of the model 
at the microscale design with their variations in spectra peaks and FWHM, from 
(x, y) = (0, 502 μm) to (x, y) = (20 μm, 502 μm) and from (x, y) = (0, 0) to (x, y) = (20 μm, 1500 μm), 
respectively.

εr = 1

εSi = 12.1, σ= 10–12, µ0

Ground plane

Si-substrate

εox = 3.9, σ = 10–13, µ0
tox = 2 µm

tsi = 500 µm

W = 20 µm

w = 1 µmt = 0.01 µm

SiO2

FIGURE 1.1
Cross section of microscale single interconnect line on Si–SiO2 substrate. As seen above w is the width of the 
single conductor, t is the thickness of the single conductor, W is the width of the Si–SiO2 substrate, tsi is the 
thickness of Si layer, and tox is the thickness of SiO2 layer.
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12 Computational Finite Element Methods in Nanotechnology

1.5 Conclusion

Nanoscale systems, though infinitesimal, are made up of thousands, even hundreds of 
thousands, of atoms. Thus, describing their properties requires significant theoretical 
skill and much computer power. Currently, scientists frequently employ combinations 
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FIGURE 1.2
Potential distribution of microscale single interconnect line on Si–SiO2 substrate from (x, y) = (0, 500 μm) to 
(x, y) = (20 μm, 502 μm).
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FIGURE 1.3
Cross section of microscale coupled interconnect lines on Si–SiO2 substrate.
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FIGURE 1.4
Potential distribution of coupled interconnect lines on microscale Si–SiO2 substrate from (x, y) = (0, 502 μm) to 
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Potential distribution of coupled interconnect lines on microscale Si–SiO2 substrate from (x, y) = (0, 0) to 
(x, y) = (20 μm, 1500 μm).
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14 Computational Finite Element Methods in Nanotechnology

of theoretical strategies with precise modeling techniques as computer power grows. As 
several disciplines including physics, chemistry, biology, engineering, and medicine are 
affected by the nanotechnology progress, scientists must be aware of the important role 
played by computational methods applied to the field. With this recognition, we better 
prepare ourselves for the future challenges.

Nanotechnology offers great promise, but at the same time, the problems encountered 
while studying nanostructures indicate that current algorithms and numerical methods 
must be made more efficient and, perhaps, new ones should be invented. Thus, there is an 
urgent need for more robust computational methods to understand the properties of mat-
ter at the nanoscale. Without the use of the full potential of novel modeling tools, many 
opportunities in nanotechnology will be missed or delayed. In this chapter, we provide 
a brief overview of some of the main modeling challenges faced in the field of nanoscale 
research and describe some basic nanoscale structures that have great potential for future 
device applications.

Accurate modeling methods able to provide a quantitative understanding of transport, 
electronic, magnetic, and mechanical properties of these nanostructures are an integral 
part of the whole field of nanotechnology. Therefore, it is clear that there is a rich research 
agenda associated with nanoscale science and engineering that will provide us with 
many opportunities for advancement. The impetus for this interdisciplinary scientific 
work stems not only from the great intellectual promise of the field of nanotechnology 
but also from the revolutionary practical significance of this research. For example, the 
creation of systems of coupled nanostructures poses important questions for the engi-
neering disciplines such as can we create complete and functional systems by coupling 
together very small objects that are stochastic in their individual behavior? Pursuing 
this agenda is well beyond the capabilities of any one of current research done alone and 
will require drawing on the tools and techniques of multiple disciplines. Thus, the new 
breed of nanotechnology researchers must be unafraid to cross disciplinary boundaries 
to other fields.

Along these lines, it is self-evident that research in nanotechnology is essentially an 
interdisciplinary research field which combines research activities in physics, engineer-
ing, chemistry, biology, and medicine. Accordingly, research in these fields requires a 
broad scientific background and working practice in several disciplines of mathematics 
and computer methods. While nanotechnology offers a multitude of research avenues and 
promising leads, many of such leads may turn out as dead ends. Therefore, guidance of 
practical research by theoretical means is a key prerogative. The nature of the objects that 
nanotechnology is dealing with makes computational physics, quantum chemistry, and 
theoretical modeling extremely important.

This chapter has outlined some key aspects of computational methods in nanotechnol-
ogy. It is hoped that this brief overview spells out some key challenges and opportuni-
ties encountered in computational modeling of nanosystems. Hopefully, more computer 
scientists who are keen to contribute their works to the field of nanotechnology will enter 
the field and contribute to solve some of these computational challenges. Thus, this brief 
overview is intended to promote collaboration between computer scientists and other dis-
ciplines in the nanotechnology field. For all those who are interested in the field of nano-
technology, even the idea of building a system that consists of a large number of particles 
automatically forming into a designed structure will result in countless interesting scien-
tific problems to face and solve for the future years.
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2
Finite Element Method for Nanotechnology 
Applications in Nano-/Microelectronics

Jing Zhang
Indiana University—Purdue University Indianapolis, Indianapolis, Indiana

2.1 Introduction

This chapter presents a novel finite element (FE)-based, thermo-electrical-mechanical 
coupled model to study temperature field, electric field, and mechanical stress in nano-/
microelectronics.

The governing equations of electrical transport, heat transfer, mechanical behavior, and 
piezoelectricity property are provided. A rigorous framework of coupling these phenom-
ena is derived. Then two case studies are presented that illustrate the application of the FE 
model in nano-/microelectronics. The first study is thermal stress modeling in wafer-level 
three-dimensional (3D) integration which offers improved performance and functionality 
over conventional planar integrated circuits (ICs). The second one is modeling of the mate-
rial degradation in heterostructure field-effect transistor (HFET).
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2.2 Coupled Thermo-Electrical-Mechanical Finite Element Model

There are three components, heat transfer, electricity, and mechanical behavior, in the 
coupled thermo-electrical-mechanical phenomena as shown in Figure 2.1. These three 
components are interactively related. For example, between heat transfer and electricity, 
electrical resistivity is a function of temperature. Joule heating from electric current flow 
causes increase in temperature.

Between mechanical behavior and electricity, mechanical stress arises as a result of piezo-
electricity effect. Between heat transfer and mechanical behavior, temperature change can 
induce thermal stresses.

Mathematically, the governing equations of electricity transport, heat transfer, mechani-
cal behavior, and piezoelectricity are given as follows:

 1. Electrical field
Electric field is governed by the Laplace equation:

 
∇ ∇









 =

→ →1
0

ρ
ϕ  (2.1)

where
ρ is the resistivity (Ω m)
φ is the electric potential (V)

 2. Thermal field
Thermal field is governed by the Fourier equation:

 
− ∇ ∇



 −

∇





=
→ →

→

k TT

ϕ

ρ

2

0  (2.2)

where
kT is the thermal conductivity (W/m-K)
T is the temperature (K)

Mechanical behavior

Converse
piezoelectricity

Direct
piezoelectricity

Temperature-
dependent resistivity

Heat transfer Electricity

Thermal
expansion

Joule heating
or pyroelectricity

FIGURE 2.1
Diagram showing the coupling between heat transfer, electricity, and mechanical behavior.
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 3. Mechanical problem
Mechanical problem is governed by the Navier equation:

 
( )µ ε α+ ∂

∂
+ −

−
∂
∂







 =G

x
G u

E
v

T
xi

i T
i

∆
1 2

0  (2.3)

where
αT is the coefficient of thermal expansion (K−1)

 4. Piezoelectric effect
The piezoelectric effect is a transfer of electrical to mechanical energy or vice 
versa. The stress-charge form is

 Stress tensor: T = −c eE
TS E  (2.4)

 Electric displacement vector:D S E P= + +e s spε  (2.5)

where
S is the second-order strain tensor
E is the electric field tensor
e is a third-order tensor of piezoelectric stress coefficients
eT is the transposed tensor of e
cE is the compliance
εs is the permittivity tensor
Psp is the spontaneous polarization

2.3 Case Study 1: Thermal Stress in 3D IC Structures

2.3.1 Introduction

This section presents the application of the coupled model in 3D IC integration. Wafer-
level 3D integration offers improved performance and functionality over conventional 
planar ICs. A primary driver for 3D ICs is the promise of reduced signal delay through 
shortened interconnects [1]. Moreover, monolithic wafer-level 3D integration promises 
increased functionality through the integration of diverse technologies, while maintain-
ing the cost advantage of monolithically fabricated interconnects [2,3]. In wafer-level 3D 
integrations, a processed wafer (top) is bonded to another processed wafer (bottom) using 
benzocyclobutene (BCB). The top wafer is backside thinned to a few microns of Si. Cu 
inter-wafer interconnects are formed by interconnecting specified points in the multilevel 
metallization (MLM) layers of these two wafers, by etching, liner and Cu deposition, and 
chemical–mechanical polishing.

There are several design and/or processing concerns surrounding 3D chips. One 
primary concern for 3D ICs is the mechanical stability of the structures [4]. It is not 
feasible to predict total stresses in ICs, nor adhesion of the layers in ICs, and it is 
even difficult to relate structural failures to specific stress levels. Standardized tests 
are performed to evaluate the stability of ICs. Tests have been done to show that BCB 
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bonding and thinning do not impact (planar) IC performance [5], and the wafers do not 
delaminate during standard reliability testing [6]. It is clear that the BCB bonded wafers 
are stable; however, the wafers in those studies did not have inter-wafer vias. One open 
question is the effect of thermally induced stresses, and whether they are significant 
during processing and during 3D IC operation, on inter-wafer Cu vias, as they can 
be for planar ICs [7,8]. Thermally induced stresses can be predicted using structural 
models that represent proposed structures reasonably well and the coefficients of 
thermal expansion (CTEs) of the materials present. In this chapter, we summarize the 
status of our FE-based modeling to address the question of thermally induced stresses 
in inter-wafer Cu vias to determine if they are a cause for concern for the stability of 
3D ICs and whether more quantitative work is warranted. Computations using our FE 
model indicate that there is reason to be concerned about the reliability of inter-wafer 
Cu vias. However, these computations had no experiments against which to compare 
predicted results.

Thermal stresses in MLM structures in planar ICs have been studied both experimen-
tally and by modeling. In XRD-based studies [9–11], stresses in the metal lines can be 
derived from the measured strain due to the change of lattice spacing. Wafer curvature 
methods [12,13] measure the changes in the curvature of the substrate on which a thin 
film is deposited. These experiments are useful for comparing with averages of stresses 
predicted by models. On the other hand, they are not used to identify localized failures, 
for example, individual failed vias. Direct imaging of the failures in carefully prepared 
samples using an SEM provides direct evidence for “qualitative comparison” with model 
predictions. FE-based analyses can provide predictions of detailed stress distributions 
and have been used to model the stresses and deformation in interconnect structures. 
Some models are based on the two-dimensional (2D) plane strain assumption [14–17], in 
which vias and/or metal lines extend infinitely in and out of the plane. Such models are 
useful for studying long metal lines. 3D models [16,18] have also been used to simulate 
thermal stress distributions in interconnect structures with complicated geometries. If 
model-predicted stresses exceed, or even approach, the yield strength of one or more 
materials, then there is cause for concern about the stability. Of course, it should be kept 
in mind that several assumptions routinely used in such analyses make quantitative 
comparison with experiment tenuous [16,18], and thermally induced stresses are only 
part of the total stress.

This chapter is organized as follows. Reliability data on 3D ICs are not available in the 
literature, so we first partially validate our modeling approach by comparing computed 
results with data on via chain test structures made with SiLK [7] or carbon-doped silicon 
oxide (SiCOH) [8] as the dielectric. These structures are used to test the reliability of MLM 
in planar ICs. The failure criterion we use is whether or not the computed von Mises stress 
exceeds the yield strength of materials in the structure [19–21]. Then we present model-
ing results from our study of thermal stresses in inter-wafer Cu vias that would form part 
of 3D ICs, as in the process developed at RPI, that is, bonded with BCB. Target values for 
design parameters, for example, inter-wafer via size, pitch, and the thickness of BCB, are 
estimated.

2.3.2 Experimental Data

In this section, we review two experiments from the recent literature that examine the reli-
ability of planar IC MLM test structures using low-k dielectrics. Both Filippi et al. [7] and 
Edelstein et al. [8] performed thermal cycle tests on via chain structures. The geometry of 
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the via chain test structure used in Ref. [7] is shown in Figure 2.2 (SEM on the left). The 
geometry of the test structures was not completely specified, and we were forced to choose 
reasonable values for some dimensions. The details of the structure used were not pro-
vided; in the following, we assume the structures are the same, with Filippi et al. [7] using 
SiLK as a dielectric and Edelstein et al. [8] using carbonized glass (SiCOH).

As described in Ref. [7], the repeated unit in the test structure consists of three metal 
levels (MC, M1, and M2) connected by two level of vias (V1 and V2). MC and M2 are local 
interconnects in the chain, and M1 is a landing pad in the stacked via structure. V1 connects 
MC and M1, and V2 connects M1 and M2. In the experiment, the via chain is 50 units 
long. Some of the following dimensions of the metal and barrier films were not reported 
and had to be assumed. Metal dimensions do not include liner thicknesses. Interconnects 
(M2 and MC) are taken to be 0.35 μm long, 0.31 μm wide lines, with an assumed height of 
0.25 μm. M1 is a 0.31 μm by 0.31 μm square landing pad, with an assumed 0.25 μm height. 
The vias are taken to be tapered cylinders 0.22 μm (assumed) in diameter at the bottom 
and 0.3 μm in diameter at the top, and 0.35 μm tall. V1, V2, M1, and M2 are Cu embedded 
in the low-k dielectrics (SiLK or SiCOH). MC is tungsten embedded in silicon dioxide. 
Metal lines are passivated with an Si3N4 cap layer. Interconnects and vias are covered with 
Ta-based liners at their bottoms and side walls. Barriers and capping layers are taken to be 
of uniform 20 nm thickness.

Both groups [7,8] cycled the temperature between −65°C and 150°C at rates of 22°C per min 
(up) and −14°C per min (down). Filippi et al. observe statistically significant distributions of 
electrical failures of the SiLK-based system, with approximately 50% of samples failing by 
1000 cycles (as estimated from Figure 5 of Ref. [7]). Figure 2.3a shows a failed V2 via, after 
the dielectric was removed by oxygen ashing [7]. The crack appears to coincide with a shear 
plane [7]. No failure was observed in the SiCOH system after 1000 cycles [8].

SiO2

SiO2

M2

V2

M2

Ta

Si3N4Si3N4

Ta

M1

M1

V1

MC

(a) (b) (c)

Ta

V1

V2

Dielectric

Dielectric

FIGURE 2.2
(a) Cross-sectional SEM image (with labels removed) (see Filippi et al. [7]) of the stacked via test structure using 
SiLK. (b) Schematic of test structure, labeling substructures as used in the text. Note that only one-quarter of the 
pictured structure on (a) is shown in the schematic in (b). (c) Localized details of the test structure.
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2.3.3 Finite Element Model

We constructed a model in COMSOL Multiphysics that is suitable for FE analyses of the 
test structure described earlier. As shown in Figure 2.2, our geometric model represents 
one-quarter of the via-chain repeat unit described earlier. We then used FEM-based 
thermoelastic analysis to compute stresses and strains due to temperature changes that are 
similar to those performed in the experiments [7,8]. The details of equations appropriate 
for thermoelastic models can be found in many places, for example, Ref. [22]. The 
materials are assumed to be isotropic and linear elastic with the material properties listed 
in Table 2.1. Linearity of deformation with temperature change has been confirmed for 
Cu by X-ray diffraction measurements over a large temperature range (25°C–400°C) [14]. 
The Young’s moduli, CTEs, and Poisson ratios of Cu and other materials are considered to 

Maximum
von Mises

stress plane
P

(a) (b)
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von Mises
stress, GPa

FIGURE 2.3
(a) SEM image from Filippi et al. [7] showing shearing and cracking along the bottom of a V2 via. (b) Computed 
von Mises stresses in Cu for SiLK-based via test structures. Note the stress concentrations near the top of the 
M1 landing pad and the bottom of the V2 via. Point P is 0.115 μm above the M1 along the centerline of the top via 
and is at or near the point of the maximum stress in V2. (From Filippi, R.G. et al., Thermal cycle reliability 
of stacked via structures with copper metallization and an organic low-k dielectric, in 2004 IEEE 
International Reliability Physics Symposium Proceedings, April 25–29, 2004, Phoenix, AZ, IEEE.)

TABLE 2.1

Materials Properties Used in via Chain Test Structure Simulations

Material
Thickness 

(µm)
CTE 

(ppm/ºC)
Young’s 

Modulus (GPa)
Poisson’s 

Ratio
SiO2 0.6 0.5 70 0.22
W 0.25 4.5 344.7 0.28
SiLK 1.2 66 2.5 0.40
BCB 1.2 52 2.9 0.34
SiCOH 1.2 12 16.2 0.30
Cu (V1,V2) 0.35 17 120.5 0.35
Cu (M1,M2,MC) 0.25 17 120.5 0.35
Ta 0.02 6.5 185 0.30
Si3N4 0.02 3.2 221 0.27
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be temperature independent within the temperature range considered. Note that we use 
material properties at room temperature.

In order to evaluate if computed stresses indicate possible failure, a yield strength of 
Cu should be chosen. The mechanical properties of thin films can be significantly dif-
ferent from bulk samples of the same materials. In fact, there is a large variation of yield 
strength of Cu in the literature and has been reported to depend upon film thickness, 
grain size, and temperature. For example, the yield strength of thin film Cu was measured 
from 225 MPa for 3.015 μm film thickness to 300 MPa for 0.885 μm thick using a bulge test 
[23]. In another study, micromachined Cu thin-film beams were deflected until inelastic 
deformation was detected [24]. The yield strength was estimated to be 2.8–3.09 GPa.

In order to proceed in the presence of this diversity, we consider a range of yield strength. 
The yield strength of bulk materials is the lower limit, and one estimate for thin films is 
the upper limit. For bulk Cu, the yield strength of hard drawn Cu wires was measured 
between 414 and 483 MPa [25], assuming the yield strength is same as the tensile strength. 
In the following, we use 500 MPa, a round number, to be the lower limit of yield strength 
at room temperature for very small Cu films with small grains. For upper limit of yield 
strength, we assume the grain size is same as the via diameter in our planar IC MLM 
study, that is, 0.22 μm. Using a Hall–Petch formula [23], the upper limit of yield strength 
for Cu interconnects at room temperature is about 600 MPa. Although the lower limit is 
usually of most interest, for conservative estimates, the upper limit plays a role when com-
paring computed stresses with experimental results [7,8].

We use a static analysis, which assumes that the structure is in thermal equilibrium 
at the initial and final temperatures. This method has the advantage of being quickly 
applied, although it does not take into account transient aspects of the temperature trajec-
tory. Simulations are carried out for a single temperature change. No creep/fatigue model 
related to multiple cycle tests is considered in our model.

We use linear, tetrahedral FEs within COMSOL Multiphysics [26] to obtain numerical 
solutions. We locally refine the mesh in some regions to resolve the stresses and strains in 
certain substructures, such as the barrier and capping layers, as shown in Figure 2.4. Mesh 
refinement adequacy is confirmed by the lack of significant change in local stresses upon 
varying the mesh density used to solve the model. A temperature change of 215°C was 
imposed on the structure, from an initial stress-free state at 150°C to −65°C, the same as 
the cyclic changes made in Refs. [7,8]. The periodic nature of the repeating via-chain unit is 
represented by applying symmetric boundary conditions on the sides of the simulation cells 
that cut transversely through the chain direction (the “transverse sides”), allowing points on 
these sides to remain in-plane. The simulation cell sides that cut vertically through the chain 
and are parallel to its direction (the “parallel sides”) are also treated symmetrically. This set 
of symmetries means that the full line width of the interconnects and circular cross section of 
the vias are accounted for and that the model represents a large bank of via chains fabricated 
in parallel lines on a 0.6 μm pitch. The bottom surface of the model is considered to be bonded 
to a thick silicon substrate and constrained to move in-plane to remove components of rigid 
body motion of the cell from entering the FEM computation. The top surface is free to move, 
and the structure is taken to be at a stress-free reference state at its maximum temperature.

Figure 2.5 shows calculated von Mises stresses throughout both the SiLK-based and 
SiCOH-based structures, and Figure 2.3b shows the von Mises stresses in just the Cu on 
an expanded scale for the SiLK system. Points where the von Mises stress exceeds the 
yield stress of Cu indicate sites of potential failure. The thermoelastic model predicts 
that the stresses in the Cu vias in SiLK exceed the upper limit of yield strength of Cu 
(600 MPa). However, the stresses in Cu in SiCOH are below the lower limit of yield strength 
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26 Computational Finite Element Methods in Nanotechnology

(500 MPa). The CTE of SiLK over temperature ranges common to BEOL processing is about 
66 ppm/°C [27], which is considerably larger than that of Cu (approximately 17 ppm/°C 
[17]) in the same temperature range. From our results, it is not surprising that the strain 
induced in Cu metallization during temperature changes can lead to degradation and fail-
ure. Compared with SiLK, the CTE of SiCOH (12 ppm/°C [28]) is close to that of Cu. The 
thermal stresses in the Cu via are substantially lower.

Some parametric studies were performed to determine the sensitivity of our computed 
results to the model parameter values used; that is, we vary materials’ properties within 

von Mises
stress, GPa

2.5

2

1.5

1

0.5
σy

0
(a) (b)

FIGURE 2.5
Computed von Mises stresses in SiLK-based system (a) and SiCOH-based system (b). Note that almost all of the 
V1, M1, and M2 Cu are above the top range of yield strength (600 MPa) in the SiLK system. None of the Cu is 
above the bottom of the range of yield strength (500 MPa) for the SiCOH system.

FIGURE 2.4
Tetrahedral FE mesh with local refinement to resolve the stresses in the barrier and 
capping layers.
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reasonable ranges to identify the effects on thermal stresses. Figure 2.6 shows computed 
von Mises stresses at point P in Figure 2.3, which is 0.115 μm above M1 along the axis of V2. 
This point is at or near the point of the maximum stress in V2, and the stress here increases 
with increasing Young’s modulus, CTE, and Poisson’s ratio. This figure, in combination 
with yield strength, provides a failure criterion for Cu vias under different combinations 
of materials properties. As is reasonable, the figure also suggests that dielectric materials 
with lower Young’s moduli and CTEs can reduce stresses in the Cu.

One concern in our simulation study is the treatment of the very thin barrier and cap-
ping films; for example, we assume they are of uniform thickness and ignore their granular-
ity, that is, consistent with using idealized geometries for the vias and lines. However, small 
variations will have a larger effect on them than for the thicker materials. It is also not clear 
how the various material interfaces impact results. We assume ideal, perfectly adhesive films. 
We feel that it is important to gauge the effect of including barrier and capping films on the 
stresses calculated in our simulations. Simulations show that the stresses along the center 
of the top and bottom vias are about 10% higher when the volume occupied by barriers is 
replaced by Cu (Figure 2.7). It is higher because barrier films are stiffer than Cu, and the 
stresses are higher in the barrier films when they are included. As long as the barrier layers 
are thin, it does not matter much if they are included, or ignored, in the computations. They 
do not substantially change the stress distributions in the vias. It should also be noted that 
the stresses computed in the barriers surrounding the failed vias are larger than the yield 
strength of Ta (∼350 MPa) [29] and the barriers could be expected to fail. In that case, ignoring 
them may provide a reasonable model for the local mechanical structure. The barrier and etch 
stop layers are not considered in the models of 3D IC structures discussed in the next section.

2.3.4 Thermal Stress in Real 3D IC Structures

We perform 3D IC simulations to calculate stress in a representative unit cell. The model 
consists of seven layers with embedded Cu interconnects (Figure 2.8). In order to derive 
design-related parameters and make the simulation tractable, we choose a repeated unit 
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FIGURE 2.6
Calculated stress at point P from Figure 2.3, as a function of the Young’s modulus and CTE of the surrounding 
dielectric. Poisson’s ratio is taken to be 0.4.
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cell in the 3D IC structures (Figure 2.8). The top silicon wafer (L3) is thinned to 10 μm 
thick and bonded to the bottom wafer using a 2.6 μm thick BCB (L5). The bottom silicon 
wafer is not included in the unit cell model due to its large volume. Circular Cu vias, 
with an assumed 23.6 μm height, connect 10 μm thick MLMs (L4, L7) in the two wafers. 
Square landing pads are used at the end of Cu vias and embedded in the oxide layers 
(L1, L2, L7). Due to symmetry in the x–z and y–z planes (Figure 2.8), only one quarter of 
unit cell is used in the simulations. Barrier materials are not considered in the model due 

L1: SiO2

L6: SiO2

L2: SiO2
L3: Top Si

L5: BCB

L7: MLM
Cu pad

y

(a) (b)

z

x

Bottom Si

L4: MLM
Cu interconnect

FIGURE 2.8
3D IC structure. (a) Schematic of several cylindrical via connecting square landing pads through the layered 
structure (not to scale). The dot-marked block is the unit cell. (b) A typical FE mesh. Taking advantage of 
symmetry, only one quarter of a via and pad has been included in the geometric model.
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FIGURE 2.7
Stress distributions along the Cu via embedded in SiLK with and without barrier layers. The thick dark line in 
the inset shows the positions along the via where the stress values were taken.
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to their small thicknesses, and as discussed earlier, their presence does not significantly 
affect computed stresses in our model of planar IC structures. The structure is assumed 
stress-free at 250°C (wafer bonding temperature). The material properties and dimensions 
of the model are given in Table 2.2. Young’s modulus of BCB is found to decrease with 
temperature from 2.5 GPa at 25°C to 0.3 GPa at 180°C [30]. To be conservative, we use the 
value at 25°C, which will tend to overpredict the stresses in the Cu. We use the room tem-
perature value of CTE for BCB, which wafer-curvature experiments [31] show to be largely 
temperature independent. For other material properties of pure materials, for example, 
Poisson’s ratio of Cu, we use material properties widely reported at room temperature. The 
material properties of the MLM layer are determined by the volume average of each com-
ponent (30% Cu and 70% SiO2) [32]. For mechanical boundary conditions, the side walls of 
the unit cell are only allowed to shift within their respective planes due to symmetry, as is 
the bottom surface, which is assumed perfectly bonded to the thick silicon substrate at the 
bottom. The top surface is left free to move. As seen in the right half of Figure 2.8, the FE 
mesh is refined in areas where large stress gradients are expected.

Figure 2.9 shows the distribution of von Mises stress in the unit cell for via sizes from 
1 to 6 μm in diameter and a pitch of 20 μm, for an initial temperature of 250°C and a 
final temperature of 25°C. The stresses in the via decrease as the via diameter increases. 
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FIGURE 2.9
Computed von Mises stresses in 3D IC structure with via size of (a) 1, (b) 2, (c) 4, and (d) 6 μm for 20 μm pitch.

TABLE 2.2

Material Properties Used in 3D IC Simulations

Material
Thickness 

(µm)
CTE 

(ppm/ºC)
Young’s 

Modulus (GPa) Poisson’s Ratio
SiO2 1 0.5 70 0.22
Si 10 3.725 130.1 0.278
MLM 10 5 85 0.26
BCB 2.6 52 2.9 0.34
Cu (via) 23.6 17 120.5 0.35
Cu (pad) 1 17 120.5 0.35
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Figure 2.10 shows the von Mises stress at the center of the Cu vias half way up the BCB 
layer for vias from 1 to 6 μm in diameter and pitches of 10, 20, and 40 μm. The order of CTEs 
of the materials is BCB > Cu > MLM > Si > SiO2, and the BCB layer is quite thin. A back-of-
the-envelope calculation shows that the unconstrained thermal contraction of the Cu vias, 
were they not in the stack, is ∼84 nm. This is significantly larger than the unconstrained 
thermal contraction of the stack of material in parallel with the Cu vias (∼55 nm). Thus, 
in the 3D IC stack in which the vias are coupled to the other materials, the Cu vias act to 
constrain the vertical expansion of the entire structure. At each pitch, the maximum von 
Mises stress in the Cu increases as the via size decreases. This trend makes sense; as the 
cross section of the Cu decreases, the amount of stack it must constrain increases. The cal-
culated von Mises stress decreases with decreasing pitch at constant via size, as the force 
per unit area is distributed to more vias. Our simulations indicate that plastic deforma-
tion of the vias is a concern. Combining yield strengths of Cu discussed in Section 2.3, we 
can estimate some target values for design parameters. The lower limit of yield strength 
(500 MPa) can be used for a conservative design. As shown in Figure 2.10, the via size 
should be larger than 3 μm at a pitch of 10 μm and 3.5 μm at a pitch of 40 μm.

Simulations were performed to evaluate the use of BCB bonding with small Cu vias at 
small pitches, such as might be used to bond logic and memory circuits. We assume a via 
diameter of 1 μm, vary the via pitch from 5 to 20 μm, and vary the BCB thickness from 0.5 
to 3 μm. As shown in Figure 2.11, the thickness of BCB should be less than 1 μm, using yield 
strength of Cu 500 MPa, to avoid plastic yield of Cu vias for even the smallest pitch stud-
ied. This is due to the relatively high CTE of BCB compared to Cu. Although the “uncon-
strained stack” discussed earlier contracts approximately 55 nm, approximately 60% of 
that motion would come from the 2.6 μm of BCB. Over that same length, Cu contracts only 
10 nm when unconstrained, so when they are coupled to each other, a significant compres-
sive stress is induced in the lowest part of the via during cooling. By reducing the thick-
ness of the BCB layer, this expansion can be reduced in magnitude, and the stress in the 
bottom of the via is reduced.

We also studied the effect of imposed temperature changes on the thermal stresses. 
Simulations of different initial stress-free temperatures, 150°C and 350°C, and cooling 
down to room temperature were performed to study thermal stress levels. The maximum 
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FIGURE 2.10
Computed maximum von Mises stress in Cu vias of different diameter and different pitch with a BCB thickness 
of 2.6 μm.
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von Mises stress in the Cu via is shown in Figure 2.12. As expected, the stress increases 
as the initial temperature increases. In Ref. [7], a threshold temperature range of 145.3°C 
(Table I in Ref. [7]) was found from statistical analysis of mean-cycle-to-failure, N50, as 
a function of temperature changes ΔT (Tmax was 150°C, ΔT varied from 150°C to 300°C) 
(Figure 8 in Ref. [7]). Below this threshold temperature, the test structures did not fail. Our 
simulations also show that the magnitude of temperature change is a major factor deter-
mining the stress level in the inter-wafer vias. If the structures cool down to room tem-
perature, the maximum processing temperatures determine the thermal stress levels. The 
stress data are normalized by the temperature difference between initial and final temper-
atures and plotted in Figure 2.13. As expected for a linear analysis, the stresses at different 
initial temperature collapse into a single curve. Therefore, when thermally induced stress 
information is available for some temperature ranges, it is possible to extend this informa-
tion into other temperature windows through this procedure.
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FIGURE 2.11
Computed maximum von Mises stress in Cu vias for different BCB thickness and pitch with vias 1 μm in 
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FIGURE 2.12
Computed maximum von Mises stress in Cu vias of different size cooling from 150°C, 250°C, and 350°C to 25°C.
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Issues in addition to stresses in Cu can be of interest. As discussed earlier, Cu vias 
contract more than the surrounding materials, thus pulling down on these neighboring 
materials to which they are coupled. For example, Figure 2.14 shows that roughness is 
introduced into the top surface of the 3D IC structure; the vias and their surroundings 
are lower than areas away from the vias. This roughness, which can be on the order of 
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FIGURE 2.14
(a) Contour and isosurface (white curves) of vertical displacement (z) of the top surface of the 3D IC structures 
calculated for vias of 6 μm, a pitch of 20 μm, and a BCB thickness of 2.6 μm. The structure contains 15 unit cells 
(see Figure 2.8b). A unit cell is removed to reveal internal displacement. The black dashed line indicates the top 
of the slice shown on the right side of the figure. The black dashed line is also the location where the vertical dis-
placements are measured in Figure 2.15. (b) Side view of vertical displacement (z) calculated with via of 6 μm. The 
white curves indicate isosurfaces of vertical displacements. The black lines delineate the undeformed structure.
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FIGURE 2.13
Normalized maximum von Mises stress by temperature change in Cu vias of different size, cooling from 150°C, 
250°C, and 350°C to 25°C.
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100 nm, may affect the downstream processes, and the adhesion of layers deposited after 
bonding and thinning. Figure 2.14 also shows the side view of displacement in the vertical 
direction. The same simulation was repeated with different via sizes, ranging from 2 to 
6 μm. The resulting vertical displacements of the top surface are shown in Figure 2.15. The 
size of the depressed area increases with via size due to both the larger via diameters and 
the increased constraining forces transmitted by the via.

As indicated in Figure 2.9, at constant via pitch (20 μm), the maximum von Mises stress 
shifts from the Cu vias to the top Si substrate as the via size increases. At relatively low 
via densities (<6% area fraction), the maximum stress was observed in the Cu vias. Results 
suggest that Cu vias smaller than a critical size will yield plastically. As the via density 
increases (>10%), the maximum stress gradually shifts to the top, thinned, Si substrate. 
Potential yield or failure locations (e.g., failure in Cu versus Si) are also related to this 
critical via density. For brittle materials, such as Si, the critical fracture stress is a function 
of any flaw or existing damage to the specimen [33]. Such damage can be caused by wafer 
processing, such as grinding and etching. A carefully polished Si specimen has an average 
fracture stress as high as 800 MPa [34]. On the other hand, a backside processed wafer 
has the fracture stress of only 175 MPa [34]. In our simulations, the maximum stresses in 
Si occur in the vicinity of the interface between the Si and the Cu vias. As the via density 
reaches approximately 10%, the stress in Si exceeds the earlier estimate of the critical 
fracture stress. The shift in the location of the maximum stress can be understood by 
considering that the Cu via is in parallel with the other materials; that is, the Cu vias need 
to deal with the forces exerted by their surroundings. As via size increases or via density 
increases, the total Cu area increases. So, stresses are lower for the same forces.

Several avenues to improve our analysis have been identified. First, in this chapter, we 
partially validated our model using planar IC data [7] by comparison with experimental 
failure information—a qualitative response. The stress level at which vias fractured rather 
than just underwent plastic deformation was not studied in Ref. [7], and we are not aware 
of any such data in the literature. Previous studies [15,35,36] show that stresses predicted 
using FEM are higher than measured volume-averaged stresses. Though conservative 
computations are better than those that produce false assurances of stability, it would be 
better to explain the differences and refine the models. This effort will also be useful to 
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Vertical displacement along the diagonal direction (see Figure 2.14, pitch is 20 μm). Note the expanded vertical axis.
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evaluate assumptions in our model that the initial stress at high temperatures in the structure 
is zero. Thermal stress measurements using XRD of Cu lines passivated with TEOS oxide and 
methyl silsesquioxane dielectrics show that, depending on the processing conditions, initial 
stress at 400°C may be in the order of 100 MPa [36]. A careful evaluation of initial stresses is 
necessary for proper prediction of thermal stresses. Second, in our simulations, materials are 
assumed to be homogeneous, and no information on microstructure is explicitly included. It 
has been shown that stress levels increase with increasing average grain size for 0.35 μm Cu 
lines with passivation [37]. Grain boundaries are interfaces which serve as stress relaxation 
sites. Increasing the grain size reduces the number of grain boundaries and leads to higher 
stresses. A model linking stress and microstructure would be useful to our analysis. In 
addition, any gaps in the structure, which might occur during deposition in features, will 
decrease thermally induced stresses. Finally, the static analysis performed in this study does 
not account for any effects of creep or fatigue. von Mises stresses are used to predict plastic 
deformation, but not all structures destined to fail due to thermally induced stress do so with 
a simple temperature change, nor does plastic deformation always lead to electrical failure.

2.4 Case Study 2: Degradation in Heterostructure Field-Effect Transistors

2.4.1 Introduction

The second case study is the application of the FE model in wide bandgap (WBG) 
semiconductor materials. Electronic devices made of GaN and SiC have been 
commercialized and accepted by broad markets for their unique attributes. WBG 
semiconductor materials have been intensively studied in the area of growth, processing 
techniques, and device design and fabrication [38,39]. However, the severe operating 
conditions in terms of temperature, voltage, electric field, and frequency impose several 
design and/or processing concerns surrounding the WBG electronic devices. One 
primary concern is the stability of the structures caused by diffusion of electrically 
active impurities, void initiation and propagation, and interfacial instabilities. The 
performance of these devices is limited by the magnitude of the total voltage developed 
at the gate and drain before electronic breakdown occurs [38,39]. For example, Conway 
et al. studied accelerated RF life test on GaN HFETs at 10 GHz [40]. TEM was performed 
on devices stressed in air which showed feature on drain edge of gate in the AlGaN 
barrier layer [40] (see Figure 2.16). It is well known that the mechanisms of degradation 
and ultimately failure in WBG devices are very complex. Under operating conditions, 
the devices are usually subject to high electric fields, high stress/strain fields, high 
current densities, high temperatures, and high thermal gradients. Moreover, these 
phenomena are coupled together (Figure 2.1).

In order to fully understand the failure mechanisms in WBG devices, in this section, we 
develop a novel FE-based, thermo-electrical-mechanical coupled model to study induced 
stresses, temperature, and electric fields in WBG devices.

The 2D model of the transistor is shown in Figure 2.17. The FE mesh, materials, and criti-
cal dimensions are also given in the figure. The boundary conditions, as shown in Figure 
2.3, are (1) electrical potential, (2) temperature, and (3) mechanical constraints. The transis-
tor is operated under DC bias voltages VDS up to 20 and −8 V at the gate. For the thermal 
boundary conditions, the bottom surface is set at constant 300 K. Other surfaces are ther-
mally insulated. Also the initial temperature of the system is assumed as 300 K. We use 
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COMSOL Multiphysics to solve the governing equations listed in Section 2.2. Four modules 
in COMSOL Multiphysics are used for coupling simulations: (1) heat transfer by conduc-
tion module, (2) conductive media DC module, (3) plane strain module, and (4) piezoelec-
tricity module. These four modules are capable of coupling all the governing equations.

2.4.2 Results and Discussion

Figure 2.18 shows the predicted electrical field distribution. Electrical field is maximal at 
the bottom corner of the gate near the drain side. This high electric field may cause the 

Feature in
AlGaN
layer

Drain

11732-CH1-d΄

Gate

50 nm

SiNSiN

FIGURE 2.16
TEM image of damage feature developed in the AlGaN layer. (From Conway, A.M. et al., Failure mechanisms in 
GaN HFETs under accelerated RF stress, CS MANTECH Conference, May 14–17, 2007, Austin, TX, pp. 99–102, 2007.)

S

2

1

0

–1

–2

–2 –1 0 1 2 3 4 5 6 7 × 10–6

× 10–6

–3

G

SiC

GaN (1.2 µm thick)
AIGaN (28 nm thick)0.8 µm

D

FIGURE 2.17
2D FE model of the transistor. The materials and critical dimensions are also given.
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degradation of the transistor, which is in agreement with the experiments shown in Figure 
2.16. Similar to the electric field, the maximum of temperature as shown in Figure 2.19 
also occurs at the corner of the gate. In general, diffusion of atoms is accelerated at higher 
temperature. Therefore, there is a concern of material degradation under current operation 
conditions.

AlGaN

DGS

GaN

SiC

Max: 3517.454
3500
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1500
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Min: 300
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FIGURE 2.19
Predicted temperature distribution.
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FIGURE 2.18
Predicted electrical field distribution.
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The predicted stress is shown in Figure 2.20. The stress is caused by the combined 
thermal expansion and piezoelectric effects. The highest stress is at the bottom corner 
of the gate near the drain side, which is in agreement with experimental observations 
(Figure 2.16).

2.5 Conclusions

We presented a novel coupled thermo-electrical-mechanical FE-based model to study tem-
perature field, electric field, and mechanical stress in nano-/microelectronics. The model 
was used to evaluate whether thermally induced stresses in Cu inter-wafer vias used in 
BCB-bonded (wafer level) 3D ICs are a reliability concern. Our modeling approach was 
first tested against data obtained from thermal cycling experiments on planar IC MLM 
via structures with Cu interconnects and low-k dielectrics. Computed von Mises stresses, 
assuming a single cooling step of the same magnitude as the experiments, are at a maxi-
mum near the bottom of vias in the test structure, which coincides with experimental 
observations of failure when SiLK was used. No failure in the via is predicted when SiCOH 
was used as the dielectric, which is consistent with experiments.

We then calculated thermal stresses in 3D IC structures bonded with BCB using a 
process developed at RPI due to changing temperature from 250°C to 25°C. Simulations 
show that the von Mises stresses in the Cu vias decrease with decreasing pitch at constant 
via size, increase with decreasing via size at constant pitch, and decrease with decreas-
ing BCB thickness. We found that further study is indeed warranted; that is, the stresses 
in Cu vias either exceed or are close to the yield stress for temperature changes similar to 
those used in BEOL processing and inter-wafer via pitches and via sizes that may reason-
ably be used in 3D ICs. Our results also support the goal of using thin BCB. In general, 
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FIGURE 2.20
Predicted von Mises stress distributions.
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thin BCB has been targeted in order to keep via aspect ratios down; however, it also 
helps keep the via stresses due to BCB contractions and expansions down. Target values 
for design parameters, for example, inter-wafer via size, pitch, and the thickness of BCB, 
were estimated. To improve upon the reliability of such design oriented computations, 
more quantitative simulation work is needed, that is, to compare computed stresses with 
measured stresses.

The model was also applied to conduct degradation analysis and optimization of 
the performance of electronic devices. Electrical field is maximal at the bottom corner 
of the gate near the drain side. This high electric field may cause the degradation of 
the transistor. Similar to the electric field, the maximum of temperature is also located 
at the corner of the gate. The simulated results are in agreement with experimental 
observations.
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3.1 Introduction

In	 this	 chapter,	 we	 discuss	 the	 integration	 of	 finite	 and	 lumped	 element	 methods	 for	
the	 design,	 modeling,	 and	 simulation	 of	 nano-	 and	 microelectromechanical	 systems	
(N/MEMSs).	 A	 reason	 to	 integrate	 finite	 and	 lumped	 methods	 is	 to	 achieve	 increased	
productivity	and	functionality	 in	 the	design	and	analysis	of	N/MEMS.	That	 is	because	
N/MEMSs	 are	 multiphysical	 systems	 that	 can	 have	 some	 components	 that	 are	 best	
modeled	by	finite	element	(FE)	methods	(e.g.,	elements	with	nonlinear	fields)	and	other	
components	that	are	more	efficiently	modeled	by	lumped	element	methods	(e.g.,	electronic	
circuit	elements,	carbon	nanotubes	[CNTs]).	For	commonly	used	components,	it	can	often	
be	advantageous	to	convert	the	FE	model	to	a	parameterized	lumped	model	counterpart.	
There	are	also	advances	in	the	design	of	N/MEMS,	where	the	design	space	can	be	initially	
quickly	explored	using	lumped	element	methods,	then	subsequently	importing	the	design	
into	an	FE	tool	for	more	refined	analysis.

We	limit	the	scope	of	our	discussion	of	NEMS	to	that	of	CNTs	subject	to	small	deflection,	
and	we	limit	our	discussion	of	MEMS	to	that	of	thin	flexures,	comb	drives,	electro-thermo-
mechanical	actuators,	and	piezoelectric	actuators.	Such	mechanisms	have	been	used	to	cre-
ate	a	great	number	of	N/MEMS.	Other	 types	of	 transducers	may	be	 implemented	using	
similar	analysis	methods.	Much	of	this	work	is	based	on	our	recent	efforts	in	the	area	of	
design,	modeling,	and	simulation	of	N/MEMS	for	lumped	and	finite	(or	distributed)	analy-
ses	[1–4].

The	software	tools	we	use	are	Sugar	[5]	and	Spice	[6]	for	lumped	analysis,	COMSOL	[7]	
for	distributed	analysis,	and	Simulink®	[8]	for	system	level	analysis.	This	set	of	tools	is	not	
unique	for	such	applications,	but	they	appear	to	be	the	least	expensive.	MATLAB®	[9]	and	
COMSOL	are	the	only	commercial	software	tools	that	we	use.

Toward	 the	 goal	 of	 integrating	 of	 distributed	 and	 lumped	 element	 methods	 for	 the	
design,	 modeling,	 and	 simulation	 of	 N/MEMS,	 we	 present	 the	 following	 sections.	 In	
Section	3.2,	we	discuss	 lumped	modeling	of	CNTs	with	respect	 to	structural	mechanic	
and	 reduced-order	 modeling.	 In	 reduced-order	 modeling,	 we	 reduce	 a	 6N	 degree-of-
freedom	system	to	a	12N	degree-of-freedom	system,	where	N	 is	 the	number	of	carbon	
atoms.	In	Section	3.3,	we	discuss	how	to	design	CNTs	using	our	lumped	model,	which	can	
be	parameterized	by	chirality,	diameter,	and	length.	In	Section	3.4,	we	introduce	a	novel	
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tool	 for	novice-friendly	design	and	simulation	of	MEMS.	We	demonstrate	 its	 librarian,	
parameterization,	 simulation	 types,	 optimization,	 and	 novice-friendly	 layout	 for	
fabrication.	In	Section	3.5,	we	integrate	the	design	of	NEMS	with	MEMS	by	exemplifying	
the	 design	 of	 a	 nanomechanical	 material	 property	 tester.	 In	 Section	 3.6,	 we	 describe	 a	
framework	 that	 integrates	 our	 lumped	 analysis	 tool	 with	 a	 commercial	 distributed	
element	tool.	 In	Section	3.7,	we	expand	our	previous	discussion	with	the	 integration	of	
lumped,	 distributed,	 and	 system	 level	 design,	 simulation,	 and	 lumped-to-distributed	
analysis	verification.	We	summarize	in	Section	3.8.

3.2 Lumped Modeling of Carbon Nanotubes

Due	to	their	excellent	electrical	and	mechanical	properties,	CNTs	have	been	used	for	broad	
applications	ranging	from	nano-composites	to	NEMS.	The	extremely	small	size	of	CNT	
presents	significant	challenges	 in	 the	evaluation	of	 their	mechanical	properties.	Design	
and	analysis	of	CNT	have	been	largely	done	with	molecular	dynamics	tools,	which	limits	
access	to	molecular	dynamics	specialists	and	does	not	allow	for	exploration	of	CNTs	as	
components	of	a	system.

Many	researchers	have	pursued	the	analysis	of	CNTs	by	theoretical	modeling,	generally	
classified	 into	 two	 categories:	 atomistic	 modeling	 and	 other	 techniques	 that	 include	
classical	molecular	dynamics,	tight-binding	molecular	dynamics,	and	density	function	
theory	[10].	Structural	mechanics–based	models	of	CNT	have	also	been	developed	by	[11]	
and	[12].	An	online	tool	available	on	the	nanoHUB.org	by	Ref.	[13]	simulates	the	pull-in	
behavior	 of	 CNT-based	 NEMS	 for	 different	 applied	 voltages.	 However,	 this	 analysis	
is	 restricted	 to	 cantilever	 and	 fixed–fixed	 boundary	 conditions.	 Although	 a	 computer	
program	called	CoNTub1.0	is	available	for	construction	of	single-	and	multiwalled	CNTs	
[14],	it	does	not	support	evaluation	of	their	response	to	applied	loading.	We	have	not	found	
a	preexisting	tool	for	the	design	and	simulation	of	M/NEMS	with	CNT	components.

Our	following	CNT	model	is	an	extension	of	a	structural	mechanics	model	developed	
by	[11]	and	later	by	[12].	Our	model	simulates	the	dynamic	response	of	CNTs	with	constant	
stiffness	using	an	assemblage	of	our	 linear	flexure	model	 that	we	previously	described	
in	Refs.	[5,15].	To	achieve	a	lumped	CNT	model,	we	reduce	the	number	of	degrees	with-
out	reducing	accuracy	by	using	the	matrix	condensation	approach.	The	resulting	lumped	
CNT	model	has	six	degrees	of	freedom	at	each	end-node	terminal	(x,	y,	and	z,	and	rota-
tions	about	x,	y,	and	z).	This	facilitates	the	connection	of	CNTs	to	other	elements	to	easily	
generate	complex	system	configurations.	A	benefit	of	our	reduced-order	modeling	is	that	
it	greatly	reduces	computation	time	and	reduces	the	complexity	of	designing	integrated	
nano–micro	systems.

3.2.1  Carbon Nanotubes

CNTs	are	allotropes	of	carbon	with	a	cylindrical	nanostructure.	The	structure	of	an	ideal	
nanotube	is	formed	by	rolling	up	a	graphite	sheet	into	a	cylinder	and	is	defined	by	the	
vector	linking	the	two	equivalent	carbon	positions	that	are	matched	together	after	rolling,	
called	the	chiral	vector	

�
c 	(see	Figure	3.1):

	
� � �
c na a= +1 2. 	 (3.1)
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44 Computational Finite Element Methods in Nanotechnology

The	 angle	 θ	 formed	 between	 the	 chiral	 vector	 and	 a1	 defines	 the	 chirality	 of	 the	 CNT.	
Nanotubes	that	show	symmetry	in	nature	are	called	either	armchair	type	(n	=	m)	or	zigzag	
type	(m	=	0).	All	remaining	nanotubes	with	no	symmetry	are	known	as	chiral.	The	gra-
phitic	sheet	is	made	up	of	hexagonal	lattices	with	a	carbon	to	carbon,	C–C,	bond	length	of	
1.415	Å.	The	diameter	of	a	single-walled	nanotube	is	given	by	d	=	0.0783(n2	+	m2	+	nm)1/2	nm.	
The	mass	of	a	single	carbon	atom	is	1.9943	×	10−26	kg.

3.2.2  Structural Mechanics Model

We	use	the	structural	mechanics–based	model	suggested	by	[12]	to	develop	the	constant-
stiffness	model	for	CNT.	This	model	is	based	on	the	notion	that	the	carbon	bonds	in	nano-
tubes	may	be	represented	as	a	geometrically	framed	structure,	where	the	primary	bonds	
between	two	nearest-neighboring	atoms	act	like	load-bearing	members.	That	is,	the	car-
bon–carbon	bonds	are	treated	as	solid	rectangular	flexure	elements.	The	model	neglects	
nonbond	 interactions	 caused	by	van	der	Waals	 forces	and	electrostatic	 forces.	Table	3.1	
summarizes	the	sectional	properties	that	were	used	to	develop	the	beam	model	in	Sugar.	
Here,	b,	h,	and	l	represent	the	width,	height,	and	length	of	the	beam	element,	respectively,	
E	is	Young’s	modulus,	G	is	shear	modulus,	and	ν	is	Poisson’s	ratio.

TABLE 3.1

Sectional	Properties	Used	for	CNT	Model

CNT Mechanical Parameters

b	=	0.127	nm h	=	0.086	nm l	=	0.1415	nm
G	=	3260.32	GPa E	=	8476.84	GPa ν	=	0.3

Source:	 Li,	C.	and	Chou,	T.-W.,	Int. J. Solids Struct.,	
40,	2487,	2003.

θ = 0°
(a) (b) (c)

s

a1

a2

θ

(5, 3)
c

(8, 0) (5, 3) (4, 4)

θ = 30°0° < θ < 60°

FIGURE 3.1
Nanotube	geometry	by	means	of	graphitic	plane	rolling.	CNT	structures	can	be	characterized	by	the	chiral	vec-
tor	

�
c 	and	the	chiral	angle	θ.	They	are	usually	classified	as	(a)	zigzag	(n,	0);	(b)	chiral	(n,	m);	or	(c)	armchair	(n,	n).	

(From	Melchor,	S.	and	Dobado,	J.A.,	J. Chem. Inform. Comp. Sci.,	44,	1639,	2004.)
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45Modeling, Design, and Simulation of N/MEMS

The	CNT	model	is	an	extension	of	a	linear	flexure	model	existing	in	Sugar	[15].	The	beam	
model	is	modified	with	the	properties	given	in	Table	3.1	to	represent	CNT	C–C	bonds.	We	
model	the	mass	of	the	carbon	atoms	as	lumped	masses	on	the	end	of	the	Sugar	flexures.	
Each	lumped	mass	is	a	third	of	the	mass	of	a	carbon	atom,	because	most	often	three	such	
flexures	(or	bond	types)	form	a	carbon	atom.	The	carbon	atoms	at	the	far	ends	of	the	CNT	
usually	have	two	of	these	bonds.

The	 dynamics	 of	 the	 flexure	 can	 be	 described	 by	 a	 system	 of	 second-order	 ODEs	
of	the	form

	
Mq Dq Kq F�� �+ + = ∑ . 	 (3.2)

Here,	M,	D,	and	K	represent	the	global	mass,	damping,	and	stiffness	matrix,	respectively.	
The	global	mass	matrix	is	assembled	from	the	elemental	mass	matrix	[11].	By	considering	
the	atomistic	feature	of	a	CNT,	the	masses	of	electrons	are	neglected,	and	the	mass	of	the	
carbon	atom	(mc	=	1.9943	×	10−26	kg)	 is	considered	to	be	concentrated	at	 the	flexure	 joints.	
Due	to	the	extremely	small	radius	of	the	carbon	atom,	the	coefficients	of	mass	matrix	cor-
responding	to	torsional	and	flexural	rotation	are	neglected.	Only	translatory	displacement	
is	considered.	Hence	the	elemental	mass	matrix	[M]e	for	CNT	is	given	by

	

M

m

m

me

c

c

c[ ] =















3
0 0 0 0 0

0
3

0 0 0 0

0 0
3

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




















. 	 (3.3)

The	elemental	equilibrium	equation	can	be	written	as	follows:

	 Ku f= , 	 (3.4)

where

	
u u u u u u uxi yi zi xi yi zi xj yj zj xj yj zj

T
=  θ θ θ θ θ θ ,

and

	
f f f f m m m f f f m m mxi yi zi xi yi zi xj yj zj xj yj zj

T
=  

are	the	nodal	displacement	vector	and	the	nodal	force	vector	of	the	element,	respectively.	
The	global	stiffness	matrix	is	assembled	from	the	elemental	stiffness	matrix	[K]e,	which	is	
given	by

	
K

K K

K K
e ii ij

ij
T

jj
[ ] =









 , 	 (3.5)
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where

	

K

EA
L

EI
L

EI
L

EI
L

EI
L

GJ
L

ii

x x

y y

=

−

−

0 0 0 0 0

0
12

0 0 0
6

0 0
12

0
6

0

0 0 0 0 0

0 0

3 2

3 2

66
0

4
0

0
6

0 0 0
4

2

2

EI
L

EI
L

EI
L

EI
L

y y

x x









































,

	

K

EA
L

EI
L

EI
L

EI
L

EI
L

GJ
L

ij

x x

y y

=

−

−

− −

−

0 0 0 0 0

0
12

0 0 0
6

0 0
12

0
6

0

0 0 0 0

3 2

3 2

00

0 0
6

0
2

0

0
6

0 0 0
2

2

2

EI
L

EI
L

EI
L

EI
L

y y

x x−









































,

	

K

EA
L

EI
L

EI
L

EI
L

EI
L

GJ
L

jj

x x

y y

=

−

0 0 0 0 0

0
12

0 0 0
6

0 0
12

0
6

0

0 0 0 0 0

0 0
6

3 2

3 2

EEI
L

EI
L

EI
L

EI
L

y y

x x

2

2

0
4

0

0
6

0 0 0
4−









































.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

1:
56

 0
3 

M
ar

ch
 2

01
6 



47Modeling, Design, and Simulation of N/MEMS

Currently,	our	damping	matrix	(not	shown)	is	proportional	to	the	mass	matrix.	Its	propor-
tionality	factor	has	yet	to	be	rigorously	determined.	We	refer	to	the	aforementioned	model	
as	the	“original	CNT	model.”

3.2.3  Reduced-Order Modeling

Here,	we	describe	a	reduced-order	model	of	the	CNT.	A	nanotube	is	often	shown	to	be	a	
web-like	 structure	comprised	of	 simple	bonds	or	flexure	elements.	However,	 the	 larger	
the	number	of	elements	or	nodes	used,	the	larger	the	size	of	the	system	stiffness	and	mass	
matrices	by	a	factor	of	6	(the	degrees	of	freedom	per	node).	For	example,	an	armchair	CNT	
model	of	chirality	(4,	4)	and	length	10	nm	in	Sugar	has	1769	elements.	For	such	a	seemingly	
small	CNT,	the	stiffness	and	mass	matrix	have	a	size	of	7212	×	7212.	Thus,	analysis	of	a	
large	CNT	structure,	or	a	system	of	CNTs,	can	become	computationally	expensive.

Our	model	reduces	the	CNT	structure	of	a	given	length,	diameter,	and	chirality	to	an	
equivalent	linear	flexure	structure,	with	only	two	6	degree-of-freedom	nodes	(see	Figure	
3.2).	The	 interfacial	 links	are	massless	and	only	provide	 force,	 torque,	and	connectivity	
between	each	lumped	CNT	element.	All	information	of	the	interior	nodes	is	hidden	in	the	
reduced	system	matrix.	The	equivalent	stiffness	and	mass	matrix	for	the	reduced	system	
are	generated	using	the	matrix	condensation	technique	[16].	A	brief	review	of	the	matrix	
condensation	technique	is	given	in	the	following.

The	first	step	is	to	partition	the	stiffness,	displacement,	and	force	matrices

	

K K

K K

x

x

F

F
11 12

21 22

1

2

1

2



















 =









 , 	 (3.6)

such	that	F1	contains	all	the	applied	forces,	F2	contains	only	zeros,	and	x1	refers	to	all	the	
displacements	we	wish	to	retain.	For	our	model,	since	we	assume	that	forces	are	applied	

a2

a1

FIGURE 3.2
Lumped	CNT	section	of	a	(4,	4)	armchair	CNT	modeled	in	Sugar.	In	the	previous	figure,	the	complete	length	
is	obtained	by	a	combination	of	six	such	reduced-order	sections,	linked	at	their	terminal,	or	nodes	(a1	and	a2).
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48 Computational Finite Element Methods in Nanotechnology

only	at	the	CNT	ends,	these	are	the	displacements	of	the	first	and	the	last	node.	Hence,	the	
equation	can	be	reduced	to

	 K x Freduced11 1 1, ,[ ][ ] = [ ] 	 (3.7)

where

	 K K K K Kreduced11 11 12 22
1

21, .= − −

Similarly,	 the	 equivalent	 mass	 matrix	 Mc	 for	 the	 reduced	 degree-of-freedom	 system	 is	
given	by

	 M A MAc c
T

c= , 	 (3.8)

where

	
A

I

K Kc =
−









−

22
1

21
.

The	 lumped	 model	 is	 particularly	 convenient	 when	 modeling	 CNTs	 as	 components	 of	
NEMS	or	integration	with	MEMS.	The	user	can	also	make	a	long	CNT	as	a	combination	
of	smaller	CNT	sections	(as	shown	in	Figure	3.2)	to	save	computational	cost.	In	the	rest	of	
this	chapter,	the	model	thus	obtained	is	referred	to	as	“reduced-order	CNT	model.”	Our	
reduced-order	CNT	model	is	just	as	accurate	as	the	original	CNT	model	for	static	deflec-
tions	and	low-order	modes.

3.3 Design and Simulation of Carbon Nanotubes

3.3.1  Sugar Design

The	CNT	models	of	zigzag	and	armchair	nanotubes	are	implemented	in	Sugar,	a	nodal	
analysis	package	for	3D	MEMS	simulation	[5].	The	user	can	simulate	the	structure	and	
dynamic	 behavior	 of	 the	 CNT	 using	 either	 the	 original	 model	 or	 the	 reduced-order	
model.	The	original	model	is	a	hexagonal	lattice	structure	comprising	C–C	bonds,	which	
are	modeled	using	CNT	beam	model	described	earlier.	This	model	allows	the	user	to	ana-
lyze	the	deformation	of	geometry	for	the	applied	small	forces	or	moments	(see	Figure	3.3).

However,	as	was	mentioned	earlier,	using	this	model	for	simulating	the	geometry	of	large	
CNTs	can	be	computationally	expensive	and	time	consuming.	For	such	geometries,	reduced-
order	models	of	symmetric	CNTs	can	be	used,	the	details	of	which	were	given	earlier.	In	
addition	to	the	physics,	graphics	can	also	be	computationally	expensive.	We	have	created	
a	corresponding	reduced-order	display	feature.	Our	display	routine	for	our	reduced-order	
model	first	generates	a	flat	2D	image	of	 the	CNT	with	 the	specified	properties	and	then	
maps	this	image	onto	a	deformed	3D	cylinder	of	required	radius	and	length	(see	Figure	3.4).
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49Modeling, Design, and Simulation of N/MEMS

Our	reduced-order	model	is	highly	efficient	for	predicting	small	linear	displacements	of	
the	CNT.	However,	since	a	flat	CNT	image	has	been	mapped	onto	its	3D	surface	for	aes-
thetics,	the	image	painted	onto	the	surface	of	our	reduced-order	model	may	not	be	entirely	
accurate.	Our	lumped	reduced-order	model	is	much	more	computationally	efficient	than	
the	original	CNT	model,	both	physically	and	graphically.
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FIGURE 3.3
Deflected	CNT	models	implemented	in	Sugar.	Shown	here	are	(a)	armchair	(3,	3)	CNT	and	(b)	zigzag	(5,	0)	CNT	
of	length	3	nm	each.D
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50 Computational Finite Element Methods in Nanotechnology

3.3.2  SugarCube Design and Simulation

The	models	for	the	two	kinds	of	symmetrical	CNTs	are	also	available	for	use	in	SugarCube	
[14],	which	is	a	novice-friendly	online	tool	for	manipulating	parameter	values	of	ready-
made	N/MEMS	that	were	initially	configured	using	Sugar.	The	user	can	change	various	
parameters	like	chirality,	length	and	magnitude,	and	the	direction	of	applied	nodal	forces.	
The	model	outputs	the	displaced	structure	and	the	displacements	of	the	desired	CNT	node	
(Figure	3.5).	Both	original	and	reduced-order	CNT	models	are	available	in	SugarCube.

3.3.3  Applications

In	this	section,	we	discuss	a	few	examples	to	demonstrate	the	application	of	our	CNT	model	
in	N/MEMS.	We	exemplify	our	CNT	model	within	a	nanomaterial-testing	device	developed	
by	[17],	a	nanomotor	developed	by	[18],	and	our	proposed	NEMS	comb-drive	resonator.

Nanomaterial tester:	As	a	first	example,	we	demonstrate	the	use	of	the	CNT	model	for	per-
formance	optimization	of	the	MEMS-based	nanomaterial-testing	device	developed	by	[17].	
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FIGURE 3.4
Reduced-order	lumped	CNT	model	implemented	in	Sugar.	Shown	here	are	(a)	graphical	display	for	armchair	
(10,	10)	CNT	and	(b)	zigzag	(10,	0)	CNT	of	length	4	nm	each.
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51Modeling, Design, and Simulation of N/MEMS

The	chosen	stiffness	of	the	device’s	thermal	actuator	and	load	sensor	is	a	strong	function	of	
the	properties	of	the	nanoscale	specimen	to	be	investigated.	Hence,	these	properties	need	
to	be	tailored	for	the	prescribed	nanostructure	specimen	in	order	to	obtain	sufficient	or	
optimal	performance.	This	essentially	means	that	the	same	device	cannot	be	used	for	all	
ranges	of	CNT	specimen.

We	have	modeled	the	material-testing	device	in	Sugar	(see	Figure	3.6).	Using	this	model,	
the	user	is	able	to	optimize	the	thermal	actuator	and	electrostatic	sensor	of	the	MEMS-
testing	device	to	suit	the	expected	properties	of	test	specimens.	Here,	at	node	A	is	a	single-
walled	CNT	of	diameter	0.78	nm	and	length	5	nm.	For	an	average	temperature	rise	of	150°	
of	 the	V-beams,	a	specimen	elongation	of	172.8	nm	was	obtained	using	the	Sugar	CNT	
model.	For	the	same	specimen,	the	analytical	model	yielded	an	elongation	of	149.6	nm	[17].

The	 13%	 discrepancy	 in	 the	 results	 may	 be	 attributed	 to	 the	 tester	 flexure	 geometry	
and	our	CNT	model.	The	geometry	of	 the	 folded	beams	 in	 the	 tester	device	affects	 the	
stiffness	of	the	load	sensor	and	consequently	the	calculated	specimen	elongation.	In	the	
Sugar	 model,	 the	 folded	 beams	 are	 modeled	 as	 rectangular	 beam	 elements,	 instead	 of	

FIGURE 3.5
In	SugarCube,	the	user	explores	performance	using	sliders.	An	armchair	CNT	(3,	3)	of	length	2	nm	is	simulated	
in	SugarCube.	An	axial	force	of	3	nN	yields	a	displacement	of	3.2e–11	nm.
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52 Computational Finite Element Methods in Nanotechnology

arch-shaped	structures.	Also,	our	CNT	model	approximates	the	desired	nanotube	to	the	
specified	 length,	 neglecting	 any	 incomplete	 hexagon	 structures	 in	 the	 lattice.	 This	 also	
contributes	to	the	error	in	accuracy.	Hence,	these	issues	need	to	be	addressed	to	increase	
the	accuracy	of	our	CNT	model.

Nanomotor:	Here,	we	exemplify	the	use	of	our	CNT	model	in	the	design	of	a	Zettl	nanomo-
tor	[18].	It	consists	of	an	outer	CNT	sleeve	surrounding	a	central	CNT	support.	Figure	3.7	
shows	only	the	design	of	the	nanomotor.	Currently,	small	rotations	are	possible.	However,	
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FIGURE 3.6
MEMS	nanomaterial-testing	device	modeled	in	Sugar	[1].	A	CNT	specimen	of	diameter	of	0.78	nm	and	length	of	
5	nm	(barely	visible)	is	placed	at	node	A.
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FIGURE 3.7
Zettl	nanomotor	concept.	A	multiwalled	CNT	is	used	as	a	rotational	bearing	for	a	proof	mass.	In	practice,	the	
proof	mass	rotates	due	to	an	applied	electric	field.	(From	Fennimore,	A.M.	et	al.,	Nature,	424,	408,	2003.)
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53Modeling, Design, and Simulation of N/MEMS

modeling	of	full	rotation	due	to	applied	electric	field	analysis	has	yet	to	be	implemented	
for	complete	analysis.

NEMS resonator:	The	CNT	model	can	be	used	to	explore	the	design	of	a	NEMS	comb-drive	
resonator.	 In	Figure	3.8,	we	show	a	proposed	resonator	with	flexures	and	comb	fingers	
composed	of	CNTs.	The	CNT	flexures	have	a	diameter	of	0.39	nm	and	length	of	6	nm.	The	
proof	mass	and	anchors	are	polysilicon	depositions	over	strategically	positioned	CNT	flex-
ures	and	comb	fingers.

3.3.4  Summary

In	 this	 section,	 we	 introduced	 a	 new	 lumped	 mechanical	 model	 and	 online	 tool	 for	
simulating	 a	 system	 of	 CNTs.	 Our	 elemental	 and	 reduced-order	 CNT	 models	 are	
implemented	in	both	Sugar	and	SugarCube.	The	models	do	not	require	any	programming	
or	extensive	training	to	use.	They	allow	both	novice	users	to	analyze	the	dynamic	response	
of	the	CNT	structure	to	small	applied	forces	as	well	as	experts	to	conveniently	use	CNT	
as	 components	 of	 N/MEMS.	 The	 user	 can	 either	 utilize	 the	 original	 CNT	 models	 for	
analyzing	small	structures	or	the	more	computationally	efficient	reduced-order	model	for	
simulating	 larger	or	a	system	of	CNTs.	Models	 for	static	analysis	of	symmetrical	CNTs	
(zigzag	and	armchair)	are	currently	available.

3.4 Lumped Modeling of MEMS

With	the	growing	use	of	MEMS	in	education,	research,	and	industry,	there	is	a	growing	
need	for	both	novices	and	experts	to	easily	and	quickly	predict	the	performance	character-
istics	of	MEMS.	MEMSs	allow	computers	to	efficiently	interact	with	physical	phenomena.	

2

1

FIGURE 3.8
A	proposed	CNT	comb-drive	resonator.	In	this	application,	a	pair	of	CNTs	are	used,	flexures	for	a	proof	mass.	
CNTs	protrude	from	proof	mass	to	function	as	comb-drive	fingers.
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54 Computational Finite Element Methods in Nanotechnology

There	is	an	increasing	presence	of	microscale	subsystems	that	are	comprised	of	compo-
nents	from	a	common	set	of	electromechanical	elements.	For	instance,	consumer	products	
that	use	MEMS	gyroscopes	include	smartphones,	Segway	personal	transporters,	automo-
tive	stability	control	systems,	video	game	controllers,	etc.	Although	the	applications	for	
microgyroscopes	may	greatly	differ—requiring	various	 levels	of	precision,	accuracy,	or	
robustness—often	the	desired	performance	characteristics	may	be	achieved	by	modifying	
the	design	parameters	of	basic	microgyroscope	systems	(structure	and	electronics).

Computer-aided	design	(CAD)	for	MEMS	tools	is	often	used	by	experts	to	create	unique	
MEMS	or	investigate	higher-order	behavior	in	preexisting	MEMS.	Such	tools	specialize	in	
distributed	analysis,	for	example,	Refs.	[7,19–21],	or	lumped	analysis	tools,	for	example,	[5,22].	
The	types	of	MEMS	that	one	investigates	using	lumped	analysis	tools	are	MEMS	that	can	be	
configured	with	preexisting	elements.	Distributed	analysis	tools	do	not	have	such	modeling	
constraints,	but	this	comes	at	the	expense	of	computational	expediency	and	the	required	
expertise	in	physics,	CAD,	and	processing	technology	[23,24].	Such	tools	are	sophisticated,	
often	requiring	high-end	computers,	technical	support,	and	extensive	training.

Conventional	tools	do	not	appear	to	accommodate	novices	who	would	like	to	explore	
variations	 in	preexisting	MEMS	or	professionals	who	would	 like	 to	 recycle	or	 leverage	
from	 the	 MEMS	 knowledge	 base.	 These	 groups	 of	 individuals	 may	 potentially	 involve	
a	much	larger	number	of	users	than	the	typical	number	of	advanced	MEMS	experts.	To	
accommodate	this	larger	group	of	individuals,	key	attributes	might	include	a	tool	being	
readily	accessible,	easy	to	use,	and	requiring	a	minimal	amount	of	time	to	yield	results.

A	preexisting	tool	 that	comes	closest	 to	 these	attributes	 is	MEMSolver	 [25].	Although	
its	developers	had	obviously	set	out	to	achieve	an	entirely	different	set	of	attributes,	we	
compare	MEMSolver	to	SugarCube	because	it	is	the	closest-related	tool.	MEMSolver	may	
be	purchased	and	downloaded	from	Ref.	[25].	It	consists	of	a	library	of	parameterizable	
analytical	formulas	of	simple	components	of	MEMS,	such	as	cantilevers	and	diaphragms.	
However,	the	components	cannot	be	combined	into	a	complete	system	in	MEMSolver.	The	
library	is	not	extensible	by	the	user,	and	there	are	no	practical	bounds	on	parameter	val-
ues.	This	latter	issue	may	be	a	problem	for	novices	that	may	not	know	the	practical	limits	
for	fabrication	or	the	limits	for	which	a	model	is	valid.

In	 contrast,	 entire	 systems	 may	 be	 parameterized	 in	 SugarCube.	 It	 is	 the	 only	 CAD	
tool	 that	 is	 able	 to	 display	 circuits	 with	 deflected	 structures	 in	 rotatable	 3D.	 Much	 of	
SugarCube’s	library	consists	of	MEMS	designs	found	in	the	literature,	and	the	library	may	
be	extended	by	its	users,	similar	to	a	Wiki.	The	Wiki	attribute	is	expected	to	help	facilitate	
SugarCube’s	self-sustainment.	SugarCube	is	also	unique	in	using	editable	bounded	sliders	
(discussed	in	the	following).	Not	only	are	sliders	quick	and	easy	to	use,	but	the	bounded	
values	provide	practical	design-rule	limits,	which	may	be	overridden	by	the	user	by	enter-
ing	numerical	values	instead.	Other	key	advances	in	SugarCube	include	its	optimization	
features,	its	one-button	layout	array	generator,	and	its	wafer-level	design	[26,27].

3.4.1  Sugar to SugarCube

Our	 tool	 called	 Sugar	 [15]	 is	 what	 we	 use	 as	 the	 modeling	 and	 simulation	 engine	 for	
SugarCube.	 Sugar	 uses	 modified	 nodal	 analysis,	 similar	 to	 Spice	 [6],	 to	 mathematically	
represent	a	system	(or	network)	of	lumped	elements.	Spice	is	optimized	for	electrical	ele-
ments,	 while	 Sugar	 accommodates	 electrical	 and	 mechanical	 elements	 for	 analysis	 and	
display,	using	a	more	versatile	netlist	language.

In	 Ref.	 [15],	 we	 experimentally	 validated	 Sugar’s	 ability	 to	 fairly	 match	 experimen-
tal	 results	with	prediction	using	an	advanced	micromirror.	This	validation	was	a	key	
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55Modeling, Design, and Simulation of N/MEMS

milestone	in	the	area	of	CAD	for	MEMS	because	the	micromirror	had	such	an	intricate	
design	that	its	performance	is	too	difficult	to	predict	using	hand	analysis,	and	it	had	such	
a	large	number	of	multiphysical	components	that	it	was	too	difficult	to	simulate	using	
conventional	distributed	analysis	tools	on	an	average	personal	computer.	For	example,	
in	Figure	3.8,	we	show	scanning	electron	microscope	images	of	an	advanced	micromir-
ror	and	Sugar’s	representation	of	the	micromirror.	 In	Figure	3.9,	we	plot	experimental	
data	against	simulation	for	the	tilt	angle	as	a	function	of	applied	voltage	on	∼1000	comb-
drive	fingers.

The	skill	to	create	a	computer	model	of	such	a	device	is	usually	beyond	the	expertise	
of	many	individuals,	which	is	where	SugarCube	becomes	useful.	Users	that	are	familiar	
with	Sugar	may	easily	create	a	parameterized	model	of	their	MEMS	for	use	by	others	as	
follows.

As	an	example,	we	show	a	simple	netlist	in	Figure	3.10	and	its	corresponding	image	in	
Figure	3.11.	By	comparing	node	labels	in	the	netlist	to	node	labels	in	the	figure,	one	is	able	
to	identify	each	line	in	the	netlist	with	each	element	in	the	figure.	For	brevity,	most	of	the	
netlist	parameter	values	are	not	provided.	However,	the	parameters	that	are	provided	in	
blue	type	are	used	to	help	demonstrate	how	to	convert	a	Sugar	netlist	into	SugarCube.

In	Figure	3.12,	we	show	netlist	code	that	identifies	which	parameters	from	the	netlist	in	
Figure	3.3	will	be	accessible	through	the	SugarCube	GUI.	Adding	the	code	in	Figure	3.12	to	
the	original	netlist	code	in	Figure	3.10	completes	the	conversion	from	Sugar	to	SugarCube.	
The	resulting	netlist	can	still	be	used	by	Sugar,	whereby	the	added	SugarCube	code	has	
no	effect.
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FIGURE 3.9
A	micromirror	and	its	Sugar	representation.	About	a	1000	comb-drive	fingers	are	supported	by	a	pair	of	cosine-
shaped	flexures	(out	of	view).	The	cosine-shaped	flexures	straighten	once	fully	deflected,	to	stabilize	the	comb	
drive	at	large	voltages.	Upon	actuation,	the	comb-drive	array	translates	a	pair	of	tethers	that	are	attached	to	
U-shaped	moment	arms.	The	moment	arms	convert	translation	to	rotation,	to	rotate	the	circular	mirror	out	of	
plane,	which	is	supported	by	perforated	torsional	flexures	(see	inset	in	Figure	3.9).	The	Sugar	representation	is	
showing	a	view	from	underneath,	showing	the	recessed	plate	for	reducing	its	mass	for	a	faster	response	time	[5].	
Validation	of	Sugar.	Mirror	angle	versus	voltage.	Experimental	measurements	are	shown	as	circles.	The	applied	
voltage	 in	 Sugar	 is	 parametrically	 swept	 from	 0	 to	 150	V.	 The	 inset	 shows	 close-up	 view	 of	 the	 perforated	
torsional	flexure	that	is	modeled	in	Sugar.
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56 Computational Finite Element Methods in Nanotechnology

We	 show	 SugarCube’s	 framework	 in	 Figure	 3.13,	 which	 illustrates	 how	 Sugar	 is	 inte-
grated.	The	SugarCube	user	is	not	required	to	know	how	to	use	Sugar.	The	main	algorithms	
in	SugarCube	include	its	librarian,	parameterization,	simulation,	layout,	and	optimization.	
Due	to	the	built-in	automation,	most	of	the	algorithms	in	SugarCube	are	driven	by	simple	
mouse	or	pen	commands	requiring	one	or	two	button	clicks.
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FIGURE 3.10
Netlist	of	an	electrothermal	actuator.	The	corresponding	image	is	shown	in	Figure	3.11.	It	consists	of	a	thin	hot	
arm	and	a	wide	cold	arm.	A	difference	in	temperature	between	the	two	arms	will	show	a	lateral	deflection	once	
simulated	in	Sugar.	For	brevity,	chosen	parameterized	quantities	are	given	in	blue	type:	length	of	the	hot	arm	
LHOT,	width	of	the	hot	arm	WHOT,	gap	between	the	hot	and	cold	arms	GAP,	and	the	thermal	expansion	coef-
ficient	ALPHA	(Figure	3.12).
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–
+ A

E d

WHOT
LHOT

GAP
b
c

FIGURE 3.11
Sugar	display	of	electrothermal	actuator.	Particular	parameters	and	node	names	from	the	netlist	given	in	Figure	
3.10	are	superimposed	onto	the	image	of	the	MEMS.	Upon	actuation,	electrical	current	from	the	circuit	flows	
from	node	A	to	b,	causing	the	thin	arm	to	get	hot.	Current	flowing	in	the	wide	arm	from	node	c	to	d	is	cooler	
because	of	less	resistance	from	its	wider	width.

sugarcube * [ ] [LHOT = 'Hot arm length, m, 300e-6, 100e-6, 400e-6' 

WHOT = 'Hot arm width, m, 0.8e-6, 0.5e-6, 6e-6' 

GAP = 'Gap, m, 4e-6, 2e-6, 10e-6' 

ALPHA = 'Thermal Expansion Coef, /C, 2.3e-6, 2.3e-7, 2.3e-5'
nodes = 'b, d'] 

FIGURE 3.12
Converting	Sugar	to	SugarCube.	Any	Sugar	netlist	may	be	used	for	SugarCube	by	simply	adding	the	netlist	
code	that	identifies	which	netlist	parameters	are	to	appear	in	the	SugarCube	GUI.	The	syntax	is	netlist	param-
eter	name,	how	the	name	appears	in	the	GUI,	unit,	default,	minimum,	and	maximum	values.	Finally,	the	nodes	
which	are	to	be	analyzed	must	be	included.	In	this	case,	the	SugarCube	user	may	plot	data	from	either	node	b	
or	d	of	the	structure	(Figure	3.11).
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57Modeling, Design, and Simulation of N/MEMS

3.4.2  Librarian

SugarCube’s	 librarian	consists	of	a	hierarchical	collection	of	ready-made	MEMS	devices	
that	are	created	in	Sugar	and	imported	into	a	SugarCube	library	directory	folder.	Many	of	
the	MEMS	in	the	library	are	modeled	after	designs	published	in	the	literature.	Each	device	
in	the	SugarCube	librarian	may	be	accompanied	with	a	preview	image	and	a	description	
since	library	file	names	alone	may	not	be	helpful	to	novices.

In	Figure	3.14,	we	show	an	example	of	selecting	a	resonator	from	the	resonators	category	
in	the	SugarCube	librarian.	As	shown	in	the	figure,	the	image	preview	of	the	resonator	

Library Layout

Parameterization

Simulation

Optimization

Sugarcube Sugar

Netlist parser

Models Properties

Equation of motion

Solvers

FIGURE 3.13
SugarCube	Framework.	SugarCube	adds	a	simple	and	intuitive	library,	parameterization,	optimization,	layout	
features	to	the	Sugar	engine.	The	arrows	indicate	the	direction	of	data	flow.	A	library	of	MEMS	netlists	that	is	
created	in	Sugar	is	uploaded	into	a	hierarchical	SugarCube	library.

FIGURE 3.14
The	SugarCube	librarian.	A	hierarchical	librarian	is	often	the	first	step	in	using	SugarCube.	To	assist	with	locat-
ing	a	desired	MEMS	design,	an	image	and	description	of	the	designs	are	provided.	The	device’s	description	may	
provide	information	such	as	what	the	device	is,	its	common	applications,	and	its	reference(s).
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58 Computational Finite Element Methods in Nanotechnology

and	 its	 description	 are	 provided	 for	 easy	 identification.	 Upon	 loading	 this	 device,	 it	 is	
displayed	in	the	SugarCube	GUI	with	modifiable	design	parameters.

Expert	 users	 may	 contribute	 to	 the	 library’s	 content,	 which	 is	 expected	 to	 help	 with	
SugarCube’s	 self-sustainment.	 In	 the	 previous	 section,	 we	 discussed	 how	 to	 convert	
a	 Sugar	 netlist	 to	 SugarCube.	 To	 allow	 SugarCube’s	 librarian	 to	 show	 an	 image	 of	 the	
device	when	 its	file	name	 is	highlighted,	 the	file’s	creator	should	save	 the	 image	of	 the	
device	using	the	same	name	as	the	netlist,	with	the	proper	file	type	extension.	In	addition,	
to	allow	SugarCube’s	librarian	to	show	a	text	description	of	the	device,	the	file’s	creator	
should	write	a	commented	description	at	the	beginning	of	the	netlist	file.

3.4.3  Parameterization

Efficient	parameterization	of	MEMS	is	one	of	the	key	features	of	SugarCube	that	allows	
users	to	quickly	explore	design	spaces	of	ready-made	MEMS.	And	experts	might	find	that	
importing/exporting	their	unique	designs	to	SugarCube	might	increase	the	productivity	
of	their	design	cycle.

The	parameters	 that	SugarCube	provides	 to	users	are	defined	by	 the	model’s	 creator.	
Common	 parameters	 might	 be	 geometry	 and	 material	 properties.	 However,	 properties	
such	 as	 chip	 acceleration	 or	 rotation,	 nanotube	 chirality,	 finite	 states,	 and	 whether	 to	
include	sets	of	electrical	or	mechanical	components	may	be	parameterized	as	well.

The	bounds	of	the	sliders	are	meant	to	be	realistic	and	reduce	the	chance	of	obtaining	
nonsensical	results	or	an	error.	However,	numerical	values	may	be	entered	outside	that	
exceed	the	suggested	bounds.	Single	default	values	for	each	parameter	are	initially	loaded	
from	the	librarian.	It	 is	up	to	the	user	to	prescribe	different	single	values	or	a	range	of	
values	 to	 sweep.	 If	 only	 single	 values	 are	 chosen,	 one	 data	 point	 usually	 results	 upon	
simulation.	If	one	of	the	parameters	is	changed	into	a	range	of	values,	then	usually	a	2D	
curve	results	upon	simulation.	If	two	parameters	prescribe	a	range	of	values,	then	usually	
a	3D	manifold	results	upon	simulation.	The	data	can	be	saved	and	recalled	for	later	use.

3.4.4  Simulation

We	implement	four	types	of	solvers	in	SugarCube:	static,	steady-state,	modal	(or	sinusoidal),	
and	transient	analyses.

3.4.5  Static Analysis

In	static	analysis,	SugarCube	determines	a	static	equilibrium	of	the	system	due	to	constant	
efforts.	For	static	analysis,	the	mathematical	representation	of	a	multidisciplinary	system	
has	the	form

	 F q K q( ) − = 0, 	 (3.9)

where	F	is	a	multidisciplinary	vector	of	applied	efforts.	The	efforts	may	consist	of	voltages,	
currents,	forces,	torques,	pressures,	temperatures,	etc.	The	vector	q	comprises	of	multidis-
ciplinary	 displacements	 such	 as	 charge,	 translation,	 rotation,	 volume,	 entropy,	 etc.	 The	
constant	 of	 proportionality	 matrix	 K	 relates	 the	 displacements	 to	 the	 efforts.	 Since	 the	
effort	is	a	function	of	displacement,	(3.9)	may	be	nonlinear.	SugarCube	uses	our	Newton–
Raphson	algorithm	to	solve	(3.9).	We	show	examples	of	static	analysis	in	Figures	3.15	and	
3.16.	 In	Figure	3.15,	we	show	the	static	analysis	of	an	out-of-plane	strain	gradient	of	an	
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59Modeling, Design, and Simulation of N/MEMS

analog	devices	ADXL-like	accelerometer.	Such	a	device	is	similar	to	the	common	air-bag	
deceleration	(impact)	sensor	in	most	automobiles.	Although	the	strain	gradient	is	negative,	
which	would	cause	a	simple	cantilever	to	bend	down	toward	the	substrate,	in	the	ADXL,	
this	negative	strain	gradient	causes	the	backbone	of	the	structure	to	bow	upward	out	of	
plane	due	the	compliance	of	its	two	support	flexures.	This	strain	gradient	can	also	cause	
comb	finger	misalignment.

In	Figure	3.16,	we	show	the	static	analysis	of	an	electrothermal	actuator,	sometimes	referred	
to	as	the	chevron	or	V-shaped	actuator.	Electric	current	flowing	through	its	parallel	flexures	
causes	thermal	expansion	due	to	Joule	heating.	The	flexures	meet	at	a	small	angle	to	produce	
a	magnified	deflection.	This	type	of	deflection	is	sometimes	mistakenly	called	buckling.	In	
this	model,	average	temperature	is	used	because	the	amount	of	thermal	expansion	in	a	linear	
beam	due	to	a	distributed	temperature	along	its	length	is	the	same	as	its	average	tempera-
ture.	The	amount	of	deflection	for	a	given	temperature	highly	depends	on	the	initial	angle	
of	the	flexures.	Both	the	beam	length	and	angle	are	swept	in	Figure	3.16.	A	plot	of	deflection	
shows	that	there	is	an	optimal	angle	for	which	these	types	of	actuator	should	be	configured.

FIGURE 3.15
Strain	 gradient	 of	 ADXL	 accelerometer.	 In	 the	 BiCMOS	 process,	 a	 cantilever	 of	 length	 L	=	150	μm	 may	 bend	
down	by	about	y	=	−0.3	μm	due	to	a	negative	strain	gradient	Γ.	If	only	strain	gradient	is	acting,	the	deflection	of	a	
cantilever	is	y	=	ΓL2/2.	Solving	for	strain	gradient,	we	have	Γ	=	−26.7/m.	The	default	range	of	Γ	is	−40	to	40,	which	
is	applied	to	all	structures.	The	deflection	has	been	magnified	to	show	the	bowing	effect.
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60 Computational Finite Element Methods in Nanotechnology

3.4.6  Steady-State Analysis

In	steady-state	analysis,	SugarCube	computes	the	frequency	response	of	the	system	to	an	
external	excitation.	This	response	is	obtained	by	computing	the	transfer	function	of	the	
equations	of	motion	for	the	system

	

Mq Dq Kq Bu

y L qT

�� �+ + =

=
	 (3.10)

where
M,	 D,	 and	 K	 are	 the	 multidisciplinary	 mass,	 damping,	 and	 stiffness	 matrices	 of	 the	

system,	respectively
The	vector	q	describes	the	state	of	the	system
B	is	the	input	influence	array	to	indicate	the	position	of	the	excitation
u	is	the	input	excitation
y	is	the	output	vector
L	is	the	output	influence	array	that	is	chosen	to	extract	the	components	of	interest	of	state	

vector	q

FIGURE 3.16
Static	analysis	of	a	thermal	actuator.	A	3D	manifold	shows	the	deflection	of	the	actuator	tip	versus	a	change	in	
width	of	the	hot	arm	and	a	change	in	gap	between	hot	and	cold	arms.
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61Modeling, Design, and Simulation of N/MEMS

Upon	computation,	the	transfer	function	is	obtained	as

	
H s L s M sD K BT( ) = + +( )−2 1

	 (3.11)

where	s	is	a	complex	variable	and	takes	a	value	of	s	=	jω,	with	ω	≥	0	being	the	excitation	
frequency.

In	Figure	3.17,	we	show	an	example	of	the	frequency	response	of	an	MEMS	gyroscope.	
The	response	includes	both	magnitude	and	phase	as	a	function	of	frequency.	What	else	
is	unique	about	SugarCube	is	that	its	frequency	response	may	also	be	parameterized	as	a	
manifold.	For	instance,	in	Figure	3.18,	we	show	frequency	response	for	a	crab	leg	structure	
(inset)	that	is	parameterized	by	the	size	of	its	proof	mass.

FIGURE 3.17
Frequency	response	of	a	gyroscope.	This	MEMS	gyro	consists	of	2000	comb	fingers	and	orthogonal	movable-
guided	flexures.	These	flexures	allow	the	proof	mass	to	translate	with	2	degrees	of	freedom	and	resist	rotation.	
On	the	other	hand,	a	set	of	fixed-guided	flexures	allows	each	comb	drive	only	1	degree	of	freedom.	The	mag-
nitude	and	phase	of	the	x-coordinate	of	node	C	are	swept	from	10	k	to	1	Mrad/s.	The	inset	prompt	shows	the	
entrees	for	new	frequency	response	of	10	k	to	100	k	with	a	100	point	resolution.
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62 Computational Finite Element Methods in Nanotechnology

3.4.7  Sinusoidal Analysis

In	sinusoidal	analysis	(or	modal	analysis),	SugarCube	computes	the	eigenmodes	and	fre-
quencies	of	the	system.	This	is	obtained	by	solving	the	following	eigenvalue	problem

	 Mq Kq��+ = 0 	 (3.12)

where
M	and	K	are	the	multidisciplinary	mass	and	stiffness	matrices,	respectively
q	is	the	state	of	the	system

In	SugarCube,	the	number	of	modes	to	compute	is	suggested	or	provided	by	the	user.	Once	
the	analysis	is	performed,	a	pull-down	menu	appears	in	the	plot	window	that	can	be	used	
to	select	the	desired	mode	to	display.	In	Figure	3.19,	we	show	an	example	of	the	second	
eigenmode	of	a	folded	flexure	comb-drive	resonator.

3.4.8  Transient Analysis

The	fourth	type	of	solver	is	transient	(or	continuous	time)	analysis.	SugarCube	computes	
the	transient	response	of	a	system	for	a	given	effort,	which	may	be	nonlinear.	Beginning	
by	initially	representing	the	system	in	the	form	of

	 Mq Dq Kq F q�� �+ + = ( ) 	 (3.13)

FIGURE 3.18
Parameterized	frequency	response	of	a	crab	leg	resonator.	The	frequency	response	is	parameterized	by	chang-
ing	the	width	of	the	proof	mass,	increasing	its	inertia	and	viscous	damping	between	the	mass	and	substrate.	
The	device	is	shown	in	the	inset.
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63Modeling, Design, and Simulation of N/MEMS

where	the	quantities	are	defined	earlier.	We	reduce	the	order	of	(3.5)	by	using	our	Krylov	
subspace	method	[29]	to	more	efficiently	compute	the	trajectory	of	motion	of	a	user-speci-
fied	node	and	coordinate.

For	 example,	 in	 Figure	 3.20,	 we	 show	 a	 transient	 response	 of	 a	 sensor	 that	 is	 subject	
to	temperature	and	electrostatic	efforts.	Although	Sugar’s	lumped	modeling	is	already	a	
type	of	reduced-order	modeling,	our	reduced-order	transient	analysis	algorithm	further	
reduces	the	system	from	1152	to	50	degrees	of	freedom,	which	greatly	reduces	computation	
time	without	sacrificing	a	significant	amount	of	relative	accuracy.

3.4.9  Optimization

Sometimes	it	is	not	immediately	obvious	which,	and	by	how	much,	geometric	or	mate-
rial	 properties	 should	 be	 changed	 to	 achieve	 a	 particular	 performance	 metric.	 With	
SugarCube,	 we	 have	 implemented	 an	 algorithm	 that	 allows	 the	 user	 to	 input	 a	 par-
ticular	performance	to	output	a	suggested	parameter	change.	This	allows	the	user	to	

FIGURE 3.19
Sinusoidal	(modal)	analysis.	A	folded	flexure	comb	resonator	is	shown	oscillating	in	mode	2,	which	is	out	of	
plane.	In	this	case,	the	modal	frequency	is	2.9	kHz.	Designing	around	such	frequencies	might	be	important	if	
they	are	considered	to	be	failure	modes.
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64 Computational Finite Element Methods in Nanotechnology

easily	and	quickly	optimize	MEMS	with	just	a	few	button	clicks.	By	switching	to	opti-
mize	mode,	a	list	of	available	design	parameters	and	analysis	options	is	displayed.	A	
user	may	select	which	parameters	to	optimize,	choose	the	type	of	analysis,	and	specify	
the	desired	performance.	Currently,	our	optimization	feature	applies	only	to	static	and	
sinusoidal	analyses.

Given	a	desired	performance	and	a	range	over	which	parameters	are	allowed	to	vary,	
SugarCube	optimizes	the	parameter	space	to	the	desired	performance	by	minimizing	the	
following	function:

	 f P C Desired perf Computed perf P C( , ) = . . ( , ),− 	 (3.14)

where
f	is	an	objective	function
P	is	a	vector	of	bounded	parameters	that	are	to	be	optimized
C	is	the	vector	of	remaining	parameter	values	to	be	held	constant

FIGURE 3.20
Transient	 response.	Due	 to	a	 step	 input	of	 thermal	 stress	and	electrical	 static	 forces,	 its	 initial	peak-to-peak	
amplitude	of	1.8	μm	quickly	decays	to	a	static	deflection	of	0.8	μm.	Damped	frequency	is	1.7	kHz.
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65Modeling, Design, and Simulation of N/MEMS

The	objective	 function	 is	automatically	generated	by	SugarCube.	For	each	 iteration,	 the	
algorithm	generates	a	new	set	of	parameter	values	P,	until	(3.13)	reaches	a	particular	toler-
ance.	Once	optimized,	the	values	of	P	are	displayed.

For	 example,	 in	 Figure	 3.21,	 we	 show	 a	 folded	 flexure	 comb-drive	 resonator	 that	 is	
optimized	 to	 resonate	at	a	particular	 frequency.	 In	 the	parameter	 list,	 the	parameters	
that	are	chosen	to	be	held	constant	have	a	single	value,	while	parameters	that	are	to	be	
optimized	are	specified	by	minimum	and	maximum	values	and	an	initial	guess.	Each	
comb	of	 the	resonator	has	40	fingers.	The	 length	and	width	of	each	finger	are	60	and	
2	μm,	respectively.	The	design	length	and	width	of	the	folded	flexure	are	300	and	2	μm,	
respectively.	We	select	the	length	and	width	of	flexure	as	the	design	parameters	to	be	
optimized.	Length	varies	from	100	to	400	μm	and	width	varies	from	1	to	6	μm.	We	spec-
ify	the	desired	performance	as	the	resonant	frequency	of	mode	2	to	be	5	kHz.	SugarCube	
computes	 the	optimum	length	and	width	 to	be	203	and	2	μm,	respectively,	 see	Figure	
3.14.	Note	that	the	optimal	parameters	returned	may	not	be	unique.	That	is,	there	may	
be	another	set	of	parameters	that	yields	the	same	performance.	The	search	stops	once	a	
valid	set	is	found.

FIGURE 3.21
SugarCube	optimization.	SugarCube	allows	the	user	to	input	the	desired	performance	and	automatically	obtain	
a	modified	design	that	meets	the	desired	performance.
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66 Computational Finite Element Methods in Nanotechnology

3.4.10  Layout

The	task	of	creating	layout	arrays	of	MEMS	for	fabrication	is	one	of	the	most	tedious	tasks,	
often	requiring	days	to	weeks	for	skilled	individuals.	In	SugarCube,	the	task	of	creating	
parameterized	layout	can	be	reduced	to	seconds	with	a	single	click	of	a	button.	SugarCube	
automates	 the	 process	 of	 checking	 for	 design	 rules,	 placing	 etch	 holes,	 supplying	
connecting	layers	for	anchors	and	bonding	pads	topped	with	metal,	supplying	common	
ground	 tracers	 between	 structures,	 and	 optimizing	 chip	 real	 estate.	 Such	 features	 are	
expected	to	be	novice-friendly	and	increase	productivity.

For	example,	in	Figure	3.22,	we	show	the	result	of	a	GDS-II	file	created	by	SugarCube.	The	
device	used	for	this	layout	array	is	the	temperature	sensor	shown	in	Figure	3.20.	Similar	
to	other	features	discussed	earlier,	to	create	a	parameterized	layout	array	in	SugarCube,	
one	simply	selects	which	two	parameters	are	to	be	swept	along	the	row	and	column	of	

Poly 0

Poly 1
Metal

Anchor 1

Anchor 2

FIGURE 3.22
Layout	in	GDS-II	format.	A	SugarCube	generated	array	layout	of	the	temperature	sensor	shown	in	Figure	3.20.	
The	images	shown	are	SugarCube’s	output	file	as	 loaded	into	a	free	GDS-II	reader.	 In	addition	to	plotting	a	
performance	manifold	due	to	sweeping	length	and	angle	parameters,	a	simple	push	of	the	layout	button	yields	
a	corresponding	layout	array	that	is	ready	for	fabrication.	Ground	planes,	tracers,	bond	pads,	and	anchor	layer	
connects	are	automated	(see	enlarged	image).
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67Modeling, Design, and Simulation of N/MEMS

the	array,	then	clicks	the	Layout	button.	In	essence,	each	data	point	from	a	parameterized	
simulation	can	be	validated	by	fabrication.

3.4.11  Summary

In	 this	 section,	 we	 discussed	 a	 CAD	 for	 MEMS	 tool	 called	 SugarCube	 that	 is	 novice-
friendly	and	may	improve	the	productivity	of	expert	MEMS	designers.	This	tool	is	easy	
to	use	and	 requires	no	programming,	no	 training	 for	most	 individuals,	 and	no	MEMS	
expertise.	 It	 is	 developed	 to	 allow	 novices	 (as	 well	 as	 experts)	 to	 easily	 explore	 what-if	
scenarios	 of	 ready-made	 MEMS.	 It	 is	 also	 useful	 for	 professionals	 who	 have	 little	 time	
or	 interest	 in	 learning	 how	 to	 master	 sophisticated	 simulation	 software	 for	 simulating	
variations	of	ready-made	MEMS.	SugarCube	adds	key	MEMS-related	automation	features	
and	an	intuitive	GUI	to	our	MEMS	simulation	tool	called	Sugar.	We	have	demonstrated	
SugarCube’s	features	such	as	parameterization,	simulation	types,	optimization,	and	layout	
generation	of	various	MEMS.

SugarCube	can	be	used	online	at	nanoHUB.org	through	a	standard	Internet	web	browser.	
It	has	a	wide	collection	of	ready-made	MEMS	models	available	in	its	expandable	library.	
The	expandable	library	follows	the	Wiki	concept.	That	is,	users	can	upload	their	MEMS	
designs	into	SugarCube.	A	user	can	select	MEMS	from	this	library	and	analyze	it	using	
the	parameterization	feature.	Features	of	 its	 librarian	include	images	with	descriptions.	
Features	of	its	analysis	solvers	(static,	steady-state,	modal,	and	transient)	include	default	
and	easily	modifiable	options.	Analysis	data	can	be	downloaded	as	2D	or	3D	plots,	or	in	
numeric	form.	Other	features	such	as	geometry	optimization	(given	desired	performance)	
and	the	generation	of	layout	arrays	were	briefly	discussed.

SugarCube	 might	 be	 useful	 to	 (1)	 students	 for	 exploring	 MEMS	 performance	 for	
developing	 intuition	 and	 a	 working	 knowledge;	 (2)	 MEMS	 customers	 for	 modifying	
commercial	MEMS	designs	for	new	products;	(3)	researchers	for	importing	novel	designs	
and	models	 into	SugarCube	for	quick	and	efficient	parameterization,	optimization,	and	
layout	generation;	(4)	customers	of	MEMS	foundries	as	a	one-stop-shop	for	online	design,	
simulation,	 and	 layout	 submission	 for	 fabrication;	 or	 (5)	 researchers	 as	a	 clearinghouse	
for	 quick	 and	 widespread	 dissemination	 and	 use	 of	 novel	 systems,	 as	 complement	 to	
conference	or	 journal	publications	 in	which	the	system	are	not	 in	readily	useful	 forms.	
Such	applications	might	allow	SugarCube	to	improve	and	evolve	over	time.

3.5 Design and Simulation of N/MEMS

MEMSs	have	the	potential	to	provide	accurate	mechanical	characterization	of	nanostructures	
such	as	CNTs	and	nanowires.	The	performance	of	MEMS	highly	depends	on	its	structural	
design,	which	determines	the	device’s	sensitivity	and	ranges	of	applied	or	sensed	forces	and	
displacements.	The	design	and	performance	optimization	of	MEMS	often	require	several	
weeks	of	specialized	training	in	the	use	of	CAD	and	engineering	tools.	In	particular,	an	
MEMS-based	nanomaterial-testing	device	has	been	developed	in	Refs.	[17,30,31],	see	Figure	
3.23.	The	chosen	stiffness	of	the	actuator	and	the	load	sensor	are	a	strong	function	of	the	
properties	of	the	specimen	to	be	investigated.	Such	properties	need	to	be	tailored	for	the	
prescribed	nanostructure	specimen	in	order	to	obtain	sufficient	or	optimal	performance	[31].	
Hence,	each	nanoscale	specimen	may	require	the	material-testing	device	to	have	a	completely	
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68 Computational Finite Element Methods in Nanotechnology

different	set	of	geometrical	and	material	properties.	Optimization	using	distributed	analysis	
is	computationally	expensive,	time	consuming,	and	difficult	to	geometrically	parameterize	
[31].	 Analytical	 models	 of	 the	 complete	 device	 are	 not	 readily	 available,	 and	 only	 an	 FE	
analysis	(FEA)	simulation	of	the	thermal	actuator	is	provided	in	Ref.	[31].	The	simulation	for	
comb-drive	sensor	is	not	provided.	Here,	we	describe	a	parameterized	computer	model	of	
this	MEMS	nanomaterial-testing	device.	What	is	interesting	about	our	approach	is	that	we	
integrate	a	CNT	model	with	the	microscale	device	for	multiscale	simulation.	Such	modeling	
integration	allows	the	user	to	explore	the	performance	of	a	proven	MEMS	tester	applied	to	
various	nanoscale	structures.	We	modeled	both	the	MEMS	and	CNT	using	Sugar,	and	we	
export	the	design	to	SugarCube.

Our	model	allows	the	user	to	explore	the	electro-thermo-mechanical	properties	of	the	
MEMS	device	and	optimize	its	response	by	adjusting	its	geometry	and	material	properties	
and	by	using	variants	of	CNT	samples.	Our	CNT	model	given	earlier	provides	a	structural	
mechanics–based	lumped	model	of	single-walled	nanotubes	that	can	be	used	to	simulate	
a	test	specimen	of	desired	chirality,	diameter,	and	length.	Our	model	is	expected	to	benefit	
those	who	do	not	have	design	expertise	with	traditional	CAE	tools,	ready	access	to	such	
tools,	or	the	time	or	desire	to	develop	a	new	computer	model	from	scratch.	It	will	also	help	
experts	by	providing	a	tool	to	quickly	simulate	variations	of	such	MEMS	devices	and	opti-
mize	them,	in	turn,	facilitating	development	of	tools	for	nanomaterial	testing.

3.5.1  Sugar Model

We	 modeled	 the	 MEMS-based	 material-testing	 device	 in	 Sugar	 (see	 Figure	 3.24).	 The	
complete	device	was	modeled	using	basic	Sugar	building	blocks,	that	is,	anchors	and	3D	
electro-thermo-mechanical	 flexures.	 The	 CNT	 specimens	 were	 modeled	 using	 the	 new	
CNT	models	available	in	Sugar.	The	design	parameters	were	taken	from	Refs.	[17,30,31].	
We	parameterized	the	geometry	and	material	properties	of	both	the	device	and	the	CNT	
test	specimen	to	be	used.	Static,	modal,	and	transient	analyses	can	be	performed	on	the	
device	with	applied	force,	voltage,	or	thermal	loads.	Once	a	device	is	configured	in	low-
level	Sugar,	its	netlist	can	be	imported	into	the	novice-friendly	high-level	SugarCube	for	
easier	exploration	of	design	space	performance,	as	well	as	easy	creation	of	parameterized	
layout	arrays	for	fabrication.

200 µm

FIGURE 3.23
MEMS	nanomaterial-testing	system.	(From	Zhu,	Y.	and	Espinosa,	H.D.,	Proc. Natl Acad. Sci. USA,	102(41),	14503,	
2005.)
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69Modeling, Design, and Simulation of N/MEMS

The	 following	 geometrical	 properties	 are	 parameterized:	 number	 of	 fixed	 and	 mov-
ing	fingers	in	the	comb-drive	sensor,	length	and	width	of	the	fingers,	folded	beams	and	
inclined	 V-beams,	 angle	 of	 inclination	 of	 the	 V-beams,	 and	 number	 of	 heat	 sinks.	 The	
applied	voltage	or	temperature	conditions	can	also	be	manipulated.	In	Figure	3.24,	“A”	is	
the	polysilicon	or	CNT	test	specimen	under	consideration.

3.5.2  SugarCube Model

SugarCube	provides	novices	with	simple	high-level	manipulation	controls	 for	ready-made	
M/NEMS	using	sliders	 that	are	governed	by	design	rules.	Our	model	was	 imported	 into	
SugarCube	 after	 we	 configured	 its	 basic	 geometry	 in	 Sugar	 using	 its	 electro-thermo-
mechanical	 netlist	 language.	 A	 multitude	 of	 parameters	 may	 be	 chosen	 to	 be	 accessible	
through	SugarCube.	In	the	present	example,	we	choose	to	demonstrate	parameterization	of	
the	parameters	for	the	thermal	actuator	(V-beams).	As	seen	in	Figure	3.25,	sliders	appear	for	
V-beam	length,	width,	number,	angle,	and	temperature.	We	also	parameterized	the	number	of	
heat	sinks	and	number	of	comb-drive	sensor	fingers.	Static,	modal,	and	transient	analyses	are	
available	in	SugarCube.	Upon	simulation,	parameterized	performance	1D	values,	2D	curves,	
or	3D	manifolds	are	displayed	in	the	lower-left	window.	Here,	the	plot	shows	displacement	
of	the	actuator–specimen	junction	with	increase	in	the	average	temperature	of	the	V-beams.

Another	interesting	aspect	of	SugarCube	is	that	it	can	generate	a	parameterized	layout	
array	of	the	device	in	GDS-II	format	that	can	be	directly	send	for	manufacture.	For	example,	
Figure	3.26	shows	an	array	of	the	nanomaterial	testers,	where	the	row	is	parameterized	by	
the	number	of	V-beams	and	the	column	by	the	angle	of	V-beams.	The	bonding	pad	layers	
and	common	ground	tracers	are	automatically	created	for	the	layout.	The	layout	image	in	
Figure	3.26	is	from	using	the	free	GDS-II	viewer	called	CleWin	[32].	SugarCube’s	easy	layout	
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FIGURE 3.24
Nanomaterial-testing	device	modeled	in	Sugar.
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70 Computational Finite Element Methods in Nanotechnology

generation	can	reduce	the	time	conventionally	spent	on	layout	from	days	or	hours	to	seconds	
and	hence	can	provide	significant	time	and	cost	savings.	For	instance,	after	choosing	the	two	
parameters	to	vary	and	pressing	the	Layout	button,	it	takes	SugarCube	only	5	s	to	generate	
the	GDS-II	parameterized	layout.	MEMSCAP	MUMP	design	rules	are	applied.

3.5.3  Carbon Nanotube Model in Sugar

We	have	developed	a	computer	algorithm	to	model	single-walled	CNTs.	Our	lumped	model	
is	based	on	the	elemental	structural	mechanics	model	developed	by	[11].	The	model	in	Ref.	
[11]	is	based	on	the	notion	that	the	carbon	bonds	in	nanotubes	may	be	represented	as	geo-
metrically	framed	structures,	where	the	primary	bonds	between	two	nearest-neighboring	
atoms	act	like	load-bearing	members.	That	is,	the	carbon–carbon	bonds	are	treated	as	solid	
rectangular	flexure	elements.	We	imported	the	parameters	of	this	model	into	a	constant	
stiffness	electro-mechanical	Sugar	model.	Our	linear	CNT	model	can	simulate	symmetri-
cal	CNTs	(zigzag	and	armchair)	and	is	parameterized	by	its	chirality	and	length.	We	use	
matrix	condensation	to	create	a	lumped	model	(see	Figure	3.27).	Matrix	condensation	is	
used	to	reduce	the	number	of	degrees	of	freedom	of	the	model	without	affecting	its	accu-
racy.	This	enables	quick	modeling	of	large	CNT	specimen.	In	the	present	work,	we	inte-
grate	our	CNT	model	to	emulate	more	complete	nanomechanical-testing	conditions	that	
help	users	choose	more	appropriate	design	parameters	for	the	MEMS	tester.

FIGURE 3.25
Nanomaterial-testing	device	in	SugarCube.
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71Modeling, Design, and Simulation of N/MEMS

3.5.4  First-Order Analysis of the Thermal Actuator

A	 thermal	 actuator	 is	 based	 on	 the	 principle	 that	 when	 a	 voltage	 is	 applied	 across	 the	
beam,	thermal	expansion	is	induced.	The	change	in	beam	length	can	be	calculated	by

	

∆L T x dx
L

= ( )∫α
0

. 	 (3.15)

FIGURE 3.26
GDS-II	layout	of	an	array	of	nanomaterial-testing	devices,	viewed	in	Clewin	3.2.
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FIGURE 3.27
A	(10,	10)	armchair	CNT	modeled	in	Sugar.
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72 Computational Finite Element Methods in Nanotechnology

A	Sugar	routine	for	the	electrothermal	beam	is	developed	based	on	the	analytical	model	for	
the	thermal	flexure	actuator,	developed	in	Ref.	[33].	For	our	model,	we	simplify	by	assum-
ing	that	there	is	no	heat	conduction	to	the	substrate.	Therefore,	under	steady-state	condi-
tions,	heat	conduction	out	of	the	element	is	equal	to	the	resistive	heating	of	the	element:

	
k

d T
dx

J
2

2
2 0+ =ρ , 	 (3.16)

where
J	is	the	current	density
ρ	is	the	resistivity	of	the	beam
k	is	the	thermal	conductivity	of	polysilicon

We	assume	that	k	is	constant	and	is	equal	to	the	value	when	evaluated	at	room	tempera-
ture	(34	W/m	K).	Moreover,	ρ	varies	linearly	with	temperature	and	is	given	by

	
ρ ρ λ= + −( ) 0 1 T TS 	 (3.17)

where
ρ0	is	the	resistivity	at	ambient	temperature	(TS)	and	is	taken	to	be	3.4	×	10−5	Ωm
λ	is	the	linear	temperature	coefficient	(1.25	×	10−3)

If	we	also	assume	λ(T	−	TS)	≪	1,	then	Equation	3.16	can	be	rewritten	as

	
k

d T
dx

J T TS

2

2
2

0 1 0+ + −( )  =ρ λ . 	 (3.18)

The	solution	of	the	preceding	differential	equation	is

	
T x T be ceS

x x( ) = + + + −1
λ

τ τ , 	 (3.19)

where	τ λρ κ= J 0 / .
Also,	b	and	c	are	constants	that	can	be	determined	using	the	boundary	conditions.	For	

the	thermal	actuator,	the	pair	of	inclined	beams	can	be	modeled	as	three	beams	in	a	row,	
where	the	length	of	the	middle	beam	is	equal	to	the	width	of	the	shuttle.	The	boundary	
conditions	require	the	continuity	of	both	temperature	and	rate	of	heat	conduction	across	
the	junction	points.

The	six	boundary	conditions	are	given	as	follows:

	
T x TS1 0

( ) = 	 (3.20)

	
T x T x

L Lc
3 2 1 0

( ) = ( )
+

	 (3.21)

	
T x T x

L L1 2( ) = ( ) 	 (3.22)

	
T x T x

L L L Lc c
2 3 2
( ) = ( )

+ +
	 (3.23)
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73Modeling, Design, and Simulation of N/MEMS

	
w

dT x
dx

w
dT x

dxL

c

L

1 2( ) = ( )
	 (3.24)

	
w

dT x
dx

w
dT x

dx
c

L L L Lc c

2 3( ) = ( )
+ +

	 (3.25)

where	the	parameters	L,	Lc,	w,	and	wc	are	defined	in	Figure	3.28.	Using	these	boundary	
conditions	 in	the	above	equations	the	average	temperature	of	 the	 inclined	beam	can	be	
calculated	as	follows:

	
∆T T

b
L

e
c
L

eS
x x= +





+ −( ) − −( )−1
1 1

λ τ τ
τ τ . 	 (3.26)

For	our	model,	we	apply	 the	average	 temperature	 to	 the	 inclined	beam	to	calculate	 the	
thermo-mechanical	response	of	the	device.

3.5.5  Thermo-Mechanical Response of the Device

In	 the	 following	 equations,	 the	 subscripts	 TA,	 LS,	 SB,	 L,	 and	 S	 refer	 to	 thermal	 actuator,	
load	sensor,	sink	beams,	folded	beams,	and	specimen,	respectively	(see	Figure	3.24).	F	is	the	
applied	load,	K	is	the	stiffness,	and	U	is	the	elongation	in	different	parts	of	the	device.	Also,	
l,	b,	and	h	are	the	dimensions,	α	is	the	coefficient	of	thermal	expansion,	θ	is	the	beam	angle	
defined	from	vertical,	and	E	is	the	Young’s	modulus	of	the	material	used	to	model	the	device.

Figure	 3.29	 shows	 the	 schematic	 of	 the	 nanomaterial-testing	 device.	 It	 consists	 of	 an	
electrothermal	actuator,	a	test	specimen,	and	a	load	sensor	in	series.	The	governing	equations	

w
wc

Lc

L

FIGURE 3.28
Geometric	design	parameters	of	a	pair	of	V-beams.	(From	Lott,	C.D.,	Electrothermomechanical	modeling	of	
surface-micromachined	 linear	 displacement	 microactuator,	 MS	 thesis,	 Brigham	 Young	 University,	 Provo,	
UT,	2001.)

KTA

UTA

FTA FS FS FLS

ULS

KLSKS

FIGURE 3.29
Free-body	diagram	of	 the	 thermal	actuator	showing	 internal	 forces	and	displacements.	 (From	Zhu,	Y.	et	al.,	
J. Micromech. Microeng.,	16(2),	242,	2006.)
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74 Computational Finite Element Methods in Nanotechnology

for	the	lumped	model	for	mechanical	analysis	of	the	device,	as	given	in	Ref.	[34],	are	given	
in	the	following.	The	force	equivalence	is	given	by	Equations	3.27	through	3.29:

	 F F FTA S LS= = 	 (3.27)

	 F K US S S= ∆ 	 (3.28)

	 F K ULS LS LS= ∆ 	 (3.29)

The	stiffness	of	the	thermal	actuator	depends	on	the	number	of	inclined	beams	(m)	and	
the	number	of	sink	beams	(n).	It	is	calculated	as	follows:

	 K mK nKTA tb sb= + , 	 (3.30)

where
Ktb	is	the	stiffness	of	an	inclined	beam
Ksb	is	the	stiffness	of	a	sink	beam

These	are	calculated	using

	
K

Ebh
l

Eb h
l

tb = +2 22
3

3
2sin cosθ θ 	 (3.31)

	
K

Eb h
l

sb
sb

sb
= 2

3

3
	 (3.32)

The	stiffness	of	the	specimen	and	the	load	sensor	are	given	by	KS	and	KLS,	respectively,	
which	are	given	by

	
K

E A
l

S
S

s
= 	 (3.33)

	
K

Eb h
l

LS
L L

L
= 2 3

3
	 (3.34)

The	elongation	of	the	specimen	is

	 ∆U U US TA LS= − . 	 (3.35)

If	we	assume	α	to	be	constant	over	the	range	of	temperature	change	(2.5	×	10−6	K−1),	then	the	
displacement	of	the	thermal	actuator	is	given	by	Equation	3.36,	and	the	elongation	of	the	
specimen	is	given	by	(3.37):

	
U

m AE T F
K

TA
TA

TA
= × −2 sin

,
θ α ∆

	 (3.36)

	
∆ ∆

U
mAE T

K K K K K
S

TA S TA S LS
=

+ +
2 α θsin

( / )
. 	 (3.37)
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75Modeling, Design, and Simulation of N/MEMS

3.5.6  Electro-Thermo-Actuator Model

We	verified	our	Sugar	model	for	the	MEMS-based	material-testing	device	with	the	results	
presented	 in	 Refs.	 [17,30,31].	 The	 displacement	 of	 the	 electro-thermo	 actuator	 was	 com-
pared	with	 the	FEA	model	given	 in	Ref.	 [17].	An	average	 temperature	 rise	of	55°C	was	
applied	to	the	inclined	beam	elements.	The	maximum	shuttle	displacement	was	obtained	
to	be	67.5	nm,	which	corresponded	well	with	the	displacement	given	by	the	FEA	model	
(see	Figure	3.30).

Next,	we	verified	the	results	of	the	elongation	test	with	the	test	data.	In	Ref.	[17],	they	
used	 a	 dog-shaped	 polysilicon	 test	 specimen	 of	 length	=	4.7	μm,	 thickness	=	1.6	μm,	 and	
width	=	0.42	μm.	We	approximated	the	test	specimen	by	modeling	a	rectangular	polysili-
con	specimen	of	length	=	4.7	μm,	height	=	1.6	μm,	and	width	=	0.42	μm.	The	displacement	of	
the	actuator	specimen	junction	was	found	to	be	67.5	nm	for	a	temperature	increase	of	55°C	
for	the	inclined	beam	elements.	For	a	temperature	increase	of	180°C	from	ambient,	 this	
displacement	of	the	actuator–specimen	interface	was	found	to	be	270.1	nm.

For	optimum	performance	of	the	device,	specimen	stiffness	needs	to	be	comparable	to	
that	of	the	load	sensor	[17].	Hence,	for	testing	the	polysilicon	specimen,	the	width	of	the	
folded	beams	was	increased	to	35	μm.	A	temperature	increase	of	350°C	was	applied	to	the	
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FIGURE 3.30
Displacement	of	a	thermal	actuator	subject	to	a	temperature	increase	of	55°C	in	the	V-beams.	Here,	Y-direction	
displacement	of	point	“A”	is	shown	in	nanometers	for	(a)	our	lumped	model	in	Sugar	and	(b)	Espinosa’s	distrib-
uted	model.	(From	Espinosa,	H.D.	et	al.,	J. Microelectromech. Syst.,	16(5),	1219,	2007.)	Note:	displacement	map	colors	
between	Sugar	(a)	and	ANSYS	(b)	are	reversed.
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76 Computational Finite Element Methods in Nanotechnology

inclined	beams.	Using	the	cho_dq_view	routine	in	Sugar,	the	displacement	of	the	actuator–
specimen	junction	was	found	to	be	387.02	nm,	and	elongation	of	the	specimen	was	found	
to	be	37.93	nm.	From	the	analytical	model	given	earlier,	the	specimen	elongation	was	found	
to	be	94.58	nm.

We	also	simulated	our	CNT	model	with	the	MEMS	nanomaterial	tester.	The	CNT	test	
specimen	 of	 diameter	=	0.78	nm	 and	 length	=	5	nm	 was	 modeled	 using	 our	 CNT	 model	
described	earlier.	A	specimen	elongation	of	172.8	nm	was	obtained	from	the	Sugar	CNT	
model	for	an	average	temperature	rise	of	150°	of	the	inclined	beams.	For	the	same	speci-
men,	the	elongation	was	found	to	be	149.6	nm	from	the	analytical	model.

The	 discrepancy	 in	 the	 results	 can	 be	 attributed	 to	 the	 following	 three	 reasons:	
Firstly,	the	geometry	of	the	folded	beams	highly	affects	the	stiffness	of	the	load	sensor	
and	 in	 turn	 the	 calculated	 specimen	 elongation.	 We	 have	 modeled	 the	 folded	 beams	
as	 rectangular	 beam	 elements,	 instead	 of	 arch-shaped	 structures.	 Secondly,	 we	 have	
approximated	the	polysilicon	test	specimen	with	a	rectangular	specimen,	which	would	
also	introduce	some	discrepancy	in	results.	Lastly,	currently,	a	distributed	temperature	
profile	is	not	applied	to	the	lumped	elements	in	Sugar.	Hence,	the	complete	length	of	the	
V-beam	 is	maintained	at	a	high	constant	 temperature,	and	 the	heat	 sinks	and	shuttle	
are	maintained	at	room	temperature.	To	be	more	accurate,	proper	effects	of	temperature	
gradients	need	to	be	addressed.

3.5.7  Summary

In	 this	 section,	 we	 discussed	 a	 method	 to	 simplify	 the	 designing	 of	 an	 MEMS-based	
nanoscale	 material-testing	 device.	 We	 also	 discussed	 the	 integration	 of	 CNTs	 with	 the	
mechanical	and	thermal	properties	of	the	microscale	device.	Our	model	allows	the	user	to	
optimize	the	performance	of	the	device	by	adjusting	its	geometry	and	material	properties	
and	variations	of	CNT	test	specimen.	Our	SugarCube-based	model	can	generate	the	layout	
of	an	array	of	 the	device	 in	GDS-II	 format	 for	direct	manufacture.	This	simulation	 tool	
will	highly	benefit	both	experts	and	novice	users.	Our	effort	significantly	reduces	design	
optimization	time	and	overall	manufacturing	time	for	the	device.

3.6 Distributed Element Parametric Design of MEMS

Comprehensive	MEMS	design	and	analysis	often	require	a	complicated	mix	of	multiple	
modeling	domains	and	numerical	methods.	Modeling	domains	might	include	electrical	
circuits,	 mechanical	 flexures,	 electromagnetic	 radiation,	 noise,	 packaging,	 temperature,	
pressure,	noninertial	 forces,	various	 parasitics,	 and	coupling	 between	 the	domains.	 An	
example	of	such	coupling	is	electrical	current	passing	through	a	flexure.	As	the	structure	
heats	 and	 expands,	 its	 resistivity	 and	 resonance	 frequency	 will	 be	 affected.	 Although	
theoretically	 possible,	 it	 is	 not	 computationally	 efficient	 to	 represent	 every	 aspect	 of	 a	
system	using	large	sets	of	partial	differential	equations.	Depending	on	the	level	of	analysis	
required,	 some	 solution	 methods	 provide	 good	 computational	 efficiency	 at	 the	 cost	 of	
losing	high-order	detail.	It	is	this	level	of	detail	that	an	analyst	typically	considers	when	
determining	which	methods	to	use	when	modeling	various	system	components.

There	 are	 many	 stages	 in	 a	 design	 cycle.	 These	 might	 include	 modeling,	 simulation,	
optimization,	layout	generation,	process	design,	system	integration,	fabrication,	calibration,	
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77Modeling, Design, and Simulation of N/MEMS

and	 performance	 testing.	 Due	 to	 the	 diverse	 methodologies	 involved	 in	 handling	 each	
stage,	specialty	CAD	tools	are	often	used.	To	name	a	few,	there	are	tools	that	specialize	in	
multiphysical	distribution	[7,19,20,41],	in	layout	[35,36],	in	circuit	analysis	include	[6,28,45],	
and	in	system	level	analysis	[8,37,38,40].	At	times,	it	may	be	necessary	to	create	different	
versions	of	the	same	device	if	working	between	modeling	domains.	CAD	for	MEMS	tools	
such	as	[41]	and	[5]	have	addressed	this	need	by	being	able	to	plug	into	Cadence,	MATLAB,	
Simulink,	and	others.

Without	a	hierarchical	tool	to	facilitate	seamless	integration	between	systems	of	tools,	
a	holistic	approach	to	analysis	can	be	difficult.	This	need	is	being	addressed	in	iSugar	
with	 its	 ability	 to	 fully	 configure	 and	 control	 all	 aspects	 of	 lumped,	 distributed,	 and	
system-level	 integration	within	the	iSugar	tool	 itself.	That	is,	 the	efficiency	and	versa-
tility	of	our	MEMS	netlist	language	can	be	used	to	not	only	configure	advanced	struc-
tural	designs,	but	also	to	specify	Spice	circuits,	configure	the	geometry	and	boundary	
conditions	for	components	that	require	distributed	or	FEA,	control	Simulink	elements,	
and	 layout	 the	 resulting	 device	 for	 fabrication.	 Multiobjective	 optimization	 features	
are	available	in	iSugar,	 including	the	ability	to	determine	geometry	given	the	desired	
performance.	To	facilitate	user-modification,	iSugar	is	an	open	source.	Our	tool	should	
appeal	to	users	that	desire	Sugar-style	MEMS	design	with	the	addition	of	more	sophis-
ticated	modeling	capabilities.

3.6.1  Framework

Our	 objective	 with	 iSugar	 is	 to	 integrate	 Sugar’s	 versatile	 design	 methodology	 with	
distributed	 analysis,	 control	 theory,	 digital	 signal	 processing,	 etc.	 Previously,	 Sugar’s	
modeling	 capabilities	 were	 limited	 to	 parameterized	 lumped	 models,	 which	 meant	
that	models	for	system	components	had	to	already	exist.	Although	many	MEMS	can	be	
decomposed	 into	 a	 small	 set	 of	 commonly	 used	 components,	 such	 as	 small	 deflection	
flexures,	linear	comb	drives,	and	simple	plates,	more	complex	components	such	as	those	
with	unusually	shaped	structures,	or	those	requiring	fluid	dynamics	or	electrodynamics,	
could	 not	 be	 fully	 accommodated	 in	 earlier	 versions	 of	 Sugar.	 The	 present	 version	 is	
seamlessly	integrated	through	Sugar;	that	is,	it	is	not	necessary	for	the	user	to	learn	how	
to	use	 the	other	 tools	 that	 iSugar	 is	 integrated	with	 to	 take	advantage	of	 their	benefits.	
Although	iSugar	is	readily	available	and	is	an	open	source,	the	tools	that	we	have	integrated	
it	with	(MATLAB,	Simulink,	and	COMSOL)	are	available	commercially.

COMSOL	is	a	distributed	analysis	tool	that	is	based	on	an	FEA.	It	has	a	wide	range	of	
capabilities	to	model	and	simulate	multiple	energy	domains,	which	is	especially	important	
in	 a	 field	 like	 MEMS.	 The	 accuracy	 of	 complicated	 models	 computed	 by	 COMSOL	 is	
usually	better	than	those	computed	by	Sugar;	however,	Sugar	is	usually	more	accurate	for	
very	simple	models	if	they	can	accurately	be	expressed	analytically,	which	can	be	directly	
implemented	in	Sugar.	A	useful	feature	in	COMSOL	that	we	exploit	is	COMSOL	Script,	
which	is	based	in	MATLAB.	That	is,	every	operation	in	COMSOL	can	be	performed	from	
MATLAB’s	workspace.	This	allows	users	 to	effectively	control	all	COMSOL	capabilities	
from	within	iSugar.	This	also	allows	parameterized	designs	that	are	difficult	or	too	time-
consuming	 to	 configure	 within	 COMSOL	 to	 be	 easily	 configured	 in	 iSugar	 and	 then	
seamlessly	imported	into	COMSOL.

Simulink	 is	 a	 system	 level	 simulation	 tool	 that	 is	 based	 in	 MATLAB.	 It	 uses	 graphi-
cal	building	blocks	to	configure	systems.	Simulink	has	a	large	library	of	building	blocks	
that	span	a	wide	variety	of	modules	 including	control	theory,	digital	signal	processing,	
COMSOL,	Sugar,	etc.	For	instance,	Simulink	can	be	used	to	impart	feedback	and	control	
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78 Computational Finite Element Methods in Nanotechnology

signals,	 or	 environmental	disturbances	 such	 as	 noninertial	 forces,	 temperature	 fluctua-
tions,	 or	 noise,	 etc.	 Like	 COMSOL,	 Simulink	 operations	 can	 also	 be	 carried	 out	 in	 the	
MATLAB	workspace,	which	we	exploit	with	 iSugar.	The	seamless	 integration	of	 iSugar	
with	SIMLINK	allows	for	parametric	optimization	of	the	MEMS	component	as	its	perfor-
mance	is	explored	in	a	more	complete	system.

It	is	often	the	case	that	optimizing	single	components	alone	does	not	yield	an	optimized	
system	with	the	components	being	assembled.	However,	iSugar	allows	the	user	to	explore	
a	more	holistic	approach	to	system	analysis.	We	show	iSugar’s	framework	in	Figure	3.31,	
which	indicates	data	flow	directions	between	its	integrated	packages.

3.6.2  Integration of Sugar with COMSOL

Configuring	geometries	in	COMSOL	and	many	other	CAD	tools	is	typically	done	by	using	
geometric	Boolean	arithmetic.	That	is,	there	is	a	basic	set	of	parameterizable	shapes,	such	as	
spheres,	boxes,	etc.,	and	by	applying	a	combination	of	translations,	rotations,	unions,	inter-
sections,	etc.,	a	desired	structure	is	obtained.	This	common	method	of	construction	can	be	
difficult	and	time	consuming	for	intricate	structures	like	many	MEMS.	Parameterization	
is	also	difficult	because	shapes	are	usually	positioned	on	a	global	rather	than	local	refer-
ence	frame;	and	sometimes	the	number	of	shapes	may	need	to	change.	For	instance,	if	the	
lengths	of	flexures	change,	then	the	elements	that	they	are	connected	to	may	need	to	be	
repositioned	automatically.	Or	if	the	number	of	comb	fingers	needs	to	change,	shapes	may	
need	to	be	created	or	deleted	automatically.

To	overcome	this	limitation,	we	developed	an	algorithm	called	cho2comsol	that	converts	
geometry	configured	in	Sugar	into	geometry	that	can	be	imported	into	COMSOL.	We	have	
previously	reported	on	the	efficiency	and	ease	of	configuring	geometries	using	a	param-
eterized	Sugar	netlist	in	Ref.	[42],	where	an	advanced	MEMS	with	over	1000	shapes	was	
configured	using	about	20	lines	of	netlist	code.	With	our	conversion	algorithm,	users	can	
more	efficiently	define	their	intricate	geometries	in	Sugar	and	import	them	into	COMSOL	
for	FEA.	For	example,	in	Figure	3.32,	we	show	a	microrobot	design	that	was	configured	in	

Sugar
Subnets, 3D display, parameterization, optimization

Simulink
System level A/D control

COMSOL
Finite element analysis

GDS-II

FIGURE 3.31
iSugar	framework.	Arrows	indicate	data	flow	directions.	By	hiding	the	complexities	involved	in	FEA	and	layout	
packages,	this	framework	simplifies	and	quickens	the	MEMS	design	and	engineering	path	from	idea	to	fabri-
cation.	The	user	just	needs	to	create	an	MEMS	design	using	Sugar’s	simple	netlist	description	language.	The	
system	may	be	controlled	from	within	the	netlist	or	through	Simulink®.	Though	seamless	integration,	COMSOL	
FEA	models	are	automatically	generated	through	iSugar,	and	the	resulting	COMSOL	building	block	is	available	
in	Simulink.	Finalized	designs	may	be	exported	to	layout	in	GDS-II	format	for	fabrication.
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79Modeling, Design, and Simulation of N/MEMS

Sugar	and	then	imported	into	COMSOL.	It	is	important	to	note	that	modifying	this	design	
is	very	easy	to	do	in	Sugar,	yet	very	difficult	to	do	in	COMSOL.

Using	Sugar’s	 set	of	parameterized	geometries,	we	create	 corresponding	geometries	 in	
COMSOL	as	follows.	COMSOL	has	a	scripting	language	based	in	MATLAB.	Each	geometry	
object	 in	 COMSOL	 may	 be	 defined	 by	 a	 geometry	 function	 that	 describes	 its	 shape.	 For	
example,	 rect2	 for	 a	 2D	 rectangle,	 circ2	 for	 a	 2D	 circle,	 etc.	 [43].	 Parameters	 to	 these	
functions	include	dimensions,	position,	orientation,	etc.	Similarly,	there	are	COMSOL	Script	
commands	for	defining	material	properties	such	as	Young’s	modulus,	etc.,	and	boundary	
conditions	such	as	fixed,	free,	roller,	electric	potential,	etc.	Our	Sugar-to-COMSOL	algorithm	
can	automatically	generate	the	required	COMSOL	Script	file	for	each	geometric	object	that	is	
configured	in	Sugar.	However,	since	Sugar	also	does	layout,	some	layout-specific	geometries	
are	optionally	converted	to	COMSOL.	For	example,	large	wire	bonding	pads	and	tracers	are	
often	not	converted	over.	This	is	because	the	dynamics	of	such	objects	is	usually	not	required	
and	its	presence	in	COMSOL	would	be	a	large	computational	expense.

3.7 Integration of Sugar with Simulink®

3.7.1  Verification of Lumped Analysis

Although	lumped	analysis	is	much	more	computationally	efficient	than	distributed	analy-
sis,	this	is	usually	done	at	the	cost	of	refined	information.	For	example,	distributed	analysis	
often	 provides	 temperature,	 charge,	 and	 stress	 distributions	 on	 structures,	 yet	 lumped	

Sugar COMSOL

0

–2

2

0

–2–2–2
–1 0

1
2

–1

FIGURE 3.32
Sugar	 to	 COMSOL	 with	 3D	 orientations.	 Creating	 intricate	 geometries	 in	 many	 FEA	 tools	 can	 be	 time	
consuming.	And	making	them	parameterizable	can	be	difficult.	However,	doing	so	in	Sugar	is	quick	and	easy.	
We	show	a	microrobot	from	[44]	that	was	easily	configured	in	Sugar	and	then	easily	imported	in	COMSOL.	
(From	Marepalli,	P.	and	Clark,	J.	V.,	A	system	design	framework	based	in	MATLAB	that	integrates	sugar,	spice,	
SIMULINK,	Fea	comsol,	and	GDS-II	layout,	International Conference on Modeling and Simulation of Microsystems,	
Boston,	MA.)

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

1:
56

 0
3 

M
ar

ch
 2

01
6 



80 Computational Finite Element Methods in Nanotechnology

analysis	 is	 often	 limited	 to	 the	 effective	 equivalent	 information	 lumped	 at	 the	 nodes.	
Moreover,	lumped	models	are	often	created	by	reducing	various	types	of	physics	involved	
in	the	problem	to	the	bare	minimum.	Therefore,	determining	the	accuracy	and	limits	of	
lumped	models	is	often	necessary,	and	even	more	so,	determining	the	accuracy	and	limits	
of	a	system	of	lumped	models	due	to	possible	proximity	effects	is	needed.

Such	verification	can	be	done	more	easily	than	before	using	iSugar.	This	is	because	we	
are	able	to	not	only	import	geometric	and	material	properties	from	Sugar	to	COMSOL,	but	
we	also	have	automated	the	application	of	actuation	efforts,	meshing,	and	solver	analy-
ses.	In	this	way,	after	configuring	a	design	in	Sugar,	users	may	automatically	verify	their	
assembled	models	and	simulations	in	iSugar.	Although	this	process	requires	the	user	to	
have	 the	COMSOL	engine,	 iSugar’s	automation	 implies	 that	 the	user	 is	not	 required	 to	
have	expertise	in	the	use	of	COMSOL.

We	show	an	example	of	 iSugar	automatic’s	verification	in	Figure	3.33.	After	a	serpen-
tine-flexure	structure	created	in	Sugar	(with	just	nine	lines	of	netlist	text)	is	automatically	
exported	 into	COMSOL,	boundary	conditions	applied,	meshed,	and	simulated,	all	with	
just	a	single	command	within	the	MATLAB	workspace	or	within	Simulink.

A	goal	of	MEMS	designers	is	to	predict	the	performance	of	their	systems	under	realistic	
operating	conditions.	Modeling	such	systems	more	completely	than	convention	includes	
interface	electronics,	packaging,	temperature	variations,	external	vibrations,	electromag-
netic	radiation,	noninertial	forces,	etc.	A	system	level	simulation	tool	can	be	used	to	effi-
ciently	control	such	disturbances	since	such	sources	do	not	require	as	detailed	modeling	
as	the	MEMS	structure.	In	iSugar,	we	integrate	Sugar	with	Simulink	by	implementing	a	
Simulink	Sugar	block.	These	blocks	can	be	used	to	perform	different	Sugar	operations	like	
simulating	static,	modal,	and	transient	performance	of	MEMS,	displaying	the	MEMS	in	
their	deflected	states,	etc.

In	use,	the	user	is	able	to	interconnect	one	or	more	Sugar	blocks	of	MEMS,	one	or	more	
COMSOL	blocks,	and	a	host	of	other	Simulink	blocks	to	emulate	a	more	complete	system.	
In	Figure	3.34,	we	show	an	example	of	a	system	level	configuration	in	Simulink	that	con-
nects	control	circuitry	to	an	MEMS	Sugar	block.	The	output	of	the	Sugar	block	is	defined	
by	the	user.	For	instance,	the	output	might	be	the	mechanical	deflection	of	node,	resonance	
amplitude,	capacitance	of	a	comb	drive,	etc.

3.7.2  Integration of Sugar with Spice

In	iSugar,	we	integrate	Sugar	with	Spice	by	enabling	the	user	to	write	pure	Spice	netlist	
syntax	within	a	Sugar	netlist.	A	preprocessor	separates	the	Spice	circuit	part	of	the	netlist	
from	MEMS	part.	Once	 these	partitions	are	 identified,	either	one	or	both	of	 the	MEMS	
structure	 and	 or	 Spice	 circuitry	 can	 be	 imported	 and	 simulated	 in	 COMSOL.	 That	 is,	
COMSOL	includes	a	Spice	simulation	engine.

3.7.3  Summary

In	this	section,	we	discussed	our	system	design	framework	called	iSugar	that	integrates	
lumped,	distributed,	and	system	level	analyses.	Sugar	is	the	tool	used	for	lumped	analy-
sis,	COMSOL	is	used	for	distributed	analysis,	and	Simulink	for	system	level	simulation.	
A	 common	 attribute	 in	 these	 tools	 is	 that	 their	 scripting	 is	 based	 in	 MATLAB,	 which	
we	exploit	in	iSugar	to	seamlessly	integrate	these	tools.	With	iSugar,	users	are	also	able	
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FIGURE 3.33
Verification	of	lumped	analysis.	An	example	of	lumped	analysis	verification	with	distributed	analysis	is	shown.	
A	lumped	model	of	a	serpentine	flexure	is	shown	in	(a)	using	just	nine	lines	of	netlist	text.	This	lumped	model	
can	be	automatically	converted	into	COMSOL	for	distributed	analysis,	as	shown	in	(b).	This	conversion	pro-
cess	includes	positioning	and	rotating	structural	elements,	applying	constraint	and	effort	boundary	conditions,	
meshing,	selecting	solver	and	solver	parameters,	and	plotting	generation	the	results.	This	conversion	is	done	
with	a	single	command	in	MATLAB®;	that	is,	no	interaction	with	COSMOL	is	required	by	the	user.	In	regard	to	
the	validation	of	static	displacement	for	this	model,	the	relative	error	of	Sugar	with	respect	to	COMSOL	is	3.3%.
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82 Computational Finite Element Methods in Nanotechnology

to	integrate	Spice	analysis	and	layout	in	GDS-II	format.	The	automation	and	control	of	
these	 tools	 through	 iSugar	 are	 expected	 to	 enable	 greater	 efficiency	 and	 versatility	 in	
modeling	MEMS.

3.8 Conclusion

We	 discussed	 an	 integration	 of	 distributed	 element,	 lumped	 element,	 and	 system	 level	
methods	for	the	design,	modeling,	and	simulation	of	N/MEMS.	The	benefits	of	lumped	
elements	 are	 computational	 efficiency	 and	 ease	 of	 parameterization;	 however,	 such	
lumped	models	must	preexist.	For	models	that	do	not	preexist,	or	if	the	analysis	of	single	
component	is	necessary,	then	distributed	element	methods	are	often	beneficial.	However,	
distributed	elements	are	computationally	expensive,	especially	for	devices	with	a	multi-
tude	of	multiphysical	components.	Often	reduced-order	methods	are	used	to	minimize	
the	degrees	of	freedom	for	a	more	efficient	model	at	the	expense	of	trading	off	some	accu-
racy.	The	integration	of	both	distributed	and	lumped	element	methods	can	be	useful	for	
modeling	 micro-	 and	 nano-systems.	 Although	 not	 every	 N/MEMS	 can	 be	 represented	
using	the	methods	discussed	here,	a	large	number	of	devices	can	be	efficiently	explored	
using	these	methods.	The	examples	we	provided	included	parameterized	lumped	CNTs;	
novice-friendly	 design,	 simulation,	 and	 layout	 of	 MEMS;	 an	 automated	 lumped	 to	 dis-
tributed	 verification	 method;	 and	 the	 design	 exploration	 of	 a	 nanomechanical	 material	
property	tester.

FIGURE 3.34
Integrating	Sugar	to	Simulink®	components.	With	the	integration	of	Sugar	to	COMSOL	and	Simulink,	iSugar	
shares	the	Sugar’s	ease	of	use,	COMSOL’s	depth	in	simulating	multienergy	domain	problems,	and	Simulink	
breadth	in	solving	system	level	problems.	In	this	example,	we	show	how	a	Sugar	block	can	be	integrated	to	a	
system-level	circuitry	inside	Simulink.
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4.1 Introduction

Nanorobotics	 is	 a	field	which	calls	 for	 collaborative	efforts	between	physicists,	 chem-
ists,	 biologists,	 computer	 scientists,	 engineers,	 and	 other	 specialists	 to	 work	 toward	
this	 common	 objective.	 The	 ability	 to	 manipulate	 matter	 at	 the	 nanoscale	 is	 one	 core	
application	 for	 which	 nanorobots	 could	 be	 the	 technological	 solution.	 There	 are	 lots	
of	work	 in	 the	 literature	about	 the	 significance	and	motivation	behind	constructing	a	
nanorobot.	The	applications	range	from	medical	or	environmental	sensing	to	space	and	
military	applications.	Molecular	construction	of	complex	devices	could	be	possible	by	
nanorobots	of	the	future.

This	chapter	focuses	on	the	state	of	the	art	in	the	field	of	nanorobotics	by	considering	
various	theories	and	experiments.	Nanorobots	are	controllable	machines	at	the	nanometer	
or	molecular	scale	that	are	composed	of	nanoscale	components.	With	the	modern	scien-
tific	capabilities,	it	has	become	possible	to	attempt	the	creation	of	nanorobotic	devices	and	
interface	them	with	the	macro-world	for	control.	There	are	countless	such	machines	that	
exist	in	nature,	and	there	is	an	opportunity	to	build	more	of	them	by	mimicking	nature.	
Even	if	the	field	of	nanorobotics	is	fundamentally	different	from	that	of	macrorobots	due	
to	the	differences	in	scale	and	material,	there	are	many	similarities	in	design	and	control	
techniques	that	eventually	could	be	projected	and	applied.	Figure	4.1	introduces	a	general	
view	on	the	nanorobotic	science.

Reaching,	 identifying,	 and	 manipulating	 the	 nanoworld	 need	 some	 tools	 in	 macro-
world.	Teleoperated	systems,	especially	the	scanning	probe	microscopes	(SPMs),	are	the	
usual	systems	that	have	been	utilized	for	this	purpose.	Therefore,	it	is	obvious	that	in	a	
teleoperation	system,	both	macro-	and	nanoscale	processes	can	be	extensively	effective.
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This	chapter	 reviews	some	descriptions	and	challenges	 in	nanorobotic	 science.	Then,	
a	 real	 view	 on	 the	 simulation	 of	 nanorobotic	 systems	 with	 macrodimensions	 has	 been	
discussed	that	is	applicable	onto	the	small-scale	nanorobots	too.	After	the	introduction	of	
different	types	of	nanorobots,	the	applications	of	various	nanorobots	have	been	discussed.	
Focusing	on	the	macroscale	nanorobots,	where	the	finite	element	method	(FEM)	can	be	
applied,	 different	 methods	 of	 manipulation	 on	 the	 nanoscales	 using	 these	 nanorobots	
have	been	developed.	Here,	manipulation	on	the	nanoscales	using	macroscale	nanorobots	
is	 called	 nanomanipulation.	 With	 classification	 of	 effective	 parameters	 in	 the	 nanoma-
nipulation,	a	relatively	comprehensive	model	for	these	devices	has	been	introduced.	At	the	
end,	as	an	example	of	nano-sized	nanorobots,	the	linear	and	nonlinear	behavior	of	electri-
cal	nanogenerators	have	been	studied.

4.1.1  Different Types of Nanorobots

Here,	nanorobotic	systems	have	been	divided	into	two	categories:	nanoscale	nanorobots	
and	macroscale	nanorobots.

Nanoscale	nanorobots	have	been	developed	recently.	Nonetheless,	they	are	largely	in	the	
research-and-development	phase	[1].	It	is	very	important	that	in	the	real	world,	some	prim-
itive	molecular	machines	have	been	tested	successfully.	The	nanoscale	nanorobots	can	be	
divided	into	man-made	and	naturally	occurring	molecular	machines.	In	some	literatures,	
the	 molecular	 machines	 are	 divided	 into	 three	 broad	 categories:	 protein-based,	 DNA-
based,	and	chemical	molecular	motors	 [2].	The	ATP	synthase,	 the	kinesin,	myosin,	and	
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flagellar	molecular	motors	are	some	examples	of	main	protein-based	molecular	machines	
[2].	DNA-based	nanodevices	that	can	move	or	change	conformation	have	been	developed	
rapidly	since	the	first	example	was	reported	in	Ref.	[3].	So	far,	a	number	of	different	proto-
types	have	been	developed.	These	include	devices	that	are	driven	by	DNA	hybridization	
and	branch	migration,	walk	and	rotate,	use	Hoogsteen	bonding	to	form	multiplex	(rather	
than	 double	 helix)	 DNA	 structures,	 and	 respond	 to	 environmental	 conditions.	 At	 least	
some	of	these	concepts	will	need	to	be	combined,	and/or	new	ones	developed	before	such	
devices	would	be	of	practical	use.

These	machines	and	many	of	other	types	have	complicated	structures	that	will	allow	
them	to	use	 for	various	applications	 in	 the	 future.	For	example,	 some	types	of	molecu-
lar	motors	that	move	unidirectionally	along	protein	polymers	(actin	or	microtubules)	can	
drive	the	motions	of	muscles,	as	well	as	much	smaller	intracellular	cargoes.	Some	others	
can	rotate	and	actuate	or	sense	a	device	in	tangential	direction.	An	example	is	a	sensor	
having	a	switch	approximately	1.5	nm	across,	capable	of	counting	specific	molecules	in	a	
chemical	sample.

Since	their	discovery	in	1991,	carbon	nanotubes	have	been	investigated	by	many	research-
ers	all	over	the	world.	Their	large	length	(up	to	several	microns)	and	small	diameter	(a	few	
nanometers)	result	in	a	large	aspect	ratio.	They	can	be	seen	as	the	nearly	one-dimensional	
form	of	fullerenes.	Therefore,	these	materials	are	expected	to	possess	additional	interesting	
electronic,	mechanic,	and	molecular	properties.	Especially	in	the	beginning,	all	theoreti-
cal	studies	on	carbon	nanotubes	focused	on	the	influence	of	the	nearly	one-dimensional	
structure	on	molecular	and	electronic	properties.	Based	on	their	special	configuration,	car-
bon	nanotubes	can	be	collated	with	other	longitudinal	structures	such	as	DNA,	nanorods,	
nanowires	(NWs),	etc.	Nanoswitching,	nanogripping,	nanoactuating,	and	sensing	can	be	
performed	utilizing	the	carbon	nanotubes.

Despite	the	fact	that	these	capabilities	can	be	used	in	various	industries,	 the	first	and	
most	 useful	 applications	 of	 nanoscale	 nanorobots	 might	 be	 in	 medical	 technology.	 For	
example,	they	could	be	used	to	identify	and	destroy	cancer	cells	[4].

On	the	other	hand,	microscopes	that	have	the	capability	of	various	operations	at	the	
nano-	 and	 sub-nanometric	 dimensions	 are	 called	 macroscale	 nanorobots.	 From	 this	
set,	SPMs	and	especially	atomic	force	microscope	(AFM)	are	more	famous.	Macroscale	
nanorobots	are	 robots	 that	allow	precision	 interactions	with	nanoscale	objects	or	can	
manipulate	 with	 nanoscale	 resolution.	 Following	 the	 microscopy	 definition,	 even	 a	
large	 apparatus	 such	 as	 an	 AFM	 can	 be	 considered	 a	 nanorobotic	 instrument	 when	
configured	 to	 perform	 nanomanipulation.	 For	 this	 perspective,	 macroscale	 robots	 or	
microrobots	 that	 can	 move	 with	 nanoscale	 precision	 can	 also	 be	 considered	 nanoro-
bots.	 In	 the	 early	 1980s,	 SPMs	 dazzled	 the	 world	 with	 the	 first	 real-space	 images	 of	
the	surface	of	silicon.	Now,	SPMs	are	used	in	a	wide	variety	of	disciplines,	 including	
fundamental	surface	science,	routine	surface	roughness	analysis,	and	spectacular	three-
dimensional	imaging	from	atoms	of	silicon	to	micron-sized	protrusions	on	the	surface	
of	a	living	cell.	The	SPM	is	an	imaging	tool	with	a	vast	dynamic	range,	spanning	the	
realms	of	optical	and	electron	microscopes.	The	AFM	probes	 the	surface	of	a	sample	
with	a	sharp	tip,	a	couple	of	microns	long,	and	often	less	than	100	Å	in	diameter.	The	
tip	is	located	at	the	free	end	of	a	cantilever	that	is	100–200	μm	long.	Forces	between	the	
tip	and	the	sample	surface	cause	the	cantilever	to	bend	or	deflect.	A	detector	measures	
the	cantilever	deflection	as	the	tip	is	scanned	over	the	sample,	or	the	sample	is	scanned	
under	the	tip.	The	measured	cantilever	deflections	allow	a	computer	to	generate	a	map	
of	 surface	 topography.	AFMs	can	be	used	 to	 study	 insulators	and	semiconductors	as	
well	as	electrical	conductors	[5].
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4.1.2  Applications of Various Nanorobots

There	are	many	applications	for	nanorobotic	systems.	First,	let	us	start	from	the	nanoscale	
nanorobots.	As	already	mentioned,	the	first	and	most	useful	applications	of	nanomachines	
might	be	in	medical	technology.	So	far,	however,	there	has	been	little	discussion	about	pos-
sible	applications	of	nanoscale	nanorobots	in	medical	science.	Some	examples	can	guide	
the	researchers	toward	the	new	ideas.	Retina	implants	are	in	development	to	restore	vision	
by	 electrically	 stimulating	 functional	 neurons	 in	 the	 retina.	 An	 especial	 form	 of	 retina	
implants	 enables	 blind	 peoples	 to	 see	 shapes	 and	 objects	 [6].	 In	 that	 work,	 some	 blind	
patients	have	had	their	sight	partly	restored	after	scientists	in	Germany	developed	an	elec-
tronic	eye	implant.	This	can	revolutionize	the	lives	of	200,000	people	worldwide	who	have	
retinitis	pigmentosa	(RP),	a	degenerative	eye	disease.	So,	this	could	clearly	show	the	nano-
robotics	 significance.	 Many	 examples	 have	 been	 mentioned	 in	 medical	 science.	 On	 the	
other	hand,	medical	devices	that	contain	nano-	and	microtechnologies	will	allow	surgeons	
to	perform	familiar	tasks	with	greater	precision	and	safety,	monitor	physiological	and	bio-
mechanical	parameters	more	accurately,	and	perform	new	tasks	that	are	not	currently	done.	
In	addition,	nano-	and	microtechnologies	provide	new	solutions	for	increasing	the	speed	
and	accuracy	of	identifying	genes	and	genetic	materials	for	drug	discovery	and	develop-
ment	and	for	treatment-linked	disease	diagnostics	products.	Several	new	technologies	are	
being	developed	to	improve	the	ability	to	label	and	detect	unknown	target	genes.	The	most	
significant	work	of	nanorobots	in	medical	field	is	killing	the	cancer	cells.	The	device	would	
circulate	freely	throughout	the	body	and	would	periodically	sample	its	environment	by	
determining	whether	the	binding	sites	were	or	were	not	occupied.	Occupancy	statistics	
would	allow	determination	of	concentration.	Today’s	monoclonal	antibodies	are	able	 to	
bind	to	only	a	single	type	of	protein	or	other	antigen	and	have	not	proven	effective	against	
most	cancers.	The	cancer	killing	device	suggested	here	could	incorporate	a	dozen	different	
binding	sites	and	so	could	monitor	the	concentrations	of	a	dozen	different	types	of	mole-
cules.	The	computer	could	determine	if	the	profile	of	concentrations	fits	a	preprogrammed	
“cancerous”	 profile	 and	 would,	 when	 a	 cancerous	 profile	 was	 encountered,	 release	 the	
poison.	Beyond	being	able	 to	determine	the	concentrations	of	different	compounds,	 the	
cancer	killer	could	also	determine	local	pressure.	By	using	several	macroscopic	acoustic	
signal	sources,	the	cancer	killer	could	determine	its	location	within	the	body	much	as	a	
radio	receiver	on	earth	can	use	the	transmissions	from	several	satellites	to	determine	its	
position	(as	in	the	widely	used	GPS	system).	The	cancer	killer	could	thus	determine	that	it	
was	located	in	(say)	the	big	toe.	If	the	objective	was	to	kill	a	colon	cancer,	the	cancer	killer	
in	the	big	toe	would	not	release	its	poison.	Very	precise	control	over	location	of	the	cancer	
killer’s	activities	could	thus	be	achieved.	The	cancer	killer	could	readily	be	reprogrammed	
to	attack	different	targets	(and	could,	in	fact,	be	reprogrammed	via	acoustic	signals	trans-
mitted	while	it	was	in	the	body).	This	general	architecture	could	provide	a	flexible	method	
of	destroying	unwanted	structures	(bacterial	infestations,	etc.).

Now,	we	want	to	determine	the	role	of	nanorobots	in	our	knowledge	about	the	nature	
of	 processes.	 The	 fundamental	 definition	 of	 nanoscale	 nanorobots	 may	 be	 as	 devices	
that	 interact	 the	 objects	 at	 the	 nanoscale	 of	 length.	 This	 means	 that	 they	 include	 the	
molecular	machines.	So,	entrance	to	the	interaction	world	of	molecules	may	be	possible	
with	nanoscale	nanorobots.	They	can	be	utilized	to	actuate	two	or	more	molecules	to	close	
together	or	repulse	them.	The	more	important	capability	is	the	sensor	state.	A	nanoscale	
nanorobot	may	be	used	to	identify	and	even	measure	accurately	the	interactions	including	
forces	such	as	the	ionic	and	van	der	Waals	forces.	So,	the	interaction	between	two	given	
molecules	can	be	well	understood	by	a	set	of	laws	governing	them,	which	brings	in	a	
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90 Computational Finite Element Methods in Nanotechnology

definite	level	of	predictability	and	controllability	of	the	underlying	mechanics.	This	is	
an	 example	 of	 possible	 role	 of	 nanorobots	 in	 our	 knowledge	 about	 the	 world	 and	 its	
realities.

Overall,	the	applications	of	SPMs	can	be	divided	into	identification	and	operation	tasks.	
Usually,	 these	 tasks	are	called	 imaging	and	manipulation,	 respectively.	Table	4.1	 lists	a	
relatively	comprehensive	categorization	of	various	SPMs	and	their	applications.	Table	4.1	
is	summarized	from	the	text	of	Ref.	[7].

As	an	advanced	application	of	macroscale	nanorobots,	some	new	configurations	have	
been	developed	for	surgical	purposes.	Surgical	robotics	with	nanoscale	output	is	the	result	
of	these	configurations.	Robotic	surgical	systems	are	being	developed	to	provide	surgeons	
with	 unprecedented	 control	 over	 precision	 instruments.	 This	 is	 particularly	 useful	 for	
minimally	invasive	surgery.	Instead	of	manipulating	surgical	instruments,	surgeons	use	
their	thumbs	and	fingers	to	move	joystick	handles	on	a	control	console	to	maneuver	two	
robot	arms	containing	miniature	instruments	that	are	inserted	into	ports	in	the	patient.	
The	 surgeon’s	 movements	 transform	 large	 motions	 on	 the	 remote	 controls	 into	 micro-
movements	on	the	robot	arms	to	greatly	improve	mechanical	precision	and	safety.

4.2 Macroscale Nanorobots

4.2.1  Schematic of System Configuration

A	common	configuration	for	an	AFM	with	nanomanipulation	ability	has	been	depicted	in	
Figure	4.2.	Upper	piezotube	is	Z	scanner,	and	underneath	is	XY	one.	The	nanomanipulation	

TABLE 4.1

Various	SPMs	and	Their	Applications

Scanning	tunneling	microscope	(STM) 1981 Inducing	chemical	reactions
Atomic	force	microscope	(AFM) 1985 Manipulation,	nanofabrication,	etc.
Friction	force	microscopes	(FFMs) 1989 Measures	the	adhesion	and	friction	of	surfaces
Lateral	force	microscopes	(LFMs) 1989 Measure	both	normal	and	lateral	forces
Scanning	electrostatic	force	microscopy	
(SEFM)

1988 The	electrostatic	force	is	probed

Scanning	force	acoustic	microscopy	
(SFAM)

1974,	1988 Flaw	detection,	internal	stress	investigation,	
elastic	property	characterization

Magnetic	force	microscopy	(MFM) 1987 Applicable	for	electrically	nonconductive	samples
Scanning	near-field	optical	microscopy	
(SNOM)

1928,	1989 Surface	inspection	with	high	spatial,	spectral,	and	
temporal	resolving	power

Scanning	thermal	microscopy	(SThM) 1986 Thermal	measurements	at	the	nanoscale
Scanning	electrochemical	microscopy	
(SECM)

1990 Electrochemical	reactions	in	solid–liquid	
interfaces

Scanning	Kelvin	probe	microscopy	(SKPM) 1991 Calculation	of	the	work	function	of	surfaces
Scanning	chemical	potential	microscopy	
(SCPM)

1990 Measurement	of	thermoelectric	potential	
variations

Scanning	ion	conductance	microscopy	
(SICM)

1989 Soft	nonconductive	materials	that	are	bathed	in	
electrolyte	solution

Scanning	capacitance	microscopy	(SCM) 1990 Mapping	and	quantification	of	the	dopant	profile
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91Nanorobotic Applications of the Finite Element Method

scheme	has	been	done	with	fixing	the	Z	scanner	and	moving	XY	scanner	counter	to	the	
desired	direction.

4.2.2  Different Methods of Nanomanipulation

Physical	 configuration	 of	 a	 nano-object	 manipulation	 using	 the	 AFM	 is	 shown	 in	
Figure 4.3.	The	nano-object	is	stationary	at	the	beginning,	but	pushing	force	overcomes	
resistance	forces	at	critical	time.	The	particle	moves	to	reach	desired	position	in	defined	

Z piezo
tube

Micro cantilever
and tip

Substrate
Nano
object

XY piezo
tube

FIGURE 4.2
A	common	configuration	for	an	AFM	with	nanomanipulation	ability.

x

xi

xf

y

yf

zf

Initial state

Final state

zi

yi

z

FIGURE 4.3
AFM	tip	moves	nano-object	on	substrate.
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92 Computational Finite Element Methods in Nanotechnology

path	and	trajectory.	During	the	manipulation	from	the	first	to	the	final	position,	the	nano-
object	may	effectively	undergo	some	physical	deformations	or	even	chemical	reformations	
in	the	case	of	biological	samples.	So,	the	state,	mentioned	in	the	figure,	includes	all	natures	
of	the	nano-object.	Due	to	lack	of	real-time	observation	in	the	AFM,	accurate	modeling	of	
manipulation	and	force	estimation	are	very	important	issues.	As	mentioned	in	Section	4.1,	
researchers	try	to	improve	the	model	of	process,	and	different	new	parameters	are	added	
to	previous	models.	In	the	AFM,	there	are	five	effective	parts	in	manipulation,	and	each	of	
them	has	different	parameters	(Table	4.2).	Several	processes	can	be	designed	composing	
these	parts	and	their	parameters.

From	Table	4.2,	dynamics	of	the	process	has	been	explained	here.

4.2.3  Dominant Forces in Nanoscale

There	exist	various	nanoforces	in	the	AFM-based	nanomanipulation	with	a	micro-probe.	
However,	what	are	main	forces	and	how	they	work	remain	not	very	clear	[8].	Based	on	the	
recent	researches	[9]	and	considering	effective	factors	such	as	humidity	and	electrostatic	
charge,	 the	 crucial	 nanoforces	 can	 be	 summarized	 as	 van	 der	 Waals’	 repulsive	 contact	
force	and	 friction	 (three	basic	nanoforces).	The	capillary	 force	 could	be	 considered	 that	
aroused	by	humidity	or	biological	substrates,	where	the	electrostatic	force	caused	by	the	
electrostatic	charge.	Based	on	 their	effect	 in	nanomanipulation,	 these	 forces	can	be	cat-
egorized	into	attractive,	repulsive,	and	frictional	forces	[8].	The	nanoforces	among	tip	and	
particle	can	be	described	as	shown	in	Figure	4.4,	where	superscripts	o,	t,	and	s	correspond	
to	probe,	tip	and	substrate	and	subscripts	f,	rep,	and	atr	correspond	to	the	friction,	repul-
sive,	and	attractive	forces,	respectively	and	are	the	nanofrictional	forces,	 Fatr

os	and	Fatr
ot 	are	

attractive	forces	that	consist	of	attractive	van	der	Waals	force,	capillary	force,	and	attractive	
electrostatic	force,	and	Frep

os 	and	Frep
ot 	are	repulsive	forces	composed	of	repulsive	contact	force,	

repulsive	van	der	Waals	force,	and	repulsive	electrostatic	force,	respectively	[10].
Like	gravitational	 force,	van	der	Waals	 forces	exist	 for	every	material	 in	any	ambient	

condition.	These	 forces	originate	 from	electromagnetic	 forces	between	 two	dipoles	and	

TABLE 4.2

General	Effective	Parts	and	Parameters	in	the	Manipulation	Process

General Factors 1 2 3 4

Task Push/pull Pick	and	place Cutting Bending/buckling
Ambient Air	(simple,	

multi-object,	online	
probability,	…)

Vacuum	(order	of	
vacuum,	
sensitivity,	…)

Liquid	(simple	liquids,	
blood,	advanced	
chemical,	…)

Bio	and	cell	(soft,	
hard,	genetic,	…)

AFM	
specification

Operation	modes	
(contact,	
noncontact,	
tapping)

Ambient	
conditions	(wet,	
dry,	low	pH,	high	
pH)

Cantilever	shape	
(gripper,	V-shape,	
rectangular)

Tip	shape	
(triangular,	
rectangular,	
T-shape,	…)

Object Shape	(sphere,	rod,	
wire,	cell,	tube,	…)

Dimensions	(2D,	
3D,	small,	big,	…)

Mechanical	behavior	
(rigid,	elastic)

Physical	field	
(metallic,	biologic,	
magnetic,	…)

Substrate Roughness	(low,	
high)

Mechanical	
behavior	(rigid,	
elastic)

Physical	field	
(metallic,	biologic,	
magnetic,	…)

Special	conditions	
(wet,	dry,	low	pH,	
high	pH)

Dynamics	of	
process

Dominant	forces 2D/3D Straight/curve	path Constant	velocity/
acceleration
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93Nanorobotic Applications of the Finite Element Method

depend	on	material	types,	separation	distances,	and	object	geometry	[10].	As	an	example,	
for	spherical	tip-flat	surface,	the	van	der	Waals	force	is	as

	
f h

A R
hwdv
H t( ) = −

6 2 	 (4.1)

where	AH,	Rt,	and	h	are	Hamaker	constant	(about	10−19),	tip	radius,	and	distance	between	
the	tip	and	substrate,	respectively.	The	minus	sign	indicates	attractive	force	and	the	plus	
sign	indicates	repulsive	one	[11].	When	tip	approaches	to	substrate,	it	reaches	to	a	region	of	
mechanical	instability	that	the	force	gradient	of	the	potential	exceeds	the	spring	constant	
of	the	cantilever	[11]

	

df h
dh

Kwdv
Z

( )
= 	 (4.2)

At	this	instability,	the	probe	will	jump	into	contact	with	the	surface	with	a	characteristic	
“snap-in”	distance,	ds,	as

	
d

A R
Ks
H t

Z
= 



3

1 3/

	 (4.3)

Snap	 in	 substrate	 phenomena	 using	 photodiode	 data	 can	 be	 detected	 [11].	 The	 water	
layers	on	the	surfaces	of	probe,	object,	or	substrate	result	in	the	adhesion	force.	A	liquid	
bridge	 occurs	 between	 tip	 surfaces	 at	 close	 contact	 [12].	 The	 adhesion	 force	 between	 a	

Tip

π – Ψ

Ft
ot

Frep
ot

Frep
os

Fatr
os

Ff
os

The nano
object

Fatr
ot

FIGURE 4.4
The	nanoforces	among	tip,	particle,	and	substrate.
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94 Computational Finite Element Methods in Nanotechnology

nondeformable	spherical	particle	of	radius	R	and	a	flat	surface	in	an	atmosphere	containing	
a	condensable	vapor	is

	 F RS t LV SL= +( )4π γ γcos ε 	 (4.4)

where	 ε	 is	 contact	 angle,	 the	 first	 term	 is	 due	 to	 the	 Laplace	 pressure	 of	 the	 meniscus	
(γLV:	liquid–vapor	surface	energy),	and	the	second	one	is	due	to	the	direct	adhesion	of	the	
two	contacting	solids	within	the	liquid	(γSL:	solid–liquid	surface	energy)	[13].

As	there	will	be	some	electrical	charge	accumulated	on	the	surface	of	particles	or	the	
tip,	the	particle	is	prone	to	adhere	on	the	tip,	and	manipulation	may	be	failed.	Since	the	
particles	are	not	picked	up,	the	electrostatic	force	between	the	particle	and	the	substrate	
is	not	important.	However,	after	pushing,	the	charge	on	the	particle	is	transferred	to	the	
tip	which	can	cause	an	electrostatic	force.	Electrostatic	force	between	the	tip	and	substrate	
will	be

	 F R Zee t
h= κ κ 	 (4.5)

where
κ is	the	Debye	length
Z	is	the	characteristic	parameter	of	the	tip	particle
h	is	the	distance	[13]

In	actual	experiment	condition,	probe	and	substrate	can	be	grounded	to	release	the	elec-
trostatic	charge	for	minimizing	electrostatic	force,	and	also	the	experiment	condition	can	
be	kept	dry	to	minimize	the	capillary	force.	Thus	the	crucial	forces	between	the	tip	and	the	
substrate	are	mainly	van	der	Waals,	friction,	and	repulsive	contact	force	[13].

Using	these	forces	and	applying	common	continuum	mechanics	(CM)-based	approaches,	
the	equations	of	motion	for	present	system	may	be	derived.	Then	the	FEM	can	be	utilized	
to	solve	it.	Many	works	may	be	cited	that	have	been	using	this	scheme.	However,	it	needs	
more	attention	before	applying.	Let	us	consider	it	after	the	description	of	CM	role	in	the	
nanorobotic	science.

4.3 Continuum Mechanics Role in the Nanorobotic Science

Let	us	start	from	the	simple	shape	of	FEM	formulation	to	describe	the	role	of	CM	in	the	
nanorobotic	 science.	 As	 already	 mentioned,	 nanoscale	 nanorobots	 have	 dimensions	 in	
the	nano-	or	sub-nanoscales,	where	macroscale	nanorobots	have	some	components	in	the	
super-	and	some	components	in	sub-nanometer	scales.	Then,	can	we	apply	the	CM-based	
approaches	for	modeling	all	of	nanorobots?

4.3.1  Direct Solution of Nanorobotic Problem with FEM

The	conventional	form	of	the	equation	of	motion	in	FEM	is

	 mx cx kx f�� �+ + = 	 (4.6)
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95Nanorobotic Applications of the Finite Element Method

Since	m,	c,	k,	and	f	can	all	be	influenced,	they	are	adjustable	parameters.	Every	term	in	this	
equation	has	the	dimension	of	force	(ML/T2).	From	this,	it	follows	that	the	dimensions	of	
c	and	k	are	as	follows:

	
c

M
T

k
M
T2[ ] = [ ] =, 	 (4.7)

For	 the	 harmonic	 applied	 forces,	 such	 as	 f	=	F0	 sin(ωt),	 the	 dimensionless	 nature	 of	 the	
angle	(ωt)	results	in	[ω]	=	1/T.	The	techniques	of	nondimensionalizing	and	scaling	can	be	
extremely	powerful	tools	in	analyzing	the	models.	The	basic	idea	is	to	apply	a	transforma-
tion	to	the	variables	and	parameters	such	that	simplified	equations	result.	In	practice,	two	
methods	are	applied,	dimensional	analysis	and	scaling,	each	having	its	own	merits.	They	
are	dealt	with	in	the	following	sections,	respectively.	Dimensional	analysis	fully	exploits	
the	 information	 contained	 in	 the	 physical	 dimensions	 of	 the	 variables	 and	 parameters.	
Scaling	has	a	more	restricted	scope	and	aims	at	a	reduction	of	the	number	of	parameters.	
So,	we	use	the	dimensional	analysis.

Consider	a	system	with	scalar	variables	x1,	…,	xk	and	scalar	parameters	p1,…,pm.	So,	the	
total	number	of	quantities	involved	is	N	=	k	+	m.	We	now	form	the	products

	 x x p pr r r r1 k k+1 k+m
1 1, , , , ,… …k m 	 (4.8)

and	 ask	 for	 which	 choices	 of	 the	 ri	 these	 products	 are	 dimensionless.	 The	 answer	 fol-
lows	from	replacing	each	xi	and	pi	with	 its	 fundamental	dimensions.	This	procedure	 is	
famous	as	Buckingham	method	[14].	Since	Buckingham	denoted	the	dimensionless	quan-
tities	by	πi,	this	theorem	is	often	referred	to	as	the	π-theorem	of	Buckingham.	So,	we	use	
x t m c k Fr r r r r r1 2 3 4 5 6

0 ω	for	our	problem.	Substituting	the	dimensions,	we	arrive	at	the	products

	
L T M

M
T

M
T

ML
T T

r r r
r r r r

1 2 3
4 5 6 7

2 2

1





















 	 (4.9)

Collecting	powers	of	M,	L,	and	T,	we	obtain	the	following	three	linear	equations	for	the	ri:

	

r r

r r r r r

r r r r

1 6

2 4 5 6 7

3 4 5 6

0

2 2 0

0

+ =

− − − − =

+ + + =

	 (4.10)

Here,	we	meet	with	three	equations	for	seven	unknowns,	so	four	unknowns	can	be	treated	
as	 free	 parameters.	 For	 example,	 the	 choices	 (r1,r2,r3,r4)	=	(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)	
yield	the	following	dimensionless	quantities:

	 x xkF t t m m k c c k* , * , * , *= = = =− − −
0

1 2 1 1ω ω ω 	 (4.11)

Then,	the	dimensionless	equation	can	be	obtained	as

	 m x c x x t* * * * * *�� �+ + = sin 	 (4.12)

More	attention	to	the	first	relation	in	Equation	4.11	shows	that	the	scaling	coefficient	for	the	
lengths	is	kF0

1− .	Usually,	the	force	range	at	the	nanoscale	is	about	the	nanonewton,	and	the	
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96 Computational Finite Element Methods in Nanotechnology

norm	of	stiffness	matrices	is	of	order	10,	and	it	increases	with	the	scale	growth.	Thus,	the	
value	of	kF0

1− 	remains	about	1010	from	nano-	to	macroscales.	This	guarantees	the	possibility	
of	conversion	of	a	nanoscale	problem	to	a	macroscale	one.

This	procedure	may	be	useful	for	many	cases,	especially	for	the	micro-actuators	or	sen-
sors	that	are	widely	utilized	in	the	nanorobots.	But	is	there	any	limitation	for	this	scheme?	
The	CM,	as	it	is	obvious	from	its	name,	can	be	utilized	for	the	continuous	domains.	So,	
definition	of	continuous	and	discrete	domains	is	very	important.	The	macroscale	is	a	con-
tinuous	domain,	and	when	we	move	from	macro-	to	nanoscale,	we	are	in	the	continuous	
domain	until	the	mean	free	path	(MFP)	of	the	substrate	does	not	pass.	Then,	the	charac-
teristic	length	of	the	considered	system	and	the	value	of	MFP	of	utilized	material	play	the	
principle	role	in	the	possibility	of	utilizing	the	CM.

Although	it	 is	 impossible	to	define	an	MFP	for	the	whole	metals,	some	ranges	can	be	
determined.	 MFP	 in	 high-mobility	 semiconductor,	 commercial	 semiconductor	 devices,	
and	polycrystalline	metallic	films	is	10–100	μm	[15],	100–1000	nm	[16],	and	10–100	nm	[17],	
respectively.	With	a	little	caution,	these	values	may	be	considered	as	1–10	μm,	10–100	nm,	
and	1–10	nm,	respectively.	Thus,	for	a	lot	of	nanorobotic	systems,	where	the	semiconductor	
materials	play	a	special	role,	MFP	is	very	small	and	domain	is	discontinuous.	So,	the	CM	
could	not	be	applied	directly.

Up	to	last	decades,	CM-based	approaches	such	as	the	mass–spring–damper	model	were	
the	commonly	used	approaches	for	mechanical	systems.	These	models	were	used	even	for	
nanorobots.	Mentioned	discontinuity,	nonlinear,	and	multifield	or	scale	behaviors	strongly	
questioned	utilization	of	these	approaches	and	other	simple	theories	that	were	used.	In	
account	of	this,	for	a	comprehensive	model	of	nanorobots,	a	multiscale	method	is	needed.

The	great	progress	achieved	on	mentioned	nanorobotic	sciences	has	opened	up	a	new	
frontier,	whose	aim	is	the	more	accurate	prediction	of	behavior	of	systems	at	nanoscale.	
Since	 some	 components	 of	 nanorobots	 are	 smaller	 than	 their	 MFPs,	 the	 study	 of	 the	
aforementioned	two	nanorobotic	systems,	macroscale	and	nanoscale	nanorobots,	could	
not	 be	 accomplished	 using	 CM-based	 approaches.	 However,	 for	 macroscale	 ones,	 the	
continuum-based	 approaches	 can	 be	 used	 directly	 or	 coupled	 with	 some	 molecular	
mechanics	 (MM)-based	 approaches.	 For	 an	 example,	 FEM	 can	 be	 coupled	 with	 the	
molecular	dynamics	(MD)	to	predict	more	accurate	behaviors.	In	atomic	scales,	the	CM	
analysis	methods,	 including	the	FEM	or	other	numerical	methods,	do	not	provide	the	
correct	physics.	But	nevertheless,	for	many	systems,	and	for	small	(or	even	very	large)	
time	ranges,	the	noted	methods	are	considered	to	be	good	approaches.	For	the	kinds	of	
problems	that	can	be	solved	through	the	methods	based	on	CM,	it	is	very	important	to	
define	and	present	an	appropriate	criterion.	The	ratio	of	a	system’s	characteristic	length	
(which	 is	often	 the	 largest	 length	used	 in	a	particular	setting)	 to	 its	MFP	 is	generally	
considered	as	a	criterion.	If	a	system’s	characteristic	length	is	longer	than	its	MFP,	the	
use	of	methods	based	on	CM	is	allowed;	otherwise,	 caution	should	be	exercised,	and	
instead	of	using	these	methods,	MM-based	approaches	including	the	MD,	Monte	Carlo,	
and	other	methods	should	be	applied.	Now,	what	should	be	done	if	a	system	has	vari-
ous	mixed	sections,	and	parts	of	it	have	dimensions	larger	than	the	MFP	and	parts	of	it	
smaller?	Often,	multiscale	methods	are	presented	for	solving	such	systems.	In	multiscale	
approaches,	the	use	of	methods	that	are	based	on	atomic	models	guarantees	to	include	
the	correct	nonlinear	behavior	of	the	system	without	the	need	for	additional	parameters;	
while	for	larger	dimensions	that	do	not	have	tangible	nonlinear	behavior,	applying	the	
methods	based	on	CM	is	effective,	and	there	is	no	need	to	spend	a	lot	of	time	to	solve	the	
atomic	model	for	these	parts.	Therefore,	the	CM	models	and	the	atomic	models	interact	
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97Nanorobotic Applications of the Finite Element Method

with	each	other	in	such	a	way	as	to	model	the	whole	system	and	achieve	the	goal	which	
has	been	defined	and	set.

During	the	last	decade,	to	investigate	and	analyze	materials	with	large	sizes,	some	meth-
ods	have	been	developed	that	are	different	from	those	for	nanoscale.	As	was	pointed	out	
in	the	previous	section,	the	common	conventional	models	have	many	limitations.	Despite	
their	 reasonable	 computational	 costs,	 the	 CM	 methods	 are	 totally	 incapable	 of	 describ-
ing	phenomena	 in	 the	nanoscale.	On	the	other	hand,	MD	models	are	very	 limited	with	
respect	to	the	time	dimension;	in	other	words,	the	modeling	of	objects	in	the	micrometer	
and	microsecond	dimensions	is	only	possible	by	means	of	supercomputers.	Moreover,	the	
two	aforementioned	models	are	not	capable	of	studying	the	material’s	electron	structure.	
Meanwhile,	the	simulation	of	real	systems	(whether	large-scale	or	small-scale)	by	the	use	
of	methods	based	on	MM	is	basically	impossible	even	when	utilizing	supercomputers.	So,	
the	researchers	are	 trying	 to	use	 the	advantages	of	 the	aforementioned	methods	and	 to	
cover	the	existing	flaws	by	combining	them	together.	The	outcome	of	these	efforts	has	been	
the	development	of	multiscale	methods.	Multiscale	methods	are	divided	into	the	“hierar-
chical”	and	“concurrent”	groups.

In	the	hierarchical	models,	 the	properties	are	calculated	at	one	scale	and	then	passed	
on	to	another	scale.	In	other	words,	the	information	obtained	from	one	model	is	enriched	
by	another	model.	These	approaches	include	two	groups,	in	which,	the	information	from	
microscale	systems	is	transferred	to	the	CM	model.	The	first	group	are	the	models	based	
on	the	Cauchy–Born	hypothesis	[18,19],	in	which	the	information	acquired	from	the	atomic	
structure	 of	 the	 object	 clearly	 reveals	 themselves	 in	 the	 calculation	 of	 the	 elastic	 stress	
and	tensor	of	the	material’s	properties.	The	second	group	of	these	models	is	based	on	the	
virtual	atom	cluster	[20],	in	which	the	structure	of	the	material	is	enriched	on	the	basis	of	
the	information	obtained	from	MM.	This	method	has	been	used	for	the	study	of	carbon	
nanotubes.

In	the	concurrent	models,	several	models	exist	simultaneously	in	the	multiscale	simu-
lation,	and	information	is	exchanged	among	them	concurrently.	These	methods	are	the	
result	 of	 efforts	 that	 have	 tried	 to	 combine	 the	 MD	 models	 with	 the	 CM	 models.	 This	
group	of	multiscale	models	has	been	in	use	for	about	a	decade,	and	three	major	efforts	
could	be	cited	in	the	development	of	these	approaches.	The	quasi-continuum	(QC)	method	
[21,22],	which	was	presented	by	Ortiz	et	al.,	is	now	the	most	applied	method,	and	many	
studies	have	been	conducted	on	this	method.	The	only	flaw	in	this	approach	is	that	the	
existing	mesh	should	be	decreased	to	the	size	of	the	atomic	structure.	The	other	model	
is	 the	bridging	domain	method	 [23],	which	has	been	developed	by	Belytschko	et	al.	 In	
this	method,	in	part	of	the	simulation	zone,	the	continuum	domain	and	the	atoms	exist	
together;	therefore,	the	validity	of	this	model	in	the	bridging	domain	needs	to	be	inves-
tigated	extensively.	The	 last	approach,	known	as	 the	bridging	scale	method	[24,25],	has	
been	presented	by	Liu	and	his	students.	In	this	method,	it	is	assumed	that	the	continuum	
solution	is	not	exact	and	that	the	resulting	error	can	be	removed	through	MD.	Due	to	the	
complexity	of	the	governing	relations	in	this	model,	even	the	founders	of	this	method	did	
not	want	to	develop	it	further.

The	 most	 important	 issue	 in	 the	 development	 of	 these	 hybrid	 methods	 has	 been	 the	
formulation	of	a	comprehensive	computational	coupling	along	the	interface.	This	fact	has	
been	revealed	in	a	brief	review	of	the	developed	and	presented	methods.	In	the	coupling	
models,	 the	 continuity	 of	 the	 material’s	 characteristics	 should	 be	 preserved	 during	 the	
transition	from	the	atomic	forces	to	the	stress–strain	field	of	CM.	Coupling	models	have	
been	developed	for	many	problems,	including	the	crack	problem,	and	they	have	often	been	
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98 Computational Finite Element Methods in Nanotechnology

named	finite	element–atomistic	(feat)	coupling	procedure,	which	is	the	combination	of	a	
MD	system	and	a	finite	element	system.	Likewise,	a	general	formulation	of	the	ordinary	
finite	element,	which	allows	the	macro-field	(MF)	nodes	to	be	examined	as	coarse	and	fine	
nano-field	 (NF)	 atoms,	 has	 resulted	 in	 another	 computational	 scheme	 for	 the	 coupling	
of	 the	 continuum	 and	 the	 atomic	 environments,	 called	 the	 coarse-grained	 molecular	
dynamic	(CGMD).

The	QC	method	that	has	been	studied	by	Miller	and	Tadmor	[26]	is	explicitly	based	on	
the	complete	description	of	a	material’s	environment.	Although,	in	this	approach,	to	get	a	
higher	computational	performance,	the	regions	in	which	the	atoms	have	been	discretized	
can	be	classified	into	groups	in	order	to	form	a	local	continuum.

The	coupled	atomistic/dislocation	dynamics	(CADD)	method	of	Shilkrot	et	al.	[27]	has	
been	presented	for	the	simulation,	detection,	and	justification	of	the	separations	between	
the	atomic	and	the	continuum	regions.	This	model	had	first	been	offered	for	the	simulation	
of	materials	at	0°K,	but	recently,	 it	has	been	developed	 to	deal	with	 the	effects	of	finite	
temperature	as	well.

The	general	characteristic	of	these	approaches,	for	the	atomic	and	continuum	coupling,	
has	been	 the	fine	graining	and	manipulation	of	MF	mesh	configuration	 for	conformity	
with	atomic	length	scales	and	also	the	kinematic	coupling	of	finite	element	nodes	to	dis-
crete	atoms	along	an	interface.	Henceforth,	the	approaches	that	make	a	one-to-one	cou-
pling	 between	 the	 atoms	and	 finite	 element	 are	 called	 direct	 coupling	 (DC).	 When	DC	
procedures	are	followed,	the	major	problem	that	arises	is	the	inherent	difference	between	
the	 atomic	 and	 the	 continuum	 computational	 models.	 The	 physical	 state	 of	 the	 atomic	
region	 is	 described	 by	 means	 of	 the	 nonlocal	 inner-molecular	 forces	 between	 discrete	
atoms	with	specific	position	and	moment,	while	the	physical	state	of	the	continuum	region	
is	described	by	using	the	stress–strain	fields	which	are	statistical	averages	of	the	atomic	
attractions	at	larger	scales	of	length	and	time.	Generally,	the	ordinary	coupling	between	
discrete	and	continuum	values	can	only	be	obtained	by	taking	a	statistical	average	of	the	
scales	in	which	the	discreteness	of	the	atomic	structure	can	be	approximated	in	the	QC	
form.	Although,	much	better	ways	could	be	offered	for	 the	development	of	methods	of	
coupling	of	the	continuum	domain	with	discrete	domain,	nevertheless,	the	application	and	
development	of	these	methods	for	the	static	and	dynamic	problems	related	to	mechanical	
engineering	is	highly	 important.	So	far,	no	concentrated	work	has	been	devoted	to	this	
subject,	while	the	nature	of	the	problem	and	the	challenges	associated	with	these	types	
of	problems	(due	to	particular	initial	conditions	and	the	mixed	issues	in	the	presence	of	
force)	are	totally	different	from	those	pursued	in	other	problems.	Here,	it	will	be	attempted	
to	discuss	problems	such	as	the	inevitable	existence	of	drawbacks	in	the	discrete	domain	
compared	 to	 the	 continuum	 domain	 and	 to	 present	 an	 approach	 for	 escaping	 all	 these	
difficulties.

Up	to	now,	the	most	significant	(and	it	could	be	said,	the	only)	approach	that	has	been	
used	for	the	modeling	of	macrodimensions	in	the	coupling	models	has	been	the	FEM,	while	
much	better	and	more	accurate	methods,	and	even	more	exact	numerical	methods,	exist	
for	this	purpose.	Thus,	in	describing	the	problem,	instead	of	the	FEM,	the	more	general	
form	of	finite	element,	i.e.,	the	MF	solution	method,	is	used.	Based	on	this	notion,	we	try	to	
present	a	model	that	can	be	attached	to	the	FEM	without	any	restriction	and	can	be	used	
with	other	methods	as	well.	In	the	end,	to	evaluate	the	accuracy	of	the	presented	model,	
the	FEM	(which	we	have	developed	ourselves)	is	used.

Then,	this	chapter	has	been	focused	on	the	modeling	of	macroscale	nanorobots	using	
the	coupling	of	FEM	with	MD.
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99Nanorobotic Applications of the Finite Element Method

4.4 Proposed Nanomanipulation Strategy

There	 exist	 various	 strategies	 for	 nanomanipulation	 process	 in	 literature	 [28,29].	 The	
manipulation	 process	 cannot	 be	 observed	 in	 real	 time.	 During	 the	 pushing	 of	 objects,	
imaging	is	impossible	because	imaging	and	manipulation	tools	are	the	same.	As	a	solution,	
the	surface	and	targeted	clusters	could	be	imaged	before	and	after	the	manipulation.	Using	
the	obtained	images,	the	positions	of	clusters	relative	to	the	basic	reference	point	can	be	
determined	[30].	Due	to	the	lack	of	real-time	images,	using	the	force	feedback	data	during	
the	process	is	crucial	for	proper	manipulation.	The	manipulation	strategy	for	the	pushing	
of	a	nanocluster	is	shown	in	Figure	4.5.	Using	a	suitable	model,	the	force	feedback	data	
during	the	manipulation	strategy	can	be	calculated	accurately.

In	this	problem,	both	the	substrate	and	the	nanocluster	are	stationary	at	 the	beginning.	
Then,	the	probe	moves	down	to	approach	the	substrate.	The	van	der	Waals	force	increases	
until	the	snap	occurs	at	the	point	of	instability.	At	this	point,	the	tip	jumps	to	the	substrate.	

x
y y
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y
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x
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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FIGURE 4.5
Nanomanipulation	strategy	using	the	AFM:	(a)	auto	parking,	(b)	snap	in	substrate,	(c)	pull	away	from	substrate,	
(d)	approach	to	nanocluster,	(e)	snap	in	nanocluster,	(f)	offset	in	Z	direction,	(g)	pushing,	(h)	pull	away	from	
nanocluster,	and	(i)	going	to	reference	point.
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100 Computational Finite Element Methods in Nanotechnology

This	phenomenon	can	be	detected	via	photodiode	data.	Then,	the	tip	starts	moving	upward.	
Deflection	in	the	cantilever	increases	until	the	pulling	force	overcomes	the	attraction	force.	In	
view	of	the	adhesion	force	between	the	tip	and	substrate,	the	retraction	force	is	larger	than	the	
attraction	force.	Next,	the	tip	moves	reaching	the	desired	cluster,	horizontally.	Furthermore,	
the	van	der	Waals	force	between	the	tip	and	cluster	increases	until	the	snap	to	the	cluster	takes	
place.	Then,	the	substrate	movement	follows,	and	the	pushing	force	on	the	cluster	increases.

The	tip	may	cross	the	cluster	and	the	process	may	fail.	To	ensure	the	desired	contact,	a	
small	normal	preload	force,	Fz0,	is	exerted	by	providing	normal	deflection	offset,	ZP0,	on	
the	AFM	probe.	Then,	the	substrate	moves	with	constant	velocity,	and	the	cluster	sticks	to	
it	and	moves	with	the	substrate.	The	lateral	motion	of	the	cluster	helps	increase	the	push-
ing	force,	FT.	Finally,	the	pushing	force	reaches	the	magnitude	of	the	critical	force	required	
to	overcome	the	adhesion	 forces	between	 the	cluster	and	substrate.	The	cluster’s	move-
ment	with	the	substrate	stops,	when	the	cluster	has	reached	the	desired	position.	At	this	
time,	depending	on	the	dynamic	mode	diagram	of	the	cluster,	suggested	behavior	will	be	
expected	of	the	cluster.	The	probe	moves	upward	and	goes	to	the	initial	reference	position	
when	the	process	is	completed	(Figure	4.5).

The	 pushing	 force	 imposes	 a	 deflection	 along	 the	 path	 of	 movement	 during	 the	
manipulation.	 Based	 on	 the	 cluster-substrate	 properties	 and	 the	 pushing	 force,	 three	
different	deflection	 results	 can	be	 expected	 (Figure	 4.6).	Although	 rigid	 clusters	 can	be	
moved	 without	 deformation,	 flexible	 clusters	 may	 undergo	 considerable	 deformation	
during	the	moving	process,	and	the	soft	clusters	may	be	damaged	when	the	pushing	force	
exceeds	the	yield	strength	of	the	cluster.

4.5 Multiscale Method

4.5.1  Macro-Field Modeling, Finite Element Method

Extensive	work	has	been	done	on	the	development	of	FEM	for	various	systems.	Since	in	
mechanical	systems,	usually	the	macro-section	has	a	moving	part	and	a	sensing	part,	and	
these	parts	often	operate	by	means	of	the	piezoelectric	property,	we	try	to	deal	with	the	
macro-section	from	this	perspective.	Rajeev	Kumar	et	al.	[31]	investigated	a	finite	element	
model	for	the	active	control	of	induced	thermal	vibration	in	layered	composite	shells	with	
piezoelectric	 sensors	 and	 actuators	 (piezothermoelastic).	 Then,	 they	 presented	 a	 finite	
element	 formulation	 for	 the	 modeling	 of	 static	 and	 dynamic	 responses	 of	 multilayered	
composite	 shells	 with	 integrated	 piezoelectric	 sensors	 and	 actuators	 and	 subjected	 to	
mechanical,	electrical,	and	thermal	loadings	[32].

(a) (b) (c)

FIGURE 4.6
Three	expected	results:	(a)	rigid	nanocluster,	(b)	flexible	nanocluster,	and	(c)	soft	nanocluster.
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101Nanorobotic Applications of the Finite Element Method

In	 2008,	 Ziya	 and	 Thomas	 [33]	 have	 presented	 a	 finite	 element	 formulation	 for	 the	
vibrations	 of	 layered	 piezoceramic	 plates,	 which	 accounts	 for	 the	 effects	 of	 hysteretic	
behavior.	The	hysteretic	behavior	has	been	simulated	in	the	dielectric	domain	by	using	
the	FEM	and	applying	the	Ishlinskii’s	model.	In	2008,	Balamurugan	and	Narayanan	[34]	
have	used	a	nine-noded	piezo-laminated	degenerated	shell	element	in	order	to	model	and	
analyze	multilayered	composite	shell	structures	together	with	sensors	and	piezoelectric	
actuators.

The	FEM,	usually	by	using	 the	principle	of	minimum	potential	energy,	extracts	 the	
governing	equations	pertaining	 to	a	sample	element	 from	the	 internal	components	of	
a	 system,	 and	 then	 by	 applying	 a	 set	 of	 principles,	 and	 through	 the	 superposition	 of	
the	hardness,	damping,	and	mass	matrices	of	the	internal	components	presents	the	sys-
tem’s	mechanical	characteristics	as	a	whole.	Depending	on	the	type	of	problem	and	type	
of	 loading,	 the	 obtained	 problem	 can	 be	 solved	 by	 various	 numerical	 approaches.	 In	
extracting	 the	 equations	 of	 motion,	 the	 energy	 that	 is	 considered	 to	 be	 minimized	 is	
often	important.	Different	coordinate	systems	could	also	be	important	for	transferring	
the	 problem	 to	 different	 coordinates.	 The	 three	 coordinate	 systems	 that	 are	 normally	
used	include	the	global	coordinate	system	(x,	y,	z),	natural	coordinate	system	(ξ,	η,	ζ),	
and	the	current	local	coordinate	system	(x′,	y′,	z′).	These	coordinate	systems	have	been	
illustrated	in	Figure	4.7.

The	global	 coordinate	 system	 is	 the	basic	 coordinate	 system.	All	 the	analytical	 infor-
mation	which	is	defined	by	the	user	is	entered	into	this	system.	The	natural	coordinate	
system	simplifies	the	defining	of	the	shape	functions	and	the	two-dimensional	numeri-
cal	integration.	The	current	local	coordinate	system	is	very	important,	because	it	is	used	
for	describing	the	element’s	geometry,	and	 if	necessary,	 the	nonisotropic	characteristics	
(e.g.,	in	composite	layers)	are	described	relative	to	this	coordinate	system.	The	coordinates	
of	any	arbitrary	parameter,	at	any	arbitrary	point,	can	be	expressed	by	the	use	of	nodal	
coordinates	and	isoparametric	shape	functions	in	the	following	way:

	
P P= ℵ

=
∑ i

i

Q

iX( , , ) ( )ξ η ζ
1

	 (4.13)

Natural CS
ζ
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η

Ja
co

bi
an
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x΄
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FIGURE 4.7
Coordinate	systems	for	the	nine-noded	Lagrange	shell	element	for	electromechanical	systems	in	the	FEM.
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102 Computational Finite Element Methods in Nanotechnology

where
	is	the	noted	parameter
ℵ	is	the	isoparametric	functions
Q	is	the	number	of	nodes	of	the	considered	element
X	is	the	position	of	the	nodes

After	writing	 the	required	geometrical	 relations	 for	 the	considered	element,	 it	 is	neces-
sary	to	describe	the	structural	configuration	of	the	material	used	in	the	system.	As	a	more	
general	case,	here,	we	assume	that	the	system	is	excited	by	piezoactuators	and	then	sensed	
by	them.	Based	on	the	piezoelectric	association	with	the	displacement	and	electric	fields,	
the	basic	nonlinear	piezoelectric	equation	is	obtained	by	the	direct	and	the	inverse	piezo-
electric	effects.	The	equations	of	the	nonlinear	direct	and	inverse	piezoelectric	effect	are	
as	follows:

	 s = −�� �E 	 (4.14)

	 Ð= −� �� E+P 	 (4.15)

In	 the	 earlier	 relations,	 σ,	 Є,	 , 𝖣- ,	 and	 	 are	 the	 stress	 field,	 mechanical	 strain	 field,	
electric	potential	field,	the	electric	strain	(displacement)	field,	and	remanent	polarization,	
respectively.	Also,	the	ℚ,	ℕ,	and	ℤ	matrices	are	the	matrices	of	elasticity,	piezoelectric	stress	
constants,	and	the	permittivity	constants,	respectively.	By	using	the	presented	structural	
relationships,	the	strain	energy,	electric	energy,	and	the	kinetic	energy	of	an	element	are	
expressed	as	follows:
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∫
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d

TE u udT1
2

ρ � �

	 (4.16)

where	∀	denotes	the	volume	of	the	element.	By	using	these	energies	and	writing	the	mini-
mum	energy	principle,	the	equations	of	motion	for	the	finite	element	system	can	be	pre-
sented	as	follows:

	
M q C q q Fuu e e uu e e uu u u

e
e qe u[ ] + [ ] + −  = − 

− −�� � Κ Κ Κ Κ Κ Κφ φφ φ φ φφ
1 1 +( )

e
e HF Nφ 	 (4.17)

where	[Muu]e,	[Kuu]e,	[Kuϕ]e,	Fqe,	[Kϕϕ]e,	Fϕe,	[Cuu]e,	NH,	and	qe	are,	respectively,	the	element’s	
mass	matrix,	 stiffness	matrix,	 electromechanical	 coupling	hardness	matrix,	mechanical	
load,	 dielectric	 hardness	 matrix,	 electric	 force	 vector,	 structural	 damping	 matrix,	 the	
hysteresis	related	force,	and	the	vector	of	change	of	degrees	of	freedom	in	the	considered	
system.	The	hysteresis	model	has	been	considered	only	for	the	modeling	of	nonlinearities	
of	MF,	and	for	the	multiscale	model,	it	was	assumed	that	the	nonlinear	behavior	has	been	
compensated	completely.
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103Nanorobotic Applications of the Finite Element Method

4.5.2  Nano-Field Modeling, Molecular Dynamics Approach

4.5.2.1  Need for Molecular Dynamics Simulations

Mathematical	 models	 could	 be	 used	 for	 the	 interpretation	 of	 physical	 phenomena.	 The	
goal	of	these	models	is	to	provide	simple	ways	of	showing	the	causes	of	various	behaviors.	
In	the	field	of	numerical	problems,	there	exist	two	basic	models:	the	classical	Newtonian	
mechanics	and	the	Quantum	mechanics.	These	models	might	be	used	for	problems	with	
macro-,	nano-,	or	sub-atomic	scales.	In	the	models	based	on	classical	Newtonian	mechanics,	
Newton’s	equations	are	used	to	analyze	the	dynamics	of	all	parts	of	the	system.	Having	
high	precision	in	the	interpretation	of	physical	phenomena	and	being	applicable	in	various	
scales	make	these	methods	very	interesting	among	researchers.	Considering	the	desired	
scale,	 for	 which	 one	 can	 use	 the	 Newtonian	 mechanics,	 there	 are	 different	 methods	 of	
applying	 the	 Newton’s	 equations,	 such	 as	 CM,	 dislocation	 dynamics,	 and	 molecular	
methods	[35].

In	 the	 molecular	 models,	 all	 the	 atoms	 of	 a	 particular	 material	 react	 through	 inter-
atomic	 potentials.	 These	 models	 are	 capable	 of	 simulating	 the	 ultrafine	 structures	 of	
materials	in	nanoscale.	These	models	are	categorized	into	two	distinct	branches	of	sto-
chastic	and	deterministic	methods.	As	an	example	of	 the	first	category,	one	can	men-
tion	the	Monte	Carlo	method.	Among	deterministic	methods,	 in	which	the	governing	
equation	of	motion	is	solved	explicitly,	MD	and	statics	are	of	more	interest	[36].	Since	in	
nanoscale	problems,	the	temperature	effects	and	velocity	play	important	roles,	MD	is	a	
more	applicable	method.

Typically,	 classical	models	have	 lots	of	 limitations	when	applied.	Despite	 their	 low	
computational	 costs,	 continuum-based	 methods	 are	 incapable	 of	 describing	 different	
phenomena	in	nanoscale	fields.	On	the	other	hand,	MD	models	are	limited	with	respect	
to	 the	 time	 scale.	 For	 this	 reason,	 modeling	 on	 the	 order	 of	 micrometer	 and	 micro-
second	is	only	possible	by	supercomputers.	Meanwhile,	the	two	foregoing	models	are	
not	capable	of	studying	the	electrical	structure	of	materials.	Whether	in	large	or	small	
scale,	the	simulation	of	real	systems,	with	MM-based	models,	is	impossible	even	with	
the	use	of	supercomputers.	Therefore,	researchers	are	in	search	of	some	comprehensive	
synthetic	 methods	 that	 have	 the	 advantages,	 but	 not	 the	 drawbacks,	 of	 the	 original	
methods.	The	outcome	of	these	research	works	has	been	the	introduction	of	multiscale	
methods.

4.5.2.2  Molecular Dynamics

In	order	to	establish	the	relations	of	MD	for	a	system	of	particles,	some	parameters	are	
required.	 Particle	 mass,	 initial	 position	 of	 atoms,	 initial	 velocity	 of	 atoms,	 potential	
energy	between	the	atoms	and	external	force	fields,	and	the	equations	of	motion	are	five	
effective	parameters	that	must	be	determined	for	the	system	in	order	to	have	a	unique	
solution	[37].

In	a	state	of	equilibrium,	atoms	can	have	different	arrangements	based	on	the	material	
phase.	 It	 is	common	for	 the	atoms	of	gases	and	liquids	not	 to	have	a	specific	structure.	
Contrary	 to	gases	and	 liquids,	solids	possess	a	higher	potential	energy	 level	 relative	 to	
the	kinetic	energy.	This	fact	forces	the	atoms	of	solid,	especially	of	metals,	to	form	spe-
cific	network	configurations.	For	metals,	 there	are	 two	types	of	solid	networks	 that	are	
more	common,	namely,	face-centered	cubic	(FCC)	and	base-centered	cubic	(BCC)	lattices.	
In	the	current	work,	the	FCC	lattice	is	applied	for	the	metal	atoms	to	represent	the	initial	
positions.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
12

 0
3 

M
ar

ch
 2

01
6 



104 Computational Finite Element Methods in Nanotechnology

In	order	to	carry	out	atomic	simulations,	a	way	of	expressing	atomic	rules	is	inevitable.	
In	 computer	 simulations,	 these	 rules	 are	 known	 as	 “interatomic	 potential	 energy.”	 The	
dynamics	of	the	atoms	is	obtained	from	prescribed	two-body	or	many-body	interatomic	
potentials,	 HI(rij),	 from	 which	 the	 Newtonian	 forces	 experienced	 by	 these	 atoms	 are	
derived	[38]:

	

F H (r )i r I ij

j>i

i= ∇∑ 	 (4.18)

where	rij	is	the	distance	between	the	atoms	i	and	j.

4.5.2.3  Sutton–Chen Interatomic Potential

For	 the	 simulation	 of	 a	 metal	 system,	 the	 simple	 two-body	 potentials,	 like	 the	 Lenard-
Jones	potential,	are	not	intelligent	choices,	as	they	lack	the	desired	capability	to	encompass	
all	 the	 physical	 properties	 of	 metals.	 Therefore,	 the	 Sutton–Chen	 (SC)	 multibody	 long-
range	potential,	first	introduced	by	Sutton	and	Chen	[38],	is	used	in	the	current	study.	The	
general	form	of	the	SC	potential	is	[38]:
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j i











≠
∑ 	 (4.19)

where	ε	is	a	parameter	with	the	dimensions	of	energy,	a	is	a	parameter	with	the	dimensions	
of	length	and	is	normally	taken	to	be	the	equilibrium	lattice	constant,	m	and	n	are	positive	
constants	with	n	>	m.	Table	4.3	lists	the	SC	parameters	for	some	metals.

4.5.2.4  Rafii-Tabar–Sutton Potential

Rafii-Tabar	and	Sutton	have	further	generalized	the	SC	potential	to	model	the	interactions	
of	unlike	atomic	clusters	 in	FCC	random	binary	metallic	alloys	 [39].	Rafii-Tabar–Sutton	

TABLE 4.3

Parameters	of	the	SC	Potential

Element m n ε (eV) c

Ni 6 9 1.5707e−02 39.432
Pt 8 10 1.9833e−02 34.408
Au 8 10 1.2793e−02 34.408
Ag 6 12 2.5415e−03 144.41
Cu 6 9 1.2382e−02 39.432
Ir 6 14 2.4489e−03 334.94
Pb 7 10 5.5765e−03 45.778
Pd 7 12 4.1790e−03 108.27
Rh 6 12 4.9371e−03 144.41
Al 6 7 3.3147e−02 16.399

Source:	 Sutton,	 A.P.,	 J. Chen. Phil. Mag.,	 61,	
139,	1990.
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105Nanorobotic Applications of the Finite Element Method

(RTS)	multibody	long-range	potential,	which	is	an	extended	form	of	the	SC	potential,	and	
capable	of	modeling	the	interactions	of	dissimilar	materials,	is	used	in	the	current	study.	
The	general	form	of	the	RTS	potential	for	the	binary	A-B	dissimilar	materials	is	[39]:

	

H =
1
2

V r d p d 1 pI
RTS

ij

j ii

AA
i i

A

i

BB
i i

B

i1

( ) − − −( )∑∑ ∑ ∑ˆ ˆρ ρ 	 (4.20)

with

	
V r p p V r 1 p 1 p V r p 1 p pij i j

AA
ij i j

BB
ij i j( ) = ( ) + −( ) −( ) ( ) + −( ) +ˆ ˆ ˆ ˆ ˆ ˆ ˆ jj i

AB
ij1 p V r−( )  ( )ˆ 	 (4.21)
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ij j
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r 1 p r p r= ( ) = −( ) ( ) + ( ) 
≠ ≠

∑ ∑ ˆ ˆ 	 (4.23)

where	p̂	i	is	the	site	occupancy	operator,	defined	as	follows:

	
p̂

1 if site i is occupied by an A atom
0 if site i is occupied by an B atomi =





	 (4.24)

The	functions	Vxy(r)	and	Φxy(r)	are	defined	as	follows:

	
V r

a
r

xy xy
xy nxy

( ) =








ε 	 (4.25)

	
Φxy

xy m

r
a
r

xy

( ) =








 	 (4.26)

And	the	constants	are	expressed	as	follows:

	 d C d CAA AA AA BB BB BB= =ε ε

	
m m mAB AA BB= + +1

2
( ) n =

1
2

(n n )AB AA BB 	 (4.27)

	 a = a a =AB AA BB AB AA BBε ε ε

In	the	previous	relations,	ε	is	a	parameter	with	the	dimensions	of	energy,	“a”	is	a	parameter	
with	 the	 dimensions	 of	 length,	 and	 it	 is	 normally	 taken	 to	 be	 the	 equilibrium	 lattice	
constant,	and	“m”	and	“n”	are	positive	constants	with	n	>	m.	The	RTS	potential	has	the	
advantage	that	all	its	parameters	can	be	easily	obtained	from	the	SC	elemental	parameters	
of	metals.
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106 Computational Finite Element Methods in Nanotechnology

4.5.2.5  Equations of Motion

In	the	present	study,	the	Hamilton’s	principle	is	used	to	represent	the	equations	of	motion	
of	each	single	atom:

	
δ PE KE 0+( ) =∫ dt 	 (4.28)

Through	simplification,	the	equation	of	motion	for	the	ith	particle	is	finally	in	the	form	of

	
m c X

H
X

FXi i
i RTS

i
ext
i�� �+ + ∂

∂
= 	 (4.29)

The	first	and	second	terms	in	the	preceding	equation	denote	the	kinetic	and	dissipative	
energies,	 respectively.	 The	 third	 term	 is	 an	 interpretation	 of	 potential	 energy,	 which	 is	
related	to	the	interatomic	potential.	Using	the	velocity	Verlet	computational	algorithm,	the	
equations	of	motion	can	be	solved	numerically	for	the	system	of	particles,	and	the	posi-
tions	and	velocities	of	each	single	atom	can	be	calculated	in	desired	time	steps.

4.5.2.6  Solution Procedure

The	common	method	for	solving	the	differential	equations	of	motion	in	MD	is	the	well-
known	 finite	 difference	 method	 (FDM).	 Knowing	 the	 positions,	 velocities,	 and	 other	
essential	data	of	the	system	at	the	time	“t,”	the	goal	of	the	FDM	is	to	calculate	these	param-
eters	for	the	next	time	step,	t	+	Δt.	Therefore,	all	 the	differential	equations	of	motion	are	
solved	in	a	step-by-step	manner.	Finite-difference-based	methods	utilize	the	Taylor	series	
for	expanding	the	position	function	of	particles	[36,37].

Various	finite	difference	algorithms	exist	for	solving	the	differential	equations	of	atomic	
motion.	They	differ	in	the	way	of	calculating	r..	Since	the	real	nanoscale	systems	consist	of	
numerous	numbers	of	atoms,	the	simulation	procedure	must	encompass	large	degrees	of	
freedom	to	show	the	real	behavior	of	the	system	under	consideration.	Therefore,	an	algo-
rithm	with	both	low	computational	costs	and	good	precision	is	in	great	demand.	The	Verlet	
algorithm	is	one	of	 the	most	popular	methods	among	nanomechanics	researchers.	This	
algorithm	combines	the	forward	and	backward	Taylor	expansions.	With	some	simplifica-
tions,	the	relations	for	velocities	and	positions	of	atoms	at	time	‘t’	are	expressed	as	follows:

	
v t

r t t r t t
t

( ) =
+( ) − −( )∆ ∆

∆2
	 (4.30)

	
r t t r t t v t t a t O t+( ) = ( ) + × ( ) + ( ) × ( ) +∆ ∆ ∆ ∆1

2
2 4( ) 	 (4.31)

In	a	more	advanced	form	of	the	Verlet	algorithm,	known	as	the	velocity	Verlet,	the	velocity	
is	calculated	using	the	half-step	acceleration:

	
v t t v t t a t t O t+( ) = ( ) + × +



 +∆ ∆ ∆ ∆1

2
2( ) 	 (4.32)
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107Nanorobotic Applications of the Finite Element Method

This	leads	to	the	final	form	of	the	velocity	Verlet	algorithm	as	follows:

	
r t t r t t v t t a ti i i i+( ) = ( ) + × ( ) + ( ) × ( )∆ ∆ ∆1

2
2 	 (4.33)

	
v t

1
2

t v t t
a t

2i i
i+



 = ( ) + × ( )∆ ∆ 	 (4.34)

	
a t t

F t t
mi

i

i
+( ) = +∆ ∆( )

	 (4.35)

	
v t t v t t t

a t t
i i

i+( ) = +



 + ×

+( )∆ ∆ ∆
∆1

2 2
	 (4.36)

The	velocity	Verlet	algorithm	is	the	most	popular	computational	method	in	MD	simulations.	
By	using	the	second	derivative	formula	in	this	method,	the	computational	precision	gets	to	
about	fourth	order.	This	results	in	a	high	computational	speed	as	well	as	high	precision.

4.5.2.7  NVT Ensemble

This	 ensemble	 is	 usually	 used	 for	 the	 simulation	 of	 closed	 systems	 that	 just	 exchange	
energy	with	the	environment.	In	this	ensemble,	the	system	under	consideration	must	be	
invariable	in	temperature,	volume,	and	the	number	of	particles	[37].

To	realize	this	ensemble,	there	must	be	some	ways	of	making	the	aforementioned	quali-
ties	constant.	A	fixed	number	of	atoms	can	be	realized	through	periodic	boundary	condi-
tions.	Using	the	total	pressure	of	the	system,	its	volume	can	be	fixed	as	well.	Temperature	
stabilization	in	computer	simulations	is	not	an	easy	task.	However,	it	can	be	realized	in	
three	different	ways,	namely,	the	stochastic	Langevin-type	method,	the	constraint	method,	
and	the	extended	system	method	[36].

The	simple	constraint	method	can	be	carried	out	by	using	a	velocity	scaling	procedure	in	
each	time	step.	This	tends	to	limit	the	total	kinetic	energy	of	the	system	in	order	to	stabilize	
the	system’s	initial	temperature.	This	ensemble	can	be	produced	as	follows:

	
� �
v svi i→ 	 (4.37)

where

	
s =

T
T

0

i

	 (4.38)

where
T0	is	the	desired	system	temperature
Ti	is	the	temperature	in	ith	time	step

4.5.2.8  Coarse-Grained Molecular Dynamics

Electromechanical	 processes	 normally	 occur	 on	 the	 order	 of	 nano-,	 micro-,	 milli-,	 and	
even	a	few	seconds.	In	addition,	they	have	higher-than-nano	dimensions.	Therefore,	their	
real	dimensions	and	time	ranges	cannot	be	determined	through	the	use	of	MD	method.	
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108 Computational Finite Element Methods in Nanotechnology

However,	by	the	use	of	“coarse	graining,”	larger	dimensions	in	longer	time	ranges	could	
be	modeled.	Now,	since	a	remarkable	method	known	as	the	CGMD	has	been	presented	
for	this	purpose,	while	applying	it,	a	general	description	of	this	approach	is	also	provided.	
The	CGMD	method	is	based	on	the	notion	that,	if	instead	of	one	atom,	a	larger	number	of	
atoms	can	be	taken	as	a	unit,	then	a	larger	volume	of	material	as	well	as	more	simulation	
time	can	be	considered	[40].	Even	by	utilizing	the	world’s	largest	and	most	advanced	super-
computers,	the	MD	simulations	cannot	be	performed	for	more	than	several	microseconds.	
Various	procedures	have	been	proposed	for	the	CGMD	methods	[41–43].	The	only	crucial	
issue	in	these	models	is	the	manner	of	predicting	and	estimating	the	system’s	potential.	
Achieving	a	good	potential	for	the	system	can	be	guaranteed	through	a	process	of	trial	
and	error	and	by	comparing	the	radial	distribution	function	(RDF)	of	the	system	with	that	
which	is	observed	in	the	MD	process,	although	other	ways	also	exist	for	this	achievement.	
If,	on	the	average,	the	nominal	mass	and	distance	of	atoms	are	on	the	order	of	mc	and	Lc,	
and	the	nominal	mass	and	distance	of	the	CGMD	samples	are	on	the	order	of	m	and	L,	
respectively,	the	following	relations	could	be	considered	for	the	time	steps	that	are	used:

	
∆ ∼ ∆ ∼t l

m
kT

t l
m
kTmax MD max CGMD c

c, 	 (4.39)

Here,	 for	using	the	CGMD	approach,	the	SC	potential	has	been	rewritten,	and	the	RDF	
diagrams	of	two	cases	of	MD	and	CGMD	have	been	compared	with	each	other,	and	the	
obtained	CGMD	model	has	been	validated.	Figure	4.8	shows	the	comparison	between	the	
RDFs	of	the	two	noted	cases.
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FIGURE 4.8
Comparison	of	the	RDFs	of	the	MD	and	CGMD	models.
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109Nanorobotic Applications of the Finite Element Method

4.5.2.9  Molecular Dynamics Simulation of Nanomanipulation Procedure

Figure	 4.9	 shows	 the	 initial	 system	 configuration	 for	 the	 nanomanipulation	 procedure.	
Since	 the	manipulation	 procedure	 is	planar,	 the	atom’s	movement	 is	 limited	 to	 the	x–y	
plane.	After	the	relaxation	phase,	the	nanoparticle	is	subjected	to	the	proposed	nanoma-
nipulation	 strategy.	 The	 manipulator,	 which	 is	 part	 of	 an	 AFM	 tip,	 starts	 moving	 with	
constant	velocity,	dictated	by	the	constant	velocity	of	the	uppermost	atoms,	i.e.,	the	tip	base	
region	in	Figure	4.9.	The	manipulator	is	flexible,	so	its	atoms	can	move	freely	in	both	the	x	
and	y	directions	and	make	different	vibration	modes	along	the	tip	length.	The	substrate	is	
flexible	as	well;	however,	the	gray	atoms	(as	depicted	in	Figure	4.9)	are	fixed	to	avoid	move-
ment	during	manipulation.	The	manipulator,	nanoparticle,	and	the	substrate	can	be	made	
of	a	variety	of	materials	(Table	4.3).

To	validate	the	obtained	results,	it	is	necessary	to	compare	them	with	the	already	veri-
fied	results.	For	this	purpose,	the	results	of	the	present	work	are	compared	with	the	modi-
fication	to	those	obtained	from	the	model	presented	in	Ref.	[44].

4.5.2.10  Results Validation: A Comparison of CGMD and Macro-Model

Using	CGMD,	a	comparison	has	been	made	between	the	results	and	those	of	the	macro-
model	in	Ref.	[44].	The	system	geometry	has	been	depicted	in	Figure	4.10.	The	tip,	nanopar-
ticle,	and	substrate	are	made	of	Rh,	Ni,	and	Au,	respectively.	The	nanoparticle	has	the	same	
size	in	both	models,	but	the	substrate	and	the	tip	are	considered	as	depicted	in	Figure	4.10.

In the CGMD model,	to	ensure	the	same	conditions	as	the	macro-model,	the	nanoparticle	
is	considered	to	have	a	low	degree	of	flexibility,	and	the	surface	interactions	are	modified	
so	that	they	follow	the	same	behavior	of	the	JKR	contact	model.	However,	the	manipulator	
tip	is	considered	to	be	flexible	to	ensure	the	real	conditions.

In the macro-model,	the	manipulation	procedure	has	been	simulated	by	giving	the	base	
of	 the	AFM	 tip	 (i.e.,	 the	 stage	 in	 Figure	 4.10)	 a	 constant	 speed	 along	 the	 “x”	 direction.	
The	manipulator	 is	 the	 triangular	 tip	of	 the	AFM,	which	 is	 considered	 to	be	 rigid.	The	

y΄

y

x

z

x΄

FIGURE 4.9
Arrangement	of	the	manipulation	system	in	the	CGMD	and	the	definition	of	the	local	and	global	coordinate	
systems.
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110 Computational Finite Element Methods in Nanotechnology

deflections	of	the	AFM	tip,	when	manipulating	the	nanoparticle,	are	due	to	the	flexibility	of	
AFM	cantilever.	The	nanoparticle	is	considered	to	have	a	spherical	shape	and	no	flexibility	
(it	is	rigid).	The	nanoscale	interactions	between	the	substrate	and	nanoparticle	are	modeled	
with	 the	 JKR	 contact	 model.	At	 the	 start	 of	 the	 manipulation	 procedure,	 it	 takes	 a	 few	
seconds	for	the	nanoparticle	(and	AFM	tip)	to	start	moving,	because	the	pushing	force	is	
not	large	enough	to	overcome	the	resistant	frictional	force.	Once	the	movement	starts,	the	
AFM	tip	and	nanoparticle	are	assumed	to	move	together	and	therefore	trace	the	same	line	
in	the	traveled	distance–time	diagram.

Considering	the	fact	that	in	the	macro-model,	the	tip	and	particle	are	assumed	to	be	rigid	
and	the	force	is	supposed	to	be	applied	from	the	moment	the	probe	contacts	the	particle,	
in	Figure	4.11,	 the	diagram	marked	with	square	shows	the	displacement	of	 the	particle	
and	probe	tip,	and	the	diagram	indicated	by	the	black	circle	shows	the	displacement	of	
the	moving	substrate.	The	comparison	of	these	diagrams	with	the	results	obtained	from	
the	CGMD	model	has	yielded	very	interesting	results.	As	it	can	be	observed	in	this	figure,	
there	is	relatively	good	agreement	between	the	diagrams	of	the	CGMD	and	the	results	of	
the	macro-model.	There	are	also	differences	that	we	claim	arise	from	the	not-so-correct	
assumptions	made	in	the	macro-model	and	as	a	result	of	the	higher	accuracy	of	the	CGMD	
model.

There	are	several	important	points	regarding	the	previous	diagrams.	The	macro-model	
has	 focused	 on	 the	 estimation	 of	 the	 time	 of	 nanoparticle	 movement	 subsequent	 to	 the	
application	of	force.	In	the	macro-model,	after	the	application	of	force,	the	friction	forces	
resist	against	 the	exerted	force	until	 they	get	 to	be	equal	 to	the	applied	force.	From	this	
moment	forward,	 the	particle	starts	moving.	Therefore,	 the	frictional	characteristics	 that	
are	considered	between	the	particle	and	substrate	could	be	very	important	in	determining	
this	manipulation	time.	In	the	CGMD	model,	we	do	not	necessarily	impose	any	specific	
frictional	characteristics	on	the	model.	It	is	the	forces	arising	from	the	potentials	between	
dissimilar	atoms,	and	the	effects	of	damping	considered	in	the	CGMD	model	that	play	the	
most	significant	roles	in	determining	the	time	of	movement	of	nanoparticle.	In	view	of	the	
presented	diagrams,	the	CGMD	model	has	underestimated	a	little,	the	time	of	movement	
of	nanoparticle,	as	compared	to	the	macro-model.	The	other	noteworthy	point	is	that	the	
amount	of	traveled	distance	of	nanoparticle	is	less	than	that	of	the	tip.	This	has	two	major	
causes:	first,	the	existing	delay	in	the	start	of	nanoparticle	movement,	and	second,	the	initial	
distance	between	the	probe	tip	and	nanoparticle.	This	short	distance	is	not	necessarily	due	
to	the	initial	position	of	the	tip	but	may	be	the	result	of	initial	deformations	of	the	tip	end.

Macro region

Stage

CGMD region

(a) (b)

Tip end region

Tip base region

y
x

FIGURE 4.10
(a)	Macro	and	CGMD	regions	and	(b)	geometry	of	tip	and	nanoparticle	in	CGMD	model.
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111Nanorobotic Applications of the Finite Element Method

In	 the	 enlarged	 portion	 of	 the	 diagram	 of	 Figure	 4.11,	 it	 is	 clear	 that,	 at	 the	 onset	 of	
particle	movement,	the	tip	end	vibrates	in	the	CGMD,	which	is	due	to	the	local	attraction	
and	repulsion	between	the	tip	end	and	particle	and	also	due	to	the	immediate	applica-
tion	of	velocity	at	the	tip	base;	and	of	course,	as	a	result	of	damping	effect	and	also	the	
local	equilibrium	of	potentials,	these	vibrations	are	gradually	eliminated.	With	regards	to	
the	comparisons	and	offered	explanations,	the	correctness	of	the	results	of	the	proposed	
model	is	verified,	and	it	can	be	used	for	other	studies	including	the	study	of	the	effects	of	
different	parameters.

4.5.2.11  Some Challenges in the Way of Molecular Dynamics Simulations

Like	what	happens	in	real	systems,	preparing	for	a	successful	manipulation	in	computer	
simulations	is	not	an	easy	task.	In	some	cases,	the	tip	damage	tends	to	the	manipulation	
failure.	 In	 some	 others,	 the	 nanoparticle	 penetration	 into	 the	 substrate	 or	 distortion	
of	 nanoparticle	 is	 the	 cause	 of	 manipulation	 malfunction.	 In	 any	 case,	 adjusting	 the	
parameters	so	that	 it	 tends	to	a	successful	manipulation	process	demands	the	adequate	
experience	as	well	as	enormous	effort.	These	problems	might	well	be	accentuated	when	
the	manipulator	tip	must	perform	many	repeated	manipulation	procedures.	For	instance,	
in	an	“automatic	nanomanipulation”	procedure	[45],	since	the	tip	must	frequently	manipu-
late	several	different	particles,	the	destructive	effects	of	manipulation	procedure	endured	
by	 the	 tip	are	more	possible.	Accordingly,	 the	 tip	damage,	which	might	be	 in	 the	 form	
of	either	 initiation	of	the	crack	or	the	permanent	deformation	of	the	tip	end,	or	even	in	
some	 more	 severe	 cases,	 the	 tip	 fracture,	 is	 one	 of	 the	 biggest	 obstacles	 to	 a	 successful	
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FIGURE 4.11
Comparison	between	the	results	of	macro-model	and	CGMD	model	for	the	manipulation	of	a	nickel	nanoparticle.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
12

 0
3 

M
ar

ch
 2

01
6 



112 Computational Finite Element Methods in Nanotechnology

positioning	task.	Figure	4.12	depicts	some	examples	of	the	tip	damage.	The	tip	end	and	
the	 nanoparticle	 traveled	 distances	 for	 one	 of	 the	 Figure	 4.12	 examples	 are	 depicted	 in	
Figure 4.13.	The	deviation	of	the	nanocluster	manipulation	curve	from	the	desired	curve	
can	be	clearly	seen.

Since	the	aim	of	a	manipulation	process	is	the	positioning	of	nanoscale	objects,	the	nano-
object	crushing	during	the	procedure	of	manipulation,	which	was	mentioned	earlier,	is	of	
high	importance	as	well.	However,	the	objective	is	not	to	study	the	particle	deformation	
now;	this	phenomenon	can	be	studied	in	the	same	way	as	well	[46].	For	instance,	look	at	
Figures	4.14	and	4.15.	Figure	4.14	depicts	some	examples	of	nanoparticle	deformation	dur-
ing	the	nanomanipulation	procedure.	The	traveled	distance	of	the	nanoparticle	and	the	
tip	end	and	also	the	desired	curve	are	depicted	in	Figure	4.15.	In	this	figure,	the	tip	end	
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FIGURE 4.13
Traveled	distance	of	tip	end,	nanoparticle,	and	tip	base	in	the	case	of	tip	damage.

FIGURE 4.12
Some	examples	of	tip	damage.
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113Nanorobotic Applications of the Finite Element Method

almost	pursues	the	movement	of	the	tip	base	(or	desired	curve).	However,	the	deviation	of	
nanoparticle	curve	from	the	desired	one	can	be	clearly	seen.

Considering	the	foregoing	diagrams,	it	seems	that	the	tip	damage,	among	the	aforemen-
tioned	obstacles,	has	the	most	negative	effects	on	the	nanomanipulation	success,	as	it	pos-
sesses	the	maximum	deviation	between	the	nanoparticle	position	and	the	desired	position.
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FIGURE 4.15
Traveled	distance	of	nanoparticle,	tip	end,	and	tip	base	in	the	case	of	nanoparticle	crushing.

FIGURE 4.14
Some	examples	of	nanoparticle	crushing.
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114 Computational Finite Element Methods in Nanotechnology

4.5.2.12   Sutton–Chen Parametric Study: The Effects of Different 
Parameters on the Nanoparticle Deformation

In	this	part,	the	effects	of	two	parameters	on	the	success	of	manipulation	procedure	have	
been	studied.	These	parameters	are	εp	and	εt.	The	criterion	considered	for	the	success	of	
the	manipulation	process,	called	the	success	parameter	(SP),	is	defined	as	the	change	in	the	
ratio	of	two	equal	orthogonal	radii	of	the	nanoparticle:

	
SP

R
R

a

b
= 	 (4.40)

In	the	preceding	parameter,	Ra	and	Rb	are	the	large	and	small	diameters	of	the	nanopar-
ticle,	respectively	(Figure	4.16).

When	the	nanoparticle	is	spherical,	the	SP	ratio	will	be	equal	to	1.0,	and	as	the	nanoparticle	
deforms,	the	value	of	SP	will	deviate	from	1.0.	Although	this	parameter	indicates	particle	
deformation,	 however,	 also	 in	 some	 rare	 cases	 (while	 the	 nanoparticle	 has	 deformed	
and	its	shape	is	no	longer	spherical),	this	parameter	might	be	equal	to	1.0.	In	any	case,	if	
the	change	of	nanoparticle	box	is	concerned,	with	regard	to	Figure	4.16b,	 the	change	of	
nanoparticle	shape	can	be	generally	defined	as	relation	(4.40).

For	the	general	case,	Ra	is	the	distance	between	the	farthest	atoms.	The	x′	axis	is	defined	
along	these	atoms.	With	a	coordinate	transformation	from	the	xy	axes	to	x′y′,	Rb	is	defined	
as	 the	 distance	 between	 the	 highest	 and	 lowest	 points	 in	 the	 y′	 direction.	 Using	 these	
definitions,	all	the	atoms	are	swept	with	a	rectangle	area	Ra	Rb.

Since	particle	deformation	is	one	of	the	crucial	parameters	in	the	success	of	a	nanoma-
nipulation	process,	to	analyze	and	evaluate	this	phenomenon,	a	new	parameter	called	SP	
has	been	introduced.	This	parameter	can	be	very	useful	in	the	displacement	of	biological	
particles,	particularly	in	the	manipulation	and	making	of	special	biological	objects.

Table	4.4	 summarizes	 the	 results	of	different	 simulations	with	various	amounts	of	εp	
and	 εt.	 The	 base	 materials	 of	 the	 tip	 and	 nanoparticle	 are	 cupper	 (Cu)	 and	 silver	 (Ag),	
respectively.	The	substrate	is	made	of	Au.	By	fitting	an	exponential	curve	in	the	form	of	

Rb

Rb

y

(a) (b)

y

x

x΄

y΄

θx

Ra

Ra

FIGURE 4.16
(a)	Initial	form	of	the	nanoparticle	with	equal	diameters	and	(b)	with	unequal	diameters.	
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115Nanorobotic Applications of the Finite Element Method

y	=	aebx	+	cedx	to	the	case	that	changes	the	values	of	1.697,	88.73,	0.545,	and	17.29	are	obtained	
for	the	coefficients	a,	b,	c,	and	d,	respectively.	The	R-square	value	of	this	curve	is	equal	to	
0.986.	The	data	and	the	fitted	curve	have	been	shown	in	Figure	4.17.

Like	the	previous	case,	by	fitting	an	exponential	curve	in	the	form	of	y	=	axb	+	c	to	the	
case	that	changes	the	values	of	6.41,	0.5563,	and	1.095	are	obtained	for	the	coefficients	a,	b,	
and	c,	respectively.	The	R-square	value	of	this	curve	is	equal	to	0.9318.	The	data	and	the	
fitted	curve	have	been	shown	in	Figure	4.17.

Figure	 4.17	 shows	 that,	 with	 the	 increase	 of	 the	 εp	 coefficient,	 the	 value	 of	 the	 SP	
parameter,	and	consequently	the	deformation	of	the	particle,	decreases.	The	increase	of	
the	SP	increases	the	cohesion	of	the	nanoparticle’s	atom,	and	therefore,	εp	is	proportionate	
to	 the	 hardness	 of	 the	 particle,	 and	 the	 obtained	 result	 is	 very	 reasonable.	 Also,	 it	 can	
be	observed	in	Figure	4.18	that,	in	general,	with	the	increase	of	εt,	the	SP	parameter,	and	
consequently	the	particle	deformation,	increases,	although	the	local	data	changes	do	not	
necessarily	have	an	ascending	trend.	At	any	rate,	the	increase	of	the	SP	is	not	favorable	
to	the	nanomanipulation	process.	It	seems	that	the	tip	flexibility	(softness	of	the	tip)	can	
be	beneficial	for	not	deforming	the	nanoparticle,	as	long	as	it	does	not	hinder	the	other	
objectives	 of	 the	 manipulation.	 This	 conclusion	 also	 seems	 reasonable	 because	 part	 of	
the	energy	which	is	supposed	to	deform	the	nanoparticle	will	be	absorbed	through	the	
deformation	of	the	tip,	and	the	nanoparticle	will	remain	more	rigid.

4.5.2.13  Comprehensive Diagram for the Optimal Selection of Tip

Some	 simulations	 for	 the	 manipulation	 of	 several	 different	 particles	 have	 been	
performed	 by	 using	 various	 manipulator	 tips.	 The	 following	 diagram	 (Figure	 4.19)	
covers	all	 the	metals	of	the	SC	table.	By	using	this	diagram,	one	can	easily	select	the	
appropriate	 manipulator	 tip	 for	 the	 considered	 nanoparticle	 so	 that	 the	 smallest	 SP	
number	and	thus	the	least	amount	of	physical	change	could	be	resulted.	As	an	example,	
if	 the	considered	nanoparticle	 is	made	of	gold,	 it	 is	 suggested	 that	a	platinum	tip	be	
selected.	The	use	of	a	 silver	 tip	 is	 the	worst	 choice	and	will	 result	 in	 relatively	 large	
deformation	of	nanoparticle.

TABLE 4.4

Results	of	Various	Simulations	with	the	Change	of	εp	and	εt

Values of SP with the Change 
of εp (Ag Tip: εt = 2.5415e−03)

Values of SP with the Change of εt 
(Cu Nanoparticle: εp = 1.2382e−02)

εp SP εt SP

0.000707 2.0981 0.0000684 1.1000
0.002707 1.9872 0.0002333 1.2104
0.005707 1.6512 0.000563 1.1710
0.007707 1.4046 0.0012225 1.2389
0.010707 1.3083 0.0022118 1.2937
0.012707 1.1969 0.0028712 1.3640
0.015707 1.1670 0.0033659 1.3681
0.017707 1.1448 0.0038605 1.3790
0.020707 1.0195
0.023707 1.0245
0.026707 1.0232

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
12

 0
3 

M
ar

ch
 2

01
6 



116 Computational Finite Element Methods in Nanotechnology

4.5.3  Macro–Micro-Coupling Model

In	the	research	works	that	have	been	conducted	so	far,	various	methods	of	NF–MF	cou-
pling	on	different	basis	have	been	presented.	The	mentioned	nanomechanics	field	pro-
vides	a	new	point	of	focus	in	the	study	of	mechanics	of	materials,	especially	the	simulation	
of	 basic	 atomic	 mechanisms	 including	 the	 propagation	 and	 expansion	 of	 flaws.	 These	
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FIGURE 4.17
Data	and	the	fitted	SP	curve	with	the	change	of	εp.
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FIGURE 4.18
Data	and	the	fitted	SP	curve	with	the	change	of	εt.
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117Nanorobotic Applications of the Finite Element Method

simulations	are	generally	based	on	MM	methods,	including	the	tight	bonding,	ab	initio,	
and	the	density	function	theory	for	the	classical	NF	or	on	molecular	statics	methods.	These	
predictions	of	material	behavior	in	nanometer	scales	make	multiscale	analyses	possible,	
which	 could	 help	 in	 the	 understanding	 of	 failure	 mechanisms.	 However,	 it	 should	 be	
pointed	out	that	with	the	increase	of	the	size	of	the	system,	the	modeling	calculations	of	
atomic	processes	increase	significantly.

Although,	the	multifield	behavior	of	nanorobots	has	not	yet	been	discussed	in	full,	in	
several	research	works,	it	has	been	attempted	to	open	some	windows	into	the	dynamics	
modeling	problems	in	the	area	of	nanomechanics.	In	this	regard,	Park	and	Liu	[47]	have	
examined	several	issues	in	the	area	of	multiscale	problems	related	to	solids.

In	the	present	method,	a	direct	link	between	the	single	NF	atoms	and	MF	nodes	by	means	
of	 the	 statistical	 averaging	of	 local	 atomic	volume	displacements	associated	with	every	
MF	node	in	their	common	zone	has	been	replaced	with	the	previous	methods.	Moreover,	
considering	the	mechanics	of	the	problem	and	using	a	system	of	equations	in	the	matrix	
form,	a	dynamic	algorithm	has	been	presented	for	dynamically	solving	the	problem.	The	
fourth-order	Runge–Kutta	method	is	used	for	solving	the	problem	dynamically.	The	MF	
and	NF	computational	systems	are	independent	of	each	other	and	only	relate	through	an	
iterative	update	of	their	boundary	conditions.	This	method	presents	an	improved	coupling	
approach	 which	 is	 inherently	 applicable	 for	 three-dimensional	 domains.	 In	 addition,	 it	
prevents	 the	resolving	of	 the	continuum	model	 into	atomic	resolution	and	allows	finite	
temperature	cases	to	be	applied.	One	of	the	prominent	features	of	the	present	work	is	the	
presentation	of	reliable	solutions	for	problems	that	have	natural,	forced,	body,	and	interfa-
cial	degrees	of	freedom.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
1

1.2
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Rh tip (4.9371e-3)
Pt tip (1.9833e-2)
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FIGURE 4.19
Change	of	SP	parameter	versus	the	changes	of	εt	and	εp.
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118 Computational Finite Element Methods in Nanotechnology

To	generalize	the	problem,	the	macro-nano-related	problems	are	divided	into	two	groups	
of	closed	and	open	systems.	The	group	of	problems,	where	all	the	side	boundaries	of	the	
nano	domain	overlap	the	interfacial	degrees	of	freedom,	is	called	“closed	systems,”	and	
the	group	of	problems,	where	the	side	boundaries	of	the	nano	region,	in	addition	to	the	
interfacial	degrees	of	freedom,	possess	limited	(and	in	some	cases,	unlimited)	degrees	of	
freedom,	is	called	“open	systems.”	Figures	4.20	and	4.21	illustrate	the	general	cases	of	the	

Nanofield (NF) displacement

Nanofield

Macro field
displacement

(CM)

δV

Interfacial
displacement

(BC of nanofield)
δI

Micro–macro field

Far-field displacement
(BC of macrofield)

δF

FIGURE 4.21
General	case	definition	of	open	mechanical	systems.

Nanofield
(NF) displacement

Nanofield

δV

Interfacial displacement
(BC of nano field)

δI
Micro–macro field

Far-field displacement
(BC of macro field)

δF

FIGURE 4.20
General	case	definition	of	closed	mechanical	systems.
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119Nanorobotic Applications of the Finite Element Method

closed	and	open	systems,	respectively.	In	the	closed	system,	usually	one	NF	and	one	MF	
exist.	For	example,	in	the	crack	propagation	problem,	the	fine	region	of	crack	propagation	
is	designated	as	the	NF,	and	the	coarse	region	in	which	the	crack	is	growing	is	designated	
as	the	MF.	In	the	open	system,	several	MFs	could	be	interacting	with	several	NFs.	If	the	
numbers	of	MF	and	NF	are	equal	to	M	and	N,	respectively,	and	the	area	of	each	field	is	
indicated	by	Ω,	then	for	the	closed	system,	we	can	write:

	

Ω Ω
Ω Ω

Ω Ω

i j

i j

i j

i j NF
or i j MF

i NF j MF

∩ = ∅ ∈
∩ = ∏ ∅ ∈

∩ ≠ ∅ ∈ ∈









, ,
, ,

, ,
	 (4.41)

And	for	the	open	system,

	

Ω Ω
Ω Ω
Ω Ω

i j

i j

i j

or i j NF
or i j MF
or i NF j MF

∩ = ∏ ∅ ∈
∩ = ∏ ∅ ∈
∩ = ∏ ∅ ∈ ∈








, ,
, ,
, ,

	 (4.42)

In	the	previous	relations,	ø	and	Π	denote	the	empty	and	nonempty	spaces,	respectively.	
With	this	notation,	 it	can	be	easily	proved	(considering	the	presented	definitions)	that	
a	closed	system	is	a	special	case	of	an	open	system.	Therefore,	in	an	open	system,	there	
may	be	more	than	one	NF,	and	each	of	the	NFs	may	be	in	contact	with	one	another	in	
different	ways.	These	contacts	(e.g.,	in	the	nanomanipulation	process	using	nanorobots)	
may	not	occur	during	a	certain	time	range,	and	after	that	duration,	these	contacts	may	
be	established.	Here,	exclusively	mechanical	systems	are	taken	into	account,	and	there-
fore,	the	mentioned	contacts	are	of	the	second	order	only,	and	volumetric	sharing	is	not	
considered.

The	concept	of	multiscale	coupling	methods	can	be	very	useful	in	cases	where	we	want	
to	model	a	relatively	large	region	of	the	material	in	order	to	study	the	whole	deformation	
field,	but	the	atomic	and	subatomic	scales	are	needed	only	in	specific	and	limited	regions	
of	the	material.	A	practical	example	of	a	closed	system	can	be	demonstrated	in	the	mod-
eling	of	crack	nucleation	and	propagation.	As	was	mentioned	earlier,	for	such	problems,	
various	works	have	been	presented.	The	present	model	has	a	special	application	in	open	
systems;	systems	where	practically	no	interface	may	even	exist	between	the	macro-	and	
nano-environments	in	some	cases	and	in	a	certain	range	of	work,	while	after	a	certain	time	
duration	(which	could	be	known	or	unknown),	a	relationship	may	form	between	these	two	
environments.	Through	the	use	of	coupling	models	for	closed	environments,	the	size	limi-
tation	of	atomic	modeling	could	be	minimized,	such	that	an	inner	region	(with	complex	
dynamic	processes	and	 large	deformation	gradients)	 could	exist	 inside	an	outer	 region	
(with	small	deformation	gradients).	It	is	not	like	this	in	open	systems,	where	the	effect	of	
size	will	be	considerable.	To	demonstrate	the	effectiveness	of	the	model,	the	special	case	of	
a	conic	region	for	NF	has	been	investigated.	Also,	in	the	MF	model,	an	elastic	beam	with	
piezoelectric	properties	has	been	considered.

4.5.4  Coupling of MF and NF

For	the	coupling	of	MF	and	NF	in	closed	systems,	four	regions	are	considered	through-
out	 the	 system	 shown	 in	 Figure	 4.22.	 These	 four	 regions,	 in	 the	 order	 of	 proceeding	
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120 Computational Finite Element Methods in Nanotechnology

from	micro-	 to	nano-environments,	 consist	of	MF,	unfolded	volume	 (UV),	 interfacial	
volume	 (IV),	 and	 NF.	 The	 IV	 region	 is	 in	 fact	 a	 region	 where	 the	 terminal	 atoms	 of	
an	NF	model	have	surrounded	an	MF	node	in	the	model.	The	IU	region	is	the	region	
between	the	end	nodes	of	MF	and	the	end	of	the	NF	model.	The	two	regions	of	MF	and	
NF	need	no	further	explanation.	In	view	of	the	presented	cases,	IVs	estimate	the	mean	
displacements	of	NF	in	the	center	of	mass	of	these	displacements.	These	averages	are	
later	used	as	the	initial	conditions	of	displacements	in	the	relevant	interfacial	nodes.	It	
should	be	mentioned	that	the	IV	need	not	match	the	macro-element	that	surrounds	it,	
with	respect	to	the	size	and	shape.	Normally,	a	macro-element,	 in	the	interfacial	sec-
tion,	consists	of	hundreds	to	thousands	of	atoms.	By	taking	an	effective	average	for	the	
atomic	points,	the	discreteness	of	the	atomic	structure	can	be	sufficiently	homogenized	
so	that	the	MF	region	responds	to	the	excitations	of	the	atomic	region	as	an	expanded	
volume	of	itself.

For	the	analysis	of	open	systems,	in	addition	to	the	four	regions	of	MF,	UV,	IV,	and	NF,	
two	 regions	 of	 free	 boundaries	 of	 NF	 (denoted	 by	 FB)	 and	 common	 boundaries	 of	 NF	
(denoted	by	CB)	are	also	defined.	Regardless	of	the	type	of	initial	state	these	two	regions	
may	have,	each	one	has	the	potential	of	undergoing	different	changes	during	the	analysis	

Common nodes
Macro field nodes
Nano field atoms

Interfacial volumes
Unfolded volumes

Nano field

Macro field

δv

FIGURE 4.22
Common	region	between	NF	and	MF	in	the	closed	system.
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121Nanorobotic Applications of the Finite Element Method

time	 range.	The	CB	 region	 is	usually	 circumscribed	around	a	 circular	zone	because	 in	
small	dimensions,	for	considering	the	forces	which	in	this	zone	are	accounted	among	dif-
ferent	sections	of	the	NF,	the	concept	of	“cut-off	radius”	is	used.	Moreover,	the	MF	region	
is	also	divided	into	four	sections	of	“free	far	fields,”	“internal	volume,”	“boundary	field,”	
and	“interfacial	field”	(Figure	4.23).

It	seems	necessary	here	to	describe	the	method	of	analysis	of	the	FB	and	CB	regions.	
In	order	 for	 the	FB	region	 to	behave	 freely	 (at	 surface),	 changes	 should	be	made	 to	 the	
model.	This	is	the	philosophy	behind	the	establishment	of	the	FB	region.	The	existence	of	
free	surface	creates	unwanted	effects	in	the	NF	system.	In	comparison	with	the	cases	in	
which	the	boundary	is	affected	by	an	external	load,	this	occurrence	in	FB	is	not	so	criti-
cal.	In	addition	to	unwanted	effects,	since	atoms	at	the	free	surface	or	close	to	it	do	not	
have	a	complete	set	of	neighboring	atoms,	the	coordination	between	the	atoms	falls	apart.	
To	remedy	this	lack	of	coordination,	and	to	make	the	atoms	stable	in	the	interfacial	NF	
region,	two	approaches	can	be	adopted.	The	first	approach	is	to	offer	an	additional	volume	
of	atoms	away	from	the	center,	which	forms	the	surface	NF	region.	The	second	approach	
is	to	consider	a	number	of	the	same	NF	system	atoms	as	an	unfolded	volume.	In	case	of	
using	the	first	approach,	although	the	surface	NF	region	eliminates	the	effects	of	the	free	
surface,	it	applies	an	unwanted	virtual	stiffness	to	the	system,	which	elastically	constrains	
the	deformation	of	 the	 inner	NF	region.	To	counteract	 this	effect,	 the	unwanted	virtual	
hardness	should	be	compensated.	Since	the	effects	of	surface	in	solids	are	controllable,	to	
a	large	extent,	by	the	inner	volume,	it	is	suggested	to	use	the	second	approach.	Of	course,	
in	places	where	the	limitation	of	size	exists	(like	the	tip	of	a	cone-shaped	region),	the	use	
of	the	first	approach	is	inevitable.

Common boundaries of NF

Free boundaries of NF

Nano field 3
Nano field “n

Common nodes
Macro field nodes
Nano field atoms

Interfacial volumes
Unfolded volumes

Macro field

δv

δINano field 2

Nano field 1

”

FIGURE 4.23
Common	region	between	NF	and	MF	in	the	open	system.
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122 Computational Finite Element Methods in Nanotechnology

During	the	simulation,	the	average	of	k	numbers	of	IV,	for	obtaining	the	displacement	of	
the	center	of	mass,	is	defined	as	

�
δCM k

MD
, ,	which,	to	get	the	statistical	displacement	vector	

�
δI k

MD
, ,	

is	averaged	along	M	time	ranges	of	NF:

	

� � � �
δ δI k

MD
CM k
MD

Time
CM k j CM k

j

M

M
r t r, , , ,( ) ( )= = −( )

=
∑1

0
1

	 (4.43)

In	the	earlier	relation,	
� �
r t N r tCM k j k i j

i

Nk

, ( ) ( / ) ( )=
=∑1

1
	is	the	center	of	mass	of	the	kth	IV,	which	

has	Nk	atoms	in	the	position	r i⃗	at	time	tj	of	the	jth	NF	time	range.
In	open	systems,	in	order	for	the	NF	region	to	behave	freely	(at	surface)	or	to	be	sub-

jected	to	specific	external	force,	some	alterations	should	be	made	in	the	model.	This	is	the	
philosophy	behind	the	establishment	of	the	UV	region.	In	the	best	case,	when	the	free	
movement	of	the	surface	is	intended,	the	existence	of	the	free	surface	produces	unwanted	
effects	 in	 the	 NF	 system.	 This	 event,	 in	 cases	 where	 an	 external	 force	 is	 considered	
instead	of	the	free	movement,	will	be	much	worse.	In	addition	to	unwanted	effects,	since	
atoms	at	the	free	surface	or	close	to	it	do	not	have	a	complete	set	of	neighboring	atoms	
around	 them,	 the	 coordination	 between	 the	 atoms	 falls	 apart.	 To	 reduce	 this	 lack	 of	
coordination,	and	to	make	the	atoms	stable	in	the	interfacial	NF	region,	an	additional	
volume	of	atoms	far	from	the	center,	which	forms	the	surface	NF	region,	is	offered.	On	
the	other	hand,	although	the	surface	NF	region	eliminates	the	effects	of	the	free	surface,	
it	applies	an	unwanted	virtual	stiffness	to	the	system,	which	elastically	constrains	the	
deformation	of	 the	 inner	NF	region.	Due	to	 the	particular	complexity	of	 the	problem,	
in	this	report,	a	simple	and,	at	the	same	time,	effective	procedure	is	presented	for	the	
calculation	of	virtual	hardness.

4.5.5  Algorithm for Establishment of Coupling, Problems of Statics

In	general,	the	coupling	of	MF	and	NF	is	accomplished	through	schemes	based	on	the	
establishment	of	iterative	equilibrium	between	these	two	regions.	In	these	schemes,	the	
iterations	begin	with	the	displacements	of	the	MF	and	NF	interface.	These	displacements	
are	obtained	as	statistical	average	from	the	atomic	positions	of	every	IV	and	by	averaging	
in	 the	 time	 duration	 of	 NF.	 These	 average	 displacements	 are	 then	 applied	 in	 the	 MF	
region,	 as	 displacement	 boundary	 conditions	 (

�
δI).	 Then,	 the	 obtained	 MF	 boundary	

value	problem	is	solved	to	yield	the	new	interfacial	reaction	forces,	i.e.,	R
→

I.	Then,	these	
forces	 are	 applied	 to	 the	 atoms	 located	 in	 IVs,	 and	 so,	 the	 fixed-reaction	 boundary	
conditions	are	defined	in	the	NF	system.	During	the	iterations	in	which	MF	is	solved,	
the	 reaction	 boundary	 conditions	 are	 fixed,	 and	 they	 are	 applied	 to	 the	 NF	 region	 to	
guarantee	the	correct	application	of	the	elastic	field	from	the	MF	domain.	In	solving	the	
problems	of	statics,	the	iteration	cycle	of	NF	and	MF	continues	until	the	system	reaches	
a	 lasting	equilibrium	of	displacements	and	forces	between	the	continuum	and	atomic	
fields.	While	for	the	problems	of	dynamics,	after	the	establishment	of	static	equilibrium	
(using	the	aforementioned	method),	the	system	should	be	solved	dynamically	(generally	
via	numerical	methods).	This	issue	constitutes	one	of	the	substantial	complexities	of	the	
present	work.

Several	works	have	been	presented	on	the	statics	of	coupling	models.	Since	the	statics	of	
this	problem	is	a	special	case	of	its	dynamics,	the	statics	of	the	problem	is	not	discussed.	
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123Nanorobotic Applications of the Finite Element Method

It	should	be	pointed	out	that	in	the	mechanics	of	open	systems,	normally	there	are	several	
systems	in	the	NF	and	that	in	a	certain	time	range,	these	systems	may	have	no	common	
region	on	any	order,	and	in	another	time	range,	they	may	have	common	region	on	every	
order.	Therefore,	the	problem	will	go	through	changes	in	time	dimension,	which	are	often	
significant.	As	a	result,	the	statics	of	the	system	(despite	the	fact	that	it	should	be	established	
prior	to	the	analysis)	is	not	so	important,	and	only	the	dynamics	of	the	system	is	important	
and	should	be	investigated.

4.5.5.1  Problems of Damped Dynamics of MF

Here,	through	a	unique	algorithm,	the	manner	of	analysis	of	mechanics’	dynamic	prob-
lems	(including	the	dynamics	of	nanomanipulation	of	AFM)	will	be	presented.

By	considering	the	dynamics	in	the	MF	model,	dynamic	continuum	equations	in	the	nth	
MF	step	at	time	tn	are	given	as	follows:

	 EP P P R( ), ( ), ( ), ) ( )t t t tn n n f n
� �� … = 	 (4.44)

where	E	is	the	term	related	to	the	equations	extracted	from	the	system’s	internal	energy,	
which,	in	different	methods,	are	functions	of	P(tn)s	(the	studied	variables	of	the	system)	
and	of	different	orders	of	their	derivatives.	Also,	at	different	times,	function	R (tn)	is	the	
function	 resulting	 from	 external	 loads	 applied	 to	 the	 system	 and	 proportionate	 to	 the	
orders	of	the	system.

In	problems	that	possess	natural	and	forced	boundary	conditions	and,	at	the	same	time,	
are	supposed	to	be	used	in	multiscale	coupling	models,	the	degrees	of	freedom	should	
be	divided	into	several	groups.	The	first	group	includes	the	degrees	of	freedom	that	are	
governed	by	the	natural	boundary	conditions.	This	group	will	be	designated	by	F.	The	
free	boundary	condition	 is	 the	most	usual	condition	of	 this	group.	The	second	group	
includes	the	degrees	of	freedom	that	are	governed	by	the	forced	boundary	conditions.	
This	group	will	be	designated	by	B.	In	many	problems	related	to	dynamics	of	solids,	the	
clamped	boundary	condition	can	be	regarded	as	a	 forced	boundary.	Also,	 in	 the	area	
of	 fluid	 dynamics,	 the	 no-slip	 conditions	 at	 the	 surface	 can	 be	 mentioned.	 The	 third	
group	 is	 the	degrees	of	 freedom	 that	are	 included	 in	 the	 inner	points	of	 the	domain.	
This	group	will	be	designated	by	V.	The	fourth	group	is	the	degrees	of	freedom	that	are	
supposed	to	be	coupled	with	the	common	degrees	of	freedom	in	MD.	This	group	will	
be	designated	by	I.	The	matrices	related	to	the	degrees	of	freedom	of	general	equation	
(4.44)	are	reduced,	based	on	these	definitions.	Therefore,	E	 is	broken	down	as	[Eαβ],	 in	
which	α,β	=	V,F,I,B,	V	indicates	the	internal	MF	region,	F	is	the	far-field	variables,	I	is	the	
variables	of	the	interface,	and	B	is	the	variables	of	the	MF	boundary	conditions.	Using	
these	definitions,	the	dynamic	continuum	equations	in	the	nth	step	of	MF	at	time	tn	are	
expressed	as	follows:

	 E P P P Rf n n n f nt t t t f V F I B( ( ), ( ), ( ), ) ( ), , , ,� �� … = = 	 (4.45)

It	should	be	noted	here	that	þ(tn)	includes	all	the	degrees	of	freedom	in	every	set	of	equa-
tions.	The	general	state	of	a	multiscale	problem	includes	the	cases	of	external	forces	and	
the	problem	of	initial	value.	First,	the	initial	value	problem,	and	then	the	external	force,	
and	the	overall	combined	state	are	discussed.
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124 Computational Finite Element Methods in Nanotechnology

4.5.5.1.1 Initial Value Problem

The	general	equations	of	motion	of	 the	macro-system’s	displacement,	when	no	external	
forces	exist,	are	as	follows:

	 E P P P( ( ), ( ), ( ), )t t tn n n
� �� … = 0 	 (4.46)

In	any	case,	whether	the	problem	pertains	to	the	subject	of	solids	or	fluid	dynamics,	the	
general	dynamic	displacement	vector	could	be	expressed	as	follows:

	 P u g(t) = (t) + (t) 	 (4.47)

where	𝔤(t)	and	𝔲(t)	are	the	vector	of	initial	degrees	of	freedom	and	the	elastic	vector	of	the	
whole	system,	respectively.	By	substituting	the	general	dynamic	displacement	vector	 in	
the	equation	of	motion	and	using	the	principle	of	superposition,	we	have

	 E u u u E g g g( ( ), ( ), ( ), ) ( ), ( ), ( ), )t t t t t tn n n n n n� �� … � �� …= − 	 (4.48)

And	thus,	the	initial	value	problem	is	converted	into	the	external	force	problem.	If	the	
effects	of	orders	higher	 than	 the	second	derivative	of	 the	degrees	of	 freedom	are	dis-
regarded,	 and	 the	 effects	 of	 the	 considered	 orders	 are	 assumed	 as	 linear	 (like	 many	
common	methods,	including	the	finite	element),	then	the	equations	can	be	rewritten	as	
follows:

	 E u E u E u E g E g EK n D n A n K n D n At t t t t( ( )) ( ( )) ( ( )) ( ( )) ( ( )) (+ + = − − −� �� � ���g( ))tn 	 (4.49)

By	 arranging	 the	 total	 displacement	 vector,	 the	 state	 form	 of	 the	 equations	 can	 be	
expressed	as

	

d
dt

I
t

A K A D A
K n DQ

E E E E
Q

E
E g E

�� ��
�=

− −








 −









 +− − −

0 0
1 1 1 ( ( )) (gg E g( )) ( ( ))t tn A n+( )�� 	 (4.50)

where
Q⃗	=	{uV,	uF,	uB,	uI,	u· V,	u· F,	u· B,	u· I}T	is	the	state	vector
EK,	 ED,	 and	 EA	 matrices	 are	 the	 resolved	 zero	 to	 second-order	 terms	 of	 the	 general	

equation	of	motion

The	 solution	 of	 unknown	 elastic	 displacements	 within	 the	 MF	 region,	 i.e.,	 {uV,	 uF,	
uB,	uI},	 can	be	obtained	by	solving	 the	preceding	state	equation	and	by	applying	 the	
initial	condition	IC	=	0	in	the	first	step	and	applying	the	condition	IC	=	ICi	in	the	ith	step	
of	the	macro-solution.	Then,	the	interfacial	forces	are	obtained	through	the	following	
relations:

	 R E P P PI n I n n nt t t t( ) ( ( ), ( ), ( ), )= � �� … 	 (4.51)
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125Nanorobotic Applications of the Finite Element Method

4.5.5.2  Problem of Damped Dynamics of NF

The	dynamics	of	the	atom	i	with	mass	m(i),	at	the	position	r(i),	and	in	the	NF	regions	are	
described	through	the	Newton’s	equations	of	motion.	Thus,	for	different	regions	belong-
ing	to	the	general	NF,	we	have

	 m r f +f In the inner NF regioni i i i
D��� �

= 	 (4.52a)

	
m r f

R
N

f r ri i i
I
k

I
k i

D
i i

first step
i i

��� �
�

� �� � ��
= + + =, ( , ) ( ,( ) (P PΓ Γ ))

’
) ( )

it s last step
Interfacial NF for the kth IV  

	
(4.52b)

	
m r f

f
N

f
N

f In the surface NF region fi i i
cuv
k

UV
k

Auv
k

UV
k i

D��� �
� �

= + + + oor the kth UV( ) 	 (4.52c)

	
m r f

f
N

f In the free NF region for the kth FBi i i
cf
k

FB
k i

D���
�

= + + ( ) 	 (4.52d)

	
m r f

f

N
fi i i

c
k

ii

Atom

CB
k i

D

RC

���

�

= +
( )

+=∑ 1 In the common NF region (forr the kth CB) 	 (4.52e)

The	atoms	 in	 the	 inner	NF	region	only	experience	 the	atomic	 force	
� �
f fi ij

j
= ∑ 	 and	 the	

frictional	forces	of	fi
D,	which	result	from	their	neighboring	atoms.	The	atoms	existing	in	

the	interfacial	NF	region	(which	belong	to	the	kth	IV)	also	experience	an	additional	force	
(
�
RI

k)	which	is	distributed	among	NI
k	atoms.	In	addition,	the	continuity	of	the	fields	of	the	

zero-	and	first-order	degrees	of	freedom	should	be	guaranteed	in	it.	The	atoms	existing	
in	the	surface	NF	region	(which	belong	to	the	kth	UV)	also	experience	an	opposing	force	
(
�
fcuv

k )	which	is	distributed	among	NS
k	atoms.	Moreover,	they	tolerate	the	force	of	

�
fAuv

k 	due	to	
the	crushing	of	the	system,	which	itself	should	be	divided	by	NS

k	atoms.	In	the	common	
boundaries	of	the	NF	region,	some	magnitude	of	force,	which	arises	from	the	forces	of	
atoms	inside	the	cut-off	radius	of	the	contact	surface	of	two	NFs,	should	be	considered.	It	
should	be	mentioned	that,	except	in	the	areas	of	direct	contact	between	surfaces	(where	the	
effect	of	friction	is	modeled	with	the	inclusion	of	some	impacts),	in	the	earlier	equations,	
the	viscous	 friction	 force	 fi

D	 is	uniformly	applied	 to	 the	atoms	 inside	 the	 IVs	and	UVs.	
Throughout	the	integration	of	the	earlier	equations	for	a	period	of	ΔtM	=	MΔt	(where	M	is	
the	number	of	time	steps	and	Δt	is	the	time	step	duration),	the	new	average	displacements	
are	determined	by	Equation	4.43.	The	new	atomic	displacements	for	the	next	MF	step	at	
time	tn+1	=	tn	+	ΔtM	are	again	applied	in	Equations	4.51	and	4.52a	for	the	calculation	of	forces	
in	the	next	iteration	step.	The	complete	algorithm	for	the	simulation	of	coupling	has	been	
given	in	Figure	4.24.
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126 Computational Finite Element Methods in Nanotechnology

In	the	following	sections,	present	approach	has	been	applied	to	the	nanomanipulation	
scheme	using	the	AFM.

4.6 Application to the Macroscale Nanorobots

In	SPMs,	especially	AFM,	a	piezotube	has	been	used	to	move	the	stage	in	space	directly	and	
a	micro-cantilever	to	sense	or	actuate	partially	the	stage.	Figure	4.25	schematically	shows	
the	single	nanoparticle	manipulation	scheme.	Although	the	accurate	dynamic	model	of	
macroscale	 nanorobots	 has	 not	 yet	 been	 discussed	 in	 full,	 several	 works	 may	 be	 cited.	

MD

Definition of the initial state of MF and NF models

Displacements  δV(t0), δF(t0), δB(t0), δI(t0), δR(t0)
Velocities  δV(t0), δF(t0), δB(t0), δI(t0), δR(t0)

State equation
δ = Rδ + QF

Solution of MF

Solution with Runge–Kutta

Simulation of NF using M time steps

I (tn) =   I(   (tn),   (tn),    (tn), ...)

Calculation of additional forces for different volumes

Verlet algorithm

No
Calculation and

adjustment
of macro changes

{δV, δF, δB, δI, δR}=
{δV, δF, δB, δI, δR}new

Calculation and
adjustment of interfacial

changes

{δV, δF, δB, δI, δR}=
{δV, δF, δB, δI, δR}new

. . . . .
. .   . . .

Yes

Calculation of new interfacial displacements
at tn+ 1 = tn + MΔt

δ I
MD

t
= = ——

m = m + 1

fcuv(tm), fAuv(tm), fcf(tm), fc(tm)

tm = tn + mΔt,  m = 1.....M

.

. . . . .

δCM
1
M Σ

M

j = 1
rCM(tj) – rCM(0)

m = M?

FIGURE 4.24
Dynamic	analysis	algorithm	of	MF	and	NF	coupling.
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127Nanorobotic Applications of the Finite Element Method

In	this	regard,	Park	and	Liu	[47]	have	examined	several	issues	in	the	area	of	multiscale	
problems	related	to	solids.	Here,	problem	is	completely	different.	Complicated	dynamic	
behavior	of	a	multibody	system	in	the	multifield	is	considered.	As	depicted	in	Figure	4.26,	
the	micro-cantilever,	topside	of	the	tip,	and	a	large	part	of	substrate	belong	to	the	MF,	and	
particle,	end	of	the	tip,	and	a	limited	area	of	substrate	near	the	particle	belong	to	the	NF.	
Since	the	dynamics	of	piezotubes	is	relatively	rigid	with	regard	to	the	dynamics	of	micro-	
and	nano-fields,	the	piezotubes	have	been	assumed	rigid.	Nonetheless,	their	behavior	may	
be	studied	in	a	valuable	work	published	by	authors	[48].

Firstly,	 presented	 method	 should	 be	 validated.	 Before	 this,	 a	 macro-base	 mechani-
cal	 model	 was	 introduced	 by	 the	 first	 author	 and	 his	 colleagues	 in	 Refs	 [48,49],	 where	
presented	model	has	been	validated	with	experimental	works.	Here,	a	comparison	with	
that	work	and	a	CGMD	approach	has	been	made	with	the	purpose	of	validating	present	
method.	CGMD	approach	has	been	validated	last	by	authors	[49].	Figure	4.27	shows	the	
comparison.	For	macro-part,	1000	quadratic	finite	element	has	been	used.	In	the	CGMD	
approach,	a	constant	velocity	same	as	the	velocity	of	cantilever	base	is	applied	to	the	tip	
base.	Therefore,	some	discrepancies	are	completely	prospected.	However,	we	claim	that	
present	multiscale	method	includes	more	dynamics	of	the	system,	and	so	it	is	more	and	
more	accurate	than	the	CGMD	approach.

Fixed
end

MF

NF
MF nodes
Interfacial volumes

Unfolded volume

NF domain

Free boundary of NF
Common boundaries of NFs Fixed base

FIGURE 4.26
Common	region	between	NF	and	MF	in	the	nanomanipulation	process	as	an	open	system.

Rigid
upper
piezo-
tube

Rigid lower substrate and piezo-tube

MF

≈20 nm

≈10 nm

≈250 μm

≈1 μm

≈12 μm
D≈20 nm

NF

FIGURE 4.25
Various	parts	of	MF	and	NF.
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128 Computational Finite Element Methods in Nanotechnology

As	 it	 can	 be	 observed	 in	 Figure	 4.27,	 there	 is	 relatively	 good	 agreement	 between	 the	
diagrams	of	the	presented	model	and	the	results	of	the	CGMD	approach.	In	this	figure,	
the	 considered	 multiscale	 model	 scheme	 and	 various	 states	 of	 system	 during	 the	
nanomanipulation	have	been	sketched	clearly.

Using	 the	 present	 procedure,	 some	 nanomanipulation	 behaviors	 could	 be	 studied,	
identified,	and	formulated	based	on	a	real	view.	Usually,	the	variation	of	physical	properties	
(force,	displacement,	etc.)	can	be	used	for	identification	in	small	scales.	In	the	following,	
three	examples	have	been	introduced	for	more	clarification.

4.6.1  Example 1: Roughness on Substrate

To	 study	 the	 high	 sensitivity	 of	 the	 results	 to	 the	 unexpected	 material	 roughness,	 a	
standard	nanomanipulation	system	with	six	configurations	has	been	considered.	 In	the	
first	configuration	(the	simple	case),	the	substrate	surface	is	smooth,	and	in	the	other	five	
cases	(types	1–5),	some	small	size	particles	are	attached	onto	the	substrate.

Various	configurations	of	considered	surface	are	depicted	in	Table	4.5.	For	all	considered	
roughs,	each	particle	is	approximately	1	nm	in	diameter.	Figure	4.28	shows	the	horizontally	
traveled	 distance	 by	 a	 nickel	 nano	 particle	 on	 a	 gold	 substrate.	 As	 can	 be	 observed	 in	
this	 figure,	 after	 the	 tip	 has	 contacted	 the	 particle	 (at	 nearly	 0.4	ns),	 the	 diagram	 of	 the	
first	case	(smooth	substrate)	has	shifted	lower	than	the	other	diagrams.	This	is	due	to	the	
fact	that	the	considered	roughness	pulls	the	particle,	and	since	the	substrate	material	is	
relatively	stiff,	the	roughness	is	digested	by	the	substrate.	Hence,	after	2	ns,	all	the	cases	
show	relatively	the	same	behavior.
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FIGURE 4.27
Comparison	with	a	CGMD	approach.	(From	Moradi,	M.	et	al.,	Micro Nano Lett.,	5(5),	324,	2010.)
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129Nanorobotic Applications of the Finite Element Method

TABLE 4.5

Configuration	of	Holes	Used	to	Study	the	
Roughness	Effects	on	the	Nano	Manipulation

Type
Roughness 

Configuration
Hole 

Configuration

1

2

3

4

5

0 1 2 3 4 5 6 7 8
×10–9

–1

0

1

2

3

4

5

6

7

8
×10–8

Time (s)

Tr
av

el
le

d 
di

st
an

ce
 (m

)

Simple (smooth)
With roughness type 1 
With roughness type 2
With roughness type 3
With roughness type 4 
With roughness type 5 

FIGURE 4.28
Horizontally	traveled	distance	by	a	nickel	nanoparticle	on	a	gold	substrate	with	some	predefined	roughness	
(in	the	six	noted	configurations).
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130 Computational Finite Element Methods in Nanotechnology

4.6.2  Example 2: Material of Substrate

Now,	let	us	look	at	a	harder	material	as	the	substrate.	Figure	4.29	shows	the	horizontally	
traveled	 distance	 by	 a	 nickel	 nano	 particle	 on	 a	 Rhodium	 substrate,	 in	 the	 six	 noted	
configurations.	In	the	time	range	of	0.4–0.6	ns,	the	nickel	nanoparticle	slides	on	the	hard	
substrate	toward	the	tip.	Then,	an	unpredictable	behavior	is	observed.	A	simple	comparison	
between	Figures	4.28	and	4.29	 indicates	 that	 the	substrate	material	 is	a	more	 influential	
factor	than	was	previously	thought.

4.6.3  Example 3: Notches on Substrate

Due	to	chemical	processes	before	the	manipulation	task,	some	notches	may	be	created.	Let	us	
consider	a	system	with	the	same	configuration	as	in	the	previous	roughness	study,	but	with	a	
hole	instead	of	the	roughness.	In	type	1,	a	hole	is	considered	by	taking	out	an	atom	from	the	
substrate	lattice	(all	removed	particles	are	approximately	1	nm	in	diameter).	Various	configura-
tions	of	considered	surface	have	been	depicted	in	Table	4.5.	Figure	4.30	shows	the	horizontally	
traveled	distance	by	a	nickel	nanoparticle	on	a	gold	substrate,	in	the	six	noted	configurations.	
To	illustrate	the	effect	of	substrate	material,	a	diagram	similar	to	Figure	4.29	may	be	depicted.

4.7 Some Challenges in the Macroscale Nanorobotic Science

As	already	mentioned,	macroscale	nanorobots	are	some	advanced	devices	for	manipulating	
objects	in	the	nanoscale.	Many	of	macroscale	nanorobot	(especially	in	SPMs)	applications	
in	nanoworld	have	been	hampered	in	the	past	by	the	large	nonlinearities	encountered	in	
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FIGURE 4.29
Horizontally	traveled	distance	by	a	nickel	nanoparticle	on	a	Rhodium	substrate	with	some	predefined	rough-
ness	(in	the	six	noted	configurations).
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131Nanorobotic Applications of the Finite Element Method

tip	 steering.	 Although	 AFM	 is	 famous	 for	 its	 specific	 characteristics	 in	 nanofabrication	
and	nanomanipulation,	and	other	various	applications,	 it	has	 limitations	 that	 still	 exist	
in	experimental	results,	too.	These	limitations	are	classified	as	(1)	scanner	limitations	and	
(2)	other	limitations	(nonlinearities	from	electric	device	and	thermal	field	[drift]).	Thermal	
drift	 can	 be	 compensated	 using	 some	 advanced	 compensators	 [50].	 This	 classification	
clarifies	the	significance	of	scanner	limitations,	especially	creep	and	hysteresis	of	scanners.	
Thus,	these	effects	have	been	discussed	here.

4.7.1  Scanner Limitations

Piezoelectric	 actuators	 can	 provide	 sub-nanometer	 displacement	 and	 achieve	 a	 high	
bandwidth.	 There	 have	 been	 extensive	 works	 in	 literature	 on	 dynamic	 behavior	 of	
piezoelectric	 actuators.	 Piezoelectric	 actuators	 come	 in	 different	 forms	 and	 shapes	
including	tube	actuators	[5,51].	The	tube	actuator	that	is	involved	offers	a	compact	design,	
three	degrees	of	freedom	motion,	and	low	cost	of	construction.	These	desirable	features	
have	made	tube	actuators	widely	used	in	precision	instruments	such	as	SPMs.

Earliest	study	of	AFM	creep	was	performed	by	S.	Vieira	[52],	and	first	model	for	AFM	
creep	was	 introduced	by	Richter	et	al.	 [53].	They	had	modeled	and	confirmed	creep	as	
function	of	impressed	voltage	on	input	to	the	mechanical	subsystem,	reinforcing	Vieira’s	
earlier	experimental	results.	After	these	studies,	many	researchers	modeled	the	creep	effect	
by	superposition	multiple	set	of	linear	spring–mass	model,	and	further	it	was	involved	in	
hysteresis	effect.	A	lot	of	studies	about	hysteresis	refer	 to	basic	conception	of	hysteresis	
in	general	cases.	One	of	the	earliest	and	the	most	detailed	analysis	was	introduced	with	
Prandtle	 [54].	 Then	 Frenc	 Preisach	 researches	 on	 ferromagnetism	 led	 to	 an	 alternative	
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FIGURE 4.30
Horizontally	traveled	distance	by	a	nickel	nanoparticle	on	a	gold	substrate	with	some	predefined	indentations	
(in	the	six	noted	configurations).
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132 Computational Finite Element Methods in Nanotechnology

phenomenological	description	which	is	more	general	[55].	Some	works	used	the	Preisach	
model	 for	 hysteresis	 controlling	 and	 compensation	 [56–58].	 Subsequently	 many	 works	
such	as	Tan	in	Ref.	[59]	proposed	the	use	of	new	methods	to	adapt	hysteresis	model	in	real	
time.	All	of	 these	works	that	are	not	 inferred	here	have	no	well	usability.	Also,	models	
were	 not	 in	 accordance	 with	 experimental	 evidence	 and	 were	 not	 analytic.	 Therefore,	
it	 is	 obvious	 that	 they	 are	 computationally	 intensive	 for	 reasonable	 accuracy,	 and	 their	
behavior	is	not	unique	to	each	device.	Recently,	authors	developed	a	creep	and	hysteresis	
model	that	was	generic,	computationally	efficient,	and	mathematically	traceable	such	that	
it	was	applicable	to	random	input	functions	such	as	undesired	voltages,	hysteresis	 loop	
with	 nonhomogeneous	 forms,	 asymmetric	 shapes,	 at	 existence	 of	 a	 thermal	 field,	 and	
other	unusual	conditions	[60].	They	also	introduced	a	compensation	algorithm	that	was	
very	applicable	and	independent	of	the	considered	device,	velocity	of	input,	and	variation	
of	device	characteristics.	However,	 in	that	work	and	many	others,	the	scanner	has	been	
modeled	 with	 some	 mass–spring–damper	 blocks,	 whereas	 the	 continuous	 behavior	 of	
system	(i.e.,	usually	as	plate,	hollow	cylinder,	etc.)	needs	to	model	with	a	CM-based	model	
such	as	FEM.	Here,	a	new	compact	formulation	for	hysteresis	of	a	micro-	or	nano-actuator	
or	generator	has	been	developed.	This	formulation	has	been	utilized	in	an	FEM	code,	and	
some	significant	results	have	been	introduced.

As	already	mentioned,	the	equation	of	motion	for	a	finite	element	could	be	expressed	as	
relation	(4.17)	that	has	repeated	as	follows:

	
M q C q K K K K q F K Kuu e e uu e e uu u u e e qe u[ ] + [ ] + −  = − 

− −�� � φ φφ φ φ φφ
1 1 +( )

e e HF Nφ 	 (4.53)

For	 actuator	 case,	 the	 mechanical,	 electrical,	 and	 hysteresis	 forces	 have	 calculated.	 The	
mechanical	force	depends	on	the	applied	mechanical	displacement	or	direct	force,	whereas	
two	others	are	related	to	the	applied	voltage.	Then,	the	problem	can	be	solved	using	the	
general	solution	approaches	for	FEM-related	problems.	Based	on	the	assumption	of	com-
pensation	of	nonlinear	behavior	of	micro-actuators	in	the	nanomanipulation	scheme,	the	
nonlinear	behavior	has	ignored	in	the	coupling	of	MF	and	NF.	Here,	we	return	to	the	MF	
model.	For	compensation	of	nonlinearities,	a	comprehensive	model	is	needed.

4.7.2  Hysteresis Behavior in the Micro-Actuators

Up	to	now,	lumped	models	and	FEMs	have	been	used	for	nonlinear	problems.	In	Ref.	[61],	
the	mass–spring	approach	has	been	used	with	feedback-linearized	inverse	feed	forward	for	
creep	and	hysteresis	compensation.	In	Refs	[62–64],	using	an	estimator,	transfer	function	of	
a	macro-cantilever	has	been	derived,	and	its	nonlinearities	have	been	modeled	using	two	
well-known	approaches.	In	Ref.	[65],	using	a	developed	model	of	Bouc–Wen	approach,	the	
piezotube	hysteresis	has	been	simulated	based	on	a	mass–spring	model.	There	exist	some	
valuable	works	that	considered	this	problem	experimentally	[65,66].	Using	the	FEM	for	linear	
and	nonlinear	problem	of	hysteresis,	some	works	have	studied	the	hysteresis	behavior	using	
FEM	[33,67,68].

Here,	a	self-contained	model	 for	hysteretic	nonlinear	dynamic	of	macro-,	micro-,	and	
nano-sized	electromechanical	systems	has	been	introduced.	Focusing	on	the	macro-	and	
nano-electromechanical	systems	(MEMS/NEMS),	where	necessarily,	some	applications	do	
not	relate	to	nano-actuating	or	sensing;	some	useful	results	have	been	achieved.	The	most	
significant	application	is	manipulating	the	nanoworld,	of	course.

Here,	 the	 equations	 of	 motion	 and	 related	 boundary	 conditions	 subjected	 to	 the	
mechanical	or	electrical	fields	have	been	obtained	by	Hamilton	principle,	and	then	they	
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133Nanorobotic Applications of the Finite Element Method

are	 reshaped	 in	 the	 form	 of	 FEM	 equations.	 Exact	 solution	 of	 linear	 problem	 in	 some	
especial	 cases	 was	 compared	 with	 the	 presented	 approach,	 and	 we	 have	 seen	 them	 in	
good	 agreement.	 The	 present	 approach	 has	 the	 advantage	 of	 providing	 solutions	 for	
piezoactuators	with	some	different	types	of	boundary	conditions.	The	considered	problem	
is	the	same	as	the	actuator	of	AFM	that	has	been	used	in	the	nanomanipulation	scheme.

4.7.3  Modeling of Nonlinearities

Many	 literatures	 presented	 and	 developed	 the	 hysteresis	 models.	 Each	 of	 them	 had	
appropriate	 application	 into	 one	 or	 more	 fields	 with	 some	 advantages	 and	 disadvan-
tage.	For	example,	the	Bouc–Wen	model	[69]	establishes	an	analytic	relation	between	the	
applied	voltage	and	polarization.	Preisach	 [70]	and	Prandtl–Ishlinskii	 (PI)	 [71]	models	
use	 a	 summation	 of	 numerical	 operators.	 Here,	 for	 more	 simplicity,	 the	 numerical	 PI	
method	was	used.	PI	operator	is	a	subclass	of	the	Preisach	hysteresis	model	and	employs	
combination	of	several	rate-independent	backlash	or	linear	play	operators	as	shown	in	
Figure	4.31.

When	input	increases,	zr(t)	=	max{zr(ti),	u	−	r},	and	when	input	decreases,	zr(t)	=	max{zr(ti),	
u	+	r}.	Thus,	we	can	write

	

z t u t r z t u t r

t t t

r r i

i i

( ) = ( ) − ( ) ( ) +{ }{ }
< ≤





 +

max , min ,

1

	 (4.54)

Using	a	summation	of	these	operators,	the	hysteretic	behavior	can	be	calculated	as

	
y k w z kH

i

N

i r

H

i( ) = ( )
=

∑
1

	 (4.55)

where
NH	is	order	of	hysteresis
wi	>	0	are	weight	coefficients	for	each	operator

For	calculation	of	electric	forces,	electric	charge	is

	
Q

h A3
33= ε αϕ 	 (4.56)

–r r u

(a)

zr

(b)

u

u0

u1

t0 t1 t2 t3 tN – 1 tN

FIGURE 4.31
PI	operator	(a)	and	input	diagram	in	the	ascendant	and	descendent	intervals	(b).
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134 Computational Finite Element Methods in Nanotechnology

where	φA	and	α	are	the	applied	voltage	and	the	linear	aspect	ratio.	It	shows	the	direct	effect	
level	of	applied	voltage	on	the	orientation	of	dipoles.	It	is	equal	to	1.0	for	the	linear	system.	
In	Equation	4.16,	we	can	write	the	nonlinear	term	as

	
p

h h= ε ϕ33 	 (4.57)

where	φh	is	the	voltage	equivalent	to	hysteresis	that	is	determined	with	the	PI	model.

4.7.3.1  Results and Discussion

For	more	brevity,	we	present	just	some	results	here.	In	addition	to	the	presented	results,	
convergence	study	of	responses,	static	and	free-vibration	results,	and	dynamic	responses	
for	various	boundary	conditions	are	significant.	All	of	these	are	calculated	and	used	for	
linear	model	validation.	However,	only	dynamic	response	of	a	plate	with	simply	supported	
boundary	condition	in	all	edges	has	been	compared	with	the	exact	solution	(using	Green’s	
function).	These	comparisons	have	been	depicted	in	Figure	4.32.

Obviously,	 the	 presented	 method	 and	 exact	 responses	 are	 coincided	 together.	 This	
comparison	builds	confidence	in	the	approach	presented	here	for	linear	part.	Nevertheless,	
comparison	 of	 nonlinear	 part	 remained	 yet.	 Figure	 4.33	 shows	 the	 comparison	 of	 an	
experimental	 work	 [62]	 with	 present	 approach	 for	 a	 15	×	2	×	0.3	mm	 cantilever	 that	
composed	of	two	layers,	PI150	and	cupper.	It	should	be	noted	that	piezo	layer	has	excited	
with	40	×	sin(2πt).	This	figure	shows	the	accuracy	of	estimated	hysteresis	loop	clearly.

Before	anything,	for	clarification,	dynamic	response	of	a	stepped	micro-cantilever	has	
been	 introduced.	 Figures	 4.34	 through	 4.36	 show	 the	 dynamic	 responses	 of	 a	 stepped	
micro-plate	that	its	patch	covered	the	half	of	plate	in	length	direction	perfectly.	Mechanical	
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FIGURE 4.32
Dynamic	response	for	plate;	comparison	between	the	exact	and	present	models.
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FIGURE 4.33
Comparison	of	an	experimental	work	with	present	approach.	(From	Rakotondrabe,	M.	et	al.,	Nonlinear	mod-
eling	 and	 estimation	 of	 force	 in	 a	 piezoelectric	 cantilever,	 IEEE/ASME International Conference on Advanced 
Intelligent Mechatronics,	Zurich,	Switzerland,	September	4–7,	2007.)	
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FIGURE 4.34
Dynamic	response	of	stepped	micro-plate	due	to	the	mechanical	excitation.
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136 Computational Finite Element Methods in Nanotechnology

load	is	a	sinusoidal	line	load	as	0.1	sin(7	×	105	t)	on	the	end	edge	of	micro-plate.	Electrical	
load	is	a	voltage	as	0.1	sin(5	×	105	t)	applied	at	the	upper	surface	of	the	patch.

Usually,	in	the	nanorobotic	systems,	such	as	AFM	devices,	the	micro-plate	is	excited	close	to	
its	first	natural	frequency.	So	frequency	of	applied	loads	has	been	selected	moderately	high.	
Figure	4.37	shows	the	dynamic	response	of	that	system	in	linear	and	nonlinear	manners.
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FIGURE 4.35
Dynamic	response	of	stepped	micro-plate	due	to	the	electrical	excitation.
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FIGURE 4.36
Dynamic	response	of	stepped	micro-plate	due	to	the	electromechanical	excitation.
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137Nanorobotic Applications of the Finite Element Method

With	 these	 validations,	 the	 linear	 and	 nonlinear	 results	 have	 been	 guaranteed	 and	
can	 be	 used	 for	 MEMS	 and	 NEMS.	 Here,	 we	 focused	 on	 the	 MEMS.	 Let	 a	 standard	
micro-cantilever	 be	 used	 as	 an	 actuator	 in	 AFM.	 A	 triangular	 voltage	 is	 applied	 to	 a	
3	×	10	×	250	μm	bimorph	cantilever.	Figure	4.38	shows	the	comparison	of	linear	and	non-
linear	responses.
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FIGURE 4.37
Comparison	of	dynamic	response	of	linear	and	nonlinear	problems	due	to	a	sinusoidal	excitation.
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FIGURE 4.38
Comparison	of	dynamic	response	of	linear	and	nonlinear	problem	due	to	a	triangular	excitation.
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138 Computational Finite Element Methods in Nanotechnology

An	accurate	look	at	Figure	4.38	represents	the	most	significant	property	of	this	result.	
It	 can	 be	 seen	 that	 for	 some	 times,	 difference	 between	 linear	 and	 nonlinear	 responses	
exceeds	20	nm.	This	means	that	 if	we	want	 to	manipulate	a	nanoparticle	with	20	nm	in	
diameter,	then	giving	a	specific	path,	the	particle	may	be	lost,	and	the	nanomanipulation	
will	be	failed.	We	expect	that	the	lamination	has	no	considerable	effect	on	the	shape	of	
hysteresis	loop.	Figure	4.39	shows	the	comparison	of	hysteresis	loops	for	various	lamina-
tion	of	composite	configuration.

Piezo	layers	are	demonstrated	with	“p”	and	“s”	means	symmetry.	It	is	truly	viewed	that	
stiffest	(p/90°/0°/90°/p)	and	hardest	(p/0°/90°/0°/p)	configurations	have	biggest	and	small-
est	amplitudes	of	response,	respectively.	In	this	figure,	no	changes	can	be	seen	in	the	shape	
of	loops.	They	are	same	in	shapes,	and	lamination	changes	rotate	the	loop.	This	rotation	is	
in	clockwise	direction	with	stiffness	decreasing.

4.7.4  Hysteresis Behavior in the Nanogenerators

Energy	 production	 and	 then	 harvesting	 have	 been	 considered	 since	 ancient	 times.	
Advanced	materials	are	a	novel	energy	source	that	may	be	the	dominant	used	energy	of	
future.	Energy	generation	utilizing	piezoelectric	materials	is	more	considerable	example	
of	energy	sources	in	advanced	material	field.	It	has	been	well	studied	over	the	past	two	
decades	 [72,73].	 In	particular,	because	of	 their	piezoelectric	 response,	 large	aspect	 ratio,	
superior	mechanical	properties	relative	to	bulk	zinc	oxide,	ZnO	NWs	[72]	have	an	especial	
potential	application	for	nanodevices	[74]	and	low	production	costs.	The	future	of	nano-
technology	research	is	in	building	integrated	nanosystems	from	individual	components.	
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FIGURE 4.39
Comparison	of	hysteresis	loops	for	various	lamination	of	composite	configuration.
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139Nanorobotic Applications of the Finite Element Method

Piezotronic	components	based	on	ZnO	NWs	and	nanobelts	have	several	important	advan-
tages	that	will	help	make	such	integrated	nanosystems	possible.

For	example,	ZnO	nanostructures	 can	 tolerate	 large	amounts	of	deformation	without	
damage,	allowing	their	use	in	flexible	electronics	such	as	folding	power	sources.	The	large	
amount	of	deformation	permits	a	large	volume	density	of	power	output.	ZnO	materials	are	
biocompatible,	allowing	their	use	in	the	body	without	toxic	effects.	The	flexible	polymer	
substrate	used	in	nanogenerators	would	allow	implanted	devices	to	conform	to	internal	
structures	 in	 the	body.	Nanogenerators	based	on	 the	 structures	 could	directly	produce	
power	 for	 use	 in	 implantable	 systems.	 Thus,	 in	 comparison	 to	 conventional	 electronic	
components,	 the	nano-piezotronic	devices	operate	much	differently	and	exhibit	unique	
characteristics	[72].	There	are	some	reports	on	the	generation	of	electric	potential	by	bend-
ing	ZnO	NWs	[73,75,76];	however,	using	piezoelectric	nanomaterials	for	energy	harvesting	
applications	is	still	a	matter	of	debate	[73,77].	Multiscale	modeling	can	facilitate	the	devel-
opment	of	nanodevices	that	incorporate	ZnO	NWs	by	predicting	the	overall	piezoelectric	
response	as	a	function	of	structural	geometry.	Piezoelectricity	of	nanomaterials	has	been	a	
subject	of	current	research	in	the	scientific	community.	There	are	reports	on	enhancement	
of	piezoelectricity	in	nanomaterials	compared	to	bulk	materials	[73].	Using	FEM	simula-
tions	 followed	 by	 an	 experimental	 setup,	 it	 has	 been	 shown	 that	 electrical	 voltage	 can	
be	generated	due	 to	mechanical	bending	of	ZnO	NWs	[73].	Presence	of	Schottky	diode	
between	 the	nanomaterial	 and	AFM	tip	used	 for	deflecting	 the	nanomaterial	plays	 the	
main	role	in	voltage	generation	[76].

With	these	descriptions,	what	will	be	the	role	of	nonlinearities	in	the	nano-sized	piezo-
electric	devices?	Really,	it	has	not	been	studied	yet.	Here,	a	simple	model	for	this	purpose	
is	developed	based	on	the	presented	model.	The	objective	of	this	study	is	to	develop	a	
multiphysics	analytical	model	that	predicts	the	nonlinearities	of	ZnO	nano-cantilevers	
contacted	with	a	relatively	rigid	body,	as	used	in	some	experimental	cases.	One	of	the	
most	applicable	examples	is	nanomanipulation	of	nano-objects	that	have	piezoelectricity	
behavior.

Modeling	the	nonlinearity	behavior	of	electric	potential	generated	by	the	nano-electrical	
generators	would	be	a	major	step	toward	the	design	of	self-powered	MEMS/NEMS	devices.	
As	mentioned	in	Section	4.7,	many	of	electromechanical	system	applications	in	nanoworld	
have	been	hampered	in	the	past	by	the	large	nonlinearities.	This	included	the	NEMS,	too.

Here,	the	hysteresis	effects	on	the	nano-sized	piezo-driven	systems	are	presented.	The	
equations	of	motion	and	related	boundary	conditions	subjected	to	the	mechanical	or	elec-
trical	fields	are	obtained	by	Hamilton	principle,	and	then	they	are	solved	using	the	FEM.	
Here,	 for	 considering	 the	efficiency	of	nanobars	and	nanobeams,	 the	generated	voltage	
with	respect	to	the	applied	load	has	been	depicted	in	some	figures.	At	the	end,	a	hysteresis	
loop	has	been	depicted	that	had	been	constructed	from	the	generated	voltage	due	to	the	
applied	lateral	force.

Here,	a	nano-sized	plate	was	considered	as	the	general	nanogenerator	system.	Figure 4.40	
shows	a	double-layered	plate	reinforced	with	a	13	×	3	nanoplate	array.	Dimension	of	excit-
ing	and	fixed	plates	may	exceed	even	the	micrometer	sizes.	It	depends	on	the	nature	of	the	
problem	discussed.	However,	embedded	nanoplates	have	nanoscale	dimensions.	We	con-
sider	micro-excited	and	fixed	plate	(10	×	10	×	1	μm)	reinforced	with	a	13	×	3	nanoplate	array,	
which	have	200,	50,	and	10	nm	in	length,	width,	and	thickness,	respectively.

It	is	worth	mentioning	that	for	considered	systems	and	especially	for	nonlinear	prob-
lem,	singularity	of	matrices	seems	inevitable.	Here,	size	of	nanodevice	is	another	problem.	
Thus,	nondimensionalization	is	needed.	However,	some	computational	experience,	effort,		
and	more	patients	result	in	significant	success.
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140 Computational Finite Element Methods in Nanotechnology

4.7.4.1  Results and Discussion

Results	of	this	part	are	categorized	in	two	set.	First,	consider	the	linear	system.	For	generality,	
a	 beam	 model	 including	 the	 extension	 capability	 is	 used	 here.	 Firstly,	 consider	 the	 bar	
state,	where	the	extension	is	dominant.	It	is	assumed	that	the	longitudinal	direction	has	
the	stronger	piezoelectricity.	For	considering	the	efficiency	of	nanobars	and	nanobeams,	
the	generated	voltage	with	respect	to	the	applied	load	has	been	depicted	in	some	figures.	
Figure	4.41	shows	the	generated	voltage	with	respect	to	the	applied	longitudinal	force	in	
the	end	of	nanobar	with	200	nm	in	length,	and	50	nm	in	width.	It	obviously	shows	that	the	
generated	voltage	increases	with	applied	force	increasing.	In	addition,	thickness	increasing	
leads	to	the	less	voltage	generation.	It	may	be	introduced	from	the	less	strain	in	the	bar	and	
thus	less	voltage	generation.

Natural	frequency	of	nanodevices	is	very	high.	In	account	of	this,	for	dynamic	response	
studies,	we	excite	the	bar	with	a	load	with	300	nm	in	amplitude	and	with	10	THz	in	fre-
quency.	Figure	4.42	 shows	 the	dynamic	 response	of	generated	voltage	 in	nanobar	with	
respect	to	the	time.	Figure	4.43	shows	the	phase	diagram	of	this	response.	Based	on	the	
Lyapunov	approach	of	stability,	presented	diagram	demonstrates	the	stability	of	generated	
voltage.

Figure	4.44	shows	the	generated	voltage	in	a	nanobeam	with	respect	to	the	applied	lat-
eral	 force.	Same	as	 the	bar	 case,	 it	 is	obvious	 that	 the	generated	voltage	 increases	with	
applied	force	increasing.	In	addition,	thickness	increasing	leads	to	the	less	voltage	genera-
tion.	It	may	be	introduced	from	the	more	mechanical	stiffness	in	the	beam	and	thus	less	
voltage	generation.

A	simple	comparison	between	Figures	4.41	and	4.44	shows	that	a	bar	with	 the	domi-
nant	 piezoelectricity	 in	 the	 longitudinal	 direction	 has	 more	 and	 more	 efficiency	 rather	
than	 the	 beam	 with	 same	 dimensions.	 Thus,	 in	 the	 following,	 the	 bar	 will	 be	 selected	
for	 nonlinearity	 prediction.	 Figure	 4.45	 compares	 the	 linear	 and	 nonlinear	 generated	

Excited plate

Fixed plate

Bending and
extension of a

nano plate

1 µm

FIGURE 4.40
A	double-layered	plate	reinforced	with	a	13	×	3	nanoplate	array	and	a	tested	case.	(From	Zhiyong,	F.	and	Jia,	
G.M.,	J. Nanosci. Nanotechnol.,	5(10),	1561,	2005.)
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FIGURE 4.42
Dynamic	response	of	generated	voltage	in	nanobar	with	respect	to	the	time.
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FIGURE 4.41
The	generated	voltage	with	respect	to	the	applied	longitudinal	force	in	the	end	of	nanobar.
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FIGURE 4.44
Generated	voltage	in	a	nanobeam	with	respect	to	the	applied	lateral	force.

–6 –4 –2 0 2 4 6
–3

–2

–1

0

1

2

3

The generated voltage (V)

G
en

er
at

ed
 vo

lta
ge

 ra
te

 (V
/s

)

Direction Start point

End point

FIGURE 4.43
Phase	diagram	of	generated	voltage	in	nanobar.
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143Nanorobotic Applications of the Finite Element Method

voltage	in	a	dynamic	manner.	Discrepancies	show	the	importance	of	nonlinear	model	for	
prediction	of	some	noises	in	devices	that	use	nano-sized	piezo-electromechanical	devices.	
High-frequency	transistors,	gates,	and	in	future,	nanochips	are	some	examples	of	them.	
Figure 4.46	shows	the	hysteresis	loop	constructed	from	the	generated	voltage	due	to	the	
applied	longitudinal	direction	of	a	bar.
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FIGURE 4.45
Comparison	of	the	linear	and	nonlinear	generated	voltage	in	a	nano-sized	bar.
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FIGURE 4.46
The	hysteresis	loop	constructed	from	the	generated	voltage	due	to	the	applied	longitudinal	direction	of	a	bar.
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4.8 Conclusion

After	some	definitions,	classifications,	and	descriptions	 for	 the	nanorobotic	science	and	
related	systems,	the	correct	modeling	approaches	based	on	the	CM	have	been	found	out.		
Overall,	the	conclusion	of	this	chapter	can	be	summarized	in	four	parts	as	follows:

	 1.	Coupling of CM and MM: As	 was	 previously	 pointed	 out,	 the	 CM-based	 meth-
ods	that	analyze	different	systems	do	not	provide	the	correct	physics	 in	atomic	
domains,	and	on	the	other	hand,	to	achieve	the	required	precision	in	small	dimen-
sions,	the	methods	based	on	MM	and	discrete	solutions	have	to	be	applied.	Here,	
a	 method	 has	 been	 presented	 for	 the	 coupling	 of	 the	 continuum	 and	 discrete	
environments	together.	In	the	present	model,	the	undesirable	effects	of	free	sur-
faces,	common	surfaces,	and	surfaces	close	to	the	interface	with	the	MF	have	been	
removed.	To	generalize	the	issue,	the	macro-/nano-related	problems	were	divided	
into	two	groups	of	closed	and	open	systems.	Some	applied	examples	have	been	
modeled	with	the	presented	approach.	With	respect	to	the	obtained	results,	it	was	
demonstrated	that	the	presented	method	can	be	applied	for	the	simulation	of	sys-
tems	with	considerable	dimensions	and	for	relatively	large	time	ranges.	The	use	of	
CGMD	in	this	method	has	made	this	capability	possible.	Also	the	use	of	FEM,	and	
the	presentation	of	an	element	which	is	capable	of	being	applied	for	the	electrome-
chanical	systems,	has	greatly	expanded	the	range	of	application	of	this	method.

	 2.	Nanomanipulation of nanoparticle with the CGMD:	 Before	 using	 the	 CM	 for	 a	
nanoscale	 with	 dynamic	 manner,	 the	 macroscale	 nanorobot	 has	 been	 modeled	
with	the	CGMD	to	compare	with	the	multiscale	method.

To	show	the	failures	of	the	manipulation	process,	some	examples	of	these	fail-
ures	were	presented,	and	 it	has	been	shown	that	nanocluster	crushing	was	one	
of	the	most	crucial	failures	which	must	be	taken	deeply	into	consideration	in	real	
manipulation	systems.	Therefore,	studies	were	conducted	on	the	effect	of	different	
parameters	on	the	deformation	of	nanocluster	to	study	the	success	of	manipulation	
procedure.	It	was	observed	from	the	obtained	results	that	by	increasing	the	εp	and	
εt	(the	parameters	of	SC	potential	for	nanocluster	and	tip)	coefficients,	the	cluster	
deformation	decreases	and	increases,	respectively.	The	obtained	result	is	reason-
able.	Moreover,	for	the	benefit	of	designers	and	manufacturers	of	nanomanipulator	
systems,	a	diagram	was	developed,	in	which	the	simultaneous	effects	of	εp	and	εt	
parameters	on	the	success	of	manipulation	of	nanocluster	have	been	shown.

	 3.	Nonlinear behavior of MEMS:	 By	 studying	 the	 linear	 and	 nonlinear	 behavior	 of	
micro-sized	nano-piezoactuators,	applicability	of	the	obtained	hysteresis	loop	in	a	
nanomanipulation	scheme	has	been	described	exactly.	It	has	been	shown	that	an	
expensive	nanomanipulation	scheme	may	be	failed	in	the	presence	of	hysteresis	
loops.	In	addition,	the	effects	of	the	lamination	on	the	hysteresis	loop	are	investi-
gated.	We	found	that	stiffest	and	hardest	configurations	have	biggest	and	smallest	
amplitudes	of	response,	respectively.	In	addition,	no	changes	can	be	seen	in	the	
shape	of	loops.	They	are	same	in	shapes,	and	lamination	changes	rotate	the	loop.	
This	rotation	is	in	clockwise	direction	with	stiffness	decreasing.

	 4.	Linear and nonlinear behavior of NMES:	 In	 addition,	 by	 studying	 the	 linear	 and	
nonlinear	 behavior	 of	 nano-sized	 piezogenerators,	 considering	 the	 efficiency	 of	
nanobars	and	nanobeams,	the	generated	voltage	with	respect	to	the	applied	load	
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145Nanorobotic Applications of the Finite Element Method

have	been	depicted	 in	some	figures.	 It	has	been	shown	that	 the	generated	volt-
age	increases	with	applied	force	increasing.	Thickness	increasing	leads	to	the	less	
voltage	generation.	It	may	be	introduced	from	the	less	strain	in	the	bar	and	thus	
less	voltage	generation.	In	addition,	the	dynamic	response	of	generated	voltage	in	
nanobar	presented	with	respect	to	the	time.	Stability	of	generated	voltage	is	illus-
trated	with	the	phase	diagram	of	response.	For	the	beam	case,	the	same	results	
have	been	 seen.	A	simple	 comparison	between	bar	and	beam	cases	has	 shown	
that	 a	 bar	 with	 the	 dominant	 piezoelectricity	 in	 the	 longitudinal	 direction	 has	
more	and	more	efficiency	rather	than	the	beam	with	same	dimensions.	The	linear	
and	nonlinear	generated	voltage	is	compared	in	a	dynamic	manner.	Discrepancies	
show	the	significance	of	nonlinear	model	for	prediction	of	some	noises	in	devices	
that	use	nano-sized	piezo-electromechanical	devices.	High-frequency	transistors,	
gates,	and	in	future,	nanochips	are	some	examples	of	them.	At	the	end,	a	hyster-
esis	loop	has	been	depicted	that	had	been	constructed	from	the	generated	voltage	
due	to	the	applied	lateral	force.
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5.1 Introduction

Finite	element	method	(FEM)	has	proved	to	be	an	invaluable	tool	not	only	in	engineering	
analysis	 but	 also	 an	 indispensable	 technique	 for	 discovery	 of	 new	 mechanisms	 and	
phenomena	 across	 various	 disciplines	 of	 engineering	 and	 sciences.	 FEM	 can	 model	
phenomena	across	length	scales	starting	from	the	nanoscale	to	the	scale	of	the	component,	
thus	bridging	the	length	scales	in	a	multiscale	study	[1–3].	FEM	can	also	couple	with	other	
techniques	like	molecular	dynamics	(MD),	dislocation	dynamics	(DD),	kinetic	Monte	Carlo	
(KMC),	etc.	The	results	of	these	techniques	(MD,	DD,	etc.)	can	feed	into	an	FEM	model	in	
a	hierarchical	manner	[4–7].

Over	the	years,	standard	finite	element	software	(Abaqus,	Ansys,	COMSOL	multiphysics,	
etc.	[8])	have	attained	a	high	degree	of	“maturity”	and	have	become	capable	of	handling	
a	 variety	 of	 complex	 problems.	 These	 software	 are	 also	 amenable	 to	 some	 degree	 of	
customization	 via	 subroutines.	 Given	 this,	 FEM	 can	 now	 be	 used	 by	 a	 wider	 range	 of	
researchers	to	uncover	fundamental	aspects	of	the	science	of	materials.	FEM	can	be	used	
not	only	as	an	approximate	solver	for	analytically	intractable/complex	problems	but	also	
to	simulate	structures	and	processes,	with	a	view	to	uncover	new	phenomena.

The	usual	advantages	of	FEM	are	retained	in	the	studies	at	the	nanoscale	as	well.	These	
include	the	ability	to	handle	(1)	complex	geometry;	(2)	complex	distributions	of	materials;	
and	(3)	varying	distribution	of	loads,	boundary	conditions,	and	body	forces.

The	 instructional	 level	of	 the	chapter	 is	pitched	so	 that	a	researcher/student	entering	
the	field	can	easily	comprehend	the	power	of	FEM	in	solving	problems	at	the	nanoscale.	
Stress	will	be	on	physical	aspects	of	the	problems,	and	the	reader	can	refer	to	standard	
texts	on	FEM	(the	authors	have	found	Burnett’s	book	a	good	one	for	beginners	[9])	to	delve	
deeper	into	the	numerical	aspects	and	their	implementation	using	software.	The	reader	
may	additionally	refer	to	the	books	by	Cook	et	al.	[10],	B.	Szabó	and	I.	Babuška	[11],	Logan	
[12],	and	Madenci	and	Guven	[13].

This	chapter	aims	at	introducing	a	researcher/student	to	the	utility	of	FEM	in	solving	
selected	 problems	 related	 to	 mechanics	 of	 materials	 problems	 at	 the	 nanoscale.	 Focus	
will	 be	 on	 the	 mechanics	 of	 crystalline	 structures,	 interfaces,	 and	 crystal	 defects.	 Two	
important	objectives	of	the	chapter	will	be	(1)	to	illustrate	the	power	of	FEM	in	simplifying	
analytically	complex	problems	and	 (2)	 to	discover	new	criteria	and	phenomenon.	From	
a	 student’s	 perspective,	 it	 will	 be	 seen	 that	 a	 variety	 of	 problems	 can	 be	 solved	 using	
standard	 software,	 and	 hence,	 the	 gestation	 period	 involving	 coding	 can	 be	 reduced.	
After	an	overview	of	 the	 literature	 in	 the	area	of	 simulation	of	 structures	and	material	
processes	 at	 the	 nanoscale,	 case	 studies	 will	 be	 used	 to	 highlight	 the	 utility	 of	 finite	
element	 methodologies	 in	 simplifying	 theoretically	 complicated	 problems	 of	 materials	
science.	Case	studies	will	include	(1)	simulation	of	processes	and	(2)	computation	of	useful	
parameters	 from	the	simulations.	The	simulations	will	highlight	many	effects	uniquely	
occurring	at	the	nanoscale.	Processes	which	will	be	considered	include	(1)	displacement	
of	an	edge	dislocation	in	thin	plates,	(2)	simulation	of	the	growth	of	heteroepitaxial	films,	
and	(3)	 the	growth	of	coherent	precipitates.	Parameters	computed	from	the	simulations	
will	encompass	(1)	region	of	stability	of	a	dislocation	in	a	thin	plate;	(2)	range	of	neutral	
equilibrium;	 (3)	 image	 force	experienced	by	 the	dislocation;	 (4)	 stress	state,	energy,	and	
bent	 configuration	 of	 the	 domain;	 (5)	 size	 of	 the	 nanocrystal	 at	 which	 it	 can	 become	
spontaneously	edge	dislocation	free;	(6)	critical	thickness	for	the	energetic	feasibility	of	an	
interfacial	misfit	edge	dislocation;	(7)	critical	size	for	an	epitaxial	islands;	and	(8)	critical	
size	of	the	precipitate	for	coherent	to	semicoherent	transition.
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5.2  Microstructure, Finite Element Analysis, 
and Simulations at the Nanoscale

FEM	is	a	versatile	 tool,	which	can	be	used	for	 the	study	of	structures	and	processes	 in	
the	macro-,	micro-,	and	nanoscales.	However,	when	FEM	is	applied	for	solving	nanoscale	
problems,	the	limitations	of	the	technique	have	to	be	clearly	understood	and	delineated,	
along	with	the	advantages	of	using	the	same.	Whenever	the	accuracy	of	an	FEM	model	is	
limited	or	its	applicability	is	questionable,	it	is	expected	that	the	shortcomings	are	listed	
and	necessity	for	use	of	the	model	clearly	explained.

Given	the	vast	amount	of	literature	available	on	most	of	topics	covered	in	this	chapter,	
effort	 has	 been	 made	 to	 restrict	 the	 references	 to	 important	 books	 and	 review	 articles,	
wherever	possible.

5.2.1  Microstructure

The	term	microstructure	in	the	usual	sense	implies	structure	seen	under	magnification	
(revealing	 micron-sized	 features).	 Hence,	 structures	 seen	 at	 other	 length	 scales	 have	 to	
be	 referred	 as	 macrostructure,	 nanostructure,	 etc.	 The	 most	 important	 use	 of	 the	 term	
microstructure	 is	 its	correlation	with	properties	of	 the	material	 (i.e.,	 structure–property	
correlation).	From	this	point	of	view,	a	functional	definition	of	microstructure	is	[14]

	 Microstructure = (phases + defects + residual stress) and ttheir distributions

These	entities	of	the	microstructure	can	exist	across	length	scales	(e.g.,	the	scale	of	the	
vacancy	 is	 the	 atomic	 scale,	 the	 scale	 of	 the	 GP	 zones	 may	 be	 in	 the	 nanometer	 scale,	
while	 the	scale	of	 the	grains	may	be	 in	microns).	Further,	 the	role	of	microstructure	 in	
determining	the	behavior	and	properties	of	a	material	has	to	be	comprehended	[15].	The	
first	step	toward	this	grand	goal	is	to	study	individual	entities	of	the	microstructure	and	
their	interactions	with	each	other.

5.2.2  Finite Element Analysis of Structures, Processes, and Phenomena

FEM	has	proved	to	be	an	invaluable	tool	for	the	study	of	various	structures,	processes,	and	
phenomena.	Traditionally,	most	of	the	structures	studied	using	FEM	were	typically	large-
scale	structures	like	vehicles,	bridges,	buildings,	etc.	The	deformation	and	failure	of	these	
structures	under	various	types	of	loading	(e.g.,	wind	loading	on	tall	building,	vehicular	
traffic	on	bridges,	deformations	due	to	a	car	crash,	etc.)	were	the	primary	concern	in	these	
studies.

Many	 manufacturing	 processes	 like	 rolling,	 extrusion,	 machining,	 welding,	 etc.,	
have	 been	 simulated	 using	 FEM	 [16,17].	 Various	 phenomena	 like	 elastic	 and	 plastic	
deformation,	 twinning,	 fracture,	 fatigue,	 and	 creep	 have	 been	 modeled	 successfully	
using	FEM	[18].	FEM	is	an	ideal	tool	for	studying	not	only	monolithic	materials	but	also	
complex	hybrids	[19].

The	term	structure	has	to	be	differentiated	with	respect	to	the	term	material.	The	use	of	
the	term	material	implies	that	no	specific	geometry	is	being	considered.	On	the	other	hand,	
when	the	term	structure	is	used,	a	specific	geometry	is	kept	in	focus.	Copper	is	a	material,	
while	 a	 plate	 of	 Cu	 with	 a	 given	 length,	 breadth,	 and	 thickness	 is	 a	 structure.	 Young’s	
modulus	is	a	material	property,	while	stiffness	is	property	of	a	structure	(e.g.,	a	spring).
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5.2.3  Finite Element Techniques for Nanoscale Problems

In	the	context	of	nanoscale	materials,	structures	and	defects	studied	include	voids,	cracks,	
dislocations,	twins,	interfaces	(surface,	grain	boundary,	twin	boundary,	interphase	bound-
ary),	precipitates,	and	epitaxial	systems	(films,	islands,	groves,	etc.).

A	variety	of	processes	have	also	been	investigated	using	FEM.	These	include	compression	
of	nanopillars	[20],	deformation	of	nanotubes	[21–23],	and	nanoindentation	[24].	Continuum	
models	 of	 nanostructured	 materials	 have	 also	 been	 developed	 [25].	 Some	 examples	 of	
phase	 transformations	 studied	are	precipitation	 [26,27],	martensitic	 transformation	 [28],	
and	 magnetic	 transformations	 [29].	 FEM	 has	 also	 been	 used	 in	 conjunction	 with	 other	
techniques	like	molecular	statics	and	dynamics	[30],	phase	field	method	[31],	DDs	[32],	and	
KMC	methods	[33].	Atomic-scale	FEMs	have	also	been	developed	[34].

Few	 important	 questions	 have	 to	 be	 addressed	 in	 finite	 element	 simulations	 at	 the	
nanoscale:	(1)	At	what	length	scale	is	the	approximation	of	a	continuum	valid?	(2)	What	
properties	of	the	material	should	be	used?	(i.e.,	will	it	be	bulk	properties	or	will	confinement	
and	surface	effects	on	properties	have	to	be	included?)	(3)	How	much	error	is	introduced	
by	 assuming	 bulk	 properties?	 These	 questions	 have	 been	 answered	 to	 some	 extent	 in	
literature,	but	much	more	work	is	required	for	specific	cases.

5.3 Computational and Theoretical Background for the Case Studies

5.3.1  Basic Considerations

As	in	any	finite	element	study,	some	of	the	basic	tenets	of	the	method	should	be	paid	atten-
tion	to,	and	none	of	the	cardinal	principles	should	be	violated,	if	the	simulations	have	to	
yield	correct	results.	We	shall	briefly	list	these	here,	without	going	into	the	details.

5.3.1.1  Mesh

Mesh	size	(h)	and	order	of	the	mesh	(p)	refinement	have	to	be	carried	out	to	make	sure	that	
the	results	are	meshing	invariant.	A	fine	uniform	mesh	costs	in	terms	of	the	computation	
time,	 but	 in	 the	 nanoscale,	 often	 one	 can	 get	 away	 with	 this	 kind	 of	 meshing,	 as	 the	
number	of	nodes	may	still	be	small	in	number.	If	there	is	a	constraint	of	the	size	of	the	
mesh	arising	from	the	kind	of	simulation	being	carried	out	(e.g.,	in	some	of	the	case	studies	
to	be	considered,	the	mesh	size	has	to	be	of	the	magnitude	of	the	Burgers	vector,	at	least	in	
one	dimension),	then	further	“h”	refinement	may	not	be	possible,	and	the	validity	of	the	
results	may	be	cross-checked	by	other	means	(theory,	simulations	using	other	techniques	
or	experiments).

5.3.1.2  Boundary Conditions

There	 are	 three	 origins	 of	 boundary	 conditions:	 (1)	 those	 physically	 imposed	 in	 the	
problem,	 (2)	 those	arising	 from	symmetry,	and	 (3)	 those	 that	are	 required	 for	a	unique	
numerical	 solution	 (e.g.,	 one	 node	 locked	 in	 “x,”	 “y,”	 and	 “z”	 degrees	 of	 freedom).	 It	
should	be	noted	that	the	symmetry	has	to	be	complete	(i.e.,	with	respect	to	domain	shape,	
material	properties,	loading,	etc.),	if	symmetry	boundary	conditions	have	to	be	imposed.	
The	category	(3)	boundary	conditions	have	to	be	chosen	carefully	so	as	to	(i)	not	violate	
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153Simulations of Dislocations and Coherent Nanostructures

the	physics	of	the	problem	(i.e.,	not	impose	a	constraint	that	is	physically	incorrect)	and	
(ii)	make	 the	 solutions	numerically	 sound	 (i.e.,	 should	be	close	 to	 the	 region	where	 the	
gradients	in	the	relevant	physical	parameters	are	large,	as	“errors	will	tend	to	propagate”	
from	 these	 invariant	 points).	 In	 the	 case	 studies	 we	 consider	 in	 this	 chapter,	 essential	
boundary	conditions	have	been	used	(i.e.,	those	specifying	displacements).	As	it	will	be	
seen,	these	are	often	the	bare	minimum	required	to	determine	a	unique	solution.

5.3.1.3  Choice of Domain

Two	 important	 factors	 that	have	 to	be	 considered	 in	 the	 choice	of	 the	domain	 should	
be	such	that	it	is	(1)	able	to	capture	the	essential	physics	of	the	problem	and	(2)	easy	for	
comparisons	of	the	results	obtained	with	theory,	other	computations,	and	experimental	
results.	For	example,	if	one	is	interested	in	simulating	the	stress	field	of	a	straight	edge	
dislocation	 in	 an	 infinite	 domain	 (and	 make	 comparisons	 with	 theoretical	 formulae),	
then	it	is	clear	that	an	infinite	domain	cannot	be	constructed.	Keeping	in	view	the	earlier-
given	two	factors,	the	next	best	choice	would	be	to	(1)	use	a	circular	domain	under	plane	
strain	conditions	(this	makes	it	easy	for	comparison	with	theoretical	results),	(2)	make	
the	radius	of	the	domain	much	larger	than	the	Burgers	vector,	(3)	position	the	dislocation	
at	 the	 center	 of	 the	 domain	 (i.e.,	 symmetrically),	 and	 (4)	 compare	 results	 close	 to	 the	
dislocation	line	(ignoring	regions	close	to	the	surface).	Additionally,	the	validity	of	the	
simulation	 maybe	 checked	 using	 the	 formulae	 for	 stress	 fields	 in	 a	 finite	 cylindrical	
domain.	On	the	other	hand,	if	one	is	interested	in	the	calculation	of	the	image	force	(refer	
Section	5.3.3)	and	its	comparison	with	theoretical	formulae,	then	a	square	or	rectangular	
domain	is	preferred	as	this	would	clearly	demarcate	the	surface	toward	which	the	force	
is	being	calculated.

Another	point	worthy	of	mention	here	 is	regarding	the	use	of	2D	simulations.	As	3D	
simulations	are	computationally	costly,	they	should	be	resorted	to	only	when	the	problem	
requires	a	true	3D	construct.	Wherever	possible,	qualitative	features	of	the	problem	should	
be	gathered	from	2D	simulations	before	a	3D	simulation	is	attempted.

5.3.2  Eigenstrains

The	 importance	 of	 eigenstrains	 in	 the	 mechanics	 of	 solids	 can	 be	 comprehended	 from	
the	fact	that	Professor	Toshio	Mura	[35]	starts	his	book	on	“micromechanics	of	defects	in	
solids,”	with	 the	 theory	of	 eigenstrains.	The	 term	has	been	used	 to	describe	nonelastic	
strains	 associated	 with	 thermal	 expansion,	 phase	 transformations,	 inclusions,	 etc.	 An	
equivalent	term	to	eigenstrains	is	“stress-free	strains”	(the	term	residual	strain	has	also	
been	used	in	some	contexts).	It	is	important	to	note	that	there	can	be	strains	without	stresses	
(e.g.,	heating	a	rod,	which	is	free	to	expand)	and	there	can	be	stresses	without	net	strains	
(e.g.,	heating	a	thick	rod	constrained	between	two	rigid	walls).	The	corresponding	term	
(to	eigenstrains)	referring	to	stresses	is	“eigenstress.”	Eigenstress	is	the	self-equilibrated	
internal	stresses	(residual	stress)	resulting	from	eigenstrains	in	a	free-standing	body	(i.e.,	
under	no	external	forces	or	constraints).	Needless	to	say,	eigenstrains	imposed	on	the	entire	
body	will	not	result	in	any	stresses.	Figure	5.1	shows	the	eigenstrains	arising	from	heating	
(ε δ αij ij T* ,= ∆ 	where	δij	 is	 the	Kronecker	delta,	α	 is	 the	coefficient	of	 thermal	expansion,	
and	ΔT	is	the	change	in	temperature).	In	Figure	5.1a,	a	free-standing	body	is	heated,	which	
results	 in	 no	 stresses.	 In	 Figure	 5.1b,	 material	 A	 has	 a	 higher	 “α”	 than	 material	 B,	 and	
hence,	 the	constraint	of	 the	surrounding	medium	results	 in	eigenstresses.	The	strain	 in	
this	case	(Figure	5.1b)	is	the	resultant	of	thermal	and	elastic	strains.
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154 Computational Finite Element Methods in Nanotechnology

Under	isotropic	plane	stress	conditions,	element	stresses	due	to	a	change	in	temperature	
ΔT	are	given	by	[10]
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where
Matrix	[B]	is	the	strain-displacement	matrix	({ε}	=	[B]{d})
{d}	is	the	nodal	displacement	degrees	of	freedom	of	an	element

The	coefficient	of	thermal	expansion	is	assumed	to	be	constant	over	the	temperature	range.	
Matrix	[B]	is	evaluated	at	the	coordinates	of	the	element,	where	stresses	are	to	be	calcu-
lated.	The	reader	may	consult	standard	finite	element	texts	for	further	details	regarding	
the	implementation	of	eigenstrains	in	a	finite	element	code.

5.3.3  Edge Dislocations in Finite Domains

A	vast	amount	of	literature	is	available	regarding	theoretical	and	computational	aspects	
of	dislocations.	For	all	aspects	related	to	dislocations,	the	reader	may	refer	to	the	book	by	
Hirth	and	Lothe	[36].	The	book	Computer Simulations of Dislocations	by	Bulatov	and	Cai	[37]	
covers	wide-ranging	aspects	of	simulations	of	dislocations,	including	atomistic	methods,	
KMC	methods,	and	phase	field	methods.

The	 residual	 stress	 state	 in	 a	 free-standing	 body	 satisfies	 the	 following	 condition:	

σij
V

dV =∫ 0	(wherein,	V	is	the	volume	of	the	domain).	This	implies	that	if	there	are	regions	
with	tensile	residual	stresses,	then	there	must	be	regions	of	compressive	residual	stresses.	
Edge	dislocations	are	associated	with	both	dilatational	and	shear	strains,	while	screw	dis-
locations	have	pure	shear	fields.	This	implies	that	screw	dislocations	will	not	interact	with	
other	defects	in	the	material	having	pure	dilatational	fields	(e.g.,	some	substitutional	atoms	
in	a	crystal).	The	state	of	stress	(σxx	and	τxy)	in	the	presence	of	an	edge	dislocation	at	the	
center	of	a	finite cylindrical domain	is	given	by	[36]
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(a) 

Size after heating

Size after heating

(b)

A

B

FIGURE 5.1
Schematics	(exaggerated)	showing	heating	of	(a)	a	free-standing	body	and	(b)	a	body	with	two	materials	(A	with	
a	higher	coefficient	of	thermal	expansion	as	compared	to	B).
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where
E	is	the	modulus	of	elasticity
r2	is	the	radius	of	circular	domain
ν	is	the	Poisson’s	ratio
b	is	the	modulus	of	the	Burgers	vector

The	results	of	edge	dislocation	in	infinite	homogeneous	media	are	obtained	by	letting	r2	
approaches	infinity.

The	plot	of	Equations	5.1	and	5.2	is	given	in	Figure	5.2.	The	following	points	should	be	
noted:	(1)	the	plots	show	left-right	mirror	symmetry	and	top-bottom	“inversion”	mirror	
symmetry	 (i.e.,	 tensile	 stresses	 are	 reflected	 as	 compressive	 stresses);	 (2)	 in	 an	 infinite	
domain,	the	entire	top	half-space	would	be	tensile,	and	the	bottom	half-space	(with	the	
“extra”	half-plane)	would	be	compressive,	while	in	the	finite	domain,	this	is	not	the	case;	
(3)	 the	 dislocation	 can	 interact	 with	 externally	 applied	 forces	 and	 with	 other	 internal	
stresses	in	the	material;	 (4)	the	formulae	are	derived	from	the	linear	theory	of	elasticity	
and	break	down	near	the	dislocation	line	(called	the	core	region	of	the	dislocation).

The	energy	of	the	dislocation	per	unit	length	(Edl)	is	approximately	given	by

	
E

Gb R
r

dl
o

≈
−

+







2

4 1
2

π ν( )
ln 	 (5.3)

where
R	is	the	size	of	the	domain
ro	is	the	radius	of	the	core	of	dislocation
G	is	the	shear	modulus	of	the	material

The	first	term	in	the	brackets	arises	from	the	core	energy	term.	It	is	difficult	to	compute	
the	core	energy,	and	hence	the	formula	is	an	approximate	one	(the	core	energy	is	typically	
about	10%	of	the	total	energy	of	the	dislocation).	R	in	the	equation	is	the	“effective	radius”	
of	the	dislocation	(the	energy	would	become	infinite	in	an	infinite	domain).

5.3.3.1  Image Forces

A	 dislocation	 in	 a	 semi-infinite	 domain	 (and	 off-center	 in	 finite	 domains)	 feels	 a	 force	
toward	a	free	surface,	called	the	image	force.	Image	force	is	a	configurational	force,	which	
is	computed	using	an	image	dislocation	of	opposite	sign	on	the	other	side	of	the	free	sur-
face,	as	shown	in	Figure	5.3a,	for	a	semi-infinite	domain.	The	magnitude	of	the	force	decays	
asymptotically	as	given	by	[38]

	
F

Gb
d

image = −
−

2

4 1π ν( )
	 (5.4)

where
Fimage	is	the	image	force	experienced	by	the	dislocation	(N/m)
d	is	the	distance	of	the	dislocation	from	a	free	surface

It	 is	 clear	 that	 image	 forces	 become	 significant	 only	 when	 the	 dislocation	 is	 positioned	
closed	to	a	surface.
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156 Computational Finite Element Methods in Nanotechnology

In	the	presence	of	multiple	proximal	free	surfaces,	the	net	force	is	the	resultant	of	forces	
arising	from	the	superposition	of	many	images	(Figure	5.3b	shows	two	images	along	the	
“x”	direction).	The	resultant	image	force	can	be	computed	as	a	superposition	of	the	indi-
vidual	image	forces	as	[39]

	
F

Gb
d L d

Gb x
L x

image = −
−

−
−







= −
− −







2 2

2 24 1
1 1

1
2

4π ν π ν( ) ( )
	 (5.5)

where
d	is	the	distance	of	the	dislocation	from	a	nearest	free	surface
x	 is	 the	 distance	 of	 the	 dislocation	 from	 the	 midplane	 of	 the	 domain	 (as	 shown	 in	

Figure	5.3b).

Contour values
are in GPa

Tensile stress

0.32 × 10–8

Contour values
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–0.15
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0.1

0

0
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–1 × 10–8
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0.21 × 10–8
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–1 × 10–8

–1 × 10–8

–2 × 10–8
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FIGURE 5.2
Contour	plot	of	(a)	σxx	and	(b)	τxy	stress	fields,	as	computed	from	Equations	5.1	and	5.2.	The	“extra	half-plane”	is	
schematically	overlaid	on	the	plots.
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157Simulations of Dislocations and Coherent Nanostructures

It	should	be	noted	that	for	an	edge	dislocation,	the	image	dislocation	does	not	annul	the	
shear	stresses	(τxy)	on	the	surface.	That	is,	unlike	an	image	screw	dislocation,	an	image	edge	
dislocation	does	not	lead	to	a	traction	free	surface.	However,	the	image	force	calculated	by	
using	the	image	dislocation	is	valid	for	both	screw	and	edge	dislocations.

For	an	edge	dislocation,	the	component	of	the	image	force	parallel	to	the	slip	plane	is	
the	glide	force,	and	the	component	perpendicular	to	the	slip	plane	is	the	climb	force	(for	
a	screw	dislocation,	the	Burgers	and	line	vectors	of	the	dislocation	do	not	define	a	unique	
slip	plane,	and	hence,	screw	dislocations	“cannot	climb”).

At	the	heart	of	plastic	deformation	(by	slip)	is	the	motion	of	dislocations	(finally	leaving	
the	crystal/grain).	Dislocations	can	move	if	shear	stresses	exist	parallel	to	the	slip	plane.	
The	origin	of	this	shear	stress	could	be	(1)	externally	applied	forces,	which	translate	into	
shear	stresses	at	the	slip	plane	level;	(2)	internal	residual	stresses	(arising	from	sources	like	
other	dislocations,	coherent	precipitates,	twins,	etc.);	and	(3)	a	free	surface	(or	a	less	stiffer	
material)	in	the	vicinity	of	the	dislocation.

If	the	image	force	exceeds	the	Peierls	stress	of	the	material,	then	the	dislocation	can	spon-
taneously	move	(in	the	absence	of	externally	applied	stresses)	and	would	leave	the	crystal.	
Surface	regions	of	materials	can	become	dislocation	free	by	this	mechanism,	and	if	the	crys-
tallite	is	very	small,	it	can	become	completely	dislocation	free.	Formulae	have	been	proposed	
for	the	computation	of	the	Peierls	stress,	when	the	core	is	planar.	If	the	core	is	nonplanar,	then	
atomistic	simulations	can	only	yield	good	results	for	the	value	of	Peierls	stress.	For	the	case	
of	the	planar	core,	the	Peierls	stress	can	be	given	by	an	exponential	formula	[40]:

	
τ

α
π
αP

G d
b

= −





exp
2

	 (5.6)

where
d	is	the	interplanar	spacing	(of	the	slip	plane)
α	=	(1	−	ν)	for	an	edge	dislocation	and	α	=	1	for	a	screw	dislocation

(a)

Semi-infinite domain

Edge dislocation

Image dislocation

dd

∞

(b)

Edge dislocation

S2 S1

x d d

L

Image dislocations
due to S2

Image dislocations
due to S1

L–d L–d

FIGURE 5.3
Use	of	“image	dislocation(s)”	for	the	computation	of	the	attractive	force	toward	a	free	surface(s)	in	(a)	a	semi-
infinite	domain	and	(b)	finite	body.
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158 Computational Finite Element Methods in Nanotechnology

Alternate	equations	for	the	computation	of	Peierls	stress	also	exist.
Though	the	concept	of	an	image	force	in	its	original	sense	implies	the	attractive	force	

experienced	by	a	dislocation	toward	a	free	surface	(which	can	be	computed	using	the	
construction	of	an	image	dislocation),	it	is	necessary	to	generalize	the	concept	to	accom-
modate	other	 situations.	 If	 the	 free	 surface	 (with	air/vacuum	adjacent	 to	 the	material	
under	consideration)	is	replaced	by	an	interface	with	an	elastically	harder	or	softer	mate-
rial,	the	dislocation	will	feel	a	repulsive	or	attractive	configurational	force,	respectively.	
In	 special	 cases,	 the	 force	 may	 be	 repulsive	 for	 certain	 position	 of	 the	 dislocation	 in	
the	domain	and	may	become	attractive	for	certain	other	positions.	Under	these	circum-
stances,	 the	“usual”	concept	of	an	 image	dislocation	cannot	be	used	 for	 the	computa-
tion	of	the	configurational	force	experienced	by	the	dislocation.	Additionally,	it	will	be	
shown	later	that	when	a	dislocation	is	positioned	near	a	free	surface,	the	image	construc-
tion	does	not	yield	correct	results,	and	hence,	we	may	have	to	go	beyond	the	concept	of	
“image	construction.”

5.3.4  Heteroepitaxy

Due	 to	 potential	 applications	 in	 a	 variety	 of	 devices	 like	 field-effect	 transistors,	
heterostructure	 bipolar	 transistors,	 mid-	 and	 far-infrared	 photodetectors,	 and	 resonant	
tunneling	 diodes,	 there	 has	 been	 a	 second	 wave	 of	 intense	 investigations	 of	 epitaxial	
systems.	The	books	by	Freund	and	Suresh	[41],	Grovner	[42],	and	Ayers	[43]	not	only	give	a	
broad	overview	of	the	subject	but	also	cover	specific	aspects	of	technological	importance.	
The	book	by	Matthews	[44]	and	the	review	articles	by	Jain	et	al.	[45,46]	are	also	well-written	
expositions	on	the	subject.

In	epitaxial	growth,	a	 crystalline	 layer	 (overlayer)	grows	on	a	 crystalline	 substrate	 in	
a	 manner	 such	 that	 there	 is	 matching	 of	 at	 least	 one	 set	 of	 atomic	 planes	 between	 the	
overlayer	and	the	substrate.	Usually	when	one	material	(say	GeSi)	is	deposited	on	another	
material	 (say	Si	 single	crystal)	epitaxially,	 the	word	heteroepitaxy	 is	used,	and	 in	 these	
cases,	the	matching	of	atomic	planes	is	usually	not	perfect	leading	to	coherency	(or	epi-
taxial)	strains	and	stresses.	Examples	of	epitaxial	systems	include	InGaAs	(overlayer)	on	
GaAs	(substrate),	Au/Ag,	Co/Ni,	etc.

Three	modes	of	growth	of	an	overlayer	can	be	identified:

	 1.	Van	der	Merve	growth	(2D):	Here,	there	is	layer	by	layer	growth	with	“full	wetting”	of	
the	substrate	by	the	film.	The	cohesive	force	between	the	adsorbed	atoms	(adatoms)	is	

weaker	than	the	adhesive	force	with	the	surface	 γ γ γSubstrate
Surface

Overlayer
Surface

Substrate Overlayer
In> + −
tterface( )( )

	 2.	Stranski–Krastanov	 growth	 mode	 (2D–3D):	 Initially	 there	 is	 a	 layer	 by	 layer	
growth,	followed	by	island	formation.

	 3.	Volmer–Weber	growth	(3D):	Islands	directly	grow	on	the	substrate	(“partial	wetting”	
of	the	substrate	by	the	overlayer).	Here,	the	cohesive	force	between	the	adatoms	is	

stronger	than	the	adhesive	force	with	the	surface	 γ γ γSubstrate
Surface

Overlayer
Surface

Substrate Overlayer
In< + −
tterface( )( )

The	film	in	the	Van	der	Merve	growth	mode	is	biaxially	strained,	and	the	energy	of	the	
epitaxial	film	of	thickness	h	is	given	by

	
E G f hh m= +

−






2
1
1

2ν
ν

	 (5.7)
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159Simulations of Dislocations and Coherent Nanostructures

where	“fm”	is	misfit	strain.	This	implies	that	as	the	film	grows	thick,	the	energy	per	unit	
interfacial	area	increases.	In	such	a	system	(Van	der	Merve	growth	mode),	the	film	is	com-
pletely	under	one	state	of	stress	(compression	if	the	relevant	lattice	parameter	of	the	film	is	
larger	and	tension	if	the	situation	is	reversed).	In	island	growth	(Volmer–Weber	mode),	the	
situation	is	more	complicated.	In	the	preceding	equation,	the	substrate	is	assumed	to	be	
rigid,	and	the	energy	of	the	substrate	is	ignored.	The	system	is	treated	as	2D	infinite	one,	
and	edge	effects	are	also	ignored.

As	the	thickness	of	the	epitaxial	layer	increases	(on	continued	deposition),	the	energy	due	
to	epitaxial	stresses	becomes	large,	and	the	stresses	relax	partially	by	the	formation	of	inter-
facial	misfit	dislocations	(i.e.,	the	interface	becomes	semicoherent).	Based	on	the	symmetry	
of	the	system,	two	or	three	arrays	of	parallel	dislocations	can	form	at	the	interface.	There	are	
many	mechanisms	by	which	the	interfacial	misfit	edge	dislocations	can	form.	Two	of	the	
important	ones	are	(1)	formation	of	a	misfit	segment	in	threading	dislocations	and	(2)	exten-
sion	of	a	dislocation	loop	to	the	interface	(thus	leading	to	a	misfit	segment).	The	thickness	(hc)	
at	which	the	formation	of	a	misfit	segment	becomes	energetically	feasible	is	given	by

	
h

b
f

h
r

c
m

c=
+( ) +



8 1

2
1

0π ν
ln 	 (5.8)

where	“r0”	is	the	inner	cut-off	radius	and	is	given	by	[47]

	
r

b
0

2 2 1
= ( )

−
π

ν( )

Matthews	and	Blakeslee	[48]	had	used	a	force	balance	approach	(i.e.,	the	epitaxial	stresses	
tending	to	extend	the	misfit	segment	balance	the	line	tension	force	of	the	dislocation)	to	
derive	the	following	equation	for	critical	thickness:

	
h

b
f

h
b

c
c=

−( )
+( ) +



2

1

1
1

2

π
ν α
ν λ
cos

cos
ln 	 (5.9)

where
hc	is	the	critical	thickness
α	is	the	angle	between	the	dislocation	line	and	its	Burgers	vector
λ	is	the	angle	between	the	slip	direction	and	that	direction	in	the	film	plane,	which	is	

perpendicular	to	the	line	of	intersection	of	the	slip	plane	and	the	interface

A	misfit	edge	dislocation	with	its	Burgers	vector	parallel	to	the	interface	gives	maximum	
stress	(and	hence	energy)	relief.	However,	in	some	cases	(e.g.,	GeSi	film	on	Si	substrate),	the	
interfacial	dislocation	is	of	mixed	character	(60°	misfit	dislocation	in	GeSi/Si	system),	and	
only	the	edge	component	gives	stress	relief.	The	screw	component,	in	spite	of	not	giving	
any	stress	relief,	costs	energy	to	the	system.	Similarly,	in	the	Nb	(film)/sapphire	(substrate)	
epitaxial	system,	the	edge	dislocation	has	a	Burgers	vector	inclined	to	the	interface,	and	
the	component	parallel	to	the	interface	gives	stress	relief	(while	the	perpendicular	compo-
nent	only	costs	energy	to	introduce).

In	many	systems	(e.g.,	GexSi1−x	film	on	Si	substrate),	the	composition	of	the	film	can	be	
varied	 to	 vary	 the	 misfit	 (this	 is	 done	 to	 engineer	 the	 bandgap,	 which	 depends	 on	 the	
strain)	and	hence	alter	the	critical	thickness	at	which	the	misfit	dislocation	forms.	If	the	
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160 Computational Finite Element Methods in Nanotechnology

misfit	between	the	film	and	the	substrate	is	too	large,	domain	matching	epitaxy	may	occur	
[49],	or	the	interface	may	be	incoherent.

5.3.5  Coherent Precipitates

To	get	a	general	idea	about	phase	transformations,	including	precipitation,	the	reader	may	
consult	the	book	by	Porter	and	Esterling	[50].	The	chapter	by	Matthews	in	the	series	on	
Dislocations in Solids	(edited	by	F.R.N.	Nabarro)	[51]	comprehensively	covers	all	important	
aspects	of	coherent	structures	and	the	formation	of	misfit	dislocations.

The	precipitation	being	considered	in	this	section	is	that	of	a	solid	phase	from	a	solid	
matrix.	At	constant	temperature	and	pressure,	the	Gibbs	free	energy	(G)	determines	the	
stability	of	a	system.	When	a	system	is	heated	or	pressurized,	phase	transformation	may	
take	place	to	lower	the	Gibbs	free	energy.	In	a	reconstructive	first-order	transformation,	the	
process	starts	by	the	nucleation	of	a	second	phase	from	the	parent	phase,	followed	by	its	
growth.	The	energies	involved	in	the	process	are	(1)	reduction	in	volume	free	energy	due	
to	transformation,	(2)	increase	in	interfacial	energy,	and	(3)	strain	energy	due	to	volume	
mismatch	between	the	parent	and	the	product	phases.	It	should	be	noted	that	the	reference	
state	for	the	interface	energy	is	the	infinite	crystalline	solid.

Due	to	change	in	temperature	or	pressure,	a	solid	solution	may	become	supersaturated	and	
may	lead	to	precipitation	of	a	solid	phase	in	a	solid	matrix.	When	a	given	volume	of	material	
transforms	from	a	parent	phase	to	a	product	phase,	the	following	aspects	are	expected	to	
change	in	the	volume	being	considered:	(1)	the	composition,	(2)	the	crystal	structure,	and	(3)	
the	shape	and	size.	These	aspects	will	determine	the	lattice	parameters	of	the	precipitate	and	
the	strain	associated	with	the	transformation.	The	strain	associated	with	the	transformation	
can	be	schematically	understood	using	the	Eshelby	construction	(Figure	5.4):	(1)	a	volume	of	
material	is	cut	out	and	allowed	to	transform,	(2)	the	shape	and/or	size	of	the	transformed	
material	 will	 be	 different	 from	 the	 parent	 material	 (in	 Figure	 5.4c,	 only	 a	 shape	 change	
is	 considered	 for	 simplicity),	 (3)	 the	 transformed	material	 is	 reintroduced	 into	 the	hole	 it	
originally	occupied,	and	(4)	the	system	equilibrates	(continuity	of	the	material	is	not	broken).	
The	shape/size	change	during	phase	transformation	can	be	modeled	as	eigenstrains	(stress-
free	 strains).	 The	 stress	 state	 of	 a	 growing	 precipitate	 can	 be	 simulated	 by	 successively	
considering	larger	and	larger	volumes	(V)	which	undergo	transformation.

In	order	that	the	interfacial	energy	between	the	parent	and	product	phase	(the	precipitate)	
is	small,	there	is	a	tendency	to	keep	the	interface	coherent.	This	usually	happens	when	the	
size	of	the	precipitate	is	small.	That	is,	interfacial	energy	is	kept	low	at	the	expense	of	strain	
energy	arising	from	coherency.	The	strain	energy	in	the	presence	of	a	coherent	precipitate	
is	given	by	[15]

	
E

r f G
ppt
strain p m ppt ppt

ppt
=

+
−

8
3

1
1

3 2π ν
ν

( )
( )

	 (5.10)

where
rp	is	the	radius	of	coherent	precipitate
fm	is	the	misfit	present	at	the	interface

Interfacial	diffusion	may	play	a	prominent	role	in	the	growth	of	the	precipitate,	which	
may	be	stress	assisted.	FEM	computations	can	give	us	the	precise	stress	state	at	the	inter-
facial	region	(both	for	coherent	and	semicoherent	interfaces),	which	can	form	an	input	into	
the	diffusion	calculations.
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161Simulations of Dislocations and Coherent Nanostructures

On	growth	(beyond	a	critical	size),	the	strain	energy	cost	in	maintaining	the	precipitate	
coherent	becomes	large,	and	misfit	dislocations	form	at	the	interface,	to	partially	relieve	
the	coherency	stresses	(Figure	5.5	shows	a	schematic).	This	transition	of	the	interface	usu-
ally	occurs	when	the	size	of	the	precipitate	is	in	the	nanoscale.	In	the	initial	stages	of	the	
growth,	the	precipitate	may	be	spherical	and	may	become	polyhedral	on	further	growth	
(like	 in	 the	precipitation	of	γFe	 from	Cu–Fe	matrix).	The	change	 in	shape	may	coincide	
with	the	coherent	to	semicoherent	transformation	of	the	interface.	For	precipitates	in	the	
shape	of	disks,	plates,	etc.,	one	interface	may	become	incoherent,	while	others	may	remain	
coherent.	It	is	to	be	noted	that	incoherent/semicoherent	interfaces	are	more	glissile	as	com-
pared	to	coherent	interfaces.

Misfit	dislocations	are	structural	dislocations,	and	structural	dislocations	in	general	can	
accommodate	 (1)	 linear	 misfit,	 (2)	 tilt,	 or	 (3)	 twist.	 The	 term	 “structural	 dislocations”	 is	

Precipitate Dislocation loop

FIGURE 5.5
Schematic	 showing	 a	 spherical	 precipitate	 with	 an	 interfacial	 misfit	 loop.	 The	 precipitate	 is	 embedded	 in	 a	
homogenous	matrix.

(a)

V

V΄

(b)

Hole
In general

Considered here

Only shape
change

Put back in hole

Equilibrated
shape

(c) (d)

FIGURE 5.4
Schematic	of	 the	Eshelby	construction	 to	understand	 the	origin	of	 the	stresses	due	 to	phase	 transformation	
of	a	volume	(V):	 (a)	region	V	before	transformation,	 (b)	 the	region	V	 is	cut	out	of	 the	matrix	and	allowed	to	
transform,	(c)	the	transformed	volume	(V′)	is	inserted	into	the	hole,	and	(d)	the	system	is	allowed	to	equilibrate.	
The	continuity	of	the	system	is	maintained	during	the	transformation.
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162 Computational Finite Element Methods in Nanotechnology

often	related	to	“geometrically	necessary	dislocations,”	but	we	shall	avoid	the	second	term	
in	 the	 current	 context.	 The	 process	of	 precipitation	 can	 be	 visualized	 as	 the	 3D	 analog	
of	 epitaxial	 film	 growth	 (with	 respect	 to	 the	 origin	 of	 stresses	 and	 formation	 of	 misfit	
dislocations).

The	conditions	 leading	 to	 the	 formation	of	an	 interfacial	misfit	dislocation	 loop	are	a	
little	more	involved.	Necessary	(global	energy-based	criterion)	and	sufficient	(local	stress-
based	criterion)	conditions	need	to	be	satisfied	for	the	formation	of	the	dislocation	loop.

The	radius	of	the	precipitate	(assuming	it	to	be	spherical)	at	which	a	misfit	loop	becomes	
energetically	favorable	is	given	by	[51]

	
r

b
f

G
K

r
bm ppt
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ppt
* ln
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−( ) +











 +







8 1

1
4
3

8
1

π ν
	 (5.11)

where	K	is	the	bulk	modulus	of	the	precipitate.	Other	equations	for	r*,	similar	to	the	one	
given	earlier,	can	also	be	found	in	literature	[52].	Isotropic	conditions	have	been	assumed	
here.	Note	that	the	material	properties	of	the	matrix	are	not	present	in	the	equation.

A	precipitate	of	a	lower	radius	than	this	(i.e.,	rc	<	r*)	can	also	support	an	interfacial	loop	
due	to	local	force	balance	(i.e.,	the	line	tension	force	tending	to	shrink	the	loop	equals	the	
coherency	stresses	trying	to	expand	the	loop),	even	though	it	is	not	energetically	favorable	
to	do	so.	That	is,	if,	by	some	means,	the	interfacial	loop	forms	in	a	precipitate	of	radius	rc,	
then	it	would	be	stable.	This	radius	(rc)	is	given	by	[51]
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The	sufficient	condition	 for	 the	 formation	of	an	 interfacial	 loop	 is	based	on	 the	specific	
mechanism	 by	 which	 the	 loop	 forms.	 Preexisting	 dislocations	 may	 move	 (by	 climb	 or	
glide)	 to	the	 interface,	or	new	loops	may	be	nucleated	(or	nucleated	 loops	may	move	to	
the	 interface).	 The	 preexisting	 dislocation	 may	 be	 (1)	 inside	 the	 precipitate,	 (2)	 outside	
the	 precipitate,	 or	 (3)	 at	 the	 interface	 (but	 not	 in	 the	 equilibrium	 position).	 Processes	
which	aid	the	formation	of	 the	 loop	 include	radiation	(giving	rise	 to	point	defects)	and	
plastic	deformation.	Some	of	 the	mechanisms	giving	rise	 to	 the	 interfacial	 loop	are	 [51]	
(1)	expansion	of	a	loop	inside	the	precipitate,	(2)	climb	of	an	interfacial	loop,	(3)	punching-in	
of	shear	loops,	(4)	trap	of	external	loops,	(5)	climb	of	Orowan	loops,	(6)	cross-slip	of	screw	
dislocations	from	the	matrix,	(7)	Gleiter’s	mechanism,	etc.

The	situation	with	respect	to	the	formation	of	misfit	dislocation	loops	around	precipitates	
may	become	inverted,	and	dislocations	may	act	like	preferential	sites	for	heterogeneous	
nucleation	of	precipitates.	In	both	cases,	the	precipitate	and	dislocation	are	associated	with	
each	other	to	give	a	low-energy	configuration.

5.4 Case Studies

A	 few	 case	 studies	 are	 taken	 up	 here	 to	 demonstrate	 the	 utility	 of	 finite	 element	
simulations	 in	 the	 nanoscale.	 These	 are	 expected	 to	 illustrate	 the	 utility	 of	 numerical	
simulations	in	solving	a	variety	of	problems	related	to	materials	science.	These	examples	
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163Simulations of Dislocations and Coherent Nanostructures

cover	 structures	 and	 processes,	 wherein	 strain	 energy	 is	 the	 dominant	 term	 and	 can	
be	 simulated	 using	 eigenstrains	 in	 the	 finite	 element	 model.	 An	 important	 point	 to	 be	
noted	from	the	simulations	is	the	ease	with	which	some	difficult	problems	of	mechanics	
can	be	solved	using	FEM.	The	examples	cited	are	by	no	means	comprehensive,	in	either	
methodology	 developed	 or	 in	 the	 kind	 of	 problems,	 which	 can	 be	 solved	 using	 FEM.	
Additional	information	regarding	the	case	studies	can	be	found	elsewhere	[53–58].	In	the	
case	 studies	 considered,	 the	 reader	 should	 note	 that	 the	 domains	 are	 in	 the	 nanoscale.	
Material	properties	used	in	the	simulations	are	listed	in	Appendix	5.A.

One	important	question	which	needs	to	addressed,	before	we	proceed	to	the	case	studies	
is	 “if	 theoretical	 models	 and	 equations	 are	 available	 (as	 described	 in	 Section	 5.3),	 then	
why	 do	 we	 need	 to	 perform	 finite	 element	 computations/simulations?”	 The	 following	
points	address	this	question.	The	usual	theoretical	equations	for	a	given	problem	in	hand	
(e.g.,	 the	 equation	 for	 the	 stress	 fields	 of	 an	 edge	 dislocation	 derived	 using	 the	 linear	
elasticity	 theory)	 are	 derived	 for	 some	 ideal	 conditions	 (or	 assumptions).	 For	 example,	
the	domain	may	have	been	assumed	to	be	infinite	or	cylindrical.	The	material	may	have	
been	assumed	to	be	uniform	and	homogeneous.	Additionally,	a	“simple”	set	of	boundary	
conditions	may	have	been	imposed.	If	there	are	deviations	to	these	“ideal”	conditions,	the	
theoretical	 analysis	 may	 become	 cumbersome	 or	 intractable.	 In	 finite	 element	 analysis,	
once	a	simulation	methodology	has	been	validated	for	simple	cases	(wherein	theoretical	
and	experimental	results	are	available),	it	can	be	extended	to	complex	configurations	with	
ease.	This	aspect	will	become	clear	via	the	case	studies	considered.

Some	important	points	to	be	noted	in	the	finite	element	simulations	are	as	follows:	(1)	
material	properties	have	been	taken	to	be	bulk	values,	and	the	validity	of	the	simulations	
can	be	improved	by	feeding-in	values	corresponding	to	those	in	a	nanocrystal;	(2)	surface	
tension	effects	have	been	ignored	and	can	be	introduced	by	considering	more	“elaborate”	
simulations;	 (3)	 interfaces	are	 considered	 to	be	 sharp	 (which	may	deviate	 from	reality);	
(4)	 some	 simulations	 are	 performed	 using	 isotropic	 material	 properties	 (i.e.,	 with	 two	
elastic	 constants)	 for	 the	sake	of	easy	comparison	with	 theoretical	expressions,	and	 the	
simulations	can	readily	be	extended	to	anisotropic	properties;	(5)	the	structure	and	energy	
of	 the	 core	 of	 the	 dislocation	 have	 been	 ignored	 in	 the	 numerical	 models	 considered	
(extended	finite	element	models	can	be	used	to	account	for	this	 to	some	extent	[59]);	 (6)	
often	 ideal	 domain	 shapes	 have	 been	 used	 to	 illustrate	 the	 methodology	 (and	 for	 easy	
conceptual	 visualization),	 and	 the	 models	 can	 be	 extended	 to	 complex	 domain	 shapes,	
with	multiple	material	components;	(7)	eigenstrains	are	imposed	as	thermal	strains	using	
a	standard	commercial	software	[60];	(8)	the	simulations	are	“static”	in	nature	(i.e.,	kinetic	
energy,	transients,	wave	propagation,	etc.,	are	ignored);	(9)	a	series	of	equilibrated	states	
can	be	played	out	in	pseudo-time	to	simulate	the	evolution	of	a	system,	which	may	actually	
take	place	in	real	time	(keeping	in	view	the	fact	that	there	is	no	kinetics	in	the	simulations);	
and	(10)	for	energy	plots	in	the	presence	of	a	dislocation,	Peierls	energy	oscillations	[38]	are	
ignored	(these	oscillations	are	small	in	comparison	with	the	strain	energy	of	the	system).

5.4.1  Edge Dislocations in Nanocrystals and Hybrids

The	stress	fields	arising	from	an	edge	dislocation	in	a	nanocrystal	can	be	simulated	by	
imposing	eigenstrains	corresponding	to	the	insertion	of	an	“extra”	half-plane	of	atoms	
(as	 shown	 schematically	 in	 Figure	 5.6a).	 Material	 properties	 correspond	 to	 that	 for	
aluminum	(a0	=	4.04	Å,	slip	system:	<110>{111},	b	=	√2a0/2	=	2.86	Å,	G	=	26.18	GPa,	ν	=	0.348	
[61]).	 Isotropic	 elastic	 moduli	 (E,	 G,	 ν)	 are	 computed	 by	 averaging	 single	 crystal	 data	
(C11,	C12,	and	C44)	[62].
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164 Computational Finite Element Methods in Nanotechnology

The	mesh	size	is	b	×	b	(in	“x”	and	“y”	dimensions).	The	elements	used	for	meshing	are	
four-noded	quadrilateral	elements.	Plane	strain	conditions	are	assumed.	As	the	mesh	size	
is	already	of	the	order	of	the	lattice	parameter,	no	further	mesh	refinement	is	possible.	It	
is	obvious	that	at	 the	 level	of	a	 few	nodes,	 the	assumption	of	a	continuum	is	not	valid;	
however,	at	larger	length	scales,	the	model	is	expected	to	yield	good	results.

Isotropic	moduli	have	been	used	for	comparison	with	simpler	theoretical	equations.	In	a	
material	like	Al,	the	anisotropy	factor	(A	=	(2C44)/(C11−C12)	=	1.23)	is	close	to	one,	and	hence,	the	
error	introduced	by	using	assumptions	of	isotropy	is	small.	In	Al,	the	stacking	fault	energy	
is	high,	and	hence,	the	splitting	of	a	perfect	dislocation	into	partials	need	not	be	considered.

It	is	seen	that	there	is	a	good	match	of	the	simulated	stress	contours	with	the	theoretical	
plot	(of	Equation	5.1).	The	energy	of	the	system	computed	using	the	model	(as	in	Figure	5.6	
with	D	=	200b)	is	6.6	×	10−10	J/m.	This	matches	reasonably	well	with	the	energy	computed	
using	the	theoretical	equation	(5.3)	of	1.2	×	10−9	J/m.

This	method	of	simulation	does	not	take	into	account	the	structure	and	energy	of	the	
core	of	the	dislocation.	This	is	expected	to	introduce	error	in	the	calculated	stress	values	
close	to	the	dislocation	line	(∼few	b).	The	energies	computed	from	the	simulations	will	also	
be	an	underestimate	by	about	10%	[36,63].	However,	in	many	of	the	parameters	determined	
using	the	simulations	(e.g.,	image	forces,	regions	of	stability,	etc.),	the	variation	in	energy	
is	important	and	not	the	correct	value	of	the	total	energy	(i.e.,	a	constant	additive	term	of	
core	energy	does	not	change	the	conclusions	drawn).	The	core	energy	of	the	dislocation	
is	expected	to	be	constant,	except	when	the	dislocation	is	positioned	a	few	“b”	from	a	free	
surface	or	an	interface.

If	 the	 domain	 shape	 is	 rectangular	 (or	 a	 complex	 shape),	 theoretical	 description	 of	
the	 stress	 state	 becomes	 cumbersome	 (or	 even	 intractable).	 However,	 as	 the	 current	
methodology	involves	the	equivalent	of	the	insertion	of	an	“extra	half-plane,”	it	is	expected	
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FIGURE 5.6
(a)	Schematic	of	the	numerical	model	used	for	the	simulation	of	the	stress	state	an	edge	dislocation	in	a	nano-
crystal,	 (b)	simulated	σxx	contours	(with	D	=	250b)	and	its	comparison	with	the	theoretical	equation	(5.1).	The	
boundary	 conditions	 imposed	 along	 the	 y-axis	 are	 due	 to	 symmetry.	 (From	 Khanikar,	 P.,	 Kumar,	 A.,	 and	
Subramaniam,	A,	Philos. Mag.,	91,	730,	2011.	With	permission.)
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165Simulations of Dislocations and Coherent Nanostructures

to	 work	 for	 complex	 geometries,	 boundary	 conditions,	 and	 material	 combinations.	 If	 a	
dislocation	is	positioned	in	the	“central	region”	of	a	bulk	crystal,	then	this	is	essentially	
equivalent	to	a	dislocation	in	an	infinite	medium,	and	two	neighboring	positions	of	the	
dislocation	(“b”	apart)	are	equivalent.	In	nanocrystals	on	the	other	hand,	(1)	free-surface	
effects	play	an	important	role,	(2)	neighboring	positions	are	not	equivalent,	and	(3)	domain	
deformations	in	the	presence	of	the	dislocation	can	become	significant.

5.4.1.1  Image Forces

The	model	considered	for	the	computation	of	 image	force	(glide	component)	 in	a	nano-
crystal	is	as	in	Figure	5.7.	The	energy	of	the	system	for	various	positions	of	the	dislocation	
in	the	domain	(along	“x”)	is	determined,	and	the	image	force	is	computed	as	the	slope	of	
the	energy	versus	position	of	the	dislocation	plot.	The	climb	component	of	the	image	force	
can	similarly	be	determined,	by	varying	the	position	of	the	dislocation	along	y-direction.

The	methodology	of	calculation	of	image	force	has	the	following	features:	(1)	no	fictitious	
image	needs	to	be	constructed	(often	a	sequence	of	infinite	images	need	to	be	constructed	in	
the	presence	of	proximal	parallel	interfaces);	(2)	deformation	of	the	free	surface	is	taken	into	
account,	and	shape	of	the	deformed	surface	can	be	determined;	and	(3)	due	to	deformation	
of	the	surface,	the	standard	theoretical	equations	(5.4	and	5.5)	are	no	longer	valid,	and	the	
current	methodology	needs	to	be	used.	The	model	should	not	be	used	when	the	dislocation	
is	within	a	few	“b”	from	the	free	surface	(due	to	interaction	of	the	core	with	the	free	surface	
and	due	to	the	fact	that	surface	tension	has	not	been	taken	into	account	in	the	model).

The	method	is	easy	to	extend	to	forces	experienced	toward	interfaces	with	harder	and	
softer	materials	 (schematic	of	one	such	case	 is	 shown	 in	Figure	5.8).	 It	 should	be	noted	
that	 interfaces	 with	 elastically	 harder	 materials	 are	 repulsive,	 and	 softer	 materials	 are	
attractive.	As	for	the	case	of	the	free	surface,	when	the	dislocation	is	within	a	few	“b”	from	
the	interface,	the	method	described	here	is	not	expected	to	yield	correct	results.

The	image	force	computed	from	the	model	in	Figure	5.7	along	with	a	comparison	with	the	
theoretical	equation	(5.5)	is	shown	in	Figure	5.9.	Figure	5.10	shows	the	deformation	of	the	free	
surface	when	the	dislocation	is	at	a	distance	of	20b	from	the	free	surface.	Figure	5.11	shows	
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simulate an edge dislocation

Mesh size: b

FIGURE 5.7
Schematic	 of	domain	and	boundary	 conditions	 used	 for	 the	 computation	 of	 image	 force	 experienced	 by	an	
edge	dislocation.	L	=	500b.	(From	Khanikar,	P.,	Kumar,	A.,	and	Subramaniam,	A,	Philos. Mag.,	91,	730,	2011.	With	
permission.)
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166 Computational Finite Element Methods in Nanotechnology

the	configurational	force	experienced	by	the	dislocation	toward	the	interface	(generalized	
image	force),	computed	from	the	model	in	Figure	5.8.	It	can	be	seen	that	for	a	thickness	of	
5b,	the	force	is	attractive	toward	the	interface.	When	the	thickness	of	the	harder	material	(t)	
is	50b,	the	force	becomes	repulsive	as	the	dislocation	is	positioned	closer	to	the	interface.	For	
even	thicker	harder	material	(t	=	100b),	for	displacements	of	up	to	about	175b	from	the	center,	
the	force	remains	constant	and	nearly	zero	(before	turning	repulsive	for	x	>	175b).

5.4.2  Neutral Equilibrium and Stability of Edge Dislocations

In	the	previous	subsection,	we	had	mentioned	about	the	effect	of	surface	deformation	on	
the	image	force	experienced	by	the	edge	dislocation.	Here,	we	consider	an	extreme	form	of	
domain	deformation	due	to	an	edge	dislocation.	If	an	edge	dislocation	is	present	in	a	thin	
free-standing	plate	(as	in	Figure	5.12a),	the	plate	will	bend	due	to	the	stresses	introduced	
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x-direction)	experienced	by	it,	as	a	function	of	its	position	along	the	x-axis.	(From	Khanikar,	P.,	Kumar,	A.,	and	
Subramaniam,	A,	Philos. Mag.,	91,	730,	2011.	With	permission.)

L

tx

d

Region of the domain where 
stress-free strains are fed to 

simulate a positive
edge dislocation

Interface Harder 
material

L/2

FIGURE 5.8
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167Simulations of Dislocations and Coherent Nanostructures

by	the	dislocation.	The	plate	considered	is	a	2D	nanocrystal.	If	we	plot	the	energy	of	the	
system	as	a	function	of	the	variable	“x”	(as	in	Figure	5.12a),	the	plot	shown	in	Figure	5.12b	
is	obtained.	The	plot	shows	a	very	interesting	feature—the	energy	of	the	system	does	not	
change	for	considerable	positions	of	 the	dislocation	 in	the	domain	(with	y	=	0),	within	a	
numerical	accuracy	of	about	0.1%.	This	is	as	if	the	free	surface	has	vanished	to	infinity!

The	stress	contours	(along	with	domain	configuration)	for	a	few	values	of	“x”	are	shown	
in	 Figure	 5.13.	 Over	 all	 the	 configurations	 in	 the	 figure,	 the	 system	 exists	 in	 a	 state	 of	
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are	for	the	model	as	in	Figure	5.8,	for	three	thicknesses	(t	=	5b,	50,	and	100b).	(From	Khanikar,	P.,	Kumar,	A.,	and	
Subramaniam,	A,	Philos. Mag.,	91,	730,	2011.	With	permission.)
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Subramaniam,	A,	Philos. Mag.,	91,	730,	2011.	With	permission.)
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168 Computational Finite Element Methods in Nanotechnology

neutral	equilibrium.	A	rigid	ball	on	a	plane	is	in	a	state	of	neutral	equilibrium.	Similarly,	
an	Anglepoise	 lamp	(which	is	a	structure)	 is	also	in	a	state	of	neutral	equilibrium	with	
respect	to	various	positions	of	the	lamp	head.	The	earlier-given	simulations	show	that	for	
specific	geometries,	“material	structures”	can	also	exist	in	a	state	of	neutral	equilibrium.	
The	term	“material	structures”	has	been	used	in	this	context,	as	the	domain	has	a	specific	
geometry	(which	changes	with	location	of	the	dislocation),	which	qualifies	it	as	a	structure,	
and	the	defect	is	crystallographic	in	origin,	which	qualifies	it	as	a	material.	That	is,	mate-
rial	structures	have	both	“material”	and	“structural”	characteristics.

Plastic	deformation	is	permanent	deformation	in	the	absence	of	external	constraints	on	
the	 system.	As	 the	dislocation	 is	positioned	at	various	“x”	coordinates	 in	 the	plate,	 the	
deformations	caused	are	permanent	and	hence	can	be	termed	as	plastic	deformation.	In	
the	“zero-stiffness”	regime,	the	dislocation	can	move	without	a	change	in	energy;	that	is,	
the	process	is	reversible.	The	stresses	and	strains	in	the	system	are	a	result	of	the	elastic	
response	of	the	material	in	the	presence	of	an	edge	dislocation.	Hence,	this	phenomenon	
can	be	“curiously”	phased	as	“reversible	plastic	deformation	due	to	elasticity.”

Dislocations	are	thermodynamically	unstable	defects	(unlike	vacancies)	and	would	leave	
the	crystal	when	kinetics	permits	[64].	“Can	dislocations	be	mechanically	stable	defects	in	
finite	crystals?”	Eshelby	had	answered	 this	question	 for	 the	case	of	a	screw	dislocation	
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(a)	Schematic	of	the	model	used	for	the	simulation	of	an	edge	dislocation	in	a	thin	free-standing	Al	plate	(nano-
crystal)	and	(b)	energy	of	the	system	as	a	function	of	“x.”	(From	Kumar,	A.	and	Subramaniam,	A.,	Philos. Mag.		
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169Simulations of Dislocations and Coherent Nanostructures

in	a	thin	cylinder,	which	is	free	to	twist	[65].	It	turns	out	that	the	edge	dislocation	can	be	
stable	 in	domain	shown	in	Figure	5.14,	 for	a	wide	range	of	positions	within	 the	crystal	
(region	enclosed	by	the	curve	P′Q′RQP).	The	region	of	stability	has	been	determined	by	
plotting	the	energy	of	the	system	for	various	positions	of	the	edge	dislocation.	For	plates	
up	to	a	thickness	of	about	85b	(i.e.,	L/d	of	∼1.18,	keeping	the	length	constant	at	100b),	the	
dislocation	can	be	stable	in	a	finite	crystal.	The	partial	relaxation	of	strain	energy	due	to	
bending	gives	rise	to	this	stability.	Eshelby	had	stated	that	solving	the	problem	of	an	edge	
dislocation	in	a	thin	plate	would	be	a	difficult	problem	analytically	due	to	the	bending	of	
the	plate.	It	is	seen	that	using	FEM,	this	can	be	solved	easily.

5.4.2.1  Dislocation-Free Nanocrystals

As	pointed	out	earlier,	if	the	resultant	image	force	on	a	dislocation	exceeds	the	Peierls	force	
(Peierls	force	=	Peierls	stress	×	b),	then	the	dislocation	will	move	(and	can	leave	the	crystal).	
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FIGURE 5.13
Deformed	configurations	of	the	domain	for	(a)	x	=	0b,	(b)	x	=	10b,	(c)	x	=	20b,	and	(d)	x	=	30b.	σx	stress	contours	are	
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Subramaniam,	A.,	Philos. Mag.  Lett.,	91,	272,	2011.	With	permission.)
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170 Computational Finite Element Methods in Nanotechnology

For	a	free-standing	(finite)	single	crystal	to	become	completely	free	of	dislocations,	the	mini-
mum	image	 force	experienced	by	 the	dislocation	has	 to	exceed	 the	Peierls	 force.	 In	sym-
metrical	domains	(e.g.,	with	square,	rectangular,	circular,	etc.,	cross	sections),	the	dislocation	
image	forces	arising	from	various	free	surfaces	will	cancel	each	other	when	the	dislocation	
is	at	the	center	of	the	domain.	It	is	to	be	noted	that	irregular	domains	have	no	such	special	
position.	The	dislocation	will	experience	a	minimum	image	force,	when	just	“off-center”	in	
the	domain	(at	a	distance	of	a	Burgers	vector	from	the	center	of	the	domain).	If	this	minimum	
value	of	image	force	exceeds	the	Peierls	force,	then	even	the	dislocation	“just	off-center”	can	
glide	out	of	the	crystal,	thus	making	the	crystal	dislocation	free.	This	is	expected	to	occur	
only	in	small	crystals,	as	in	large	crystals,	the	surfaces	would	be	“far	away”	from	the	center	
of	the	domain.	Thus	by	reducing	the	crystal	size	and	comparing	the	minimum	image	force	
with	Peierls	force,	we	can	determine	the	size	of	the	crystal	at	which	it	will	become	sponta-
neously	edge	dislocation	free	(as	shown	in	Figure	5.15).	The	value	of	critical	size	for	Al	is	
determined	to	be	∼36	nm.	Few	points	have	to	be	noted	in	this	context:	(1)	just	off-center	the	
strength	of	the	two	images	is	nearly	equal,	and	hence,	the	net	force	is	very	small;	(2)	as	the	
domain	size	is	reduced,	the	energy	of	the	dislocation	decreases,	and	hence,	the	image	force	
experienced	by	the	dislocation	at	a	given	distance	“d”	from	the	surface	decreases;	and	(3)	
typically,	we	have	to	reduce	the	crystallite	size	to	nanoscale	before	the	reduced	image	force	
can	exceed	the	Peierls	force.	FEM	is	an	invaluable	tool	to	determine	this	size,	as	we	have	
already	seen	that	the	theoretical	formulae	do	not	work	well	due	to	domain	deformations.

5.4.3  Heteroepitaxial Structures

5.4.3.1  Growth of Thin Films and Critical Thickness

First,	 we	 consider	 one-dimensional	 growth	 of	 film	 with	 complete	 coverage	 over	 the	
substrate	(Van	der	Merve	growth	mode).	We	simplify	the	problem	by	considering	2D	plane	
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171Simulations of Dislocations and Coherent Nanostructures

strain	condition.	In	reality	(as	we	have	noted	in	Section	5.3.4),	misfit	strain	is	biaxial,	and	
hence,	the	simulation	has	to	be	carried	out	in	3D.	The	growth	of	Nb	on	a	sapphire	substrate	
is	considered	here	as	an	illustrative	example.

An	epitaxial	overlayer	can	be	simulated	by	imposing	stress-free	strains	to	a	region	in	the	
domain	corresponding	to	the	film	(schematic	of	the	model	in	Figure	5.16).	A	growing	film	
can	be	simulated	by	playing	out	a	sequence	of	simulations	with	increasing	height	(h)	of	
region	A	on	which	stress-free	strains	are	imposed.	The	stress	state	of	the	system	after	the	
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FIGURE 5.16
Numerical	model	used	for	the	simulation	of	the	stress	state	of	an	epitaxial	film.	A	growing	film	can	be	simu-
lated	by	increasing	the	height	(h)	of	the	region	corresponding	to	the	film.
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172 Computational Finite Element Methods in Nanotechnology

growth	of	about	12	layers	is	shown	in	Figure	5.17.	The	following	points	have	to	be	noted:	
(1)	the	film	is	uniformly	strained,	expect	for	regions	close	to	the	free	lateral	surface;	(2)	in	a	
large	system,	which	can	be	considered	as	2D	infinite,	the	edge	effects	can	be	ignored,	and	
the	film	can	be	considered	to	be	uniformly	stressed;	and	(3)	most	of	the	substrate	is	stress	
free,	except	close	to	the	free	lateral	surface.

The	stress	state	of	the	system	in	the	presence	of	a	misfit	edge	dislocation	(with	its	Burgers	
vector	inclined	at	an	angle	of	19.5°)	is	shown	in	Figure	5.18.	The	critical	thickness	at	which	
a	misfit	dislocation	becomes	energetically	feasible	is	determined	by	comparing	the	energy	
of	the	system	with	and	without	a	misfit	dislocation,	as	“h”	is	increased	(shown	in	Figure	
5.19).	The	value	of	critical	thickness,	determined	from	the	plot,	is	∼39	Å.

The	 following	 advantages	 of	 the	 finite	 element	 simulation	 are	 to	 be	 noted	 over	 the	
standard	theoretical	formulations:	(1)	the	substrate	is	not	assumed	to	be	rigid,	(2)	separate	
material	properties	have	been	used	for	the	film	and	the	substrate,	(3)	the	energy	of	the	whole	
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FIGURE 5.18
Stress	state	of	the	system	(plot	of	σxx	contours)	in	the	presence	of	a	misfit	edge	dislocation.
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173Simulations of Dislocations and Coherent Nanostructures

system	is	considered	in	determination	of	the	critical	thickness,	(4)	the	complete	Burgers	
vector	inclined	to	the	interface	is	considered	(and	not	just	the	component	parallel	to	the	
interface,	and	(5)	effects	of	the	free	lateral	surface	are	captured.	Additionally,	the	energy	
partitioning	between	the	substrate	and	film	can	be	easily	calculated	from	the	model,	and	
the	energy	density	(per	unit	area	of	the	interface)	and	its	variation	with	position	along	the	
interface	can	be	computed	with	ease.

Using	an	inclined	Burgers	vector	not	only	gives	us	the	correct	energy	of	the	dislocation	
(the	component	parallel	to	the	interface	gives	strain	relief,	while	the	perpendicular	compo-
nent	costs	energy	to	the	system	without	proving	strain	relief)	but	also	gives	the	true	stress	
state	of	the	system	resulting	from	the	interaction	of	the	dislocation	stress	fields	with	the	
epitaxial	stress	fields.

It	is	to	be	noted	that	in	standard	theoretical	formulations,	(1)	the	substrate	is	assumed	to	
be	rigid,	and	the	energy	stored	therein	is	ignored;	(2)	material	properties	of	the	film	alone	
are	considered;	and	(3)	if	the	substrate	is	assumed	to	be	rigid,	then	we	are	forced	to	put	
“half”	a	dislocation	(as	either	the	tensile	or	the	compressive	part	of	the	dislocation	has	to	
lie	in	the	substrate).

5.4.3.2  Thin Substrates, Stripes, and Islands

A	uniform	epitaxial	film	on	a	thick	substrate	represents	the	simplest	geometry	in	some	
sense.	The	geometry	of	the	system	can	play	a	significant	role	in	determining	the	stress	state	
of	the	system	(and	hence	the	critical	thickness/size).	Here,	we	consider	three	illustrative	
geometries,	which	bring	in	further	considerations:	(1)	thin	substrate	(which	can	bend	due	
to	epitaxial	stresses),	(2)	finite	stripes,	and	(3)	islands.

The	 models	 used	 for	 the	 simulations	 are	 shown	 in	 Figure	 5.20.	 The	 methodology	 of	
simulating	the	growth	of	an	epitaxial	stripe	or	island	is	similar	to	that	for	epitaxial	films.	
Plane	strain	conditions	are	assumed	 for	 the	 thin	substrate	and	strip	cases	 (Figure	5.20a	
and	b),	while	axisymmetry	is	assumed	for	the	island	case	(Figure	5.20c).	The	stress	states	
for	the	three	cases	are	as	in	Figure	5.21.
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FIGURE 5.19
Determination	 of	 the	 critical	 thickness	 for	 the	 feasibility	 of	 a	 misfit	 edge	 dislocation,	 by	 comparison	 of	 the	
energy	of	the	system	with	and	without	the	dislocation.
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FIGURE 5.20
Models	used	for	the	simulation	of	three	kinds	of	epitaxial	systems:	(a)	film	on	a	thin	substrate,	(b)	finite	epitaxial	
stripes,	and	(c)	island.	The	dimensioning	is	to	be	noted	on	the	figures.
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FIGURE 5.21
Stress	states	(plot	of	σx	contours)	of	the	three	systems	shown	in	Figure	5.20:	(a)	thin	substrate	(film	thickness,	
h	=	14b),	(b)	stripe,	and	(c)	island.
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Finite	stripes	and	islands	are	fundamentally	different	with	respect	to	films	in	the	fol-
lowing	aspects.	(1)	In	films,	the	entire	film	is	under	one	state	of	stress	(compressive)	and	
the	substrate	under	another	(tensile).	This	is	not	the	case	in	stripes	and	islands	(region	of	
the	substrate	close	the	edges	is	in	an	altered	state	of	stress).	(2)	The	film	is	assumed	to	be	
infinite,	and	hence	edge	effects	are	ignored.	Stripes	and	islands	are	inherently	finite,	and	
hence,	the	thickness	at	which	it	is	energetically	feasible	to	support	a	misfit	edge	dislocation	
is	position	dependent	(along	the	interface).

In	the	case	of	islands,	multiple	islands	grow	simultaneously	on	the	substrate,	and	hence,	
there	would	be	interaction	in	the	strain	fields	arising	from	individual	islands.	The	model	
developed	can	easily	be	extended	to	simulate	the	growth	of	multiple	islands	and	to	com-
pute	the	strain	interaction	effects.

5.4.4  Precipitation

To	illustrate	the	methodology	of	simulation	of	the	stress	state	of	a	system	with	a	coherent	
precipitate,	we	consider	the	example	of	Co	precipitation	from	a	Cu-4wt.%Co	solid	solution.	
Both	the	matrix	and	the	precipitate	have	cubic	closely	packed	crystal	structure	(with	cube	
on	 cube	 orientation),	 and	 hence,	 the	 precipitation	 involves	 only	 dilatational	 strains.	 In	
many	cases	(e.g.,	cubic	to	monoclinic	transformation),	the	precipitation	may	involve	shear	
strains	as	well.	To	simulate	the	stress	state	of	a	coherent	precipitate	and	to	compute	the	
value	of	r*,	the	model	in	Figure	5.22	is	used.	Axisymmetric	conditions	are	assumed,	with	
axis	of	symmetry	being	the	Y-axis.

Region-P

Region-D

Cu-4 wt% Co matrix

rp

y

x

Interfacial dislocation loop

400b

40
0b

FIGURE 5.22
Schematic	of	the	model	used	for	the	simulation	of	the	stress	state	of	a	coherent	precipitate	and	to	compute	the	
critical	size	r*.	Eigenstrains	corresponding	to	lattice	mismatch	is	imposed	in	region	P.	In	region	D,	eigenstrains	
equivalent	to	the	insertion	of	a	disk	of	atoms	is	used	as	input.	Region	D	is	a	subset	of	region	P.
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177Simulations of Dislocations and Coherent Nanostructures

Stress-free	strains	are	imposed	in	region	P	corresponding	to	the	misfit	strain	between	
the	matrix	and	the	precipitate,	which	is	computed	as	follows:

	
f

a a
a

m
ppt matrix

ppt
=

−









	 (5.13)

The	 stress	 state	 of	 the	 system	 in	 the	 presence	 of	 a	 coherent	 precipitate	 30b	 in	 radius	 is	
shown	in	Figure	5.23.

The	stress	state	of	the	system	due	to	a	growing	precipitate	can	be	simulated	by	increas-
ing	the	radius	of	the	region	A.	If	one	intends	to	simulate	a	precipitate	in	an	infinite	matrix,	
then	for	the	largest	size	of	the	precipitate,	the	domain	size	should	be	successively	increased	
until	the	change	in	energy	is	small	(say	less	than	1%).	An	interfacial	misfit	edge	dislocation	
loop	is	simulated	by	feeding	in	strains	corresponding	to	that	of	introduction	of	a	disk	of	
atoms.	The	Burgers	vector	for	the	example	considered	is	[111],	and	the	strain	imposed	in	
region	P	is	0.019	(=	fm).

Separate	material	properties	have	been	used	for	the	precipitate	and	matrix.

5.4.4.1  Coherent to Semicoherent Transition of Precipitates

The	stress	state	of	the	system	(plot	of	σyy)	in	the	presence	of	an	interfacial	loop	is	shown	in	
Figure	5.24.	To	determine	r*,	the	energy	of	the	precipitate	is	tracked	before	and	after	the	
introduction	of	 the	misfit	 edge	dislocation	 loop.	When	 the	precipitate	 size	 is	 small,	 the	
energy	of	the	system	increases	on	the	introduction	of	an	interfacial	misfit	edge	dislocation	
loop.	After	r*	is	exceeded,	the	dislocated	state	is	the	preferred	state.	Hence,	similar	to	the	
case	of	an	epitaxial	film,	the	critical	size	(r*)	can	be	determined	to	be	the	crossover	point	
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FIGURE 5.23
State	of	stress	(σyy	plot)	on	the	growth	of	a	precipitate	30b	in	radius.
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178 Computational Finite Element Methods in Nanotechnology

in	the	energy	versus	radius	of	precipitate	plot.	The	critical	size	(r*)	determined	from	the	
simulations	is	∼32b	(∼80	Å).

5.4.4.2  Precipitation in Nanocrystals

The	following	aspects	come	into	play	when	one	considers	precipitation	in	small	domains	
(nanocrystals):	(1)	the	strain	energy	associated	with	the	coherent	precipitate	is	altered	
with	respect	to	precipitation	in	a	bulk	material,	(2)	the	solute	required	for	the	growth	
of	 the	 precipitate	 may	 be	 limited	 by	 the	 restricted	 amount	 material	 available	 in	 the	
nanocrystal,	(3)	surface	(and	domain)	deformations	may	lead	to	partial	relaxation	of	the	
strain	energy,	and	(4)	heterogeneous	nucleation	of	the	precipitate	may	occur	preferen-
tially	at	the	surface.

Figure	 5.25	 shows	 two	 models	 used	 for	 the	 simulation	 of	 precipitation	 in	 a	 small	
domain.	The	“small”	dimension	 is	 chosen	 to	be	 the	diameter	of	 the	domain	 (while	 the	
height	is	assumed	to	be	long	compared	to	the	diameter).	Sufficient	solute	(Co	in	the	Cu-4	
wt%	Co	system)	is	assumed	to	be	present	in	the	domain	(i.e.,	the	precipitation	process	is	
not	hampered	by	lack	of	solute).	The	stress	state	of	the	system	(plot	of	σyy)	on	growth	of	
precipitate	to	a	radius	of	30b	is	shown	in	Figure	5.26a.	Figure	5.26b	shows	the	deformation	
of	the	domain	in	the	presence	of	the	precipitate.	A	comparison	of	the	energy	of	the	“large”	
domain	with	the	“small”	domain	is	shown	in	Figure	5.27.	It	is	seen	that	the	small	domain	
has	a	lower	energy	as	it	is	able	to	relax	by	domain	deformations.	This	becomes	evident	by	
comparison	of	the	energy	plots	for	the	two	domains	(as	in	Figures	5.25	and	5.22),	which	is	
illustrated	in	Figure	5.27.
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FIGURE 5.24
State	of	stress	(σyy	plot)	on	the	growth	of	a	precipitate	of	radius	35b	in	the	presence	of	an	interfacial	misfit	edge	
dislocation	loop.
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FIGURE 5.25
FEM	used	for	the	simulation	of	a	precipitate	in	a	small	domain:	(a)	with	free	surfaces	and	(b)	with	constrained	
surfaces.
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FIGURE 5.26
Stress	state	(plot	of	σxx)	in	the	presence	of	a	coherent	precipitate	of	30b	radius	in	the	small	domain	(model	as	in	
Figure	5.25a).	Domain	deformations	are	exaggerated	by	a	scale	factor	of	10.
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5.4.5  Improvements

We	have	considered	a	 few	cases,	which	outline	 the	utility	of	finite	element	simulations	
at	 the	nanoscale.	These	simulations	are	based	on	some	assumptions,	and	the	quality	of	
results	can	be	improved	by	using	(1)	less	constraining	assumptions	and	(2)	FEM	in	con-
junction	with	other	techniques	in	a	multiscale	simulation.	Here,	we	list	a	few	of	these	pos-
sible	improvements	(some	of	these	have	been	considered	earlier):

	 1.	 Isotropic	material	parameters	have	been	used	 for	easy	comparison	with	simple	
theoretical	formulae.	Anisotropic	material	properties	should	be	used,	which	can	
be	done	with	ease	in	the	computational	models.

	 2.	Core	of	the	dislocation	has	been	replaced	with	a	linear	elastic	material	of	size	∼b.	
To	 improve	on	 this	model,	 an	elastic	 core	 can	be	assumed	 [66],	or	an	atomistic	
model	of	the	core	can	be	used	to	feed	results	into	the	FEM	model	[67].	Details	of	
the	core	structure	of	interfacial	dislocations	should	also	be	taken	into	account.

	 3.	For	disordered	alloys,	a	linear	interpolation	of	material	properties	has	been	used.	
This	can	be	replaced	by	actual	experimental	measurements	of	the	properties.

	 4.	Bulk	material	properties	have	been	used	in	the	simulations.	Material	properties	
may	 be	 different	 at	 the	 nanoscale	 and	 in	 regions	 close	 to	 the	 surface.	 Hence,	
position-dependent	material	properties	(of	the	nanocrystal)	can	be	used	as	input	
to	improve	the	results	of	the	simulations.

	 5.	 Interfaces	have	been	assumed	to	be	abrupt	and	flat.	Real	interfaces	may	be	diffuse	
and	may	have	their	own	set	of	properties.	Typically,	surfaces	and	internal	interfaces	
are	not	flat	and	have	some	roughness	associated	with	them.	This	could	be	taken	
into	account	by	introducing	appropriate	changes	in	the	simulations.

	 6.	Emphasis	 has	 been	 on	 2D	 simulations	 (plane	 strain	 and	 axi-symmetric),	 to	
illustrate	the	development	of	new	methodologies.	In	specific	cases,	depending	on	
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FIGURE 5.27
Comparison	of	the	energy	of	the	precipitate	in	domains	of	two	sizes	(400b	×	400b	and	40b	×	400b).	The	energy	of	
the	smaller	domain	is	compared	for	the	two	boundary	conditions	as	shown	in	Figure	5.25a	and	b.
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181Simulations of Dislocations and Coherent Nanostructures

the	 parameters	 to	 be	 computed	 and	 level	 of	 accuracy	 required,	 3D	 simulations	
may	have	to	be	used	to	capture	reality.

	 7.	Theory	of	linear	elasticity	has	been	assumed	in	all	the	simulations.	Under	certain	
circumstances,	the	theory	of	nonlinear	elasticity	may	have	to	be	used	[68].

5.5 Conclusions (and Scope for the Future)

FEM	has	proved	to	be	a	powerful	tool	to	perform	simulations	at	the	nanoscale.	A	variety	of	
structures	like	dislocations,	precipitates,	epitaxial	films,	etc.,	can	be	simulated	using	FEM.	
Processes	 can	 also	 be	 simulated	 using	 a	 sequence	 of	 static	 simulations,	 which	 include	
growth	 of	 epitaxial	 films,	 displacement	 of	 edge	 dislocations,	 and	 growth	 of	 coherent	
precipitates.	These	simulations	can	be	used	for	the	computation	of	important	parameters	
like	 image	 force,	 bending	 angle	 of	 thin	 plates	 in	 the	 presence	 of	 an	 edge	 dislocation,	
critical	 size	 for	coherent	 to	semicoherent	 transition	 (in	epitaxial	 interfaces	and	coherent	
precipitates),	etc.	Furthermore,	new	effects	and	phenomena	can	be	discovered	using	the	
finite	 element	 studies,	 which	 include	 “neutral	 equilibrium	 in	 material	 structures”	 and	
“reversible	plastic	deformation	due	to	elasticity.”

The	assumptions	 involved	and	 the	 limitations	of	any	finite	element	numerical	model	
should	 be	 clearly	 stated,	 and	 needless	 to	 say,	 the	 models	 should	 not	 be	 used	 in	 cases	
wherein	the	validity	of	the	simulations	is	questionable.

The	 important	goal	of	finite	element	simulations	at	 the	nanoscale	 is	 to	simulate	entire	
microstructures	and	components	composed	of	these	microstructures.	The	microstructural	
entities	that	need	be	considered	in	a	single	simulate	include	clusters	of	vacancies,	dislocations,	
grain	boundaries,	twins,	precipitates,	voids/cracks,	multiple	phases,	etc.	These	simulations	
are	expected	to	capture	effects	across	various	length	scales.	Further,	the	evolution	of	the	
microstructure	under	external	stimuli	(load,	temperature)	also	needs	to	be	determined.

Appendix 5A: Material Properties Used in the Simulations

Material 
(Structure)

Lattice 
Parameter(s) (Å)

Burgers 
Vector (Å) E (GPa) G (GPa)

Poisson’s 
Ratio (ν)

Al	(FCC) 4.04 2.86 70.57 26.18 0.348
Ni	(FCC) 3.52 2.49 236.63 92 0.286
Nb	(BCC) 3.30 2.86 100 36.23 0.380
Sapphire	
(hexagonal)

a	=	4.76	c	=	12.99 — 390 153.54 0.270

Si	(DC) 5.43 3.84 165.86 68.12 0.218
Ge0.5Si0.5	(DC) 5.545 3.92 150.62 62.25 0.210
Cu	(FCC) 3.61 2.552 197.16 75.3 0.309
Co	(FCC) 3.54 2.503 329.52 129.2 0.275

Source:	 Brandes,	 E.A.,	 ed.,	 Smithells Metals Reference Book,	 Butterworths,	 London,	
U.K.,	1983.
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6.1 Introduction

Self-positioning	is	a	phenomenon	that	occurs	in	structures	which	are	subjected	to	a	strain/
stress	imbalance.	Multilayer	thin	films	consisting	of	different	materials	are	rolled	up	and	
form	nanohinges	and	nanotubes.	Complicated	three-dimensional	(3D)	nanostructures	can	
be	fabricated	by	utilizing	the	self-positioning	phenomenon.	In	this	research,	modeling	of	
the	self-positioning	nanostructures	is	performed	by	the	continuum	mechanics	theory,	the	
finite	element	method	(FEM),	and	the	atomic-scale	FEM	taking	into	account	cubic	crystal	
anisotropy.

The	continuum	mechanics	solution	has	been	derived	for	multilayer	thin	film	structures	
subjected	to	initial	strains	under	generalized	plane	strain	conditions.	The	finite	element	
modeling	 has	 been	 applied	 for	 estimation	 of	 the	 curvature	 radius	 of	 self-positioning	
hinges.	An	atomic-scale	finite	element	procedure	has	been	developed	for	modeling	of	self-
positioning	nanostructures.	The	results	are	compared	with	each	other	through	modeling	
of	bilayer	self-positioning	nanostructures.

6.1.1  Self-Positioning Nanostructures

Fabrication	of	nanoscale	structures	has	attracted	substantial	attention	 for	several	years.	
However,	 fabrication	 and	 manipulation	 of	 nanoscale	 structures	 are	 usually	 difficult	 to	
control.	Simple	and	robust	procedures	for	formation	of	3D	nanostructures	are	desired	for	
designing	smart	integrated	micro-/nano	electromechanical	systems	(MEMS/NEMS).	One	
promising	approach	is	the	method	utilizing	multilayer	structures	with	crystal	lattice	mis-
matching	[1–7].	Figure	6.1	illustrates	a	common	example	of	nanohinge	fabrication.

From	the	bottom,	the	initial	structure	consists	of	a	substrate,	a	sacrificial	layer,	and	lat-
tice	mismatched	layers	(layers	1	and	2).	Multilayer	structures	can	be	grown	on	substrates	
using	techniques	such	as	the	molecular	beam	epitaxy	or	the	chemical	vapor	deposition.	
After	selective	etching	of	the	sacrificial	layer,	lattice	mismatched	layers	are	released	from	
the	substrate	and	a	rolled-up	nanostructure	is	fabricated.	For	epitaxially	grown	samples,	
typical	source	of	the	deformation	is	crystal	lattice	mismatching	strains	in	different	mate-
rial	layers	(Figure	6.2).

In	 the	 rolled-up	structures,	 the	main	 structural	parameter	of	 interest	 is	 the	 radius	of	
curvature	because	the	final	shape	and	strains	in	the	equilibrium	state	can	be	expressed	
through	 this	 parameter	 according	 to	 the	 continuum	 mechanics	 theory.	 Researchers	
have	devoted	extensive	efforts	 for	 investigation	of	characteristics	of	 the	self-positioning	

6.6	 Comparison	of	Continuum	Mechanics	Solution	with	FEM	........................................223
6.7	 Comparison	of	Continuum	Mechanics	Solutions	with	AFEM	Results	..................... 226
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6.7.3	 Effects	of	Material	Anisotropy	on	the	Curvature	Radius	................................229
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6.8	 Conclusion	..........................................................................................................................235
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187Continuum and Atomic-Scale FE Modeling of Nanostructures

structures.	For	example,	several	experimental	studies	have	been	performed	which	inves-
tigate	 growth	 temperature	 and	 surface	 oxidation	 effects	 on	 crystalline	 structures	 and	
curvature	 radius	 [8],	 crystalline	 structures	 by	 x-ray	 microbeam	 diffraction	 [9],	 effect	 of	
surface	oxidation	on	deformations	[10],	and	probing	of	residual	strains	by	μ-Raman	spec-
troscopy	[11,12].	The	curvature	radius	of	self-positioning	structures	can	be	controlled	by	
selecting	material	properties,	crystal	orientations,	layer	thicknesses,	and	atomic	arrange-
ments.	There	are	many	potential	applications	of	the	rolled-up	nanostructures	[13,14].	Self-
positioning	hinged	 structures	 can	be	used	as	 self-folding	 membranes	 for	 fabrication	 of	
3D	nanoscale	structures	like	origami	(Japanese	paper	craft	work)	[15–17].	Applications	of	
the	self-positioning	nanostructures	are	still	under	progress,	but	several	applications	have	
already	been	developed.	For	example,	nanotubes	to	convey	liquid	of	reservoirs	for	on-chip	
fluid	dynamics	simulations	[18],	optical	ring	resonators	[19,20],	electromechanical	sensors	
[21],	electrochemical	capacitors	[15],	and	on-chip	microtube	refractometers	[22]	have	been	
developed.	Self-positioning	hinges	can	be	used	for	fabrication	of	3D	cubes	(can	be	utilized	
as	microcontainers)	[23,24]	and	3D	sensors	[25].	An	experimental	investigation	has	discov-
ered	that	the	Si/SiGe	microtubes	are	extremely	flexible	and	free	from	plastic	deformation	
even	when	it	has	been	bent	180°	or	more	[26].	Advances	in	the	fabrication	technology	of	
rolled-up	nanostructures	[19,27–30]	will	allow	development	of	other	potential	applications.

Analytical	 continuum	 mechanics	 and	 computational	 modeling	 are	 essential	 to	
explore	 characteristics	 of	 the	 self-positioning	 nanostructures	 to	 support	 development	
of	practical	nanodevices.	Especially,	computational	modeling	is	vital	for	understanding	

Layer 2
Layer 1

Sacrificial layer

Substrate
x (length)

z (width)

y (thickness)

Releasing
Selective
etching

FIGURE 6.1
Fabrication	procedure	of	rolled-up	nanohinges.	In	this	example,	the	lattice	period	of	layer	1	material	is	larger	
than	that	of	layer	2.

Layer 2 crystal lattice period

Layer 1 crystal lattice period
Deposition of layer 2 on layer 1

(techniques such as the molecular
beam epitaxy)

Self-positioning due to crystal
lattice mismatching strains

FIGURE 6.2
An	explanation	of	the	self-positioning	due	to	crystal	lattice	mismatching.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
31

 0
3 

M
ar

ch
 2

01
6 



188 Computational Finite Element Methods in Nanotechnology

characteristics	 of	 rolled-up	 nanostructures.	 However,	 only	 a	 few	 examples	 of	 com-
putational	 modeling	 can	 be	 found.	 In	 this	 chapter,	 we	 present	 continuum	 mechanics	
solutions,	a	finite	element	algorithm,	and	an	atomic-scale	finite	element	procedure	for	
modeling	of	self-positioning	nanostructures	taking	into	account	their	anisotropic	prop-
erties.	The	continuum	mechanics	solution	is	derived	under	the	conditions	of	generalized	
plane	 strain.	 The	 conventional	 FEM	 has	 been	 performed.	 The	 atomic-scale	 finite	 ele-
ment	procedure	has	been	developed	based	on	the	Tersoff–Nordlund	interatomic	poten-
tial	model	for	atomic-scale	analysis	of	self-positioning	nanostructures.	The	atomic-scale	
finite	element	procedure	is	applied	to	investigation	of	size	and	material	crystal	orienta-
tion	effects	on	the	self-positioning.

6.1.2  Previous Works

Since	 rolled-up	 nanostructures	 were	 introduced	 [1–6],	 researchers	 investigated	 their	
properties	 and	 some	 ways	 for	 development	 of	 practical	 applications.	 Also,	 analytical	
and	 computational	 modeling	 has	 been	 performed	 for	 estimating	 deformations	 of	 self-
positioning	nanostructures.	Several	continuum	mechanics	solutions	are	derived	based	on	
elasticity	theories	for	estimation	of	structure	deformations.	Computational	FEM	has	been	
performed	for	more	flexible	and	detailed	analyses.

A	closed-form	solution	has	been	applied	 for	multilayer	 structures	under	plane	 stress	
conditions	[31].	The	solution	corresponds	to	structures	that	have	small	width,	and	hence	
the	z	stress	component	is	assumed	to	be	zero	(definition	of	axes	is	shown	in	Figure	6.1).	
However,	this	solution	is	not	appropriate	for	estimation	of	curvature	radius	for	structures	
that	 have	 considerable	 width.	 Another	 solution	 has	 been	 obtained	 under	 plane	 strain	
conditions	 [32].	The	solution	 is	derived	 for	structures	 that	have	 large	widths	and	bend-
ing	constraint	in	one	direction	assuming	that	z	component	of	total	strain	is	zero.	This	is	
a	 reasonable	 idealization	 in	some	cases	since	 the	width	of	self-positioning	structures	 is	
typically	large	compared	to	the	structure	thickness.	There	is	another	closed-form	solution	
based	on	strain	energy	minimization	[33].	Recently,	this	approach	has	been	extended	for	
ultra-thin	films	[34,35]	by	modifying	classical	Stoney	and	Timoshenko	formula	for	bend-
ing	of	bilayer	films	[36,37].	The	solution	includes	surface	stress	effects	in	the	classical	the-
ory.	However,	it	is	still	possible	to	improve	the	assumptions	since	structures	can	deform	
in	the	width	direction	as	long	as	displacement	is	not	restricted	by	other	objects.	In	order	to	
obtain	a	new	solution	under	more	realistic	assumptions,	we	considered	a	solution	under	
generalized	plane	strain	conditions	[38].	The	generalized	plane	strain	solution	allows	pres-
ence	of	the	strain	in	z	direction.

Computational	FEM	has	also	been	performed	to	estimate	curvature	radius	of	structures	
with	more	realistic	details	[39].	The	self-positioning	problem	is	formulated	as	a	geometri-
cally	nonlinear	finite	element	problem	with	assumptions	that	rotational	and	translational	
displacements	are	large	but	strains	are	sufficiently	small.	Analysis	shows	that	the	curva-
ture	radius	predicted	by	the	computational	FEM	yields	plane	stress	and	plane	strain	solu-
tions	for	extreme	cases	(small	and	large	widths,	respectively)	and	intermediate	curvature	
radius	values	for	intermediate	widths.	Typically,	semiconductor	materials	such	as	GaAs	
and	 InAs	 are	 used	 for	 fabrication	 of	 self-positioning	 structures.	 These	 materials	 imply	
material	anisotropy	depending	on	crystal	orientations.	We	developed	a	finite	element	pro-
cedure	 for	 modeling	 effects	 of	 the	 material	 anisotropy,	 and	 the	 results	 were	 compared	
with	experimental	data	[40].

Advances	 in	 computers	 and	 atomic-scale	 computational	 algorithms	 allow	 us	 to	 deal	
with	hundreds	of	 thousands	of	atoms	 [41].	Several	finite	element	algorithms	have	been	
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189Continuum and Atomic-Scale FE Modeling of Nanostructures

developed	for	multiscale	computational	analysis	[42–46].	The	molecular	dynamics	(MD)	
simulation	has	been	applied	for	investigation	of	the	ultra-thin	rolled-up	nanotubes	[47].	
However,	small	time	steps	should	be	selected	for	the	MD	to	maintain	simulation	stability,	
and	thus	it	is	a	formidable	task	to	simulate	atomic	systems	consisting	of	large	amount	of	
atoms.	Furthermore,	a	damping	force	or	averaging	of	atomic	positions	during	some	time	
period	is	necessary	to	determine	the	final	equilibrium	configuration	of	atoms	if	the	MD	
is	used.	Therefore,	we	consider	that	the	AFEM	[42,43]	is	more	suitable	for	modeling	quasi-
static	nanostructures.	We	developed	an	atomic-scale	computational	procedure	for	analysis	
of	self-positioning	nanostructures	[48–50].	The	AFEM	is	appropriate	to	find	static	equilib-
rium	configuration	of	atoms	using	the	total	energy	minimization.

6.2. Continuum Mechanics Solutions

Continuum	 mechanics	 solutions	 are	 derived	 under	 the	 ordinary	 and	 the	 generalized	
plane	strain	conditions	taking	into	account	material	anisotropy.	The	material	anisotropy	
is	characterized	by	 the	orientation	angle	of	cubic	crystal	structures.	The	solutions	are	
obtained	by	 transforming	the	constitutive	matrix	with	respect	 to	 the	specified	crystal	
orientation.

6.2.1  Transformation of Constitutive Matrix

For	linear	elastic	materials,	the	constitutive	relations	are	described	by	the	following	gen-
eralized	Hooke’s	law:

	 σ εij ijkl kl
eC= 	 (6.1)

where
σij	is	the	stress	tensor
Cijkl	is	the	fourth	order	elasticity	tensor
εkl

e 	is	the	elastic	fraction	of	strain	tensor

Taking	into	account	symmetry	of	the	tensors,	relation	(6.1)	can	be	simplified	in	the	follow-
ing	matrix–vector	form:

	 { } [ ]{ }.σ ε= C e 	 (6.2)

Here,	the	stress	vector	contains	independent	components	of	the	stress	tensor

	 { } { , , , }σ σ σ σ σ σ σT
x y z xy yz zx= , , 	 (6.3)

and	the	strain	vector	comprises	elastic	strains	expressed	through	total	strain	components	
and	initial	strains:

	 { } { , , , , , }ε ε ε ε ε ε ε ε ε εe T
xx yy zz xy yz zx= − − −0 0 0 	 (6.4)
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190 Computational Finite Element Methods in Nanotechnology

Initial	strain	ε0	is	induced	by	the	crystal	lattice	mismatching	or	thermal	effects.	For	cubic	
crystals,	the	constitutive	matrix	[C]	is	expressed	through	three	independent	material	con-
stants	C11,	C12,	and	C44	as	follows:

	

[ ]C

C C C

C C C

C C C

C

C

C

=

























11 12 12

12 11 12

12 12 11

44

44

44



. 	 (6.5)

The	original	constitutive	matrix	[C]	is	related	to	the	coordinate	system	xi,	axes	of	which	
coincide	 with	 the	 crystallographic	 orientations	 [100],	 [010],	 and	 [001].	 The	 constitutive	
matrix	can	be	transformed	into	another	coordinate	system	x′i	using	the	following	matrix	
multiplications:

	 [ ’] [ ][ ][ ]C K C K T= 	 (6.6)

where	the	transformation	matrix	[K]	is	composed	of	four	3	×	3	matrices

	
[ ]

( ) ( )

( ) ( )K
K K

K K
=











1 2

3 4

2
	 (6.7)

	 Kij ij
( )1 2= α 	 (6.8)

	 Kij ij i j
( )

mod( , )
2 2

1 3
2= +α α 	 (6.9)

	 Kij ij i j
( )

mod( , )
3 2

1 3
2= +α α 	 (6.10)

	 Kij ij i j i j i j
( )

mod( , )mod( , ) mod( , ) mod( , )
4

1 3 1 3 1 3 1 3= ++ + + +α α α α 	 (6.11)

Here,	1	≤	i,	j	≤	3;	mod(i,	3)	is	the	modulo	function	which	returns	the	remainder	of	i	divided	
by	3;	and	αij	is	a	direction	cosine	between	the	original	and	the	transformed	material	coor-
dinate	systems	as	follows

	 α ij i jx x= ′ ⋅ 	 (6.12)

where	dot	indicates	the	vector	inner	product.
Suppose	 that	 the	 crystal	 orientation	 of	 multilayer	 structures	 is	 characterized	 by	 the	

rotation	angle	θ	as	shown	in	Figure	6.3.	Axes	x′	and	z′	correspond	to	the	length	and	the	
width	directions	of	the	structure,	and	axis	y	is	normal	to	layer	planes.	The	structure	is	bent	
around	z′	axis	due	to	displacement	constraints.	Directions	of	the	coordinate	axes	x′	and	z′	
can	be	different	from	the	crystallographic	axes	x	([100])	and	z	([001]).

Transformation	from	the	original	coordinate	system	(xyz)	to	the	material	coordinate	sys-
tem	(x′y′z′)	can	be	performed	by	rotation	around	the	y-axis.	Relations	(6.7)	through	(6.11)	
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191Continuum and Atomic-Scale FE Modeling of Nanostructures

and	direction	cosines	(6.12)	lead	to	the	transformation	matrix	[K]	for	rotation	around	the	
y-axis	as	follows:

	

[ ]

cos sin cos sin

sin cos cos sin
cos sin
sin c

K =

−

−

2 2

2 2

2
1

2

θ θ θ θ

θ θ θ θ
θ θ
θ oos

cos sin cos sin cos sin

.

θ
θ θ θ θ θ θ− −

























2 2

	 (6.13)

Substituting	the	original	elasticity	matrix	(6.5)	and	the	transformation	matrix	(6.13)	 into	
Equation	 6.6,	 the	 elasticity	 matrix	 [C′]	 for	 the	 crystal	 orientation	 with	 angle	 θ	 can	 be	
obtained

	

[ ]′ =

′ ′ ′

′ ′ − ′

′ − ′

C

C C C C

C C C

C C C C

C

C

C C

11 12 13 16

12 11 12

13 12 11 16

44

44

16 116 44′

























C

. 	 (6.14)

x: (100)

x΄

z΄ (bending axis)

z: (001)

θ

FIGURE 6.3
Original	coordinate	axes	x,	y,	and	z	are	aligned	to	the	crystallographic	axes	[100],	[010],	and	[001].	The	coordinate	
axis	z′	coincides	with	the	bending	axis	of	the	self-positioning.
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192 Computational Finite Element Methods in Nanotechnology

where

	
′ = + + + − −{ }C C C C C C C11 11 12 44 11 12 44

1
4

3 2 2 4( )cos ,θ 	 (6.15)

	
′ = + − − − −{ }C C C C C C C13 11 12 44 11 12 44

1
4

3 2 2 4( )cos ,θ 	 (6.16)

	
′ = − −C C C C16 11 12 44

1
4

2 4( )sin ,θ 	 (6.17)

	
′ = − + − − −{ }C C C C C C C44 11 12 44 11 12 44

1
4

2 2 4( )cos .θ 	 (6.18)

It	 can	be	seen	 that	angular	dependence	of	material	properties	 is	 characterized	by	coef-
ficient	 (C11−C12−2C44)	multiplied	by	cos	4θ	or	 sin	4θ.	For	 isotropic	materials,	 constitutive	
matrix	components	are	equal	to

	

C

C

C

11

12

44

2= +

=

=

λ µ

λ

µ

	 (6.19)

where	λ	and	μ	are	Lame’s	constants.	Substitution	of	(6.19)	produces	(C11−C12−2C44)	=	0	and,	
naturally,	leads	to	angular	independence	of	elastic	properties	for	isotropic	materials.

6.2.2  Generalized Plane Strain Solution

The	generalized	plane	strain	solution	has	been	derived	for	multilayer	structures,	which	
is	characterized	by	zero	total	force	in	the	bending	axis	direction	[38].	The	solution	can	be	
obtained	for	anisotropic	multilayer	structures	using	the	transformed	constitutive	matrix	
characterized	by	direction	of	cubic	crystals	[51].	Let	us	consider	an	elastic	multilayer	struc-
ture	shown	in	Figure	6.4	under	the	generalized	plane	strain	condition.

The	structure	consists	of	n	layers	of	cubic	crystal	material	with	thickness	ti,	where	i	=	1,	
2,	…,	n	from	the	bottom.	Under	the	plane	section	assumption,	the	structure	deforms	with	
zero	shear	strains,	and	thus	coefficient	C′16	is	not	important	in	the	transformed	elasticity	
matrix	(6.14).

Taking	into	account	that	the	stress	σy	is	zero,	Hooke’s	law	is	rewritten	as	follows:

	 σ ε ε εx x zE G E G= ′ + ′ − ′ + ′( ) ,0 	 (6.20)

	 σ ε ε εz x zG E E G= ′ + ′ − ′ + ′( ) 0 	 (6.21)

where

	
′ = ′ −

E
C C C

C
11 11 12

2

11

	 (6.22)
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193Continuum and Atomic-Scale FE Modeling of Nanostructures

and

	
′ = ′ −

G
C C C

C
11 13 12

2

11
	 (6.23)

For	isotropic	materials,	these	constants	are	expressed	through	the	Young’s	modulus	E	and	
the	Poisson’s	ratio	ν

	
′ =

−
E

E
1 2ν

	 (6.24)

and

	
′ =

−
= ′G

E
E

ν
ν

ν
1 2 	 (6.25)

Under	the	plane	section	assumption,	the	strain	εx	can	be	expressed	as	a	linear	function	of	
the	local	y	coordinate

	
εx bc

y y
R

= + −
	 (6.26)

where
c	is	the	uniform	strain	component
yb	is	the	y	level	where	the	bending	component	of	strain	is	zero
R	is	the	curvature	radius	which	is	the	reciprocal	of	curvature	K

In	the	generalized	plane	strain	conditions,	the	total	strain	εz	is	equal	to	an	unknown	con-
stant	d:

	 εz d= 	 (6.27)

Layer n tn
tn– 1

t2
t1

Layer n– 1
...

...

Layer 2
Layer 1

yn
yn– 1
yn–2

y2

y1
y0

z΄ (width)

x΄ (length)

y (thickness): (010)

FIGURE 6.4
Multilayer	structure	and	definition	of	its	directions	and	axes.	Axis	z′	coincides	with	the	bending	axis	of	the	
self-positioning.
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194 Computational Finite Element Methods in Nanotechnology

The	total	strain	εy	can	be	expressed	through	other	total	strain	components	εx	and	εz:

	
ε ε ε ε εy x z

C
C

= − + − +12

11

0 02( ) 	 (6.28)

It	is	convenient	to	rewrite	the	stresses	σx	(6.20)	and	σz	(6.21)	using	the	expressions	for	strains	
(6.26)	and	(6.27):

	
σ εx

bE c
y y
R

G d E G= ′ + −



 + ′ − ′ + ′( ) ,0 	 (6.29)

	
σ εz

bG c
y y
R

E d E G= ′ + −



 + ′ − ′ + ′( ) ,0 	 (6.30)

Relations	(6.29)	and	(6.30)	are	used	to	construct	the	following	equilibrium	equations	under	
the	generalized	plane	strain	conditions.

Force	due	to	bending	fraction	of	stress	σx:

	

′ − =
−

∫∑
=

E y y
R

dyi b

y

y

i

n

i

i

( )
;

1

0
1

	 (6.31)

Force	due	to	uniform	fraction	of	stress	σx:

	
t E c G d E Gi

i

n

i i i i i

=
∑ ′ + ′ − ′ + ′( )  =

1

0 0ε ; 	 (6.32)

Bending	moment	created	by	the	normal	stress	σx	with	respect	to	bending	axis	z′:

	

′ + −





+ ′ − ′ + ′( )







 − =

−

∫ E c
y y
R

G d E G y y dyi
b

i i i i

y

y

b

i

i

ε0

1

0( ) ;
ii

n

=
∑

1
	 (6.33)

Total	force	in	z-direction:

	

′ + −





+ ′ − ′ + ′( )







 =

−

∫∑
=

G c
y y
R

E d E G dyi
b

i i i i

y

y

i

n

i

i

ε0

1 1

0; 	 (6.34)

Parameter	yb	is	directly	obtained	from	the	equilibrium	equation	(6.31):

	

y
E t y y

E t
b

i i i i
i

n

i i
i

n=
′ −

′

−
=

=

∑
∑

( )1
1

1
2

	 (6.35)
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195Continuum and Atomic-Scale FE Modeling of Nanostructures

The	other	parameters	c,	d,	and	K	=	1/R	are	obtained	from	the	following	equation	system:

	

a a

a a a

a a a

c

d

K

b

b

b

11 12

21 22 23

31 32 33

1

2

3

0































=


. 











, 	 (6.36)

	

a a E t

a a G t

a E t y y

a a

i i

i i

i i i
m

b

11 32

12 31

21

22 33

= = ′

= = ′

= ′ −( )
= = ′

∑
∑

∑

,

,

,

GG t y y

a E t y y y y y y

i i i
m

b

i i i
m

i i b i
m

b

−( )

= ′ ( ) − − −( )





∑
−

,

23
2

1
1
3

4 3 2 

= = ′ + ′( )

= ′ + ′( ) −( )

∑
∑

∑

,

,

,

b b E G t

b E G t y y

i i i i

i i i i i
m

b

1 3
0

2
0

ε

ε

and

	 (6.37)

where	 y y yi
m

i i( )/= + +1 2 .
Equation	system	(6.36)	leads	to	the	generalized	plane	strain	solution	for	anisotropic	mul-

tilayer	structures	composed	of	materials	with	the	cubic	crystal	symmetry

	

c
t E G G d

E t

i
i

n

i i i i

i i

=
′ + ′( ) − ′ 

′
=∑

∑
1

0ε
, 	 (6.38)

	
d

a a a b a b a b a
a a a a a a a

= − − −
− − −

( ) ( )
( )

12 11 23 1 21 1 11 2 22

11 22 12 21 22 12
2

111
2

23( )a , 	 (6.39)

	

K
R

t y y y E c E G G d

E t

i
i

n

i i b i i i i i

i

= = −
+ − ′ − ′ + ′( ) − ′ 

′
=

−∑1 3 2

2

1
1

0( ) ε

ii
i

n

i i i i b i i by y y y y y y y
=

− − −∑ + + − + − 1

2
1 1

2
13 ( )

, 	 (6.40)

where	yb	is	defined	by	Equation	6.35.
For	bilayer	structures	(n	=	2),	the	expression	for	curvature	K	is	reduced	to

	
K

t t t t E E G E E G E G E
= −

+ ′ ′ + ′( ) − ′ ′ + ′( ) + ′ ′ − ′ ′6 1 2 1 2 2 1 1 1
0

1 2 2 2
0

1 2 2( ) ε ε GG d

E t E t E E t t t t t t
1

1
2
1
4

2
2

2
4

1 2 1 2 1
2

2
2

1 22 2 2 3

( ) 
′ + ′ + ′ ′ + +( ) , 	 (6.41)
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The	positive	curvature	or	curvature	radius	corresponds	to	the	multilayer	structure	bending	
downward	in	the	positive	y-direction.

6.2.3  Generalized and Ordinary Plane Strain Solutions

A	curvature	estimate	for	multilayer	systems	under	the	ordinary	plane	strain	conditions	is	
obtained	as	follows	if	the	value	d	=	εz	is	zero	in	Equations	6.38	and	6.40:

	

c
t E G

E t
PS

i
i

n

i i i

i i

=
′ + ′( )
′

=∑
∑
1

0ε
, 	 (6.42)

	

K
t y y y E c E G

E t
PS

i i i b
i

n

i PS i i i

i i
i

= −
+ − ′ − ′ + ′( ) 

′

−
=

=

∑3 2

2

1
1

0

1

( ) ε
nn

i i i i b i i by y y y y y y y∑ + + − + − − − −
2

1 1
2

13 ( )
, 	 (6.43)

Therefore,	a	curvature	estimate	is	derived	for	bilayer	systems	under	the	ordinary	plane	
strain	condition:

	
K

t t t t E E G E E G

E t
PS = −

+ ′ ′ + ′( ) − ′ ′ + ′( ) 
′

6 1 2 1 2 2 1 1 1
0

1 2 2 2
0

1
2
1

( ) ε ε
44

2
2

2
4

1 2 1 2 1
2

2
2

1 22 2 2 3+ ′ + ′ ′ + +( )E t E E t t t t t t
, 	 (6.44)

In	bilayer	systems,	the	relative	difference	of	the	curvature	given	by	the	generalized	plane	
strain	solution	KGPS	(6.41)	and	the	ordinary	one	KPS	(6.44)	is

	

K K
K

E G E G
E E G E E G

dGPS PS

PS

− = − ′ ′ − ′ ′
′ ′ + ′( ) − ′ ′ + ′( )

1 2 2 1

2 1 1 1
0

1 2 2 2
0ε ε

,, 	 (6.45)

Therefore,	 the	 relative	 difference	 between	 the	 generalized	 plane	 strain	 solution	 and	
the	ordinary	plane	strain	solution	is	determined	by	the	value	of	the	transverse	strain	d,	
material	properties,	and	lattice	mismatching	strains.

6.3 Finite Element Modeling

The	FEM	is	successfully	applied	in	various	fields	of	science	and	engineering,	especially	
in	the	field	of	structural	mechanics.	A	geometrically	nonlinear	finite	element	procedure	
is	 developed	 for	 modeling	 the	 self-positioning	 nanostructures	 with	 effects	 of	 material	
anisotropy.	 It	 is	 assumed	 that	 rotational	 and	 translational	 displacements	 are	 large,	 but	
strains	are	sufficiently	small.

6.3.1  Finite Element Equation System

There	are	many	finite	element	 formulations	 for	geometrically,	materially	nonlinear	and	
coupled	 nonlinear	 problems	 [52–61].	 In	 finite	 element	 procedures,	 displacements	 are	
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197Continuum and Atomic-Scale FE Modeling of Nanostructures

obtained	as	a	solution	of	a	linear	equation	system.	In	self-positioning	structures,	large	rota-
tional	displacements	are	involved	during	deformation.	Problems	with	large	deformations	
are	known	as	geometrically	nonlinear	problems.	In	order	to	simulate	nonlinear	displace-
ments,	finite	element	equation	systems	are	constructed	with	respect	to	displacement	incre-
ment	at	each	current	configuration.	In	our	modeling,	the	geometrically	nonlinear	problem	
is	formulated	by	assuming	(1)	rotational	and	translational	displacements	are	large,	but	(2)	
strains	are	small.	In	order	to	obtain	reasonable	approximation	of	the	nonlinear	displace-
ments,	incremental	decomposition	of	loading	is	necessary.	Our	approach	to	modeling	of	
geometrically	nonlinear	structures	 is	based	on	the	updated	Lagrangian	formulation.	 In	
the	updated	Lagrangian	 formulation,	 the	global	finite	element	equation	system	for	dis-
placement	increments	has	the	following	appearance:

	
t t t t t tK u f r h∆ ∆ ∆= − ++ + 	 (6.46)

where
tK	is	the	global	stiffness	matrix	at	current	time	t
Δu	is	the	nodal	displacement	increment	vector
t+Δtf	is	the	external	load	vector	for	nodes
tr	is	the	internal	force	vector	at	nodes
t+Δth	 is	 the	fictitious	 force	vector	at	nodes	which	 is	used	 for	modeling	of	 initial	 strain	

influence

The	global	finite	element	equation	system	is	constructed	as	assemblage	of	equation	sys-
tems	for	all	finite	elements.	The	finite	element	equation	at	the	element	level	has	similar	
appearance

	
t

e e
t t

e
t
e

t t
eK u f r h∆ ∆ ∆= − ++ + 	 (6.47)

where
tKe	is	the	element	tangent	stiffness	matrix	at	time	t
Δue	is	the	nodal	displacement	increment	vector
t+Δtfe	is	the	load	vector	at	time	t	+	Δt
tre	is	the	vector	of	nodal	internal	forces	that	corresponds	to	stress	state	at	time	t
t+Δthe	is	the	fictitious	force	vector	at	time	t	+	Δt	due	to	initial	strains

In	the	finite	element	formulation,	displacement	boundary	conditions	are	not	satisfied	dur-
ing	derivation	of	the	equations.	Because	of	this,	displacement	boundary	conditions	should	
be	implemented	after	assembly	of	finite	element	equations	into	the	global	equation	system.

6.3.2  Stiffness Matrix

In	 updated	 Lagrangian	 formulation	 for	 geometrically	 nonlinear	 problems,	 the	 element	
tangent	stiffness	matrix	 tKe	consists	of	the	linear	component	 tKl	and	the	nonlinear	addi-
tion	tKnl	due	to	stresses	[56]:

	
t

e
t

l
t

nlK K K= + 	 (6.48)
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198 Computational Finite Element Methods in Nanotechnology

The	virtual	displacement	and	the	potential	energy	minimization	lead	to	an	equation	for	
calculation	of	the	linear	component	of	element	tangent	stiffness	matrix	as	follows:

	

t
l m

T

V

n

t

dVK B CB= ∫ 	 (6.49)

where
B	is	the	displacement	differentiation	matrix
C	is	a	constitutive	matrix	which	is	sometimes	referred	to	as	the	elasticity	matrix
tV	is	the	current	volume

The	combination	of	unknown	variables	with	interpolation	functions	at	nodes	can	be	used	
to	create	continuous	fields:

	

x N xi j

j

m

i
j( , , ) ( , )ξ η ζ ξ η ζ=

=
∑

1

, 	 (6.50)

where
xi	is	the	variable	along	ith	axis	at	local	coordinates	ξ,	η,	ζ
xi
j	is	the	nodal	value	of	a	quantity	at	the	jth	element	node

Nj	is	an	interpolation	function	called	the	shape	function	in	the	FEM
m	is	the	number	of	nodes	in	an	element	

Derivatives	of	the	variable	field	are	obtained	by	differentiated	interpolation	functions	and	
unknown	variables	at	nodes.	In	3D	finite	element	analyses,	the	displacement	differentiation	
matrix	for	local	node	number	i	can	be	written	as	follows:
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. 	 (6.51)

Mechanical	properties	of	materials	are	characterized	by	elastic	material	properties.	The	
elasticity	matrix	denotes	relation	between	stresses	and	strains,	and	in	the	3D	case,	it	has	
the	following	appearance	for	isotropic	linear	elastic	materials:

	

C =
+



























λ µ λ λ
λ λ µ λ
λ λ λ µ

µ
µ

µ

+2
+2

2
. 	 (6.52)
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199Continuum and Atomic-Scale FE Modeling of Nanostructures

where	λ	and	μ	are	Lame’s	constants.	In	3D	analyses,	the	constants	can	be	expressed	through	
the	elasticity	modulus	E	and	the	Poisson’s	ratio	ν:

	

λ ν
ν ν

µ
ν

=
+ −

=
+

E

E

( )( )

( )
.

1 1 2

2 1

	 (6.53)

Since	matrices	B	and	C	 involve	zeros,	coefficients	of	the	element	stiffness	matrix	 tKl	are	
written	as	follows	after	multiplication	of	three	matrices	in	Equation	6.49:
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	 (6.54)

where
m,	n	are	local	node	numbers
i,	j	are	indices	related	to	coordinate	axes	(x1,	x2,	x3)	=	(x,	y,	z)
Nm	are	nodal	shape	functions	depending	on	local	natural	coordinates	ξ,	η,	and	ζ

Cyclic	rule	is	used	in	the	previous	equation	if	coordinate	indices	become	greater	than	3.	
The	element	stiffness	matrix	consists	of	linear	and	nonlinear	components	as	in	Equation	
6.48.	Coefficients	of	the	nonlinear	element	stiffness	matrix	Knl	are	given	as	follows:

	

t
nl

ij

mn t
kl

m
t

k

n
t

l
ij

t

N
x

N
x

dV
V

K( ) = ∂
∂

∂
∂∫ σ δ 	 (6.55)

where
tσkl	are	Cauchy	stress	components	in	the	global	coordinate	system
δij	is	the	Kronecker	delta	symbol

The	repeated	indices	k	and	 l	 in	 the	right-hand	side	 imply	summation	over	x1	 to	x3.	The	
global	stiffness	matrix	is	obtained	as	assemblage	of	the	element	stiffness	matrices.	Shape	
functions	 are	 defined	 in	 the	 local	 coordinate	 system	 ξ,	 η,	 and	 ζ.	 Derivatives	 of	 shape	
functions	 with	 respect	 to	 global	 coordinates	 are	 obtained	 through	 transformation	 of	
derivatives	of	shape	function	N	with	respect	to	local	coordinates	by	Jacobian	matrix.

6.3.3  Load Vector

The	global	 load	vectors	are	assembled	of	element	 load	vectors.	Components	of	element	
external	load	vector	t+Δtf	are	calculated	as	follows:

	

t t

i

m
m
t t

t

i
V

m
t t

S

i
SN p dV N p dS

V

+ + +( ) = +∫ ∫∆ ∆ ∆f 	 (6.56)

where
Nm	is	the	shape	function	at	a	node	with	local	node	number	m
piV	 and	 piS	 are	 ith	 components	 of	 nodal	 equivalents	 of	 volume	 and	 surface	 loads,	

respectively
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200 Computational Finite Element Methods in Nanotechnology

After	 deformation	 of	 structures,	 the	 internal	 force	 appears	 due	 to	 stresses.	 The	 nodal	
internal	force	tr	is	calculated	by	integration	of	the	Cauchy	stress	components	σik:

	

t

i

m
ik

t

m
t

k
V

N
x

dVr( ) = ∂
∂∫ tσ . 	 (6.57)

Equilibrium	state	is	achieved	if	the	internal	force	vector	and	the	external	force	vector	are	
balanced	over	the	whole	structure.	Another	loading	vector	t+Δth	is	calculated	for	modeling	
of	fictitious	forces	due	to	initial	strains	as	follows:

	

t t m
m
T

t

t

V

dV+( ) = ∫∆ h B Ce 	 (6.58)

where	εt	is	the	vector	of	initial	strains	or	thermal	loading.	For	example,	assuming	that	the	
thermal	expansion	coefficient	is	α	and	temperature	is	T,	the	components	of	εt	are

	 et T T= { , , , , }.α α αT, 0 0 0 	 (6.59)

The	 fictitious	 force	 due	 to	 the	 initial	 strains	 can	 be	 modeled	 by	 substituting	 the	 initial	
strains	value	instead	of	thermal	loading	vector.	Suppose	that	the	initial	strains	are	ex

0,	ey
0,	

and	ez
0
	in	each	global	coordinate	direction.	Then,	the	vector	εt	is

	
et x y z= { }ε ε ε0 0 0 0 0 0, , , , , . 	 (6.60)

6.3.4  Stress Update

The	Cauchy	or	true	stress	is	used	in	the	updated	Lagrangian	formulation	of	the	FEM	for	
the	solution	of	geometrically	nonlinear	problems	with	small	strains.	Incremental	decom-
position	 of	 stresses	 and	 strains	 provides	 the	 following	 relation	 for	 the	 Cauchy	 stress	
update	[57]:

	
t t

ij
t

ij ijkl
t t

klC e+ += +∆ ∆ ∆σ σ . 	 (6.61)

where
Cijkl	=	λδijδkl	+	μ(δikδjl	+	δilδjk)	is	the	constitutive	tensor
t+ΔtΔekl	 is	 the	 Almansi	 strain	 increment	 which	 relates	 the	 previous	 length-increment	

vector	to	the	current	length-increment	vector

Incremental	Almansi	strain	components	are	defined	as	follows:

	

t t
kl

i

j

j

i
e

u
x

u
x

+ = ∂
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+
∂
∂







∆ ∆ ∆ ∆1

2
. 	 (6.62)

Here,	Δu	is	the	displacement	increment	vector	that	determines	the	next	position	from	the	
current	 position.	 Derivatives	 of	 the	 displacement	 increment	 with	 respect	 to	 the	 global	
coordinates	can	be	performed	as	follows:
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where	J	is	the	Jacobian	matrix.

6.3.5  Finite Element

Finite	element	discretization	is	performed	by	dividing	a	structure	into	some	reasonable	set	
of	finite	elements.	We	used	the	20-node	hexahedral	serendipity	element	for	discretization	of	
3D	self-positioning	nanostructures.	The	20-node	hexahedral	element	is	shown	in	Figure	6.5.

In	the	20-node	hexahedral	element,	interpolation	in	a	local	region	is	performed	by	tri-
quadratic	shape	functions.	Each	shape	function	has	properties	that	Ni(ξ,	η,	ζ)	=	1	at	ξi,	ηi,	
and	ζi,	but	zero	at	other	nodes.	Suppose	that	the	local	node	numbers	are	assigned	as	shown	
in	Figure	6.5a.	Then	the	shape	functions	Ni	can	be	written	as	follows:
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FIGURE 6.5
(a)	The	20-node	hexahedral	element	in	the	physical	space	with	node	numbering.	There	may	be	different	shapes	of	
finite	elements	in	physical	space	to	express	the	geometry	of	object.	(b)	Appearance	of	the	element	in	the	local	natural	
coordinate	space.	The	element	nodes	are	aligned	within	the	range	from	−1.0	to	1.0	in	all	three	ξ,	η,	and	ζ	directions.
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202 Computational Finite Element Methods in Nanotechnology

The	stiffness	matrices	(6.54	and	6.55)	and	the	load	vectors	(6.56	through	6.58)	should	be	
integrated	to	construct	the	finite	element	equation	system.	Matrices	and	vectors	are	typi-
cally	evaluated	numerically	using	Gauss	integration	rule	over	hexahedral	regions	in	finite	
element	calculations.

The	Gauss	quadrature	with	3	×	3	×	3	is	usually	used	for	stiffness	matrix	integration	for	
3D	quadratic	elements.	For	more	efficient	integration,	the	special	14-point	Gauss	integra-
tion	rule	exists,	which	provides	sufficient	precision	of	integration	of	the	3D	quadratic	ele-
ment.	For	stress	calculations,	it	should	be	taken	into	account	that	displacement	gradients	
have	quite	different	precision	at	different	points	inside	finite	elements.	The	highest	preci-
sion	of	displacement	gradients	are	obtained	at	2	×	2	×	2	reduced	integration	points	for	the	
quadratic	hexahedral	element	[62].	Hence,	it	is	efficient	to	calculate	displacement	gradients,	
such	as	strains	and	stresses,	at	these	reduced	integration	points.

6.3.6  Time Integration Scheme

There	are	possibilities	to	improve	initial	solutions	obtained	at	each	configuration,	because	
the	 solution	 is	 calculated	 by	 the	 initial	 tangent	 stiffness	 matrix	 and	 load	 vector	 which	
approximate	geometrically	nonlinear	behavior	of	structures	as	piecewise	linear	displace-
ments.	 The	 updated	 Lagrangian	 formulation	 accumulates	 incremental	 displacements	 at	
each	configuration,	and	thus	an	error	at	previous	finite	element	equation	systems	may	have	
certain	influence	on	the	result.	In	order	to	improve	the	solution,	the	Newton–Raphson	itera-
tion	algorithm	is	employed	to	reach	more	accurate	equilibrium	state	at	each	configuration.	
The	Newton–Raphson	iteration	procedure	can	be	written	as	the	following	sequence	of	steps:
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The	iterations	are	terminated	when	the	norm	of	residual	vector	ratio	α	or	displacement	
increment	ratio	β	become	less	than	a	specified	tolerance	ε.	A	common	practice	is	to	set	the	
ε	 from	0.1%	to	1%	[61].	The	schematic	of	a	convergence	process	in	the	Newton–Raphson	
iteration	procedure	is	shown	in	Figure	6.6.
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203Continuum and Atomic-Scale FE Modeling of Nanostructures

There	are	two	kinds	of	Newton–Raphson	iteration	algorithm.	One	is	the	full	Newton–
Raphson	 method	 and	 the	 other	 is	 the	 modified	 Newton–Raphson	 method	 [56].	 In	 the	
modified	Newton–Raphson	method,	 the	 tangent	 stiffness	matrix	 is	 recalculated	once	at	
the	second	iteration	and	later	used	during	further	iterations.	This	allows	to	avoid	updating	
stiffness	matrix	at	each	iteration,	but	it	may	be	less	precise	and	may	take	more	iterations	to	
reach	convergence.	It	was	reported	that	the	modified	Newton–Raphson	iteration	method	
is	more	efficient	than	other	time	integration	schemes	such	as	the	Newmark	method	[63].	
We	employed	the	full	Newton–Raphson	method	to	obtain	the	best	precision	possible	for	
our	numerical	experiments.

6.3.7  Finite Element Modeling of Anisotropic Structures

Here	 we	 present	 the	 finite	 element	 procedure	 for	 3D	 modeling	 of	 anisotropic	 elastic	
geometrically	nonlinear	structures	under	influence	of	initial	strains.	In	order	to	derive	the	
finite	element	equation	system,	three	coordinate	systems	are	employed,	as	shown	in	Figure	6.7.

	 1.	x1, x2, x3	 is	 the	global	Cartesian	 coordinate	 system	 (fixed	 in	 space,	used	 for	 the	
whole	structure)

	 2.	ξ1,	ξ2,	ξ3	is	the	local	element	coordinate	system	(nonorthogonal,	movable,	one	for	
each	finite	element)

	 3.	x ̅1,	x ̅2,	x ̅3	 is	 the	material	coordinate	system	(orthogonal,	movable,	defined	at	any	
point	inside	a	finite	element)

Load

ψ(0) ψ(1)

Exact equilibrium
at t+Δt

Equilibrium
at first iteration

Displacement

Slope t+ ΔtK(0)

tu(n) t+ Δtu(0)

t+ Δtf (n)

tf (n)

t+ Δtu(n)

Initial Δu

Exact Δu

FIGURE 6.6
A	procedure	of	solution	improvement	by	the	Newton–Raphson	algorithm.	An	initial	displacement	increment	
Δu	is	obtained	by	using	current	tangent	stiffness	matrix	tK	and	residual	vector	ψ(0).	By	using	updated	tangent	
stiffness	matrix	and	residual	vector	ψ(1),	the	numerical	solution	gets	closer	to	the	exact	solution	t+Δtu.
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204 Computational Finite Element Methods in Nanotechnology

The	global	coordinate	system	is	employed	in	the	global	finite	element	equation	system.	
The	 local	 coordinate	 systems	are	used	 for	 interpolation	within	finite	elements.	Material	
coordinate	axes	are	involved	in	anisotropic	constitutive	relations.	The	material	coordinate	
system	can	be	introduced	at	any	point	of	the	structure.	It	rotates	with	the	material	with	
respect	to	the	fixed	global	coordinate	system.	Since	the	local	coordinate	system	ξi	 is	not	
orthogonal,	 its	 axes	 cannot	 be	 used	 directly	 as	 axes	 of	 the	 material	 coordinate	 system.	
However,	it	is	convenient	to	use	local	coordinate	axes	ξi	for	building	those	of	the	material	
coordinate	system	x̅i	at	any	point	inside	the	finite	element.	Unit	vectors	eξi	tangent	to	the	
local	coordinates	ξi	have	the	following	components	in	the	global	coordinate	system:
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Approximation	of	unknown	field	can	be	performed	by	Equation	6.50,	so	derivatives	of	the	
global	coordinates	with	respect	to	local	coordinates	can	be	expressed	as
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Let	us	adopt	that	the	unit	vector	ex1	of	the	material	coordinate	x ̅1	coincides	with	the	direc-
tion	of	the	unit	vector	eξ1	(tangent	to	the	local	coordinate	ξ1).	Then,	two	other	unit	vectors	
of	the	material	coordinate	system	can	be	determined	as	vector	products:
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	 (6.67)

Direction	 cosines	 αij	 for	 transformations	 from	 the	 global	 coordinate	 system	 xi	 to	 the	
material	coordinate	system	xi̅	are	expressed	through	the	unit	vectors	exi:

	 α =ij i j x jx x e icos( ) .= 	 (6.68)

ξ1

x1

x2

x3

x1
–

–
–

x2
x3 ξ2

ξ3

FIGURE 6.7
Global	Cartesian	coordinate	system	x1, x2, x3,	local	element	coordinate	system	ξ1,	ξ2,	ξ3,	and	material	coordinate	
system	x ̅1,	x ̅2,	x ̅3.
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205Continuum and Atomic-Scale FE Modeling of Nanostructures

Transformations	of	vectors	from	the	global	coordinate	system	to	the	material	coordinate	
system	and	back	are	performed	in	the	following	ways:

	

x x

x x

i ij j

i ji j

=

=

α

α

,

.
	 (6.69)

6.3.8  Anisotropic Constitutive Law

Referring	to	a	fixed	orthogonal	coordinate	system,	the	stress	tensor	σij	and	the	strain	tensor	
εij	for	an	anisotropic	elastic	material	are	related	through	Hooke’s	law	(6.1).	The	elasticity	
tensor	Cijkl	contains	81	coefficients.	Because	of	the	symmetry	of	stress	and	strain	tensors,	the	
elasticity	tensor	has	the	symmetry	properties	Cijkl	=	Cjikl	=	Cijlk,	which	allows	representation	
of	Hooke’s	law	in	so-called	contracted	form	using	matrix–vector	notations

	

s e

s
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=

=

C ,

{ } ,

{ } ,

σ σ σ σ σ σ

ε ε ε ε ε ε

11 22 33 12 23 31

11 22 33 12 23 312 2 2

T

T

	 (6.70)

where
C	is	the	contracted	6	×	6	elasticity	matrix
σ,	ε	are	the	contracted	1	×	6	stress	and	strain	vectors

The	contracted	form	of	Hooke’s	law	is	convenient	for	using	in	a	finite	element	computation	
since	 it	 reduces	 the	 number	 of	 array	 dimensions.	 For	 triclinic	 crystal	 symmetry,	 the	
elasticity	 matrix	 C	 is	 fully	 populated	 and	 symmetric,	 thus	 having	 21	 independent	
components.	 We	 perform	 numerical	 modeling	 of	 anisotropic	 structures	 with	 cubic	
crystal	symmetry.	The	elasticity	matrix	 for	materials	with	cubic	crystal	symmetry	has	
the	following	appearance:

	

[ ]C

C C C

C C C

C C C

C

C

C

=

























11 12 12

12 11 12

12 12 11

44

44

44



. 	 (6.71)

where	C11,	C12,	and	C44	are	material-dependent	constants.	Transformations	from	the	global	
coordinate	system	to	the	material	coordinate	system	for	the	stress	and	elasticity	tensors	
are	performed	in	the	full	tensor	form:

	

σ α α σ

α α α α

ij ip jq pq

ijkl ip jq kr ls pqrsC C

=

=

,

.
	 (6.72)
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206 Computational Finite Element Methods in Nanotechnology

In	 order	 to	 transform	 elasticity	 matrix	 according	 to	 a	 material	 orientation	 angle	 using	
Equation	6.72,	 the	elasticity	 tensor	Cijkl	 should	be	contracted	to	elasticity	matrix	Cij,	and	
vice	versa.	During	calculations	of	element	matrices	and	vectors,	it	is	more	efficient	to	use	
matrix–vector	notation.	To	perform	these	operations,	 it	 is	useful	to	introduce	two	index	
vectors:

	

m

n

=

=

{ },

{ }.

1 2 3 1 2 3

1 2 3 2 3 1
	 (6.73)

Contraction	from	the	stress	tensor	to	the	stress	vector	and	expansion	from	the	stress	vector	
to	the	stress	tensor	are	done	as	follows:
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σ σ

p m n

m n p

p p

p p

p

p

= =

= =
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, .

1 6

1 6

…

…
	 (6.74)

The	expansion	operation	should	be	accompanied	by	filling	symmetrical	terms	of	the	stress	
tensor	σij	=	σji.	For	the	elasticity	tensor,	contraction	and	expansion	operations	are	carried	
out	in	the	following	ways:

	

C C p q

C C p q

pq m n m n

m n m n pq

p p q q

p p q q

= = =

= = =

, , ,

, , , .

1 6 1 6

1 6 1 6

… …

… …
	 (6.75)

To	 finish	 expansion	 of	 the	 elasticity	 tensor,	 it	 is	 necessary	 to	 fill	 symmetric	 terms	
Cijkl	=	Cjikl	=	Cijlk	=	Cjilk.	After	transformation	of	constitutive	tensor	into	6	×	6	elasticity	matrix,	
the	matrix	is	used	as	elasticity	matrix	for	calculation	of	stiffness	matrix	(6.49)	and	fictitious	
force	vector	(6.58).

6.4 Atomic-Scale Finite Element Modeling

The	continuum	mechanics	solutions	and	the	finite	element	modeling	are	based	on	con-
tinuous	medium	relations.	They	do	not	take	into	account	atomic-scale	effects.	It	is	inter-
esting	to	investigate	effects	of	the	structure	size	on	the	curvature	radius.	The	AFEM	was	
first	developed	 for	multiscale	analysis	of	carbon	nanotubes	 (CNTs)	 [42,43].	The	AFEM	
can	model	atomistic	nature	of	materials	consisting	of	large	number	of	atoms.	The	method	
resembles	 the	 conventional	 FEM.	 Therefore,	 several	 computational	 algorithms	 for	 the	
FEM	can	be	applied	 to	 the	AFEM.	 In	 the	AFEM	models,	 the	nodes	 correspond	 to	 the	
atoms.	Therefore,	it	reproduces	real	atomic	structures,	and	atomic-scale	effects	are	natu-
rally	involved.

6.4.1  Atomic-Scale Finite Element Method

The	 AFEM	 equation	 system	 is	 derived	 from	 the	 total	 energy	 minimization.	 Since	 the	
underlying	principle	is	general	for	any	kind	of	atomic	structure,	the	resulting	equilibrium	
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207Continuum and Atomic-Scale FE Modeling of Nanostructures

configuration	 is	 reliable	 for	any	 type	of	atomic	 systems.	The	AFEM	equation	 system	 is	
derived	from	the	approximation	of	total	energy	E	around	current	configuration	xi

	
E E

E
x

E
x

i i i T
i i

( ) ( ) ( ) ( ) (( ) ( ) ( )
( ) ( )

x x x x x x
x x x x

≈ + ∂
∂

⋅ − + − ∂
∂

⋅
= =

1
2

2

2 xx x− ( )),i 	 (6.76)

and	its	subsequent	minimization

	

∂
∂

=E
x

0. 	 (6.77)

Substituting	Equation	6.76	 into	Equation	6.77,	 the	global	AFEM	equation	system	can	be	
expressed	in	a	form	similar	to	the	conventional	finite	element	equation	system

	 Ku f= , 	 (6.78)

where
K	is	a	global	stiffness	matrix
u	is	a	displacement	vector
f	is	a	load	(force)	vector

In	the	AFEM,	the	global	stiffness	matrix	K	and	the	load	vector	f	are	composed	of	second	
and	first	derivatives	of	the	system	energy	with	respect	to	atomic	positions
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f =

− ∂
∂







− ∂
∂





























×

×

E
x

E
x

1 1 3

1 1 3

� , 	 (6.80)

where
E	is	the	total	energy	of	the	atomic	system
n	is	the	number	of	atoms	(AFEM	nodes)
xi	is	the	coordinate	vector	of	ith	atom

The	total	energy	E	coincides	with	a	potential	energy	of	the	problem	of	finding	static	equi-
librium	configuration	of	atomic	structures.	Without	any	external	 loads,	the	total	energy	
is	 replaced	by	 the	potential	 energy.	Some	expressions	of	 the	energy	and	 its	derivatives	
should	be	obtained	to	formulate	the	AFEM	global	equation	system.	In	order	to	calculate	
the	AFEM	equation	 system	 (6.78),	 energy	 E	 should	be	at	 least	 twice	differentiable	with	
respect	to	the	position.
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208 Computational Finite Element Methods in Nanotechnology

6.4.2  AFEM for Geometrically Nonlinear Problems

Equation	6.76	implies	that	the	solution	has	less	precision	as	current	configuration	gets	far-
ther	from	the	equilibrium	atomic	configuration.	The	self-positioning	nanostructures	deform	
with	large	translational	and	rotational	displacements.	Hence,	it	is	desirable	to	divide	load-
ing	into	multiple	steps	and	apply	them	gradually.	The	following	iteration	procedure	based	
on	the	Newton–Raphson	algorithm	is	applied	to	the	geometrically	nonlinear	problem:
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	 (6.81)

At	each	updated	configuration,	 the	 tangent	stiffness	matrix	and	 the	 load	vector	should	
be	calculated	using	Equations	6.79	and	6.80.	In	the	iteration	algorithm	(6.81),	ε	is	an	error	
tolerance	and	g	is	a	function	for	estimating	the	load	relaxation	factor	α.	In	general,	initial	
configuration	of	atoms	leads	to	large	forces	due	to	steep	energy	descent,	and	thus	α	may	
be	small	at	the	first	step	and	gets	closer	to	1	as	current	position	gets	closer	to	the	equilib-
rium	atomic	configuration	where	energy	descent	is	small	(Figure	6.8).	Constant	α	factor	

Energy

Distance

Steep

Steep

r0

Flat
Emin

FIGURE 6.8
An	atomic	interaction	potential	energy	function	depending	on	the	distance	between	atoms.	The	energy	has	the	
minimum	value	Emin	at	the	equilibrium	distance	r0.	A	stronger	load	relaxation	may	be	applied	to	suppress	large	
displacements	at	those	steps	of	solution	where	slope	(derivative)	of	the	energy	is	steep.
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209Continuum and Atomic-Scale FE Modeling of Nanostructures

throughout	overall	solution	can	cause	unnecessary	 iterations	or	can	 lead	to	divergence,	
because	derivatives	(slope)	of	the	interaction	potential	energy	usually	become	smaller	as	
current	configuration	gets	closer	to	the	equilibrium	where	loading	becomes	zero.

A	semiautomatic	method	can	be	considered	to	determine	the	factor,	because	it	is	difficult	
to	 select	 an	 appropriate	 load	 relaxation	 factor	 during	 iterations.	 The	 user	 specifies	 an	
admissible	displacement	length	to	suppress	displacements	at	the	solution	step	within	the	
length	where	the	energy	approximation	around	current	configuration	may	be	satisfied	(i.e.,	
displacement	length	<<	1).	The	relaxation	factor	α	is	estimated	at	each	solution	step	using	
the	tangent	stiffness	matrix	and	current	load	vector.	We	suggest	the	following	estimate	of	α
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	 (6.82)

where
n	is	the	number	of	atoms
f ji	is	the	jth	component	of	full	load	vector	acting	on	the	ith	atom
Kjj

ii	correspond	to	diagonal	entries	of	current	tangent	stiffness	matrix
a	is	a	characteristic	length	of	an	atomic	system
δ	is	a	displacement	suppression	factor	representing	admissible	mean	displacement	length

The	AFEM	equation	system	is	sparse	due	to	using	empirical	potential	energy	models	with	
cutoff	 radius	 of	 interaction.	 Therefore,	 the	 displacement	 approximation	 using	 diagonal	
entries	of	the	stiffness	matrix	can	be	used	as	rough	estimate	of	displacement	before	solving	
the	equation	systems.	In	the	displacement	approximation	(6.82),	we	selected	characteristic	
length	a	as	an	initial	lattice	period	and	the	constant	δ	with	the	value	2	×	10−4.	Stronger	load	
relaxations	are	applied	if	smaller	δ	 is	selected,	or	calculated	mean	value	of	 the	solution	
guess	 umean	 increases.	 A	 larger	 δ	 can	 be	 selected	 for	 problems	 in	 which	 displacements	
are	 well	 approximated	 by	 linear	 functions,	 but	 smaller	 values	 are	 necessary	 for	 strong	
geometrically	nonlinear	problems.

6.4.3  Modeling of Crystalline Structures

Input	data	for	the	AFEM	should	be	created	in	accordance	with	the	crystalline	structure	
of	a	 target	material.	 In	 this	study,	a	bilayer	self-positioning	nanostructure	consisting	of	
GaAs	top	and	InAs	bottom	layers	is	modeled	by	the	AFEM.	Our	studies	focus	on	lattice	
mismatching	layers,	and	interactions	with	sacrificial	layer	and	substrate	are	not	considered	
here.	Alignment	of	 the	coordinate	axes	directions	 is	 same	as	defined	 in	 the	continuum	
mechanics	solutions.	The	crystalline	structure	of	GaAs	and	InAs	is	the	zincblende	crystal	
type.	 The	 arrangement	 of	 atoms	 in	 the	 zincblende	 crystals	 is	 shown	 in	 Figure	 6.9.	 The	
arsenide	atoms	occupy	the	crystal	corners	and	the	face	centers,	and	four	gallium/indium	
atoms	are	located	inside	with	their	positions	at	(0.25,	0.25,	0.25),	(0.75,	0.25,	0.75),	(0.25,	0.75,	
0.75),	and	(0.75,	0.75,	0.25)	in	the	unit	crystal	[64].
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210 Computational Finite Element Methods in Nanotechnology

GaAs	 and	 InAs	 possess	 material	 anisotropy	 depending	 on	 their	 crystal	 orientations.	
The	material	crystal	orientation	is	modeled	by	rotating	crystals	around	the	y-axis	(thick-
ness	direction).	Figure	6.10	shows	the	procedure	of	the	AFEM	mesh	creation	for	modeling	
GaAs	and	InAs	material	anisotropy.	First,	an	original	structure	with	zero	material	orienta-
tion	angle	is	prepared.	Then	the	structure	is	rotated	around	the	y-axis	in	accordance	with	
the	material	orientation	angle.	Finally,	atoms	outside	the	rectangular	solution	domain	are	
removed.

We	model	structures	with	material	orientation	angles	0°,	15°,	30°,	45°,	60°,	75°,	and	90°.	
Appearances	of	crystalline	structures	are	shown	in	Figure	6.11	for	these	orientation	angles.

6.4.4  Atomic Interactions Potential

The	 AFEM	 employs	 empirical	 interatomic	 potential	 function	 which	 describes	 atomic	
interactions.	 Several	 empirical	 interatomic	 potential	 models	 have	 been	 developed	 to	

z
x

y

FIGURE 6.9
The	atomic	configuration	and	their	bonding	in	the	zincblende	crystalline	structures.	There	are	eight	corner	and	
six	face	center	atoms	(bigger)	and	four	inner	atoms	(smaller).

x

z Unit crystal

x

z

x

z
(a) (b) (c)

l

w

FIGURE 6.10
Modeling	atomic	structures	with	different	material	axes	orientations.	(a)	An	initial	structure	with	unit	crystals	
aligned	to	global	axes.	(b)	The	structure	rotation	around	the	y	axis	by	specified	orientation	angle.	(c)	Removal	
of	atoms	outside	a	rectangular	region.
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x

z
(a)

x

z

(b)

x

z
(c)

x

z
(d)

x

z

(e)

x

z

(f)

FIGURE 6.11
Top	view	of	zincblende	crystal	atom	configurations	for	different	orientation	angles.	Orientation	angles	0°,	45°,	
and	90°	have	periodic	boundary	in	the	z	(width)	direction.	(a)	0°, (b) 15°, (c) 30°, (d) 45°, (e) 60°, and (f) 75°.
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212 Computational Finite Element Methods in Nanotechnology

study	 the	behavior	of	 atomic	 systems	 [65–73].	 The	multibody	potential	models	 such	as	
Stillinger–Weber	[68],	Tersoff	[69–71],	and	Brenner	[72,73]	are	more	preferred	than	other	
pair	 potential	 models	 like	 Lennard–Jones	 [65,67]	 and	 Morse	 potential	 [66]	 because	 two	
body	 models	 are	 inapplicable	 to	 strongly	 covalent	 systems	 like	 semiconductors	 [71].	
For	example,	Liu	 [42,43]	and	Leung	[74]	used	the	potential	 function	and	 its	parameters	
developed	by	Brenner	[72,73]	for	AFEM	analyses	of	CNTs.

The	 target	 material	 to	 be	 modeled	 should	 be	 determined	 prior	 to	 selection	 of	 an	
interatomic	potential	model	since	parameters	are	sometimes	not	available	for	modeling	
of	the	material.	In	this	study,	we	model	In–Ga–As	systems.	The	Brenner	potential	model	
is	widely	used	and	successfully	applied	for	modeling	several	types	of	atomic	structures,	
especially	 carbon	 systems.	 However,	 its	 parameters	 for	 indium,	 gallium,	 and	 arsenide	
systems	are	not	available.	Similar	multibody-type	potential	has	been	proposed	by	Tersoff	
[69–71].	In	the	Tersoff	model,	the	total	potential	energy	E	is	given	by	the	following	function:
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	 (6.83)

where
Ei	is	the	potential	energy	of	atom	i
Vij	is	the	potential	energy	of	a	bond	i–j
rij	is	the	distance	from	atom	i	to	atom	j
fC	is	the	cutoff	function	to	disregard	effects	from	distant	atoms
fR	is	a	reactive	component
fA	is	an	attractive	component
bij	is	a	bonding	term	to	represent	multiatom	interaction	effects	characterized	by	bonding	

angles

The	appearance	of	potential	function	(6.83)	is	slightly	different	from	the	original	Tersoff	
potential	function	due	to	the	subsequent	parameterization.	There	are	two	parameter	sets	
available	for	indium,	gallium,	and	arsenide	systems.	One	is	developed	by	Ashu	[75]	and	
another	by	Nordlund	[76].	Their	parameters	are	almost	same,	but	the	parameter	set	devel-
oped	by	Nordlund	is	more	suitable	for	our	purposes.	The	parameter	values	for	indium,	
gallium,	and	arsenide	systems	are	listed	in	Table	6.1.
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213Continuum and Atomic-Scale FE Modeling of Nanostructures

6.4.5  Validating Tersoff–Nordlund Potential for GaAs and InAs Structures

The	 parameters	 obtained	 by	 Nordlund	 correspond	 to	 basic	 elastic	 and	 melting	 crystal	
properties.	These	parameters	are	developed	for	investigations	of	damage	at	Si/Ge,	AlAs/
GaAs,	and	InAs/GaAs	interfaces.	It	is	noted	that	the	parameters	should	be	used	with	care	
for	other	purposes,	and	thus	we	performed	several	tests	to	confirm	parameters’	suitability	
for	 our	 modeling	 of	 self-positioning	 nanostructures.	 The	 first	 test	 measured	 elastic	
properties,	and	the	second	test	calculated	 the	crystal	 lattice	periods	of	GaAs	and	InAs.	
They	are	compared	to	values	from	a	literature.	Using	the	AFEM	with	the	Tersoff	potential	
and	the	Nordlund	parameters,	the	elastic	properties	of	GaAs	and	InAs	are	estimated	by	
applying	distributed	external	load	f	at	the	end	of	specimen	shaped	into	a	thin	rod	along	its	
longitudinal	direction	(Figure	6.12).

Strains	and	stresses	are	calculated	at	a	position	sufficiently	far	from	the	free	end	where	
external	 load	 is	applied.	Taking	 into	account	 that	 the	specimen	 is	 thin	 in	 its	 transverse	
directions,	the	Young’s	modulus	E	and	the	Poisson’s	ratio	ν	are	determined	by

TABLE 6.1

Tersoff	Potential	Energy	Function	Parameters	for	Indium,	Gallium,	and	Arsenide	Systems	
Fit	by	Nordlund

InGa InIn InAs AsAs GaAs GaGa

n 3.43739 3.40223 0.7561694 0.60879133 6.31741 3.4729041
c 0.0801587 0.084215 5.172421 5.273131 1.226302 0.07629773
d 19.5277 19.2626 1.665967 0.75102662 0.790396 19.796474
h 7.26805 7.39228 −0.5413316 0.15292354 −0.518489 7.1459174
Β 0.705241 2.10871 0.3186402 0.00748809 0.357192 0.23586237
Λ	(Å−1) 2.5616 2.6159 2.597556 2.384132239 2.82809263 2.50842747

μ	(Å−1) 1.58314 1.68117 1.422429 1.7287263 1.72301158 1.490824
A	(eV) 1719.7 2975.54 1968.295443 1571.86084 2543.2972 993.888094
Β	(eV) 221.557 360.61 266.571631 546.4316579 314.45966 136.123032
R	(Å) 3.4 3.5 3.5 3.4 3.4 3.4
S	(Å) 3.6 3.7 3.7 3.6 3.6 3.6

Source:	 Nordlund,	K.	et	al.,	Comput. Mater. Sci.,	18,	283,	2000.
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FIGURE 6.12
Conditions	of	specimen	for	testing	the	Tersoff	potential	function	with	Nordlund	parameters	for	GaAs	and	InAs	
structures.
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E x

x

y

x
= = −σ

ε
ν

ε
ε

, . 	 (6.84)

For	 cubic	 crystals	 with	 axes	 aligned	 to	 the	 cube	 edges,	 the	 Young’s	 modulus	 and	 the	
Poisson’s	ratio	are	estimated	from	the	constitutive	tensor	components	C11	and	C12	as	follows:

	
E

C C C C
C C

C
C C

= − +
+

=
+

( )( )
, .11 12 11 12

11 12

12

11 12

2 ν 	 (6.85)

The	lattice	period	is	estimated	at	the	center	of	a	cube	structure	consisting	of	several	crys-
tals	in	all	directions.	Elastic	properties	and	lattice	period	estimated	by	the	AFEM	model-
ing	for	GaAs	and	InAs	are	compared	with	experimental	values	in	Table	6.2.

The	maximum	difference	of	5%	is	observed	for	Young’s	modulus	of	GaAs;	however,	in	
general	the	correspondence	of	estimated	elastic	properties	to	their	experimental	values	is	
acceptable.	Estimated	lattice	periods	are	in	very	good	agreement	with	experimental	val-
ues.	Therefore,	we	concluded	that	the	AFEM	with	Tersoff	potential	and	parameters	devel-
oped	by	Nordlund	is	suitable	for	simulation	of	the	atomic-scale	behavior	of	nanostructures	
composed	of	GaAs	and	InAs.

6.4.6  PCG Algorithm for Solution of AFEM Equation System

In	 the	 AFEM	 procedure,	 solution	 of	 the	 equation	 system	 (6.78)	 is	 the	 main	 computa-
tional	bottleneck	as	in	the	ordinary	FEM.	The	order	of	complexity	is	O(N3)	in	direct	algo-
rithms,	 and	 hence	 a	 fast	 algorithm	 with	 lower	 complexity	 can	 considerably	 reduce	 the	
computational	 time.	The	preconditioned	conjugate	gradient	 (PCG)	method	 is	 employed	
in	our	study,	since	the	PCG	is	a	fast	iterative	algorithm	for	solution	of	large	sparse	equa-
tion	systems.	 In	 the	AFEM,	 the	 sparseness	of	equation	system	depends	on	 the	number	
of	neighboring	atoms	participating	in	atomic	interactions.	It	is	determined	by	the	atomic	
configuration	of	crystals	and	the	cutoff	distances	defined	in	interatomic	potential	models.	
Our	AFEM	equation	system	is	constructed	using	the	Tersoff–Nordlund	potential	function.	
The	number	of	neighbors	is	up	to	4	for	GaAs	and	InAs,	and	hence	the	equation	system	is	
extremely	sparse.	The	sparse	row	format	effectively	reduces	the	matrix	storage	space	for	
sparse	linear	systems.	In	this	format,	only	nonzero	entries	of	the	stiffness	matrix	are	stored	
in	one-dimensional	array,	and	two	additional	arrays	are	used	to	indicate	starting	point	of	
row	entries	and	column	index	of	nonzero	elements	in	each	row.

For	 a	 given	 equation	 system	 Ax	=	b,	 the	 PCG	 algorithm	 is	 written	 as	 the	 following	
procedure:

TABLE 6.2

GaAs	and	InAs	Properties:	Comparison	of	Estimation	by	the	AFEM	
with	Values	from	a	Literature

GaAs InAs

Experiment AFEM δ (%) Experiment AFEM δ (%)

E	(GPa) 85.3 81.0 −5.04 51.8 51.4 −0.77
ν 0.312 0.313 0.32 0.352 0.357 1.42
LP	(nm) 0.56533 0.56389 −0.25 0.60584 0.60592 0.01

Source:	 Bhattacharya,	 P.,	 Properties of Lattice-Matched and Strained Indium Gallium 
Arsenide,	Institution	of	Electrical	Engineers,	London,	U.K.,	1993.
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=
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end do
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	 (6.86)

where	m	is	the	vector	containing	diagonal	entries	of	a	preconditioning	matrix.	The	order	of	
complexity	is	O(N2)	for	one	PCG	iteration	due	to	matrix–vector	multiplications,	but	it	can	
be	almost	linear	complexity	for	strongly	sparse	linear	systems.	The	matrix–vector	product	
v = Au	for	sparse	row	matrices	may	be	calculated	in	the	following	procedure:

	

do

do

j N

v j

i prow j prow j prow j

v j v j A i v

=

=

= + −

= +

1

0

1

,

[ ]

[ ], [ ] [ ]

[ ] [ ] [ ] [ppcol i[ ]]

end do

end do

	 (6.87)

where
pcol	is	the	vector	which	contains	the	positions	of	all	nonzero	entries
prow	is	the	vector	which	indicates	the	index	of	first	nonzero	entry

The	preconditioning	matrix	M	is	selected	to	obtain	solution	faster,	and	it	is	used	for	multi-
plying	both	sides	of	the	equation	system:

	 MAx Mb= 	 (6.88)
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The	matrix	M	should	be	obtained	through	a	computationally	cheap	procedure.	The	simplest	
preconditioning	 matrix	 is	 the	 inverse	 diagonal	 preconditioner	 which	 is	 constructed	
from	the	reciprocal	of	diagonal	entries	of	the	matrix	A	as	Mii	=	1/Aii.	In	order	to	obtain	a	
better	preconditioner,	we	adopted	the	norm	scaling	preconditioning	algorithm	[78].	This	
algorithm	produces	a	diagonal	preconditioner	which	is	found	to	scale	average	row	norm	of	
the	preconditioned	matrix	B	=	MA.	The	row	norm	in	ith	row	of	the	preconditioned	matrix	
is	defined	as	follows:

	

| |B B

A
D D

i ij
j

ij

ii jjj

=

=







∑

∑

2

2

	 (6.89)

where	 Dii iiM= 1/ .	In	the	norm	scaling	algorithm,	the	norm	of	ith	row	|Bi|	is	scaled	to	
have	|Bi|	=	1.	Then,	the	diagonal	matrix	D	can	be	obtained	as	follows:

	
D

A
D

ii
ij

jjj
=






∑
2

	 (6.90)

In	order	to	solve	Equation	6.90,	the	following	iterative	procedure	is	introduced:
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	 (6.91)
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where	ε	 is	 the	error	 tolerance,	 selected	 here	as	ε	=	10−7.	 In	our	problems,	 the	norm	scal-
ing	preconditioning	reduces	computational	time	by	about	10%	comparing	to	conventional	
reciprocal	diagonal	preconditioner.	The	efficiency	is	almost	same	as	reported	in	the	pub-
lication	[78].

6.5 Strain Estimation Methods in the AFEM

In	the	conventional	FEM,	finite	elements	are	used	as	interpolation	functions	between	nodes	
which	can	be	used	for	estimation	of	derivatives.	Therefore,	the	number	of	nodes	typically	
corresponds	to	element	geometry	in	the	FEM.	In	the	AFEM,	connectivities	between	atoms	
are	used	to	calculate	the	stiffness	matrix,	and	there	is	no	solid	element	as	used	in	the	FEM.	
Direct	differentiation	is	impossible	since	nodal	displacements	are	discrete.	One	of	the	pos-
sibilities	is	to	construct	triangle	or	tetrahedral	elements	for	two-dimensional	(2D)	and	3D	
cases,	but	division	of	the	domain	into	tetrahedral	element	is	complicated	in	the	3D	space.	
Another	possibility	is	to	employ	scattered	data	interpolation	methods	used	in	mesh	free	
FEMs	 [79–87].	 Mesh	 free	 FEMs	 are	 developed	 to	 reduce	 difficulties	 for	 construction	 of	
finite	elements	from	nodes	which	are	distributed	arbitrarily.	In	the	mesh	free	FEMs,	inter-
polation	functions	are	constructed	by	special	interpolation	techniques.	Usually,	local	inter-
polation	functions	are	constructed	by	selecting	neighboring	nodes	based	on	distances.

The	 moving	 least	 squares	 (MLS)	 approximation	 may	 be	 the	 most	 popular	 method	
which	 is	 incorporated	 in	 several	 mesh	 free	 FEMs	 [79,82].	 The	 MLS	 is	 an	 extension	 of	
the	 least	 squares	 approximation,	 and	 it	 is	 intuitive	 and	 relatively	 easy	 to	 understand.	
In	 general,	 there	 are	 fundamental	 difficulties	 to	 specify	 essential	 boundary	 conditions	
since	 the	 MLS	 shape	 functions	 do	 not	 go	 through	 exact	 nodal	 values.	 Because	 of	 this,	
the	other	 interpolation	methods	have	been	considered	and	applied	 to	mesh	 free	FEMs.	
The	other	popular	interpolation	method	is	the	kernel	approximation	in	the	reproducing	
kernel	 particle	 method	 (RKPM)	 [80,81].	 Equivalence	 between	 the	 kernel	 approximation	
and	MLS	has	been	discussed	[84,88],	and	it	has	been	shown	that	these	methods	produce	
mathematically	 same	 shape	 functions.	 Radial	 basis	 function	 (RBF)	 is	 an	 interpolation	
method	which	satisfies	Kronecker	delta	properties.	The	RBF	shape	functions	are	produced	
to	satisfy	f(xi)	=	fi	where	f(xi)	is	the	approximation	of	the	value	fi	at	the	coordinate	xi.	Various	
RBFs	have	been	developed	for	scattered	data	interpolation:	multiquadratic	(MQ)	[89–92],	
polynomials	 [93–95],	 and	hybrid	 interpolations	 [85,96].	Among	 these	 functions,	Hardy’s	
MQ	[89]	is	the	best	RBF	interpolation	for	a	set	of	test	functions	[97].	However,	the	quality	of	
MQ	interpolation	strongly	depends	on	selection	of	a	shape	parameter	[90–92].	Recently,	the	
Kriging	interpolation	method	has	been	applied	to	mesh	free	FEMs	[98–100].	The	Kriging	
interpolation	 is	a	geostatistical	 technique	 for	spatial	data	 interpolations	 in	geology	and	
mining.	The	procedure	for	calculation	of	the	Kriging	interpolation	is	similar	to	the	MLS,	
but	the	Kriging	interpolation	possesses	Kronecker	delta	properties.	We	implemented	MLS,	
RBF,	and	Kriging	interpolations	for	calculation	of	strains	in	the	AFEM	procedure.

6.5.1  Moving Least Squares Approximation

In	the	least	square	approximations,	unknown	coefficients	of	a	given	set	of	polynomials	are	
found	by	minimizing	the	sum	of	differences	between	nodal	values	with	the	set	of	poly-
nomials.	Typically,	the	least	square	approximation	is	a	linear	function	fitting	for	a	given	
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218 Computational Finite Element Methods in Nanotechnology

data	set,	while	the	MLS	approximate	it	in	each	partial	region.	Strains	are	obtained	through	
differentiations	of	interpolation	functions	of	displacements.	In	the	moving	least	squares	
approximation,	the	displacement	uh	approximation	at	a	position	x	is	calculated	as	linear	
combination	of	fitting	polynomial	terms	and	their	coefficients	as	follows:

	 uh T( ) ( )x p x a x= ( ) 	 (6.92)

where	p	is	the	term	vector	consisting	of	nonlinear	functions	pi	of	x.	For	example,	if	the	basis	
is	a	quadratic	function,	the	term	vector	may	be

	 pT x y z x y z xy yz zx= { , , , , , , , , , }1 2 2 2 	 (6.93)

The	coefficient	vector	a	is	obtained	from	solution	of	the	following	equation	system:

	 M x a x N x u( ) ( ) = ( ) 	 (6.94)

where	 u	 is	 a	 vector	 consisting	 of	 a	 component	 of	 displacement	 components	 at	 nodes.	
Matrices	M	and	N	are	obtained	as	follows:

	 M x P W x P( ) = T ( ) , 	 (6.95)

	 N x P W x( ) = T ( ), 	 (6.96)

	

P

p s

p s

=
















T

T
n

( )

( )
,

1

� 	 (6.97)

	 W x x x( ) { ( ), ( )}= diag w wn1 � 	 (6.98)

where	W	is	the	diagonal	matrix	consisting	of	weight	function	values	at	nodes.	There	are	
several	possibilities	for	selection	of	the	weight	function.	Popular	weight	functions	are	the	
Gaussian	and	cubic/quartic	spline	functions.	We	use	a	quartic	spline	weight	function	wi	
of	distance	rij

	
w

r
d

r
d

r
d

i j
ij ij ij( )x = − 
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1 6 8 3
2 3 4

	 (6.99)

	
r x x y y z zij j i j i j i= − + − + −( ) ( ) ( )2 2 2 	 (6.100)

where	d	is	the	largest	distance	among	pairs	of	nodes	in	the	partial	region.	Strains	are	calcu-
lated	by	partial	derivatives	of	the	MLS	approximation	(6.92)	with	respect	to	atom	positions:

	

∂
∂

= ∂
∂

uh T

x
p
x
a 	 (6.101)
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6.5.2  Radial Basis Function Interpolations

The	radial	basis	function	interpolation	of	a	displacement	uh	is	given	by

	 uh T( ) ( )x R x a= 	 (6.102)

	

R x x x

x s x s

T
n

n

R R

R R

( ) { ( ), , ( )}

(| |), , (| |) .

=

= − −{ }
1

1

�

� 	 (6.103)

where
R	is	a	radial	basis	function	(RBF)
a	is	the	vector	consisting	of	coefficients	which	are	calculated	to	satisfy	Kronecker	delta	

properties	of	the	RBF	interpolation
si	is	the	coordinate	of	ith	node
n	is	the	number	of	nodes

The	Kronecker	delta	properties	of	interpolation	stand	for	uh(xi)	=	ui	where	xi	is	the	coordi-
nate	vector	and	ui	is	the	displacement	at	ith	node.	The	coefficient	vector	a	is	obtained	from	
the	following	equation	system:

	 R a u0 = 	 (6.104)

	

R x0

1 1 1

1

( )
( , ) ( , )

( , ) ( , )
=

















R s s R s s

R s s R s s

n

n n n

�

� � �

�

	 (6.105)

	 uT
nu u= { , , }1 � 	 (6.106)

Therefore,	strains	are	obtained	by	differentiating	Equation	6.114:

	

∂
∂

= ∂
∂

uh T

x
R x
x

a
( ) 	 (6.107)

Various	RBFs	have	been	proposed	for	scattered	data	interpolations.	Existing	RBFs	are	MQ,	
inverse	 MQ,	 thin-plate	 spline,	 Gaussian,	 polynomials,	 and	 their	 combinations.	 Among	
known	RBFs,	the	Hardy’s	MQ	[89]	is	the	most	popular	since	Franke	reported	that	the	MQ	
exhibits	the	best	performance	on	majority	of	his	test	functions	[97].	Zhang	[83]	used	sev-
eral	RBFs:	the	polynomial	forms	developed	by	Wendland	[93]	and	Wu	[94],	combinations	
of	 logarithm	and	polynomial	by	Buhmann	[95],	 the	MQ,	 the	reciprocal	MQ	(RMQ),	 the	
Gaussian,	and	the	thin	plate	spline.	In	their	experiments,	the	MQ	exhibits	the	best	perfor-
mance.	The	original	form	of	MQ	has	the	following	appearance:

	
R r r ci j i

q
( ) = +( )2 2 	 (6.108)

where
c	is	the	shape	parameter
q	is	the	order	(q	=	0.5	in	the	Hardy’s	MQ)
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The	shape	of	MQ	gets	closer	to	cone	as	the	shape	parameter	c	gets	closer	to	0,	and	it	gets	
closer	 to	flat	 surface	with	 large	c	values	 [90,91].	 It	 is	 clear	 that	parameter	 c	 controls	 the	
quality	of	the	RBF	interpolations.	Several	suggestions	have	been	made	for	selection	of	the	
optimal	shape	parameter	c.	For	example,	Franke	[97]	proposed	the	following	equation	for	
selection	of	c:

	
c

d
n
i= 1 25. 	 (6.109)

where
di	is	the	distance	between	the	ith	node	with	its	nearest	neighbor
n	is	the	number	of	neighbors

Wang	[85]	used	the	MQ	augmented	with	polynomials	for	2D	mesh	free	FEMs.	They	eval-
uated	 the	 MQ	 by	 varying	 the	 exponent	 q	 instead	 of	 the	 shape	 parameter	 c.	 With	 fixed	
c	=	1.42,	the	best	result	was	obtained	for	q	=	1.03.	Several	researchers	used	their	variations	
of	the	MQ	[87,96,101,102].	In	the	RBF	interpolation,	results	of	interpolation	are	sensitive	to	
the	shape	of	RBF.	Rippa	[92]	developed	an	algorithm	for	automatic	selection	of	c,	but	it	is	
an	empirical	approach	and	computationally	expensive.	Currently,	a	common	algorithm	for	
automatic	determination	of	the	optimal	c	 is	not	available.	Appropriate	shape	parameter	
may	 be	 selected	 according	 to	 intuition	 and	 experiments.	 Researchers	 adopt	 existing	 or	
their	own	functions	which	may	be	suitable	for	their	problem.

6.5.3  Moving Kriging Interpolation

In	the	moving	Kriging	interpolation,	a	displacement	uh	is	expressed	by	the	relation

	 uh T T( ) ( ) ( )x p x a r x b= + , 	 (6.110)

where
p	is	the	vector	consisting	of	the	terms	of	a	fitting	polynomial
r	is	the	vector	consisting	of	the	correlation	functions
a	and	b	are	vectors	containing	coefficients	for	the	vectors	p	and	r

Without	the	term	rT(x)b,	the	interpolation	is	similar	to	the	MLS.	Actually,	the	term	rT(x)b	
corresponds	to	a	correction	which	forces	going	through	nodal	values.	In	order	to	construct	
the	Kriging	interpolations,	the	coefficient	vectors	a	and	b	are	calculated	from	the	following	
equations:

	 A P R P P R= − − −( ) ,T T1 1 1 	 (6.111)

	 a Au= , 	 (6.112)

	 b R I PA= −−1( )u. 	 (6.113)

Here,	u	is	the	vector	consisting	of	the	displacement	components	at	all	nodes	in	a	partial	
region,	matrix	P	contains	the	term	vector	p	at	given	nodes	in	the	region,	and	matrix	R	is	
composed	of	the	correlation	function	values	for	a	pair	of	given	nodal	coordinates
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where
si	is	the	coordinate	of	the	ith	node
n	is	the	number	of	nodes
R	is	the	correlation	function

The	polynomial	term	vector	p	and	the	correlation	vector	r	are	given	by

	 p x x xT
mt t( ) ( ), , ( )= { }1 � 	 (6.116)

	 r x s x s xT
nR R( ) ( , ), , ( , )= { }1 � 	 (6.117)

where	ti	 is	 the	 ith	term	of	a	given	polynomial	and	m	 is	 the	number	of	terms.	There	are	
numerous	possibilities	for	selection	of	the	polynomial	and	the	correlation	function.	The	
polynomial	controls	the	order	of	interpolation	while	the	correlation	function	determines	a	
relation	between	nodes.	In	this	study,	the	following	quadratic	polynomial	basis	is	selected	
as	follows:

	 t xT x y z x y z xy yz zx( ) { , , , , , , , , , }= 1 2 2 2 	 (6.118)

with	the	following	quartic	spline	correlation	function

	
R

r
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r
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r
d

i j
ij ij ij( , ) ,x x = − 
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1 6 8 3
2 3 4

θ θ θ 	 (6.119)

	
r x x y y z zij j i j i j i= − + − + −( ) ( ) ( ) ,2 2 2 	 (6.120)

and	its	parameters	developed	in	publication	[103]

	

θ =
− ≤ <

≤







0 1329 0 3290 3 10

1 0 10

. .

.

n n

n
	 (6.121)

where
d	is	the	largest	distance	of	a	pair	of	nodes	in	a	partial	region
θ	is	the	positive	correlation	parameter
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222 Computational Finite Element Methods in Nanotechnology

Strain	 components	 are	 calculated	 by	 differentiation	 of	 the	 Kriging	 interpolation	 (6.110)	
with	respect	to	coordinates	x:

	

∂
∂

= ∂
∂

+ ∂
∂

uh T T

x
p
x
a

r
x
b 	 (6.122)

Vectors	a	and	b	do	not	depend	on	the	coordinate	vector	x.	Thus,	strains	are	calculated	from	
derivatives	of	given	polynomial	terms	in	the	vector	p	and	correlation	functions	in	r	with	
respect	to	the	direction	of	differentiation	x.

6.5.4  Neighbor Atom Search

Atomic	 interactions	 are	 calculated	 based	 on	 real	 atomic	 structures	 in	 the	 AFEM.	
Therefore,	neighboring	atoms	 should	be	 found	 in	accordance	with	 the	 connectivities	
between	 atoms	 in	 the	 materials	 of	 our	 interest.	 In	 the	 GaAs	 and	 InAs	 zincblende	
crystals	with	periodic	boundary	in	z	direction,	the	number	of	neighboring	atoms	are	
from	2	to	4.	It	is	difficult	to	obtain	smooth	fitting	and	interpolation	functions	by	mesh	
free	 interpolation	 methods	 using	 such	 number	 of	 atoms.	 The	 neighbor	 atom	 search	
should	 be	 performed	 prior	 to	 construction	 of	 interpolation	 functions,	 but	 it	 requires	
computational	 complexity	 O(N2).	 The	 number	 of	 atoms	 can	 be	 millions,	 and	 thus	
we	 employ	 a	 bucketing	 algorithm	 to	 reduce	 computational	 costs	 for	 neighbor	 nodes	
searching.	Suppose	we	want	to	find	neighbor	nodes	around	a	center	atom	(atom	O	in	
Figure	6.13a).	In	the	ordinary	neighbor	node	search,	the	distances	between	all	nodes	are	

Atom

(a)

Range
circle

1 2 3

504

6

(b)

7 8

FIGURE 6.13
(a)	The	neighbor	nodes	are	found	based	on	the	distance	from	the	center	atom	(O)	to	all	nodes	in	ordinary	neigh-
bor	search	procedure.	(b)	In	the	bucket	search	procedure,	the	space	is	partitioned	into	subspaces	and	all	nodes	
are	registered	into	one	of	the	subspaces	according	to	their	position.	In	this	case,	calculations	of	distance	with	
nodes	belonging	to	regions	0–8	are	enough	to	find	neighbors.
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223Continuum and Atomic-Scale FE Modeling of Nanostructures

calculated,	and	if	the	distance	with	an	atom	is	less	than	a	specified	radius,	the	atom	is	
one	of	the	neighbors.

Figure	 6.13b	 illustrates	 the	 2D	 bucket	 search	 procedure.	 The	 space	 is	 divided	 into	
rectangular	regions,	and	all	atoms	are	registered	to	one	of	these	regions	according	to	their	
coordinates.	In	order	to	find	neighbors,	it	is	sufficient	to	calculate	distances	between	the	
center	atom	and	the	other	atoms	belonging	to	the	same	region	and	neighboring	regions.	
Suppose	that	neighbors	that	are	sought	for	the	center	atom	belongs	to	the	region	0	(Figure	
6.13b).	Then,	calculations	of	distance	are	performed	only	with	nodes	belonging	to	regions	
0–8.	 This	 reduces	 neighbor	 search	 computations	 to	 the	 order	 of	 O(MN),	 where	 M	 is	
the	average	number	of	neighbors	in	candidate	regions.	The	value	M	does	not	depend	on	
the	problem	size,	and	thus	the	complexity	of	neighbor	searching	depends	on	N	using	the	
bucket	search	procedure.

6.6 Comparison of Continuum Mechanics Solution with FEM

The	finite	element	procedure	 for	 the	solution	of	3D	anisotropic	geometrically	nonlinear	
problems	has	been	implemented	as	a	C++	computer	code.	The	computer	code	is	based	on	
the	object-oriented	implementation	of	the	finite	element	procedure	with	mesh	generation	
as	well	as	visualization	method	introduced	in	Ref.	[104].	Also,	a	Java	applet	is	created	which	
implements	the	generalized	plane	strain	solution	for	multilayer	anisotropic	structures,	and	
it	can	be	accessed	at	the	URL	[105].	Results	of	our	FEM	procedure	and	experimental	data	
were	 compared	 in	 the	previous	 study	 for	 self-positioning	nanostructures	with	different	
crystal	 orientations	 [40].	 Qualitative	 agreements	 are	 observed	 between	 the	 results,	
and	we	consider	that	differences	in	value	may	be	attributed	to	disability	of	our	FEM	to	
consider	imperfect	crystals	due	to	presence	of	dislocations.	Here,	results	of	the	FEM	are	
compared	with	the	continuum	mechanics	solution	for	bilayer	anisotropic	self-positioning	
nanostructures.	 Curvature	 radii	 and	 strains	 are	 calculated	 for	 a	 bilayer	 self-positioning	
nanostructure	 composed	 of	 GaAs	 top	 and	 In0.2Ga0.8As	 bottom	 layers	 for	 varying	 cubic	
crystal	orientations	 (Figure	6.14).	The	 top	and	 the	bottom	 layers	have	 thickness	88	and	
56	nm,	respectively.

88 nm

56 nm

GaAs

In0.2Ga0.8As

z΄

x΄

y

FIGURE 6.14
The	bilayer	system	composed	of	GaAs	top	and	In0.2Ga0.8As	bottom	layers	for	curvature	radius	and	strain	estima-
tions	for	varying	crystal	orientations.
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224 Computational Finite Element Methods in Nanotechnology

The	 material	 properties	 are	 shown	 in	 Table	 6.3.	 The	 lattice	 mismatching	 strain	 εi
0	 is	

estimated	by	using	the	following	equation:

	
εi ia a

a
0 0

0
= − 	 (6.123)

where
a0	is	an	initial	lattice	period
ai	is	the	crystal	lattice	period	of	the	ith	layer

The	lattice	period	of	top	layer	(layer	2)	is	selected	as	the	initial	lattice	period.	Therefore,	
corresponding	 lattice	mismatching	 strains	are	 ε1

0 21 433 10= × −. 	 and	 ε2
0 0 0= . .	 In	 the	FEM	

procedure,	the	initial	strain	ε0	is	divided	into	100	increments.
Figures	6.15	and	6.16	show	the	final	shape	of	the	self-positioning	nanostructure	obtained	

by	the	FEM	for	orientation	angle	0°	with	εx	and	εy	distributions.	Strain	distributions	are	
enlarged	at	the	structure	center.	The	structure	is	subjected	to	the	displacement	boundary	
conditions	at	one	of	the	structure	ends	which	imitates	a	fixed	end.	At	another	end,	a	massive	

TABLE 6.3

Constitutive	Tensor	Components	of	
GaAs	and	In0.2Ga0.8As	with	Unit	GPa

GaAs (Layer 2) In0.2Ga0.8As

C11 119.0 111.88
C12 53.4 51.8
C44 59.6 55.58

0.015

0.0

–0.015

FIGURE 6.15
Final	 shape	 of	 self-positioning	 structure	 and	 distribution	 of	 εx	 for	 the	 structure	 with	 orientation	 angle	 0°.	
Enlarged	views	are	given	for	each	end.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
31

 0
3 

M
ar

ch
 2

01
6 



225Continuum and Atomic-Scale FE Modeling of Nanostructures

structure	is	attached	to	restrict	curling	of	the	film	in	the	transverse	direction.	Symmetric	
half	 of	 the	 structure	 is	 created,	 and	 symmetric	boundary	 conditions	 are	 applied	 at	 the	
plane	of	symmetry.	The	finite	element	results	for	the	εx	linearly	depend	on	the	structure	
local	y	coordinate	as	assumed	in	continuum	mechanics	solutions.	The	distribution	of	the	
εy	is	discontinuous	at	the	interface	of	GaAs	and	In0.2Ga0.8As	layers	due	to	difference	in	the	
lattice	mismatching	strain	and	material	properties.

The	 values	 of	 curvature	 radius	 estimated	 by	 the	 ordinary	 plane	 strain	 solution	 (PS),	
generalized	plane	strain	solution	(GenPS),	and	FEM	for	varying	crystal	orientation	angles	
are	 shown	 in	 Figure	 6.17.	 The	 curvature	 radii	 vary	 as	 the	 sinusoidal	 function	 with	 90°	
period,	 and	 ordinary	 and	 generalized	 plane	 strain	 solutions	 predict	 almost	 same	 val-
ues.	Numerical	and	analytical	solutions	are	in	good	agreement,	but	small	differences	are	
observed.	 The	 differences	 are	 due	 to	 ignoring	 components	 C′16	 in	 the	 elasticity	 matrix	
(6.14)	and	inability	of	our	finite	element	program	to	exactly	reproduce	generalized	plane	
strain	conditions.	The	component	C′16	becomes	zero	for	orientation	angles	0°	and	45°,	and	
thus	the	continuum	mechanics	solutions	and	the	FEM	are	in	better	agreement	for	these	
orientations.

Figure	6.18	shows	comparison	of	local	strain	components	calculated	by	the	PS	and	the	
GenPS	 solutions	 with	 the	FEM	 along	 local	 y	direction.	 The	 results	 are	 shown	 for	 crys-
tal	orientation	0°	and	45°.	The	PS	solution	assumes	strain	εz	=	0,	but	both	GenPS	solution	
and	FEM	predict	about	0.5%	expansion	in	z	direction.	All	strain	components	are	in	better	
agreement	with	the	FEM	using	the	GenPS	solution.	Results	of	the	FEM	and	plane	strain	
solutions	 were	 compared	 in	 this	 section.	 The	 continuum	 mechanics	 solutions	 may	 be	
more	 convenient	 for	 practical	 use,	 such	 as	 prediction	 of	 the	 self-positioning	 nanostruc-
ture	deformation	during	laboratory	experiments,	but	the	FEM	may	be	required	to	know	
detailed	and	more	precise	properties.

0.015

0.0

–0.015

FIGURE 6.16
Final	 shape	 of	 self-positioning	 structure	 and	 distribution	 of	 εy	 for	 the	 structure	 with	 orientation	 angle	 0°.	
Enlarged	views	are	given	for	each	end.
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226 Computational Finite Element Methods in Nanotechnology

6.7 Comparison of Continuum Mechanics Solutions with AFEM Results

6.7.1  Atomic-Scale Modeling of Self-Positioning Nanostructures

The	analytical	and	numerical	solutions	are	based	on	continuum	mechanics	theory.	Here,	
the	 continuum	 mechanics	 solutions	 are	 compared	 with	 the	 atomic-scale	 modeling	 to	
investigate	effects	of	the	structure	size	on	the	self-positioning.	In	order	to	model	bilayer	
self-positioning	structures	consisting	of	GaAs	top	and	InAs	bottom	layers,	a	problem	size	
parameter	c	is	defined	to	describe	the	size	of	atomic	systems	as	shown	in	Figure	6.19.	In	the	
thickness	direction,	bilayer	hinges	are	composed	of	c	unit	crystals	of	InAs	in	the	bottom	
layer	and	3c	unit	crystals	of	GaAs	in	the	top	layer.	Thus,	there	are	totally	4c	unit	crystals	
in	the	thickness	(y)	direction.	In	the	length	(x)	direction,	atomic	layers	of	length	16a0c	are	

5.5

6.0

6.5

7.0

0 15 30 45 60 75 90

R 
(µ

m
) 

Angle (degrees)

GenPS
PS
FEM

FIGURE 6.17
Curvature	radius	calculated	by	the	generalized	plane	strain	solution	(GenPS),	the	ordinary	plane	strain	solution	
(PS),	and	the	finite	element	modeling	(FEM)	for	varying	orientation	angle.
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FIGURE 6.18
Comparison	of	strain	components	for	orientation	angles	(a)	0°	and	(b)	45°	by	the	generalized	plane	strain	solu-
tion	(GenPS),	the	ordinary	plane	strain	solution	(PS),	and	the	finite	element	modeling	(FEM)	along	local	y	direc-
tion.	Abscissa	is	normalized	by	the	total	thickness	t.
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227Continuum and Atomic-Scale FE Modeling of Nanostructures

prepared	 where	 a0	 is	 an	 initial	 lattice	 period	 (Figure	 6.19).	 The	 GaAs	 and	 InAs	 bilayer	
structures	with	the	problem	size	parameter	c	=	1,	2,	4,	8,	12,	16,	24,	and	36	are	prepared	to	
investigate	size	effects	on	equilibrium	configurations.	Corresponding	numbers	of	atoms	
in	atomic	systems	are	1106,	4258,	10706,	66178,	148418,	263426,	591746,	and	1329986,	respec-
tively.	The	effect	of	material	anisotropy	is	investigated	for	crystal	orientation	angles	0°,	15°,	
30°,	45°,	60°,	75°,	and	90°.	For	hinges	with	orientation	angles	0°	and	90°,	16a0c	is	equal	to	the	
length	of	16c	unit	crystals.

In	the	AFEM	models,	periodic	boundary	conditions	are	applied	to	imitate	atomic	sys-
tems	of	infinite	dimensions	that	also	help	to	minimize	number	of	atoms	in	the	model.	
The	periodic	boundary	condition	 is	applied	 in	z	 (width)	direction	 for	 structures	with	
orientation	angles	0°,	45°,	and	90°.	Such	structures	consist	of	one	complete	and	another	
incomplete	crystal	in	the	width	direction,	and	connections	across	periodic	boundary	are	
created	when	looking	for	neighboring	atoms.	For	hinges	with	other	orientation	angles	
(15°,	30°,	60°,	and	75°),	enough	number	of	atomic	layers	in	the	width	direction,	such	as	
30a0,	 are	 prepared	 and	 the	 displacement	 is	 constrained	 in	 the	 width	 direction	 which	
corresponds	to	the	plane	strain	conditions	(εz	=	0).	Also,	displacement	boundary	condi-
tions	are	applied	to	the	model	at	one	of	the	ends	in	the	length	direction	in	order	to	fix	it	
in	the	space.	On	the	plane	x	=	0,	atoms	are	fixed	in	the	x	direction,	and	a	few	atoms	near	
the	center	of	the	plane	are	fixed	in	the	y	direction	to	restrict	translation	in	the	vertical	
direction.	The	periodic	boundaries	are	created	across	the	structure	width	(z)	direction.	
The	 model	 is	 used	 for	 investigation	 of	 curvature	 radius	 dependence	 on	 the	 structure	
thickness	and	crystal	orientation	angle.	Since	the	crystal	lattice	period	of	InAs	is	larger	
than	that	of	GaAs,	the	equilibrium	configuration	of	the	structure	after	self-positioning	
approximately	corresponds	to	a	circular	arc	with	its	center	located	on	the	positive	y-axis.	
Since	model	deformation	is	under	ordinary	plane	strain	conditions,	the	results	obtained	
by	the	AFEM	are	compared	with	the	continuum	mechanics	solution	under	plane	strain	
conditions	for	varying	crystal	orientation.

The	thickness	for	structures	consisting	of	just	a	few	crystal	layers	in	the	thickness	direc-
tion	 should	 be	 accurately	 defined	 when	 calculating	 curvature	 radius	 using	 continuum	
mechanics	solutions.	It	may	be	appropriate	to	add	some	offset	equal	to	a	“radius”	of	an	
atom	at	each	 free	surface.	Adding	such	an	offset	 is	not	critical	 for	 thick	structures,	but	
it	can	be	important	for	problems	with	small	number	of	unit	crystals.	If	we	adopt	half	of	
the	interatom	distance	as	an	offset,	then	the	offset	is	equal	to	 3 8a/ 	for	zincblende	crys-
tal	structures,	where	a	is	a	crystal	lattice	period.	Corresponding	offsets	are	0.1224	nm	for	

y (�ickness)

x (Length)

z (Width)

3a0c

1a0c

GaAs

InAs

16 a0c

t2

t1

FIGURE 6.19
A	schematic	of	the	AFEM	model	for	numerical	modeling.	The	number	of	atoms	in	the	problem	is	determined	
by	the	parameter	c.
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228 Computational Finite Element Methods in Nanotechnology

GaAs	 and	 0.1425	nm	 for	 InAs	 crystals.	 Initial	 strains	 εi
0 	 used	 in	 continuum	 mechanics	

solutions	are	determined	by	initial	(a0)	and	material	natural	lattice	period	(ai)	as

	
εi

a a
a

0 1 0

0
= −

. 	 (6.124)

The	initial	lattice	period	for	bilayer	systems	is	determined	using	a	weighted	linear	inter-
polation	of	GaAs	and	InAs	natural	lattice	periods

	
a

a n a n
n n

0
1 1 2 2

1 2
= +

+
	 (6.125)

where	 n1	 and	 n2	 are	 number	 of	 crystals	 in	 each	 InAs	 and	 GaAs	 layer.	 Therefore,	 a0	 is	
assumed	to	be	0.57546	nm	in	our	problems.

6.7.2  Effects of Thickness on the Curvature Radius

The	first	problem	series	calculates	curvature	radius	for	varying	thickness.	In	the	problem	
series,	size	parameter	c	 is	set	to	1,	2,	4,	8,	12,	16,	24,	and	36.	Such	c	values	lead	to	struc-
tures	with	 thickness	2.56,	 4.86,	 9.46,	 18.65,	 27.84,	 37.03,	 55.41,	 and	82.98	nm.	The	 largest	
AFEM	 model	 consists	of	 1,329,986	atoms	 that	 correspond	 to	about	4	million	equations.	
Equilibrium	configurations	of	bilayer	hinges	are	determined	with	the	use	of	the	iteration	
procedure	(6.87).	The	AFEM	values	of	 the	curvature	radius	are	compared	with	the	con-
tinuum	mechanics	solution	under	the	plane	strain	conditions	(Equation	6.44).	In	the	con-
tinuum	mechanics	solution,	elastic	properties	estimated	by	the	AFEM	on	the	tensile	rod	
model	are	used	(Table	6.2).

The	 computations	 are	 performed	 on	 an	 ordinary	 personal	 computer	 equipped	 with	
2	GB	RAM.	In	case	of	the	smallest	problem,	it	takes	1.2	s	for	assembly	of	the	AFEM	equa-
tion	system,	and	0.3	s	for	solution	of	the	equation	system	per	loading	step.	Nine	iterations	
took	13.5	s.	Solution	of	the	largest	problem	requires	0.5	h	for	assembly,	and	4.5	h	for	solution	
of	the	equation	system	per	step.	The	number	of	steps	was	8,	and	thus	it	took	totally	40	h	for	
the	largest	problem.

Figure	6.20	shows	the	final	shape	of	the	atomic	model	after	self-positioning	for	problem	
size	c	=	1,	which	means	totally	four	unit	crystals	in	the	thickness	direction.	The	analysis	
naturally	 reproduces	 that	 spacing	of	atoms	 is	 smaller	 in	GaAs	and	 larger	 in	 InAs.	 It	 is	
also	observed	that	the	free	end	is	not	flat	along	vertical	direction	due	to	expansion	in	the	
bottom	and	compression	in	the	top	layers.

Figure	6.21	depicts	the	ratio	of	the	curvature	radius	determined	by	the	AFEM	and	by	the	
continuum	mechanics	solution	for	varying	structure	 thickness.	Curvature	radius	values	
obtained	by	the	AFEM	modeling	at	the	top	and	at	the	bottom	of	the	atomic	structures	are	
calculated	by	using	three	neighbor	nodes	along	the	x	direction	to	fit	a	circle.	Then,	the	top	
and	the	bottom	curvature	radius	values	are	used	to	calculate	the	curvature	radius	at	the	
neutral	layer	by	linear	interpolation.	The	neutral	layer	is	located	at	0.54	of	the	thickness	
from	the	bottom	of	the	structure	in	our	problems.	In	order	to	estimate	convergence	of	the	
curvature	radius	with	increasing	thickness,	 the	least	square	fitting	of	the	obtained	eight	
numerical	 solutions	 is	 performed	 using	 power	 function	 R(c)	=	α1(α2	 c	+	α3)−β	+	γ,	 where	 c	
denotes	the	size	of	the	atomic	system,	and	α1,	α2,	α3,	β,	and	γ	are	parameters	found	by	the	
least	square	fitting.	The	parameter	γ	 corresponds	 to	a	converged	value	of	 the	curvature	
radius	 for	 infinite	 number	 of	 crystal	 layers.	According	 to	 the	 least	 square	 fit	 result,	 the	
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229Continuum and Atomic-Scale FE Modeling of Nanostructures

curvature	radius	by	AFEM	converges	to	1.0037	of	the	plane	strain	solution.	The	difference	
between	atomic-scale	modeling	and	plane	strain	solution	is	−0.36%	for	the	largest	problem	
we	investigated	(c	=	36).	Therefore,	the	AFEM	and	the	continuum	mechanics	solution	agree	
for	 large	 thicknesses.	 The	 difference	 between	 atomic-scale	 and	 continuum	 mechanics	
curvature	 radius	 increases	 with	 reduction	 of	 the	 structure	 thickness.	 The	 difference	 is	
−18.4%	for	the	smallest	problem	size	c	=	1	which	corresponds	to	four	unit	crystals	in	the	
thickness	direction	and	the	thickness	2.56	nm.

6.7.3  Effects of Material Anisotropy on the Curvature Radius

The	 second	 problem	 series	 is	 used	 to	 determine	 curvature	 radius	 for	 varying	 crystal	
orientations.	 In	 order	 to	 investigate	 effect	 of	 material	 anisotropy	 on	 the	 equilibrium	
curvature	radius,	a	series	of	AFEM	solutions	for	problem	sizes	c =	1,	2,	4,	and	8	and	crystal	

GaAs layer

InAs layer

x

y

FIGURE 6.20
The	final	shape	of	atomic	bilayer	structure	in	problem	size	c	=	1.
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FIGURE 6.21
Ratios	of	the	curvature	radius	determined	by	the	AFEM	and	the	continuum	mechanics	solution	for	varying	
structure	thickness.
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230 Computational Finite Element Methods in Nanotechnology

orientation	angles	0°,	15°,	30°,	45°,	60°,	75°,	and	90°	is	prepared.	Figure	6.22	shows	the	final	
shape	of	atomic	models	after	self-positioning	for	orientation	angles	0°,	15°,	30°,	45°,	60°,	and	
75°	of	problem	size	c	=	1.

Table	6.4	shows	ratios	of	the	curvature	radius	R	to	the	thickness	t	obtained	by	the	AFEM	
modeling	for	orientation	angles	0°,	15°,	30°,	and	45°.	It	also	shows	results	calculated	by	the	
continuum	mechanics	solution	for	the	orientation	angle	0°.

Figure	 6.23	 shows	 dependency	 of	 the	 curvature	 radius	 ratio	 RAFEM/RCont(0°)	 on	 the	
orientation	angle.	The	RAFEM	indicates	the	curvature	radius	determined	by	the	AFEM,	and	
RCont(0°)	means	the	continuum	mechanics	solution	for	zero	orientation	angle.	The	curvature	
radius	value	changes	from	minimum	at	orientation	angles	0°	and	90°	to	maximum	at	45°.	
The	ratio	of	maximal	and	minimal	values	of	the	curvature	radius	is	about	1.35.	This	ratio	is	
similar	to	experimental	data	and	numerical	FEM	of	GaAs	and	In0.2Ga0.8As	bilayer	structures.	
Dependency	of	the	curvature	radius	on	the	material	orientation	angle	is	close	to	sinusoidal	
function	with	period	90°	as	found	by	experimental	investigations	[40].

6.7.4  Results for Strains

Strain	 distributions	 are	 calculated	 using	 displacement	 increments	 during	 the	 AFEM	
solutions,	 and	 their	 contour	plots	are	 created	using	mesh	 free	 interpolation	 techniques:	

y

x
(a)

y

x
(b)

y

x
(c)

y

x
(d)

y

x
(e)

y

x
(f)

FIGURE 6.22
Final	shapes	of	bilayer	structures	with	the	problem	size	c	=	1	for	crystal	orientation	angles	0°–75°.	(a)	0°,	(b)	15°,	
(c)	30°,	(d)	45°,	(e)	60°,	and	(f)	75°.
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231Continuum and Atomic-Scale FE Modeling of Nanostructures

the	MLS	approximation,	the	RBF	interpolation,	and	the	Kriging	interpolation.	In	this	chap-
ter,	results	of	the	MLS	and	the	Kriging	methods	are	shown	since	some	undesirable	noises	
are	 observed	 in	 the	 RBF	 interpolation	 using	 any	 basis	 functions	 with	 shape	 parameter	
selection	algorithms	introduced	in	Section	6.5.2.	More	detailed	comparisons	are	found	in	
the	dissertation	[106].	In	the	AFEM	results,	strain	z	(width)	component	is	zero	due	to	peri-
odic	boundary	condition	in	the	z	direction.	Hence,	strains	εx	and	εy	components	are	calcu-
lated.	The	interpolation	is	constructed	by	taking	16	neighboring	atoms	around	the	position	
where	strains	are	estimated.

6.7.4.1  Moving Least Squares Approximation

The	 MLS	 approximation	 produces	 results	 that	 are	 relatively	 smooth	 compared	 to	 the	
other	interpolation	methods	since	they	do	not	go	through	exact	nodal	values.	According	
to	 the	plane	strain	solution,	 strains	are	 linear	 functions	of	 local	y	 coordinate,	and	 the	
strain	εy	is	discontinuous	at	the	interface	of	the	bilayer	due	to	difference	in	material	prop-
erties	and	lattice	mismatching	strains.	Figure	6.24	shows	comparison	of	strains	obtained	
by	the	MLS	method	and	the	plane	strain	solution	along	local	y	direction.	The	AFEM	with	
the	 MLS	 approximation	 predicts	 almost	 same	 strain	 distributions	 as	 the	 plane	 strain	

TABLE 6.4

Total	Thickness	t	(nm)	and	Relative	Value	of	Curvature	Radius	R/t	
for	Problem	Sizes	c	=	1,	2,	4,	and	8	for	Varying	Orientation	Angle

c t (nm) Cont. (0°) AFEM (0°) AFEM (15°) AFEM (30°) AFEM (45°)

1 2.56 9.25 7.56 8.32 9.86 10.67
2 4.86 9.60 8.56 9.35 10.88 11.76
4 9.46 9.81 9.23 9.98 11.54 12.54
8 18.65 9.92 9.63 10.29 11.87 13.01

Note:	 Curvature	radius	value	is	symmetric	with	respect	to	orientation	angle	45°,	so	
results	are	shown	up	to	45°.
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FIGURE 6.23
Dependency	of	curvature	radius	ratio	RAFEM/RCont(0°)	on	orientation	angle	for	problem	sizes	c	=	1–8	(2.56–18.65	nm).
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232 Computational Finite Element Methods in Nanotechnology

solution.	In	the	AFEM	results,	slope	of	strain	εx	 is	slightly	different	at	top	and	bottom	
layers	due	to	expansion	in	the	bottom	and	compression	in	the	top	layers.	At	y/t	=	0	and	
y/t	=	1,	which	correspond	to	the	top	and	the	bottom	surfaces,	 the	plane	strain	solution	
predicts	εy	strain	values	0.08	and	−0.002.	However,	strains	estimated	by	the	AFEM	are	
about	−0.084	and	−0.065	for	the	problem	size	c	=	1,	and	about	−0.074	and	−0.070	for	the	
problem	size	c	=	8.	This	indicates	compression	at	the	top	and	the	bottom	surfaces	in	the	
AFEM	modeling.

Figure	6.25	depicts	contour	plots	of	the	εx	and	the	εy	distribution	for	problem	sizes	c	=	1	
and	8.	Distribution	for	the	problem	c	=	1	looks	a	little	rough	since	there	are	less	atoms	in	
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FIGURE 6.24
Strains	obtained	by	the	AFEM	with	MLS	and	the	plane	strain	solution	along	 local	y	coordinate.	Abscissa	 is	
normalized	by	total	thickness	t.	(a)	c	=	1	and	(b)	c	=	8.
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FIGURE 6.25
Contour	plots	of	strains	by	the	AFEM	with	MLS	approximation	for	problem	sizes	c	=	1,	8.	(a)	c	=	1,	εx,	(b)	c	=	1,	εy,	
(c)	c	=	8,	εx,	and	(d)	c	=	8,	εy.
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233Continuum and Atomic-Scale FE Modeling of Nanostructures

the	whole	structure,	but	it	can	be	recognized	that	fixed	and	free	end	effects	are	more	sig-
nificant	in	structures	with	smaller	number	of	atoms.

6.7.4.2  Kriging Interpolation

Shape	functions	of	the	Kriging	interpolation	possess	Kronecker	delta	properties.	Therefore,	
the	interpolation	function	is	more	sharp	compared	to	the	MLS	interpolation.	Figure	6.26	
compares	strains	along	the	local	y	direction	calculated	by	the	plane	strain	solution	and	by	
the	AFEM	with	Kriging	interpolation.	The	strains	agree	well	to	the	plane	strain	solution.	
However,	at	the	top	and	the	bottom	surfaces,	there	are	significant	differences	with	plane	
strain	solution	in	εy.	These	differences	are	also	observed	in	the	MLS	approximation,	but	
Kriging	interpolation	predicts	slightly	larger	compressive	strains.

Figure	 6.27	 presents	 contour	 plots	 of	 the	 εx	 and	 the	 εy	 distribution	 for	 problem	 sizes	
c	=	1	and	8.	In	the	Kriging	interpolation,	sharper	strain	distributions	at	free	surfaces	are	
obtained.

Strains	are	calculated	by	the	AFEM	with	mesh	free	interpolations.	Significant	difference	
of	strains	from	the	plane	strain	solution	is	observed	at	free	surfaces.	The	strain	component	
εy	at	the	top	and	the	bottom	surfaces	estimated	by	the	AFEM	shows	the	larger	compres-
sive	strains	 than	the	continuum	mechanics	solution.	The	compression	estimated	by	 the	
continuum	mechanics	solution	is	about	−0.1%,	but	mesh	free	interpolations	predict	about	
−7%.	At	the	bottom	surface,	the	plane	strain	solution	predicts	10%	of	expansion	while	the	
AFEM	with	mesh	free	interpolation	estimates	compression	of	−9%.	End	effects	become	less	
significant	to	strain	distributions	as	the	structure	size	increases.	Decreasing	of	curvature	
radius	is	observed	in	the	atomic-scale	modeling.	The	difference	of	curvature	radius	can	
be	attributed	to	inability	of	continuum	mechanics	methods	to	model	free	surface	effects.	
Discrepancy	of	εy	at	the	top	and	at	the	bottom	surfaces	arises	due	to	absence	of	atoms	at	
each	free	surface.	At	free	surfaces,	atoms	are	attracted	in	a	direction	inside	of	a	structure,	
and	compression	occurs	(Figures	6.28	and	6.29).	The	AFEM	with	mesh	free	interpolation	
techniques	reproduces	such	strains	well.

The	 MLS,	 RBF,	 and	 the	Kriging	 interpolations	 are	 implemented	 to	obtain	 derivatives	
of	the	atomic	displacements.	The	MLS	approximation	produces	relatively	smooth	strain	
distributions,	but	some	sharp	features	may	be	sometimes	rounded.	The	RBF	interpolation	
overcomes	such	difficulties,	but	it	has	another	difficulty	for	selection	of	basis	function	or	
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FIGURE 6.26
Strains	obtained	by	the	AFEM	with	Kriging	interpolation	and	the	plane	strain	solution	along	local	y	coordinate.
(a)	c	=	1	and	(b)	c	=	8.
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234 Computational Finite Element Methods in Nanotechnology

suitable	shape	parameters.	The	Kriging	interpolation	goes	through	nodal	values,	and	it	is	
sufficient	to	use	the	quadratic	basis	for	interpolation.	We	conclude	that	the	Kriging	inter-
polation	is	the	most	suitable	method	to	calculate	strains	for	the	AFEM	procedure.	If	there	
is	some	noise	anticipated	due	to	less	reliable	inputs,	lower	degrees	of	fitting	polynomial	or	
the	MLS	might	be	suitable	for	robustness.
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FIGURE 6.27
Contour	plot	of	strains	by	the	AFEM	with	Kriging	interpolation	in	problem	sizes	c	=	1,	8.	(a)	c	=	1,	εx,	(b)	c	=	1,	εy,	
(c)	c	=	8,	εx,	and	(d)	c	=	8,	εy.
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FIGURE 6.28
GaAs	atomic	configuration	near	the	top	surface.
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235Continuum and Atomic-Scale FE Modeling of Nanostructures

6.8 Conclusion

The	 self-positioning	 nanostructures	 are	 modeled	 by	 a	 continuum	 mechanics	 theory,	 a	
finite	element	procedure,	and	an	atomic-scale	finite	element	procedure	taking	into	account	
material	 anisotropy.	 Continuum	 mechanics	 solutions	 were	 derived	 under	 ordinary	 and	
generalized	 plane	 strain	 conditions	 taking	 into	 account	 dependence	 of	 cubic	 crystal	
orientations.	The	generalized	plane	strain	condition	is	characterized	by	zero	total	force	in	
the	structure	z	(width)	direction.	A	finite	element	procedure	was	developed	for	modeling	
self-positioning	structures	with	material	anisotropy.	Nonlinear	deformations	are	controlled	
by	using	the	Newton–Raphson	iteration	procedure	with	updated	Lagrangian	formulation.	
Different	 crystal	 orientations	 are	 modeled	 by	 rotating	 constitutive	 tensor	 using	 fourth-
order	tensor	transformation	law.	The	finite	element	procedure	was	applied	to	modeling	of	
bilayer	self-positioning	nanostructures	consisting	of	GaAs	and	In0.2Ga0.8As.	In	the	previous	
study,	curvature	radii	obtained	by	the	FEM	were	compared	with	experimental	data,	and	it	
was	confirmed	that	the	finite	element	results	agree	with	the	experimental	data	qualitatively.	
Comparisons	of	the	finite	element	analysis	and	the	continuum	mechanics	solutions	show	
that	the	solution	is	appropriate	for	estimation	of	curvature	radius	and	strains,	especially	
strain	in	the	width	direction.	The	curvature	radius	is	minimum	at	crystal	orientation	angles	
0°,	90°,	180°,	and	270°,	and	the	largest	curvature	radius	is	observed	for	crystal	orientation	
angles	45°,	135°,	225°,	and	315°.

Also,	an	atomic-scale	finite	element	procedure	was	developed	for	atomic-scale	modeling	
of	self-positioning	nanostructures.	Our	AFEM	procedure	is	formulated	using	the	Tersoff	
interatomic	potential	function	and	a	Nordlund	parameterization	for	indium,	gallium,	and	
arsenide	atomic	systems.	The	deformation	of	self-positioning	nanostructures	involves	large	
rotational	 and	 translational	 displacements,	 and	 thus	 a	 new	 iterative	 solution	 algorithm	
was	adopted	with	a	 load	relaxation	 to	suppress	nonlinear	deformation	at	each	solution	
step.	Strain	estimation	procedures	were	also	developed	based	on	mesh	free	finite	element	
interpolation	techniques.	The	developed	AFEM	procedure	has	been	used	for	estimation	
of	 curvature	 radius	 and	 strain	 components	 of	 bilayer	 self-positioning	 nanostructures	
composed	of	GaAs	and	InAs	layers,	and	dependence	of	the	curvature	radius	on	varying	
thickness	and	crystal	orientations	are	investigated.	Comparisons	of	the	AFEM	results	with	
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0.6044 nm 0.2917 nm
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FIGURE 6.29
InAs	atomic	configuration	near	the	bottom	surface.
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236 Computational Finite Element Methods in Nanotechnology

continuum	mechanics	solution	show	that	their	ratio	gets	smaller	as	the	structure	thickness	
decreases.	On	the	other	hand,	the	curvature	radius	converges	to	the	continuum	mechanics	
solution	 as	 the	 structure	 thickness	 increases.	 Dependency	 of	 the	 curvature	 radius	 on	
the	crystal	orientation	angle	shows	a	periodic	curve	with	the	maximum	and	minimum	
curvature	 radii	 at	 angle	 45°,	 and	 0°	 or	 90°,	 respectively.	 It	 was	 shown	 that	 hinges	 with	
different	crystal	orientation	angles	can	result	in	curvature	radii	difference	by	35%.	Strains	
predicted	 by	 our	 AFEM	 procedure	 correspond	 to	 results	 of	 the	 continuum	 mechanics	
solution	under	plane	strain	conditions.	However,	the	AFEM	also	predicts	surface	effects	
which	are	significant	for	thin	nanostructures.	The	difference	of	curvature	radius	between	
the	atomic-scale	and	the	continuum	mechanics	solutions	for	structures	of	small	thickness	
can	be	attributed	to	the	inability	of	the	continuum	mechanics	methods	to	model	surface	
effects	of	neighboring	atoms’	absence.
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7
Application of Finite Element Method 
for the Design of Nanocomposites

Ufana Riaz
Materials Research Laboratory, Department of Chemistry, New Delhi, India

S.M. Ashraf
Materials Research Laboratory, Department of Chemistry, New Delhi, India

7.1 Introduction

Computational modeling techniques are widely employed in materials chemistry as they 
enable rapid testing of theoretical predictions and understanding of complex experimental 
data. Computational modeling is a well-established technique in different areas of materials 
science, including polymers [1], ceramics [2], semiconductors [3], metals [4], pharmaceutical 
materials science [5], nanotechnology and engineering [6], biomimetic materials [7], and 
solid-state ionics [8], etc. Researchers generally consider computer modeling to be a 
theoretical technique, since the algorithms and methods involved are often expressed in 
highly mathematical terms, and also because theoretical groups tend to make heavy use 
of numerical simulations. However, this is somewhat of a misconception, since modeling 
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may better be considered as a form of numerical experimentation. Numerical experiments 
cannot themselves explain the occurrence of a physical phenomenon, as every real 
experiment requires theoretical interpretation of the results. Therefore, modeling, theory, 
and physical experimentation have a rather more complex and subtle interdependence in 
the full elucidation of any scientific problem.

Multiscale modeling involves the application of modeling techniques at two or more 
different scales, which are often, dissimilar in their theoretical character due to the change 
in scale. A distinction is made between the hierarchical approach, [9–11], which involves 
running separate models with some sort of parametric coupling, and the hybrid approach, 
[12–15] in which models are run concurrently over different spatial regions of a simulation. 
The relationships between different categories of methods commonly used in the multi-
scale modeling hierarchy are shown in Figure 7.1. Although some techniques have been 
known for a long time and are now widely used, such as molecular dynamics (MD) and 
Monte Carlo (MC) methods, others such as mesoscale modeling and some more advanced 
methods of atomistic simulations are not as common. We have therefore included the tech-
nical summary for the benefit of nonspecialists.

The finite element analysis (FEA) is commonly used to study the thermal, mechanical, 
optical, morphological, and conductivity behavior of materials. The model serves as a link 
between computational chemistry and solid mechanics by substituting discrete molecular 
structures with an equivalent-continuum model.

FEA originated in the field of structural analysis and was widely explored during the 
1950s and 1960s. This technique is well established in civil and aeronautical engineering 
and is used by mechanical engineers, for the analysis of stress in solid components. But 
problems in fluid mechanics and heat transfer are less commonly solved by FEAs due 
to the complex nature of the physical processes involved. All FEMs involve dividing the 
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10–6
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FIGURE 7.1
Hierarchy of multiscale modeling techniques. (From Elliott, J.A., Int. Mater. Rev., 56, 209, 2011.)
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physical systems, such as structures, solid or fluid continua, into small elements. Each 
element is essentially a simple unit, the behavior of which can be readily analyzed. The 
complexities of the overall systems are adjusted by using large numbers of elements, rather 
than resorting to the sophisticated mathematics required by many analytical solutions. 
One of the main attractions of the FEA is the ease with which it can be applied to problems 
involving geometrically complicated systems.

7.1.1 Nanomaterials and Their Properties

Nanomaterials are generally considered as the materials that have a characteristic dimen-
sion smaller than 100 nm. Nanomaterials can be metallic, polymeric, ceramic, electronic, or 
composite. On the basis of geometry, nanomaterials can be classified into three categories, 
as shown in Figure 7.2 [16,17].

 1. Nanoparticles: When the three dimensions of particulates are in the order of 
nanometers, they are called as isodimensional nanoparticles/nanocrystals.

 2. Nanotubes: When two dimensions are in the nanometer scale forming an elongated 
structure, they are referred to as nanotubes/nanofibers/whiskers/nanorods.

 3. Nanolayers: Nanolayers/nanoclays/nanosheets/nanoplatelets are characterized by 
only one dimension in nanometer scale and are present in the form of sheets of 
one to a few nanometer thick to hundreds to thousands nanometers.

Nanomaterials can also be classified as natural, incidental, and engineered nanomaterials 
depending on their pathway [18]. Natural nanomaterials occur in the environment (e.g., 
volcanic dust, lunar dust, magnetotactic bacteria, minerals, etc.). Incidental nanomaterials 
are created by man-made industrial processes (e.g., coal combustion, welding fumes, etc.). 
Engineered nanomaterials are obtained by lithographic etching of a large sample or by 
assembling smaller subunits through crystal growth or chemical synthesis to produce 
nanomaterials of desired size and dimension. Engineered nanomaterials most often have 
regular shapes, such as tubes, spheres, rings, etc.

<100 nm

>100 nm

~1 nm

Nanolayers

Nanotubes

3D nanoparticles

<100 nm

FIGURE 7.2
Classification of nanoscale materials. (From Kumar, A.P. et al., Prog. Polym. Sci., 34, 479, 2009.)
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Nanostructured materials are shown to possess unusual electrical, mechanical, 
and other physical properties as compared with their bulky counterparts. One of the 
reasons for unique properties of materials at nanoscale is the difference in physics at 
nanoscale as compared to macroscale. The fundamental laws of physics remain the 
same. However, their relative significance changes at the nanoscale. Gravitational 
and inertial forces are volume forces, which are dominant only at the macroscale and 
become almost negligible at the nanoscale. Frictional force that is a volume force at mac-
roscale becomes surface force at nanoscale because adhesive forces between atoms and 
molecules become considerable at nanoscale [19–21]. Electrostatic and van der Waals 
forces are two major forces that become dominant at nanoscale. Electrostatic forces, 
which can be either repulsive or attractive, are very strong and act at a length scale of 
1–100 nm. Van der Waals forces are attractive and act at distances less than 2 nm. There 
are three types of van der Waals forces:

 1. Dipole–dipole forces (Keesom force) that occur between polar molecules such as 
water.

 2. Dipole-induced dipole forces (induction of Debye force) arise when a polar mol-
ecule polarizes a nearby nonpolar molecule.

 3. Induced dipole–induced dipole forces (dispersion of London force) that act on all 
atoms and molecules and is the most important van der Waals force [22,23].

Another difference between macroscale and nanoscale is the quantum mechanics. 
Quantum mechanics, instead of classical mechanics, describes the motion and energy at 
the nanoscale. Quantum mechanics considers the wave-particle duality of electrons. A 
material can exhibit entirely new properties with only a reduction in size because of the 
wave-particle duality of electrons. For example, gold at macroscale is yellow, inert, and a 
nonmagnetic metal but at 10 nm gold appears red, exhibits catalytic activity, and is magnetic 
[24]. Another distinctive effect that becomes dominant at the nanoscale is the Brownian 
motion. Brownian motion arises as the atoms are in a state of constant motion [25].

Higher aspect (As) to volume (Vs) ratio: As to Vs ratio is an indication of the quantity of 
interfacial region as compared to the bulk region. The interfacial region controls formation 
of new structural arrangements on the molecular scale. The As to Vs ratio for a spherical 
particle with radius r is given as [25]:

 

As r
r rVs

= =4
4

3π
π

2

3
 (7.1)

Nanoparticles have higher As to Vs ratio because of their small size (1–100 nm). Higher As 
to Vs ratio results in greater interfacial region, causing increased interaction between the 
nanoparticles. This increased interaction improves the properties of nanomaterials. Other 
than size, shape is an important factor in determining As to Vs ratio [25,26]. The high As 
to Vs ratio also makes nanoparticles more reactive as catalysts in chemical reactions. For 
nanoscale particles, a very small volume fraction is sufficient to achieve average distances 
between particles of the same order of magnitude as the radius of gyration of the macro-
molecules. Thus, the polymer molecule can be confined between two nanoscale particles. 
This is known as the confinement effect. Confinement effect reduces the number of con-
formations of the polymer molecules. Confinement effect is also responsible for reducing 
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gas permeability value by providing tortuous paths for a gas molecule to diffuse through 
the nanocomposite [27].

Nanocomposites are composite materials in which the matrix material is reinforced by 
one or more separate nanomaterials in order to improve performance properties. The most 
common materials used as matrix in nanocomposites are polymers (e.g., epoxy, nylon, 
polyepoxide, polyetherimide), ceramics (e.g., alumina, glass, porcelain), and metals (e.g., 
iron, titanium, magnesium). As compared to conventional microcomposites, nanocom-
posites greatly improve the physical and mechanical properties. The nanoscale reinforce-
ments over traditional fillers have the following advantages [28]:

 1. Low-percolation threshold (∼0.1–2 vol%)
 2. Large number density of particles per particle volume (106–108 particles/μm3)
 3. Extensive interfacial area per volume of particles (103–104 m2/mL)
 4. Short distances between particles (10–50 nm at ∼1–8 vol%)

7.2 Finite Element Analysis

Finite Element Analysis (FEA) is a general numerical method for obtaining approximate 
solutions in space to initial-value and boundary-value problems including time-depen-
dent processes. It employs preprocessed mesh generation, which enables the model to 
fully capture the spatial discontinuities of highly inhomogeneous materials. It also allows 
complex, nonlinear tensile relationships to be incorporated into the analysis. Thus, it has 
been widely used in mechanical, biological, and geological systems. In FEA, the entire 
domain is discretized into an assembly of simple-shaped subdomains (e.g., hexahedra or 
tetrahedral in three dimensions (3D), and rectangles or triangles in 2D) without gaps/
overlaps. The subdomains are interconnected at the nodes. The implementation of FEM 
includes some important steps shown in Figure 7.3.

7.2.1 Fundamental Concepts in Finite Element Analysis

A 3D body having a volume V and a surface area S is shown in Figure 7.4.
Part of the boundary Su is displacement constrained (the displacements are specified). 

Attraction T is applied on the remaining boundary St. The displacement due to the force 
applied in three directions is given by

 u u v w= [ ]  T  (7.2)

The body force per unit volume is given by

 
f f f fx y z=  

T  (7.3)

The surface traction is given by

 
T T T Tx y z=  

T
 (7.4)
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V

X Su

St

Y

Z

XS

n

FIGURE 7.4
Three-dimensional body showing finite volume and surface. (From http://etd.ohiolink.edu/view.
cgi?acc_num=ncin1122555750)

Replace the continuum domain with subdomains

Selection of appropriate constitutive laws

Approximation of state variable in the elements

Describe the problem under investigation by using 
variational principle

Divide the system-level integral into subintegrals 

Replace the continuum state variables in integral by 
interpolation functions

Assemble the system of element equations and global 
equations from element equations

Solving of global equations, taking into account the 
boundary conditions and calculation of the state equation 

values from state variables

FIGURE 7.3
Steps in the FEA.
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The load components are given by

 
P P P Px y z  

T
=    (7.5)

The stress acting on an elemental volume dV is given by

 σ σ σ σ τ τ τ=  T[ ]x y z xy yz xz  (7.6)

σ,σ,σ are the normal stresses and τxyτyzτxz are the shear stresses
Force equilibrium implies

 

Σ

Σ

Σ

F

F

F

x

y

z

=

=

=

0

0

0

 (7.7)

The equilibrium equations are given by

 

do
dy dz

d o
dy dz

d
d

x xy xz

xy y yz
y

xz y

dx

dx

+ + + =

+ + + =

+

d d
f

d d
f

x
d

x
τ τ

τ τ

τ τ

0

0

zz z

dy
o
dz

+ + =d
fz 0

 (7.8)

Boundary conditions: The displacement boundary conditions are given by u = 0 on Su

n is a unit vector normal to a given surface area dA whose components are given by

 n = [ ]n n nx y z
T

Considering the equilibrium along three perpendicular axes gives

 

σ τ τ

τ σ τ

τ τ σ

x x xy y xz z x

xy x y y yz z y

xz x yz y z z z

n n n T

n n n T

n n T

+ + =

+ + =

+ + =n

 (7.9)

Strain–displacement relations: The strains are represented by

 
ε ε ε ε γ γ γ=  x y z xy yz xz

T

 (7.10)

where
εx, εy, εz are the normal strains
γxy γyz γxz are the engineering shear strains
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After considering all the faces the strain equation can be written as follows:

 
ε = + + +











du
dx

dv
dy

dw
dz

du
dy

dv
dx

dv
dz

dw
dy

du
dz

dw
dx

, , , , ,  (7.11)

For linear elastic isotropic materials, the stress–strain relations are given by Hooke’s law

 

ε σ ν
σ

ν σ

ε ν σ σ
ν σ

ε ν σ ν
σ σ

x
E

= − −

= − + −

= − − +

x y z

y
x y z

z
x y z

E E

E E E

E E E

 (7.12)

 

γ =
τ

γ =
τ

γ = τ

xy
xy

yz
yz

xz
xz

G

G

G

 (7.13)

The shear modulus is given by

 
G

E=
+2 1( ν)

 (7.14)

Hence, from Hooke’s law

 
ε ε ε ν) σ σ σx y z x y z

E
+ + = − + +(

( )
1 2  (7.15)

Substituting for stresses in terms of strains, we get σ = Dε
D is a 6 × 6 symmetric matrix given by

 

D
E=

+ −

−

−

−

−

−

( )( ) .

.

1 1 2

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 0 5 0 0

0 0 0 0 0 5 0

ν ν

ν ν ν

ν ν ν

ν ν ν

ν

ν

00 0 0 0 0 0 5. −





























ν

 (7.16)
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7.3 Finite Element Modeling of Nanocomposites

There are different ways to experimentally characterize nanocomposites. The type of 
analysis depends on many factors such as model size, material properties, boundary 
conditions, and symmetry of the material. We can broadly classify the analysis into three 
types of analysis:

 1. 2D Analysis: This is mainly used to conserve the computational resources though 
less time consuming, it is less accurate in general.

 2. 3D Analysis: The main drawback of creating a 3D geometry of a component is the 
time required to analyze the body. Though relatively accurate than 2D analysis, it 
consumes higher system and computation resources.

 3. Symmetric analysis: For some of the symmetric bodies, it is enough if we can create 
a quarter or half the model and analyze. The most important thing in an axis 
symmetric analysis lies in providing the symmetry boundary conditions. The 
models created in the following simulations are 3D in nature because of the 
anisotropy of the nanocomposites matrix.

7.4 Computing the Mechanical Properties of Nanocomposites Using FEM

Mechanical properties of nanostructured materials such as tensile and flexural 
tests, impact tests [29–33], and microcompression tests [34,35] can be determined by 
computational methods. Nanoindentation test is one of the most effective and widely 
used methods to measure the mechanical properties of materials. This technique uses 
the same principle as microindentation, but with much smaller probe and loads, so as 
to produce indentations from less than a hundred nanometers to a few micrometers in 
size. These modeling methods span a wide range of length and time scales, as shown in 
Figure 7.5. For the smallest length and time scales, computational chemistry techniques 
are primarily used to predict atomic structure using first-principles theory. For the largest 
length and time scales, computational mechanics is used to predict the mechanical 
behavior of materials and engineering structures. Modeling methods are based on well-
established principles that have been developed in science and engineering. However, 
the intermediate length and time scales do not have general modeling methods that are 
as well developed as those on the smallest and largest time and length scales. Therefore, 
multiscale modeling techniques are employed, which take advantage of computational 
chemistry and mechanics methods simultaneously for the prediction of the structure and 
properties of materials.

Each modeling method has broad classes of relevant modeling tools (Figure 7.6). The 
quantum mechanical and nanomechanical modeling tools consider a discrete molecular 
structure of matter while micromechanics deal with the presence of a continuous material 
structure. Figure 7.6 shows the details of the relationship of specific modeling techniques 
in computational mechanics. The continuum-based methods primarily include techniques 
such as the FEM, the boundary element method (BEM), and the micromechanics approach 
developed for composite materials. Specific micromechanical techniques include the 
Eshelby method, the Mori–Tanaka method, and the Halpin–Tsai method.
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Computational
chemistry

Computational
mechanics

Material modeling methods

Computational
micromechanics

Quantum 
mechanics

Ab initio Monte Carlo Molecular
mechanics
Molecular
dynamics

Eshelby
Halpin–Tsai

rule of mixtures

Finite element
method

Boundary element
method

Nanomechanics Micromechanics

Analytical
micromechanics

Structural
mechanics

FIGURE 7.6
Computational modeling of nanomaterials using computational chemistry and mechanics. (From Valavala, P. K. 
and Odegard G.M., Rev. Adv. Mater. Sci. (RAMS), 9, 34, 2005.)

Computational
chemistry

Quantum
mechanics Nanomechanics

Discrete molecular
structure

Continuous material
structure

Length scale (m)

Time scale (s)

10–10 10–8 10–6 100

10–1010–15

Micromechanics Structural
mechanics

Computational
mechanics

Multiscale
modeling

Modeling methods

Modeling tools

FIGURE 7.5
Material modeling techniques based on length and time scales. (From Valavala, P.K. and Odegard G.M., Rev. 
Adv. Mater. Sci. (RAMS), 9, 34, 2005.)
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The energy in FEM is taken from the theory of linear elasticity and thus the input param-
eters are simply the elastic moduli and the density of the material. Since these parameters 
are in agreement with the values computed by MD, the simulation is consistent across the 
scales. More specifically, the total elastic energy in the absence of tractions and body forces 
within the continuum model is given by

 U U Uv k= +  (7.17)

 

U dr r C ry = ∫ ∑1
2

3

ε εµν

µ ν λ σ

µ ν λ σ λ σ( ) ( )
, , ,

, , , ,  (7.18)

 
U dr r u rk = ∫ ρ( ) ( ) 2

 (7.19)

where UV is the Hookian potential energy term which is quadratic in the symmetric strain 
tensor e, contracted with the elastic constant tensor C. The Greek indices μ, ν, λ, σ denote 
Cartesian directions and the mass density (r). The kinetic energy UV involves the time rate 
of change of the displacement field μ, and the mass density r. The strains are related to the 
displacements according to

 
ε

δ
δ

δ
δµν

µ

µ
= +u

v

v

r
u
r  (7.20)

These are fields defined throughout space in the continuum theory. Thus, the total energy 
of the system is an integral of these quantities over the volume of the sample dv. The FEM 
has been incorporated in some commercial software packages and open source codes (e.g., 
ABAQUS, ANSYS, Palmyra, and OOF) and widely used to evaluate the mechanical prop-
erties of polymer composites. Some attempts have recently been made to apply the FEM to 
nanoparticle-reinforced polymer nanocomposites.

Hardness (H) and elastic modulus (E) are calculated from the load–displacement 
curve obtained from a nanoindentation test. A typical load–displacement curve is 
shown in (Figure 7.7). As the indenter penetrates into the specimen, the loading curve 
climbs up. At some point, the maximum load Pmax is reached, and then followed by the 
unloading. If the material is perfectly elastic and has no hysteresis, the loading curve 
and the unloading curve will be identical. hmax gives a measure of the total maximum 
deformation, while hf represents the maximum permanent (plastic) deformation (final 
penetration depth).

The most commonly used method to obtain the hardness and the elastic modulus of a 
material by nanoindentation is the Oliver–Pharr method [36]. According to this method, 
the nanoindentation hardness as a function of the final penetration depth of indent can be 
determined by

 
H P

A
= max  (7.21)
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where
Pmax is the maximum applied load measured at the maximum depth of penetration (hmax)
A is the projected contact area between the indenter and the specimen

For a spherical indenter, f A = 2πRh (where R is the radius of the indenter), whereas for a 
pyramidal (Berkovich or Vickers) indenter, A can be expressed as a function of hf as

 A h C h C h C h hf f f f= + + + +24.504 1 f 2
1/2

3
1/4

8
1/1282 �C  (7.22)

where C1 to C8 are constants and can be determined by standard calibration procedure. 
The final penetration depth, hf, can be determined from the following expression:

 
h h

P
S

f = −max
max

*
ε  (7.23)

where ε is a geometric constant, ε = 0.75 for a pyramidal indenter, and ε = 0.72 for a conical 
indenter. S* is the contact stiffness which can be determined as the slope of the unloading 
curve at the maximum loading point, i.e.,

 
S

dP
dh h h

*

max

= 



 =

 (7.24)

Unloading

Pmax

hf
hi

hmax

Displacement, h

hmax  = Maximum displacement
hf  = Final depth
hi  = Intercept displacement

Ś

Loading

Lo
ad

, P

FIGURE 7.7
Typical load–displacement curve. (From Hu et al., J. Minerals Mater. Charact. Engg., 9(4), 275, 2010.)
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The reduced elastic modulus Er is given by

 
E

S
A

r =
*

2β
π  (7.25)

where β is a constant that depends on the geometry of the indenter. For both a Berkovich 
and a Vicker’s indenter, β = 1.034, whereas for both a conical and a spherical indenter, β = 1. 
The specimen elastic modulus (Es) can then be calculated as

 

1 1 12 2

E E Er

s

S

i

i
= − + −ν ν  (7.26)

where i s E, and i s υ are the elastic modulus and Poisson’s ratio, respectively, for the 
indenter and the specimen. For a diamond indenter, Ei is 1140 GPa and i υ is 0.07. The 
contact stiffness, S*, can be derived from the unloading curve which simply obeys the fol-
lowing power law:

 
P B h hf

n
= −( )  (7.27)

where B and n are empirical constants that can be determined by fitting the experimen-
tally measured pairs of data (P, h) during unloading. Thus, the contact stiffness can be 
expressed as

 
S

dP
dh

Bn h h
h h

f
n* ( )

max

max= 



 = −

=

−1  (7.28)

Therefore, the specimen’s hardness H and elastic modulus s E will be obtained from this 
set of equations.

Indentation involves large plastic deformation, material nonlinearity, and contact. 
In order to characterize the mechanical properties for proper design of experiments, 
FEM is often used to simulate the nanoindentation tests [37–39]. The primary mechani-
cal properties extracted from a nanoindentation test are the hardness and the elastic 
modulus. Finite element simulation could be employed to get other properties, such as 
yield stress and hardening [40–47]. Figure 7.8a shows the geometry of indentation of a 
cylindrical specimen with a conical indenter, and Figure 7.8b shows the Mises stress 
contour from the finite element analysis [48]. Figure 7.9 shows a 3D nanoindentation 
finite element mesh system. Due to symmetry, only half of the specimen volume model 
is shown (Figure 7.9) [39].

FEA has been used to predict the mechanical properties of composite materials since 
1970 [49,50]. Various finite element models have been developed till date to characterize 
all kinds of composite materials. In 1991, Sumio Iijima discovered carbon nanotubes (CNTs) 
which possessed high stiffness and strength, as well as superior electrical and thermal 
properties [51,52], after which CNTs were used as reinforcement in developing nanocom-
posite materials. In the past few decades, there has been tremendous experimental [53,54], 
analytical [156–169], as well as finite element modeling [55,56] on developing, analyzing, 
and characterizing CNT-reinforced nanocomposites and other nanocomposites. In the fol-
lowing section, three finite element modeling (FEM) approaches have been discussed.
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Fiber

Matrix

xz

y

Rigid flat cylinderical punch

Symmetry
plane

100 μm

10
0 

μm

100 μm

100 μm

FIGURE 7.9
Illustration of a 3D nanoindentation finite element model. (From Lee, S.H. et al., Composites: Part A, 38, 1517, 
2007.)

hs= 30 µm

(a) (b)

rs= 18 µm

2.1 µm
3.3 µm

S, Mises
(Avg: 75%)

+ 4.655e + 03

1

2

3

+ 4.267e + 03
+ 3.879e + 03
+ 3.491e + 03
+ 3.103e + 03
+ 2.715e + 03
+ 2.328e + 03
+ 1.940e + 03
+ 1.552e + 03
+ 1.164e + 03
+ 7.763e + 02
+ 3.885e + 02
+ 6.937e – 01

FIGURE 7.8
(a) Geometry of indentation of a cylindrical specimen with a conical indenter. (b) The Mises equivalent stress 
field in the specimen during indentation at hmax = 600 nm. (The stress values must be multiplied by 107 to respect 
the scale of the problem.) (From Poon, B. et al., Int. J. Solids Struct., 45, 6018, 2008.)
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255Application of Finite Element Method for the Design of Nanocomposites

7.4.1 Unit Cell Modeling

The conventional unit cell concept is the same as the representative volume element (RVE) 
modeling [57]. In this case, a unit cell has a big size (usually in micrometers) and contains 
a significant number of fillers (usually in tens to hundreds or more). Such defined unit 
cell is the building block of the composite. As analytical models are difficult to establish 
and complicated to solve, numerical modeling and simulations are used to theoretically 
predict the properties of materials. The most common method used to theoretically 
predict the mechanical properties of nanocomposites with unit cell is the FEA. The most 
common method used to characterize the mechanical properties of nanocomposites 
with unit cell is the FEM. Hbaieb et al. [58] examined the Young’s modulus of nanoclay/
polymer nanocomposites with both 2D and 3D unit cells using the FEM (Figure 7.10). 
Four unit cells were created with 2D and 3D randomly oriented nanoclay particles 
models, as shown in Figure 7.10. Two kinds of boundary conditions were considered, 
i.e., the periodic boundary conditions and symmetrical boundary conditions. For the 2D 
models (both aligned and random cases), the periodic boundary conditions considered 
were as follows:

(a)

(b)

(c)

(d)

FIGURE 7.10
Mesh details of the model for (a) 2D aligned particle distribution, (b) 2D randomly oriented particle distribu-
tion, (c) 3D aligned particle distribution, and (d) 3D randomly oriented particle distribution. Particle volume 
fraction is 5%, the particle aspect ratio is 50, Ep/Em = 100, νm = 0.35, νp = 0.2. Subscripts p and m represent particle 
and matrix, respectively. (From Hbaieb, K. et al., Polymer, 48, 901, 2007.)
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u u

v v

u u

v v

RE LE  

RE LE

TE BE

TE BE

1

2

( ) = ( ) +

( ) = ( )
( ) = ( )
( ) = ( ) +

δ

δ

 (7.29)

where RE, LE, TE, BE, and δ1 and δ2 are the right, left, top, bottom edges, and the axial and 
transverse displacements, respectively.

The symmetrical boundary conditions considered for the 2D models were as follows:

 

u

v

u

LE

BE

RE

( ) =

( ) =

( ) =

0

0

δ

 (7.30)

where δ is the given normal displacement in the x-direction. In addition, all edges are free 
of shear traction and the top edge is free of normal traction as well.

For the 3D models (both aligned and random cases), only symmetrical boundary condi-
tions were applied as

 

u

v

w

u

LF

BF

BKF

RF

( ) =

( ) =

( ) =

( ) =

0

0

0

δ

 (7.31)

where LF, BF, BKF, and RF denote left face, bottom face, back face, and right face. All other 
faces are free of any displacement or traction constraints. The numerical results indicated that 
2D models do not predict the elastic modulus of clay/polymer nanocomposites accurately. 
However, Mori–Tanaka model [59] gave accurate predictions of the stiffness of the nanocom-
posites whose volume fraction was less than 5% for aligned particles. For randomly oriented 
particles the Wang–Pyrz model [60] overestimated the stiffness of the nanocomposites.

Lee et al. [61] used a 3D unit cell model to analyze the deformation behavior of randomly 
distributed Al18B4O33 whisker-reinforced AS52 magnesium alloy matrix composite. The 
Al18B4O33 whiskers were taken to be 10–30 μm in length and 0.5–1.0 μm in diameter. The 
dimensions of the unit cell taken were 10 × 20 × 20 μm3. The volume fraction of the whiskers 
was 15%. Figure 7.11 shows the typical unit cell (with the meshes of the whiskers) and an 
optical micrograph of the composite. For the Young’s modulus and overall elastic–plastic 
response of the composite, the FEM results were observed to be in good agreement with 
the experimental results.

7.4.2 Object-Oriented Modeling

For highly irregular angular structure of fillers, the approximation of simple geometrical 
particles cannot take into account the complex morphology, size, and spatial distribution 
of the reinforcement. Object-oriented modeling captures the actual microstructure mor-
phology of the nanocomposites accurately and predicts the overall properties.
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257Application of Finite Element Method for the Design of Nanocomposites

The object-oriented modeling incorporates the microstructure images such as scanning 
electron microscopy (SEM) micrographs into finite element grids. Thus the mesh produces 
exactly the original microstructure, inclusions size, morphology, spatial distribution, and 
the volume fraction of the different constituents. An object-oriented finite element code, 
OOF [62,63], developed by National Institute of Standards and Technology (NIST), has 
been extensively used in analyzing fracture mechanisms and material properties of het-
erogeneous materials [64,65] and mechanical properties of nanocomposites [66,67].

In RVE modeling, two basic assumptions are made:

 1. Nanofillers can be idealized to simple geometries such as spheres, ellipsoids, 
cylinders, or cubes.

 2. Nanocomposites can be reproduced by assembling a large number of such RVEs 
(or unit cells).

For highly irregular angular structure of fillers, the approximation of simple geometrical 
particles cannot take into account the complex morphology, size, and spatial distribution of the 
reinforcement. Therefore, the object-oriented modeling captures the actual microstructure 
morphology of the nanocomposites accurately and predicts the overall properties.

Dong et al. [30] studied the mechanical properties of polypropylene (PP)/organoclay 
nanocomposites with different clay contents ranging from 1 to 10 wt%. SEM micrographs 
from longitudinal loading direction of the specimen were captured and mapped onto 
the FEM, as shown in Figure 7.12. The actual nano-/microstructures (their size, shape, 
distribution, etc.) of the PP and the organoclay were used in the computational model, 
and each phase was attributed to the corresponding material properties. The OOF 
modeling results for the tensile modulus showed agreement with the experimental data 
and theoretical predictions. Chawala et al. [66] used 3D object-oriented FEM to evaluate 
the mechanical behavior of SiC particle-reinforced Al composites. For a volume of 
100 × 100 × 20 μm3 cell, they assumed 100 SiC particles, which lead to 20% volume fraction 
and compared the results of the Young’s modulus and the stress–strain relations from 
the object-oriented (microstructure-based) model with the results of the experiment 
and the numerical results from simplified models (which include rectangular prism, 
multiparticle-ellipsoids, multiparticle spheres, etc.). Some of the results are depicted in 

z

x y

Al18B4O33
whisker

(b)(a)

Mg2Si
phase

10 um

α-Mg

FIGURE 7.11
(a) Three-dimensional random whisker-reinforced composite model, and (b) an optical micrograph of squeeze-
infiltrated Al18B4O33/Mg random whisker composite. (From Lee, W.J. et al., Scri. Mater., 61, 580, 2009.)
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258 Computational Finite Element Methods in Nanotechnology

Figure 7.13 that indicates that 3D microstructure-based model can accurately predict the 
properties of particle-reinforced composites, while the simple analytical models cannot as 
they do not account for the microstructural factors that influence the mechanical behavior 
of the material. In object-oriented FEM, 2D modeling has been widely used to study the 
structure of nanocomposites [66,77]. There are also some works reported on 3D modeling 
[66]. Unfortunately, there are complex problems to be resolved in 3D modeling, especially 
advanced object-oriented 3D finite element codes.

7.4.3 Multiscale RVE Modeling

In multiscale RVE modeling two basic assumptions are made:

 1. Nanofillers can be treated as simple shapes such as spheres, ellipsoids, cylinders, etc.
 2. Nanocomposites can be reproduced by assembling a large number of such unit cells.

An RVE modeling is composed of a single or multiple nanofiller(s) with the surrounding 
matrix material, and proper boundary conditions to take into account the effect of the 

(a) (b)

(c) (d)

6.15 µm

FIGURE 7.12
Typical example of creating OOF model of PP/organoclay nanocomposites (5 wt% in clay content): (a) original 
SEM image, (b) captured SEM image portion, (c) image segmentation using pixel selection, and (d) finite ele-
ment mesh (highlighted regions contain organoclay particles and the rest are PP matrices). (From Dong, Y. et al., 
Comp. Sci. Technol., 68, 2864, 2008.)
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259Application of Finite Element Method for the Design of Nanocomposites

surrounding materials. Liu and Chou [68] extended the RVE concept used by Hyer [69] and 
Nemat-Nasser and Hori [70] for conventional fiber-reinforced composites at the microscale 
to nanoscale, and evaluated the effective mechanical properties of CNT-based composites 
by using a 3D nanoscale RVE based on elasticity theory which was solved by FEM. They 
modeled the nanotube at the atomistic scale and analyzed the matrix deformation using 
the continuum FEM. The van der Waals interactions between carbon atoms and the finite 

Loading axis Loading axis Loading axis

y

y

z

z

x

x

(b)

(a)

(c)

S, Mises
(Ave. Crit.: 75%)

+ 3.500e + 03
+ 2.147e + 04

+ 3.208e + 03
+ 2.917e + 03
+ 2.625e + 03
+ 2.334e + 03
+ 2.042e + 03
+ 1.751e + 03
+ 1.459e + 03
+ 1.167e + 03
+ 8.758e + 02
+ 5.842e + 02
+ 2.926e + 02
+ 1.000e + 00

PEEG
(Ave. Crit.: 75%)

+ 6.256e – 01
+ 5.000e – 02
+ 4.583e – 02
+ 4.167e – 02
+ 3.750e – 02
+ 3.333e – 02
+ 2.917e – 02
+ 2.500e – 02
+ 2.083e – 02
+ 1.667e – 02
+ 1.250e – 02
+ 8.333e – 03
+ 4.167e – 03
+ 0.000e + 00

FIGURE 7.13
Comparison between 3D finite element models incorporating actual microstructure and approximation to 
spherical particles: (a) FEM models, (b) von Mises stress distribution in particles, and (c) plastic strain in matrix. 
(From Chawla, N. et al., Acta Mater., 54, 1541, 2006.)
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element nodes of the matrix were simulated using truss rods. Zhang et al. [71] linked 
continuum analysis with atomistic simulation by incorporating interatomic potential and 
atomic structures of CNTs directly into the constitutive law. Shi et al. [72] presented a 
hybrid continuum mechanics method to study the deformation and fracture behavior of 
CNTs embedded in composites. The method was based on a representative unit cell divided 
into three distinct regions which was analyzed using an atomistic potential, a continuum 
method based on the Cachy–Born rule and a micromechanics method. The multiscale 
RVE integrated nanomechanics and continuum mechanics, thus bridging the length scales 
from the nano- through the mesoscale. Tserpes et al. [73] proposed a multiscale RVE to 
investigate the tensile behavior of CNT/polymer composites. The model was based on the 
assumption that loaded CNTs behaved like space-frame structures. The RVE consisted of 
a rectangular solid whose entire volume was taken up by the matrix, and the nanotube 
was modeled as a 3D elastic beam. The 3D solid elements and beam elements were used to 
model the matrix and nanotube, respectively. The behavior of the isolated nanotube was 
simulated using the progressive fracture model [74]. The bonds between carbon atoms 
were considered as load-carrying elements while carbon atoms as joints. The nonlinear 
behavior of the C–C bonds was modeled by the modified Morse interatomic potential [75], 
and the nanotube structure was modeled by FEM. The nanotube was inserted into the 
matrix to form the RVE. The matrix was modeled by solid elements, and the nanotube was 
represented by 3D elastic beam elements created by binding the nodes of the matrix. The 
synthesis of the RVE is shown in Figure 7.14.

New computational tools are specially needed in the area of multiscale RVE modeling. 
The multiscale RVE modeling is a “local-global” approach. In order to catch the local 
nanocharacteristics, quantum mechanics or molecular dynamics needs to be explored. But 
the prediction of global macromechanical properties requires the continuum mechanics-
based FEM. The transition from local to global becomes a complex issue as it involves a 
change of scale. Ogata et al. [12] proposed a way of combing quantum mechanics, molecular 
dynamics, and finite elements. In regions where the atoms obey the laws of continuum 
mechanics, the FEM is used. However, in critical areas such as the extremity of a fracture, 
molecular dynamics and quantum mechanics are required to obtain a more detailed study 
of the fracture process. Xiao and Belytschko [76] improved the numerical compatibility 
between regions modeled by molecular dynamics and those modeled using the FEM. They 
suggested a method introducing a broad transition region by superposing the finite element 
mesh of the continuum region on the atomistic structure of the molecular dynamics region. 
The determination of mechanical properties like effective Young’s modulus along with the 
Poisson’s ratio can be effectively and efficiently done by FEM and even with complicated 
analyses involving interfacial and surface properties between the matrix and filler.

7.5 Computing the Thermal Conductivity of Nanocomposites Using FEM

The thermal conductivity of a composite can be modeled using effective medium theory. 
According to this theory, a heterogeneous material having discontinuous properties can 
be replaced, by a homogeneous material that gives the same average response to a given 
input at the macroscopic level. This process is called homogenization. In this case, the 
composite is assumed to be statistically homogeneous where the fillers are uniformly 
dispersed within the matrix material [77]. This assumption simplifies the mathematical 
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261Application of Finite Element Method for the Design of Nanocomposites

analysis to a greater extent. The steady-state heat conduction with no heat generation is 
then used for developing a mathematical model.

The development of a continuum model for a multiwalled nanotube (MWNT) inclusion 
has been carried out in two steps.

 1. An equivalent continuum model of an MWNT was developed by taking into 
account the mechanism of heat conduction through an MWNT. The structure 
and properties of the nanotube were taken into account and the properties of an 
effective fiber were defined.

 2. This effective fiber is then considered to be the inclusion phase that is embedded 
within the matrix material.

The composite material to be analyzed is effectively an aligned short fiber composite, 
where the effective fiber constitutes phase that is embedded within a polymer matrix. 
A mathematical solution for calculating thermal conductivity of a CNT composite in 
the longitudinal direction using effective medium theory was reported by Bagachi and 
Nomura (Figure 7.15) [78].

Modified morse potential

Progressive fracture model

C–C bond represented by
3D elastic beam elements

CNT modeled as 3D
spaceframe

Beam elements
representing the CNT

RVE

Matrix

FIGURE 7.14
Synthesis of the CNT using RVE. (From Tserpes, K.I. et al., Theoret. Appl. Fract. Mech., 49, 51, 2008.)
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262 Computational Finite Element Methods in Nanotechnology

A hollow cylinder having the same length and diameter as that of the nanotube was 
considered to represent an equivalent continuum model of the nanotube. The thickness of 
the cylinder wall was the same as that of outer nanotube layer (0.34 nm) and was considered 
to be made up of homogeneous and isotropic material that has the same physical properties 
as that of the nanotube. The heat carrying capacity of this hollow cylinder was applied to 
its entire cross section and the properties of an effective solid fiber were then investigated 
[78]. Effective fiber can be defined as a solid fiber that has the same length and diameter 
as that of the hollow cylinder and has an identical temperature gradient across its length 
when the same amount of heat is flowing through it. This effective fiber thus retains the 
geometrical properties of the nanotube while providing us with a continuum model of the 
nanotube structure that is suitable for mathematical analysis.

The expression for the conductivity of the effective solid fiber in the longitudinal direc-
tion is given by following equation:

 
k

t
d
k t dNT

( ) ( )2 4= / < 0.25  (7.32)

where
d represents nanotube diameter
t represents the thickness of the outer wall of the nanotube

Scant studies have been carried out on the theoretical and experimental determination 
of conductivity of nanotubes in the transverse directions. For simplicity, the thermal con-
ductivity of the effective fiber is assumed to be isotropic in nature. The expression for the 
effective thermal conductivity of a CNT composite having isotropic cylindrical short fibers 
as the filler material where the conductivity of the filler material is given by equation [78] 
and has a contact resistance at the interface is

d
(a) (b) (c) (d)

d d d

l l

l

l

X1

X2

X3

ξ= ξ0

FIGURE 7.15
Development of a continuum model for an MWNT. (a) Schematic diagram of an MWNT showing concentric 
graphene layers, (b) equivalent continuum model, (c) effective solid fiber, and (d) a prolate spheroidal inclusion. 
(From Bagchi, A. and Nomura, S., Comp. Sci. Technol., 66(11–12), 1703, 2006.)
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 k k v B f33 2 1 0
1 1 1* [ ( ) ( )( )= + + λ ξ  (7.33)

where ν2 is the volume fraction of the nanotube phase in B and λ are defined as
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The quantity ξ is the inverse of the eccentricity of the spheroid and is given by
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The constant B1 can be obtained as a solution to the following linear simultaneous 
equations:
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where the coefficients interfacial conductance β and χnm are given by
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 (7.39)

Pn and Qn are known as Legendre polynomials of first kind and second kind, respectively, 
where
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δ (n) is defined as

 

δ( )n

if

n

otherwise

=

=

=





















1

0

0

To investigate the responses of individual CNTs or CNT-based nanocomposites, such as 
deformations, load and heat transfer mechanisms, and effective stiffness, the continuum 
mechanics approach has been applied. CNTs behave as a shell with approximate thickness 
of 0.34 nm. This is very difficult to model for various reasons like difficulty in meshing 
large amount of CNTs, and compatibility of shell elements with the solid elements. Shell 
and solid elements are not compatible with each other as they have different degrees of 
freedom. It is difficult to couple shell models with the 3D solid model used for the matrix 
at the interfaces. The solid and shell models involve different types of variables and 
degrees of freedom. For the analysis of CNTs embedded in matrix material, solid models 
of the CNTs will provide better accuracy among all the continuum mechanics models. 
CNT composites are made up of CNTs with different sizes and forms dispersed in a 
matrix. They can be single-walled or multiwalled with varying geometric parameters 
like length, diameter, and straight, twisted, curled, etc. The CNTs can be oriented in 
a particular direction and orientation in the matrix or it can be dispersed randomly. 
All these factors make the simulations of the mechanical nanotube-based materials 
extremely complicated.

The concept of unit cells or RVEs has been successfully applied in conventional fiber-
reinforced composites at the microscale level and many studies have been extended to 
investigate CNT-based composites at the nanoscale. In RVE approach, a single nanotube 
with surrounding matrix material is modeled, with properly applied boundary and 
interface conditions taking into consideration the effect of the surrounding materials 
(Figure 7.16). This model has been employed to study the interactions of the nanotube with 
the matrix and to evaluate the effective material properties of the nanocomposite.

Different types of RVEs are used in modeling a fiber-reinforced composite material. 
They can be classified according to the shape of the cross section, circular RVE, rectan-
gular or square RVE, and hexagonal RVE. The square RVE models are utilized when 
the CNT fibers are arranged evenly in a square pattern, while the hexagonal RVE mod-
els are used when CNT fibers are in a hexagonal pattern, in the transverse directions 
(Figure 7.17).

Interfaces between the CNTs and matrix are sensitive regions for the functionality and 
reliability of CNT-based nanocomposites. The heat carrying capacity of a CNT-based 
nanocomposite depends on how good the heat is transferred from the matrix material 
to the CNT. Since all the heat must be transferred through the interfaces to CNTs, a good 
thermal contact between the matrix and the CNT is required as most mechanical failures 
in CNT-based nanocomposites occur at or around the interfaces. The interface debonding, 
friction/wear, instability, or matrix cracking takes place owing to difference in the stiffness 
and other physical or chemical properties. Modeling thermal interfaces is always a serious 
challenge to any simulation technique based on the continuum mechanics and it becomes 
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265Application of Finite Element Method for the Design of Nanocomposites

more difficult in the nanoscale models (Figures 7.18 and 7.19). Thus, simulation results 
near the interfaces require to be interpreted carefully.

Thermal conductivity of the composite is calculated using Fourier’s law. According to 
Fourier’s law, thermal conductivity is the ability of the material to transfer heat from a 
region of high temperature to a region of low temperature and is given by the relation

zy
x

FIGURE 7.17
Wire frame model with MWNT fiber composite inclusion. (From http://dspace.uta.edu/handle/10106/115)

FIGURE 7.16
Representative volume element (RVE) with a single equivalent solid MWNT fiber composite inclusion. (From 
http://dspace.uta.edu/handle/10106/115)
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q kA

dT
dx

= −   (7.41)

where
q is the heat flow
k is the thermal conductivity
A is the cross-sectional area
dT/dx is the temperature gradient in the direction of flow

Using proper tools in the analysis package, thermal heat flux and thermal gradient at 
each node of the meshed volume (RVE) is collected [79]. The volume average of heat 
flux and the thermal gradient is calculated. Effective thermal conductivity of the RVE is 

(a) (b)

Y
Z

(c)

FIGURE 7.19
(a) Effective fiber meshed with solid elements, (b) partial view of effective fiber meshed with contact and target 
surface elements, and (c) partial view effective fiber meshed with contact surface elements. (From http://dspace.
uta.edu/handle/10106/115)

Z X

Y

FIGURE 7.18
Meshed RVE with single effective solid fiber. (From http://dspace.uta.edu/handle/10106/115)
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267Application of Finite Element Method for the Design of Nanocomposites

determined by the ratio of volume average heat flux to the volume average of tempera-
ture gradient

 
keff = Volume average of heat flux

Volume average of thermal gradient
 (7.42)

The volume averaging method of homogenization with the dilute assumption was 
considered where the composite is assumed to be statistically homogeneous, i.e., the fillers 
are uniformly dispersed within the matrix material. Interactions between the individual 
nanotubes are neglected. These two assumptions are very important factors in FEM of 
a CNT nanocomposite. This assumption allows us to consider the CNT nanocomposite 
to be made up of a number of unit cells (RVE) in a 3D space. A single unit cell (RVE) 
with periodic boundary conditions can be used for FEM analysis. The steady-state heat 
conduction with no heat generation has been used for developing the mathematical model. 
This assumption allows us to simplify the boundary conditions in the FEM (Figure 7.20a 
and b). The two faces of the RVE in the direction perpendicular to the axis of the fiber 
inclusion are applied with 1° temperature difference. The other four faces of the RVE are 
applied with adiabatic boundary conditions (Tables 7.1 through 7.4).

The aforementioned studies on the thermal conductivity in nanocomposites suggest that 
interphase resistances are not the prime factor for getting lower than the predicted ther-
mal conductivities. The uniformity and consistency of certain parameters such as lengths 
and diameters of the CNT inclusions can greatly affect the overall thermal conductivities. 
Control over these parameters is vital in obtaining a nanocomposite with desired thermal 
properties. This approach also validates the use of FEM for the analysis of nanomaterials 
based on continuum mechanics approach.

(a)
299

299.111
299.222

X Y
Z

299.333
299.444

299.556
299.667

299.778
299.889

300

(b) 299.482 299.518

X Y Z

FIGURE 7.20
(a) Temperature profile in representative volume element (half model). (b) Temperature profile in representative 
volume element (half model). (From http://dspace.uta.edu/handle/10106/115)
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TABLE 7.3

Theoretical and FEM Results for Effective Thermal Conductivity 
of Nanocomposite with Varying Outer Diameter of MWNT 
Keeping Length Constant

Diameter of 
MWNT (nm)

FEM Results 
(W/m-K)

Theoretical 
Results (W/m-K)

Percent Deviation from 
Theoretical Results (%)

29 2.242 2.238 −0.180
25 1.8306 1.8305 −0.007
30 1.5540 1.5587 0.305
35 1.3641 1.3646 0.035
40 1.2141 1.2190 0.406
45 1.1104 1.1058 −0.414

Source: http://dspace.uta.edu/handle/10106/115

TABLE 7.2

Theoretical and FEM Results for Effective Thermal Conductivity 
of Nanocomposites with Varying Lengths of MWNT

Length of MWNT 
(µm)

FEM Results 
(W/m-K)

Theoretical 
Results (W/m-K)

Percent Deviation from 
Theoretical Results (%)

30 1.8244 1.8248 0.025
35 1.8267 1.8271 0.026
45 1.8319 1.8297 −0.11
50 1.8332 1.8305 −0.14
60 1.8358 1.8315 −0.23
70 1.8393 1.8321 −0.39

Source: http://dspace.uta.edu/handle/10106/115

TABLE 7.1

Theoretical and FEM Results of Thermal Conductivity 
of the Nanocomposites with Varying Volume Fraction 
of the Composite Material

Volume 
Fraction (%)

FEM Results 
(W/m-K)

Theoretical 
Results (W/m-K)

Percent Deviation from 
Theoretical Results (%)

0.6 1.3949 1.1783 −18.4
0.7 1.4810 1.3413 −10.4
0.8 1.5749 1.5044 −4.69
0.9 1.6711 1.6674 −0.22
1.0 1.8332 1.8305 −0.14

Source: http://dspace.uta.edu/handle/10106/115
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269Application of Finite Element Method for the Design of Nanocomposites

7.6 Computing the Optical Properties of Nanocomposites Using FEM

Optimizing the performance of a given nanocomposite requires accurate knowledge of the 
effect of porosity, pore shape, and size as well as the optical properties of each phase on 
the overall optical properties of the nanocomposite. The Maxwell-Garnett theory (MGT) [80] 
was first developed to model the effective electric permittivity of heterogeneous media 
consisting of monodispersed spheres arranged in a cubic lattice structure within a con-
tinuous matrix and of diameter much smaller than the wavelength of the incident electro-
magnetic (EM) wave. The effective dielectric constant εr,eff is expressed as

 
ε ε φ ε ε

ε ε φ(ε εr,eff r,c
r,c r,d

r,c r,d r,c r,d
= − −

+ + −








1

3
2

( )
)

 (7.43)

where εr,c and εr,d are the dielectric constants of the continuous and dispersed phases, 
respectively, while φ is the porosity. For dispersed phase volume fractions larger than 
π/6 = 52% and polydispersed spheres the Bruggeman [81] model gives the following 
implicit equation for εr,eff:

 

1

1
1 3− =

−







−






φ

ε
ε

ε
ε

ε
ε

ε
ε

r eff

r c

r d

r c

r eff

r c

r d

r c

,

,

,

,

,

,

/
,

,













 (7.44)

On the other hand, the Lorentz–Lorenz model gives the effective index of refraction neff as
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 (7.45)

TABLE 7.4

Theoretical and FEA Results for Effective Thermal Conductivity 
of Nanocomposite with Varying Thermal Contact Conductance 
(Fixed Aspect Ratio)

Thermal Contact 
Conductance 
(MW/m2 K)

FEM Results 
(W/m-K)

Theoretical 
Results (W/m-K)

Percent Deviation from 
Theoretical Results (%)

12 1.8306 1.8305 −0.007
30 1.8306 1.8311 0.028
50 1.8306 1.8313 0.037
100 1.8306 1.8314 0.044
500 1.8306 1.8315 0.049
1000 1.8306 1.8315 0.049
10000 1.8306 1.8315 0.049

Source: http://dspace.uta.edu/handle/10106/115
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where nc and nd are the index of refraction of the continuous and dispersed phases, respec-
tively. Alternatively, the parallel model gives the effective property ψeff as a linear function 
of the properties of the continuous and dispersed phases, i.e.,

 ψ φ ψ φψeff c d= − +( )1  (7.46)

The series model, on the other hand, is expressed as

 

1 1
ψ

φ
ψ

φ
ψeff c d

= − +  (7.47)

In addition, Del Rio et al. [82] suggested the following effective model for electrical conduc-
tivity based on the reciprocity theorem:

 

σ σ
φ σ

σ

φ σ
σ

eff c

c
d

c
d

=
+ −

+ −

1 1

1 1
 (7.48)

Del Rio and Whitaker [83,84] applied the volume averaging theory (VAT) to Maxwell’s 
equations for an ensemble of dispersed domains of arbitrary shape in a continuous matrix. 
They predicted the effective dielectric constant εr,eff, relative permeability μr,eff, and electri-
cal conductivity σeff of a two-phase mixture as

 ε φ ε φεr eff r c r d, , ,( )= − +1  (7.49)

 

1 1
µ

φ
µ

φ
µr eff r c r c, , ,

= − +  (7.50)

 σ φ σ φσeff c d= − +( )1  (7.51)

The range of validity of these expressions, and a set of inequalities was developed by del 
Rio and Whitaker [83]. Their model has been numerically validated by Braun and Pilon 
[85] for the effective through-plane index of refraction of nonabsorbing nanoporous media 
with open and closed nanopores of various shapes and sizes having a wide range of poros-
ity. Moreover, validation of the aforementioned models against experimental data often 
yields contradictory results [86]. These contradictions can be attributed to the fact that 
some of these models were not developed for the index of refraction but for the dielectric 
constant. However, they have been used for studying the optical properties [87–90]. Some 
of these models have also been derived by considering a unit cell containing one pore with 
uniform incident electromagnetic fields thus ignoring possible interference taking place 
between adjacent pores [80,81]. Huge experimental uncertainty exists in the measure of 
the porosity and the retrieval of the complex index of refraction from transmittance and 
reflectance measurements. The latter is very sensitive to the surface roughness of the film 
and to the uniformity and value of the film thickness. Unfortunately, often, neither the film 
thickness L nor the experimental uncertainty for both and φ meff are reported. Modeling 
both the through-plane effective index of refraction and absorption index of nanoporous 
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271Application of Finite Element Method for the Design of Nanocomposites

thin films consists of horizontally aligned cylindrical nanopores or nanowires with differ-
ent diameters and various porosities and of dielectric medium with embedded metallic 
nanowires. Such thin films are anisotropic and depend on properties in the direction nor-
mal to the film surface. It is limited to nonmagnetic materials for which μr,c = μr,d = μr,eff = 1. 
Spectral normal–normal transmittance and reflectance are obtained by numerically solv-
ing Maxwell’s equations and have been used to obtain the effective index of refraction and 
absorption index.

In order to develop the numerical model, a surrounding environment of medium 1 
where n1, k1 = 0 is considered from which an EM wave is incident on an absorbing thin 
film of medium 2 (n2, k2) deposited onto an absorbing dense substrate which is medium 
3 (n3, k3). A linearly polarized plane wave in transverse electric (TE) mode is incident nor-
mal to the film top surface and propagates through the 2D thin film along the x-direction. 
As the wave propagates in the x–y plane, it has only one electric field component in the 
z direction, while the magnetic field has two components in the x–y plane such that in 
time-harmonic form it can be expressed as

 E x y t E x y e ez
i t

z

�� �
( , , ) ( , )= ω  (7.52)

 H x y t H x y e H x y e ex x y y
i t

��� � �
( , , ) [ ( , ) ( , ) ]= + ω  (7.53)

where
E ⃗is the electric field vector
H⃗ is the magnetic field vector
e e ex y z

�� �� ��
, ,  are the unit vectors

ω = 2πc0/λ is the angular frequency of the wave

For general time-varying fields in a conducting medium, Maxwell’s equations can be 
written as

 
∇ ∇









 − =

→
∗

→
x xE x y t E x y t

r
r

1
02

µ µ
ω ε ε

o
o( , , ) ( , , ) ,  (7.54)

 
∇ ∇





− =∗

→ →
x xH x y t H x y t

r
r

1
02

ε ε
ω µ µ

o
o( , , ) ( , , )  (7.55)

where μ0 and μr are the magnetic permeability of vacuum and the relative magnetic per-
meability, respectively, while εr* (= n2−k2−i2nk) is the complex dielectric constant. The asso-
ciated boundary conditions are

 n x H H
→

− =( )( )1 2 0
� �� � ��

 (7.56)

at the surroundings–film interface,

 n x H
� ���
( ) = 0  (7.57)
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at symmetry boundaries,

 µ µ ε εr o o rn x H E( ( ) ) *� ��� ��
+ = 0  (7.58)

at the film–substrate interface, and

 µ µ ε ε ε εr o o r o rn x H E E( ( ) ) * *
� ��� �� ��

+ = 2  (7.59)

at the source surface, where n⃗ is the normal vector to the appropriate interface. The equation 
corresponds to the impedance boundary condition for a semi-infinite substrate while

 µ µ ε εr o o rn x H E( ( ) ) *
� ��� ��

+ = 0  (7.60)

 µ µ ε ε ε εr o o r o r on x H E E( ( ) ) * *
� ��� �� ���

+ = 2  (7.61)

is the low reflecting boundary condition to model the imaginary source surface where 
the incident EM wave EO = EO⃗ e Z⃗ is emitted and that is transparent to the reflected waves. 
The Poynting vector π

��
 is defined as the cross product of the electric and magnetic vectors 

π
�� ��

= }{1 2/ Re ExH .
Its magnitude corresponds to the energy flux carried by the propagating EM waves. 

Averaging the x component of the Poynting vector at location (x, y) over a period 2π/ω of 
the EM wave gives

 
πx avg z yx y E H( , ) Re *= { }1

2
 (7.62)

and

 
πx avg z xx y E H( , ) Re *= { }1

2
 (7.63)

The incident electric field Eo⃗ = Eo e z⃗ and, therefore, the incident time-averaged Poynting 
vector π

��
o
avg

 are imposed at all locations along the source surface. The values of the x 
component of the Poynting vector along the film–substrate interface are then calculated 
numerically and averaged along the boundary to yield π

��
x t

avg
, . The transmittance of the 

thin film is then recovered by taking the ratio of the transmitted to the incident average 
Poynting vectors, i.e.,

 

Tnum
x t avg

x avg

=
π

π
,

,0

 (7.64)

Similarly, the magnitude of the x component of the reflected time-averaged Poynting vector 
πx t avg,  is computed numerically, and the reflectance of the film is computed according to
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Rnum

x r avg

x avg

=
π

π
,

,0
 (7.65)

The preceding equations can be solved numerically using a commercially available finite 
element solver by applying the Galerkin FEM based on unstructured meshes. Figure 
7.21 is a schematic representation of an actual model consisting of three nanopores or 
nanowires of diameter D = 10 nm and cell width H of 20 nm corresponding to a volume 
fraction = πD2/4H2 = 0.1963. Figure 7.21 indicates material properties of the different 
domains and the locations at which each of the boundary conditions are applied. 
The lines separating two adjacent cubic cells do not correspond to actual boundary 
conditions. Both the matrix and the nanodomains are treated as homogeneous and 
isotropic with index of refraction n and absorption index k equal to that of the bulk. 
The effective optical properties of the nanocomposites can be obtained by minimizing 
the root mean square of the relative errors for the transmittance and reflectance. Under 
certain conditions, the effective index of refraction or absorption index of the composite 
material can be smaller than that of both the continuous and dispersed phases. The 
same results and conclusions are expected for spherical pores and nanoparticles. These 
results can be used to design and optimize nanocomposite materials with tunable 
optical properties.

√μ0μr (n×H) + √ε0εr*E= 2√ε0εr*E0

y

x

n×H= 0

n× (H1–H2) = 0

πr, ave

πt ave

Vacuum,
m1 = 1.0 – i0.0

Dispersed phase,
md=nd– ikd

Continuous
matrix,

mc=nc– ikc

Substrate,
m3 =n3 – ik3

π0

√μrμ0 (n×H) + √ε0εr*E= 0

FIGURE 7.21
Physical model and the corresponding finite element grid of the absorbing nanoporous thin film along with the 
boundary conditions. (From Pilon et al., J. Appl. Phy., 101, 014320, 2007.)
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7.7 Computing the Magnetic Properties of Nanocomposites Using FEM

The magnetic behavior in magnetic elements results from size and shape of the elements, 
and the dynamics of domain formation. The theoretical treatment of magnetization 
reversal dynamics requires the solution of the Gilbert equation [91]

 

δ
δ

γ α δ
δ

J
t

JxH
J
x

J
t

eff
S

= +  (7.66)

which describes the physical path of the magnetic polarization J toward equilibrium. Here, 
γ is the gyromagnetic ratio of the free electron spin and is the Gilbert damping constant. 
The effective field Heff, given by the negative variational derivative of the total magnetic 
Gibb’s free energy, is the sum of the exchange field, the magnetocrystalline anisotropy field, 
the demagnetizing field, and the external field. The Gilbert equation is a partial differen-
tial equation in space and time. The space discretization of the Gilbert equation integra-
tion leads to a system of ordinary differential equations. Implicit time integration schemes 
require solving a system of nonlinear equations at each time steps. The corresponding sys-
tem matrix will be fully populated if the demagnetizing field is directly calculated from the 
magnetization distribution. Sparse matrix schemes can be constructed if a magnetic vector 
potential or a magnetic scalar potential is introduced as an additional variable and space 
transformations [92] or asymptotic boundary conditions [93] are used to treat the open 
boundary problem. However, in soft magnetic elements, the formation of domains is very 
sensitive to the shape of the sample. The error introduced using spatial transformations 
was found to influence the final domain pattern. A hybrid FEM/BEM is applied to treat 
the open boundary problem, which shows better convergence properties. The error in the 
demagnetizing field decreases rapidly as the number of finite elements is increased [94].

The demagnetizing field can be calculated from a magnetic scalar potential, Hd = −∇′ U, 
which fulfills Poisson’s equation within the magnet, Ωm, and Laplace’s equation outside 
the magnetic particle, Ωe. The basic concept of the hybrid FEM/BEM method is to split the 
magnetic scalar potential into two parts: U = U1 + U2 where U1 accounts for the divergence 
of the magnetization within the particle and U2 is required to meet the boundary condi-
tions. The latter also carries the magnetostatic interactions between spatially independent 
particles. The potential U1 is the solution of the Poisson equation

 ∇ = ∇ ∈2
1U r M r for r( ) ( ) Ω  (7.67)

with the natural boundary condition

 ∇ =U n M n1. .  (7.68)

and U1 outside the magnetic particles, where n is the outward normal at the boundary Γ′  of 
the magnetic region Ωm. The potential U2 satisfies the Laplace equation

 

∇ =

∈ ∪

2
2 0U r

for

r m e

( )

Ω Ω

 (7.69)
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and shows a jump at the boundary of the magnetic particles

 U U Uin out
2 2 1− =  (7.70)

A standard FEM may be used to solve these equations which define a double-layer poten-
tial which is created by a dipole sheet at Γ′  with magnitude U1. At the boundary U1 the 
potential U2 is given by the integral

 

U r U r
r r

n d r
r

U r
r

2 1 1

1
4

1
4

12( ) ( ’) ’
’

. ’ ’
( )

( )= ∇
−







+ −



∫π π

Ω
 (7.71)

which can be evaluated using the BEM [95]. The solid angle Ω(r), subtended by Γ′ at r, equals 
2π for a smooth surface point r. The preceding equation contains interactions between the 
boundary nodes of the finite element mesh. Therefore, its discretization requires a full 
matrix. After discretization, the potential U2 at the boundary nodes follows from a matrix 
vector multiplication

 U BU2 1=  (7.72)

The n × n matrix B results from the boundary element discretization of U2(r), where n 
denotes the number of nodes at the boundary. The values of U2 in the interior of the par-
ticle follow from the solution of the Laplace equation with Dirichlet boundary conditions, 
which again can be solved by a standard FEM. Matrix B depends only on the geometry 
and the finite element mesh and thus has to be computed only once for a given finite ele-
ment mesh. Since the hybrid FEM/BEM method does not introduce any approximations, 
the method is accurate and effective. However, the size of the full matrix B may be a prob-
lem for large magnetic particles. After discretization of the integral equation U2(r), all the 
information on the spatial arrangement of the particles is contained in matrix B, which 
relates the nodes on boundary of the particles with each other. The grains of the polycrys-
talline magnetic thin films are divided into tetrahedral finite elements.

Within a tetrahedron, the direction cosines of the magnetization are interpolated by lin-
ear functions, whereas quadratic functions represent the magnetic potentials. Figure 7.22 
gives the corresponding mixed finite element. The use of an individual order of interpola-
tion for the different components, popular in computational fluid dynamics, is called the 
mixed FEM [96]. It adapts the finite element subspaces to the physical nature of the problem. 

Magnetic polarization
β1, β2, β3 (J= Jsβ)

Scalar potential:
U1 and U2

FIGURE 7.22
Mixed finite element used for the calculations. (●): Nodes for the linear interpolation of the direction cosines 
of the magnetic polarization J. (+): Nodes for the quadratic interpolation of the magnetic scalar potential. (From 
Schrefl, T., J. Mag. Mag. Mater., 207, 66, 1999.)
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276 Computational Finite Element Methods in Nanotechnology

The demagnetizing field arising from magnetic volume charges varies linearly with the 
magnetic polarization. In order to avoid loss of accuracy with differentiation, the interpola-
tion order of the scalar potential should be higher than that of the magnetic polarization.

The formation of domains is very sensitive to the accuracy of the magnetostatic field 
calculation.

A uniformly magnetized thin film with a thickness of 21 nm, and a lateral extension 
of 200 × 1600 nm (Figure 7.23) checks the accuracy of the magnetostatic field calculation. 
The use of a quadratic interpolation drastically reduces the error owing to corner singu-
larities. Figure 7.24 shows the polycrystalline microstructure of Co nanoelement and the 
corresponding finite element mesh. The ill-shaped elements result from the underlying 
microstructure. The very short edges are well below the exchange length, which prevent 
any additional error in the exchange energy owing to the bad shape of some elements. The 
condition number of the system matrix is improved by precondition techniques before 
solving the equations.

Figure 7.25 shows the numerically calculated end domain in an NiFe nanoelement with 
one pointed end. These end domains occur only at the flat end of the elements. However, 
the magnetization rotates out of the long axis near the pointed end, where it becomes 
arranged parallel to the inclined surfaces forming the pointed ends. This configuration 
reduces the magnetic surface charges and requires less exchange energy than any pos-
sible end domain near the pointed end. For the calculation of the stable end domain, zero 
anisotropy is assumed. The end domain evolves into a small-scale zigzag domain pattern 
in elements with a transverse anisotropy of Ku = 38 kJ/m3. Figure 7.25 gives the time evo-
lution of the magnetic domain structure assuming a transverse anisotropy. The pointed 
ends suppress the formation of end domains. Magnetization reversal starts from mag-
netization ripple which originates near the corners of the inclined surfaces forming the 
pointed end. The switching field of the isolated element was found to depend on the value 
of the exchange constant assumed in the calculations. The exchange constant of a granular 

FIGURE 7.23
Points for the test of magnetostatic field calculations. (From Schrefl, T., J. Mag. Mag. Mater., 
207, 66, 1999.)
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277Application of Finite Element Method for the Design of Nanocomposites

NiFe may be reduced as compared to the bulk value [97]. Switching field comparable with 
the experimental measurements is obtained assuming an exchange constant = 8 × 10−12 
J/m, a saturation polarization Js = 1 T, and zero magnetocrystalline anisotropy. This result 
suggests that the small-scale domain pattern observed in Lorentz imaging of NiFe has to be 
attributed to a transverse anisotropy, which may arise from internal strain [98]. With the 
aforementioned value for the transverse anistropy, the influence of the bar width on the 
domain pattern for zero applied field can be simulated in good agreement with the experi-
ments. Micromagnetic modeling provides a precise understanding of domain formation 
and of the switching mechanism in patterned magnetic elements. Small-scale domains 
in the remnant state of NiFe elements can be explained by a uniaxial anisotropy parallel 
to the short axis. Micromagnetic simulations successfully reproduce the influence of bar 
width and tip shape on the domain structure. The switching field of individual elements 
in an array of closely packed NiFe elements strongly depends on the strength and direc-
tion of the interaction field, which is determined by the magnetization pattern of several 
neighboring elements. The dependence of the switching field of Co elements on the shape 
of the ends is attributed to the demagnetizing field at the corners causing the nucleation of 
reversed domains. Micromagnetic models based on the Gilbert equation of motion resolve 
magnetization processes in space and time. In addition to the hysteresis properties, the 

(a) (b)

FIGURE 7.24
Model of the polycrystalline microstructure (a) and the finite element mesh (b) of a 200 nm long, 40 nm wide, 
and 25 nm thick Co nanoelement. (From Schrefl, T., J. Mag. Mag. Mater., 207, 66, 1999.)
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278 Computational Finite Element Methods in Nanotechnology

micromagnetic simulations predict where the reversed domains nucleate and how they 
expand with time. The polycrystalline microstructure of Co films and edge irregulari-
ties significantly influence the magnetization reversal mechanism. The comparison with 
experimental results shows that accurate numerical predictions of the switching fields of 
patterned magnetic elements require precise models of the microstructure.

7.8 Computing Nanocomposites Damage Using FEM

When combining highly stiff nanofibers with a matrix, the final nanocomposite material 
possesses higher strength than the matrix. The aim of the FEM is to investigate the stresses 
at both the matrix and most importantly the reinforcement. The FEM can be carried out 
using ANSYS software to derive various stresses at the matrix/nanofiber interfaces. 
Maximum principal stresses, von Mises stress, and normal stresses have been analyzed 
along nanofiber short interface (x-direction in this study) and along a rounded nanofiber 
cross section in which stresses were noticed along the circumference as well as at the high-
est stress points on the nanofiber. Three different scenarios have been investigated [99] as 
mentioned in the following.

 1. Long and short nanofibers (50 and 20 nm, respectively)
 2. High modulus and low modulus nanofibers (600 and 50 GPa, respectively)
 3. Shaped nanofibers (rounded, star, and hexagonal cross-section shapes) 

FIGURE 7.25
(a) End domain at the flat end of a NiFe nanoelement (L = 2500 nm, 
W = 200 nm, P = 500 nm, T = 25 nm). The arrow indicates the direction of the 
magnetization. (b) Evolution of a zigzag domain pattern in elements with 
transverse anisotropy (L = 1600 nm, W = 200 nm, P = 500 nm, T = 21 nm). 
The gray scale maps the magnetization component parallel to the short 
axis of the element. (From Schrefl, T., J. Mag. Mag. Mater., 207, 66, 1999.) (a) (b)
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279Application of Finite Element Method for the Design of Nanocomposites

Micromechanical matrix/reinforcement interlocking, chemical bonding, and the weak 
van der Waals force are three main mechanisms of interfacial load transfer [100]. Star-
shaped and hexagonal-shaped nanofibers with the same volume were simulated under 
loading using FEM. The aim was to investigate their performance in improving matrix/
reinforcement stress transfer compared to rounded cross section nanofibers. The star-
shaped nanofibers carry higher stresses than rounded and hexagonal-shaped nanofibers 
even if the nanofiber length is increased. Hexagonal-shaped nanofibers performed better 
than rounded nanofibers 20–50 nm long. It was found that von Mises minimum stresses did 
not appear as they were close to 0. The results revealed that by maintaining a strong bond 
between the nanofiber and the matrix, star-shaped fibers showed a good potential in pro-
ducing high strength nanocomposites. However, experimental investigations are required 
to confirm this study since researchers have reported some discrepancies between FEM 
studies and their equivalent experiments [101] because inefficient shear stress transfer can 
lead to poor nanocomposites properties [102]. In particular, the FEM of various forms of 
nanofiber shapes and volume fractions revealed, as expected, that interfacial debonding 
is most likely the main source of nucleation damage. It is found that the nanofiber/matrix 
debonding can be attributed to the high stress concentrations at the nanofiber ends which 
can be made more severe with poor interfacial shear stress transfer.

7.9 Application of FEM to Biological Systems

Tremendous efforts have been made to develop modeling and simulation approaches for 
fluid–structure interaction problems. With FEM for both fluid and solid domains, the sub-
merged structure is solved more realistically and accurately in comparison with the corre-
sponding fiber network representation. The fluid solver is based on a stabilized equal-order 
finite element formulation applicable to problems involving moving boundaries [103–105]. 
This stabilized formulation prevents numerical oscillations without introducing excessive 
numerical dissipation. As the background fluid mesh does not have to follow, it is possible 
to assign a sufficiently refined fluid mesh within the region around the immersed, mov-
ing, deformable structures.

The immersed finite element analysis (IFEA) was developed by Zhang et al. [106] to solve 
complex fluid and deformable structure interaction problems. Consider an incompressible 
3D deformable structure in Ωs completely immersed in an incompressible fluid domain Ωf. 
Together, the fluid and the solid occupy a domain Ω, but they do not intersect:

 

Ω Ω Ω

Ω Ω

f

f

s

s

∪ =

∪ = ∅
 (7.73)

The solid domain can occupy a finite volume in the fluid domain. Since we assume both 
fluid and solid to be incompressible, the union of two domains can be treated as one incom-
pressible continuum with a continuous velocity field. In the computation, the fluid spans the 
entire domain Ω, thus an Eulerian fluid mesh is adopted, whereas a Lagrangian solid mesh 
is constructed on top of the Eulerian fluid mesh. The coexistence of fluid and solid in Ωs 
requires some considerations when developing the momentum and continuity equations.

In the computational fluid domain Ω, the fluid grid is represented by the time-invariant 
position vector x, while the material points of the structure in the initial solid domain 

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
37

 0
3 

M
ar

ch
 2

01
6 
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Ω0
s and the current solid domain Ωs are represented by Xs and xs (Xs, t), respectively. The 

superscript s is used in the solid variables to distinguish the fluid and solid domains.
In the fluid calculations, the velocity v and the pressure p are the unknown fluid field 

variables, whereas the solid domain involves the calculation of the nodal displacement us, 
which is defined as the difference of the current and the initial coordinates: us = xs − Xs. The 
velocity vs is the material derivative of the displacement dus/dt.

We define the fluid–structure interaction force within the domain Ωs as fi FSI, where FSI 
stands for fluid–structure interaction:

 

f
d i
dt

gi

x

i
FSI s s f

ij j
s

ij j
f s f

s

,
, ,= −( ) + − + −( )

∈

ρ ρ ν σ σ ρ ρ

Ω

 (7.74)

The interaction force fi FSI is calculated with the Lagrangian description. A Dirac delta func-
tion, δ, is used to distribute the interaction force from the solid domain onto the computa-
tional fluid domain

 

f x t f x t x x X t di
FSI

i
FSI s s s s

s

( , ) ( , ) ( ( , )),= −∫
Ω

Ωδ  (7.75)

The equation for the fluid can be derived by combining the fluid terms and the interaction 
force as

 
ρ ν σf f

ij j i
FSId i

dt
f x= + ∈, ; Ω  (7.76)

Since the entire domain Ω is incompressible, we need to apply the incompressibility con-
straint once in the entire domain Ω:

 νi i, = 0

To delineate the Lagrangian description for the solid and the Eulerian description for the 
fluid, we introduce different velocity field variables νi

s and νi to represent the motions of 
the solid in the domain Ωs and the fluid within the entire domain Ω. The coupling of both 
velocity fields is accomplished with the Dirac delta function.

 

ν ν δi
s s

i
s sX t x t x x X t d( , ) ( , ) ( ( , ))= −∫

Ω

Ω  (7.77)

Assuming that there is no traction applied on the fluid boundary, δνi i
hi

h dΓ
Γ

=∫ 0 applying 
integration by parts and the divergence theorem, we can get the final weak form (with 
stabilization terms):

 

( )[ ( ) ] (, , .δν τ ν δν τ δ ρ ν ν ν δν σi
m

k i k
c

i
f

i ij
fp f di t j i j

FSI

Ω Ω

Ω∫ ∫+ + + − + ii

k ik

e

i

j

m c f
ij j

e

c
i i i j

d

p d p d

,

,( ) ( ), ,

Ω

Ω Ω
Ω Ω

− + + + =∫∑ ∫τ ν δν τ δ σ δ τ δν ν 00  (7.78)
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The nonlinear systems are solved with the Newton–Raphson method. Moreover, to improve 
computational efficiency, we also employ the iterative algorithm and compute the residu-
als based on matrix-free techniques [107–108]. The transformation of the weak form from 
the updated Lagrangian to the total Lagrangian description is to change the integra-
tion domain from Ωs to Ω0

s. Since we consider an incompressible fluid and solid, and the 
Jacobian determinant is one in the solid domain, the transformation of the weak form to 
total Lagrangian description yields

 

δ ρ ρ
δ
δ

ρ ρu u
P
X

gi f di

o
s

s f
i
s ji

j
s

s f
i
FSI s s

Ω

Ω∫ − − − − + =[( ) ( ) ],
0 0  (7.79)

where the first Piola–Kirchhoff stress Pij is defined as Pij = JFik
−1σkj

s and the deformation 
gradient F x Xij i

s
j
s= δ δ/ . Using integration by parts and the divergence theorem, we can 

rewrite

 

δ ρ ρ δ δ ρ ρu u d u P d u gidi
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s
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s

i
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s f
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i i

FSI s su f d

o
s

+ =∫ δ
Ω

Ω,
0 0  (7.80)

For structures with large displacements and deformations, the second Piola–Kirchhoff 
stress Sij and the Green–Lagrangian strain Eij are used in the total Lagrangian 
formulation:

 

S
W
E

E C

ij
ij

ij ij ij

=

= −

δ
δ

δ

and
1
2

( )

 (7.81)

where the first Piola–Kirchhoff stress Pij can be obtained from the second Piola–Kirchhoff 
stress as Pij = SikFjk.

Finally, in the interpolation process from the fluid onto the solid grid, the discretized 
form can be written as

 
f f X t x x xiJ iI

FSI FSI s

I

s
I J I

s
I
s

J= − ∈∑ , ( , ) ( ),φ φΩ  (7.82)

The solid velocity νI
s at node I can be calculated by gathering the velocities at fluid nodes 

within the influence domain ΩΦI. A dual procedure takes place in the distribution process 
from the solid onto the fluid grid. The discretized form is expressed as

 

v v t x x xiI
s

iJ

J

J J I
S

J I
= − ∈∑ ( ) ( ),φ φΩ  (7.83)
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This ensures the no-slip boundary condition on the surface of the solid, and prevents the 
fluid from penetrating the solid, provided the solid mesh is at least twice as dense as the 
surrounding fluid mesh.

The ultimate goal of the 3D multiple scale modeling is to better understand biological 
phenomena that span the five scales depicted in Figure 7.26. The measurements of traction 
forces and the simultaneous imaging of the fibrous structure of the cell will provide criti-
cal input to the simulation of cell motility.
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 (7.84)

Using the IFEM formulation, a simple case of blood flow through a capillary vessel can be 
studied, where the middle quarter of the vessel is designated to be injured and capable of 
activating platelets. The capillary vessel has a diameter of 50 μm and a length of 100 μm 
[109]. The adhesion between the platelet and injured vessel wall is described by an attractive 
force combined with an elastic link which provides the resistance of the platelet to shear 
after bonding to the blood vessel. The activation of the platelet is described by dynamically 
updating the array, which stores information for the activated platelet. Due to the small-
scale of the platelet (the diameter is around 2 lm), it is treated as a rigid particle immersed in 
plasma. The density of the platelet is very close to that of the plasma, thus ρs = ρf.

Hughes et al., Texas
Liu et al., NWU

Computational angioplasty stent
surgery modeling 

(Gay, Zhang, and Liu)

Left
atrium

Left
ventricle

Right
ventricle

Right
atrium

Artery

Cell–ECM interaction

RBC aggregation
non-Newtonian

blood model

Biofibers, Fukui 
et al., NWU

Biofibers
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Pectim

Energy

500 nm
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Actin
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Myoslin

Filamentation

Levins

Vascular atherogenesis and growth of
initimal hyperplasia (IH) (Dr. Shu Liu, NWU)

Self-organization of
microtubles, Surrey

et al.

Focal adhesion complex
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FIGURE 7.26
Modeling of biological processes using a 3D multiscale technique. (From Liu et al., Comput. Method Appl. Mech. 
Engg., 195, 1722, 2006.)
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Coronary stents physically open the channel of constricted arterial segments by fatty 
deposits or calcium accumulations. During stenting, a balloon deploys the stent which is 
kept inflated for 30 s and is then deflated. At the end of the process, the expanded stent 
is embedded into the wall of the diseased artery and holds it open. By using the IFEM 
method, we can study the flow pattern during the deployment of a stent, its deformation, 
and stress distribution. The results show that this computational method provides a useful 
tool for future stent designs (Figure 7.27).

Furthermore, the IFEM has been combined with electrokinetics to study the mecha-
nisms of bio-nanoelectromechanical (NEMS) devices [109]. In the 3D dynamic simulations, 
the fluid flow and solid deformation/motion are reasonably captured. Using novel NEMS 
devices, it will be able to simultaneously visualize the cellular scale structures and mea-
sure the cellular traction forces and adhesion forces.

7.10 Conclusion

A main goal of computational materials science is the rapid and accurate prediction of 
new materials and their new properties and features, which is very difficult to achieve 
with traditional modeling and simulation methods at a single length and time scale with 
the current computer power. Therefore, it is expected to use the FEM to bridge the models 
and simulation techniques across a broad range of length and time scales to address the 
macroscopic or mesoscopic behaviors of materials from a detailed molecular description. 

t= 0.0 s

t= 0.4 s

t= 0.8 s

t= 1.2 s

z x

y

FIGURE 7.27
Deployment of the stent through the inflation of the balloon at different time steps. (From Liu et al., Comput. 
Method Appl. Mech. Engg., 195, 1722, 2006.)
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The development of polymer nanocomposites relies largely on our understanding of 
the structure–property relationship of the materials which requires a multiscale model 
to predict the material properties from the information of particle properties, molecular 
structure, molecular interaction, and mesoscale morphology. The current research in 
modeling and simulation of polymer nanocomposites are largely limited to individual 
length and time scale. However, it should be noted that some efforts have recently been 
made to develop multiscale strategies for predicting the multiscale level of structure, 
properties, and processing performance of polymer nanocomposites based on nanoparticle 
reinforcement (e.g., nanosphere, nanotube, nanorod, and clay platelet). The development of 
polymer nanocomposites necessitates a comprehensive understanding of the phenomena 
at different time and length scales. The challenge for FEM is to move, as seamlessly as 
possible, from one scale to another so that the calculated parameters, properties, and 
numerical information can be efficiently transferred across scales. In case of polymer 
nanocomposites, it is required to accurately predict their hierarchical structures and 
behaviors and to capture the phenomena on length scales that span typically 5–6 orders 
of magnitude and time scales that can span a dozen orders of magnitude. For example, 
a clay particle with a diameter of 0.5 mm and 100 layers would have about 85 million 
atoms. If such a particle is dispersed into polymer matrix to form polymer nanocomposites 
containing 5% of clay in weight, the system would then have about 3 billions of atoms. 
In the past decade or so, this need has significantly stimulated the development of 
computer modeling and simulation, either as a complementary or alternative technique 
to experimentation. These techniques indeed represent approaches at various time and 
length scales from molecular scale (e.g., atoms), to microscale (e.g., coarse-grains, particles, 
monomers) and then to macroscale (e.g., domains), and have shown success to various 
degrees in addressing many aspects of polymer nanocomposites. Despite the progress 
over the past years, there are a number of challenges in computer modeling and simulation 
of nanocomposites. There is a need to develop new and improved simulation techniques at 
individual time and length scales. It is also important to integrate the developed methods 
at wider range of time and length scales, spanning from quantum mechanical domain (a 
few atoms) to molecular domain (many atoms), to mesoscopic domain (many monomers 
or chains), and finally to macroscopic domain (many domains or structures), to form a 
useful tool for exploring the structural, dynamic, and mechanical properties, as well as 
optimizing design and processing control of polymer nanocomposites. Developing such 
a multiscale method is very challenging but indeed represents the future of computer 
simulation and modeling, not only in polymer nanocomposites but also other fields. New 
concepts, theories, and computational tools should be developed in the future to make 
truly seamless multiscale modeling a reality. Such development is crucial in order to 
achieve the longstanding goal of predicting particle–structure–property relationships in 
material design and optimization.
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8.1 Introduction

Right from their discovery in 1991 by Iijima (1991), carbon nanotubes (CNTs) have spurred 
considerable interest among scientists and engineers because of their atypical physical 
properties.

CNTs are finding increasing application in composites because of their high modulus and 
electrical conduction. CNTs are of molecular dimensions and consist of one large molecule, 
so molecular mechanics should be an attractive modeling technique. Mechanical properties 
can be better evaluated using finite element analysis (FEA). Single-walled CNT (SWCNT) 
and multi-walled CNT (MWCNT) varieties are available.

The use of CNTs as reinforcing materials in nano-composites has made it necessary to predict 
their mechanical properties and assess their deformation under loading. This characterization 
is more complex than that of conventional materials due to the fact that their mechanical 
properties depend on nanostructure. Direct experimental measurements are difficult due to 
the nanosize of CNTs. Hence, theoretical approaches seem to be an excellent alternative.

The theoretical approaches are of two main types: the atomistic methods and the 
continuum mechanics. The former includes classical molecular dynamics as discussed 
by Iijima et al. (1996) and Yakobson et al. (1997), tight-binding molecular dynamics of 
Hernandez et al. (1998), and density functional theory of Sanchez-Portal et al. (1999).
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The continuum mechanics methods mainly involve classical continuum mechanics, 
see for instance Li and Chou (2003) and Tersoff (1992), or continuum shell modeling, see 
Yakobson et al. (1996) and Ru (2000).

In this chapter, the finite model analysis is used to model graphene sheet using truss ele-
ments. The developed model is then used to model CNTs. The finite element (FE) model is 
used to find the equivalent stiffness of the nano-structured materials.

8.2 Literature Survey

Mazahery and Shabani (2012) conducted a FE investigation on the effects of the increase 
in the contents of nano-silicon carbides in an aluminum alloy on its hardness, poros-
ity, elongation, yield strength, and ultimate tensile strength. Their results show that as 
the content of nanoparticles increase, the composite is strengthened but its ductility is 
retained.

Yan et al. (2011) constructed an axisymmetric FE model to predict the elastic modulus 
of a nanoparticle embedded in a composite matrix for two cases, a stiff particle in a soft 
matrix and for a soft particle in a stiff matrix. They showed that the Olive-Phar indenta-
tion method can be used with excellent accuracy if the indentation depth lies within the 
particle dominated depth.

Shabani and Mazahery (2012) used FEM along with artificial neural network (ANN) 
to determine the mechanical properties of the composite and genetic algorithms (GA) to 
determine the optimal stir casting conditions of Al–Si aluminum alloy reinforced with 
alumina nanoparticles. The results showed that the proposed model can help in finding 
the optimal processing condition for stir casting and that the presence of nanoparticles 
significantly can help in improving the mechanical properties of the composite.

Deb et al. (2011) performed an explicit FEA comparison between a plain polypropylene 
(PP), which is thermoplastic polymer used in vehicles and nanoclay–polypropylene 
composite on a vehicle’s A-pillar trim. Results show that the nanocomposite improved the 
head impact safety of the A-pillar trim when compared to plain PP.

Sun et al. (2011) constructed an analytical model to calculate the effective mechanical 
properties of nanoparticle reinforced composite. Then FEA was used to study the fracture 
of a compact tension sample. Their results are in good agreement with published data.

Qin and Ma (2011) conducted a FEA to study the dynamic performance of zinc–aluminum 
alloys reinforced with TiC nanoparticles in bearing bushings. Although plain aluminum 
alloys have limitations to operating temperature and speed, they have high strength and 
friction characteristics.

Mortazavi et al. (2011) used molecular dynamics (MD) to obtain the mechanical 
properties of glass silica nanoparticle reinforced epoxy polymer. Then they incorporated 
the obtained data in a FE model to construct a representative volume element (RVE).

Wang and Zhao (2010) modeled a cylindrical RVE with a central carbon nanofiber to 
investigate the temperature distribution. The results show that the nanofibers maintained 
constant temperature during heat transfer process due to the large difference in thermal 
properties between the fiber and the matrix.

Motamedi et al. (2012) compared a rubber matrix with a CNT reinforced rubber by 
constructing an RVE. The addition of CNTs helped in increasing the mechanical properties 
of the composite. They also investigated the effect of CNTs waviness on their mechanical 
properties compared to straight CNTs.
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Lapeyronnie et al. (2011) developed a FE model to estimate the mechanical properties 
of a 3D layer to layer angle interlock fabrics. The obtained mechanical properties were 
implemented in a heterogeneous model and validated with experimental results.

Ghosh et al. (2011) investigated the rolling resistance of nano-composite (organoclay 
carbon back or organoclay silica fillers) passenger car tire. A FE model was used to obtain 
the elastic strain energy in a steady state rolling simulation, which showed that the nano-
composites improved the rolling resistance of the wheel.

Zhu et al. (2012) investigated the bending and free vibration of a SWCNT reinforced 
composite plate using FEM. CNTs were uniaxially aligned and were distributed either 
uniformly or by three kinds of functionally graded distribution. Different boundary 
conditions were applied and different concentrations of CNTs by volume were used to 
obtain the response of the plates and natural frequencies and mode shapes.

Gao et al. (2011) and Wu et al. (2011) constructed a FE model of a (PP)/nano-TiO2 composite 
to investigate the stress and strain response of the composite. It is found that at low volume 
concentrations the particles have less influence on each other local stress field. It is also found 
that the stress level rises at the interaction region between the particle and the matrix.

Jingxin et al. (2008) constructed an RVE composing of two nano-composite ceramics to 
study its mechanical behavior and damage in it. They showed that the stress distribution 
is uneven and that damage occurs in the elements near the nano-ceramic particles. Also, 
the damage route was evaluated.

Ding et al. (2007) constructed a FE model to investigate the stress field in a ZrO2/Cu 
composite. Experimental results show two types of crystals, tetragonal and monoclinic 
zirconia particles. High stress concentration at the tip of a monoclinic zirconia was evident, 
which can lead to initiation of cracks compared to tetragonal zirconia.

Jung et al. (2006) used glass fiber reinforced nanocomposite as a radar absorbing structure 
(RAS). The composite consists of three phases, glass fiber, epoxy, and nano-carbon 
materials. The composite showed excellent RAS efficiency at X-band frequency range 
(8–12 GHz) but thermal spring back occurred due to the drop from curing temperature 
to room temperature. To overcome this spring back, two composite shells were modeled, 
carbon/epoxy and glass/epoxy. The spring back was predicted using FEM.

Luo et al. (2002) studied the wear resistance and interfacial failure in a TiN-reinforced 
TiNi/TiC alloy. FEM was used to investigate the behavior of the composite when TiN 
powder was added to the TiNi matrix.

Takano et al. (2008) modeled the interface between natural rubber and carbon black 
(average diameter 30–122 nm). It is shown that the ratio of the layer between carbon black 
and the rubber (sticky hard layer) to carbon black diameter influences the properties of the 
composite.

Giannopoulos et al. (2010) used FEM to estimate the effective Young’s modulus of 
SWCNT-reinforced composites at different volume fractions. A cylindrical RVE is used to 
model the matrix as a continuum media. The reinforcing CNTs were modeled according 
to their atomistic microstructure using spring elements. Joint elements of changeable 
stiffness are used to simulate the interfacial region.

Wang et al. (2005) studied the effect of the change in CNTs diameter on the bending 
elastic modulus. A nonlinear FEA was conducted using ABAQUS FE solver to show that 
the formation of ripples on cantilevered CNTs inner arc can lead to a substantial decrease 
in the effective bending modulus of the tube.

Tserpes et al. (2006) conducted a FEM to predict the failure stress and strains in CNTs 
with missing carbon atoms and 10% weakening in C–C bonds. The tubes were subjected to 
axial tension. The results obtained correlate with the results from the literature.
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Liu and Chen et al. (2003) developed a nanoscale RVE to evaluate the effective mechani-
cal properties of CNT-based composite based on continuum mechanics and FEM. The 
results show that the addition of 2% and 5% volume fraction increases the stiffness of the 
composite 0.7 and 9.5 times.

Georgantzinos et al. (2009) used FEM to investigate the stress–strain behavior of 
SWCNT-reinforced rubber composites at different volume fractions. A cylindrical RVE   
is used to model the matrix as continuum solid elements. The reinforcing CNTs were 
modeled according to their atomistic microstructure using nonlinear spring elements. 
Joint elements of changeable stiffness are used to simulate the interfacial region.

Tserpes et al. (2008) modeled a RVE to study the tensile behavior of CNT reinforced 
polymer composites and the effect of interfacial shear strength. FEM was used to model the 
RVE. A perfect bond was assumed between the matrix and the CNT until the interfacial 
shear stress exceeded the strength. The debonded region in the CNTs is then prohibited 
from any load transfer to simulate the failure in this region. The stiffness remains 
unaffected but the tensile strength decreases significantly.

Shokrieh and Rafiee (2010b) studied the tensile behavior of short CNTs embedded in 
polymer matrix with the effects of van der Waals bonds. A FEA was carried to investigate 
the effect of CNTs’ length on the mechanical properties. For lengths less than 100 nm, 
the effect of CNTs becomes negligible. The improvement comes to saturation at a length 
of 10 μm and more. Shokrieh and Rafiee (2010c) used a nonlinear FEA on a 3D model 
consisting of CNT, nonbonded interphase region, and the surrounding polymer matrix. 
Van der Waals interaction was used for the bond between the CNT and the surrounding 
polymer. The results show a nonlinear relation between the stress and strain. The length 
of the CNTs affect the efficiency of the reinforcement. Shokrieh and Rafiee (2010a) used an 
equivalent long fiber model to conduct a FEA to investigate the mechanical properties of 
CNT reinforced polymer matrix. The FE model consists of the CNT, interphase (treated as 
Van der Waals interaction), and polymer matrix. The results show that the rule of mixture 
overestimates the properties of the investigated model.

Kulkarni et al. (2010) conducted a FE and experimental investigation on the reinforce-
ment of the laminated composites by growing CNTs on the surface of the fiber filaments, 
which increase the effective diameter of the fibers and the interface area for the polymeric 
matrix on the fiber. The elastic, shear modulus, and Poisson’s ratio were obtained.

Kuronuma et al. (2011) investigated the effect of CNTs addition on the crack growth 
of CNT/polycarbonate composites at room temperature and liquid nitrogen at 77 K. The 
growth of the crack during fatigue loading was modeled using elastic-plastic FEA to 
investigate the effects of CNTs addition.

Li and Chou (2006) investigated the compressive behavior of CNT reinforced polymer 
composite. The tubes are modeled at an atomistic scale and the matrix is bonded as a 
continuum medium. The tubes and matrix are bonded by Van der Waals interaction. The 
buckling force at different CNT lengths was calculated and the results show that the rein-
forcement of CNT can increase the buckling resistance of the composite.

Yas and Heshmati (2012) investigated the dynamic behavior of glass fiber nanobeams rein-
forced with SWCNTs under different loading conditions. The FEM was used to discretize 
the model and obtain numerical results of the motion equation. Parameters discussed in the 
work are the load velocity, shear deformation, slenderness ratio, and boundary conditions.

Shindo et al. (2012) investigated the change in the mechanical and electrical response of 
cracked CNT reinforced polymer composites. A single edge cracked specimen was sub-
jected to tensile loading at room temperature and liquid nitrogen temperature of 77 K. An 
analytical model was developed to predict the change in the resistance resulting from the 
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295Finite Element Modeling of Carbon Nanotubes and Their Composites

crack propagation. The results from the analytical model and experimental model were 
compared. Also the fracture properties were assessed using FEM in terms of J-integral.

Haque and Ramasetty (2005) investigated the load transfer in SWCNT reinforced polymer 
matrix. An analytical model and a 2D FE model were constructed to predict the axial stress 
and interfacial shear in the CNT. The effect of the CNT length, aspect ratio, matrix modulus, 
CNT volumetric ratio on the axial stress, and interfacial shear stress was investigated.

Chen et al. (2010) used atomistic simulation, shear-lag theory, and fracture mechanics to 
investigate the fracture toughness of CNT-reinforced composites. The results show that nei-
ther longer CNT nor stronger CTN and matrix interface can lead to a better toughness. FEM 
was used to study the fracture toughness of CNT-reinforced composites at different inter-
facial bond densities. The results show that for a (6, 6) CNTs, a 5%–10% interfacial chemical 
bond density is the optimum and that increasing the length of CNTs over 100 nm would not 
improve fracture toughness, but will lead to clustering and self-folding of the tubes.

Ashrafi and Hubert (2006) investigated the elastic properties of SWCNT-reinforced com-
posites. FEM was used to predict the properties of twisted SWCNT. These properties are 
then used in a twisted CNT reinforced polymer composite. The effect of CNT volume 
fraction and aspect ratio for the composite are then calculated for aligned and randomly 
reinforced composites to get the elastic properties.

Rokni et al. (2012) studied a 2D optimum distribution of MWCNTs in the longitudinal and 
thickness direction of a polymer composite micro to achieve maximum natural frequency. 
Different weight ratios of MWCNT-reinforced thermosetting polyester epoxy/amine were 
used. A user code written in Python was used to generate a 3D model in ABAQUS of the 
beam and to evaluate the optimum distribution under various boundary conditions. The 
distribution of the CNTs is made by dividing the beam in the longitudinal and thickness 
direction. The same authors (Rokni et al., 2011) studied the optimum distribution of MWCNTs 
in a microbeam to obtain maximum natural frequency. The beam was divided into 10 segments 
of thermosetting polyester epoxy/amine resin reinforced and different weight ratio of CNTs 
were used. A computer program was written in Python to model the beam in ABAQUS and 
to calculate the optimum distribution of CNTs at different boundary conditions. The results 
show that the optimum distribution depends on the vibration mode shape.

Ayatollahi et al. (2011) investigated the effect of MWCNT-reinforcement on the fracture 
toughness of the CNT/epoxy composite. FEM was conducted to simulate the response 
of the single edge notch bend specimen under shear loading and calculate the fracture 
toughness. The effect of MWCNT reinforcement shows an increase in fracture toughness 
(more in shear loading compared to normal loading).

Selmi et al. (2007) investigated the elastic properties of SWCNT-reinforced composites 
using several micromechanical models and a comparative study between them. Validation 
of the results is done by experimental work or by using the FEM based on a 2D periodic 
cell or (RVE). The results show that there are agreements between the models in most cases 
but some fail for some composite materials and for some properties.

Formica et al. (2010) conducted FEA to investigate the effect of CNTs alignment and vol-
ume fraction on the elastic properties of the composite. Three types of isotropic matrices 
were used (epoxy, rubber, and concrete). The results show an increase of up to 500% in the 
lowest natural frequency of the composite.

Fisher et al. (2003) investigated the effect of wavy CNT reinforcement on the effective 
reinforcing modulus of the CNT/polymer composite. The results show that even the 
slightest curvature in the tube can lead to a significant decrease in the effective modulus 
when compared to straight reinforcing tubes. These results show that the curvature can be 
limiting to the enhancement of the composite modulus.
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Nouri et al. (2012) investigated the mechanical properties of CNT reinforced alu-
minum nanocomposite (CNRAN). FEM was used to predict the hardness and elastic 
modulus of an indentation test. The results of the model show good agreement with 
experimental results.

8.3 Fundamental

A CNT is a cylinder of graphitic carbon atoms bonded on the surface in a hexagonal array 
consistent with a space-frame structure. The hexagonal covalent bonding has been used 
as truss elements for a mesh for FEA using different software. The contributions of wall 
thickness, tube diameter, and bonding chirality on the elastic modulus of SWCNT and 
MWCNT are investigated here. The space-frame model of CNT merges the real-world 
scale functions of FEA with those of molecular mechanics at the atomistic scale, equating 
the modulus of the frame with the force field of the covalent bonds.

The forces between individual atoms in nanostructure are characterized by a force field 
as discussed by Abd-Rabou and Nahas (2009), where the total molecular potential energy 
is the sum of the energies associated with bond stretching, angle variation, torsion, and 
inversion the energies associated with bond stretching, angle variation, torsion, and inver-
sion, and the nonbonded interaction energies of van der Waals and electrostatic terms. 
Various functional forms may be used for these energy terms depending on the particular 
material and loading conditions. Since experimental data are unavailable, FEA is used as 
a source of information for defining the force field.

8.4 Applications

Two applications are presented. The first is the analysis of a graphene sheet and the second 
one is the analysis of SWCNT and MWCNT.

8.5 Analysis of Graphene Sheet

A truss model is used here to represent the forces between two atoms as shown in 
Figure 8.1.

Continuum representation of the molecules is used in the FE modeling to simulate 
the molecular behavior of the carbon atoms in the graphene sheet. The chemical bonds 
between the atoms exert a force that helps in keeping the atoms in place, which are viewed 
as hanging mass being held by these bonds. This force can be represented as an elastic 
spring. A linear truss T3D2 element in ABAQUS (the FE package employed in this work) 
is used to model these bonding and nonbonding chemical bonds to simulate the displace-
ment in the atoms. This model allows the mechanical behavior of the nano-structured 
system to be modeled accurately in terms of displacements of the atoms.
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The modulus of elasticity used in the FEA model is 6.52 × 10−5 (N/nm2) for the bonded 
elements and 3.352 × 10−6 (N/nm2) for the nonbonded elements, with Poisson’s ratio 0.3 for 
both. The lengths of the element are shown in Figure 8.1, while the cross-sectional area is 
0.0014 (nm2) for both elements.

Two load cases are analyzed. The first one is when the graphene sheet is pulled in the 
vertical direction (y-direction), while the second load case is when the sheet is pulled in 
the horizontal direction (x-direction), see Figure 8.2. Due to symmetry, the figure shows 
only one-fourth of the graphene sheet.

(a) (b)

FIGURE 8.2
Boundary conditions with (a) first load case and (b) second load case.

120° 120°

0.24248
0.14

0.14

(a) (b)

FIGURE 8.1
(a) Molecular representation of the graphene sheet molecules and (b) FE representation (dimensions are in 
nanometers).
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A displacement of 0.001 nm was given in the y-direction (in the first load case) and in the 
x-direction (in the second load case). Since the value of the displacement is known, the stiff-
ness can be calculated by finding the reaction forces in the model. To prevent rigid body 
motion, the nodes on one side are prevented from moving in the x-direction, while the nodes 
in the bottom are prevented from moving in the y-direction, as shown in Figure 8.2.

The deformed and the undeformed shapes of both cases are shown in Figures 8.3 
and 8.4.

To calculate the stiffness of the sheet in both directions, the reaction forces are first found 
by ABAQUS. The stiffness of the graphene sheet, K, can be calculated from the equation:

 i

n

F K∑ = δ  (8.1)

where
F represents the reaction force of the element i
n is the total number of elements
δ is the displacement of the sheet

The stiffness of the graphene sheet in the vertical and horizontal directions is calculated 
using the reaction forces as given in Figures 8.5 and 8.6, respectively.

To complete the picture, Figures 8.7 and 8.8 show the generated Von Mises stresses in 
both load cases. For the first load case the maximum Von Mises stress was 1.85 GPa, while 
for the second load case, it was 3.8 GPa. The difference in the two values is due to the 
change in the orientation of the truss elements in each load case.

Deformed
shape

Undeformed
shape

FIGURE 8.3
Deformed and undeformed shapes for the first load case.
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RF, RF2
+ 3.793e – 12
+ 3.163e – 12
+ 2.533e – 12
+ 1.903e – 12
+ 1.273e – 12
+ 6.432e – 13
+ 1.318e – 14
– 6.168e – 13
– 1.247e – 12
– 1.877e – 12
– 2.507e – 12
– 3.137e – 12
– 3.767e – 12

FIGURE 8.5
Reaction forces in first load case.

Deformed
shape

Undeformed
shape

FIGURE 8.4
Deformed and undeformed shapes for the second load case.
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S, Mises (avg: 75%)
+ 1.847e – 09
+ 1.710e – 09
+ 1.573e – 09
+ 1.436e – 09
+ 1.299e – 09
+ 1.162e – 09
+ 1.025e – 09
+ 8.876e – 10
+ 7.504e – 10
+ 6.133e – 10
+ 4.762e – 10
+ 3.390e – 10
+ 2.019e – 10

FIGURE 8.7
Von Mises stresses in the vertical direction.

RF, RF1
+ 8.018e – 12
+ 6.644e – 12
+ 5.270e – 12
+ 3.896e – 12
+ 2.522e – 12
+ 1.148e – 12
– 2.256e – 13
– 1.599e – 12
– 2.973e – 12
– 4.347e – 12
– 5.721e – 12
– 7.095e – 12
– 8.469e – 12

FIGURE 8.6
Reaction forces in the horizontal direction.
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8.6 Analysis of Carbon Nanotubes

The CNT is modeled by bending the previously developed graphene sheet around its verti-
cal edge as discussed by Nahas and Abd-Rabou (2010a,b). Two-dimensional truss elements 
of graphene sheet are replaced with 3D truss elements, which have three degrees of free-
dom per node. Figure 8.9 shows two types of CNTs that were modeled, a (12, 0) SWCNT 
and a (12, 0), (11, 0), (13, 0) MWCNT. To complete the cylindrical shape using the graphene 
sheet, more elements are developed to connect the free nodes in the vertical direction. 
The same mechanical and geometrical properties of molecular mechanics model of the 
graphene sheet are used here.

The two models were studied under two load cases, axial loading, Figure 8.10, to calcu-
late the axial stiffness, and transverse loading, Figure 8.11, to calculate the bending stiff-
ness. The axial loading is simulated by applying a known axial displacement (0.001 nm) 
at the top end of the tube while keeping the other end clamped to prevent the rigid body 
motion. Using a known displacement, the stiffness of the tube can be calculated from 
knowing the reaction forces generated in the model. For the transverse load case, the load 
is simulated by applying a known transverse displacement (0.001 nm) to the top end and 
fixing the lower end of the tube.

The reaction forces of the FE analysis for the axial loading of the tubes are shown in 
Figure 8.12. The stiffness of the tube K can be calculated from Equation 8.1. The reactions 
for the transverse loading are shown in Figure 8.13. The same procedure is used to calcu-
late the bending stiffness of the tube.

S, Mises (avg: 75%)
+ 3.825e – 09
+ 3.543e – 09
+ 3.261e – 09
+ 2.979e – 09
+ 2.697e – 09
+ 2.415e – 09
+ 2.133e – 09
+ 1.851e – 09
+ 1.569e – 09
+ 1.287e – 09
+ 1.005e – 09
+ 7.227e – 10
+ 4.406e – 10

FIGURE 8.8
Von Mises stresses in the horizontal direction.
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(a) (b)

FIGURE 8.10
Axial loading and boundary conditions: (a) SWCNT and (b) MWCNT.

(a) Z X

Y

(b)

FIGURE 8.9
(a) SWCNT finite elements mesh and (b) MWCNT finite elements mesh.
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(a)

+ 1.662e – 12
R F ,  R F 3 R F ,  R F 3

+ 1.377e – 12
+ 1.091e – 12
+ 8.054e – 13
+ 5.197e – 13

– 5.175e – 14
+ 2.340e – 13

– 3.375e – 13
– 6.232e – 13
– 9.089e – 13
– 1.195e – 12
– 1.480e – 12
– 1.766e – 12

+ 1.668e – 12
+ 1.382e – 12
+ 1.096e – 12
+ 8.099e – 13
+ 5.237e – 13

– 4.876e – 14
+ 2.374e – 13

– 3.350e – 13
– 6.212e – 13
– 9.074e – 13
– 1.194e – 12
– 1.480e – 12
– 1.766e – 12

(b)

FIGURE 8.12
Reaction forces generated in axial loading: (a) SWCNT and (b) MWCNT.

(a) (b)

FIGURE 8.11
Transverse loading and boundary conditions: (a) SWCNT and (b) MWCNT.
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The resulting Von Mises stresses are shown in Figures 8.14 and 8.15. In axial loading, 
the generated Von Mises stresses were 1.059 × 10−9 for SWCNT and 1.06 × 10−9 for MWCNT. 
For the transverse loading case, the generated Von Mises Stresses were 15.6 × 10−9 (N/nm2) 
in SWCNT and 18.2 × 10−9 (N/nm2) in MWCNT.

The modulus of elasticity of the tube is related to the axial stiffness by the relation shown 
in Equation 8.2:

 
K

EA
L

=  (8.2)

(a)

S, Mises (Avg: 75%)
S, Mises (Avg: 75%)

+ 1.059e – 09
+ 9.851e – 10
+ 9.115e – 10
+ 8.379e – 10
+ 7.643e – 10

+ 6.171e – 10
+ 6.907e – 10

+ 5.435e – 10
+ 4.698e – 10
+ 3.962e – 10
+ 3.226e – 10
+ 2.490e – 10
+ 1.754e – 10

+ 1.060e – 09
+ 9.862e – 10
+ 9.125e – 10
+ 8.388e – 10
+ 7.651e – 10

+ 6.176e – 10
+ 6.914e – 10

+ 5.439e – 10
+ 4.702e – 10
+ 3.965e – 10
+ 3.228e – 10
+ 2.491e – 10
+ 1.754e – 10

(b)

FIGURE 8.14
Von Mises stresses generated in axial loading: (a) SWCNT and (b) MWCNT.

(a)

RF, magnitude
+ 3.035e – 13
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+ 2.024e – 13
+ 1.771e – 13
+ 1.518e – 13
+ 1.265e – 13
+ 1.012e – 13
+ 7.588e – 14
+ 5.059e – 14
+ 2.529e – 14
+ 0.000e + 00

+ 3.531e – 13
+ 3.237e – 13
+ 2.942e – 13
+ 2.648e – 13
+ 2.354e – 13
+ 2.060e – 13
+ 1.765e – 13
+ 1.471e – 13
+ 1.177e – 13
+ 8.827e – 14
+ 5.885e – 14
+ 2.942e – 14
+ 0.000e + 00

(b)

RF, magnitude

FIGURE 8.13
Reaction forces generated in transverse loading: (a) SWCNT and (b) MWCNT.
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where
A is the cross-sectional area of the tube
L is the tube length

The cross-sectional area of the tube can be found by calculating the perimeter of the tube, 
as in Equation 8.3:

 A Dt= π  (8.3)

where
D is the tube diameter
t is the wall thickness of the tube

Young’s modulus can then be calculated by rewriting Equation 8.2 as follows:

 
E

KL
Dt

=
π

 (8.4)

The calculated Young’s modulus for SWCNT was 1.192 TPa and for MWCNT it was 
1.197 TPa.

8.7 Future Work

The author is now working on some other related problems. Some have been already sub-
mitted for publications. One paper studies the effect of inclusion of monolayer graphene 
sheets on the mechanical properties of epoxy resin. Another paper studies the effect of 
addition of CNTs on the mechanical properties of epoxy resin. In both cases, numerical 

(a)

+ 1.556e – 10
S, Mises (Avg: 75%)

+ 1.427e – 10
+ 1.297e – 10
+ 1.168e – 10
+ 1.038e – 10
+ 9.088e – 11
+ 7.793e – 11
+ 6.498e – 11
+ 5.203e – 11
+ 3.908e – 11
+ 2.613e – 11
+ 1.318e – 11
+ 2.286e – 13

(b)

+ 1.823e – 10
S, Mises (Avg: 75%)

+ 1.672e – 10
+ 1.520e – 10
+ 1.368e – 10
+ 1.216e – 10
+ 1.065e – 11
+ 9.128e – 11
+ 7.611e – 11
+ 6.093e – 11
+ 4.575e – 11
+ 3.058e – 11
+ 1.540e – 11
+ 2.286e – 13

FIGURE 8.15
Von Mises stresses generated in transverse loading: (a) SWCNT and (b) MWCNT.
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analysis using FEM is conducted. Other papers are using FEA in vibration problems and 
fatigue problems resulting from cyclic loadings.

8.8 Conclusions

FEA has been used to model structure–property relationships of nano-structured 
materials. The model links computational chemistry (used to predict molecular properties) 
and solid mechanics (used to describe macroscopic mechanical behavior). Discrete 
molecular structures are modeled as equivalent truss element by equating the molecular 
potential energy of nano-structured materials with the mechanical strain energy of truss 
element model. This modeling method has been applied to a graphene sheet. The FE model 
performs very well and gives good results. As the FE model comprises a small number of 
elements, it performs under minimal computational time.

The model has also been used to investigate the properties of SWCNTs and MWCNTs.
The obtained values of Young’s modulus agree very well with the corresponding 

theoretical results and experimental measurements that are available in the literature.
The results demonstrate that the proposed FE model may provide a valuable tool for 

studying the mechanical behavior of CNTs and nanocomposites based on them.
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9.1 Introduction

Electrospinning has become an efficient technology to produce nano-fibrous materials. 
It conventionally uses a needle-like nozzle to process polymer fluids into fibrous mate-
rials. However, needle electrospinning has very limited fiber production ability, and 
this considerably restricts its wide applications in practice. Needleless electrospinning 
appeared 45 years later after Anton Formhals (Anton 1934) invented electrospinning in 
1934. The first needleless electrospinning system used a ring spinneret for the produc-
tion of fiber fleece (Simm, 1976). However, needleless electrospinning did not exhibit its 
potential in the mass production of nanofibers until the invention of roller electrospin-
ning (Jirsak et al., 2005) in 2005. Since then, many needleless electrospinning systems have 
been reported. Needleless electrospinning is highly determined by the fiber generators 
that have a considerable influence on the electric field profiles. Because of the difficulty 
in direct measurement of high electric field, finite element methods (FEMs) have become 
the main technique to understand electric field profiles in electrospinning zone and fiber 
generator surface.
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This chapter reviews the recent development in the analysis of electric field in needleless 
spinnerets using FEM. The influences of spinneret shape and electrospinning conditions 
on the electric field profile are presented, and the relationship between electric field and 
electrospinning performance is introduced.

9.2 Electrospinning and Electrospun Nanofibers

The basic electrospinning setup comprises a high-voltage power supply, a needle-like 
nozzle, and a counter-electrode collector, as shown in Figure 9.1. During electrospin-
ning, charged by a high electric voltage, the solution droplet at the needle tip is electrified 
(Li and Xia, 2004b). Under the action of electric force, the solution droplet is drawn toward 
the opposite electrode and as a result deforms into a conical shape (also known as “Taylor 
cone” (Taylor, 1969)). When the electric force overcomes the surface tension of the polymer 
solution, the polymer solution can be ejected off the “Taylor cone,” forming a solution jet. 
This charged jet is further stretched into a fine filament due to its strong interaction with 
the external electric field and the charge repulsion within the filament. The rapid evapora-
tion of solvent from the filaments results in dry fibers that deposit randomly on the collec-
tor, forming a nonwoven nanofiber web in most of the cases.

Electrospinning technology has many advantages such as good versatility in processing 
different materials (e.g., polymers, chemicals, biomaterials, and nanoparticles), low cost, 
simplicity, and high efficiency. Electrospun nanofibers exhibit many unique properties, 
including high aspect ratio, excellent pore interconnectivity, and high porosity. Depending 
on materials, operating parameters, and nozzle configuration, electrospun nanofibers can 
have different morphologies. Beaded fibers (Fong et al., 1999), porous fibers (Bognitzki 
et al., 2001; Chen et al., 2011) or grooved (Huang et al., 2011) surface, ribbons (Koombhongse 
et al., 2001), hollow fibers (Li and Xia, 2004a) can be prepared using a normal needle nozzle, 
while side-by-side (Lin et al., 2005), helical (Lin et al., 2005; Chang and Shen, 2011), and 
core-sheath (Sun et al., 2003) nanofibers are normally prepared using a special spinneret. 
Although electrospun nanofibers are generally collected in the form of nonwoven mat, 

Needle nozzle

Syringe

Power supply

Taylor cone

+ +
++

+ +

Solution jet

Collector

SEM image of nanofibers
(scale bar = 1 μm)

FIGURE 9.1
Schematic illustration of a basic electrospinning setup, Taylor cone, and a SEM image of electrospun nanofibers.
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aligned nanofibers (Theron et al., 2001; Li et al., 2003, 2004; Katta et al., 2004), 3D nano-
fiber structure (Zhang and Chang, 2008), and nanofiber yarns (Dalton et al., 2005; Smita 
et al., 2005; Huan et al., 2006; Ali et al., 2012) can be obtained using special fiber-collecting 
techniques. These characteristics make electrospun nanofibers have wide applications in 
diversified areas.

Figure 9.2 lists the most important applications of electrospun nanofibers. They include 
environmental protection, energy generation and storage, tissue engineering scaffolds, 
release control, catalyst and enzyme carriers, and sensors (Fang et al., 2008; Thavasi et al., 
2008; Lu et al., 2009), and many others.

Recently, needleless electrospinning has emerged with the ability of producing nanofi-
bers on large scales. Unlike needle electrospinning that often uses a needle nozzle as the 
fiber generator, needleless electrospinning uses a spinneret that contains no needles, and 
nanofibers are generated from an open liquid surface. Among all the spinnerets reported 
for needleless electrospinning, rotating spinnerets are the most promising, because they 
can produce quality nanofibers continuously and massively. Several different rotat-
ing needleless electrospinning setups have already been invented by different research 
groups. In 2005, a roller electrospinning was commercialized by Elmarco Co. with the 
brand name “NanospiderTM” (Jirsak et al., 2005).

The jet formation in rotating needleless electrospinning can be divided into a few stages. 
First, a thin polymer solution layer is applied onto the spinneret surface as a result of par-
tial immersion in the solution and the rotation of the spinneret. The rotation also causes 
perturbations of the solution layer on the spinneret, thus inducing the formation of conical 
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FIGURE 9.2
Applications of electrospun nanofibers.
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spikes on the surface. When a high voltage is applied, the spikes concentrate electric forces, 
intensifying the perturbations to form “Taylor cones.” Jets are finally stretched out from 
the “Taylor cones,” resulting in nanofibers.

It has been reported that the rotating needleless electrospinning setup is simple, effi-
cient, and easy to maintain, but only occupies a small space. The rotation of spinnerets 
ensures conveying the polymer solution to electrospinning sites for continuous nanofiber 
production. When nanofibers are electrospun upward, this process effectively prevents 
nonelectrospun solution droplets from contaminating the nanofiber products.

9.3 Electric Field in Electrospinning

In electrospinning, the critical voltage for initiating an electrospinning process has been 
proposed to follow the equation (Taylor 1969)

 V h R Rc
2 4 1 3 0 09= ln( / )( . ) .2 π γ  (9.1)

where
h is the distance from the needle tip to the collector
R is the needle outer radius
γ is the surface tension

The factor 0.09 is inserted to predict the voltage. Although voltage is used in this equation, 
electric force (F) is the actual driving force to jet formation, which is determined by the 
electric field intensity (E) and charge (q).

 F E q= ⋅  (9.2)

For needleless electrospinning, although jets are initiated from an open polymer solution 
surface, there is a critical voltage or critical electric field intensity that it still needs to over-
come. Lukas et al. (2008) have indicated that the self-organization of jets takes place on free 
liquid surface during needleless electrospinning, and the critical electric field intensity (Ec) 
for needleless electrospinning is predicted as follows:

 
E

g
c = 4

2
4 γρ

ε
 (9.3)

where
ρ is liquid mass density
g is gravity acceleration
γ is surface tension
ε is the permittivity

This equation suggests that jet initiation in needleless electrospinning is only determined 
by solution properties.

Since the electric force is the driving force for both needle and needleless electrospin-
ning, fibers should be easier to generate from a spinneret that has a larger electric field 
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regardless of the electrospinning mode. In other words, nanofibers should form earlier 
from an area where the electric field intensity is higher than the critical value required 
for initiating an electrospinning process. This is important to needleless electrospinning 
because the electric field intensity along the entire fiber-generating surface on the spin-
neret is not the same. When the voltage is above the critical value, the higher electric field 
enables more solution jets to be generated and fiber stretching is also faster, leading to 
increase in the fiber productivity.

It is practically difficult to directly measure the electric field intensity and its profile 
along the spinneret due to the very high voltage involved. Calculations based on classic 
physical principles become an important alternative method to gain understanding on the 
electric field intensity in a high eclectic field.

Partial differential equations (PDEs) as typical differential equations are often used to 
describe the propagation of sound, heat, electrostatics, electrodynamics, fluid flow, or elas-
ticity. Just as ordinary differential equations often modeling dynamical systems, PDEs 
can model multidimensional systems. The electric field (E) due to a static charge density 
ρ(x, y, z) distribution is determined by Gauss’ Law:

 
∇⋅ =E

x y zρ
ε

( , , )

0
 (9.4)

where ε0 is the permittivity constant. A static electric field can be derived from a scalar 
potential ψ (x, y, z)

 E = − ∇ψ  (9.5)

which obeys Poisson’s equation:

 
∇ = ∂

∂
+ ∂

∂
+ ∂

∂






=2
2

2

2

2

2

2
0

ψ ψ ρ
εx y z
x y z− ( , , )  (9.6)

These equations indicate that even under the same applied voltage, the electric field 
formed by different spinnerets may have different intensities and profiles depending on 
their geometric shapes.

In practice, the arbitrary shapes of spinnerets in a three-dimensional (3D) object make 
it almost impossible to find the solution to these PDEs if classical analytical methods are 
employed. FEM is a numerical technique for finding approximate solutions of PDEs, and it 
has been used to solve a wide range of physical and engineering PDE problems. Finite ele-
ment analysis was first developed in 1943 by R. Courant (Courant and Hilbert, 1943), who used 
the Ritz method of numerical analysis and minimization of variational calculus to obtain 
approximate solutions to vibration systems. Attributed to the rapid decline in the cost of com-
puters and the enhancement in the computing power, FEM has been developed greatly and 
able to produce accurate results for PDEs. At present, solving of PDE can be simply realized 
by commercial FEM programs such as COMSOL, Maxwell SV 2D, or Maxwell 3D.

The basic approach of solving PDE by FEM includes defining the physical problem based 
on which to develop a model, formulating the governing equations (initial conditions and/
or boundary conditions), discretizing equations, solving the discrete system of equations, 
and result interpretation and error analysis. Since electrostatics is a physical phenomenon, 
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which can be described in terms of PDEs, FEM can be an attractive and practical method to 
analyze the electric field in electrospinning and design spinnerets for needleless electro-
spinning. The calculated electric field and visualized results can assist in understanding 
the relationship between the electric field and spinneret geometry shape, and the influence 
of spinneret shape on electrospinning performance.

To calculate the electric field intensity of an electrospinning setup, the physical objects in 
the electrospinning setup (e.g., spinneret, solution container, polymer solution, and collec-
tor) are setup first in the program according to their actual dimensions, location, and rela-
tive permittivity. A high voltage is set according to the practical connection. The meshing 
and solving of equations are conducted by the computer program. Finally, the electric field 
intensity and distribution profile can be obtained and visualized.

The electric field profile of a needle nozzle is shown in Figure 9.3a. An intensified electric 
field is typically formed near the needle tip, which declines rapidly toward the collector. 
Based on this 3D profile, the electric field intensity change along any specific direction or 
surface can be easily acquired. Figure 9.3b is an example showing the change of electric 
field intensity from nozzle tip to the collector. The collectors in needle electrospinning 
have far more important influences on the electric field formed and nanofiber collection, 
since the fiber generator in needle electrospinning remains the same (needle).

FEM has been successfully used for analyzing the collections of aligned nanofibers (Li 
et al., 2003; Liu and Dzenis, 2008; Park and Yang, 2011), and patterned nanofibers (Salim 
et al., 2008; Ding et al., 2009). Recently, it was also used to understand jet repulsion in multi-
jet electrospinning (Angammana and Jayaram, 2011).

In needleless electrospinning, fiber generators play a key role in determining the elec-
tric field intensity and profile. Niu et al. (2009) first used FEM to analyze the electric field 
intensity of two rotary needleless spinnerets, disk, and cylinder. They found that a disk 
spinneret formed a higher intensity electric field with a narrower distribution than a 
cylinder spinneret under the same applied voltage. They also experimentally proved the 
better electrospinning performance of the disk spinneret than the cylinder spinneret. 
The result that a spinneret containing surface with a larger curvature forms an elec-
tric field of higher intensity, thus having a better electrospinning performance was also 
reported by other researchers (Wang et al., 2009; Lin et al., 2010; Thoppey et al., 2010, 2011; 
Niu et al., 2011).
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FIGURE 9.3
(a) Electric field profile of a needle nozzle and (b) electric field intensity from nozzle tip to the collector.
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317Finite Element–Aided Electric Field Analysis of Needleless Electrospinning

This chapter focuses on the recent progress in FEM electric field analysis of needleless 
electrospinning and the influence of spinnerets on electrospinning productivity and fiber 
quality. In the following section, rotating spinnerets will be employed as a main example 
to elucidate the electric field profile and its influence on the electrospinning process.

9.4 FEM Analysis of Rotary Needleless Spinnerets

In rotary needleless electrospinning, when a high voltage is applied, the surface fluctua-
tions of solution layer on the spinneret are amplified, causing the formation of conical 
spikes on the surface, which can be stretched into fine solution jets. A good understanding 
of the electric field in needleless electrospinning can facilitate the optimization of fiber 
generators. Figure 9.4 schematically shows three rotating spinnerets for needleless electro-
spinning. They all partially immersed into a solution container underneath, and a drum 
collector is set right upward. Based on the physical mode, material, and the operating 
parameters, FEM electric field analysis can be performed. Figures 9.5 through 9.9 show the 
result of electric field analysis for cylinder, ball, and disk electrospinning systems.

Figure 9.5 shows the electric field profile of cylinder electrospinning under different 
dimensions. These figures only provide the profile around the spinnerets since there 
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FIGURE 9.4
Schematic illustration of rotating spinnerets.
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FIGURE 9.5
Electric field profiles of cylinder spinnerets with (a) different rim radii (length 200 mm, and diameter 80 mm) 
and (b) different diameters (length 200 mm, and rim radius 10 mm). (From Niu, H. et al., J. Text. Inst., 1, 2011.)
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FIGURE 9.6
(a–c) Electric field intensities of cylinder spinnerets with the same diameter but different rim radii, (a) along 
cylinder length, (b) from cylinder end to the collector, and (c) from cylinder middle to the collector; (d–f) elec-
tric field intensities of cylinder spinnerets with the same rim radius but different cylinder diameters, (d) along 
cylinder length, (e) from cylinder end to the collector, and (f) from cylinder middle to the collector. (From Niu, 
H. et al., J. Text. Inst., 1, 2011.)
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(a–c) Electric field profiles of ball spinnerets with different diameters. (From Niu, H. et al., J. Text. Inst., 1, 2011.) 
(d) Electric field intensities of ball spinnerets with different diameters.
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319Finite Element–Aided Electric Field Analysis of Needleless Electrospinning

is little difference in the collector area. The cylinder top ends always formed higher 
electric field intensity than the middle surface. The electric field at the cylinder ends 
varied in intensity depending on the rim radius of the cylinder end. With an increase 
in the rim radius, the electric field intensity at the cylinder ends declined. The intensity 
discrepancy between cylinder end and middle areas was reduced but not eliminated 
completely (Figure 9.5a). When cylinders were kept in the same length and rim radius, 
decreasing the cylinder diameter led to higher strength of electric fields in the middle 
area (Figure 9.5b).
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FIGURE 9.8
Electric field profiles of disk spinnerets with different thicknesses ((a) 2 mm, (b) 5 mm, (c) 10 mm, (d) 20 mm, and 
disk diameter 80 mm). (From Niu, H. et al., J. Text. Inst., 1, 2011.)
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(a) Electric field intensities of disk spinnerets with different thicknesses. (From Niu, H. et al., J. Text. Inst., 1, 2011.) 
(b) Electric field intensifies from disk top to the solution surface (diameter 80 mm.)
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Figure 9.6 shows the electric field profile along cylinder length and from cylinder sur-
face to the collector. When increasing the rim radius, the electric field intensity at cylinder 
ends reduced, and the area that had high-intensity value expanded slightly toward the 
cylinder middle (Figure 9.6a and b). The intensity from cylinder middle area to the col-
lector was little affected by the rim radius (Figure 9.6c). Reducing the cylinder diameter 
slightly increased the electric field intensity on the cylinder middle surface (Figure 9.6d), 
and the electric field profile from the spinneret surface to the collector remained almost 
unchanged (Figure 9.6e and f).

Figure 9.7 shows the electric field analysis result of ball electrospinning in the spinneret 
area. The electric field was evenly distributed on the top half. However, the intensity was 
lower than that at cylinder ends. When the ball diameter reduced from 8 to 4 cm, electric 
field intensity on the ball surface increased; however, the intensity profile from 1 cm off the 
ball top to the collector remained unchanged (Figure 9.7d).

Disk spinneret formed highly intensified electric fields narrowly distributed at the top 
circumference (Figure 9.8). The electric field intensity was much larger than that of cylin-
der and ball spinnerets. With a decrease in the disk thickness, the electric field intensity 
on the disk surface increased.

Figure 9.9a shows the influence of disk thickness on the electric field profile from disk 
top to the collector. The change of disk thickness had little effect on the profile, except 
that the electric field intensity on the disk surface changed greatly. The electric field inten-
sity on the 20 mm thick disk generator was 24 kV/cm. The intensity increased to 62 kV/cm, 
when the thickness reduced to 2 mm. Further reducing the thickness from 2 mm to 1 mm 
increased the electric field intensity to 200 kV/cm. Figure 9.9b shows that the electric field 
intensity decayed rapidly away from the disk top area to the solution surface.

By comparing the electric field profiles of these three spinnerets, it is easy to conclude 
that the geometric shape and dimension of a spinneret have significant effects on the inten-
sity and profile of electric field on the spinneret surface, which should greatly influence the 
electrospinning process, fiber quality, and productivity. To verify this, cylinder, ball, and 
disk electrospinning was performed at the same electrospinning parameters using the 
same polymer solution. Figure 9.10 shows the electrospinning processes of three needle-
less electrospinning systems.

Table 9.1 lists the fiber diameter and production rate of polyvinyl alcohol (PVA) nano-
fibers electrospun using different spinnerets. The differences in these experiment results 

Cylinder Disc Ball

FIGURE 9.10
Photographs of cylinder, disk, and ball electrospinning processes (Polyvinyl alcohol (PVA) solution, applied 
voltage 57 kV). (From Niu, H. et al., J. Appl. Polym. Sci., 114(6), 3524, 2009.)
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can be explained by the FEM electric field analysis. Due to the uneven distributed electric 
field intensity along the cylinder surface, nanofibers were unevenly produced from cylin-
der surface. Fibers were easily generated from the cylinder ends in comparison with the 
middle area. Cylinders produced nanofibers from the whole top surface only when the 
applied voltage was over 57 kV/cm.

When the cylinder rim radius was 5 mm, lower electric field intensity was formed at 
the end area compared to that with a rim radius of 2 mm. However, the electric field 
intensity in this area was still large enough to initiate electrospinning. Because of the 
increased high electric field surface, more solution jets were generated from the cylin-
der surface, resulting in an improved productivity of 8.6 g/h. The reduced electric field 
intensity due to increase of cylinder rim radius could also be used to explain the fail-
ure of cylinder electrospinning when the rim radius was larger than 20 mm. With such 
a large rim radius, the electric field intensity at the cylinder ends was lower than the 
critical value required for initiating an electrospinning process. The change of cylinder 
diameter also led to changes in fiber productivity, and the increase of electric field inten-
sity on the middle surface of cylinders resulted in an increased fiber production rate. 
Based on the FEM calculation and experiment results, the critical electric field intensity 
to initiate an electrospinning process on the needleless electrospinning nozzle should be 
around 18 kV/cm.

The ball spinneret had a low production rate of 3.1 g/h due to the low electric field inten-
sity, and it required a high voltage (57 kV/cm) to initiate the electrospinning process. Even 
though the fact that smaller balls generated stronger electric fields than the threshold 
value for electrospinning (14 kV/cm, based on the ball diameter 80 mm), they are unable to 
generate jets.

For a thin disk of 2 mm in thickness, electrospinning can be performed at an applied 
voltage as low as 42 kV, and the fiber production rate was 6.2 g/h when the applied voltage 
was 57 kV/cm. The productivity of disk electrospinning increased with the decreased disk 

TABLE 9.1

Spinnerets and Their Electrospinning Productivities

Cylinder (L = 200 mm)

Cylinder 
(Φ = 80 mm)

R (mm) 2 5 10 20 30
Fiber diameter (nm) 334 ± 118 357 ± 127 366 ± 116 × ×
Productivity (g/h) 6.3 8.6 5.8 × ×

Cylinder 
(R = 10 mm)

Φ (mm) 80 60 40
Fiber diameter (nm) 366 ± 116 325 ± 150 289 ± 132
Productivity (g/h) 5.8 7.2 8.4

Disk (Φ = 80 mm)

Disk L (mm) 1 2 5 10 20
Fiber diameter (nm) × 257 ± 77 277 ± 92 287 ± 91 321 ± 108
Productivity (g/h) × 6.2 5.2 5.6 5.2

Ball

Ball Φ (mm) 80 60 40
Fiber diameter (nm) 344 ± 105 × ×
Productivity (g/h) 3.1 × ×

Source: Niu, H. et al., J. Text. Inst., 1, 2011.
Note: ×, electrospinning failure; R, rim radius; Φ, diameter; L, thickness.
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thickness. When the applied voltage was 57 kV, the electric field intensity of disk (thickness 
1 mm) was so high that a corona discharge happened, preventing electrospinning from 
working properly, although the disk is covered by a thin solution layer.

The relationship between electrospinning performance and spinneret shape is shown 
in Figure 9.11. Under the best working conditions, the disk produced the finest nanofibers. 
The narrowly distributed electric field also made jets travel in a similar rate through the 
electrospinning zone, resulting in nanofibers with a narrow diameter distribution. Among 
the cylinder, disk, and ball electrospinning systems, cylinder electrospinning produced 
coarse nanofibers with the largest fiber productivity. Compared to the disk, the ball spin-
neret produced coarser nanofibers with a lower productivity.

Lin et al. (2010) designed a novel needleless electrospinning using a spiral coil as spin-
neret. FEM analysis of the electrospinning system and photograph of electrospinning pro-
cess are shown in Figure 9.12. An intensified electric field was formed on the surface of 
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FIGURE 9.11
Comparison among cylinder, disk, and ball spinnerets (applied voltage 57 kV, spinning distance 13 cm, cylinder 
diameter 80 mm, cylinder rim radius 5 mm, disk diameter 80 mm, disk thickness 2 mm, ball diameter 80 mm). 
(From Niu, H. et al., J. Text. Inst., 1, 2011.)

(a) (b)

FIGURE 9.12
(a) Electric field profile of coils spinneret and (b) photograph of coil electrospinning process.
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spiral coil because of the small diameter of the coil wire, and the high electric field inten-
sity was just formed narrowly on the coil surface. When a high voltage was applied, fine 
and uniform nanofibers were generated from the coil surface with high fiber productivity 
(Lin et al., 2010).

9.5 Effect of Electrospinning Parameters

The applied voltage and collecting distance are two important factors that affect the elec-
tric field. The influences of applied voltage on the electric field of cylinder, ball, and disk 
spinnerets are shown in Figure 9.13. The electric field profiles were geometry-specific. The 
electric field intensity was increased at a high applied voltage. However, the intensity dis-
tribution did not change much. The increase of intensity near the spinneret was more 
obvious than that close to the collector. With increasing the applied voltage, the most sig-
nificant improvement in the electric field intensity took place on the disk top, followed by 
the cylinder ends, then the ball top, and the cylinder middle area. In addition, reducing the 
spinning distance also improved the electric field intensity in the electrospinning zone.

The influences of applied voltage on the electrospinning productivity and fiber diam-
eter have been reported by Niu et al. (2009). Due to the unevenly distributed electric field 
on the cylinder surface, nanofibers produced by a cylinder spinneret always had a large 
diameter distribution (Figure 9.14a). The change of applied voltage had a little influence on 
the average diameter of cylinder electrospun nanofibers. However, for the disk spinneret, 
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increasing the voltage resulted in a reduced fiber diameter with a narrowed diameter dis-
tribution. Figure 9.14b shows nanofiber production rates of disk and cylinder electrospin-
ning systems. The productivity increased with increasing the applied voltage from 47 to 
62 kV for both systems. The influence of applied voltage on the electrospinning process, 
fiber diameter, and productivity for other needleless electrospinning systems is similar to 
those of disk or cylinder electrospinning.

9.6 FEM Analysis of Other Needleless Spinnerets

FEM electric field analysis was also used to assist in understanding the electrospinning 
processes of other needleless electrospinning systems including conical coil (Wang et al., 
2009), plate (Thoppey et al., 2010), and bowel edge (Thoppey et al., 2011).

Wang et al. (2009) reported a conical coil spinneret to electrospin nanofibers in a down-
ward manner. FEM analysis showed that an intensified electric field was formed on the 
wire surface and it had higher intensity on the wires near the coil ends (Figure 9.15a and b). 
In comparison, a needle nozzle formed an intensified electric field at its tip, but with a 
lower intensity due to the lower applied voltage (Figure 9.15c). From spinneret to the collec-
tor, the electric fields formed by both spinnerets decayed rapidly and then stabilized near 
to the collector (Figure 9.15d). When the conical coil was loaded with polymer solution, jets 
were stretched out from both the wire surface and the wire gap under the strong electric 
field (Figure 9.15e). The fiber production rate of electrospun PVA nanofibers increased with 
increasing the applied voltage (45–60 kV).

Figure 9.16a and b show the electric fields of a needle and a plate electrospinning sys-
tem reported by Thoppey et al. (2010). Both systems showed a similar electric field profile. 
The plate formed an intensified electric field at the plate edge and a low electric field near 
the collector (Figure 9.16b). During electrospinning, numerous solution jets can be easily 
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ejected off from the plate edge, resulting in an improved fiber production rate compared 
with the needle electrospinning. When a stack of plates was used, the electric field inten-
sity at the plate edges reduced (Figure 9.16c). However, it was still strong enough to drive 
the jet generation and fiber production.

When a bowel was used to electrospin nanofibers, FEM analysis showed the formation 
of an intensified electric field at the bowl edge, the profile of which was similar to that of 
needle electrospinning (Figure 9.17a and b) (Thoppey et al., 2011). The high electric field 
forming area and the fiber-generating area overlapped at the bowl edge. Figure 9.17c shows 
that jets are ejected off from the bowl edge when a high voltage is applied. The narrowly 
distributed intensified electric field along the narrow spinning sites (bowl edge) enabled 
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FIGURE 9.15
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jets to be equally stretched. As a result, the collected nanofibers have a similar quality as 
those from needle electrospinning under the same electrospinning conditions.

9.7 Conclusion

The electric field in needleless electrospinning is highly dependent on the geometric 
shape of spinnerets, which considerably affects the electrospinning process and pro-
ductivity. FEM is an effective method to calculate electric fields and intensity profiles in 
needleless electrospinning. It provides a visualized electric field profile, which greatly 
assists in correlating with electrospinning experiments. Although several works have 
been reported on FEM analysis of electric field in needleless electrospinning, the work 
in this area is mainly based on static analysis without considering dynamic influences of 
spinning solution and Taylor cones. It can be expected that more studies on electric field 
analysis using FEM will enable to design and optimize needleless spinnerets, analyze the 
interaction between the charged solution jet and the electric field, and predict deposition 
structure of nanofibers.

9.8 Summary

Needleless electrospinning is advantageous in producing polymeric nanofibers on a large 
scale. It has become a promising way to provide nanofibers for diversely different applica-
tions in practice. The fiber generator in needleless electrospinning has a considerable influ-
ence on electric field intensity and profile, which ultimately determine the electrospinning 
performance, fiber quality, and fiber productivity. This chapter summarizes the recent 
progress in using FEM to analyze the electric field formed in needleless electrospinning 
and the relationship between the electric field and needleless electrospinning performance.
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FIGURE 9.16
Electric field intensity distributions of (a) conventional needle electrospinning, (b) edge-plate electrospinning, 
and (c) waterfall electrospinning (collecting distance 15 cm, applied voltage 15 kV; insets are the magnifications 
of the indicated square areas in each figure). (From Thoppey, N.M. et al., Polymer, 51(21), 4928, 2010.)
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10.1 Introduction

A	common	question	that	arises	at	the	beginning	of	a	numerical	simulation	is	how	to	cap-
ture	relevant	effects	while	keeping	the	numerical	effort	as	low	as	possible:	Can	the	mate-
rial	be	treated	as	homogeneous	and	isotropic,	or	is	it	necessary	to	consider	each	individual	
atom?	Cracks	in	materials	which	might	be	observed	as	a	result	of	mechanical	exposure	
or	aging	are	usually	treated	at	another	analysis	level	than	buckling	phenomena	of	thin-
walled	engineering	structures	like	cooling	towers.

A	lot	of	constitutive	material	models	have	been	developed	so	far	to	describe	softening	
behavior,	hysteresis	loops,	friction,	or	fatigue.	Though	many	of	these	models	are	physi-
cally	motivated,	they	are	often	enriched	by	rheological,	that	is,	phenomenological	compo-
nents	like	dashpot	or	friction	elements	in	order	to	account	for	inelastic	effects.	Rheological	
models	are	suited	for	efficient	simulations.	However,	in	order	to	provide	an	explanation	
for	the	physical	background	of	material	inelasticity,	the	aforementioned	phenomena	have	
to	be	deduced	from	the	formulation	and	breaking	of	chemical	and	physical	bonds.

Figure	10.1	gives	an	overview	of	different	simulation	levels	starting	with	the	quantum	
scale	up	to	macroscale.	The	most	complex	and	detailed	level	is	the	quantum	scale	which	is	
based	on	the	Schrödinger	equation	that	describes	the	interactions	between	electrons,	neu-
trons,	and	protons.	The	second	level	is	the	nanoscale	which	can	be	reached	by	neglecting	
quantum	effects	(step	1).	Force	fields	treat	atoms	as	point	masses	connected	by	spring	ele-
ments	that	represent	different	bonding	types.	The	mechanical	behavior	observed	in	these	
classical	molecular	dynamic	(MD)	simulations	can	be	used	as	motivation	for	models	on	
microscale	(step	2).	For	larger	structures	such	as	tires,	the	results	on	microscale	must	be	
transferred	to	macroscale	which	is	usually	done	by	homogenization	(step	3).	Certain	prob-
lems	require	the	introduction	of	further	simulation	levels.	For	instance,	if	cracks	have	to	be	
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taken	into	account,	they	are	often	considered	by	mesoscale	models	(step	4c).	If	crack	propa-
gation	can	be	neglected	(step	4a)	or	if	there	are	lots	of	microcracks	which	can	be	smeared	
(step	4b),	macroscale	models	will	suffice.

Regardless	of	the	length	scale,	numerical	models	can	be	classified	by	the	simulation	tech-
nique	used,	namely,	particle	mechanics	or	continuum	mechanics.	In	particle	mechanics,	the	
physical	system	is	treated	in	a	“discrete”	way	using	particles	and	particle	interactions.	From	
a	mathematical	point	of	view,	particles	do	not	have	to	be	atoms	but	can	be	seen	in	a	more	
general	way	so	that	even	whole	galaxies	can	be	simulated	by	means	of	particle	mechanics,	

Quantum scale
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(molecular level)
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FIGURE 10.1
Simulation	models	at	different	length	scales.
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334 Computational Finite Element Methods in Nanotechnology

which	is	based	on	Newton’s	second	law:	The	force	acting	on	a	body	equals	the	product	of	
mass	and	acceleration.	Particle	mechanics	 is	based	on	 force	fields	 that	use	potentials	 to	
describe	the	interactions	between	two	or	more	bodies.	The	most	simple	example	is	Hooke’s	
law	for	linear	springs	which	is	derived	from	a	so-called	harmonic	potential,	a	quadratic	
polynomial.	Other	well-known	examples	include	the	potential	for	gravitational	attraction	
between	objects	with	mass,	the	Coulomb	potential	for	electrostatic	forces,	or	van	der	Waals	
bonds	and	hydrogen	bonds	that	are	often	analyzed	by	using	the	potential	of	Lennard-Jones	
(1929),	a	universal	approach	that	considers	both	attraction	and	repulsion	forces.

Simulations	based	on	particle	models,	especially	MD	simulations,	are	usually	very	expen-
sive	 in	 terms	 of	 computational	 time.	 Typical	 models	 to	 study	 crystal	 crack	 propagation	
comprise	up	 to	several	million	particles	which	at	first	glance	seems	 to	be	a	 lot.	However,	
compared	to	one	cubic	meter	gas	at	a	temperature	of	273.15	K	and	a	hydrostatic	pressure	of	
pn	=	101.325	kPa	which	contains	NL	=	2.686763	·	1025	m−3	molecules	(the	Loschmidt	constant)	or	
compared	to	12	g	of	the	carbon	isotope	C12	which	consists	of	NA	=	6.0221367	·	1023	mol−1	atoms	
(the	Avogadro	constant)	or	compared	to	the	200	billion	stars	comprising	the	Milky	Way,	it	is	
obvious	that	not	all	problems	can	be	handled	by	particle	mechanics.

For	homogeneous	structures,	continuum	mechanical	approaches	can	be	applied	which	
are	capable	of	simulating	engineering	structures	like	bridges,	airplanes,	and	cars.	However,	
a	simple	question	of	how	to	explain	crack	propagation	exceeds	the	capabilities	of	both	par-
ticle	and	continuum	mechanics,	so	that	concurrent	multiscale	simulations	are	necessary.

A	common	approach	to	link	a	discrete	atomic	structure	to	a	continuum	region	is	to	apply	
the	Cauchy–Born	hypothesis	which	goes	back	to	Born	and	Huang	(1954)	and	Ericksen	(1984):	
The	bond	distance	vector	r	=	Fr0	 in	 the	deformed	configuration	can	be	mapped	 from	the	
bond	distance	vector	r0	in	the	undeformed	configuration	by	the	deformation	gradient	ten-
sor	F.F	and	can	be	decomposed	into	a	stretch	and	a	rotation	part,	so	that	the	bond	length	|r|	
can	be	given	in	terms	of	the	right	Cauchy–Green	strain	tensor.	It	should	be	noted	that	the	
Cauchy–Born	rule	involves	an	approximation	because	according	to	the	continuum	mechan-
ics	framework,	line	elements	mapped	by	F	from	the	undeformed	to	the	deformed	configu-
ration	must	be	infinitesimally	small.	Bond	vectors,	however,	are	of	finite	length.	In	order	
to	overcome	stability	problems,	unrealistic	wave	reflections	and	other	numerical	problems	
resulting	from	the	transition	region,	various	alternative	formulations	can	be	found	in	the	
literature	like	the	exponential	Cauchy–Born	rule	proposed	by	Arroyo	and	Belytschko	(2002).

Among	 different	 solution	 techniques	 that	 can	 be	 applied	 to	 a	 continuum	 region,	 the	
finite	element	method	(FEM)	is	the	most	versatile	and	widespread	approach.	Due	to	its	
very	broad	range	of	applications,	 it	has	become	the	dominating	engineering	simulation	
method.	This	leads	to	the	desire	to	also	integrate	MD	simulations	to	the	well-established	
FEM	framework.	As	shown	by	Nasdala	and	Ernst	(2005)	by	the	example	of	the	Dreiding	
force	field	proposed	by	Mayo	et	al.	(1990),	the	“molecular	dynamic	finite	element	method”	
(MDFEM)	requires	special	finite	elements	if	multi-body	potentials	have	to	be	considered.

This	chapter	is	addressed	to	users	of	finite	element	codes	who	want	to	learn	more	about	
MDFEM,	its	background	in	molecular	mechanics,	the	new	class	of	finite	elements	needed	
to	obtain	the	same	results	as	traditional	MD	software,	applicable	time	integration	schemes,	
and	other	implementation	issues.

Two	examples	are	provided.	In	order	to	demonstrate	the	robustness	and	reliability	of	
MDFEM	even	for	geometrically	highly	nonlinear	problems,	the	first	example	is	about	car-
bon	nanotubes	with	Stone–Wales	defects	 that	buckle	when	subjected	to	torsional	 loads.	
The	 second	 example	 illustrates	 the	 benefits	 for	 computational	 material	 scientists.	 It	 is	
shown	that	inelastic	material	behavior	can	be	deduced	from	the	rearrangement	of	bonds	
which	makes	the	use	of	rheological	elements	obsolete.
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335Molecular Dynamic Finite Element Method (MDFEM)

10.2 Chemical and Physical Bonds

For	 a	 better	 understanding	 of	 MDFEM,	 particularly	 concerning	 the	 numerical	 effort,	 a	
brief	overview	of	 the	different	bond	types	 is	given	 in	this	chapter.	There	are	 two	main	
classes:

•	 Chemical	bonds,	the	so-called	strong	bonds:
The	three	types	of	chemical	bonds	are	ionic	bonds,	covalent	bonds,	and	metallic	
bonds.	The	electrons	of	an	atom’s	outermost	orbital	are	called	valence	electrons.	
With	the	exception	of	the	noble	gases	whose	atoms’	outer	electron	shells	are	com-
pletely	filled,	each	atom	tries	to	obtain	a	noble	gas	configuration	by	either	gaining	
or	losing	valence	electrons,	depending	on	its	electronegativity.	The	electronega-
tivity	difference	between	two	atoms	of	a	covalent	bond	is	usually	less	than	1.7	eV.	
When	 the	 difference	 is	 1.7	eV	 or	 greater,	 the	 bond	 is	 predominantly	 ionic.	 In	 a	
metallic	bond,	valence	electrons	are	free	to	move	through	the	crystalline	lattice.

•	 Physical	bonds	or	interactions,	which	are	often	referred	to	as	weak	bonds:
The	 range	 of	 weak	 bondings	 comprises	 dipole–dipole	 interactions,	 dipole–ion	
interactions,	van	der	Waals	interactions,	and	hydrogen	bondings.	The	distinction	
between	these	categories	is	ambiguous,	for	example,	hydrogen	bondings	are	often	
considered	to	be	a	special	case	of	van	der	Waals	bonds.

The	term	“orbital”	refers	to	a	mathematical	function	that	describes	the	probability	of	an	
electron’s	position.	The	first	and	simplest	one	is	a	sphere	and	is	denoted	as	s-orbital.	It	is	
followed	by	the	p-orbital	which	has	the	shape	of	a	dumbbell.	Further	examples	include	the	
d-orbital	and	the	f-orbital.

From	an	energetic	point	of	view,	the	overlap	of	the	orbitals	must	be	as	large	as	possible.	
As	shown	in	Figure	10.2,	one	s-orbital	can	mix	with	one,	two,	or	three	p-orbitals	to	form	
so-called	hybrid	orbitals.	While	 the	 two	sp1-hybrid	orbitals	are	 located	on	a	straight	 line,	
the	three	sp2-hybrid	orbitals	are	in	a	plane	at	an	included	angle	of	120°.	Between	the	four	
energetically	equivalent	sp3-hybrid	orbitals,	which	are	also	referred	to	as	q-orbitals,	there	is	
a	tetrahedral	angle	of	109.5°.	For	the	chemical	element	carbon,	all	three	types	are	possible:	
The	two	carbon	atoms	of	acetylene	are	sp1	hybridized,	the	carbon	atoms	of	graphite	have	sp2-
hybrid	orbitals,	and	to	achieve	the	high	strength	of	diamond,	carbon	must	be	sp3	hybridized.

10.2.1 Covalent Bonding

A	covalent	bond	can	be	formed	by	two	atoms	of	the	same	kind	as	well	as	by	different	types	
of	atoms.	In	contrast	to	ionic	bonds,	the	electrons	are	not	transferred	completely	but	shared	
pairwise	between	the	participating	atoms.	The	overlapping	atomic	orbitals	form	joint	elec-
tron	clouds,	the	so-called	molecular	orbitals.	Since	they	provide	more	space	for	the	elec-
trons,	according	 to	Heisenberg’s	uncertainty	 relation,	molecular	orbitals	have	a	smaller	
impulse	and	therefore	also	a	lower	kinetic	energy	than	the	individual	atomic	orbitals.

If	two	s-orbitals	or	an	s-orbital	and	a	hybrid	orbital	are	involved,	we	speak	of	a	σ-bond.	
Each	atom	contributes	one	of	its	valence	electrons	to	the	common	bond	cloud.	Diamond	
owes	its	high	hardness	to	the	fact	that	each	of	its	carbon	atoms	forms	four	σ-bonds	which	
are	 very	 strong	 due	 to	 the	 low	 kinetic	 energy.	 The	 interaction	 between	 two	 aligned	
p-orbitals	is	called	π-bond.
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336 Computational Finite Element Methods in Nanotechnology

While	single	bonds	such	as	the	hydrogen–carbon	bonds	are	σ-bonds,	the	valence	elec-
trons	of	double	and	triple	bonds	are	also	connected	by	one	or	two	π-bonds.	Figure	10.3	
shows	 ethene	 (ethylene),	 a	 main	 component	 of	 many	 elastomeric	 materials,	 which	 has	
a	double	bond,	and	ethyne	where	each	atom	has	to	share	three	of	 its	valence	electrons.	
Multiple	bonds	are	not	very	stable.

10.2.2 Ionic Bonding

When	 atoms	 have	 a	 large	 difference	 in	 electronegativity,	 one	 or	 more	 electrons	 can	 be	
completely	transferred	from	the	atom	with	distinct	metallic	properties	to	the	atom	with	
nonmetallic	properties.	This	process	results	in	a	positively	charged	ion	and	a	negatively	
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FIGURE 10.2
Orbital	 hybridizations	 of	 the	 second	 shell.	 (a)	 One	 s-orbital	 and	 one	 p-orbital	 combined	 to	 two	 sp1-hybrid	
orbitals.	(b)	One	s-orbital	and	two	p-orbitals	combined	to	three	sp2-hybrid	orbitals.	(c)	One	s-orbital	and	three	
p-orbitals	combined	to	four	sp3-hybrid	orbitals.
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337Molecular Dynamic Finite Element Method (MDFEM)

charged	ion	being	attracted	to	each	other	by	electrostatic	forces.	A	typical	feature	of	ionic	
bonds	is	the	formation	of	regular	ionic	crystals,	for	example,	sodium	chloride	(NaCl),	com-
monly	known	as	table	salt.

10.2.3 Metallic Bonding

In	a	metallic	bond,	the	atoms	are	organized	in	a	regular	crystalline	structure.	In	contrast	to	
the	previously	introduced	valence	bonds,	the	electrons	are	no	longer	assigned	to	specific	
atoms.	Instead,	valence	electrons	separate	from	the	atoms,	which	then	become	positively	
charged	metallic	ions,	while	the	electrons	can	move	freely	and	randomly	through	the	crys-
talline	lattice.	This	“electron	gas”	accounts	for	the	high	electrical	and	thermal	conductivity	
of	metals.

10.2.4 Van der Waals Bonding

The	 type	of	bonding	 that	 is	named	after	 the	physicist	 Johannes	Diderik	van	der	Waals	
(1837–1923)	 describes	 the	 electrostatic	 interaction	 between	 dipoles.	 As	 shown	 in	 Figure	
10.4,	dipoles	are	caused	by	an	uneven	distribution	of	electron	density	within	atoms	or	mol-
ecules.	As	a	consequence,	there	is	an	offset	between	the	center	of	mass	of	all	electrons	and	
the	protons’	center	of	mass,	so	that	partial	charges	evolve.	Opposite	partial	charges	attract	
each	other	whereas	equal	partial	charges	repel.	Depending	on	the	electronegativity,	some	
compounds	have	a	permanent	dipole	while	other	molecules	are	initially	nonpolar.	When	
such	nonpolar	molecules	approach	a	dipole,	 they	become	dipoles	 themselves,	 so-called	
induced	dipoles.

Even	if	two	nonpolar	atoms	or	molecules	approach	one	another,	they	can	induce	dipoles.	
The	 constant	 fluctuation	 of	 the	 electrons	 in	 a	 nonpolar	 molecule	 evokes	 a	 momentary	
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FIGURE 10.3
Double	and	triple	bonds	composed	of	σ-	and	π-bonds:	(a)	Ethene,	C2H4.	(b)	Ethyne,	C2H2.
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338 Computational Finite Element Methods in Nanotechnology

dipole	for	a	short	amount	of	time	which	may	then	polarize	a	neighboring	molecule.	These	
types	of	van	der	Waals	bondings	are	often	referred	to	as	London	dispersion	forces	and	
temporary	dipoles	as	the	electrical	charges	are	oscillating	back	and	forth.

Compared	to	an	intramolecular	force	of	a	covalent	or	ionic	bond,	each	van	der	Waals	
interaction	is	very	weak	and	only	significant	when	two	atoms	come	close	to	one	another.	
However,	as	an	intermolecular	force,	van	der	Waals	bondings	can	act	simultaneously	in	
various	directions.	Long	hydrocarbon	chains	which	can	be	found	in	fats	and	oils	as	well	
as	in	elastomers	and	polymers	owe	their	elasticity	and	strength	to	the	collective	action	of	
lots	of	van	der	Waals	forces.	They	are	responsible	also	for	many	other	chemical	properties	
such	as	the	high	boiling	point	of	fats	or	the	fact	that	even	noble	gas	atoms	unite	as	noble	
gas	crystals—but	only	at	very	low	temperatures.	Van	der	Waals	interactions	are	the	only	
linkage	between	the	different	walls	of	a	multi-walled	carbon	nanotube,	see	e.g.,	Xie	et	al.	
(2007)	and	Xie	and	Long	(2006).

When	 the	 kinetic	 energy	 increases,	 the	 probability	 that	 atoms	 approach	 one	 another	
decreases.	Hence,	van	der	Waals	bondings	tend	to	break	with	rising	temperatures.	This	
kind	of	bond	degradation	often	comes	along	with	a	phase	transition	from	the	solid	to	the	
liquid	state	or	from	the	liquid	to	the	gaseous	state.

10.2.5 Hydrogen Bonding

Hydrogen	 bonding	 can	 be	 regarded	 as	 a	 special	 and	 important	 case	 of	 van	 der	 Waals	
bonding.	When	a	hydrogen	atom	is	covalently	bonded	to	a	strong	electronegative	atom,	
such	as	fluorine,	oxygen,	or	nitrogen,	very	strong	permanent	dipoles	arise	because	each	
hydrogen	atom	contains	only	one	proton	and	therefore	cannot	attract	 the	 joint	electron	
pair	very	well.	As	the	hydrogen	atom	has	a	large	positive	partial	charge,	it	can	now	form	
hydrogen	bonds	to	other	molecules	with	negative	partial	charges.

The	part	which	provides	the	hydrogen	atom	is	called	donor	while	the	other	part	is	the	
acceptor.	Examples	of	H-donors	include	−OH,	−NH2,	or	−COOH.	Typical	H-acceptors	are	
compounds	 that	 contain	 oxygen	 or	 nitrogen	 atoms.	 Hydrogen	 bonds	 are	 considerably	
strong	physical	bondings.	For	this	reason	water	is	a	very	stable	compound.

Electron density of an atom
or rather of a molecule

Partial charges

+

+– +–

+

FIGURE 10.4
Van	der	Waals	interaction	(dipole–dipole	interaction).
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10.3 From Quantum to Molecular Mechanics

In	the	last	section,	different	types	of	bonds	have	been	introduced,	however,	without	quan-
tifying	how	strong	they	really	are	or	how	the	equilibrium	distances	and	angles	between	
the	individual	atoms	can	be	predicted.	In	theory,	the	exact	behavior	of	all	chemical	and	
physical	bonds	can	be	computed	with	the	help	of	the	famous	Schrödinger	equation	for-
mulated	by	Erwin	Schrödinger	(1926).	It	is	the	central	equation	of	quantum	mechanics,	as	
it	describes	 the	 interactions	between	the	electrons	and	the	atomic	nuclei	accurately.	An	
exact	solution	is	available	as	of	today	only	for	the	hydrogen	atom.	Therefore,	a	variety	of	
approximation	procedures	has	been	developed.	The	range	extends	from	ab	initio	methods	
over	semi-empirical	models	up	to	classical	MDs.	A	large	body	of	literature	exists	on	this	
topic	(see	Levine	1991,	Pauling	and	Wilson	Jr.	1985,	and	Shen	and	Atluri	2004).	The	most	
important	methods	will	be	discussed	subsequently.

10.3.1 Schrödinger Wave Equation

A	time-dependent	and	a	time-independent	version	of	the	Schrödinger	wave	equation	have	
been	derived.	For	a	 system	 that	 consists	of	K	nuclei	and	N	 electrons,	 the	general	 time-
dependent	Schrödinger	equation	reads

	
ˆ ( ) ˆ ( )E HY R, r, R, r,t t= Ψ 	 (10.1)

with	the	energy	operator

	
Ê i

t
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∂
� 	 (10.2)
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As	 solution	 of	 the	 general	 time-dependent	 Schrödinger	 equation,	 the	 state	 function	 Ψ	
(R, r,	t)	depends	on	the	coordinate	vectors	R	=	(R1,	R2,	…,	RK)	and	r	=	(r1,r2,	…,	rN)	of	nuclei	
and	electrons	as	well	as	on	the	time	t	and	yields,	according	to	Heisenberg’s	uncertainty	
principle,	probability	distributions	of	the	location	and	the	impulse	of	these	particles.	 In	
terms	of	its	structure,	the	Schrödinger	equation	can	be	seen	in	analogy	to	an	electromag-
netic	wave	as	a	wave	equation.	Hence,	Ψ	is	often	denoted	as	wave	equation.	On	neglect-
ing	 the	 spin,	 the	 external	 forces	 acting	 on	 the	 system,	 and	 relativistic	 interactions,	 the	
Hamiltonian	Ĥ	comprises	the	operators	of	the	Coulomb	potentials	V̂e,	V̂eK,	and	V̂K	as	well	as	
the	operators	of	the	kinetic	energies	T̂e	and	T̂K.	Mj	and	Zj	are	the	masses	and	charge	num-
bers	of	the	nuclei,	me	is	the	mass	of	an	electron,	ε0	the	electric	field	constant,	i = −1	the
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340 Computational Finite Element Methods in Nanotechnology

imaginary	unit,	and	 � = h/2π 	a	natural	constant	based	on	Planck’s	quantum	of	action	h.	

The	Laplace	operators	∆R j R R Rj x j y j z
= ∂

∂
+ ∂

∂
+ ∂

∂

2

2

2

2

2

2
, , ,

	and	∆r j r r rj x j y j z
= ∂

∂
+ ∂

∂
+ ∂

∂

2

2

2

2

2

2
, , ,

	indicate	that
	

the	kinetic	energies	depend	on	the	curvature	of	the	wave	equation.
For	reasons	of	simplicity,	the	Hamiltonian	Ĥ	in	Equation	10.3	has	been	assumed	to	be	

independent	of	time	t.	In	this	case,	a	decoupling	of	the	state	function

	 Y y( ) ( ) ( )R, r, R, rt = ⋅ f t 	 (10.4)

into	a	time-independent	part	ψ(R, r)	and	a	time-dependent	part	f(t)	is	possible.	Substitution	
into	Equation	10.1	yields

	 y y( , )R r R r⋅ = ⋅ˆ ( ) ( ) ˆ ( , ).E f t f t H 	 (10.5)

After	division	by	f(t)	≠	0	and	using

	
E

Ef t
f t

=
ˆ ( )

( )
	 (10.6)

we	obtain	the	stationary	Schrödinger	equation

	
ˆ ( , ) ( , )H Ey yR r R r= 	 (10.7)

which	is	easier	to	solve.	E	in	contrast	to	Ê	is	not	an	operator	but	a	simple	number.	The	total	
energy	of	the	solution

	
E i

f t
f t
t

tot = ∂
∂

�
1
( )

( ) 	 (10.8)

is	both	space-	and	time-dependent.
Although	 the	 stationary	 Schrödinger	 equation	 given	 in	 Equation	 10.7	 is	 not	 time-

dependent,	this	does	not	imply	that	only	static	problems	can	be	solved.	It	just	means	that	
the	time	dependence	of	the	solutions	is	known.	After	multiplication	with	f(t),	Equation	10.8	
represents	a	first-order	differential	equation.	Its	solution

	
f t c

iE t
( ) exp= −





tot

�
	 (10.9)

yields	the	temporal	evolution	of	the	wave	equation,	simple	sine	or	cosine	oscillations.
An	important	feature	of	the	Schrödinger	equation	is	that	new	solutions	can	be	obtained	

by	superposition,	which	is	a	typical	property	of	wave	equations.	For	the	time-dependent	
Schrödinger	equation,	Equation	10.1,	the	general	solution	approach	for	ψ*	and	its	corre-
sponding	complex	conjugate	ψ*	is	given	by

	
Y y( , , ) exp ( , )R r R rt c

iE t
n

n

n

n= −



∑ �

	 (10.10)
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341Molecular Dynamic Finite Element Method (MDFEM)

with

	
c d dn n= ∫ y Y* ( , ) .R r R r( , , 0) R r 	 (10.11)

To	obtain	a	unique	solution,	initial	conditions	have	to	be	defined.

10.3.2 Ab Initio Molecular Dynamics

Between	both	extremes,	pure	ab	initio	methods	on	the	one	hand,	which	can	be	used	to	
solve	the	Schrödinger	equation	for	hydrogen	exactly,	and	classical	MDs	on	the	other	hand,	
where	atoms	are	treated	as	point	masses,	a	variety	of	different	approaches	exists.	In	order	
to	distinguish	themselves	from	“empirical”	classical	MDs,	many	methods	claim	to	be	an	
“ab	 initio”	 approach.	 As	 different	 notations	 and	 ratings	 can	 be	 found	 in	 the	 literature,	
for	 nonphysicists,	 an	 evaluation	 of	 these	 methods	 can	 be	 quite	 challenging.	 The	 same	
approach	can	be	denoted	as	“quantum	mechanical	method”	by	some	authors,	while	others	
prefer	to	write	“semiempirical	method.”	Additional	 information	on	“ab	initio	methods”	
can	be	found	in	Marx	and	Hutter	(2000).

10.3.2.1  Born–Oppenheimer Approximation

A	basic	simplification	of	the	Schrödinger	equation	which	is	named	after	Max	Born	and	
Julius	Robert	Oppenheimer	is	to	separate	the	equations	of	motion	with	regard	to	the	elec-
trons	and	the	nuclei.	It	exploits	the	fact	that	electrons	have	a	much	lower	mass	and	move	
faster	than	the	nuclei,	which	allows	for	an	immediate	adaption	to	new	nuclei	positions.	
The	Schrödinger	equation	of	the	nuclei	is	replaced	by	Newton’s	equation	of	motion.	The	
remaining	part	is	called	the	electronic	Schrödinger	equation.

Hence,	with	the	help	of	the	Born–Oppenheimer	approximation,	the	Schrödinger	equa-
tion	can	be	reduced	to	a	many-electron	problem.	To	solve	this	problem,	further	approxima-
tions	such	as	the	Hartree–Fock	approach	(HF)	or	the	density	functional	theory	(DFT)	are	
necessary.

10.3.2.2  Hartree–Fock Theory

The	approach	developed	by	Hartree	(1928,	1932)	and	Fock	(1930)	reduces	the	many-electron	
problem	 to	 coupled	 one-electron	 problems.	 The	 electron–electron	 interaction	 terms	 are	
replaced	by	an	averaged	potential	for	each	electron	considering	the	average	potential	of	
the	other	electrons.	On	 the	other	hand,	 the	neglect	of	electron	correlation	effects	 is	 the	
main	source	of	error	of	the	HF	method.

The	 HF	 method	 is	 comparable	 to	 the	 Ritz	 approach.	 In	 order	 to	 determine	 the	
Hamiltonian’s	ground	state,	trial	functions	within	the	framework	of	a	variational	principle	
are	introduced.	The	so-called	slater	determinants	of	one-electron	wave	equations	can	be	
used	as	test	functions,	see	Slater	et	al.	(1969).

10.3.2.3  Density Functional Theory

The	density	functional	theory	is	based	on	a	publication	by	Hohenberg	and	Kohn	(1964).	
They	 show	 that	 the	 electron	 energy	 in	 the	 ground	 state	 is	 not	 only	 well	 defined	 by	 a	
functional	of	the	wave	function	but	also	by	a	functional	of	the	electron	density.	On	this	
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342 Computational Finite Element Methods in Nanotechnology

basis,	 Kohn	 and	 Sham	 (1965)	 present	 the	 so-called	 local-density	 approximation	 (LDA)	
which	can	be	used	to	approximate	the	electron	ground-state	energy.	In	combination	with	
a	variational	principle	for	the	density	functional,	this	approach	finally	leads	to	the	one-
electron	Schrödinger	equations,	also	known	as	Kohn–Sham	equations.

Compared	to	pure	ab	initio	methods	with	high	numerical	effort	of	order	(N4),	a	reduc-
tion	to	order	(N3)	can	be	achieved.	Methods	based	on	the	DFT	approach	with	a	reduced	
effort	of	(N2)	are	Car–Parrinello	MDs	and	the	conjugate	gradient	method	(CG)	whereas	
the	latter	is	considered	to	be	a	bit	more	efficient	than	the	method	developed	by	Car	and	
Parrinello	(1985).

10.3.3 Semiempirical Models

The	 time-dependent	 self-consistent	 field	 (TDSCF)	 approximation	 introduced	 by	 Dirac	
(1930)	is	based	on	an	estimation	of	the	electron	distribution,	which	is	used	to	determine	
the	 potential	 for	 each	 single	 electron	 with	 respect	 to	 the	 remaining	 electrons.	 Atomic	
nuclei	are	assumed	to	move	according	to	the	rules	of	classical	mechanics.	The	electron’s	
effective	potential	is	also	known	as	Ehrenfest	potential,	see	Ehrenfest	(1927)	for	details.	The	
computed	electron	distribution	acts	as	a	starting	point	for	a	new	iteration	step,	which	is	
repeated	until	the	atomic	orbitals	are	determined	with	sufficient	accuracy.

Originally	introduced	by	Bloch	(1928)	and	revised	by	Slater	and	Koster	(1954),	the	tight-
binding	method	is	another	typical	representative	of	the	semiempirical	methods.	A	linear	
combination	of	atomic	orbitals	(LCAO)	allows	for	a	parametrization	of	the	Hamiltonian	
such	that	the	total	energy	and	the	eigenvalues	of	the	electronic	Schrödinger	equation	can	
be	 determined.	 Interatomic	 forces	 are	 computed	 by	 means	 of	 the	 Hellmann–Feynman	
theorem.

An	 alternative	 to	 semiempirical	 methods	 is	 the	 so-called	 hybrid	 QM/MD	 methods.	
As	in	a	typical	multiscale	model,	only	a	small	portion	of	the	system	is	treated	quantum	
mechanically,	while	for	the	rest	of	the	system	MD	simulations	based	on	force	fields	are	
carried	out.

10.3.4 Classical Molecular Dynamics

In	 classical	 MDs,	 the	 parameterized	 potential	 functions	 only	 depend	 on	 the	 nuclei	
positions.	Not	having	to	bother	with	the	electrons,	it	is	possible	to	simulate	the	interactions	
between	many	thousands	or	even	many	millions	of	atoms.	In	the	following,	the	equations	
of	motion	are	given	in	three	different	forms,	which	can	be	easily	transformed	into	each	
other.

10.3.4.1  Newton’s Equation of Motion

For	a	system	of	N	atoms,	the	equations	of	motion,	also	known	as	Newton’s	second	law,	are	
given	as

	 F I R Rj j j jM V j Nj= = = − =� �� …∇ with 1, , 	 (10.12)

with	 the	 total	empirical	potential	V	=	V(R1,	R2,	…,	Rj,	…,	RN).	Fj,	M j,	 and	Rj	denote	 the	
inner	forces,	masses,	and	coordinates	of	atom	j,	respectively.	Ij	=	MjR

·
j	is	the	momentum	

vector.
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343Molecular Dynamic Finite Element Method (MDFEM)

10.3.4.2  Lagrange’s Equation of Motion

Using	the	Lagrangian

	 L E V= −kin , 	 (10.13)

the	Lagrange	form	of	the	equations	of	motion	reads

	

d
dt

L L
j N

j j

∂
∂

− ∂
∂

= =� …
R R

0 1with , , . 	 (10.14)

Utilizing	 the	 generalized	 coordinates	 (q1,q2,q3,q4,	 …)	=	(R1,x,R1,y,R1,z,R2,x,…),	 it	 can	 be	
written	as

	

d
dt

L
q

L
q

i N
i i

∂
∂

− ∂
∂

= =
�

…0 1 3with , , 	 (10.15)

and	the	kinetic	energy

	

E M M
q

j

j

N
j

i

i

N
i

kin = =
= =

∑ ∑
1

2

1

3 2

2 2

� �R
. 	 (10.16)

10.3.4.3  Hamilton’s Equations of Motion

Hamilton’s	equations	of	motion	comprise	two	first-order	differential	equations

	
� �p

H
q

q
H
p

i
i

i
i

= − ∂
∂

= ∂
∂

and 	 (10.17)

with	the	Hamilton’s	principal	function

	
H E V L p qi

i

N

i= + = − +
=

∑kin

1

3

� 	 (10.18)

and	the	generalized	momentum

	
p

L
q

i
i

= ∂
∂ � 	 (10.19)

with	 (p1,p2,p3,p4,…)	=	(I1,x,I1,y,I1,z,I2,x,…).	 Like	 the	 Hamiltonian	 (Equation	 10.3),	 Hamilton’s	
principal	function	(Equation	10.18)	consists	of	both	a	kinetic	energy	Ekin	contribution	and	
a	potential	energy	V	contribution.
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344 Computational Finite Element Methods in Nanotechnology

10.4 Molecular Dynamic Finite Element Method

10.4.1 Requirements for the Finite Element Method

Since	MD	simulations	do	not	belong	to	the	standard	applications	of	FEM	codes,	the	user	has	
to	make	the	necessary	adjustments.	In	this	section,	all	aspects	of	the	MDFEM,	in	particular	
the	differences	to	traditional	MD	software,	are	discussed	from	a	FEM	user’s	point	of	view.

10.4.1.1  Force Fields

In	MDs,	the	potential	energy	which,	in	the	previous	chapter,	 is	denoted	by	the	variable	
V	 as	 it	 is	 usual	 in	 quantum	 mechanics	 to	 avoid	 confusion	 with	 the	 energy	 operator	 is	
denoted	by	the	variable	E	and	called	force	field.	Force	fields	can	be	derived	in	two	comple-
mentary	ways	(see	Ercolessi	and	Adams	1994):

	 1.	From	quantum	mechanical	calculations
	 2.	From	experimental	work

Well-known	 force	 field	 approaches	 include	 AMBER	 (Assisted	 Model	 Building	 with	
Energy	Refinement,	see	Weiner	and	Kollman	1981),	CHARMM	(Chemistry	at	HARvard	
Molecular	Mechanics,	see	Brooks	et	al.	1983),	the	“Molecular	Mechanics”	force	fields	MM1,	
MM2,	MM3,	and	MM4	(Allinger	and	Chen	1996),	ECEPP	(Roterman	et	al.	1989),	and	UFF	
(Universal	Force	Field,	see	Rappé	et	al.	1992).

The	 main	 application	 of	 classical	 MD	 simulations	 is	 a	 calculation	 of	 equilibrium	
configurations	 within	 a	 so-called	 conformational	 analysis,	 without	 considering	 bond	
forming	 and	 bond	 rupture	 reactions,	 cf.	 Schlick	 (2002).	 Force	 field	 potentials	 are	 often	
extended	and	adapted	in	order	to	account	for	specific	material	aspects.	The	potential	by	
Stillinger	and	Weber	(1985)	for	instance	is	well	suited	and	efficient	for	the	approximation	of	
crystalline	silicon	as	it	includes	terms	to	enforce	a	diamond-like	tetrahedral	local	structure	
which	results	in	a	more	stable	and	realistic	than	compact	structure.	For	the	treatment	of	
nonbonded	interactions,	the	popular	potential	by	Lennard-Jones	(1929)	is	often	preferred	
due	 to	 its	efficiency,	while,	 for	example,	 the	Buckingham	(1938)	potential	 introduces	an	
exponential	 function	of	distance	 to	capture	 the	exchange	repulsion	stemming	from	the	
Pauli	exclusion	principle	more	precisely.	Some	approaches	make	use	of	the	concept	of	local	
environment,	with	bond	strengths	depending	on	the	bonding	environment	for	example,	
the	many-body	potentials	by	Tersoff	(1988)	and	Brenner	(1990).	ReaxFF	by	van	Duin	et	al.	
(2001)	replaces	explicit	bonds	with	bond	orders	to	account	for	continuous	formation	and	
breaking	of	bonds.

In	general,	MDFEM	can	be	applied	 to	all	kinds	of	 force	fields.	However,	 it	 should	be	
noted	 that	 many	 force	 fields	 are	 designed	 for	 a	 limited	 range	 of	 chemical	 elements	 or	
rather	very	special	substances	like	proteins	or	peptides	and	cannot	be	used	to	examine	
other	structures.

10.4.1.2  Short- and Long-Range Force Field Potentials

Most	chemical	and	physical	bonds	can	be	described	using	pair	potentials.	From	a	numerical	
point	of	view,	a	distinction	has	to	be	made	between	short-range	(bonded)	and	long-range	
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345Molecular Dynamic Finite Element Method (MDFEM)

(nonbonded)	interactions.	In	the	following,	the	implications	for	the	FEM	are	discussed	by	
the	example	of	the	Dreiding	force	field	(Mayo	et	al.	1990).

The	bond	stretch	between	the	atoms	I	and	J	can	be	expressed	by	a	linear	approach

	
E k R RIJB

lin
e e= −1

2
2( ) 	 (10.20)

(parabolic	potential)	that	is	well	suited	for	small	deformations.	It	depends	on	the	natural	
bond	length	Re,	the	interatomic	distance	RIJ	and	the	stiffness	ke.	To	account	for	nonlinear	
bending	at	large	deformations,	the	function	derived	by	Morse	(1929)

	
E D n R R

n
k
D

IJB e e
e

e
with= − − −  =exp( ( ))α α1

1
2

2
	 (10.21)

is	applied.	The	parameter	De	denotes	the	fracture	energy.	n	is	the	bond	order,	for	example,	
n	=	1	for	the	σ-bonds	of	diamond,	n	=	1.333	for	graphene,	n	=	1.5	for	benzene,	n	=	2	for	the	
π-bond	of	ethene	or	n	=	3	for	the	π-bond	of	ethyne.	The	nonlinear	Morse	approach	corre-
sponds	to	the	linear	one	if	deformations	are	small	RIJ	→	Re.

Bond	stretch	can	be	seen	as	a	quite	stable	connection	between	an	atom	and	its	closest	
neighbors.	For	instance,	hydrogen	has	one	neighbor,	the	carbon	atoms	of	ethyne	have	two	
neighboring	atoms,	and	the	carbon	atoms	of	graphene	are	neighbored	by	three	atoms.	The	
number	of	neighboring	atoms	is	limited	to	four	which	is	the	case	for	diamond.

An	approach	widely	used	to	describe	long-range	van	der	Waals	interactions	is	given	by	
Lennard-Jones	(1929).	The	general	form	reads

	

E R
n m

n
m R R

IJ

n

m

n m

IJ

n

IJ

m

m,n
LJ ( ) =

−












−












−ε σ σ
1





<with m n. 	 (10.22)

While	repulsion	forces	are	expressed	by	the	first	term,	the	second	term	accounts	for	attrac-
tion	forces.	ε	denotes	the	size	of	the	forces	and	σ	refers	to	the	zero-crossing	of	the	potential.	
Often	the	form	(m,n)	=	(6,12)	is	applied,	whereas	m	=	6	reflects	the	actual	van	der	Waals	force	
for	large	distances,	and	n	=	12	is	chosen	for	simplicity	reasons	without	a	physical	motiva-
tion.	The	resulting	large	repulsion	forces	avoid	that	two	atoms	come	too	close.

Substituting	the	parameters	ε	and	σ = 1
2

6 Re,vdW	with	the	fracture	energy	De,vdW	and	the	
natural	length	Re,vdW	leads	to	the	(6,12)-form	of	the	Lennard-Jones	(LJ)	potential

	

E R D
R

R
R

R
IJ

IJ IJ
vdW
LJ

e,vdW
e,vdW e,vdW

( ) =






−











− −12 6

2







. 	 (10.23)

Hydrogen	bondings	are	characterized	with	the	help	of	a	modified	LJ	approach.	The	gen-
eral	equation	(10.22)	is	altered	by	substituting	(m,n)	=	(10,12)	and	multiplying	with	cos4ΘDHA.	
The	potential	function	then	reads

	
E R D

R
R

R
R

hb DA DHA hb
DA

hb

DA

hb
( , )Θ = 





− 

















− −

5 6
12 10

ccos .4 ΘDHA 	 (10.24)
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346 Computational Finite Element Methods in Nanotechnology

ΘDHA	denotes	the	angle	between	the	donor	D,	hydrogen	H,	and	acceptor	A.	RDA	is	the	dis-
tance	between	the	donor	and	the	acceptor.	Both	material	parameters,	the	modified	fracture	
energy	Dhb	and	the	natural	equilibrium	distance	Rhb,	depend	on	the	hydrogen	bridge	type	
and	hence	have	to	be	fitted	to	experimental	data.

Other	force	fields	often	use	a	simple	(10,12)	LJ	approach

	
E R D

R
R

R
Rhb

LJ
DA hb

DA

hb

DA

hb
( ) = 





− 

















− −

5 6
12 10

	 (10.25)

to	describe	hydrogen	bonding.
Coulomb	 or	 electrostatic	 interactions	 can	 be	 simulated	 by	 means	 of	 the	 Coulomb	

potential

	
E R

q q
R

Q IJ
I J

IJ
( ) = 1

4 0πε
	 (10.26)

for	two	point	loads	qI	and	qJ	with	a	distance	RIJ.	ε0	denotes	the	dielectric	constant.	Charges	
with	equal	algebraic	signs	repel	whereas	opposite	charges	attract	each	other.

In	contrast	to	bond	stretch,	the	long-range	van	der	Waals,	hydrogen,	and	Coulomb	inter-
actions	connect	an	atom	to	a	multitude	of	atoms.	In	theory,	each	atom	has	a	direct	connec-
tion	to	all	atoms	of	 the	same	structure.	For	practical	applications,	 it	 is	recommended	to	
introduce	cutoff	distances	or	special	algorithms	in	order	to	reduce	the	numerical	effort	of	
an	MDFEM	analysis:

	 1.	Since	interaction	forces	approach	zero	for	large	distances,	bondings	that	exceed	a	
certain	range,	for	example,	three	times	the	natural	length,	can	be	neglected.

	 2.	For	 a	 geometric	 nonlinear	 analysis,	 the	 selection	 should	 be	 revised	 in	 regular	
intervals	as	the	interatomic	distances	are	supposed	to	change.

	 3.	For	very	large	structures	and	long-range	interactions	that	decay	slowly	with	dis-
tance,	it	is	necessary	to	bundle	long-range	interactions	using	special	algorithms.	
For	instance,	the	Ewald	summation	has	been	derived	for	the	fast	treatment	of	elec-
trostatic	interactions	and	is	often	used	in	biomolecular	systems	such	as	proteins	
and	enzymes	in	a	crystalline	state,	whereas	methods	based	on	multipole	expan-
sions	are	often	used	for	nonperiodic	systems,	such	as	an	enzyme	in	solution.	For	
details,	see	Schlick	(2002).

For	 static	 and	 implicit	 dynamic	 procedures,	 long-range	 potentials	 lead	 to	 a	 very	 large	
bandwidth	of	 the	 stiffness	matrix.	Therefore,	 it	 should	be	considered	 to	use	an	explicit	
time-integration	scheme,	even	if	the	problem	is	quasi-static.

10.4.1.3  Multi-Body Force Field Potentials

Sophisticated	force	field	approaches	also	include	multi-body	potentials.	The	simplest	exam-
ple	is	a	three-body	potential	that	considers	an	energy	increase	if	the	angle	ΘIJK	between	
two	bonds	IJ	and	JK	differs	from	the	natural	angle	Θ J

0.	The	resulting	deformation	mode	is	
called	bending.	In	analogy	to	the	natural	lengths	introduced	in	the	previous	section,	the	
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347Molecular Dynamic Finite Element Method (MDFEM)

natural	angle	yields	the	energy-free	equilibrium	configuration	with	regard	to	bending.	For	
small	deformations,	the	Dreiding	force	field	approach	for	bending	reads

	
E KIJK IJK JA

lin = − 
1
2

0 2
Θ Θ . 	 (10.27)

For	large	deformations,	an	extended	cosine	approach

	

E
C

K
A

IJK IJK J j

IJK IJK

=
−  ≠ °

+

1
2

180

1

0 2 0cos cos

[ cos ]

Θ Θ Θ

Θ Θ

for

for jj
0 180= °









	 (10.28)

can	be	used	which	accounts	for	additional	natural	angles.
The	Dreiding	torsion	energy

	
E E V nIJKL IJKL JK JKT = = − ( )











1
2

1 0cos ϕ − ϕ 	 (10.29)

is	a	function	of	the	dihedral	angle	φ	=	φIJKL	that	is	defined	by	the	two	planes	IJK	and	JKL,	the	
natural	angle	ϕ JK

0 ,	and	the	periodicity	nJK.	A	linearization	of	Equation	10.29	can	be	carried	
out	in	case	of	small	deformations	ϕ ϕ→ JK

0 .	This	leads	to	the	torsion	energy

	
E V nIJKL JK JKT

lin = −( )1
4

2 0 2
ϕ ϕ . 	 (10.30)

As	 shown	 in	 Section	 10.4.2,	 special	 user	 elements	 are	 required	 to	 consider	 multi-body	
potentials	within	the	MDFEM	framework.

10.4.1.4  Natural Lengths and Angles

Instead	of	 studying	 the	behavior	of	molecules	under	external	 loading,	MD	simulations	
usually	aim	to	determine	minimum	energy	conformations.	In	most	cases,	molecules	can	
be	seen	as	statically	overdetermined	systems	and	as	such	the	equilibrium	distances	and	
angles	of	the	overall	structure	usually	differ	from	the	natural	lengths	and	angles	which	
are	also	referred	to	as	constitutive	lengths	and	angles.

In	order	to	utilize	force	fields	in	finite	element	simulations,	MD	finite	elements	must	be	
able	 to	“memorize”	the	natural	distances	and	angles	with	the	help	of	 intrinsic	material	
parameters.	 As	 a	 consequence,	 in	 contrast	 to	 standard	 elements,	 the	 coordinates	 of	 the	
initial	configuration	only	have	to	be	given	approximately.

10.4.1.5  Linear and Nonlinear Analysis

It	 is	obvious	that	the	finite	element	code	must	be	able	to	consider	both	geometrical	and	
physical	nonlinearities	since	interatomic	bonds	and	interactions	can	undergo	large	motions	
and	rotations	leading	to	bond	breakage	or	rather	a	rearrangement	of	bonds.

Nevertheless,	it	is	often	desirable	to	also	have	the	opportunity	to	perform	a	linear	analy-
sis.	As	already	mentioned	and	shown	in	Section	10.4.1.9	in	more	detail,	 the	equilibrium	
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348 Computational Finite Element Methods in Nanotechnology

configuration	 is	 generally	 unknown,	 even	 for	 an	 unloaded	 structure.	 A	 linear	 analysis	
using	 the	 harmonic	 force	 field	 potentials	 can	 improve	 the	 initial	 configuration	 at	 low	
numerical	 cost	 since	 no	 iteration	 is	 required.	 Then,	 the	 linear	 force	 field	 potentials	 are	
exchanged	by	their	nonlinear	counterparts	and	a	nonlinear	simulation	step	is	performed	
to	finish	the	conformational	analysis.

10.4.1.6  Material Parameters

In	 structural	 mechanics,	 usually	 comprehensive	 tests	 are	 required	 to	 obtain	 material	
parameters	 for	 sophisticated	 material	 models	 such	 as	 a	 viscoplastic	 damage	 model.	
MDFEM	 users,	 however,	 do	 not	 have	 to	 worry	 about	 expensive	 and	 time-consuming	
testing	 issues	 because	 all	 the	 parameters	 are	 already	 provided	 by	 the	 force	 fields.	 The	
different	force	field	approaches	can	be	seen	as	large	databases	from	which	the	required	
parameters	can	be	extracted.

It	is	recommended	to	start	with	a	so-called	universal	force	field	which	usually	includes	
the	complete	range	of	chemical	elements.	Force	fields	developed	for	special	applications	
such	as	the	analysis	of	proteins	or	DNAs	may	give	better	results	if	similar	structures	are	
to	be	examined,	but	are	often	limited	to	a	small	subset	of	the	periodic	table	of	the	chemical	
elements.	Hence,	before	applying	a	specialized	force	field,	the	user	has	to	check	whether	
all	chemical	elements	of	his	structure	are	involved.

To	evaluate	the	convergence	of	the	numerical	solution,	FE	solvers	use	error	tolerances	
which	are	based	either	on	relative	or	on	absolute	values	for	the	displacements	and	forces.	
The	latter	case	is	inadmissible	if	SI	units	are	used	because,	among	other	reasons,	the	toler-
ances	would	be	too	high	so	that	false	results	could	be	accepted	as	true.	Therefore,	a	general	
recommendation	is	to	replace	the	SI	units	m,	N,	kg,	and	s	by	the	following	unit	system:	
nm	=	10−9	m	=	10	Å,	nN	=	10−9	N,	akg	=	1	atto	kg	=	10−18	kg,	and	ns	=	10−9	s.

10.4.1.7  Finite Elements without Rotational Degrees of Freedom

In	MDs,	atoms	are	 treated	as	point	masses	which	possess	only	 translational	degrees	of	
freedom,	implying	that	only	finite	elements	without	rotational	degrees	of	freedom	should	
be	used.	However,	a	common	approach	is	to	describe	the	atomic	interactions	by	means	of	
standard	beam	elements	which	have	rotational	degrees	of	freedom,	cf.	Wang	and	Wang	
(2004),	Tserpes	and	Papanikos	(2005),	Harik	(2002),	and	Li	and	Chou	(2004).	At	this	point,	
it	must	be	stressed	that	beam	models	can	only	be	regarded	as	a	work-around,	being	used	
for	simplicity	reasons.

As	shown	in	Section	10.4.2,	special	user	elements	with	the	following	characteristics	have	
to	be	introduced:

•	 To	be	able	to	decouple	bending	and	torsion	energies,	the	finite	elements	must	not	
have	rotational	degrees	of	freedom.

•	 The	force	field	parameters	can	be	applied	directly.
•	 Compared	to	beam	models	that	use	rotational	degrees	of	freedom,	only	half	the	

number	of	degrees	of	freedom	is	necessary	which	is	much	more	efficient.

Note	 that	 for	a	beam	element	model,	 the	force	field	parameters	have	to	be	 transformed	
to	normal,	bending,	and	torsional	stiffnesses	and	strengths.	And	what	is	more:	It	can	be	
shown	that	the	specification	of	the	bending	and	torsion	parameters	is	ambiguous	because	
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349Molecular Dynamic Finite Element Method (MDFEM)

even	for	the	pure	torsion	mode	depicted	in	Figure	10.6e	some	beam	elements,	namely,	the	
cantilever	beams,	are	subjected	to	bending.	That	means,	torsion	between	the	planes	of	two	
adjacent	atom	groups	IJK	and	JKL	can	be	considered	both	by	torsion	of	the	beam	JK	and	by	
bending	of	the	beams	IJ	and	KL.

10.4.1.8  Time Integration Schemes

The	equation	of	motion	can	be	written	in	the	general	form

	 R Mu I P 0= + − =�� 	 (10.31)

with	the	residual	vector	R,	the	mass	matrix	M,	the	acceleration	vector	ü,	and	the	vectors	of	
the	internal	and	external	forces	I	=	I(u,u·)	and	P(u,u·).

In	MDs,	often	explicit	time	integration	schemes	are	applied.	Verlet	(1967)	developed	one	
of	the	most	popular	algorithms,	which	can	be	derived	using	a	double	Taylor	series	with	
two	time	points	t0	−	Δt	and	t0	+	Δt,	that	is	truncated	after	the	cubic	term.	However,	the	Verlet	
algorithm	is	not	available	in	most	finite	element	codes.	In	addition,	it	is	unusual	to	apply	
multi-step	algorithms	such	as	the	higher	order	Runge–Kutta	methods.	Considering	this,	
we	concentrate	on	the	three	most	important	time	integration	schemes	available	in	com-
mercial	finite	element	codes:

	 1.	The implicit HHT method:	The	HHT	method	 is	an	extension	of	 the	 implicit	 time	
integration	scheme	developed	by	Newmark	(1959)	that	is	based	on	a	Taylor	series	
expansion	of	the	displacements

	
u u u u un n n n nt t+ += + + −



 +





1
2

1
1
2

∆ ∆� �� ��β β 	 (10.32)

and	the	velocities

	 � � �� ��u u u un n n nt+ += + − +1 11∆ [( ) ]γ γ 	 (10.33)

where	quadratic	and	higher	order	terms	are	approximated	by	a	quadrature	rule.	
After	rearranging	the	equations,	we	obtain	the	displacements	at	time	tn	+	1

	
� � ��u u u u un n n n n+ += − + +







+ −




1 1 1 1

2
γ

β∆
γ
β

γ
βt

t( ) ∆ 	 (10.34)

and	the	accelerations	at	time	tn	+	1

	
�� � ��u u u u un n n n n+ += − − + −





1 2 1 1

2
1

)
1 1

β ∆ β∆ β(
( ) .

t t
	 (10.35)

The	accuracy	and	stability	depends	on	the	choice	of	the	quadrature	parameters	

β	∊]0,1]	and	γ	∊]0,1].	For	example,	if	β = 1
4

	and	γ = 1
2

	(constant	acceleration)	or	β = 1
6

	

and	γ = 1
2 	(linear	acceleration),	the	Newmark	method	is	unconditionally	stable,	

that	is,	its	robustness	is	independent	of	Δt.
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350 Computational Finite Element Methods in Nanotechnology

Hilber	et	al.	(1978)	extended	Newmark’s	method	by	introducing	the	parameter	α

	
Mu I P I P��

t t tn n n+ +
+ + − − − =

1 1
1 0( )( ) )α α ( 	 (10.36)

which	shifts	the	force	vector	term	from	the	new	time	point	tn	+	1	to	an	intermediate	

time	point	tn	+	1	+	α	with	α ∈ −





1
3

0, .	This	damps	high	frequencies	and	stabilizes	the	

time	integration	scheme.	A	typical	value	is	α = − 1
20

.	For	α	=	0,	the	HHT	algorithm	is	
equivalent	to	Newmark’s	method.

	 2.	The implicit Euler backward method:	 Like	 the	 HHT	 method,	 the	 Euler	 backward	
method	is	an	implicit	time	integration	scheme,	which	implies	that	displacements

	 u u un n nt+ += +1 1∆ � 	 (10.37)

and	velocities

	 � � ��u u un n nt+ += +1 1∆ 	 (10.38)

have	 to	 be	 updated	 iteratively.	 The	 Euler	 backward	 method	 is	 unconditionally	
stable.

When	 time	 increments	 become	 large,	 the	 dynamic	 response	 is	 affected	 by	
numerical	damping,	which	is	more	distinct	compared	to	the	HHT	method.	Hence,	
the	HHT	integration	scheme	is	a	good	choice,	when	dynamic	effects	are	impor-
tant,	while	the	Euler	backward	method	should	be	preferred	over	HHT	for	a	quasi-
static	analysis.

	 3.	The explicit midpoint method:	No	iterations	are	required	for	the	explicit	time	integra-
tion	scheme.	Velocities

	
� � ��u u un n

n n
n

t t
+ −

+= + +
1 2 1 2

1

2/ /
∆ ∆

	 (10.39)

and	subsequently	the	displacements

	 u u un n n nt+ + += +1 1 1 2∆ � / 	 (10.40)

are	updated	by	means	of	the	explicit	midpoint	rule.	Multiplying	the	equation	of	
motion,	Equation	10.31,	with	the	inverse	mass	matrix	M−1	yields	the	accelerations

	 ��u M P In n n+
−

+ += −1
1

1 1( ) 	 (10.41)

as	 a	 function	 of	 the	 internal	 forces	 In	+	1	=	I(un	+	1,	 u· n	+	1/2)	 and	 the	 external	 forces	
Pn	+	1	=	P(un	+	1,	u· n	+	1/2).	Since	atoms	are	 regarded	as	point	masses,	M	 is	a	diagonal	
mass	matrix	and	thus	can	be	easily	inverted.

The	stability	and	accuracy	depends	on	the	time	increment	Δt.	For	linear	problems,	
if	the	harmonic	force	field	potentials	are	chosen,	the	optimal	time	increment	size

	
∆t = 2

ωmax

	 (10.42)
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351Molecular Dynamic Finite Element Method (MDFEM)

is	limited	by	the	highest	eigenfrequency	ωmax.	Since	for	systems	including	a	large	
number	of	atoms,	it	is	not	feasible	to	determine	ωmax,	the	highest	element	eigenfre-
quency	or	rather	“bond	eigenfrequency”	ωmax

elem	can	be	used	instead.	In	structural	
mechanics,	this	corresponds	to	a	time	increment	size	of

	
∆t L

c
= min

	
(10.43)

where
Lmin	is	the	smallest	characteristic	element	dimension
c	is	the	dilatational	wave	speed	c	of	the	material

Based	 on	 the	 angular	 frequency	 ω = k m/ 	 of	 the	 simple	 harmonic	 oscillator,	
we	propose	to	update	the	time	increment	for	each	increment	in	accordance	with	
Equation	10.42

	
∆t m

k
= < ≤2 0η ηIJ

IJ| |
with 1 	 (10.44)

where	kIJ	and	mIJ	denote	the	current	bond	stiffness,	which	may	also	be	negative,	
and	the	mass	of	the	two	atoms	I	and	J.	The	parameter	η	controls	accuracy	and	effi-
ciency	of	the	explicit	time	integration	scheme,	for	example,	η	=	0.5.

10.4.1.9  Relaxation Step to Determine the Reference Configuration

Usually,	 the	 equilibrium	 configuration	 of	 an	 atomic	 structure	 is	 unknown	 because	 the	
interatomic	distances	and	angles	differ	from	the	natural	bond	distances	and	angles.	From	
a	numerical	point	of	view,	damping	can	help	to	determine	the	equilibrium	state.	The	con-
formational	analysis	then	becomes	a	“relaxation	step.”	This	technique	can	be	compared	to	
a	conventional	finite	element	analysis	where	initial	stresses	or	bolt	pretensions	are	applied	
in	a	first	analysis	step.	In	general,	equilibrium	configurations	can	be	obtained	in	three	dif-
ferent	ways:

	 1.	For	statically	determinate	systems	or	symmetric	structures	such	as	graphene,	it	is	
possible	to	specify	the	coordinates	of	the	atoms	exactly.

	 2.	 If	the	structure	is	statically	indeterminate,	but	the	equilibrium	configuration	can	be	
given	approximately,	a	simple	static	analysis	is	sufficient.	As	an	example,	consider	
a	(10,10)	armchair	carbon	nanotube	with	a	Stone–Wales	defect.	The	initial	configu-
ration	is	shown	in	Figure	10.5,	top	left.	Using	the	nonlinear	force	field	potentials,	
within	a	single	static	analysis	step	the	equilibrium	state	shown	top	right	can	be	
reached.	If	more	than	one	equilibrium	configuration	exists,	a	two-step	static	con-
formational	analysis	is	recommended	starting	with	the	harmonic	potentials.

	 3.	For	complex	structures	with	multiple	equilibrium	states,	 convergence	of	a	pure	
static	analysis	is	quite	unlikely.	Even	a	dynamic	analysis	usually	faces	numerical	
problems	because	the	initial	potential	energies	of	the	bonds	can	be	fairly	high	if	
the	distance	between	two	atoms	is	too	close	which	often	cannot	be	avoided.	The	
high	potential	energy	then	is	transformed	to	kinetic	energy	resulting	in	enormous	
oscillations	or	rather	“explosions.”
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352 Computational Finite Element Methods in Nanotechnology

An	example	where	numerical	damping	has	to	be	introduced	to	dissipate	the	energy	is	
elastomeric	material.	Figure	10.5,	bottom	left,	shows	seven	polymer	chains	which	are	inter-
connected	by	van	der	Waals	forces.	While	the	chemical	bonds	between	the	107	atoms	can	
be	modeled	in	accordance	with	the	natural	lengths	and	angles,	the	van	der	Waals	bonding	
lengths	are	generated	more	or	less	randomly.	The	equilibrium	state	shown	bottom	right	is	
simulated	using	the	Euler	backward	method	in	combination	with	an	automatic	time	incre-
mentation	algorithm.	Even	though	no	additional	damping	is	introduced,	the	quasi-static	
solution	can	be	achieved	in	“only”	about	250	time	increments.

For	static	analyses	and	dynamic	analyses	using	a	different	time	integration	scheme,	it	
is	recommended	to	start	with	large	values	for	the	damping	parameters,	for	example,	for	
a	Rayleigh	damping	model.	During	 the	 relaxation	step,	damping	should	be	 reduced	 in	
accordance	with	the	bonds’	energies	until	a	valid	quasi-static	equilibrium	state	is	reached.	
The	simulation	times	are	comparable	with	the	Euler	backward	scheme.

10.4.2 User Elements

Since	conventional	finite	elements	do	not	meet	the	requirements	listed	in	the	previous	sec-
tion,	in	the	following,	a	new	class	of	finite	elements	is	introduced	that	can	be	used	for	MD	
simulations	within	the	FEM	framework.	As	pointed	out	in	Section	10.4.1.7,	the	developed	
finite	elements	which	are	presented	in	Figure	10.6	only	use	translational	degrees	of	freedom.

Bending	and	torsional	moments	are	applied	by	means	of	force	couples.	The	lever	arms	
depend	on	the	bond	lengths	RIJ

0 ,	RJK
0 	and	RKL

0 	and	angles	Θ J
0	and	ΘK

0	shown	in	Figure	10.6a.	
The	force	directions	are	described	using	the	unit	vectors	depicted	in	Figure	10.6b.	The	two-,	
three-,	and	four-node	elements	for	bond-stretch,	bending,	and	torsion	given	in	Figure	10.6c	
through	e,	have	been	implemented	in	the	finite	element	codes	Feap	and	Abaqus	using	a	
superposition	technique.
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FIGURE 10.5
Reorganization	of	bonds	during	conformational	analysis:	(a)	generated	initial	meshes	and	(b)	equilibrium	states	
after	relaxation	step.
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353Molecular Dynamic Finite Element Method (MDFEM)

In	this	section,	the	force	vectors,	the	so-called	right-hand	side	vectors	are	given.	They	are	
obtained	by	derivatives	of	the	force	field	potentials	with	respect	to	the	atomic	coordinates	
and	have	to	be	defined	for	all	analysis	types.	In	contrast	to	the	explicit	time	integration	
scheme	which	does	not	use	the	Newton–Raphson	method	given	in	Appendix	A,	user	ele-
ments	for	static	and	implicit	dynamic	analyses	also	require	stiffness	matrices.	They	can	be	
found	in	Appendix	10B.

10.4.2.1  Two-Node Element for Bond Stretch

The	element	force	vector	of	the	two-node	element	includes	the	node	vectors	of	the	atoms	
i	and	j

	 F n F Fi ij ij j iF= − = −, 	 (10.45)

and	can	be	used	for	both	chemical	and	physical	bonds.	It	is	defined	by	its	unit	direction	
vector	nij	and	the	magnitude	Fij	which	depends	on	the	force	field	potential.	The	derivative	
of	Equation	10.20	yields

	
F k Rij ij j i ij

lin = − −( )| | .x x 0 	 (10.46)

From	the	Morse	potential	(Equation	10.21)	we	get

	

F n D n R

n

ij ij ij ij ij ij j i ij

ij

Morse = − − − −( )( )


− −

2 2 0α α

α

exp | |

exp

x x

iij j i ijR| | .x x− −( )( )0 	 (10.47)
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FIGURE 10.6
Molecular	dynamic	finite	elements	without	rotational	degrees	of	freedom:	(a)	coordinate	systems	and	dimen-
sions,	(b)	unit	vectors,	(c)	two-node	spring	element,	(d)	three-node	bending	element,	and	(e)	four-node	torsion	
element.
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354 Computational Finite Element Methods in Nanotechnology

For	the	LJ	approach	Equation	10.23,	the	force	magnitude	is	given	as

	

F
D
R R Rij
ij

ij

j i

ij

j i

i

LJ vdW

vdW vdW
= −

−





+

−
−

12 0 0

13
,

, ,

| | | |x x x x

jj ,vdW
0

7


















−

	 (10.48)

and	the	electrostatic	force	derived	from	Equation	10.26	reads

	
F R

q q
R

Q IJ
I J

IJ
( ) .= − 1

4 0
2πε

	 (10.49)

Note	that	Coulomb	forces	can	be	neglected	for	the	examples	given	in	Section	10.5.

10.4.2.2  Three-Node Element for Bending

The	force	vector	of	the	three-node	bending	element	consists	of	three	components:	

	 F n F n F F Fi ijk i k kji k j i kF F= = = − −, , . 	 (10.50)

The	magnitude	Fijk	results	from	the	derivative	of	the	harmonic	potential	(Equation	10.27)

	
F

K
R

ijk
ijk

ij
ijk j

lin = − 0
0Θ Θ 	 (10.51)

or	the	extended	cosine	approach	(Equation	10.28)

	

F

C
R

K
R

ijk

ijk

ij
ijk j ijk j

ijk

ij

=

− −  ≠ °

−

0
0 0 180cos cos sinΘ Θ Θ Θfor

00
0 180sinΘ Θijk jfor = °











	 (10.52)

with	respect	to	the	unknown	bending	angle

	 Θijk ij jk= − ⋅ ∈ ° °arccos( ) [ , ].n n 0 180 	 (10.53)

The	unit	vectors	nij	and	njk	defining	Θijk	can	be	taken	from	Figure	10.7.	Considering	that	the	
lever	arms	are	generally	different,	if	follows	for	the	magnitude

	
F F

R
R

kji ijk
ij

jk
=

0

0 . 	 (10.54)

At	this	point	it	should	be	noted	that	angles	between	180°	and	360°	can	be	omitted.	For	
symmetry	reasons,	they	are	covered	by	the	torsion	potential	with	its	0°	-	and	180°-equilib-
rium	angles.	For	example,	the	combination	Θijk	=	190°	and	φIJKL	=	4°	is	equivalent	to	Θijk	=	170°	
and	φIJKL	=	184°.

Instead	of	Equation	10.53	for	the	computation	of	the	bending	angle,	many	authors	sug-
gest	to	make	use	of	the	formula	Θijk	=	180°	−	arcsin	|nij	×	njk|.	However,	it	is	necessary	to	
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355Molecular Dynamic Finite Element Method (MDFEM)

point	out	that	this	approach	is	not	suitable	for	large	deformations	because	it	only	covers	
values	between	90°	and	180°.

10.4.2.3  Four-Node Element for Torsion

As	shown	in	Figure	10.6e,	there	are	six	concentrated	forces	acting	on	the	four-node	torsion	
element	whose	magnitudes	generally	differ	from	each	other.	The	element	vector

	

F n

F n

F n n F

I IIJK IJK

L LJKL JKL

J JIJK IJK JJKL JKL JIJK I
JJ

F

F

F F

=

=

= + = +α α KKL

LJKL
L

K KIJK IJK KJKL JKL KIJK I
KJKL

LJKL
LF F

α

α α
α

F

F n n F F= + = +

	 (10.55)

contains	four	node	vectors.	While	the	first	index	of	the	force	magnitudes	denotes	the	node	
the	force	is	acting	on,	indices	2–4	refer	to	one	of	the	two	planes	IJK	and	JKL,	represented	by	
the	unit	vectors	nIJK	and	nJKL,	see	Figure	10.7.

Considering	the	lever	arm	 RIJ J
0 0sinΘ ,	the	magnitude	FIIJK	follows	from	the	derivative	of	

Equation	10.30

	
F

V n
R

IIJK
IJKL JK

IJ J
IJKL JK

lin = − −( )
2

0 0
0

2 sinΘ
ϕ ϕ 	 (10.56)

or	Equation	10.29

	
F

V n
R

nIIJK
IJKL JK

IJ J
JK IJKL JK= − −( ) 2 0 0

0

sin
sin

Θ
ϕ ϕ 	 (10.57)

with	respect	to	the	dihedral	angle	φIJKL.	For	the	determination	of	φIJKL,	a	case	distinction	
is	 required	 depending	 on	 the	 number	 of	 natural	 angles	 ϕ JK

0 ;	 for	 example,	 for	 graphene	
ϕ JK

0 0= °	if	nIJK	·	nJKL	≥	0	or	ϕ JK
0 180= °	if	nIJK	·	nJKL	<	0,	and	thus:

	

ϕIJKL

IJK JKL JK IJK JKL
=

+ × ⋅ ∈ − ° + ° ⋅ ≥arcsin[( ) ] [ , ]n n n n n90 90 0

18

for

00 90 270 0° − × ⋅ ∈ + ° + ° ⋅ <





arcsin[( ) ] [ , ] .n n n n nIJK JKL JK IJK JKLfor 	

(10.58)

nijk Θijk
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nIJK
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nk nij
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FIGURE 10.7
Bending	and	torsion	angles	derived	from	unit	vectors.
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356 Computational Finite Element Methods in Nanotechnology

Furthermore,	it	is	necessary	to	project	the	cross	product	nIJK	×	nJKL	on	the	associated	unit	
vector	nJK	in	order	to	determine	the	sign	of	φIJKL	for	ϕ JK

0 0= °	or	rather	if	φIJKL	is	larger	or	
smaller	than	180°	for	ϕ JK

0 180= °.
From	simple	geometric	considerations,	we	get	the	magnitudes

	

F
R

R
F F F FKIJK

IJ J

JK
IIJK JIJK IIJK

KIJK

− = − −

=

0 0

0

cos
,

Θ

α
� ����� ������

KKIJK KIJK IIJK

JIJK

F= − −
=

( )1 α
α

� ����� ����� 	 (10.59)

associated	with	plane	IJK	and	the	forces
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	 (10.60)

which	act	normal	to	plane	JKL.
To	avoid	a	coupling	of	the	different	energy	potentials,	changes	of	the	lever	arms	due	to	

changes	of	the	equilibrium	distances	are	neglected.

10.4.3 Inversion

Some	force	fields	such	as	the	Dreiding	approach	also	include	potential	energies	for	inver-
sion.	In	geometry,	inversion	in	a	point	or	point	reflection	is	equivalent	to	a	180°	-rotation	
and	a	reflection	at	a	plane,	as	illustrated	in	Figure	10.8.	In	MDs,	inversion	is	only	relevant	
when	at	least	four	atoms	are	involved	which	must	be	arranged	in	a	specific	manner.	In	con-
trast	to	torsion,	where	the	four	atoms	form	a	chain-like	structure,	three	atoms	form	a	tri-
angle	through	which	the	fourth	may	pass.	Hence,	for	some	structures	such	as	elastomeric	
material	consisting	of	several	polymer	chains,	inversion	is	irrelevant.

Reflection at yz-plane

Reflection at yz-plane

Inversion180°-rotation
about x-axis

180°-rotation
about x-axis

H H

HH

I I

II

J J

JJ

O

O O

z x

O

y

FIGURE 10.8
Inversion	as	a	combination	of	rotation	and	reflection.
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357Molecular Dynamic Finite Element Method (MDFEM)

It	is	not	trivial	to	set	up	an	appropriate	potential	since	inversion	can	be	separated	from	
the	other	energy	forms	only	in	very	rare	cases	such	as	for	ammonia,	NH3.	For	most	mol-
ecules,	interactions	between	inversion	and	torsion	energy	and,	for	spacial	structures,	also	
bending	energy	has	to	be	considered.	Therefore,	some	approaches	such	as	the	CHARMM	
force	field	represent	inversion	by	“improper”	torsion,	that	is,	inversion	is	incorporated	by	
means	of	torsion	energy.

10.4.3.1  Spacial Structures

From	a	mechanical	point	of	view,	inversion	of	spacial	structures	such	as	an	ammonia	
molecule,	NH3,	is	a	snap-through	problem,	as	illustrated	in	Figure	10.9.	As	opposed	to	
planar	structures,	spatial	structures	have	two	equilibrium	states	or	even	more	if	mul-
tiple	local	inversions	can	occur.	Ammonia	has	two	natural	bending	angles:	Θ j

0 106 7= °. 	
and	2	·	120°	−	106.7°	=	133.3°.

10.4.3.2  Planar Structures

For	planar	structures	such	as	graphene,	inversion	refers	to	the	motion	of	an	atom	out	of	the	
plane	defined	by	its	three	neighbors,	cf.	Figure	10.10a.	The	out-of-plane	displacement	w	of	
node	I	is	expressed	by	the	inversion	angle

	
Y Y Y= + = 





+ 



1

2
r

e e
arctan arctan

w
R

w
R

	 (10.61)

which	corresponds	to	the	angle	between	plane	HIO	and	bond	 IJ.	Due	to	the	structure’s	
symmetry,	 the	 same	angle	 can	be	 found	between	plane	 IJO	 and	bond	HI	 and	between	
plane	IJH	and	bond	IO.	As	depicted	in	Figure	10.10b,	the	deformation	leads	to	so-called	
improper	torsion,	for	the	atoms	I,	J,	K,	and	L.

Figure	10.11	illustrates	that	a	total	of	24	torsion	angles	are	affected	when	atom	I	is	moved	
out	of	plane	HJO.	For	small	deformations,	the	following	torsion	angles	emerge:

Inversion
energy

6 kJ/mol

H
H

H H

H
H

H

100° 120° 140° Angle ΘIJK

ΘIJK

H H

N
–

N
–

–N

FIGURE 10.9
Energy	profile	during	snap-through	(inversion)	of	a	NH3-molecule.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
09

 0
3 

M
ar

ch
 2

01
6 



358 Computational Finite Element Methods in Nanotechnology
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.

	 (10.62)

10.4.3.3  Force Field Potentials

In	spectroscopy,	the	calculation	of	the	inversion	energy	is	often	carried	out	with	the	help	
of	the	linear	approach

	
E KI

lin
inv= −1

2 0
2( ) .Ψ Ψ 	 (10.63)

(a)

H w

I

O

J

Ψ=Ψ1+Ψr

D
H w J
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K
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L
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I

K

Ψ1=arctan Ψr= arctan
2w
Re

w
Re

4w
√3Re

φIJKQ=arctan

φHIJK=180° + arctan

2w
√3Re

2w
√3Re

(b)

FIGURE 10.10
Improper	torsion	resulting	from	inversion	for	the	example	of	graphene:	(a)	inversion	and	(b)	additional	torsion.
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FIGURE 10.11
Torsion	 angles	 affected	 by	 deflection	 of	 atom	 I	 out	 of	 plane	 defined	 by	 atoms	 H,	 J,	 and	 O	 according	 to	
Equation	10.62.
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359Molecular Dynamic Finite Element Method (MDFEM)

To	address	the	fact	that	the	derivative	of	the	inversion	energy	has	to	vanish,	dE dI/ Ψ = 0,
when	 reaching	 the	 snap-through	 point	 Ψ	=	0°,	 Mayo	 et	 al.	 (1990)	 suggest	 the	 following	
formulation:

	

E
C

K
I

inv

inv

for

for

=
− ≠ °

− = °









1
2

0

1 0

0
2

0

0

(cos cos )

( cos )

Ψ Ψ Ψ

Ψ Ψ
	 (10.64)

with	 the	 stiffness	 Kinv	=	sin2	 Ψ0Cinv;	 for	 example,	 Kinv
kcal

mol rad
= 40 2 	 for	 graphene.	 The	

approach	distinguishes	between	spatial	structures	Ψ0	≠	0°	and	planar	structures	Ψ0	=	0°.	
For	spatial	structures,	the	maximum	energy	at	the	snap-through	point	Ψ	=	0°	is

	
E CI

bar
inv= 



2

1
2

2
0sin ,Ψ 	 (10.65)

for	example,	EI
bar kcal

mol
= 6 	for	ammonia.

10.4.3.4  Modeling Inversion by Improper Torsion

For	planar	structures,	the	inversion	energy	can	be	taken	into	account	using	additional	tor-
sion	energy.	For	demonstration	purposes,	we	consider	the	example	of	graphene	shown	in	
Figures	10.10	and	10.11.	The	deflection	w	of	atom	I	leads	to	an	inversion	energy	with	the	direct	
neighbors	H,	J,	and	O.	As	a	consequence,	atom	J	moves	out	of	its	plane	IDK	by	−w/3,	etc.

With	 the	 inversion	and	 torsion	angles	given	 in	Equations	10.61	and	10.62,	 the	 ratio	of	
inversion	energy	to	torsion	energy	for	small	deformations	can	be	derived	as
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Hence,	 torsional	 stiffness	 has	 to	 be	 increased	 by	 68.6%	 while,	 in	 turn,	 the	 inversion	
energy	can	be	neglected.	This	way,	we	can	obtain	identical	results	for	planar	symmetric	
structures	like	graphene	if	deformations	are	small.	For	large	deformations,	a	small	error	
has	to	be	accepted.	Nevertheless,	this	approach	is	recommended	as	it	is	favorable	from	a	
mathematical	and	mechanical	point	of	view	when	all	energy	forms	are	independent	of	
one	another.
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10.5 Numerical Examples

In	order	 to	demonstrate	 the	capabilities	of	MDFEM	and	to	verify	 the	robustness	and	
reliability	 of	 the	 finite	 elements	 introduced	 in	 Section	 10.4.2,	 two	 different	 examples	
are	 presented.	 The	 first	 one	 deals	 with	 single-walled	 carbon	 nanotubes	 as	 for	 such	
structures	chemical	bonds	are	dominant.	Neglecting	physical	 interactions,	even	with	
an	implicit	time	integration	scheme,	structures	with	more	than	1	million	atoms	can	be	
simulated.

For	the	second	example,	a	model	of	elastomeric	material,	physical	bondings	have	to	be	
considered.	As	a	consequence,	static	and	implicit	dynamic	analyses	are	limited	to	a	few	
thousand	atoms	because	the	long-range	potentials	lead	to	a	very	large	bandwidth	of	the	
stiffness	matrix.	To	overcome	this	limitation,	the	explicit	midpoint	method	is	used.

10.5.1 Torsion of Single-Walled Carbon Nanotube

Carbon	 nanotubes	 are	 subject	 of	 many	 numerical	 investigations	 in	 literature,	 as	 their	
mechanical	and	electrical	properties	are	remarkable,	but	very	hard	to	determine	experi-
mentally.	Defects	stemming	from	the	manufacturing	process	may	lead	to	drastic	changes	
in	the	material	behavior.

A	 systematic	 investigation	 of	 the	 effects	 of	 atomistic	 defects	 on	 the	 nanomechanical	
properties	and	fracture	behavior	of	single-walled	carbon	nanotubes	using	MD	simulation	
is	provided	by	Cheng	et	al.	(2009).	Their	results	show	that	the	properties	highly	depend	
on	the	defect	rate	but	also	on	the	distribution	pattern	and	that	the	failure	of	the	nanotubes	
can	be	regarded	as	brittle	whereas	the	cracks	propagate	along	the	areas	with	high	tensile	
stress	concentration.

The	 effects	 of	 the	 nanotube	 helicity,	 the	 nanotube	 diameter,	 and	 the	 percentage	 of	
vacancy	defects	on	the	bond	length,	bond	angle,	and	tensile	strength	of	zigzag	and	arm-
chair	single-walled	carbon	nanotubes	 is	subject	of	a	study	by	Jeng	et	al.	 (2009).	A	good	
agreement	of	the	stress–strain	response	between	MDs	and	molecular	statics	simulations	
is	observed.

The	 MDFEM	 simulation	 in	 Figure	 10.12	 shows	 the	 failure	 mode	 of	 a	 (10,10)-armchair	
carbon	nanotube	with	two	Stone–Wales	defects	at	a	torsion	angle	of	about	50°.	The	cross	
section,	which	is	initially	circular	adopts	an	elliptic	shape	that	propagates	helically	over	
the	entire	length	of	the	tube	until	the	opposite	walls	come	close	to	each	other.	A	similar	
behavior	was	observed	by	Rochefort	et	al.	(1999)	and	Chakrabarty	and	Cagin	(2008).

FIGURE 10.12
Buckling	 of	 carbon	 nanotube	 with	 two	 Stone–Wales	 defects	 at	 the	 top	 and	 at	 the	 bottom	 (SW3)	 at	 about	
50°-torsion.
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361Molecular Dynamic Finite Element Method (MDFEM)

The	torque–rotation	curves	in	Figure	10.13	demonstrate	the	influence	of	the	Stone–Wales	
(SW)	defects.	While	for	a	nanotube	without	defects	(SW0)	a	bifurcation	can	be	observed,	
defects	 transform	 the	 bifurcation	 problem	 into	 a	 snap-through	 problem.	 Instead	 of	 an	
instantaneous	collapse	the	shape	of	the	nanotube	changes	slowly.	The	maximum	torsional	
moment	of	33	aN-m	(SW0)	decreases	to	22	aN-m	for	the	nanotube	with	two	defects	at	the	
bottom	site	(SW2),	21.5	aN-m	for	the	nanotube	with	only	one	defect	(SW1),	and	20	aN-m	for	
the	nanotube	in	Figure	10.12	with	two	opposing	defects	(SW3).

At	this	point,	it	should	be	stressed	that	the	results	are	identical	to	a	classical	MD	simu-
lation,	given	that	the	same	force	field	potentials	are	applied.	Here,	we	used	the	Dreiding	
approach	proposed	by	Mayo	et	al.	 (1990).	The	reader	who	is	 interested	in	different	load	
cases,	 namely,	 when	 the	 nanotubes	 are	 subjected	 to	 tension,	 compression,	 or	 bending	
loads,	is	referred	to	the	publication	by	Nasdala	et	al.	(2005).

10.5.2 Inelastic Behavior of Elastomeric Material

As	pointed	out	in	Section	10.4.1.9,	MDFEM	simulations	usually	start	with	a	relaxation	step.	
Elastomeric	material	is	a	good	example	where	it	is	impossible	to	guess	a	valid	equilibrium	
state.	In	addition	to	the	challenging	conformational	analysis,	this	example	also	provides	
explanations	for	inelastic	material	behavior.	Using	elastic	force	field	potentials,	it	is	pos-
sible	to	simulate	softening	and	hysteresis	effects.

10.5.2.1  Relaxation Step

For	demonstration	purposes,	we	start	with	the	small	example	shown	in	Figure	10.5,	bot-
tom.	Since	only	107	atoms	are	involved,	it	is	possible	to	apply	the	implicit	Euler	backward	
method	for	the	relaxation	step.	This	method	is	very	efficient	since	large	time	increments	
lead	to	high	numerical	damping	which	dissipates	the	kinetic	energy	of	the	system.

If	 the	 implicit	 HHT	 method	 is	 used	 without	 introducing	 additional	 damping,	 the	
analysis	does	not	converge,	as	demonstrated	in	Figure	10.14.	In	contrast	to	the	equilibrium	
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FIGURE 10.13
Influence	of	Stone–Wales	defects	on	torsion	load	resistance.
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362 Computational Finite Element Methods in Nanotechnology

state,	 the	 van	 der	 Waals	 bond	 energies	 are	 significantly	 higher	 than	 the	 bond	 stretch	
energies	of	the	chemical	bonds.	This	stems	from	the	fact	that	the	van	der	Waals	bond	
energies	are	very	high	for	atoms	close	to	each	other	according	to	the	LJ	approach.	In	a	
dynamic	analysis,	the	potential	energy	is	transformed	to	kinetic	energy	but	as	the	bond	
fracture	energies	are	small	compared	to	the	initial	bond	potential	energies,	 the	bonds	
are	destroyed.	Depending	on	the	size	of	the	RVE,	an	“implosion”	may	occur	first,	then	
followed	by	an	“explosion”	or,	if	the	RVE	is	small,	the	analysis	already	starts	with	the	
second	part.

For	larger	structures,	which	may	be	more	than	1000	atoms,	the	explicit	time	integration	
method	is	preferable.	For	the	example	shown	in	Figure	10.15	that	consists	of	10,051	atoms,	
computational	costs	can	be	efficiently	reduced,	when	the	analysis	starts	with	a	very	high	
amount	of	damping,	for	example,	α	-Rayleigh	damping,	which	then	is	reduced	in	about	10	
steps,	each	time	by	an	order	of	magnitude.	This	approach	can	be	optimized	by	setting	the	
velocities	to	zero	before	starting	each	new	step.

(b)(a)

FIGURE 10.14
Convergence	problems	of	analyses	without	damping:	(a)	implosion	and	(b)	explosion.

(b)(a)

FIGURE 10.15
Conformational	analysis	of	an	elastomer	with	10,051	atoms:	(a)	generated	initial	mesh	and	(b)	equilibrium	state	
after	relaxation	step.
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363Molecular Dynamic Finite Element Method (MDFEM)

10.5.2.2  Loading Step

Both	models	are	subjected	to	cyclic	loading	at	25%,	50%,	and	100%	strain	amplitude,	3	cycles	
at	each	amplitude.	Constraints	keep	the	volume	of	the	RVE	constant.	The	loading	can	be	
regarded	as	quasi-static.	As	can	be	seen	in	Figure	10.16	for	cycles	4–6	of	the	107-atom	model,	
there	is	a	continuous	rearrangement	of	chains	within	the	polymer	network.	The	chemical	
bonds	can	sustain	the	applied	load.	Some	van	der	Waals	interactions,	however,	break	when	
the	 fracture	 energy	 is	 exceeded	 while	 other	 interactions	 come	 into	 existence	 when	 two	
atoms	approach	each	other.	Note	that	the	physical	bondings	as	well	as	covalent	interchain	
cross-linkages,	built	during	the	vulcanization	process	are	not	shown	for	the	sake	of	clarity.

The	107-atom	model	is	too	small	for	being	representative,	i.e.,	the	load–deflection	curve	
is	very	jagged	and	similar	models	would	lead	to	different	results.	Therefore,	we	shall	dis-
cuss	only	the	response	of	the	10,051-atom	model,	shown	in	Figure	10.17.

It	is	remarkable	that	all	the	main	characteristics	of	elastomeric	materials,	namely,

•	 Mullins	effect	(softening)
•	 Curvature	change	from	negative	to	positive

(a) (b)

(c) (d)

(e) (f)

FIGURE 10.16
Continuous	 reorganization	of	bonds	during	cyclic	 loading:	 (a)	0%	strain	 (initial	 equilibrium	state),	 (b)	50%	
strain	(4.	cycle),	(c)	0%	strain	(start	of	5.	cycle),	(d)	50%	strain	(5.	cycle),	(e)	0%	strain	(start	of	6.	cycle),	and	(f)	50%	
strain	(6.	cycle).
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364 Computational Finite Element Methods in Nanotechnology

•	 Permanent	set	(plasticity	or	viscoelasticity)
•	 Hysteresis	loops	(energy	dissipation)

can	 be	 found	 in	 the	 simulated	 force–deflection	 curve	 though	 only	 (elastic)	 force	 fields	
potentials	are	used.

It	should	be	noted	that	the	load–deflection	curve	is	not	smooth.	This	is	due	to	the	fact	
that	a	 rupture	of	bondings	 reduces	 the	overall	 stiffness	while	 the	creation	of	bondings	
strengthens	the	structure.

The	 results	 prove	 that	 it	 is	 generally	 possible	 to	 simulate	 inelastic	 material	 behavior	
without	 using	 damping	 or	 friction	 elements.	 The	 underlying	 mechanism	 is	 the	
rearrangement	of	bondings	which	causes	the	polymer	chains	to	vibrate.	Potential	energy	
is	transformed	to	kinetic	energy.	The	oscillations	on	the	nanoscale	can	be	observed	on	the	
macroscale	as	a	temperature	increase	of	the	material.

10.6 Conclusions

It	 is	 possible	 to	 perform	 MD	 simulations	 within	 the	 framework	 of	 the	 finite	 element	
method.	 However,	 this	 is	 not	 an	 easy	 task	 since	 a	 special	 class	 of	 finite	 elements	 is	
required	for	force	fields	using	multi-body	potentials.	This	chapter	presents	the	theoreti-
cal	background	of	 the	MDFEM	elements	as	well	as	guidelines	 for	 the	 implementation	
and	usage.

Apart	from	mesh	generation	techniques,	which	are	not	covered,	all	important	aspects	
of	MDFEM	are	discussed	from	a	FEA	software	user’s	point	of	view:	what	time	integra-
tion	schemes	are	usually	available	and	when	to	use	which,	what	is	the	difference	between	
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FIGURE 10.17
Load–deflection	curve	of	an	elastomer	with	10,051	atoms.
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365Molecular Dynamic Finite Element Method (MDFEM)

natural	and	equilibrium	bond	lengths	and	angles,	how	to	obtain	an	equilibrium	configu-
ration,	or	when	inversion	energy	is	important	and	how	it	can	be	transformed	to	torsion	
energy.	Two	examples	demonstrate	the	accuracy	and	efficiency	of	the	introduced	MDFEM	
elements.

MDFEM	provides	a	framework	that	is	more	than	performing	simple	MD	simulations.	
Conventionally,	MD	programs	are	used	in	chemistry	and	physics	to	perform	conforma-
tional	studies	based	on	force	fields.	The	goal	is	to	determine	equilibrium	states	rather	than	
to	study	the	response	of	atomic	structures	under	mechanical	loading.

The	 main	 benefit	 of	 MDFEM	 is	 that	 concurrent	 multiscale	 simulations,	 that	 is,	 a	
combination	 of	 continuum	 and	 atomistic	 regions,	 are	 feasible.	 Complex	 models	 can	
be	 developed	 to	 predict	 the	 properties	 of	 composites	 containing	 nanoparticles	 which	
determine	 the	 macroscopic	 material	 behavior.	 For	 such	 models,	 parametric	 studies	 in	
terms	of	computer-aided	material	design	can	be	carried	out	 to	analyze	 the	 influence	of	
changes	 in	 the	 atomic	 structure,	 namely,	 the	 particle	 size,	 distribution,	 or	 the	 particle–
matrix	interface.	The	results	can	then	be	used	to	identify	the	basic	mechanisms	that	lead	
to	the	enhancement	of	characteristic	values	of	such	composites	and	subsequently	exploited	
to	improve	the	manufacturing	processes.
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Appendix 10A: Newton–Raphson Method

In	statics	and	implicit	dynamics,	the	Newton–Raphson	method,	also	known	as	Newton’s	
method,	is	the	predominant	technique	for	solving	the	system	of	nonlinear	equations

	 R u 0( ) .= 	 (10.67)

As	a	direct	calculation	of	the	solution	vector

	 u u c= + 	 (10.68)

or	the	vector	c,	which	has	to	be	added	to	a	previously	determined	approximation	u,	is	not	
feasible,	a	Taylor	series	expansion

	 R u R u R u u( ( ) ( )) = + ⋅ +D � 	 (10.69)

is	performed	which	then	is	truncated	after	the	linear	term	DR(u)	·	u:

	
D

d
d

d
d

R u R
R
x

R
u

K( ) .= = = =grad T 	 (10.70)
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366 Computational Finite Element Methods in Nanotechnology

In	structural	mechanics,	R	denotes	the	vector	of	the	residual	forces	and	KT	the	tangential	
stiffness	matrix

	
K

R
u

ij
k i

j k

T, ( )u
u

= ∂
∂

	 (10.71)

with	the	degrees	of	freedom	i	and	j.	The	solution	vector	c	of	the	system	of	linear	equations

	 K u c R uT( ) ( )k k⋅ = − 	 (10.72)

has	to	be	added	to	the	approximation	of	the	previous	iteration	step	k

	 u u ck k+ = +1 	 (10.73)

until	increment	c	and	residuum	R	are	sufficiently	small.	Alternatively,	an	“energy	norm”	
R	·	c	can	be	computed,	which	may	also	be	used	to	verify	the	quadratic	convergence	rate	of	
the	Newton–Raphson	method

	

( )
( )

( )
( )

R c
R c

R c
R c

⋅
⋅

≈ ⋅
⋅











+

+

+k

k

k

k

2

1

1 2

	 (10.74)

in	the	vicinity	of	the	solution.
To	 illustrate	 the	 Newton–Raphson	 method,	 Figure	 10.18	 shows	 a	 system	 of	 two	 non-

linear	equations	R	=	0	or	 (R1,R2)	=	(0,0)	with	 the	degrees	of	 freedom	u1	and	u2.	The	solu-
tion	ū	=	(ū1,ū2)	can	be	interpreted	geometrically	as	the	intersection	point	of	the	two	planes	

R1, R2

u1
u1

u1
uk1

uk2
k+ 1 u2

k+ 1

– u2 u2
–

R2 (u1, u2)

R1 (u1, u2)

FIGURE 10.18
Illustration	of	Newton–Raphson	method.
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367Molecular Dynamic Finite Element Method (MDFEM)

R1	=	R1(u1,u2)	and	R2	=	R2(u1,u2)	with	the	u1−u2	-plane.	For	the	solution,	at	first	two	tangential	
planes	are	constructed	using	the	points	R u uk k

1 1 2,( )	and	R u uk k
2 1 2,( )	defined	by	the	approxi-

mation	uk k ku u= ( )1 2, 	of	the	time	increment	k.	The	intersection	point	of	the	two	planes	with	
the	u1	−	u2-plane	yields	a	better	approximation	uk k ku u+ + += ( )1

1
1

2
1, 	which	then	is	used	to	start	

the	next	iteration	step.

Appendix 10B: Stiffness Matrices of MDFEM Elements

A	consistent	linearization	of	the	MDFEM	elements	introduced	in	Section	10.4.2	is	required	
to	 obtain	 a	 quadratic	 convergence	 rate	 of	 the	 Newton–Raphson	 method.	 For	 the	 two-
node	element,	the	derivative	of	the	nodal	forces	Fi	with	respect	to	the	displacements	uj	is	
obtained	by	means	of	the	product	rule
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∂
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F
F 	 (10.75)

with	the	derivatives	of	the	unit	vectors
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	 (10.76)

and	the	derivatives	of	the	force	magnitudes.	Depending	on	the	chosen	approach,	we	get

	

∂
∂

= −
∂
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= −
F F

kij

i

ij

j
ij ij

lin lin

u u
n 	 (10.77)

or
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for	the	chemical	bonds	and
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for	van	der	Waals	bondings.
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In	case	of	the	three-node	element,	we	obtain
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as	a	function	of
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and	the	derivatives	of	the	magnitudes
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with
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The	derivatives	 ∂ ∂n uij a/ 	are	given	in	Equation	10.76.	Note	that	the	following	derivatives	
vanish:	 ∂ ∂ =n u 0ij k/ ,	 if	 k	 ≠	 i	 ∧	 k	 ≠	 j.	 The	 derivatives	 of	 the	 load	 magnitudes	 Fijk	 and	
Fkji	with	respect	to	the	displacements	ua	depend	on	the	lever	arms	and	are	related	as	
follows:
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For	the	four-node	torsion	element,	the	computation	of

	

∂
∂

= ⊗ ∂
∂

+ ∂
∂

∂
∂

= ⊗ ∂
∂

+

F
u

n
u

n
u

F
u

n
u

I

a
IJK

IIJK

a
IIJK

IJK

a

L

a
JKL

LJKL

a

F
F

F
FLLJKL

JKL

a

J

a
JIJK

I

a

JJKL

LJKL

L

a

K

a
KI

∂
∂

∂
∂

= ∂
∂

+ ∂
∂

∂
∂

=

n
u

F
u

F
u

F
u

F
u

α α
α

α JJK
I

a

KJKL

LJKL

L

a
a I J K L

∂
∂

+ ∂
∂

=F
u

F
u

α
α

with , , ,

	 (10.87)

requires	the	derivatives	 ∂ ∂n uijk a/ 	already	given	in	Equation	10.82.	Note	that	 ∂ ∂ =n u 0IJK L/ 	
and	 ∂ ∂ =n u 0JKL I/ .	The	derivatives	of	the	nodal	force	magnitudes	are	given	as
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with
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Note	that	the	torsion	angle	φIJKL	=	φIJKL(uI,uJ,uK,uL)	depends	on	the	displacements	of	all	four	
atoms	involved.
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11.1 Introduction

“Nanostructured materials” refer to certain materials that have delicate structures and 
sizes that fall within the range of 1–100 nm. As a consequence of this size, an exten-
sive development of nanotechnology has taken place in the fields of materials sci-
ence and engineering in the past decade. Yet, such developments have not come as a 
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surprise, when it is appreciated that these nanostructured materials have the ability to 
be adapted and integrated into biomedical devices. This is possible because most bio-
logical systems, including viruses, membranes and protein complexes, exhibit natural 
nanostructures.

A biomaterial, by definition, is a nondrug substance that is suitable for inclusion in 
systems that augment or replace the function of bodily tissues or organs. A century ago, 
artificial devices made from materials as diverse as gold and wood were developed to a 
point where they could replace the various components of the human body. These materi-
als were capable of being in contact with bodily fluids and tissues for prolonged periods 
of time, while eliciting little, if any, adverse reactions.

When these synthetic materials are placed within the human body, the tissues react 
toward the implant in a number of ways. The mechanism of tissue interaction at a nanoscale 
level is dependent on the response to the implant surface, and as such three terms which 
describe a biomaterial, with respect to the tissues’ responses, have been defined, namely, 
bioinert, bioresorbable, and bioactive (Figure 11.1):

• Bioactive—refers to a material which interacts with the surrounding bone and, 
in some cases, even soft tissue, upon being placed within the human body (e.g., 
hydroxyapatite [HAp]).

• Bioinert—refers to any material that, once placed within the human body, has a 
minimal interaction with its surrounding tissue; examples include stainless steel, 
titanium, alumina, partially stabilized zirconia, and ultra-high-molecular weight 
polyethylene.

• Bioresorbable—refers to a material that, upon placement within the human body, 
begins to dissolve or to be resorbed and slowly replaced by the advancing tissues 
(e.g., bone, tricalcium phosphate, bioglass).

(A)
(B) (C) (D)

FIGURE 11.1
Classification of bioceramics according to their bioactivity: (A) Bioresorbable tricalcium phosphate implant 
[Ca3(PO4)2]; (B) surface-active, bioglass or A-W glass; (C) bioactive, hydroxyapatite (Ca10(PO4)2(OH)2) coating on 
a metallic dental implant; and (D) bioinert (alumina dental implant). (Adapted from Ben-Nissan, B. and Choi, 
A.H.: Nanoceramics for medical applications. In Advanced Nanomaterials. 2010. Weinheim, Germany. Copyright 
Wiley-VCH Verlag GmbH & Co. KgaA.)
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In the early 1970s, bioceramics were employed as implants to perform singular, 
biologically inert roles. The limitations of these synthetic materials as tissue substitutes 
were highlighted with the increasing realization that the cells and tissues of the body 
perform many other vital regulatory and metabolic roles. The demands of bioceramics 
have since changed, from maintaining an essentially physical function without eliciting 
a host response, to providing a more positive interaction with the host. This has been 
accompanied by increasing demands on medical devices that they not only improve 
the quality of life but also extend its duration. Most importantly, nanobioceramics—at 
least potentially—can be used as body interactive materials, helping the body to heal, or 
promoting the regeneration of tissues, thus restoring physiological functions.

The main factors in the clinical success of any biomaterial are its biofunctionality 
and biocompatibility, both of which are related directly to interactions at the tissue and 
implant interface. This approach is currently being explored in the development of a new 
generation of nanobioceramics with a widened range of dental and biomedical applica-
tions. The improvement of interface bonding by nanoscale coatings, based on biomi-
metics, has been of worldwide interest in the past decade, and today several companies 
are in early commercialization stages of new-generation, nanoscale-modified implants 
for orthopedic, ocular, and maxillofacial surgery, as well as for hard- and soft-tissue 
engineering. Modeling and analysis of these nanoscale structures are current interests 
in both engineering and clinical science. Tissue–implant interactions are generated in 
nano- and mesoscale, and mathematical analyses of these also current interests.

The properties and microstructure of nanostructured materials depend in an extreme 
manner on their processing route as well as on their synthesis method. As a result, it 
is extremely important to select the most appropriate technique when preparing nano-
materials with desired properties and property combinations. The most commonly used 
synthesis technique for the production of advanced ceramics include pressing, as well as 
wet chemical processing techniques such as co-precipitation and sol–gel, all of which have 
been used to produce nanocoatings, nanoparticles, and nanostructured solid blocks and 
shapes.

The bone mineral is composed of nanocrystals, or more accurately, nanoplatelets origi-
nally described as HAp and similar to the mineral dahllite. It is now agreed that bone 
apatite can be better described as carbonate hydroxyapatite (CHA) and approximated by 
the formula (Ca,Mg,Na)10(PO4CO3)6(OH)2. The composition of commercial CHA is similar 
to that of bone mineral apatite. Bone pore sizes range from 1 to 100 nm in normal cortical 
bone and from 150 to 400 μm in trabecular bone tissue, and the pores are interconnected.

Calcium phosphates are classed according to particular solubilities, for example, when 
bonding to the surrounding tissue, and their ability to degrade and be replaced by advanc-
ing bone growth. The solubilities of various calcium phosphate compounds can be shown 
as [2] follows:

Amorphous calcium phosphate (ACP) > dibasic calcium phosphate (DCP) > tetracalcium 
phosphate (TTCP) > α-tricalcium phosphate (α-TCP) > β-TCP > HAp.

It has long been established that porous bulk HAp cannot be used for load-bearing 
applications due to its unfavorable mechanical properties. As a result, HAp has been used 
instead as a coating in orthopedic surgery on metallic alloys, metals giving the support 
required.

In the past 30 years, four general conventional industrial coating methods have been 
proposed for the production of bioactive coatings for clinical applications. The first 
method, developed by Hench, and later by Ducheyne, and their colleagues utilizes spray 
coating method that uses relatively thick calcium phosphate coatings (100 μm–2 mm) for 
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bone ingrowth [3]; for the second, Hench and colleagues developed thick bioglass coat-
ings for surface bioactivity [4]. The third method, developed in the early 1990s by Kokubo 
and colleagues, was based on self-assembly by precipitation in a simulated body fluid 
(SBF) solution [5]. Although thick bioglass coatings and coatings based on self-assembly 
are effective, spray coating is the only coating method that has been applied commercially 
to orthopedic implants. A fourth, newer, and very promising method involves dipping in 
sol–gel derived HAp solutions to produce strong nanocoatings, which was developed by 
Ben-Nissan and coworkers [1,6].

Currently, the most common materials in clinical use are those selected from a handful 
of well-characterized and available biocompatible ceramics, metals, polymers, and their 
combinations as composites or hybrids. These unique production techniques, together 
with the development of new enabling technologies such as microscale, nanoscale, bioin-
spired fabrication (biomimetics) and surface modification methods, have the potential to 
drive at an unprecedented rate the design and development of new nanomaterials useful 
for medical and dental applications.

The current focus is on the manufacture of new nanoceramics that are relevant to 
a wide range of applications, including: modeling and finite element analysis (FEA), 
implantable surface-modified dental and medical devices for better hard- and soft-tissue 
attachment; imaging; materials for minimally invasive surgery; increased bioactiv-
ity for tissue regeneration and engineering; treatment of bacterial and viral infections; 
drug and gene delivery; cancer treatment; and delivery of oxygen to damaged tissues. 
A more futuristic view, which could in fact become reality within two decades, includes 
nanorobotics, nanobiosensors, and micronanodevices for a wide range of biomedical 
applications.

Biomimetic processing is based on the notion that biological systems process and store 
information at the molecular level, and the extension of this concept to the processing of 
nanocomposites for biomedical devices and tissue engineering, such as scaffolds for bone 
regeneration, has been brought out in the past decade [7]. A number of research groups 
have reported through a self-assembly process, the synthesis of novel bone nanocompos-
ites of HAp and collagen, gelatin, or chondroitin sulfate. These self-assembled experimen-
tal bone nanocomposites have been reported to exhibit similarities to natural bone in not 
only their structure but also their physiological properties [8].

The term nanocomposite can be defined as a heterogeneous combination of two or more 
materials, in which at least one of those materials should be on a nanoscale. It is possible to 
manipulate, using the composite approach, the mechanical properties of the composites, 
such as strength and modulus, closer to those of natural bone, with the aid of secondary 
substitution phases.

The manufacture of a nanocomposite can be accomplished by physically mixing or 
introducing a new component into an existing nanosized material, which allows for 
property modifications of the nanostructured materials. This may also offer new mate-
rial functions. For example, some biopolymers and biomolecules, such as poly(lactic acid) 
(PLA), poly(lactic-co-glycolic acid) (PLGA), polyamide, collagen, silk fibrin, chitosan, and 
alginate have been reported to mix into nanohydroxyapatite (nanoHAp) systems [7–10].

Another form of nanocomposite developed for biomedical applications is the gel 
system. For this, nanostructured materials can be entrapped in to a gel, which is a 
three-dimensional (3D) network immersed in a fluid, such that the properties of the 
nanomaterials can be improved and tailored to suit the specific needs of certain biomedi-
cal devices. A nanogel, which is a nanosized, flexible hydrophilic polymer gel [9], is an 
example of a gel that can be used in drug delivery carriers.
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377Application of Biomaterials and Finite Element Analysis (FEA)

These nanogels can spontaneously bind and encapsulate, through ionic interactions, any 
type of negatively charged oligonucleotide drug. A key advantage of nanogels is that they 
allow for a high “payload” of macromolecules (up to 50 wt%), a value which normally can-
not be approached with conventional nanodrug carriers [10]. Recently, a novel intracellular 
biosensor has been fabricated by entrapping indicator dyes into an acrylamide hydrogel 
[11,12], while a carbon nanotube (CNT) aqueous gel has been developed as an enzyme-
friendly platform for use in enzyme-based biosensors [13].

Although there has been a large amount of development in nanobiomaterial processing, 
synthesis and properties, modeling and analysis by FEA has been restricted to a few dedi-
cated groups involved in modeling of bone–implant interfaces, analyzing bone resorption, 
modified implant surfaces and nanolayer coatings under nanoindentation techniques.

The aim of this chapter is to provide a brief background on the current applications 
of FEA in nanomedicine and dentistry. A brief examination of the processes used for 
the production of nanocoatings will be followed by its nanomechanical properties using 
nanoindentation method, modeling, and their analysis with the finite element approach.

11.2 FEA in Nanomedicine and Dentistry

The science and engineering behind the design, production, characterization, and applica-
tion of materials and processes whose smallest functional organization is on the nanome-
ter scale is referred to as nanotechnology.

In the last two decades, there has been a major increase in interest in nanostructured 
material in advanced technologies, such as medical technology. Nanostructured materi-
als are associated with a variety of uses within the dental and medical fields, for example, 
restorative dentistry is based on the nanostructured natural materials such as enamel and 
dentin, white spot lesions (WSL) is generated through nanoscale interactions, nanopar-
ticles in drug-delivery systems, nanocoatings for dental implants and prostheses, in bio-
materials science and diagnostic systems and in regenerative medicine [14,15].

The finite element method (FEM) was first introduced in 1956 and was extensively used 
in the fields of engineering and in 1970s in orthopedic biomechanics to evaluate stresses 
in human bones during functional loadings, and implant design and analysis and in 
dentistry related to the deformations under functional loadings. Since then, this method 
has widely been accepted in engineering and in biomedical systems and applied with 
increasing frequency for stress analyses of bone and bone-prosthesis structures, dental 
implants and devices, fracture fixation devices and various kinds of tissues other than 
bone (Figure 11.2). More recently, FEM was used to investigate the interactions and proper-
ties of nanofibers and nanoparticles within composite structures. More importantly, FEM 
has also been accepted to nanoindentation and nanomechanical testing to evaluate the 
biomechanical properties of nanocoatings such as zirconia and HAp on metallic implants 
and devices.

A quadratic remodeling formula was utilized by Lin [16] to evaluate bone resorption 
due to occlusal overload. A 2D FEM with a single unit implant in the mesial-distal section 
is considered in this study. The model was constructed from a computed tomography 
(CT) scan, together with a single unit titanium implant and a ceramic crown, embedded 
in the cortical bone with thickness of approximately 2 mm surrounding the cancellous 
bone. A highly dense finite element mesh was generated, to better capture bone resorption 
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378 Computational Finite Element Methods in Nanotechnology

progressing in detail. The finite element model comprises in total 62,884 3-node triangular 
elements, featuring 60,170 3-node triangular elements in the cortical regions. The loading 
applied to the implant represents a higher range of magnitude of 402 N at an inclination 
angle of 1.32° to simulate the scenario of occlusal overload. ABAQUS was employed for 
finite element calculation and a user-subroutine in Python script was used for the bone 
remodeling calculations.

Xing et al. [17] measured the adhesion forces between nanofibers and a colloidal poly-
styrene (PS) AFM probe. The Classical JKR model and 3D FEA were used to simulate the 
interaction between nanofiber and nanoparticle. Nanofibers were assumed to be cylin-
drical in shape and nanoparticles spherical. ANSYS (version 10.0) was used to simulate 
the interactions between a nanoparticle and a nanofiber or the interactions between a 
nanoparticle and a planar film. The element type solid 185 was used. To simulate the pull-
off process, the “death and birth” algorithm of the cable element was activated to mimic 
the failure when the element had reached its limit; the failed element was given a zero stiff-
ness matrix. Two processes were simulated: (1) the probe attaches to the fiber, simulated by 
giving a displacement loading (negative loading indicating compression) to the cantilever 
or the nanoparticle, where the initial gap between fiber and particle was 0.35 nm; (2) the 
probe detaches from the fiber, simulated by giving the same displacement loading as in 
the first process (positive loading indicating a pulling force). Thirty substeps were set to 
complete the loading processes. The reaction forces at the bottom line of the nanofiber 
or the bottom surface of the nanofilm were calculated from the solution of the substeps. 
According to the authors, this study is expected to provide approaches and information 
useful in the design of nanomedicine and scaffold based on nanofibers for tissue engineer-
ing and regenerative medicine.

The impact of intravenously injected gold nanoparticles (GNPs) on interstitially delivered 
laser-induced thermal therapy (LITT) in the liver was examined by Elliot and coworkers 
[18]. Three-dimensional finite element modeling, ex vivo canine liver tissue containing 
GNPs absorbing at 800 nm, and agar gel phantoms were used to simulate the presence 
of nanoparticles in the liver during LITT. The model was implemented using COMSOL 

h

Node

Mid-side
node

Corner
node

Implant in a 2D 
mandibular model

Implant in a
3D maxillary

model

B.C.

(A) (B)

B.C.

FIGURE 11.2
Characteristics of typical finite elements in bone remodeling simulation: (A) the circumcircle of 2D triangular 
element with element size in diameter “h” and (B) a quadratic 3D tetrahedral element with mid-side node to 
capture curved geometry. (Adapted from Lin, C.F., A computational protocol to the prediction of dental implant 
induced bone remodelling and its material design: A novel approach, PhD dissertation, University of Sydney, 
New South Wales, Australia, 2010.)
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Multiphysics (Heat Transfer Module). The mesh generated for the finite element calcula-
tions was a 2D triangular mesh with an average triangle size of 0.02 cm2. The density of 
this mesh was increased by a factor of 2 in the regions of greatest temperature increase, 
this increased computational accuracy without a large increase in computation time.

Lin et al. [19] developed a systematic protocol to assess mandibular bone remodeling 
induced by dental implantation, which extends the remodeling algorithms established 
for the long bones into dental settings. A 3D FEA model was developed, representing a 
segment of the human mandible with a number of adjacent teeth. The mandibular bone 
protrudes slightly beyond the central incisor, aiming to simulate the far field boundary 
conditions in the FEA model. The model was constructed from in vivo CT scan images, 
and processed in Rhinoceros 3.0. The FEA mesh was generated in 10-node tetrahedral ele-
ments using MSC PATRAN 2005, comprising totally 109,020 elements after a convergence 
test including 58,885 elements assigned to the cancellous bone and 20,747 elements to the 
cortical bone. The cortical bone has a thickness around 2 mm, representing Class 2 bone. 
In their work, a period of 48 months was chosen as the remodeling duration, in which the 
changes in the bone densities, occlusal displacement, and natural frequencies are com-
pared to explore the effects of remodeling.

Using FEA, Sassaroli et al. [20] have modeled the process of heating of a spherical GNP 
by nanosecond laser pulses and of heat transfer between the particle and the surround-
ing medium, with no mass transfer. In their analysis, they assume that the temperature 
of the GNP remains below melting temperature. In addition, the particle is considered to 
be spherical, rigid, and larger than 20 nm so that quantum mechanical and surface effects 
can be neglected. Under these conditions, the process of heating of a GNP subject to laser 
pulses of at least nanosecond duration. For easy implementation and reliability of the solu-
tion, the thermal equations have been solved using a commercial finite element package 
Comsol Multiphysics 3.5.

Verhulp et al. [21] investigated effects of element size, order, and material models on the 
results of post-yield trabecular bone simulations. A compression experiment of a trabecu-
lar bone specimen to failure was simulated using different micro-FE meshes and material 
models based on cortical bone. Experimental and simulated results were compared both at 
the apparent level, by comparing load–displacement curves, and at the local level, by com-
paring microscopic deformations. Four different FE meshes were created from the first 
three-dimensional scan by simply converting bone voxels to hexahedral elements using a 
fixed global threshold value. In order to achieve both sufficient numerical accuracy and to 
limit the computational costs, three meshes were created using linear hexahedral elements 
of 40, 60, and 80 μm, with 40 μm being slightly less than one-fourth of the mean trabecu-
lar thickness. This resulted in high-resolution FE meshes with 539,793, 156,007, and 63,933 
elements, and 772,328, 254,539, and 117,387 nodes, respectively, with the corresponding 
volume fractions equal to 27%, 26.5%, and 24.4%. Three different isotropic material models 
were used to describe trabecular-tissue yield and post-yield behavior. All the micro-FE 
analyses were performed with the FE package MSC.Marc, incorporating large deforma-
tions (geometrical nonlinearity). Linear analyses were performed to determine the tissue 
effective elastic modulus for each FE mesh and to determine the loading mode (tension or 
compression) of each element.

In 2008, Verhulp and coworkers [22] also tested cortical and trabecular stress transfer 
in the proximal femur of two bones, one normal and one osteoporotic, using micro-FE 
analysis. The micro-FE meshes were created from high-resolution CT images of the proxi-
mal 10 cm of a healthy and a severely osteoporotic femur. The bone voxels were directly 
converted to equally sized 80-μm brick elements, rendering micro-FE meshes of 97 and 72 
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million elements and 130 and 100 million nodes for the healthy and osteoporotic femurs, 
respectively. In each femur, cortical and trabecular bone tissue were identified based on 
the number of elements in a fixed neighborhood. The linear-elastic micro-FE models were 
solved using an iterative element-by-element solver. Tissue stresses and strains were used 
to compute strain-energy densities (SED), effective strains and maximal principal strains.

A study on the fracture mechanisms in dental nanocomposites were conducted by 
Chan et al. [23]. Finite-element method was utilized to analyze the growth of an inter-
face crack around an elastic particle embedded within an elastic/plastic matrix. A hard 
particle embedded in an elastic matrix separated by an interface was generated, which 
contains 50% particle and 50% matrix by area, and was subjected to principal stresses 
applied along the x-axis and y-axis. Two boundary layers of elements of uniform size 
were specified along the interface between the matrix and the particle for avoiding any 
artifact that may result from nonuniform element size. A small interface crack was placed 
between the two boundary layers by releasing the appropriate nodes at the apex of the 
circular particle. For a given set of the applied stresses, the stress field around the interface 
crack was computed.

Isaksson et al. [24] compare various mechano-regulation algorithms’ abilities to describe 
normal fracture healing in one computational model. Additionally, it was hypothesized 
that tissue differentiation during normal fracture healing could be equally well regulated 
by the individual mechanical stimuli, for example, deviatoric strain, pore pressure, or fluid 
velocity. A biphasic finite element model of an ovine tibia with a 3 mm fracture gap and 
callus was used to simulate the course of tissue differentiation during normal fracture 
healing. For the computational model, a mechano-regulated adaptive axisymmetric finite 
element model of an ovine tibia was created. The geometry involved a 3 mm transverse 
fracture gap and an external callus. The external surface of the callus, the ends of the 
cortical bone, and the intramedullary canal were assumed to be covered by fascia and 
impermeable. The loads were applied to the cortical bone at the top of the model. The cal-
lus consisted of 779, the marrow of 1060, and the cortical bone of 540 elements, which were 
all 8-noded biquadratic displacement, bilinear pore-pressure elements. The finite element 
solver used was ABAQUS and the adaptive process of fracture healing was implemented 
in MATLAB®. The load applied was regulated in a biofeedback loop, where the load mag-
nitude was determined by the interfragmentary movement in the fracture gap.

Taylor and coworkers [25] developed a technique to simulate the tensile fatigue behav-
ior of human cortical bone. A combined continuum damage mechanics (CDM) and FEA 
approach was used to predict the number of cycles to failure, modulus degradation and 
accumulation of permanent strain of human cortical bone specimens. The simulation of 
fatigue testing of eight dumb-bell specimens of cortical bone was performed and the pre-
dictions compared with existing experimental data. A three-dimensional finite element 
model of a dumb-bell specimen of human cortical bone was generated. Only one quarter 
of the specimen was modeled due to symmetry and the appropriate symmetry constraints 
were applied. The model consisted of 599 8-noded reduced integration elements and 910 
nodes. The cortical bone was assumed to be isotropic, homogeneous, and linear elastic, 
with a Poisson’s ratio of 0.35. No attempt was made to simulate the cyclic viscoelastic prop-
erties of cortical bone. All analyses were performed using Marc version 7.3.

Crestal bone loss is observed around various designs of dental implants. A possible 
cause of this bone loss is related to the stresses acting on periimplant bone. Vaillancourt 
et al. [26] investigated the relationship between stress state and bone loss and analyzed 
two-dimensional finite element models corresponding to bucco-lingual and mesio-distal 
sections of canine mandibles with one of two designs of porous-coated dental implants. 
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A fully porous-coated design consisting of a solid Ti6A14V core had a porous coating over 
the entire outer surface of the implant component, while a partially porous-coated design 
had the porous coating over the apical two-thirds of the implant surface only. Occlusal 
forces with axial and transverse components were assumed to act on the implant with 
interface bonding and effective force transfer at all porous coat–bone interfaces and no 
bonding for the nonporous-coated regions. The results of the analysis indicated that at 
most implant aspects (buccal, lingual, mesial, and distal), the equivalent stresses in crestal 
bone adjacent to the coronal-most, nonporous-coated zone of the partially porous-coated 
implants were lower than around the most coronal region of the fully porous-coated 
implants. The region of lower stress around the partially porous-coated implants corre-
sponded to observed areas of crestal bone loss in animal studies, suggesting that crestal 
bone loss in this case was due to bone disuse atrophy.

11.3 Coating of Dental and Medical Implants: Introduction and Processes

Coating is a technique for modifying the surface of the base material in order to improve 
the mechanical and/or physical performances of implants and devices. Coatings offer 
the possibility of modifying the surface properties of dental and surgical-grade materi-
als to achieve improvements in biocompatibility, clinical reliability, and performance. 
Techniques such as chemical vapor deposition (CVD), physical vapor deposition (PVD), 
electrochemical vapor deposition, metal–organic chemical vapor deposition (MOCVD), 
thermal or diffusion conversion, and sol–gel processing have been used to produce coat-
ings on both the micro- and nanoscale.

In the context of biomedical applications, the definition of macro-, micro-, thin film, 
and nanothickness, or more generally, thin films, have been used interchangeably and/or 
wrongly. The authors of this chapter believe that coatings greater than 1000 μm should be 
considered thick or macrocoatings, 1–1000 μm should be considered thin-film coatings or 
microcoatings, and below 1 μm should be considered nanocoatings.

The term “thermal-spraying” covers processes, for example, plasma spraying, high-
velocity oxygen flame-spraying, flame-spraying, and detonation gun-spraying. Plasma-
spraying can be conducted in an ambient atmosphere (atmospheric plasma-spraying [APS]), 
under vacuum (vacuum plasma-spraying [VPS]) or under controlled atmospheres, such as 
nitrogen. Plasma-spraying uses a direct current arc to produce gas plasma, although other 
sources, such as radiofrequency-generated plasmas, can be employed. Each is capable of 
producing coating thicknesses from a few microns to a few millimeters [27].

Plasma-spraying is the only widely used coating process to produce medical implants 
on a commercial scale. It uses an electrical discharge to convert a carrier gas, for example, 
argon, into plasma. Rapid gas expansion induces speeds of up to 800 m/s. The plasma 
heats the powder to a partially liquid form and propels it toward the substrate.

11.4 Nanocrystalline Coatings

Nanocrystalline coatings with grain sizes in the nanometer range are known to exhibit 
superior hardness and strength [28]. The quest for nanostructured coatings is driven 
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by the improvement in nanocoating techniques and the availability of various kinds of 
precursor materials and sources.

Existing PVD and CVD processes for preparing microcrystalline coatings can be utilized 
to fabricate nanostructured coatings by modifying the processing parameters or by using 
feedstock powders having nanograined structures. In addition, conventional plasma 
spraying and high velocity oxygen fuel thermal spraying are viable high-rate deposition 
techniques to produce nanocrystalline coatings using nanosized feedstock powders.

11.4.1 Physical Vapor Deposition

PVD is a versatile synthesis method and is capable of preparing thin film materials with 
structural control at the atomic or nanometer scale and this can be achieved by carefully 
monitoring the processing conditions. PVD involves the generation of vapor phase spe-
cies either via evaporation, sputtering, laser ablation, or ion beam. In most PVD-based 
processing approaches, it is not possible to uniformly coat nonplanar substrates without 
sophisticated substrate translation/rotation or the use of multiple, spatially distributed 
sources. This arises because the vapor atoms are created in high vacuum that results in 
nearly collisionless vapor transport to the substrate. As a result, only regions in the line-
of-sight of the vapor source are coated.

Physical vapor deposition of thin films has found widespread use in many industrial 
sectors. State-of-the-art magnetron sputtering processes allow the deposition of met-
als, alloys, ceramic, and polymer thin films onto a wide range of substrate materials. 
Therefore, it is used in many coating applications, including biomedical applications. 
There is an increasing demand for coatings with tailored and enhanced properties such 
as wear, corrosion resistance, high hardness, low friction, and specific optical or electrical 
properties as well as decorative colors, and often, complex combinations of those proper-
ties are required.

11.4.2 Chemical Vapor Deposition

CVD of coatings and films involves the chemical reactions of gaseous reactants on or 
near the vicinity of a heated substrate surface. This atomistic deposition method can 
provide highly pure materials with structural control at atomic or nanoscale levels. 
Furthermore, it can produce single layer, multilayer, composite, nanostructured, and 
functionally graded coating materials with well-controlled dimension and unique struc-
ture at low processing temperatures. In addition, the unique feature of CVD over other 
deposition techniques such as the nonline-of-sight-deposition capability has allowed the 
coating of complex-shaped biomedical prostheses and the fabrication of nanodevices and 
composites.

The flexibility of CVD has led to rapid growth in the use of functional devices and it has 
become one of the main processing methods for the deposition of thin films and coatings 
for a wide range of applications, including refractory ceramic materials used for hard 
coatings and metallic films for protective coatings [29].

11.4.3 Sol–Gel Process

Sol–gel processing is a versatile and attractive technique since it can be used to fabricate 
ceramic coatings from solutions by chemical means. The sol–gel process is relatively easy 
to perform and complex shapes can be coated, and it has also been demonstrated that the 
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nanocrystalline grain structure of sol–gel coatings produced results in improved mechan-
ical properties [30–33].

The sol–gel technique dates back to the genesis of chemistry. It was first discovered 
in 1846 as an application technology, when Ebelmen [34] observed the hydrolysis and 
polycondensation of tetraethylorthosilicate (TEOS). In 1939, the first sol–gel patent was 
published covering the preparation of SiO2 and TiO2 coatings [35]. In 1955, Roy and Roy 
[36] recognized the potential for producing high-purity glasses using methods not pos-
sible with traditional ceramic-processing techniques. In doing so, they generated the first 
report on the use of sol–gel technology to produce homogeneous multicomponent glasses.

In 1965, Schroeder [37] reported the first investigation conducted by Schott Glass involv-
ing sol–gel synthesized coatings. Mixed-oxides coatings were developed although they 
were mainly interested in single-oxide optical coatings of SiO2 and TiO2.

Sol–gel technology also found applications in a number of technology fields, such as 
biomedical applications [6,38] in the late 1980s and 1990s. A number of excellent review 
articles, book chapters, and books cover the science and technology of the basics of sol–gel 
technology for various ceramic oxide systems [4,39–46].

A sol, by definition, is a suspension of colloidal particles in a liquid [47]. A sol differs 
from a solution in that a sol is a two-phase, solid–liquid system, whereas a solution is a 
single-phase system. Colloidal particles can be in the approximate size range of 1–1000 nm; 
for this reason, gravitational forces on these colloidal particles are negligible and inter-
actions are dominated by short-range forces such as van der Waals forces and surface 
charges. Diffusion of the colloids by Brownian motion leads to a low-energy arrangement, 
thus imparting stability to the system [48]. The stability of the sol particles can be modi-
fied by reducing their surface charge. If the surface charge is significantly reduced, then 
gelation is induced and the resultant product is able to maintain its shape without the 
assistance of a mould.

Gels are regarded as composites, since gels consist of a solid skeleton or network that 
encloses a liquid phase or excess of solvent. Depending on their chemistry, gels can be 
soft and have a low elastic modulus, usually obtained through controlled polymerization 
of the hydrolyzed starting compound. In this case, a three-dimensional network forms, 
resulting ultimately in a high molecular weight polymeric gel. The resultant gel can be 
thought of as a macroscopic molecule that extends throughout the solution. The gelation 
point is the time taken for the last bond in this network to form. This gelation can be used 
to produce a nanostructured monolith or nanosized coatings, depending on the process 
applied.

11.4.3.1  Sol–Gel Synthesis of Nanohydroxyapatite

Hydroxyapatite, Ca10(PO4)6(OH)2, is widely accepted as a biocompatible material, which 
resembles the mineral component of bone and teeth [2–4].

Since the early 1980s, calcium phosphates have been used as porous coating materials on 
a range of metallic implants for dental and orthopedic applications [49–52]. This was initi-
ated to compensate for the poor mechanical properties of porous bulk calcium phosphate 
materials and utilize the excellent mechanical properties of the metallic substrates.

Nanocrystalline HAp can be fabricated using a number of different production methods 
and it can be used as nanocoatings, monolithic solid ceramic products, or nanosized pow-
ders and platelets for a number of applications.

To prepare nanocrystalline apatites, methods of hydrothermal synthesis, wet chemi-
cal precipitation, sol–gel synthesis, mechanochemical synthesis, mechanical alloying, 
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coprecipitation, ball milling, liquid–solid–solution synthesis, vibromilling of bones, radio 
frequency induction plasma, flame spray pyrolysis, electrocrystallization, microwave 
processing, hydrolysis of other calcium orthophosphates, double step stirring, emulsion-
based, or solvothermal syntheses, and several other techniques are known. Continuous 
preparation procedures are also available [15,27,28].

In addition, nanodimensional HAp might be manufactured by a laser-induced fragmen-
tation of HAp microparticles in water and in solvent-containing aqueous solutions, while 
dense nanocrystalline HAp films might be produced by radio frequency magnetron sput-
tering [53]. A comparison between the sol–gel synthesis and wet chemical precipitation 
technique has been performed and both methods appear to be suitable for synthesis of 
nanocrystalline apatite.

Various sol–gel routes have been employed for the production of synthetic HAp powders 
since the early 1990s. Ben-Nissan and coworkers introduced alkoxide-based nanocoatings 
as early as in 1989 and since then a number of excellent studies have been conducted on 
a range of precursors to produce pure nanocrystalline apatite powders, solid products, 
or coatings for medical and engineering applications [15,27,54]. The major ones are cal-
cium acetate, calcium alkoxide, calcium chloride, calcium hydroxide, calcium nitrate, and 
dicalcium phosphate dihydrate. It has been reported by some of the investigators that 
the thickness of the sol–gel derived HAp coatings produced are in the 70–100 nm range 
[15,27,54].

11.5 Diamond-Like Carbon

In recent years, diamond-like carbon (DLC) has been the focus of extensive research due 
to its potential application in many technological areas. The combination of biocompat-
ibility, wear resistance, chemical inertness, hemocompatibility, low friction, wear resis-
tance, and high hardness makes it ideal for a number of applications ranging from the 
coatings of stents, heart valves, orthopedic components, and prostheses in the biomedical 
industry [55,56].

DLC and doped DLC have been extensively investigated for possible biomedical appli-
cations. It has been demonstrated that doping with elements such as Si, N, F, Ca, and 
P improves the properties of DLC such as biocompatibility, infection resistance, and 
mechanical properties [57–60]. DLC films have been employed to coat the surfaces of 
blood-interfacing prostheses.

11.6 Thin Film Mechanical Testing: Introduction and Methods

With the ever increasing demands imposed by the use of implants and devices for dental 
and medical applications, novel techniques are needed to examine their mechanical reli-
ability. Methods for ascertaining mechanical properties and adhesion have been stimu-
lated by developments of bio-inspired coatings (i.e., HAp) on metallic substrates. Methods 
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to quantitatively determine the mechanical properties of these thin coatings on substrates 
or free-standing films are required. There have been constant developments and improve-
ments in equipment capable of extracting the mechanical properties of the structure or 
film and also the adhesion of the coating to an underlying substrate [61].

11.6.1 Adhesion and Wear Test Methods

Adhesion testing is essential to ensure the coating will adhere properly to the substrate to 
which it is applied. Many techniques have been used for the measurement of adhesion of 
coatings and films [61]. The most popular test methods for measuring the adhesive bond-
ing to substrates include pull-off, cross-cut, indentation scratching (increasing load), and 
pin-on-disk.

11.6.2 Instrumented Nanoindentation

The starting point and method of choice by many practitioners in the dental and biomedi-
cal field for measuring the mechanical properties of coatings and implants is nanoinden-
tation. The instrumentation and methodology have developed in leaps and bounds over 
the years and it is now considered a simple and effective means of obtaining meaningful 
measures of hardness, H, and Young’s modulus, E, of coatings. The main requirements for 
obtaining the best possible results with such testing are in sample preparation, calibration 
of equipment and corrections for thermal drift, initial penetration, frame compliance, and 
indenter tip shape [62–65].

In the well-known conventional microindentation testing, a load is applied through a 
diamond tip of known geometry (typically Rockwell, Vickers, or Knoop) into the material 
surface and then removed and the area of the residual impression is measured by optical 
means to give the material hardness, an example of which is shown by Kealley et al. [66] 
for HAp ceramics (Figure 11.3). In nanoindentation testing, by contrast, the size of the 
residual impressions is often only a few microns and this makes it very difficult to obtain 
a direct measure using optical techniques. A set load in the millinewton (mN) range is 
applied to the indenter in contact with the specimen. As the load is applied, the penetra-
tion depth is measured (nm range).

At maximum load, the area of contact is determined by the depth of the impression and 
the known angle or radius of the indenter. The result is a load–displacement curve, which 
yields contact pressure or hardness and Young’s modulus from the shape of the unload-
ing curve using software based on the model and indenter type (pointed, i.e., Berkovich, 
Vickers, Knoop, or spherical) [63]. Similarly, different types of loading and unloading 
methods can be used to extract desired properties as a function of depth of penetration 
[64,65,67]. The application of nanoindentation can also be directed toward the measure-
ment of residual stress and film adhesion from direct indentation or transverse scratching 
as described by Fischer-Cripps [64].

In the nanoindentation analysis, the elastic modulus (E) is obtained from the con-
tact stiffness S, which is the slope of the unloading portion of an indentation load 
(P)–displacement (h) curve at maximum load (Figure 11.3):

 
S

dP
dh

E A= = 2
π

*  (11.1)
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with the contact area (A) at maximum load and the combined elastic modulus of the 
indenter and specimen (E*) expressed as

 

1 1 12 2

E

v

E

v

E
i

i

s

s*
= +

−( ) −( )
 (11.2)

where Ei, νi, and Es, νs are Young’s modulus and Poisson’s ratio of the indenter and speci-
men, respectively. For elastic contacts of axis-symmetric indenters (i.e., spherical, conical, 
and cylindrical punches), Equation 11.1 is valid. The hardness or mean contact pressure 
for indentation is obtained from the maximum load, P, over the projected contact area, A:

 
H

P
A

=  (11.3)

The contact area (A) is determined by the indenter geometry and the contact depth [64].
Nanoindentation provides a comprehensive assessment of hardness and Young’s modulus 

of the coating as well as the elastic–plastic response from the loading and unloading curves 
based on the coating–substrate combination (e.g., soft/hard and rigid/compliant coating 
on soft/hard and rigid/compliant substrate). In addition, many tests can be performed in 
selected regions or in specific areas of interest that may show local variations in properties.

Nanoindenters have been employed to measure residual stress, coating adhesion from 
the load at which delamination occurs (taken from the pop-in that corresponds to a plateau 

Displacement/penetration (nm)

Loading
Unloading

Slope of
unload

= stiffness

Lo
ad

 (m
N

)

FIGURE 11.3
Indentation load–displacement curve for a pure hydroxyapatite using a Berkovich indenter.
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or discontinuity in the load–displacement curve), and also to function as scratch testers 
depending on the equipment capability [64]. Likewise, viscoelastic and creep behavior can 
be examined [68,69] for softer materials and is particularly relevant in bone, dental com-
posites/resins, and biological tissue studies.

11.6.3 Micro- and Nanoindentation in Medicine and Dentistry

The level of mineralization is shown to be in relationship with the mechanical properties 
of calcified tissue [70–74]. Diseases such as infectious dental caries and other developmen-
tal and genetic pathosis, which affect dental hard tissue, impose on the compositions and 
assemblages of tooth mineral. This in turn, alters the physical and mechanical behaviors of 
tooth. It has been shown that changes in the mechanical properties of the dental calcified 
tissues are associated with many of these pathologic conditions [75–77]. Enhancing the 
longevity of the restoration can be accomplished by matching the properties of restorative 
materials to the properties of teeth. As a result, data on the mechanical properties of teeth 
are needed. The knowledge gained is also vital to clinicians to help them understand how 
these tissues react under clinical loading conditions [78] and to help predict the behavior 
of the tooth/restoration interface [79].

To date, conventional compressive and tensile tests have been used to determine the 
mechanical data of teeth. Due to the relative quality and size of test specimens obtainable 
from a tooth, some limitations are associated with these tests. Preparation for these tests 
also becomes time consuming and difficult in order to achieve a number of ideal specimens. 
As a consequence of these problems, a wide variation in the results has been reported.

Since the early 1990s, nanoindentation has been used to examine dental hard tissues 
[80]. Nanoindentation allows the measurement of mechanical properties, hardness 
and elastic modulus, at the surface of a material. Compared with other conventional 
mechanical tests such as tensile, compressive shear strength bending and punch shear 
tests, the procedure for nanoindentation technique is much simpler, especially on small 
complex-shaped samples such as enamel, dentine, and cementum [81].

The measurements are relatively nondestructive when using indentation. It is also less 
time consuming for preparation as indentation test can be done on a bulk-polished speci-
men [81,82]. More importantly, the measurement of the mechanical properties of a very 
small selected region of the specimen is allowed, the dimension of which may be at a 
micrometer or even nanometer scale, which is important for the measurement of the local 
properties of nonhomogenous structures such as dental calcified tissues.

Choi et al. [83] investigated the variations of tensile and compressive stresses and the 
deformation in the nanocoating under microindentation simulated using three-dimensional 
FEA. The effects of the radius of indenter, thickness of the nanocoating and the Young’s 
Modulus of the coating material were analyzed. The nanoindentation with spherical 
indenter was modeled as three-dimensional contact problem between two axisymmetric 
bodies, with an assumption that the dimension of the specimen to be indented is large 
compared with that of the deformed volume. For simplicity, the indenter was modeled as 
a rigid surface. Diamond was chosen as the indenter material as its Young’s Modulus is 
much higher than that of the nanocoating materials and stainless steel substrate. Loading 
and unloading are the two subsequent steps used to simulate the whole nanoindentation 
process. During loading, the spherical indenter moves downward along the y-axis and 
penetrates the nanocoating. The depth of penetration is determined by the load applied. 
During unloading, the indenter returns to its initial position and the load applied is 
removed. The specimen was represented by a cylinder with such a large dimension that 
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any further increase in its dimension made no significant change in the stress distribution. 
In the vicinity of the contact region, a fine finite element mesh was employed to capture the 
localized stresses and deformation underneath the indenter. To reduce the computational 
stress and work for the finite element software, the fineness of the finite element mesh 
decreases away from the contact region. Both the coating and the substrate are considered 
to be homogeneous and isotropic. As strain hardening is not considered in this study, the 
coating and substrate are also considered to be linear elastic/perfectly plastic materials. 
It is also assumed that a perfect bonding condition occurs between the nanocoating and 
substrate. Nanoindentation simulations were carried out using a commercially available 
FEA package, STRAND7 (Figure 11.4).

Lucchini and coworkers [84] examined the damage mechanisms which accounts for the 
response of lamellar bone to nanoindentation tests, with particular regard to the decrease 
of indentation stiffness with increasing penetration depth and to the loss of contact stiff-
ness during the unloading phase of the test. For this purpose, indentation experiments on 
bovine cortical bone samples along axial and transverse directions have been carried out 
at five penetration depths from 50 to 450 nm; furthermore, a continuum damage model 
has been implemented into finite element analyses, which are able to simulate indenta-
tion experiments. The commercial finite element code ABAQUS/Standard was used to 
run the numerical analyses. Given the transversely isotropic material behavior for the 
tissue, an axisymmetric mesh was used to simulate experiments along the axial direction; 
whereas, a three-dimensional finite element mesh was built to simulate indentation tests 
along the transverse direction. The models consist of an indenter, modeled as a rigid body, 
and a bone sample represented as a cylinder of 25 μm height and radius in the 2D mesh 
and a cylinder of 50 μm height and radius in the 3D one. A spheroconical, axisymmetric 
indenter with an internal angle of 70.3° and the same area-to-depth ratio as a three sided 
Berkovich pyramid was employed in the model. Displacement-controlled indentations 
are simulated along the axial as well as the transverse directions. Suitable mesh refine-
ment was applied under the indenter tip. The 2D finite element mesh has 12,121 bi-linear 
elements of both types CAX3 and CAX4 with a characteristic element size in the refined 
region under the tip equal to 25.0 nm. Similarly, the 73,800 elements 3D mesh is denser in 
proximity of the contact area, where linear C3D8 and C3D6 8-node, hexahedral elements 

FIGURE 11.4
Three-dimensional finite element nanoindentation model. The load is applied at the top of the indenter. The 
indenter is resting on top of the nanocoating (dark grey). Restraints are usually applied at the bottom of the 
substrate (light grey) to prevent any movement of the model during nanoindentation testing.
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are used. Linear infinite elements (CINAX5 and CIN3D8) have been used to simulate the 
effect of an infinite solid domain in the region far from the indenter tip. They concluded 
that their present approach has shown the effectiveness of the coupling between indenta-
tion experiments and refined FEM simulations with a damage model aimed at obtaining 
a deeper knowledge of bone tissue mechanical behavior in the elastic and inelastic range 
and its relationship with the tissue constitution at multiple hierarchical levels.

To explore the effect of friction in simulations of bone nanoindentation, two-dimensional 
axisymmetric finite element simulations were performed by Adam and Swain [85] using 
a spheroconical indenter of tip radius 0.6 μm and angle 90°. The total FE domain was 
60 μm × 60 μm (100 times the indenter tip radius). A graded mesh of reduced integration, 
linear 4-node axisymmetric elements (CAX4R) was used to discretize the domain. A pre-
liminary mesh sensitivity analysis was performed to ensure that the simulation results 
were insensitive to mesh size in the indenter tip region. The model was loaded in two 
steps. The indenter was firstly subjected to a ramped 5 mN compressive load, followed by 
unloading to zero indenter force, in order to observe the indentation left in the bone upon 
removal of the load. During these steps, the lower edge of the bone was constrained verti-
cally. An axisymmetric boundary condition was used along the symmetry axis beneath 
the indenter tip. In order to explore the effect of interface friction, a range of friction 
coefficients were simulated between indenter and bone. The models were solved using 
ABAQUS/Explicit version 6.7-1. They concluded that it is potentially important to include 
friction in nanoindentation simulations of bone if pile-up is used to compare simulation 
results with experiment.

Nanoindentation experimental tests and finite element simulations were employed 
by Carnelli and coworkers [86] to investigate the elastic–inelastic anisotropic mechani-
cal properties of cortical bone. An axisymmetric, spheroconical indenter with an internal 
angle of 70.3°, a 300 nm end radius (estimated by the calibration curve on the fused silica 
reference sample) and the same area-to-depth ratio as a three sided Berkovich pyramid 
was employed in the model. The tip is modeled as a rigid body. Indentations along axial 
as well as transverse directions are simulated: an axisymmetric model was employed 
for indentation along the axial direction due to the transversely isotropic constitutive 
behavior of cortical bone; instead, a three-dimensional model was generated for indenta-
tions along the transverse direction. In the latter case, only a quarter of the bone tissue/
indenter system was modeled by exploiting the symmetry of the material at 90° and the 
axisymmetry of the spheroconical indenter. The bone sample is represented as a cylinder 
of 25 μm high and radius in the 2D mesh and 50 μm high and radius in the 3D one. Suitable 
mesh refinement was applied under the indenter tip. The two-dimensional finite element 
mesh has 12,121 bi-linear elements of both types CAX3 and CAX4. The characteristic ele-
ment size in the refined region under the tip is 25.0 nm. Similarly, the 73,800 elements 
three-dimensional mesh is denser in proximity of the contact area, where linear C3D8 
and C3D6 8-node, hexahedral elements are used. The element characteristic length in the 
refined region under the indenter is 24.7 nm. In order to simulate the effect of an infinite 
solid domain in the region far from the indenter tip, linear infinite elements (CINAX5 
and CIN3D8) have been used. The large deformations theory was used in the numerical 
models. Coulomb friction was assumed at the indenter–tissue interface. The commercial 
finite element code ABAQUS/Standard was used to conduct the analyses. They stated that 
their model provides a rigorous scientific linkage between the constitutive parameters 
representing the tissue’s fundamental material properties in the context of the complex 
multiaxial stress field generated during an indentation test, which is increasingly being 
used for bone mechanics characterization and has potential for use as a diagnostic tool. 
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It is clearly shown that the potential of a jointed approach in which the coupling between 
indentation experiments and FEM simulations allows one to get a deeper knowledge of 
bone tissue mechanics.

Paietta et al. [87] investigated the contribution of structural hierarchy in PMMA-
embedded lamellar bone to the variance in measured nanomechanical properties. Using 
Abaqus/CAE finite element code, a three-dimensional model for spherical nanoindenta-
tion of bone was developed. The contribution of bone’s lamellar structure to the elastic 
indentation response was explored both through variation in indentation tip test location 
and tip size. Bone was modeled as containing alternating regions of lamellar bone (7 μm 
wide) and interlamellar bone (1 μm). Contact between the analytically rigid half spheri-
cal tips and an elastic quarter-space was modeled using hard, frictionless contact along 
with large deformation theory. The elastic quarter-space was 40 × 40 × 20 μm3 in size with 
symmetry applied along the x–y plane along with a fixed bottom surface. A typical mesh 
consisted of approximately 30,000 8-noded hexahedral elements. For simulations where 
tip location was varied, a uniform mesh was utilized beneath the indenter tip to ensure 
consistent results. The model was validated by considering contact of the analytically rigid 
spherical tips with a homogeneous quarter-space, where the interlamellar and lamellar 
bone was assigned a single value for modulus. The mesh for simulations with variable 
tip size includes increased mesh density beneath the indentation tip. Simulations were 
performed to explore the contribution of tip location, where indentation tests were placed 
starting at the center of a lamella and progressively moved toward the center of the inter-
lamellar region. Investigation of tip size employed indentation tests from 100 to 500 nm 
depths, with the indenter tip located at the center of a single lamella.

The FEM was applied by Toparlia and Koksalb [88] for studying the hardness and 
yield strength of dentin subjected to a nanoindentation process. The test with a spherical 
indenter was modeled as a contact problem between two axisymmetric bodies. In this 
study, three different samples of dentin were used and the specimen was modeled with 
4950 4-node axisymmetric elements. The indenter was modeled as an undeformable sur-
face and the radius of indenter was 10 μm. The simulations were performed using ABAQUS 
finite element code. The indentation region was small-modeled using edge-biased type. 
The contact constraint was enforced by the definition of the “master” and “slave” surface. 
A resultant load of 10 mN was applied as the surface pressure of the indenter. Increasing 
load from zero to the value of 10 mN and decreasing load from 10 mN to the zero simulated 
the indentation test. At each load increment, the program caries out a large number of 
iterations according to a specified convergence rate to reach an equilibrium and congruent 
configuration. The friction coefficient between the indenter and dentin surface is assumed 
to be zero and the dentin is assumed to be homogenous, isotropic and elasto-plastic in 
behavior. It was concluded that yield strength of dentin can be estimated using FEM to 
simulate indentation experiments using data of Young’s modulus and hardness from the 
literature.

Dong and Darvell [89] examined the failure mode of ceramic structures under Hertzian 
indentation as well as the failure load and the tensile stress for crack initiation at the 
cementation surface as a function of the substrate modulus of elasticity and ceramic thick-
ness. Discs of a glass–ceramic material were cemented to flat polymer substrates. The top 
surface of the ceramic–cement–substrate structure was loaded by a 20 mm radius spheri-
cal indenter until the initial failure of the ceramic occurred. The FEM was used to analyze 
the stress distribution under such Hertzian indentation as well as calculating the maxi-
mum tensile stress based on the experimentally observed failure load and contact radius. 
For the FEA study, an axisymmetric model was created based on the dimensions and 
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the structure of the experimental specimens with the cement film thickness set at 50 μm 
and meshed with triangular elements. The validity of the FEM model was checked by 
comparison of the calculated and measured values of the contact radius. To simplify the 
FEM computation, some assumptions were made: that the interfaces were bonded per-
fectly (no delamination); that there was frictionless contact between the ceramic and the 
indenter; that the indenter was rigid enough; and that all materials were isotropic, linear, 
and homogeneous. With respect to the boundary conditions, points on the central axis 
(i.e., y-axis) of the spherical indenter, ceramic, and substrate were fixed horizontally (i.e., in 
the x-direction). The fineness of the meshing had been subjected to a convergence test to 
ensure sufficient accuracy.

The mechanical properties of thin films are commonly determined using nano- or ultra-
microhardness indentation. Understanding the relationship of the measured data and the 
mechanical properties of the indented materials is of importance in order to obtain reli-
able mechanical properties, particularly of the thin films. Using FEA, the effects of the 
elastic modulus, yield strength, and strain hardening of the film on indentation data were 
analyzed by Gan and Ben-Nissan [67] and discussed for the indentation with 2, 8, 10, and 
50 μm radius indenters. Elastic modulus of the films on a single ductile substrate shows 
relatively small influence whereas yield strength and strain hardening are found to have 
significant effect on the measured data.

11.6.4 Micro- and Nanocoatings and FEA: Past and Present

The FEM has been widely adopted to simulate the elastic and plastic deformations beneath 
a pointed indenter in nanoindentation test. Many advantages can be offered by FEA, for 
example, the experimental time can be reduced. Large-scale commercial codes for FEA 
software are currently available and they can provide simulation environment for differ-
ent films and substrates, and physical models of indenter tips.

The effects of residual stress on the mechanical properties in DLC are investigated 
by Wei and Yang [90] using 2D FEA. In the model, the film thickness is 500 nm and the 
substrate thickness is 50 μm. The nanoindentation process is simulated by pressing a rigid 
conical indenter with a 70.3° half-included angle into the DLC/substrate system. The dia-
mond tip was modeled with a Young’s Modulus of 1140 GPa and Poisson’s ratio of 0.07. 
The element in this model is CAX4R and the total number of elements was 20,000–30,000. 
The mesh near the indenter was finely remeshed to obtain sufficient accuracy. The analysis 
was implemented by the commercial software ABAQUS. The nonuniform stressing effect 
is investigated through different nanoindentation positions along the radial direction.

Rungsiyakull et al. [91] developed a new design framework to optimize the surface coat-
ing parameters in terms of the diameter of the titanium beads/particles and their volume 
fraction. As a key measure of the bone/implant interface stability and osseointegration, the 
average apparent bone density developed in the peri-implant region will be examined as 
a function of time. The FEA model used herein is based on the 3D solid model of a typical 
dental implantation setting. The model consists of a dental implant fixture, implant abut-
ment, all-ceramic crown and a section of bone. The solid model of a human canine man-
dibular section was obtained from computerized tomography (CT) data and processed 
in Rhinoceros 3D. The complete 3D solid model was then converted into a 2D macroscale 
model by sectioning in the bucco-lingual direction. A mechanical load of 202.23 N was 
applied on the top of the crown at 2 mm offset horizontally from the center to the buccal 
side. To capture morphological features, 40 microscopic models were created to represent 
different coating scenarios for the localized cortical and cancellous regions with 20 models 
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each. These microscopic models have 1 mm × 1 mm dimension and consist of the localized 
implant assemble, cortical or cancellous bones, and a layer of blood clot. The implant com-
ponent of the model is comprised of a threaded section onto which are sintered (bonded) 
spherically shaped, atomized particles of Ti-6A1-4V alloy with diameters of 30, 50, 75, and 
100 μm and volume fractions of 15%, 20%, 25%, 30%, and 35%, respectively. All the finite 
element analyses were performed using a commercial code ABAQUS with 3-node linear 
triangular plain strain elements (CPE3).

In order to study how the indenter tip radius affects the FEA of hard/soft coating on 
hard substrate, a two-dimensional (2D) axisymmetric model has been developed by Panich 
et al. [92] using the capacities of the ABAQUS finite element code. The hard/soft coating 
perfectly adhered to the substrate and was indented by a rigid conical indenter under con-
dition of frictionless contact. The indenter has the same projected area–depth function as 
the standard Berkovich as it has a half angle of 70.3°. The rigid indenter was simulated by 
using few tip radii, including perfectly sharp tips and round tips of 0.2, 0.5, and 1.0 μm. The 
coating region and the adjacent substrate were finely meshed and continuously coarsened 
further away from the contact area. Both the coating and the substrate are considered to be 
isotropic which supposed to be linear elastic perfectly plastic material, as strain hardening 
is not considered in this case. The indenter was set to penetrate through the coated sub-
strate boundary conditions that were applied to the centerline and bottom surface nodes, 
while the outermost side was assumed traction-free. Titanium was used as soft coating on 
the high-speed steel substrate, while titanium diboride (TiB2) was used as hard coating.

The bone stress and strain distributions around thin HA-coated implants was observed 
by Aoki et al. [93] using three-dimensional FEA. A model of an implant in the mandible 
was developed using ANSYS FEA program. The thickness of the HA coating was reported 
to be 1 μm. The implants were inserted into a simplified mandible segment. The overall 
dimensions of this bone block were 14.0 mm (height), and 9.0 mm (width), and the bone 
was composed of a 2.5 mm thick cortical layer and cancellous bone. All materials used 
in the models were considered to be isotropic, homogeneous, and linearly elastic. The 
implant and bone were divided with 10-node tetrahedral structure solid (ANSYS solid 92). 
Forces of 100 N were applied axially and obliquely to the occlusal node at the center of the 
abutment. The oblique load was 45° to the vertical axis of the implant. The models were 
constrained in all directions at the node on the surface of the bone segment.

A novel approach that combines the indentation tests with nonlinear finite element 
modeling (FEM) was proposed by Zhang and coworkers [94] to estimate the elastic/
plastic constitutive relation of plasma-sprayed HAp coatings on a Ti-6Al-4V substrate. 
Simulations for the Hertzian indentation on the Ti alloy control samples and HAp-coated 
Ti alloy implants were conducted by using the commercial finite element package, 
ABAQUS. Two-dimensional axisymmetric modeling was used for the indentation simu-
lation under axially symmetric loading conditions, and smooth contact (no friction) was 
assumed. The 4-node bilinear axisymmetric quadrilateral (CAX4) elements were used in 
the analysis. In order to obtain the contact impression accurately, elements with fine size 
(10 × 10 μm) were used in the areas near the expected contact region. Linear elastic defor-
mation was considered for the WC indenter. A post-test examination confirmed that no 
plastic deformation in the WC sphere occurred during indentation.

Using 3D FEA, Vlachos et al. [95] examined the behavior of coating–substrate system 
under ball indentation. In this analysis, different coating and substrate properties have 
been used for the models utilized in the simulations. FEA was performed using the 
implicit finite element code LS-NIKE3D. The model consists of three parts: the spherical 
indenter, the coating, and the substrate. The indenter is modeled using 1988 solid elements 
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and isotropic elastic material properties. The radius of the sphere is 60 μm assuming an 
indenter diameter of 120 μm. The indenter was assumed as a nondeformable body. A non-
frictional contact was assumed in this analysis. The coating was modeled using 865 solid 
elements, assuming isotropic elastic-perfectly plastic material behavior. The coating model 
had the shape of a cylinder with a radius of 200 μm. The coating thickness was 10 μm for all 
models. The substrate was modeled using 4320 solid elements that exhibit isotropic elastic-
perfectly plastic material behavior. The substrate had again the shape of a cylinder having 
a radius of 200 μm and a height of 190 μm. The imposed displacement was 560 nm and was 
applied in 56 equal increments. For each step, the force required to impose the correspond-
ing displacement was calculated from the code and stored in an ASCII file.

Crack formation is investigated on both micro- and macroscale using spherical indenter 
tips by Thomsen et al. [96]. The coating used in this study is DLC deposited using a 
plasma-enhanced CVD technique (PECVD). Depth sensing indentation is used on the 
microscale and Rockwell indentation on the macroscale. A nonlinear elastic–plastic finite 
element model of the coating system which is loaded with a spherical indenter is used to 
simulated stress and displacement distributions in the material. In the numerical simula-
tions the coating is assumed to be fully elastic, while the substrate is allowed to deform 
in an elastic–plastic manner. Frictionless contact between the indenter and the specimen 
is assumed. Since the prospective circle of contact, for an elastic–plastic contact, cannot be 
identified a priori, specialized contact elements are included in the finite element model. 
Nonlinear materials response and element contact are attained by applying the load to 
the indenter in increments. Due to the large strains involved, a geometric nonlinearity, 
or large displacement algorithm, is a required inclusion in the analysis. This “geometric” 
nonlinear analysis accounts for changes in stress distribution which result in a change 
in geometry of the model and becomes an important issue at large values of indentation 
strain where piling up may occur.

High stresses and complex deformation usually develop in thin films during indentation 
tests. Gan et al. [65] investigated the stresses and deformation in sol–gel derived zirconia 
films coated on stainless steel under spherical indentation using FEA. The stresses in the 
film under indentation and their variation as a function of the mechanical properties of the 
materials, the thickness of the film and radius of the indenter are studied. The indentation 
with a spherical indenter was modeled as an axisymmetric contact problem between two 
axisymmetric bodies. Simulations of the ultra-microhardness indentation were performed 
using the large strain, elastic–plastic features of the ABAQUS finite element code. To simu-
late the indentation process, the indenter was given a downward displacement which was 
specified as a series of steps. As the indenter moved downward into the specimen, the cor-
responding load was computed by summing the reaction force at the contact node points 
on the indenter. A perfect bonding condition between the film and substrate was assumed. 
Both the coating and substrate were assumed to be homogeneous and elastic/plastic.

Three-dimensional finite element simulation is applied by Wang and Bangert [97] to 
investigate the general behavior of coated samples subjected to an indentation test. 
MARC®, a commercially available finite element software package, was used to study the 
Vickers indentation process on the following two representative systems: copper-coated 
high-speed steel as an example for a soft layer on a hard substrate and titanium nitride-
coated high-speed steel as the reverse situation. The calculation provides the deformation 
characteristics and material displacements under or after local load as well as the stress 
distribution inside the coating and across the interface into the substrate.

Mechanical properties of zirconia, hydroxyapatite, and alumina nanocoatings for bio-
medical applications were modeled by Gan and Ben-Nissan [67]. Understanding the 
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relationship of the measured data and the mechanical properties of the indented materials 
is of importance in order to obtain reliable mechanical properties, particularly of the thin 
films. Using FEA, the effects of the elastic modulus, yield strength, and strain hardening 
of the film on indentation data are analyzed and discussed for the indentation with 2, 8, 
10, and 50 μm radius indenters. Elastic modulus of the films on a single ductile substrate 
shows relatively small influence whereas yield strength and strain hardening are found to 
have significant effect on the measured data.

Bhattacharya and Nix [98] conducted a study on the elastic and plastic deformation asso-
ciated with sub-micrometer indentation of thin films on substrates using the FEM. The 
effects of the elastic and plastic properties of both the film and substrate on the hardness 
of the film/substrate composite are studied by determining the average pressure under 
the indenter as a function of the indentation depth. Calculations have been made for 
film/substrate combinations for which the substrate is either harder or softer than the film 
and for combinations for which the substrate is either stiffer or more compliant than the 
film. Finite element simulation of the unloading portion of the load displacement curve 
permits the determination of the elastic compliance of the film/substrate composite as a 
function of indentation depth. The elastic properties of the film can be separated from 
those of the substrate using this information.

11.7 Conclusion

The dental and medical applications of materials and devices containing nanocoatings will 
increase in the next decade to be employed in implantable materials, slow drug-delivery 
systems, bone grafts, skin products, stem cell and biogenic material-containing scaffolds, 
and biologically active membranes.

Materials utilizing encapsulation or coating of therapeutic and nutritional products will 
increase. Slow drug delivery and targeted cancer treatment will use the nanocoatings and 
nanopowders. Coatings with unique electrical, magnetic, and optical properties will also 
be employed in diagnostic systems.

One of the major drawbacks of current synthetic implants is their failure to adapt to 
the local tissue environment. Until recently, surface modifications and tissue engineering 
has been directed toward taking advantage of the combined use of living cells and three-
dimensional ceramic scaffolds to deliver vital cells to damaged sites in the body.

In the dental and biomedical fields, the surface modification of metallic materials, such 
as implants, aims to promote biocompatibility, inhibit wear, and reduce corrosion and ion 
release. Surface coatings offer the possibility of modifying the properties of a component, 
and therefore, improve both performance and reliability.

The mechanical properties of biomaterial micro- and nanocoatings and the substrate 
(i.e., implant) are strongly dependent on the film microstructure and deposition process 
as well as on the influence of interfacial constraint. Accurate measurement techniques are 
essential to determine the properties of the coatings as these properties can differ from the 
bulk. Above all, better techniques are required for quantitative measurements of adhesion 
strength, interfacial fracture toughness at the coating–substrate interface, hardness, and 
friction.

Measurement techniques such as instrumented nanoindentation is an essential tool for 
characterizing submicron coating properties, and further understanding of mechanical 
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processes involved in these and other tests will help in obtaining valuable information, as 
well as in identifying the limitations of micro- and nanocoatings.

In addition, theoretical modeling approaches such as FEA are essential for the advance-
ment in understanding thin film–substrate interfacial behavior, which may lead to better 
design and choice of thin film–substrate materials selection.

One of the major issues in biomedical materials research is the relationship between 
biological responses and surface properties of materials. Surface modification by thin 
film deposition has become an important tool for research aimed at understanding how 
structural and chemical surface properties influence material–biosystem interactions. As 
better understanding is achieved, one can expect that surface modifications for the pur-
pose of controlling tissue response will open up avenues for developing new and superior 
implants and medical devices in a more systematic manner and at a faster rate than at 
present.

Bone–implant interactions, in addition to biological factors, are influenced by function-
ally applied multiaxial forces and biomechanics. The ultimate understanding of biological 
systems can only be accomplished with appropriate nanoscale mechanical properties of 
biogenic structures and the influence of the nanostructures and nanoloading on these 
biological systems.

Our drive to determine and measure mechanical properties of thin film at the nanoscale 
using FEA will inevitably open new avenues in understanding the influence of stresses 
and deformations in both the micro and nanoscale in the growth and repair mecha-
nisms of biologic systems to allow us to use new materials, systems, and tools in tissue 
regeneration.
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12
Application of Finite Element Analysis 
for Nanobiomedical Study

Viroj Wiwanitkit
Hainan Medical University, Haikou, People’s Republic of China
and
Wiwanitkit House, Bangkok, Thailand

12.1 Introduction

The integration of sciences leads to the advent of many discoveries and this is the trend of novel 
science in the present era. The link between physical and biological sciences has resulted in 
new approaches to solving many previously hard-to-explain problems. Combining two dif-
ferent sciences leads to a useful new science. A good example of such an integration is nano-
science, which is a multidisciplinary approach encompassing both physical and biological 
concerns to approaching to a situation. Nanoscience is accepted as “the science of the future.” 
At present, there are many branches of nanoscience such as nanochemistry, nanopharmacol-
ogy, nanoengineering, nanomedicine, etc., each of which is recognized for its usefulness.

Nanomedicine, the specific branch of nanoscience that covers medical aspects, is still 
a novelty in medicine. Based on advances in nanotechnology, diagnosis, treatment, and 
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prevention of disease can be easily done. Fast, highly accurate, and reliable medical activ-
ity can be expected. Today, nanomedicine is not “hope” but it is “fact.” The applications of 
nanomedicine can be used in daily clinical practice (either in vivo, in vitro, or in silico [1]), 
and nanomedicine-based medical services are already in use in many medical institutes 
around the world.

Both in vivo and in vitro approaches are well-known forms in medicine. They are stan-
dard approaches in medical science. However, the so-called “in silico approach” might 
be a new concept in medical science. It is based on a computational approach. In silico 
technique might be described as a simulating or imaginary medical approach. This does 
not mean that in silico technique is not acceptable; in fact, it is very useful in medicine. 
The advantages of using this approach in medicine include shortening turnaround 
time, decreasing the cost of experiments, getting rid of confounding interference, and 
accessibility.

The in silico approach makes use of computational simulation techniques to help solve 
medical issues. A good example of this technique is “omics” science, which is well known 
in the biomedical society [2]. Application of computational technology can be performed 
for any kind of medicine including nanomedicine. As nanomedicine is a specific medicine 
that deals with very small objects, it might be an imaginary approach in another sense. 
Hence, the application of in silico techniques to help clarify and predict phenomena in 
nanomedicine is feasible (Table 12.1) [3,4].

At present, several computational techniques can be selected in nanomedicine 
research. However, an important technique that can be used is the finite element 
analysis. This can be used in studying medical structure and function at the nanolevel. 
This chapter discusses how finite element analysis can be useful in nanomedicine. In 
addition, a summary of important reports on the application of finite element analysis 
in nanomedicine is given.

12.2  Overview of Finite Element Analysis and Its Application in Medicine

Finite element analysis is a scientific term used to explain an analysis technique in 
engineering [5]. The main purpose of this engineering technique is to analyze structure or 
“element.” It is one of the four main analyses for any phenomenon in engineering: finite 
different analysis, finite element analysis, finite volume analysis, and finite point analysis. 

TABLE 12.1

Usage of Computer-Based Approach for Problems in Nanomedicine

Applications Details

1. Clarification Computer-based approach can help clarify processes or phenomena in medicine. The 
examples are clarification of the nanostructure of a medical molecule (enzyme, hormone, 
antigen, antibody, etc.)

2. Prediction Computer-based approach also helps predict or simulate processes or phenomenon in 
medicine. The predictions of the changes of structure after biomedical interaction are good 
examples (such as interaction between drug and receptor, interaction between antibody 
and pathogen, etc.)

Sources: Haddish-Berhane, N. et al., Int. J. Nanomedicine, 2(3), 315, 2007; Saliner, A.G. et al., IDrugs, 11(10), 728, 
October 2008.
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403Application of Finite Element Analysis for Nanobiomedical Study

In brief, finite element analysis means analysis of an “element” by name, by separating 
the element into many exact numbers of small pieces of focused elements and using 
mathematical modeling of each separate piece for further matrix analysis. It can be useful 
for either solid or fluidic mechanical analyses. In fact, several kinds of elements can be 
analyzed such as rod elements, beam elements, composite elements, solid elements, spring 
elements, mass elements, rigid elements, viscous damping elements, etc.

Historically, finite element analysis has been acknowledged for more than 70 years 
beginning with the attempt to use specific numerical analysis methods accompanied with 
variational calculus for solving questions on vibration systems. It has since developed rapidly 
and become one of the main techniques for the analysis of structures in engineering. Today, 
it is accepted as a useful technique for the analysis of structural rigidity and defection. At 
first, it was widely used in mechanical engineering; however, due to the advantages of 
this analytical approach, it was further applied in the material sciences and then to other 
sciences. In the first period of development of finite element analysis, the technique seems 
to have been very difficult and complex process as it required manipulation of difficult 
mathematics, partial differential equations, and integral equations. However, the increasing 
use of computer science has eased the analysis. In the 40 years since the implementation of 
computers, more generalization of finite element analysis can be seen, and in the present 
day it has integrated into several engineering industries.

In the present computer era, computational modeling and designing of materials becomes 
the main issue of finite element analysis. Computational finite element analysis helps both 
prevention and correction activities. This can be helpful in product design, surveillance, 
and refinement. By focusing on prevention, computational finite element analysis can 
help solve the problem of unwanted manufacturing and construction. With prediction, 
the nonconformation piece will not be produced. On the other hand, computational finite 
element analysis also helps correct the problem of failed or erroneous pieces of work. It 
helps identify problems and design better pieces of work.

Finite element analysis can be a two- or three-dimensional model. Several parameters 
can be used in the simulation of a condition, and numerous algorithms or functions can 
be incorporated in analysis. The system can also be either linear or nonlinear. This means 
the high flexibility of computational finite element analysis in approaching a research 
question.

Finite element analysis can be very useful in engineering. It can be applied for engineering 
analysis. The widely used types of engineering analysis include the following:

 1. Structural analysis: A very basic and direct usage of finite element analysis. The 
analysis can be based on either linear or nonlinear models as already discussed. 
Simple parameters are used, and it is usually primarily assumed for nonplastic 
deformity property of the analyzed elements. Stresses in the material can be 
simulated, and assessment of deformation is the main focused activity.

 2. Vibrational analysis: A type of advanced analysis. The simulation of applying 
several vibrations to an element is performed. The assessment of responses of the 
material such as occurrence of resonance and subsequent failure is the main aim 
of this kind of analysis.

 3. Fatigue analysis: Another kind of advanced analysis. The prediction of the durability 
of the element to effects of cyclic loading is primarily performed, and this is useful 
for prediction of crack propagation. This can give the tolerance value or lifespan of 
the studied materials.
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404 Computational Finite Element Methods in Nanotechnology

 4. Heat transfer analysis: This advanced application is aimed at assessment of the 
conductivity or thermal fluid dynamics of the studied structure. Based on this 
analysis, a steady-state or transient transfer with constant thermoproperties in the 
material can be predicted.

 5. Electricity transfer analysis: An advanced application aimed at assessment of the 
electrical dynamics of the studied structure. Based on this analysis, a steady state 
with constant electroproperties in the material can be predicted.

With the bridging between physical and biological science, the connection between 
engineering and medicine occurs. The hybrid science, medical engineering, is a com-
plex science that needs both engineering and medical techniques for approaching the 
question.

Computational finite element analysis plays a role in several techniques. Although there 
are many computer-based analyses for medical research, at present a widely used analy-
sis is computational finite element analysis. Structure is an important aspect of study in 
medical engineering, and the use of computational finite analysis to answer the questions 
raised in medical structure is not surprising. The advantages of computational finite ele-
ment analysis can be applied in medicine (Table 12.2). In general, the use of computational 
finite element analysis in medicine can be either simple or advanced. The first level is 
simple usage. Simple usage can be employed for simple structural assessment and is based 
on the fundamental usefulness of finite element analysis in material science. The second 
level is advanced usage. This is the prediction of the structure after simulating change and 
is based on the in silico application of the interference, which can be vibration, stress, or 
temperature. This cannot be easily derived by other computational analytical programs. 
It should be noted that many medical phenomena are considered vibration, and this can 
be the cause of structural change. In addition, finite element analysis is also used as a 
basic concept for the development of many complex computational programs that can be 
applied in medicine.

At this point, the reader might still not be able to imagine the exact application of finite 
element analysis in medicine. To help better understand the topic, various common appli-
cations will be further discussed.

 1. Application in orthopedics: There is little doubt that orthopedics is a main branch of 
medicine dealing with materials, bone, and bone replacement materials. Over the 
past 40 years, biomechanics studies have been widely performed and have become 
an important part of orthopedics research [6]. Huiskesand Chaosaid opines that 
“The method is now well established as a tool for basic research and for design 
analysis in orthopedic biomechanics, and the number of publications in which it 
is used is increasing rapidly [6].”

TABLE 12.2

Application of Computational Finite Element Analysis in Medicine

Applications Details

1.  Structural 
approach

This application is used to deal with the question on structure. Since finite element analysis is a 
primary technique for material study, it can be applied to access any medical materials

2.  Functional 
approach

This application is used to solve the problem of functional change due to several interferences 
(vibration, stress, or temperature). It is based on the basic principle of simulation in medicine
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405Application of Finite Element Analysis for Nanobiomedical Study

  Following is a list of important new and interesting publications (in 2011) in this 
area:

 a. Ma et al. [7] studied an important orthopedics problem, femoral head necrosis 
and femoral neck fractures via assessment; the relationship between the femo-
ral head trabecular bone within the spatial structure and its biomechanics. 
In this work, a three-dimensional model of trabecular bone was obtained via 
computational finite element analysis technique [7].

 b. Zhang et al. [8] used three-dimensional finite element models to study “the 
effect of vertebrae semidislocation on the stress distribution in facet joint and 
intervertebral disc of patients with cervical syndrome” and reported that “The 
vertebra semidislocation leads to the abnormal stress distribution of facet joint 
and intervertebral disc.”

 c. Fei et al. [9] used three-dimensional finite element models to explore “the bio-
mechanical effects on adjacent vertebra of thoracolumbar osteoporotic vertebral 
compression fracture after percutaneous kyphoplasty with cement leakage.”

 d. Eichinger et al. [10] used three-dimensional finite element models to deter-
mine the effectiveness of screw hole inserts in empty locking screw holes for 
improving the strength and failure characteristics of locking plates.

 e. Olson et al. [11] studied thermal effects of glenoid reaming during shoulder 
arthroplasty with the use of computational finite element analysis approach.

 f. He et al. [12] studied the biomechanical mechanism of spinal three-column 
after interspinous process fusion by computational finite element analysis 
approach.

 2. Application in dentistry: In addition to orthopedics, another widely used application 
of finite element analysis is in dentistry. Indeed, the knowledge of dental materials 
is important in filling of teeth. Dental material studies are widely performed and 
have become an important part of dental research.

  Here are some important new and interesting publications (2011) in this area:
 a. da Silva et al. [13] used three-dimensional finite element analysis to analyze 

the maxillary central incisor in two different situations of traumatic impact.
 b. Campos et al. [14] used three-dimensional finite element analysis to analyze 

the pattern of ceramic crowns.
 c. Naini et al. [15] used three-dimensional finite element analysis to analyze 

and assess tilted and parallel implant placement in the completely edentulous 
mandible.

 d. Choi et al. [16] used three-dimensional finite element analysis to analyze 
Ti-6Al-4V and partially stabilized zirconia dental implants during clenching.

 e. Panagiotopoulou et al. [17] used three-dimensional finite element analysis to 
analyze the mechanical significance of morphological variation in the macaque 
mandibular symphysis during mastication.

 f. Chang et al. [18] used three-dimensional finite element analysis to analyze the 
effects of implant diameter and bone quality in short implants placed in the 
atrophic posterior maxilla.

 g. Alikhasi et al. [19] used three-dimensional finite element analysis to analyze 
stress distribution around maxillary anterior implants.
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406 Computational Finite Element Methods in Nanotechnology

 h. Ghuneim [20] used three-dimensional finite element analysis to analyze tooth 
replica custom implants.

 i. Dos Santos et al. [21] used three-dimensional finite element analysis to analyze 
the influence of different soft liners on stress distribution in peri-implant bone 
tissue during healing period.

 j. Lin et al. [22] used three-dimensional finite element analysis to analyze and 
compare stress distribution to connector of lithia disilicate-reinforced glass-
ceramic and zirconia-based fixed partial denture.

 k. Rungsiyakull et al. [23] used three-dimensional finite element analysis to 
analyze the effects of occlusal inclination and loading on mandibular bone 
remodeling.

 l. Benazzi et al. [24] used three-dimensional finite element analysis to 
analyze stress distributions in human molars in cases with occlusal wear 
information.

 m. Han et al. [25] used three-dimensional finite element analysis to analyze 
biomechanical distribution of dental implants with immediate loading.

12.3 Computational Nanomedicine with Finite Element Analysis

Nanomedicine is the medical approach to things at a nanoscale. A common question 
asked is, “What is a nanoscale?” The major factor in determining nanoscale is the size 
or quantity. Viruses and hormones are good examples of medically related subjects at 
the nanoscale level. A virus is a very small object, and its size is usually measured in 
nanometers, which falls in the nanoscale. Viruses play an important role in medicine 
since they can cause infectious diseases. Hormones are very small secret biomaterial in 
human bodies. Their quantity is usually measured in nanogram per liter. This unit also 
falls into the nanoscale. Hence, nanoscale is not new but is well-known in several areas of 
medicine. However, due to the limitation of the sense organs of human beings, working 
within the nanoscale is usually difficult. Hence, several tools have to be developed to 
help solve the problem. There must be a technique to approach the nanolevel medical 
phenomenon. As noted earlier, the application of in silico technique is an acceptable 
solution [3,4].

In silico technique helps medical scientists solve many problems. In informatics, 
technology is already merged with nanoscience to form a newer science called 
“nanoinformatics” [26]. Nanoinformatics helps in approaching nanoscale phenomena in 
nanomedicine. Generally, a nanoinformatics approach can help solve existing problematic 
phenomenon as well as predict imaginary interactions. Focusing on nanomedicine, the 
computational approach is confirmed for its usefulness. Since processes in nanomedicine 
can be based on the same concepts as those in medicine, computational finite element 
analysis is probable and feasible. Both assessment of nanomaterial structure and simulation 
of interferences (vibration, stress, or temperature) on nanomaterial structure can be done. 
The simple and advanced usages can be similar to use in general medicine. The advanced 
use for clarification or prediction of kinetic things or processes in nanomedicine helps 
bring great progression to the field. More details on examples of important reports on this 
topic can be seen in the next section.
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407Application of Finite Element Analysis for Nanobiomedical Study

12.3.1  Summary of Important Reports on the Application 
of Finite Element Analysis in Nanomedicine

As earlier noted, computational finite element analysis can have great advantages in nano-
medicine, and computational finite element analysis is presently widely used in it [27–30]. 
Here, the author provides a summary of important reports on the application of computa-
tional finite element analysis in nanomedicine (Table 12.3) [27,31–34].

 1. Application for clarification: A good example of the application of computational 
finite element analysis is its usage in nanomaterials. Clarification of the structure 
of new nanomaterial in nanomedicine is possible. Many studies have been done 
on gold nanoparticles, a basic nanomaterial that is widely used in medicine, espe-
cially for diagnostic purposes. Lee et al. reported the assessment of their concept 
on using DNA-gold nanoparticle as markers for cell surface marker site [35]. In 
addition, clarification can also be applied to the nanostructure of biomaterials [36]. 
This is a basic nanometallology concept. The main application is on orthopedic 
and orthodontic materials as previously discussed.

 2. Application for prediction: A good example of the application of computational finite 
element analysis is its usage in therapy. Prediction of the action of nanoparticles 
in therapeutic processes under different conditions is possible. Indeed, computa-
tional finite element analysis is a major technique used to assess inference-induced 
change of therapeutic nanoparticle during treatment. There are some interesting 
reports on this topic. Elliott et al. studied the use of gold nanoshells as adjuvant 
to laser thermal therapy in treatment of metastatic liver tumors [37]. Heat transfer 
simulation model was used in this work [37]. Elliott et al. state, “This indicates a 
potential to use nanoparticles to enhance both the safety and efficacy [37].” An 
interesting article describing the change of nanoshell during hyperthermia ther-
apy was published by Liu et al [38]. Since nanoparticles have increased roles in 
novel treatments, especially for cancer treatments, the role of computational finite 
element analysis might also be enhanced.

In addition, since change is a commonly expected thing in any treatment, the application 
for prediction can also be useful in the assessment of the pharmacologic reaction of drug. 
It can be helpful in the nanosystem of drug delivery and targeting [32]. There are some 

TABLE 12.3

Some Important Reports on Computational Finite Element Analysis in Nanomedicine

Authors Details

Xing et al. [31] Xing et al. used computational finite element analysis to analyze adhesion force 
of nanofibers and nanoparticles

Babincova and Babinec [32] Babincova and Babinec explained the application of finite element analysis on 
magnetic drug delivery and targeting

Sassaroli et al. [33] Sassaroli et al. used computational finite element analysis to analyze heating of a 
gold nanoparticle and the surrounding microenvironment by nanosecond laser 
pulses

Johnson et al. [34] Johnson et al. used computational finite element analysis to analyze the effects of 
elastic anisotropy on strain distributions in decahedral gold nanoparticles

Yih et al. [27] Yih et al. used computational finite element analysis in studying a nanoliter 
drug-delivery MEMS micropump with circular bossed membrane
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408 Computational Finite Element Methods in Nanotechnology

available reports on this area. For example, Kim and Simon used computational finite ele-
ment analysis to predict transport mechanisms in oral transmucosal drug delivery [39]. 
Wu et al. studied delivery and release of nitinolstent in carotid artery and their interac-
tions via computational finite element analysis [40].

To summarize, finite element analysis is applicable for various sections of nanomedicine:

 a. In nanodiagnosis: Such as modeling of the surface of nanomaterials used in devel-
opment of nanobiosensors and study of the effect of magnetic fields or electricity 
on the nanofluidic tool

 b. In nanopharmacology: Such as modeling of the surface of drugs and the study of the 
effect of direct stress, magnetic field, or electricity on drugs

12.4  Computational Finite Element Analysis Tools 
for Management of Biomedical Data

Based on computational technology, manipulation of data in medical science can be easier 
than it was in the past. Surface parameters are also an important group of data in biomedi-
cine. Indeed, in physiology, characteristics and change in surface parameters of any bioma-
terial can significantly affect the biological process and reaction. Such process and reaction 
occur at a very small scale, usually nanoscale; hence, it is a main topic to be discussed in 
nanomedicine. The management of specific surface parameters data generated in nano-
medical science is an important practice in nanomedicine, and advanced computational 
technology can help ease this practice.

Several nanomedical surface parameters can be seen in nanomedicine. Examples are the 
data on the nanostructure of the diagnostic particle, germ, drug, and cells. Understanding 
of the pathophysiology of an abnormality and designing of new diagnostic tools as well 
as therapeutic agents based on the nanostructure data can be more specific than previ-
ous classical practice. Manipulation of these biomedical data using computational tools is 
feasible. To get the most effective data management, selection of proper tools for specific 
work has to be done. Thus, it is necessary to understand the presently available tools. 
Here, we briefly summarize some important available tools that use the computational 
finite element analysis concept. These computational tools can be useful for work in 
nanomedicine.

12.4.1 Usefulness of Computational Finite Element Analysis in Nanomedicine

Finite element analysis uses an imaginary dividing of the element into small parts called 
nodes, which then make a framework grid called mesh. The generated mesh is the part 
to be further analyzed. In the past, this was based on very difficult mathematical calcula-
tions; however, with the use of computers, this has become much easier and application of 
interferences can be done. In nanomedicine, the assigned interferences can be heat, elec-
tricity, strain, pressure, etc. As discussed, computational finite element analysis is useful 
in manipulation of data in nanomedicine. Finite element analysis can be a fundamental 
concept for further development of programs for general usage. The reasons include the 
following: (a) finite element analysis is a basic concept in structure analysis and (b) struc-
tural problems are common in biomedicine. Using computational finite element analysis 
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409Application of Finite Element Analysis for Nanobiomedical Study

to solve a problem or to simulate a case is possible and can be an effective solution to bio-
medical research questions.

Focusing on the specific program for help with computational analysis, there are several 
available programs. A good one is MATLAB®, which is an effective measure with very few 
noises in processing [41]. It can be implemented for usage in finite element analysis of the 
model and widely used for structural clarification and prediction in reconstructive medi-
cine at present [42]. Although MATLAB is an expensive program, it has several advantages 
and seems to be cost effective. The ways that MATLAB can be used to support the finite 
element analysis in nanomedicine problems are further discussed.

 1. Creating of graphical model: MATLAB can help with the generation of graphical 
models for referencing in finite element analysis. Three-dimensional plots can be 
generated via MATLAB. The resulting graphical model can be assigned as either 
contour, mesh, or surface plots. For example, this is a case of using MATLAB for 
creation of a model of a small nano fragmented cell in blood. The MATLAB code 
in the MATLAB Command Window can be

>> [x, y, z] = peaks;
>> c = contour (x, y, z, 27);
>> clabel (c); title (‘2 – D Contour plot of nano-fragmented cell 
with clable’);
>> figure (2)
>> c = contour3 (x, y, z 27);
>> clabel (c);
>> clabel (c); title (‘3 – D Contour plot of nano-fragmented cell 
with clabel’);
>>

 2. Solving the problem of differential and integral equation: As noted, the finite element 
analysis is usually based on differentiation and integration. MATLAB can help 
solve the calculation problems. This can also be useful in performing simulation. 
For example, this is a case of using MATLAB for solving the equation of desizing 
of viral particles after response to heat stress. An example of code is shown here.

>> p = - 8; delta = 0.08; y(1) = 6;
>> k = 0
>> for X = [delta: delta: delta: 0.5]
k = k + 1;
y (k + 1) = y(k) + p * y(k) * delta;
end

>> x = [0: delta: 0.5];
>> y_true = 6 * exp (-8 * x);
>> plot (x, y ‘*’, x, y_true);
>> legend (v‘prediction’, ‘observation’);

12.4.2  Important Computational Finite Element Analysis 
Tool for Management of Biomedical Data

There are several computational tools using computational finite element analysis for 
management of biomedical data. Some important tools that are specific to “nano” biomedi-
cal data are discussed.
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410 Computational Finite Element Methods in Nanotechnology

 1. FEBio [43]: FEBio is a finite element analysis based computation approach that is 
specifically designed for biomechanical applications. This tool was developed by 
Mass et al. in a Utah laboratory, and it was reported for its good properties com-
pared with ABAQUS and NIKE3D [44]. It can help structural clarification of many 
structures such as musculoskeletal structures. It is based on three-dimensional 
finite element analysis. The software was first developed as an open source and 
is applicable for Windows. For more information, please visit http://mrl.sci.utah.
edu/febio-overview

 2. PreView [43]: PreView is a program that is designed as a preprocessor for FEBio. It 
is mainly used as geometry preparation for running of FEBio.

 3. PostView [43]: PostView is a program that is designed as a postprocessor for FEBio. 
It is mainly used as a graphical user interface for finalized visualization.

 4. GAGSim3D: GAGSim3D is a computer program developed for visualization of three-
dimensional files. GAGSimSDa can be used for some statistical studies on vessel 
distribution (angles, lengths, etc.) Henningeret al. also proposed that GAGSim3D 
was useful in reduction of transmission electron microscopy artifacts [45].

 5. ANSYS: ANSYS is an actual simulation tool. The simulation can be stress, thermal, 
etc. It is a computational finite element analysis tool that is useful for electromag-
netic analysis. A good example of its usage in medicine is the transcranial mag-
netic stimulation analysis in cases with brain disease [46].

 6. COMSOL multiphysics: COMSOL Multiphysics or FEMLAB is a specific informatics 
tool designed for computational finite element analysis. It also allows for interac-
tion with MATLAB program. For example, it can be applied for the simultaneous 
solution of fiber excitation by computational models [47].

12.5  Common Applications of Computational Finite Element 
Analysis in General Nanomedicine Practice

 1. Situation 1: Using computational finite element analysis to determine the flow pat-
tern in flow cytometry

  This is an example of using computational finite element analysis in nano-
medicine. Basically, flow cytometry is a medical device used for counting small 
particles, especially blood cells. It is general practice in any hospital and the test is 
called complete blood count (CBC). In laboratory medicine practice, blood is col-
lected from the patient by venipuncture, and the medical laboratory injects it into 
an automated cell counter for analysis. Structural analysis of blood cells is done 
automatically, and this is helpful in classifying the type of the blood cells and 
numerical counting as well as determining the abnormality (shape and content 
aberrations). In addition, sometimes analysis of more complicated cells (immature 
cells, pathogens, cancer cells) and particles (toxins, chemicals) can be done using 
flow cytometry. Computational finite element analysis plays an important role in 
the structural analysis of the tested blood cell. In brief, it is a mode of microflu-
idics, which can be assessed by the MEMS module. COMSOL Multiphysics can 
play its role at this point [48]. Flow field phenomena and dynamic sorting can 
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be successfully done based on the tool [48]. With the use of the flow cytometer, 
the primary computational file is called FCS (flow cytometry standard) [49]. The 
FCS file can be further processed with the help of MATLAB to finalize the result 
into both graphical and numerical usage. The summary of the complex process is 
shown in Figure 12.1.

 2. Situation 2: Using computational finite element analysis for dental filling material
  This is another example of using computational finite element analysis on 

medical structures. Basically, dental filling material is a widely used medical 
material for reconstruction of dental carries. This is widely used in many dental 
units. The main analysis is usually of the stress interference on dental materials 
[50,51].

In primary classical practice, such a test has to be based on these steps:

a. Collection of tooth and dental materials
 b. Stress application by mechanical instrument
 c. Macroscopic and microscopic examination of the materials

However, with the use of computational finite element analysis approach, these steps can 
be modeled in silico.

(A)

Structural parameters detected
from the detector of flow

cytometry analyzer

MEMS module of analysis for
clarifying important

structural data

FACS files derived and sent to
further processing by MATLAB

PLT 26 (×103/µL)
PDW 12.2 fL
MPW 10.1 fL
PCT 0.03%

(B)

PLT

FIGURE 12.1
Roles of computational finite element analysis in flow cytometry analyzer: (A) brief steps and (B) example 
of data appearance. In this case, an example of flow cytometry analysis of platelets is given. The upper part 
is the file in finalized data on the platelet structure parameters and the lower part is the final graphical flow 
cytogram result.
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12.5.1  Examples of Nanomedicine Research Based on 
Computational Finite Element Analysis Application

12.5.1.1  General Cases

Example 12.1 A study to determine the difference in electricity 
flux for planning nanoelectrial cardiac pacing wire

The heart is an important vital organ gland in human beings, and its main function is 
regulation of the circulation system. Normally, the heart beats regularly and continues 
from birth until death. Physiologically, the generation of the heartbeat is very complex. 
The start of the system is due to the in vivo physiological electrical circuit due to electro-
lytes. Generation of the first impulse beat occurs at the specific part of the heart namely 
the SA node, and then it passes to the atrium (upper heart) and to the ventricle (lower 
heart). Similar to many other organs in human beings, the problems of the heart can be 
seen and has become important in cardiology.

The problem of cardioelectrical systems can be seen, and this can result in the dis-
ease arrhythmia. In arrhythmia, the irregularity of the electrical circulation in heat 
can be seen. The treatment of arrhythmia is mainly to control the abnormality of the 
cardioelectrical system. Different means of treatment are available including several 
pharmacological substances. In the alternative approach, the correction of the abnormal 
cardioelectrical system is used. Indeed, this technique has been mentioned for a long 
time [52]. The electrical tool has been continuously developed, and the novel cardio-
electrical tools at the nanolevel are already produced at present. The new nanomedical 
apparatus namely nonelectrical cardiac pacing wire is proposed for its usefulness in the 
implementation for correction of the arrhythmia [53]. It is also called artificial cardiac 
tissue [53]. However, implantation of such nanowire has to be based on the complete 
information of the cardioelectrical system in the abnormal cardiac tissue.

To get these data, the approach by means of finite element analysis can be applied. 
(Indeed, other techniques can also be used such as finite difference method and charge 
simulation method). We hereby present an example of clarification on the cardioelectri-
cal system in an abnormal small part of heart tissue. In a small area, the model of the 
cardioelectrical system is shown in Figure 12.2. Assuming the cardioelectrical system 
is steady, the electrical potential is directly varied on distance, and the first equation is

 
φ = 50

d
,

where “ϕ” is equal to electrical potential and “d” is equal to distance

(A) (B)

d/4

X = d X = 0

–+

φ = 0φ = 50

d/4 d/4 d/4

E = 12.5 V/cm

E = 12.5 V/cm
E = 12.5 V/cm

FIGURE 12.2
(A and B) Model of cardioelectrical circulation in an abnormal small part of heart tissue.
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Considering the size parameter in Figure 12.2, we can see at each part, the electricity is 
equal to 12.5 V/cm. In this case, the use of electrical nanowire has to be set according to 
the finding. This concept can also be applied to assessment of other cardiac repair mate-
rials such as Dacron and expanded polytetrafluoroethylene (ePTFE) [53].

Example 12.2 A study to analyze the effect of fever 
on the nanomembrane of red blood cells

The effects of fever can be seen in various ways in the human body. Fever is the result 
of an inflammation process, which is a normal response in the immune system of the 
human body to any alien foreign body. While it is a useful process, it can seriously cause 
disadvantage and danger to our body. In cases of high fever, the pathology of the red 
blood cells can be seen, and this can be a cause of death [54]. The destruction of the red 
blood cell nanomembrane can be expected, and this leads to hemolytic episodes and 
rupture of the red blood cell.

Based on advanced nanotechnology, the modeling of the pathophysiology of fever-
induced red blood cell abnormality is possible and is a case of applying a simple com-
putational finite element analysis approach. Here we manipulate the dynamic function 
based on help from a simple computer program, Excel. Since red blood cells are very 
small and flat, the simple model of two-dimensional uniform thickness structure is pri-
marily assumed. Starting with the boundary by the normal body temperature at 36.7°C, 
further manipulation by adding 1 more degree Celsius to see the effect on the membrane 
is done. In this work, a simple 3 × 3 grid is used to see the thermal changing from nor-
mal temperature to fever (which is medically defined at 38°C). The result can be seen in 
Figure 12.3. It can be seen that there is an irregular change in temperature on the nano-
membrane of red blood cells, and this is concordant with the fact that there is no specific 
site on the membrane for hemolytic leakage of red blood cell in high fever. A recent study 
showed that the hyperthermia could result in generalized alteration of calcium influx, 
and this can be an explanation for the pathophysiology of fever-induced red blood cell 
abnormality [55].

Example 12.3 A study to analyze the effect of crush injury on small vascular injury

Injury can occur at any time, and this can be an important external insult to the human 
tissue. The crush-type injury is a direct pressure injury on the tissue, and this can cause 

36.7 36.7 36.7
36.7 36.7 36.7 36.7 36.7
36.7 36.7 36.7 36.7 36.7
36.7 36.7 36.7 36.7 36.7

36.7 36.7 36.7
(A)

38 38 38
36.7 37.2581 37.38578 37.25762 36.7
36.7 36.94471 37.02596 36.94423 36.7
36.7 36.79334 36.82816 36.7931 36.7

36.7 36.7 36.7
(B)

FIGURE 12.3
Model of thermal change in red blood cell due to fever: (A) normal temperature and (B) with fever (38°C).
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damage to the tissue. The degree of crush-type injury ranges from mild (such as simple 
touching) to severe (such as car accident). An important result of crush injury is the 
destruction of vascular structure and subsequent bleeding. To learn the pathophysiol-
ogy of vascular response to injury, analysis of the vascular structure by computational 
finite element analysis is possible. Here, the author gives an example of assessment of 
the effect of crush injury on small vascular injury. A simple online finite element analy-
sis interactive tool is used. The tool is Online FEA Solver, which is accessible at http://
www.onlinefeasolver.com.

Here, the circular cross sectional parameters are given as outer and inner diam-
eters equal to 500 and 450 nm, respectively. With the use of the Online FEA Solver, 
the online result can give the resulted value of the moment of inertia equal to 
1055071985.91 nm4, and if the external applied moment due to injury is assigned to be 
540 nm4, the further derived bending stress is equal to 0.000128 Mc/nm. The reported 
online result for this simulating case is presented in Figure 12.4. This technique can 
be very useful in studying of vascular dynamics in medicine. Finding the moment of 
inertia can be useful in prediction of flow in different vessels. This can be useful in 
the prediction of pathology in red cell abnormalities [56] and intravascular apparatus 
placement [57].

Example 12.4 A study on different concentrations of 
hydrogen on nanosensor diagnostic property

Basically, the nanosensor is the tool for nanodiagnosis. The development of the nano-
sensor has to be based on several novel nanomaterials. The change of ion composition is 
an important factor affecting the diagnostic property of the nanosensor. A good exam-
ple is the effect of hydrogen, which is indirectly reflected by the pH on the nanosensor. 
Here we discuss the surface acoustic wave (SAW) nanosensor and its diagnostic proper-
ties at different hydrogen concentrations.

A case of hydrogen-sensitive electrode will be the focus. When hydrogen 
increases, the change in the crystal structure of nanomaterial composition at the 

Circular cross-sections

Outer
diameter

Outer
diameter

500 450 540 105507198 546555604

Clear/reset inputs

Inner
diameter

Inner
diameter Moment

Moment of
inertia (I)

Bending
stress (Mc/l)

FIGURE 12.4
The reported online result of the exampled simulating case of crush injury to vascular structure. This is the 
appearance of the reported result in online interactive Online FEA Solver.
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415Application of Finite Element Analysis for Nanobiomedical Study

electrode can be expected, and this might result in a change in SAW nanosen-
sor response. This can be expressed as an equation between hydrogen concentra-
tion and velocity of signal. The direct variation can be assigned as “concentration 
∞ velocity.” Then the velocity can be further interpreted in relation to frequency as 
“velocity = wavelength × frequency.”

An example of a relationship between change in hydrogen concentration and final-
ized insertion loss is presented in Table 12.4. With the increase in the hydrogen concen-
tration, the insertion loss increases, and this mean reduction of the wave is detected by 
SAW nanosensors. It can be seen that the effect of hydrogen concentration significantly 
affects the nanodiagnostic properties. This is a very big concern for several kinds of 
new nanosensors in medicine at present (examples of such nanosensors are hepatitis B 
antibody sensor [58], viral antigen nanosensor [59], etc.).

Example 12.5 A generation of graphical models for referencing in finite 
element analysis of nanofiber patch for nanotherapy of dead tissue

The use of synthesized nanomaterial as an artificial nanotissue to correct the pathologi-
cal dead tissue is a novel approach in nanotherapy. A good example is the use of carbon 
nanofiber. The analysis of the material properties of developed nanofiber can be useful 
in planning reparative therapy. To start the analysis, an important step is to generate a 
graphical model for referencing in finite element analysis.

Here the author uses a simple computational modeling tool for creating a graphical 
model of carbon nanofiber. The NETGEN 4.4 is used. The simple assumption is (a) the 

TABLE 12.4

Hydrogen Concentration (% per 
Nanomaterial) and Insertion Loss

Hydrogen Concentration 
(% per Nanomaterial)

Insertion 
Loss (dB)

0 45.7
10 44.2
20 43.12
30 42.99
40 42.71

0
–42.5

–43

–43.5

In
se
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n 
lo

st
 (d

B)

–44

–44.5

–45

–45.5

–46
Hydrogen concentration (% per nanomaterial)

10 20 30 40 50
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carbon nanofiber has a cylindrical shape and (b) a three-dimensional model is used 
for creation. An example of a result reported online is directly quoted and shown in 
Figure 12.5. Generally, the use of a carbon nanofiber patch can be effective in many 
nanotherapies such as use in repairing dead cardiac fiber [60]. With the use of further 
finite element analysis techniques, the prediction of response to stress such as heat can 
be possible (e.g., to predict response to heat, a model based on Joule heating and heat 
convection can be used [61].)

Example 12.6 A study on the quadrature surface of 
magnetic resonance imaging detection

Magnetic resonance imaging (MRI) is a widely used medical imaging technique. The 
main concern on the diagnostic property of the MRI is based on its detector. The 
quadrature surface nanostructure of the detector is an important focus. This struc-
ture is a circular loop and figure-of-eight or butterfly-shaped coils that are aimed at 
adjusting signal-to-noise-ratios [62]. Optimization of its structural condition is very 
useful [62].

In general, a quadrature rule is also based on an integration equation. The role of 
MATLAB for finite element analysis at this stage is acceptable. An example of a designed 
quadrature loop to integrate the function f = ×4 on assigned triangular element is fur-
ther discussed. Hence, we can manipulate the function based on MATLAB. Focusing on 
the code, it can be written as shown

[qPt,qWt] = quadrature(3,‘TRIANGULAR’,3);
for q = 2:length(qWt)
xi = qPt(q);% quadrature point
% get the global coordinate x at the quadrature point xi
% and the Jacobian at the quadrature point, jac

…
f_int = f_int + x^4 * jac*qWt(q);
end

0.000e + 000 2.500e – 001 5.000e – 001 7.500e – 001 1.000e + 000

xyz Netgen 4.4

FIGURE 12.5
An example of derived graphical model of carbon nanofiber. In this case, the referenced parameters include 153 
points, 369 elements, and 288 surf elements.
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Example 12.7 A study of the electrostatic diffusion 
pattern of the new anticancer drug

At present, the advancements in nanomedicine have led to new nanotechnology-based 
pharmacology or nanopharmacology for management of many diseases. For various dis-
eases, the use of nanopharmacology in nanooncology should be mentioned, especially 
since the design of new anticancer drugs in the present day aims at individualization 
and specificity. Focusing on the newly developed nanodrug, an important determinant 
for its effectiveness is the diffusion ability into the focused cells for therapeutic purpose.

The electrostatic diffusion is an important pattern to be considered.
With basic graphical finite element analysis modeling, the first simple model of nano-

drug can be derived as a spherical biomolecule (Figure 12.6). The primary assumptions 
include unit sphere with certain radius (r0) representing the nanodrug molecule and 
charge (q) is steady within the center of the sphere. The simple linearized Poisson-
Boltzmann equation [63] might be used in the simulating case. The derived scattergram 
plots radius of sphere versus electrostatic potential can be presented as in Figure 12.6. 
The rapid change at the small radius level of the studied nanodrug with the steady state 
of electrostatic drug at a larger radius level can be observed, and this can help select the 
proper size of the nanodrug that will be most effective in cancericidal activity [64].

(A) (B)

0.0
0.0

0 0 0 0 0

0.2 0.4 0.6 0.8 1.0
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(C)

0
0 50 100 150 200
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/e
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–0.3

–0.35
Nanodrug radius (Å)

FIGURE 12.6
An example of model of nanodrug for cancerous treatment: (A) simple molecule with generated mesh, (B) the 
mesh quality plot, and (C) scattergram plots radius of sphere versus electrostatic potential.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
18

 0
3 

M
ar

ch
 2

01
6 



418 Computational Finite Element Methods in Nanotechnology

Example 12.8 A study on the nanobiopharmacological 
mechanism of chrisotherapeutic gold compounds

Several new nanopharmacological molecules have been developed in the last few years. 
The approval of their nanobiopharmacological properties before implementation on 
actual usage is required. Of several new nanomolecules, the new chrisotherapeutic gold 
compound is of interest. This is an application of gold nanoparticles in nanopharma-
cology. It is noted that this molecule can induce antiinflammatory effect, and prosta-
glandin E2 production can be observed in animal models [65]. However, its subcellular 
biomechanism, at the DNA level, is still unclear.

Here, the simple finite element analysis online bioinformatics tool for prediction of 
DNA binding is used. The tool is namely DDNA3 (accessed online at http://sparks.
informatics.iupui.edu/yueyang/DFIRE/ddna3-DB-service.php) [66]. The process starts 
with the uploading of the referencing prostaglandin E2 molecule file in .PDB format, 
which can be derived via public databases, such as PubMed. After the simulating and 
prediction, it can be seen that the studied prostaglandin E2 has no specific DNA bind-
ing. Hence, it can be concluded that the exact nanobiopharmacological mechanism of 
chrisotherapeutic gold compounds should not involve the DNA level.

Indeed, Yamashitaet al. also performed a study on macrophage and observed no 
specific DNA binding in the pharmacological action of chrisotherapeutic gold com-
pounds [65].

12.6 Conclusion

Computational technology is a very useful nanomedicine manipulation helping to clarify 
and answer many problems. Of several computational approaches, the use of computational 
finite element analysis is an important approach, which mainly helps assess the structure 
and further predicts functional changes due to various interferences. Computational finite 
element analysis can help medical scientists answer complex questions in nanomedicine via 
either structural or functional approaches. Clarification on the existing structures and pre-
diction of the imaginary changes corresponding to applied simulations can be derived from 
using the computational finite element analysis technique. In addition, there are many avail-
able computational tools using finite element analysis for management of biomedical data at 
present. These new computational tools can be very useful for many studies in nanomedicine.
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14.1 Introduction

The	 nanoinjection	 photon	 detectors	 have	 been	 recently	 developed	 to	 address	 the	 main	
trade-off	 in	using	nanoscale	features	for	 light	detection.	Even	though	nanoscale	sensors	
offer	 high	 sensitivity,	 their	 interaction	 with	 visible	 or	 infrared	 light	 is	 severely	 limited	
by	 their	miniscule	sizes.	Nanoinjection	detectors	solve	 this	problem	by	 implementing	a	
novel	structure	with	highly	sensitive	nanometer	sized	pillars,	“nanoinjectors,”	on	 large,	
thick	absorption	layers.	The	large,	thick	absorption	layers	ensure	that	the	incoming	light	
is	captured	with	high	efficiency,	and	that	the	nanoinjectors	are	responsible	for	sensing	and	
amplifying	 these	signals.	With	 this	nontraditional,	nonplaner	geometry,	high	sensitivity	
and	high	efficiency	can	be	simultaneously	attained,	which	can	satisfy	a	growing	need	for	
identifying	and	counting	photons	in	many	modern	applications.

The	nanoinjection	detectors	were	developed	 toward	operation	 in	short-wave	 infrared	
(SWIR)	 domain	 from	 0.95	 to	 1.65	μm.	 They	 were	 designed	 to	 exploit	 the	 properties	 of	
the	type-II	band	alignment	in	InP/GaAsSb/InGaAs	structure	to	achieve	higher	internal	
amplification,	lower	noise	levels,	and	high	speed	operation.

The	 layer	 structure	 with	 type-II	 band	 alignment	 and	 the	 nonplaner	 geometry	 of	
nanoinjection	 detectors	 required	 careful	 design	 and	 optimization	 through	 a	 custom	
built	three-dimensional	nonlinear	finite	element	method	(FEM)	simulation,	which	pro-
vided	the	mathematical	groundwork	to	implement	the	stationary,	parametric,	and	tran-
sient	simulation	of	nonlinear	differential	equations.	We	have	based	our	simulation	core	
on	the	drift-diffusion	equations	 in	 two	and	three	dimensions.	For	devices	with	cylin-
drical	symmetry,	we	have	also	implemented	a	2-D	cross	section	simulator,	which	gives	
accurate	3-D	modeling	results	in	the	timeframe	needed	for	a	simpler	2-D	simulation.	To	
improve	accuracy	under	different	conditions,	several	nonlinearities	were	implemented.	
Incomplete	 ionization	 of	 dopants,	 bimolecular	 recombination,	 Auger	 recombination,	
nonlinear	 mobility,	 impact	 ionization,	 thermionic	 emission,	 hot	 electron	 effects	 and	
surface	recombination	effects	were	 included.	Temperature	effects,	both	 in	 the	 form	of	
variable	operating	temperature,	and	thermal	heat	generation	and	dissipation,	were	also	
added	to	the	model.

Based	on	the	results	of	the	FEM	simulations,	the	nanoinjection	detectors	were	fabricated	
and	measured.	Amplification	factors	reaching	10,000	have	been	recorded,	 together	with	
low	dark	current	densities	at	room	temperature.	Noise	suppression	behavior	is	observed	
at	amplification	factors	up	to	4000+,	which	lower	the	detector	noise	to	values	below	the	
theoretical	shot	noise	limit.	The	devices,	when	properly	surface-treated,	show	bandwidths	
exceeding	 3	GHz	 with	 an	 impressive	 time-uncertainty	 (jitter)	 of	 15	ps.	 These	 properties	
make	the	nanoinjection	photon	detectors	extremely	suitable	for	demanding	imaging	appli-
cations,	which	require	high	efficiency,	high	sensitivity,	and	high	uniformity,	in	addition	
to	many	applications	such	as	nanodestructive	material	inspection,	high-speed	quantum	
cryptography,	or	medical	optical	imaging.

Arrays	 of	 nanoinjection	 detectors	 were	 designed,	 processed,	 and	 hybridized	 to	 form	
focal	plane	array	infrared	cameras	with	320	by	240	pixel	arrays.	The	nanoinjection	imagers	
show	responsivity	values	in	excess	of	2500	A/W.	Measured	imager	noise	was	28	electrons	
at	a	 frame	 rate	of	1950	 fps.	Compared	 to	 commercial	SWIR	 imagers,	 the	 imagers	 show	
two	orders	of	magnitude	improved	signal-to-noise	ratio	(SNR)	at	thermoelectric	cooling	
temperatures.
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14.2 Photodetection and Imaging in the Short-Wave Infrared Spectrum

Infrared	 (IR)	 spectrum	 has	 always	 offered	 possibilities	 beyond	 the	 human	 visual	
capabilities.	 IR	 detectors	 have	 found	 their	 place	 in	 many	 applications,	 and	 have	 been	
indispensible	tools	for	looking	at	objects	from	a	different	perspective	to	investigate	less-
evident	 properties.	 Thus,	 there	 has	 been	 a	 lot	 of	 ongoing	 research	 about	 IR	 detectors,	
exploring	different	approaches	with	a	wide	range	of	material	systems.

The	short-wave	infrared	(SWIR)	detectors	play	in	important	role	in	many	modern	world	
applications	spanning	diverse	fields.	In	the	Internet	backbone,	they	have	been	converting	
1.3	 and	 1.55	μm	 optical	 bits	 to	 electrical	 bits,	 and	 recently	 their	 field	 of	 view	 extended	
into	 the	 “last	 mile”	 toward	 end-users	 with	 commercial	 fiber-optic	 links	 to	 individual	
residential	sites.	In	military,	arrays	of	SWIR	detectors	have	been	utilized	into	SWIR	night-
vision	systems,	which	rely	on	the	intense	night-glow	that	can	illuminate	the	scenery	even	
when	there	is	complete	darkness	in	visible	spectrum.	In	biophotonics,	 they	help	realize	
the	 noninvasive	 imaging	 methods,	 for	 example,	 optical	 coherence	 tomography	 systems	
utilizing	SWIR	exploit	the	low	scattering	properties	of	>1	μm	light	to	see	the	previously	
unreachable,	thick	parts	of	the	cornea.	In	addition	to	these	existing	applications,	there	exist	
newly	emerging	applications	where	SWIR	detectors	can	be	the	enabling	technologies.	One	
particular	example	is	quantum	cryptography,	which	is	 in	desperate	need	of	an	efficient	
and	fast	SWIR	single	photon	detector	(SPD)	that	can	provide	sufficient	SNR	even	in	the	
arrival	of	a	single	photon.

The	steady	advancements	in	technology	constantly	increased	the	requirement	for	better	
and	more	sensitive	detectors	for	ever	more	demanding	applications.	This	has	propelled	
the	 research	 toward	 ultimate	 sensors,	 the	 SPDs.	 SPDs	 are	 ultra-low	 noise	 devices	 with	
increased	sensitivity	to	be	able	to	detect	the	minimum	energy	quantum	of	light,	the	pho-
ton.	SPDs	can	sense	and	count	individual	photons	and	can	be	utilized	in	many	emerging	
applications,	where	the	only	available	signal	is	in	the	order	of	several	photons.

For	imaging	purposes,	the	SWIR	band	provides	a	lot	of	benefits	over	the	conventional	
visible	 imaging.	SWIR	imaging	systems	are	sensitive	to	portions	of	 the	spectrum	span-
ning	from	1	to	3	μm.1	This	region	has	several	important	features:	It	is	compatible	with	glass	
optics,	as	the	glass	transmission	window	extends	almost	to	the	end	of	SWIR	spectrum.	
To	see	clearly	in	dark,	it	can	make	extensive	use	of	the	night	glow,	which	can	be	orders	
of	magnitude	brighter	than	visible	light,	even	in	moonless	nights.2	SWIR	night	glow,	or	
night	 sky	 radiance,	 is	 due	 to	 the	 chemical	 reactions	 involving	 hydroxyl	 groups	 in	 the	
upper	atmosphere,	mainly	chemoluminescence,	radiative	recombination,	and	collisional	
de-excitation.3	This	spectrum	also	becomes	a	nice	complement	to	visible	and	near-infrared	
(NIR)	 regions,	 and	 can	 provide	 information	 important	 for	 multispectral	 imaging.4	 The	
multispectral	information	can	be	extremely	useful	for	military	applications	such	as	cam-
ouflage	detection	or	friend-or-foe	detection.	Furthermore,	SWIR	spectrum	is	eye-safe,5	as	
it	cannot	be	focused	on	retina,	so	accidental	exposure	of	SWIR	light	does	not	present	any	
hazard	to	the	operators	or	bystanders.	This	property	becomes	very	valuable	in	military	
field	applications	and	medical	environments.6

Here	in	this	work,	we	present	a	novel	approach	for	a	bio-inspired	SWIR	SPD,	the	“nanoin-
jection	photon	detector”,	conceptually	based	on	the	mechanism	of	light	detection	in	the	
rod	cells.	To	realize	this	detector,	first	a	comprehensive	three-dimensional	nonlinear	simu-
lation	environment	was	developed.	Using	this	model,	 the	 layer	structure,	doping	levels	
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and	geometry	were	optimized.	The	wafers	 for	 the	optimized	structure	were	grown	by	
metal-organic	chemical	vapor	deposition.	In	parallel,	novel	process	flows	were	designed	
to	fabricate	the	nanoinjection	detectors.

14.3 Single Photon Detectors: Importance and Applications

Many	 modern	 applications	 such	 as	 medical	 instruments,	 imaging	 systems,	 and	 tele-
communication	 devices	 have	 demanding	 requirements	 to	 achieve	 state-of-the-art	 per-
formance.	 However,	 in	 many	 cases	 the	 performance	 of	 the	 system	 suffers	 from	 the	
limitations	imposed	by	the	photodetector.	Improving	the	sensitivity	of	photodetectors	is	
of	the	utmost	importance	in	these	systems,	and	the	ultimate	target	for	researchers	is	the	
detection	of	a	single	quantum	of	light,	the	photon.7	It	represents	a	very	small	amount	of	
energy,	less	than	10−18	J	in	the	infrared	spectrum,	so	detectors	specialized	for	individual	
photon	detection	need	to	have	very	low	noise	levels.	These	detectors	are	called	“single	
photon	detectors.”

An	 ideal	SPD	can	be	used	 in	almost	 every	application	 that	utilizes	a	 regular	photo-
detector.	The	 improved	SNR	that	SPDs	present	would	 increase	 the	performance	of	 the	
system,	resulting	in	deeper	medical	noninvasive	probing,	longer	range	fiber	links,	more	
accurate	nondestructive	parts	inspection	for	aircraft	safety,	less	error-prone	satellite	com-
munications	or	 clearer,	higher	 resolution	night	vision	 images	 for	military.	All	 existing	
applications,	 whether	 in	 military,	 commercial,	 environmental	 or	 medical,	 will	 benefit	
tremendously.

In	parallel	to	improving	existing	applications,	SPDs	are	quickly	becoming	the	enabling	
technology	for	many	emerging	applications	which	were	previously	thought	 impossible.	
One	 example	 of	 these	 technologies	 is	 quantum	 computing,8	 in	 which	 bits	 can	 assume	
many	 states,	 and	perform	 calculations	 on	 these	multiple	 states	 at	once.9	They	 therefore	
promise	a	great	deal	of	improvement	in	calculation	speed	and	efficiency	and	can	poten-
tially	break	down	all	existing	barriers	of	traditional	computation.

Quantum	 cryptography10	 relies	 on	 the	 quantum	 theory	 to	 provide	 secure	 communi-
cations.	 The	 current	 public–private	 key	 encryption	 schemes	 rely	 on	 the	 mathematical	
infeasibility	of	 some	 inverse	calculations,	which	will	be	significantly	challenged	by	 the	
paradigm	shift	to	be	introduced	by	quantum	computing.11	Quantum	cryptography,	on	the	
other	hand,	will	be	immune	from	the	effects	of	this	vast	change.12

Another	example	is	quantum	ghost	imaging,13	where	the	scenery	in	a	remote	location	
can	 be	 completely	 reconstructed	 from	 correlating	 the	 acquired	 signals,	 using	 reflected	
entangled	photon	pairs.

To	achieve	efficient	single	photon	detection,	the	detectors	need	to	possess	some	important	
properties,	 which	 can	 be	 very	 demanding	 to	 achieve	 simultaneously.	 The	 first	 of	 these	
properties	is	the	quantum	efficiency.	As	stated	before,	the	quantum	efficiency	tells	what	
percentage	of	the	incoming	photons	gets	converted	to	electron–hole	pairs	and	extracted	
from	the	detector.	It	is	logical	to	try	to	achieve	high	quantum	efficiency,	so	as	to	maximize	
the	signal.

Another	important	property	is	the	spectral	response.	In	this	regard,	a	broadband	detec-
tor	 that	can	cover	from	deep	ultraviolet	 to	SWIR	(e.g.,	100	nm−2	μm)	is	highly	desirable.	
SPDs	such	as	photomultiplier	 tubes	or	 superconducting	 single	photons	come	close,	but	
others	such	as	the	avalanche	photodetectors	fall	short	in	this	claim.
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481Design of the Nanoinjection Detectors Using Finite Element Modeling

A	low	dark	count	rate	is	also	an	essential	property	of	a	SPD,	as	it	signifies	the	number	
of	 false	 counts	 per	 second.	 As	 each	 detector	 exhibits	 a	 certain	 amount	 of	 dark	 current	
and	resulting	noise,	 the	noise	sometimes	exceeds	 the	threshold	of	detection	which	gets	
registered	as	a	valid	signal.	A	high	amount	of	false	counts	can	become	disastrous,	as	they	
can	ruin	an	image	in	night	vision	imaging,	trigger	false	alarms	in	homeland	security	or	
contaminate	encrypted	messages,	possibly	garbling	the	transmission.

Demanding	 applications	 have	 forced	 the	 speed	 of	 detection	 to	 become	 one	 of	 the	
important	parameters	of	SPDs.	In	this	regard,	achieving	high-speed	transmission	cor-
responds	 to	many	requirements.	Two	such	parameters	would	be	 the	bandwidth	 (BW)	
and	rise-time	of	the	detector.	As	in	other	systems,	more	bandwidth	and	faster	rise-times	
are	desirable.

In	addition	to	BW	and	rise-times,	fast	recovery	time	is	essential	for	high-speed	detection.	
The	time	required	to	re-arm	the	device	should	be	as	short	as	possible,	as	this	also	puts	a	
constraint	on	the	maximum	attainable	transmission	rate	similar	to	bandwidth.	In	certain	
systems	 (e.g.,	APDs),	 the	detector	 still	 registers	 some	counts	after	 the	pulse,	where	 this	
response	slowly	decays.	However,	during	the	decay,	the	SPD	cannot	be	rearmed	as	it	still	
registers	a	high	number	of	counts.	This	effect	is	called	afterpulsing,	and	it	is	a	significant	
limitation	on	InGaAs/InP-based	APDs.

At	very	high	speeds,	timing	jitter	can	become	the	limiting	factor.	Timing	jitter	is	defined	
as	the	unwanted	time-uncertainty	of	the	detector.	Even	when	given	an	optical	signal	with	
an	exact	period	of	T,	the	electrical	signal	coming	from	the	detector	would	have	some	time	
uncertainty	that	makes	the	period	T	±	ΔT.	This	is	due	to	the	subtle	changes	in	the	detection	
such	as	the	point	of	absorption	or	the	transit	time.

One	 final	 property	 of	 an	 ideal	 SPD	 is	 the	 capability	 of	 photon	 number	 resolving.	 By	
definition,	a	detector	can	be	called	a	SPD	if	it	can	detect	and	respond	to	one	photon.	This	
allows	SPDs	with	very	limited	dynamic	range,	where	the	response	is	quantified	simply	
as	no	photons	or	some	photons	 (i.e.,	one	or	more).	However,	many	applications	 require	
more	dynamic	range	than	that,	and	therefore	a	new	SPD	subclass	was	introduced:	photon	
resolving	 SPDs,	 or	 single	 photon	 counters.	 In	 single	 photon	 counters,	 the	 amplitude	 of	
the	response	is	varied	based	on	the	number	of	absorbed	photons,	offering	at	least	some	
dynamic	range.

14.4 Nanoinjection Detector

The	design	of	the	nanoinjection	detector	is	inspired	by	the	eye.	The	eye	is	extremely	sensi-
tive,	and	it	owes	this	sensitivity	to	two	main	reasons:

	 1.	Coupling	a	micron-scale	absorbing	volume	with	nanoscale	sensing	elements	for	
improved	sensitivity

	 2.	Having	a	significant	internal	amplification	to	boost	the	miniscule	photon	energy	
to	a	detectable	signal	level	above	the	system	noise	floor

We	incorporated	these	principles	in	a	novel	semiconductor	platform,	called	the	nanoinjec-
tion	photon	detector.	Structurally,	we	made	the	device	analogous	to	the	highly	sensitive	
rod	cells	in	the	eye:	The	detector	features	large	regions	to	absorb	and	channel	the	photo-
excited	carriers	to	nanoinjectors	where	the	amplified	flow	of	carriers	is	controlled.
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482 Computational Finite Element Methods in Nanotechnology

We	 have	 also	 engineered	 the	 band	 structure	 such	 that	 it	 would	 provide	 an	 internal	
amplification.	The	amplification	method	(i.e.,	nanoinjection)	is	designed	to	have	stability	
based	on	an	internal	negative	feedback.

The	structure	of	the	nanoinjection	photon	detector	is	highlighted	in	Figure	14.1,	includ-
ing	large	absorbing	volume	and	small	nanoinjectors.

14.4.1  Layer and Band Structure

As	 highlighted	 in	 Figure	 14.1,	 the	 detector	 features	 nanoinjectors	 on	 a	 large	 InGaAs	
absorption	layer.	The	device	is	based	on	InP/GaAsSb/InGaAs	material	system	and	there-
fore	has	type-II	band	alignment	(Figure	14.2),	with	the	GaAsSb	layer	acting	as	a	barrier	for	
electrons	and	a	trap	for	holes.	As	detailed	in	the	reference,14	the	most	tested	active	layer	
structure	consists	of	1000	nm	In0.53Ga0.47As	(n-doped),	50	nm	GaAs0.51Sb0.49	(p-doped),	and	
500	nm	InP	(n-doped)	from	bottom	to	up.

GaAsSb barrierInP nanoinjector

InGaAs absorber

FIGURE 14.1
Device	geometry	of	a	nanoinjection	photon	detector.
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FIGURE 14.2
Band	structure	of	a	nanoinjection	photon	detector	at	the	central	axis.
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483Design of the Nanoinjection Detectors Using Finite Element Modeling

14.4.2  Theory of Operation

The	band	structure	across	the	central	axis	of	the	device	experiences	a	type-II	band	align-
ment	as	depicted	in	Figure	14.2	when	properly	biased	with	0.5–1	V.	The	conduction	band	
incorporates	a	GaAsSb	barrier	to	limit	the	flow	of	electrons	from	InP	side	to	InGaAs	side.	
The	valence	band,	on	the	other	hand,	has	a	well	structure,	bound	by	the	higher	potential	
of	InP	and	InGaAs	layers.

Due	to	the	doping	level	and	work	function	of	each	layer,	the	device	generates	an	internal	
electric	field	in	the	InGaAs	region,	which	gets	stronger	when	the	device	is	biased	correctly.	
Upon	absorption,	photons	generate	electron–hole	pairs	in	the	large	absorption	region.	The	
electrons	 and	 holes	 are	 separated	 by	 the	 internal	 electric	 field	 of	 the	 device.	 Holes	 are	
attracted	to	the	nanoinjector,	which	presents	a	potential	trap	for	holes	due	to	the	type-II	
band	alignment.	A	single	photo-generated	hole	in	the	absorption	region	is	equivalent	to	
a	 charge	 density	 of	 1.4	×	10−3	 C/m3.	 However,	 when	 trapped	 inside	 the	 50	nm	 high	 and	
100	nm	wide	diameter	nanoinjector,	the	same	hole	creates	an	effective	charge	density	of	
more	than	400	C/m3.	Therefore,	the	impact	of	the	hole	increases	by	more	than	five	orders	of	
magnitude.	Equivalently,	the	small	volume	of	the	trap	represents	an	ultra-low	capacitance,	
and	hence	the	entrapment	of	a	single	hole	leads	to	a	large	change	of	potential	and	produces	
an	amplified	electron	injection,	similar	to	a	single	electron	transistor	(SET).	Our	detailed	
simulations	show	that	a	single	hole	can	alter	the	potential	barrier	by	more	than	52	mV.	This	
is	significantly	higher	than	the	thermal	fluctuation	energy	of	carriers	at	300	K,	and	hence	a	
high	SNR	is	possible	even	at	room	temperature.

Device	relaxation	is	achieved	by	thermal	recombination	of	the	trapped	holes.	The	holes	
that	are	trapped	in	the	GaAsSb	well	will	eventually	recombine,	relaxing	the	bands	and	
restoring	the	current	to	the	low,	dark-current	values.

As	the	multiplication	mechanism	is	purely	applied	to	one	carrier,	the	amplification	noise	
can	be	very	small	in	nanoinjection	detectors.	One	possible	explanation	for	this	low-noise	
behavior	of	the	device	is	the	negative	potential	feedback	mechanism	in	the	device.15	Even	
though	the	voltage	of	the	barrier	is	mainly	controlled	by	hole	flux,	the	injected	electrons	
also	play	an	important	role	in	the	regulation	of	barrier	layer	voltage.	Compared	to	holes,	
which	are	trapped	in	the	GaAsSb	barrier	for	a	relatively	long	time,	electrons	have	a	very	
short	but	finite	transit	time	through	the	barrier.	During	the	transit	time,	they	lower	the	
local	potential	and	increase	the	barrier	height.	The	increase	in	barrier	height	opposes	the	
flow	of	electrons	and	reduces	the	transmission	probability.

14.5 Development of a Finite Element-Method Simulator

To	 quantify	 and	 optimize	 the	 device	 structure	 and	 performance,	 we	 have	 developed	 a	
custom	 FEM-based	 simulation	 model.	 The	 model	 was	 created	 in	 Comsol Multiphysics,16	
which	provides	mathematical	groundwork	to	implement	the	stationary,	parametric,	and	
transient	simulation	of	nonlinear	differential	equations.

We	 have	 based	 our	 design	 on	 the	 core	 drift-diffusion	 equations	 in	 two	 and	 three	
dimensions.	For	devices	with	cylindrical	symmetry,	we	have	also	implemented	a	2-D	cross	
section	simulator,	which,	given	accurate	3-D	modeling,	results	in	the	timeframe	needed	for	
a	simpler	2-D	simulation.

To	improve	accuracy	under	different	conditions,	several	nonlinearities	were	implemented.	
Incomplete	 ionization	 of	 dopants,	 bimolecular	 recombination,	 Auger	 recombination,	
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484 Computational Finite Element Methods in Nanotechnology

nonlinear	mobility,	 impact	 ionization,	thermionic	emission,	hot	electron	effects,	and	sur-
face	recombination	effects	were	included.	Temperature	effects,	both	in	the	form	of	variable	
operating	temperature,	and	thermal	heat	generation	and	dissipation,	were	also	added	to	
the	model.

14.5.1  Self-Consistent 3-D Core Physics

In	the	core	of	the	simulation	lie	the	drift-diffusion	equations.17	They	are	given	by	the	fol-
lowing	set	of	Poisson	and	continuity	equations:

	 ∇⋅ ∇ = − − +( ) ( )ε ε φ0 r q p n N 	 (14.1)

	

∇⋅ ∇ =

∇⋅ ∇ = −

( )

( )

µ

µ

n Fn

p Fp

E qR

E qR
	 (14.2)

where
ε0	is	the	permittivity	of	space
εr	is	the	relative	permittivity	of	the	material
Φ	is	the	potential
n	and	p	are	carrier	concentrations	for	electrons	and	holes	respectively
N	is	the	net	doping	density	(donor	density	minus	acceptor	density)
q	is	the	electron	charge
μn	and	μp	are	the	mobilities	of	electrons	and	holes
EFn	and	EFp	are	the	quasi-Fermi	levels	for	electrons	and	holes
R	is	the	net	recombination-generation	rate

Here	 in	 these	 equations,	 the	 quasi-Fermi	 levels	 are	 used	 to	 combine	 the	 effect	 of	 both	
electric	field	drift	and	carrier	diffusion	processes.

14.5.2  Reduction to 2-D Cross Modeling with Cylindrical Symmetry

In	order	to	improve	the	time	required	to	solve	the	problem	while	maintaining	accuracy,	
we	needed	to	decrease	the	complexity	of	the	problem.	One	common	way	to	achieve	this	is	
to	exploit	the	symmetries	in	the	device	structure.	In	our	case,	the	nanoinjection	detector	
incorporates	 cylindrical	 symmetry,	 and	 hence	 we	 can	 reduce	 the	 three-dimensional	
equations	into	two-dimensional	ones.	However,	additional	terms	need	to	be	added	to	the	
equations	to	model	the	radial	changes	in	current	and	charge	densities	in	3-D.

Starting	from	the	original	drift-diffusion	equations	in	3-D,	we	have	expanded	them	into	
radial	and	tangential.	The	tangential	terms	then	become	zero	as	the	device	has	cylindrical	
symmetry,	 which	 transforms	 the	 resulting	 equations	 into	 a	 simpler	 form.	 This	 simpler	
equation	is	then	converted	to	the	form	that	Comsol	Multiphysics	uses.

The	gradient	of	any	function	f	with	cylindrical	symmetry	in	cylindrical	coordinates	is	
given	by

	
∇ = ∂

∂
+ ∂

∂
f

f
r
a

f
z
ar z

� �
	 (14.3)

where
	
∂ ∂ =f z/ 0,	 		 ⃗ar and 	 ⃗az	 are	 unit	 vector	 in	 r	 and	 z	 directions,	 respectively.	 Then,	 the	

divergence	of	a	vector	field	A	⃗=	Ar	a r⃗	+	Az	a z⃗	is	given	by
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∇⋅ = ∂

∂
+



 + ∂

∂
A

r r
A

z
Ar z

�� 1
. 	 (14.4)

As	the	drift-diffusion	equations	are	of	the	form	∇·(k∇f)	=	c,	we	can	combine	the	preceding	
divergence	equation	with	the	gradient	equation	to	get

	
∇⋅ ∇ = ∂
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∂
∂
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which	can	be	transformed	into	the	Comsol	form

	

∇⋅ ∇ = ∇ ⋅ ∇ +








 ⋅∇ =( ) * ( * ) *k f k f

k
r f c
0

	 (14.6)

where	∇*	is	the	Cartesian	nabla	operator.

14.5.3  Nonlinear Effects

Since	the	semiconductor	materials	exhibit	many	nonlinear	effects,	implementing	some	of	
the	related	nonlinear	effects	improves	the	accuracy	of	the	simulation.	Hence,	the	following	
nonlinearities	were	added:

Incomplete ionization of dopants:	 The	 ionization	 ratio	 of	 the	 doping	 in	 the	 semiconductor	
materials	show	a	strong	dependence	on	the	degeneracy	of	the	material,	temperature,	and	
the	difference	between	the	quasi	Fermi	level	and	the	band.	Therefore,	equations18
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exp

	 (14.7)

are	used.

Bimolecular recombination:	Our	simulations	have	indicated	that	the	bimolecular	recombina-
tion	yields	better	results	than	SRH	recombination,	which	has	a	similar	form.	The	equation	
is	given	by

	 R B np n pbimolecular = −( )0 0 	 (14.8)

where
B	is	the	bimolecular	recombination	constant
n	and	p	are	carrier	densities
n0p0	is	the	equilibrium	carrier	density	product

Auger recombination:	 Effective	 at	 higher	 carrier	 concentrations,	 the	 Auger	 recombi-
nation	 can	 be	 the	 dominant	 process	 in	 high	 current	 devices	 such	 as	 lasers.	 As	 such,	
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486 Computational Finite Element Methods in Nanotechnology

Auger	recombination	plays	a	much	smaller	role	in	our	detector.	However,	specific	parts	
in	 our	 device	 are	 still	 susceptible	 to	 strong	 Auger	 recombination,	 especially	 at	 corners	
where	carriers	get	congested.	We	have	used	the	 following	equation	 to	 formulate	Auger	
recombination:19

	 R C n p np n pAuger = + −( )( )0 0 	 (14.9)

where
C	is	the	Auger	recombination	constant
n	and	p	are	carrier	densities
n0p0	is	the	equilibrium	carrier	density	product

Nonlinear mobility:	The	simple	equation	for	electron	mobility	is

	 ν µn nE= 	 (14.10)

where	the	carrier	velocity	vn	does	not	get	saturated	at	any	electric	field	E,	and	hence,	mobil-
ity	μn	stays	constant.	A	more	realistic	approach	takes	into	consideration	the	velocity	over-
shoot	and	saturation,20

	

µ
µ ν
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n
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n
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E
E

E
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0
0 0

3

0

4

1

	 (14.11)

where
μn0	is	the	low	field	mobility
vsn	is	the	saturation	velocity
E0n	is	the	overshoot	field	strength
Et	is	the	total	local	electric	field

Here,	the	parameters	vsn	and	E0n	are	determined	empirically.	The	equation	for	holes	is	the	
analogous	of	this	equation.

Impact ionization:	 The	 impact	 ionization	 is	 very	 much	 a	 field-dependent	 process,	 whose	
strength	grows	super-exponentially	with	increasing	field.	Therefore	it	requires	high	voltages	
to	achieve	intense	electric	fields	and	it	is	not	a	pronounced	effect	in	our	nanoinjection	detec-
tors.	Still,	we	have	implemented	impact	ionization	to	improve	accuracy	in	our	model,	using21

	 G a n a p Eimp n n p p= + ⋅( )µ µ 	 (14.12)

	

a a
E
E

a a
E
E

n n
cn

p p
cp

= ⋅ −





= ⋅
−





∞

∞

exp

exp 	 (14.13)

where
Gimp	is	the	per-volume	generation	rate	due	to	impact	ionization
n	and	p	are	carrier	densities
μn	and	μp	are	the	carrier	mobilities
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487Design of the Nanoinjection Detectors Using Finite Element Modeling

an	and	ap	are	the	impact	ionization	strengths
an∞	and	ap∞	are	the	impact	ionization	coefficients
Ecn	and	Ecp	are	the	field	coefficients
E	is	the	local	electric	field

The	impact	ionization	coefficients	and	field	coefficients	are	extracted	from	material-specific	
experimental	data.

Thermionic emission:	 Drift-diffusion	 equations	 are	 perfectly	 applicable	 to	 bulk	 material	
and	homojunctions.	However,	their	application	to	heterojunctions	reduces	accuracy,	as	the	
conduction	and	valence	band	discontinuities	are	not	taken	into	consideration.	The	primary	
mechanism	 of	 transport	 over	 hetero	 interfaces	 is	 thermionic	 emission,	 which	 explicitly	
depends	on	the	discontinuities	in	band	structure	when	calculating	the	rate	of	transport	
across	 the	 interface.	Assuming	a	heterojunction	where	 the	conduction	band	of	material	
2	is	higher	than	the	conduction	band	of	material	1	by	an	amount	Ecbarr,	this	effect	can	be	
modeled	using	the	internal	boundary	equation22

	 J A T E E E E ETE n r Fn C Cbarr Fn C, exp exp= − −( ) − −( ) 
2

1 1 2 2 	 (14.14)

where
Ar	is	the	Richardson	coefficient
T	is	the	temperature
EFns	are	the	quasi	Fermi	levels	at	either	side
ECs	are	the	conduction	bands	at	either	side
ECbarr	is	the	conduction	barrier	due	to	the	heterojunction	discontinuity

Note	that	this	equation	takes	into	consideration	the	net	thermionic	electron	flow	across	the	
interface,	and	the	net	flow	becomes	zero	under	equilibrium	conditions.	To	account	for	the	
thermionic	injection	of	holes,	a	similar	equation	is	also	needed	for	the	net	hole	flow	across	
the	interface.

Hot electron effects:	 The	 carriers,	 which	 are	 more	 energetic	 to	 thermally	 generated	
counterparts,	are	called	hot	particles.	They	are	usually	 formed	by	energizing	a	particle	
by	letting	it	speed	up	an	electric	field,	or	by	ballistically	emitting	a	carrier	in	a	material	
with	lower	energy	band	where	the	carrier	becomes	an	energetic,	or	hot,	particle.	Similar	to	
heat	transfer,	hot	particles	can	distribute	their	energy.	Hence,	an	energy-transfer	approach	
is	more	appropriate	instead	of	the	default	particle	flow	model.	However,	the	energy	flow	
can	be	converted	into	a	particle	flow	with	correction	terms	to	account	for	the	differences.	
In	our	model,	we	have	re-derived	the	cylindrical	 to	Cartesian	conversion	equation,	and	
implemented	the	following	equation:
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where	∇*	is	the	Cartesian	nabla	operator.

Surface recombination effects:	Similar	to	bulk	recombination	effects,	the	surfaces	provide	addi-
tional	sites	where	recombination	can	occur.	These	sites	are	created	by	surface	states,	which	
are	extremely	dependent	on	the	state	of	the	surfaces.	Quantification	of	this	effect	is	not	easy,	
but	an	approximation	for	surface	recombination	in	n-doped	layers	can	be	made	by	using20
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− ⋅∇ = −

+ +
qD p n E qS

np n p
n p n p

n n Fp surface p

� ( )
( )

0 0

0 02
	 (14.16)

where
q	is	the	electron	charge
Dn	is	the	diffusion	constant
pn	is	the	hole	charge	density	in	n-doped	layer
Sp	is	the	surface	recombination	strength
n	and	p	are	charge	densities
n0p0	is	the	equilibrium	charge	density	product

A	similar	approximation	can	be	written	for	p-doped	layers	by	changing	“p”	with	“n”	in	
the	equation.

Temperature effects:	The	temperature	effects	in	our	simulation	model	are	of	two	categories:	
temperature-dependent	modeling	where	the	operation	temperature	can	be	varied	to	eval-
uate	the	effects	of	cooling	or	heating,	and	heat	generation	and	dissipation	mechanisms	to	
alter	the	local	temperatures.	The	former	is	implemented	by	converting	every	equation	or	
variable	to	temperature-dependent	forms.	The	latter	is	implemented	by	Joule	heating	and	
steady-state	heat	transfer	equations.

14.6 Simulation Results for Electro-Optical Modeling

Using	 the	 three-dimensional	 nonlinear	 simulation	 model	 developed,	 we	 have	 started	
investigating	our	design	and	optimizing	it.

14.6.1  Optimization for Device Structure and Doping Levels

The	device	geometry	and	layer	structure	were	optimized	with	our	simulation	model	mul-
tiple	 times.	The	 layer	 thicknesses,	 layer	compositions	(AlGaAsSb	vs.	GaAsSb)	and	indi-
vidual	layer	doping	levels	were	optimized	to	yield	the	highest	optical	gain	with	the	lowest	
dark	current	at	room	temperature	(Figure	14.3).

14.6.2  Dark Current versus Voltage

The	dark	current	behavior	of	the	devices	were	simulated	and	later	compared	to	experi-
mental	measurements.

The	simulation	results	predicted	that	devices	with	5	μm	diameter	would	exhibit	around	
0.5	μA	of	dark	current	at	a	bias	of	1	V	(Figure	14.4).	The	model	showed	that	sub-micron	
devices	would	have	much	lower	dark	current	values.	For	example,	100	nm	diameter	devices	
were	expected	to	have	less	than	20	nA	dark	current	at	the	same	bias	(Figure	14.5).

14.6.3  Photocurrent and Amplification (Optical Gain)

In	our	simulation	model,	one	of	the	first	functions	implemented	was	the	capability	to	illu-
minate	the	device.	Based	on	this	capability,	we	have	simulated	cases	where	the	device	was	
illuminated	from	the	top	or	the	bottom	side.
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489Design of the Nanoinjection Detectors Using Finite Element Modeling

Using	 the	 results	 of	 CW	 illumination	 in	 the	 model,	 we	 have	 calculated	 the	 expected	
optical	gain	the	devices	would	exhibit	(Figure	14.6).	Here,	 the	optical	gain	is	defined	as	
the	ratio	of	the	number	of	 injected	electrons	to	the	number	of	the	absorbed	photons.	In	
our	simulations,	we	have	seen	optical	gain	values	of	around	1000	for	unpassivated	first	
generation	devices,	10	for	passivated	first	generation	devices,	and	more	than	100,000	for	
passivated	second	generation	devices.

14.6.4  Quantum Efficiency

Since	nanoinjection	detector	features	an	internal	amplification	method	that	is	tightly	cou-
pled	 with	 the	 detection	 method,	 we	 have	 expected	 to	 have	 challenges	 figuring	 out	 the	
actual	electrical	gain	and	quantum	efficiency	of	the	device.	Because	of	this	reason,	we	have	
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FIGURE 14.4
Current–voltage	plot	for	a	5	μm	diameter	nanoinjection	detector.
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FIGURE 14.3
Simulation	result	for	dark	current	at	different	base	doping	and	thicknesses.
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490 Computational Finite Element Methods in Nanotechnology

defined	and	used	optical	gain	instead	of	the	electrical	gain.	However,	simulations	could	
shed	light	on	this	challenge,	helping	us	to	isolate	the	quantum	efficiency	of	our	detector.

To	find	the	simulated	internal	quantum	efficiency,	we	have	performed	two	simulations,	
one	in	dark	and	another	with	a	specific	optical	illumination.	In	these	simulations,	we	have	
performed	boundary	integration	on	the	hole	current	that	is	thermionically	emitted	from	
InGaAs	 to	 GaAsSb	 due	 to	 photo	 generation.	 In	 addition	 to	 this	 current,	 we	 have	 volu-
metrically	integrated	the	holes	that	are	optically	generated	in	this	volume.	Finally,	we	have	
taken	the	ratio	of	these	values	to	find	the	internal	quantum	efficiency.	These	calculations	
resulted	in	quantum	efficiency	values	around	70%.

14.6.5  Potential Distribution and Electric Field

To	understand	the	electrical	transport	properties	inside	the	device,	the	potential	and	elec-
tric	field	distribution	was	studied	extensively	(Figure	14.7).

The	simulations	revealed	the	favored	paths	inside	the	device	for	carrier	transport.	For	
example,	in	devices	with	unetched	GaAsSb	layers,	this	layer	presented	a	low	impedance	
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FIGURE 14.5
Current–voltage	plot	for	a	100	nm	diameter	nanoinjection	detector.
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FIGURE 14.6
Simulation	result	for	optical	gain	at	different	optical	powers	for	a	5	μm	diameter	nanoinjection	detector.
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491Design of the Nanoinjection Detectors Using Finite Element Modeling

path	for	holes	to	reach	the	nanoinjectors,	leading	to	spatial	separation	of	electron	and	holes	
inside	the	device	and	reducing	the	recombination	probability	(Figure	14.8).

14.6.6  Device Heating

The	joule	heating	inside	the	device	was	also	simulated.	However,	the	results	did	not	show	
any	significant	heating	at	room	temperature,	even	at	locations	with	high	current	density	
(i.e.,	corners)	(Figure	14.9).

14.7 Measured Performance of Nanoinjection Detectors

We	measured	the	dark	current,	photo-response	and	spectral	noise	power	of	the	devices	
at	 room	 temperature.	 At	 each	 data	 step,	 the	 dark	 current	 and	 spectral	 noise	 power	

Hole flux

Electron flux

FIGURE 14.8
Different	pathways	for	electron	and	hole	flow	reduce	the	recombination	probability	in	a	nanoinjection	detector.

Conduction band

Valence band

FIGURE 14.7
Simulated	band	structure	in	the	2-D	cross-section	of	a	nanoinjection	detector.
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492 Computational Finite Element Methods in Nanotechnology

measurements	 were	 taken	 simultaneously,	 quickly	 followed	 by	 photocurrent	 measure-
ments.	For	accurate	laser	power	calibration,	a	commercial	PIN	detector	was	placed	inside	
the	setup	as	a	separate	experiment	and	its	response	was	measured	to	accurately	quantify	
the	laser	power	reaching	the	sample.

Devices	with	30	μm	active	diameter	and	10	μm	nanoinjector	showed	dark	current	values	
around	1	μA	and	internal	amplification	values	exceeding	3000	at	0.7	V14	(Figure	14.10).	The	
DC	current	measurements,	when	coupled	with	the	optical	gain	measurements,	yielded	a	
unity	gain	dark	current	density	of	less	than	900	nA/cm2	at	1	V.

Similar	 to	 reference,23	 the	 spectral	 noise	 power	 after	 amplification	 in	 unpassivated	
devices	was	measured	with	a	spectrum	analyzer	around	1.5	kHz,	which	is	beyond	the	1/f	
noise	knee	but	lower	than	the	measured	bandwidth	of	the	device	of	about	4	kHz.	The	mea-
sured	spectral	power	was	compared	to	predicted	spectral	noise	density	due	to	Poissonian	
shot	 noise	 with	 amplification	 (2qM2IintΔf),	 where	 we	 have	 observed	 noise	 suppression	
similar	to	the	Fano	effect.24	This	phenomenon	is	shown	to	result	from	temporal	correla-
tion	mechanisms	influencing	particle	flow,	such	as	Coulomb	blockade25	or	Pauli	exclusion	
principle.26	The	strength	of	shot	noise	suppression	(or	enhancement)	is	quantified	by	the	
Fano	factor27	γ	as

	
γ = =I
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FIGURE 14.9
Simulation	showing	the	heat	generation	inside	the	detector.
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493Design of the Nanoinjection Detectors Using Finite Element Modeling

where
In	is	the	measured	standard	deviation	of	current,	or	current	noise
Ishot	is	the	Poissonian	shot	noise
q	is	the	electron	charge
IDC	is	the	average	value	of	current
Δf	is	the	bandwidth

For	devices	with	internal	amplification,	the	denominator	of	the	right-hand	side	needs	to	be	
modified	into	2qM2IDCΔf.	This	is	because	of	the	amplification	that	applies	to	both	the	signal	
and	the	noise,	and	hence	the	noise	power	needs	to	be	scaled	by	M2	to	conserve	SNR.

The	devices	showed	high	internal	amplification	values	around	3000	at	0.7	V	and	5000	at	
around	1	V.	The	measured	Fano	factor	was	F ∼ 0.55	(Figure	14.11).

The	noise	equivalent	power	(NEP)	of	the	devices	was	measured	as	4.5	fW/Hz0.5	at	room	
temperature	without	any	gating,	using	the	relation

	
P

I
NEP

n meas= ,

Γ

where	Γ	is	the	responsivity.
The	spatial	response	of	the	unpassivated	devices	was	measured	using	a	surface	scan-

ning	beam	with	∼1.5	μm	diameter,	and	10	nm	step	resolution.	Despite	such	a	high	gain,	the	
device	showed	a	very	uniform	spatial	response,	primarily	due	to	the	low	internal	electric	
field	in	our	devices.	The	measured	response	decreases	rapidly	beyond	a	radius	of	about	
8	μm.	This	property	meant	that	two-dimensional	arrays	of	nanoinjection	detectors	would	
not	need	pixel	isolation	methods,	and	that	became	one	of	the	bases	for	the	nanoinjector	
imagers.
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FIGURE 14.10
Current–voltage	and	optical	gain–voltage	plots	for	a	nanoinjection	detector	at	room	temperature.
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494 Computational Finite Element Methods in Nanotechnology

The	 measured	 bandwidth	 of	 the	 unpassivated	 devices	 was	 around	 3–4	kHz,	 much	
different	compared	to	the	lifetime	in	the	GaAsSb	trap	layer	(∼1	ns	with	our	doping	levels),	
which	we	believe	will	be	the	ultimate	constraint	on	bandwidth.	We	have	attributed	this	
difference	to	the	existence	and	influence	of	surface	traps.

When	the	devices	were	passivated,	we	observed	a	drastically	different	behavior.	The	
gain	 decreased	 significantly	 to	 values	 around	 10	 and	 the	 spatial	 response	 extended	
to	beyond	100	μm	when	the	devices	were	not	confined	by	hard-etching	the	trap	layer.	
However,	the	bandwidth	of	these	devices	exceeded	3	GHz.	The	rise-time	values	of	200	
ps	were	measured.

Passivated	nanoinjection	detectors	with	bandwidths	exceeding	several	gigahertz	exhib-
ited	ultra-low	jitter	values	of	∼14	ps	at	room	temperature,28	which	is	a	record	breaking	per-
formance	(Figure	14.12).	The	transient	response	of	the	detector	was	studied	by	exploring	
the	relation	between	lateral	charge	transfer	and	jitter,	where	we	found	out	that	the	jitter	is	
primarily	transit	time	limited.

14.8 Measured Performance of Nanoinjection Imagers

After	 individual	 nanoinjection	 detectors	 were	 designed,	 fabricated,	 and	 evaluated,	 we	
worked	on	arrays	of	nanoinjection	detectors	to	form	focal	plane	array	infrared	cameras.	
The	fabrication	included	building	an	array	of	detectors,	putting	indium	bumps	on	both	
the	detector	and	the	read-out	array,	and	integrating	them	using	indium	bump	bonding	
(Figures	14.13	and	14.14).

Regarding	design	parameters,	we	chose	to	build	320	by	240	pixel	arrays	with	30	μm	pixel	
pitch.	We	chose	an	off-the-shelf	read-out-integrated	circuit	(ROIC),	ISC9705	from	Indigo,	for	
hybridization.	It	 is	a	320	×	256	pixel	ROIC	with	30	μm	pixel	pitch.	The	full	well	capacity	 is	
18	×	106	electrons	and	the	ROIC	can	process	up	to	346	fps	at	full	resolution,	and	up	to	15,600	
frames	with	reduced	region-of-interest	with	cooling.
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FIGURE 14.11
Variation	of	noise	versus	voltage	for	a	10	μm	diameter	detector.
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495Design of the Nanoinjection Detectors Using Finite Element Modeling

Mag = 4.33 KX
10 µm* EHT = 12.00 kV Signal A = InLens

Photo No. = 7581
Date: 15 Oct 2009
Time: 8:46WD = 3 mm

FIGURE 14.13
SEM	image	of	the	detectors	with	indium	bumps	on	top.
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FIGURE 14.12
High-speed	pulse	response	of	passivated	10	μm	nanoinjection	detector,	showing	a	jitter	of	16.9	ps.
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496 Computational Finite Element Methods in Nanotechnology

Several	measurements	were	performed	on	the	hybridized	devices.29	The	text	pixels	were	
directly	tested	for	current,	gain,	and	noise	versus	voltage	(Figure	14.15).	The	spatial	respon-
sivity	was	measured	and	mapped.	The	imager	performance	and	the	SNR	were	compared	
to	a	high-end	commercial	PIN-detector	based	infrared	camera.	The	signal-to-noise	of	the	
nanoinjection	detector	was	evaluated	under	different	photon	fluxes	to	identify	the	excess	
noise	and	overall	electronic	noise.

14.8.1  Current–Voltage and Gain–Voltage before and after Integration

The	 sample	 was	 placed	 in	 a	 custom-built	 visible/infrared	 microscope	 setup,	 which	
doubled	as	a	beam	collimator	for	the	laser	beam.	A	tunable	laser	source	at	λ	=	1.55	μm	
was	 used	 as	 modulated	 optical	 source	 with	 adjustable	 attenuation.	 The	 actual	 power	
reaching	the	sample	was	measured	with	a	calibrated	PIN	detector.	Before	hybridization,	
the	 detectors	 were	 tested	 with	 a	 1	μm	 radius	 Ni-W	 probe	 and	 a	 low	 noise	 current	
preamplifier	(Stanford	Research	Systems	SR-570).	After	hybridization,	the	test	detectors	
with	 external	 wirebonding	 pads	 were	 soldered	 to	 a	 coaxial	 cable,	 and	 tested	 using	
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FIGURE 14.15
Current	voltage	plot	of	a	hybridized,	unpassivated	10	μm	nanoinjection	detector	in	the	focal	plane	array.
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FIGURE 14.14
Microscope	image	of	the	gap	between	two	dummy	wafers	integrated	using	indium	bump	bonding.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
30

 0
3 

M
ar

ch
 2

01
6 



497Design of the Nanoinjection Detectors Using Finite Element Modeling

SR-570,	the	output	of	which	was	monitored	by	an	Agilent	multimeter	for	dark	and	photo	
DC	measurements	(Figure	14.16).

14.8.2  Bandwidth of Hybridized Test Pixels

The	test	detectors	with	external	wirebonding	pads	were	soldered	to	a	coaxial	cable,	and	
tested	 using	 SR-570,	 the	 output	 of	 which	 was	 monitored	 by	 an	 Agilent	 multimeter	 for	
dark	and	photo	DC	measurements	and	Stanford	Research	Systems	SR-770	FFT	Spectrum	
Analyzer.	A	calibrated	laser	was	focused	on	the	devices.	The	laser	output	was	modulated,	
and	the	frequency	was	varied.	The	spectrum	of	the	electrical	signal	was	analyzed,	and	the	
bandwidth	was	marked	as	the	frequency	where	amplitude	of	the	fundamental	frequency	
dropped	by	3	dB.	The	device	bandwidth	was	3.6	kHz	at	0.7	V.

14.8.3  Noise Performance of the Hybridized Test Pixels

After	the	test	detectors	with	external	wirebonding	pads	were	soldered	to	a	coaxial	cable,	
the	signal	was	amplified	by	SR-570	trans-impedance	amplifier,	and	recorded	by	an	Agilent	
multimeter	for	dark	and	photo	DC	measurements	and	Stanford	Research	Systems	SR-770	
FFT	 Spectrum	 Analyzer	 for	 noise.	 The	 power	 spectral	 noise	 was	 measured	 at	 2.5	kHz,	
below	the	bandwidth	of	the	devices,	3.6	kHz.

The	excess	noise	factor	F	was	calculated	using	the	relation	(Figure	14.17)

	
F

I
I

I f
qI G

n measured

n ected

n meas= =,

,

,( )2

2

2

22exp int

/∆
	 (14.17)

where
(In,measured/Δf)	is	the	measured	spectral	noise	power
q	is	the	electron	charge
Iint	is	the	internal	dark	current	(before	amplification)
G	is	the	gain	or	internal	amplification
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FIGURE 14.16
(a)	Internal	dark	current	(before	amplification)	versus	bias	voltage,	and	(b)	the	responsivity	versus	bias	voltage.
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498 Computational Finite Element Methods in Nanotechnology

14.8.4  Spatial Sensitivity of Hybridized Test Pixels

The	 sample	 was	 placed	 in	 the	 custom-built	 visible/infrared	 microscope	 setup	 with	 an	
average	 optical	 power	 of	 5	nW	 incident	 on	 the	 sample.	 The	 laser	 spot	 focused	 onto	 the	
sample	with	a	spot	size	of	about	2	μm.	Focused	laser	spot	was	scanned	over	the	sample	
using	motorized	drivers	with	nanometer	resolution	(Figure	14.18).	A	computerized	setup	
was	used	to	control	instruments	through	Labview.
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FIGURE 14.18
Spatial	sensitivity	map	of	a	hybridized,	unpassivated	nanoinjector	detector	in	the	focal	plane	array.
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Excess	noise	factor	F	of	a	hybridized	nanoinjection	detector	at	different	internal	amplification	values.
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499Design of the Nanoinjection Detectors Using Finite Element Modeling

14.8.5  Temperature Behavior of Hybridized Test Pixels

After	hybridized	FPA	was	placed	on	the	LCC	and	wirebonded,	the	imager	was	placed	
in	a	cryostat	facing	a	multispectral	ZiSe	window.	The	wirebonds	connected	to	test	pix-
els	were	soldered	to	the	cryostat	feedthroughs.	The	cryostat	was	pumped	down,	and	a	
large	area	over	the	sample	was	illuminated	using	a	laser	source	at	1.55	μm.	The	response	
of	the	device	was	amplified	by	SR-570	and	recorded	under	darkness	and	with	illumina-
tion.	The	power	incident	on	the	sample	was	found	using	room	temperature	photores-
ponse.	The	sample	was	 than	cooled	down,	and	dark	and	photocurrent	measurements	
were	taken	at	every	temperature.

The	dark	current	and	internal	amplification	values	of	hybridized	test	pixels	were	mea-
sured	at	different	temperatures	ranging	from	300	to	78	K.	The	dark	current	decreased	mono-
tonically	until	175	K,	where	a	change	in	device	behavior	was	observed	either	due	to	surface	
leakage	or	tunneling	through	the	barrier.	The	Arrhenius	plot	indicates	that	activation	energy	
of	the	dark	current	is	0.26	eV,	which	is	in	perfect	agreement	with	the	heterojunction	injection	
barrier	height	of	∼0.25	eV	(InP–GaAsSb	interface)30	(Figures	14.19	through	14.21).

14.8.6   Comparison of the Signal-to-Noise Level of the 
Nanoinjection Imager with a Commercial Camera

The	 imager	was	placed	 in	 the	camera	 (ROIC	Evaluation	Kit,	 from	Indigo),	and	 the	cam-
era	dewar	was	pumped	down.	The	imager	was	cooled	down	to	−75°C.	The	devices	were	
biased	to	−500	mV	and	the	detector	common	was	set	to	6–6.5	V.	The	integration	time	was	
set	to	0.5	ms.	For	the	evaluation	kit	with	nanoinjection	imager,	a	Canon	EF	50	mm	f/1.8	lens	
was	used.	The	same	integration	time	setting	was	used	in	the	commercial	infrared	camera	
(AlphaNIR).	The	lens	used	with	AlphaNIR	camera	is	IR-compatible	50	mm	f/1.8.	For	both	
cameras,	the	lenses	were	used	in	maximum	aperture,	f/1.8.	The	cameras	were	calibrated	
using	the	same	uniform	light	box.	Before	taking	the	actual	images,	the	dynamic	range	of	
both	cameras	were	equalized	and	fixed,	by	disabling	the	auto	gain	and	contrast	 in	both	
cameras	while	they	were	imaging	the	same	scene.	The	acquired	images	(Figure	14.22)	were	
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FIGURE 14.19
Dark	current	of	the	hybridized	unpassivated	nanoinjection	detector	at	temperatures	from	300	to	78	K.
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500 Computational Finite Element Methods in Nanotechnology

opened	in	MATLAB®,	and	the	signal	was	calculated	by	subtracting	dark	scene	from	the	illu-
minated	scene,	and	standard	deviation	of	each	pixel	was	calculated	from	its	time	evolution.

The	measured	sensitivity	of	 the	nanoinjection	detector	was	 two	orders	of	magnitude	
higher	than	the	commercial	PIN	camera	(1656	vs.	17),	as	shown	in	the	comparison	images	
and	SNR	histograms31	(Figure	14.23).

14.8.7  Signal-to-Noise Analysis of the Nanoinjection Imager

The	nanoinjection	IR	camera	setup	was	similar	to	SNR	measurements.	A	collimator	was	
used	together	with	an	optical	fiber	with	calibrated	light	output	and	the	collimated	beam	
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FIGURE 14.21
Internal	gain	of	the	hybridized	unpassivated	nanoinjection	detector	at	temperatures	from	300	to	78	K.
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501Design of the Nanoinjection Detectors Using Finite Element Modeling

was	 focused	 onto	 the	 focal	 plane	 array.	 Different	 levels	 of	 laser	 output	 at	 1.55	μm	 were	
mapped	from	the	fiber	and	images	were	acquired	at	a	reduced	region	of	interest	for	highest	
frame	rates.	The	images	were	imported	into	MATLAB,	and	at	every	illumination	level,	the	
signal	was	calculated	by	subtracting	the	dark	scene	from	the	illuminated	scene.	The	stan-
dard	deviation	of	each	pixel	was	calculated	from	the	time	evolution.	After	the	results	were	
plotted,	the	curve	was	fitted	to	the	relation32	between	SNR	and	photon	count	(Figure	14.24):
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N t

P t
E
opt

ph
= =φ int

int , 	 (14.20)

where
Sphoto	is	the	signal	power
Pnoise	is	the	noise	power
Φ	is	the	photon	flux	per	second
tint	is	the	integration	time
G	is	the	gain	(multiplication	factor)	of	the	detector
F	is	the	excess	noise	factor
σ	is	the	electronic	noise
N	is	the	number	of	photons
σoverall	is	the	overall	input	noise	of	the	system
σnanoinjection	is	detector	noise
σROIC	is	ROIC	noise
Popt	is	the	calibrated	optical	power
Eph	is	the	photon	energy

In	contrast	to	PIN-based	detectors,	the	nanoinjection	imagers	amplify	the	signal	before	it	
reached	the	read-out	electronics.	Due	to	this,	the	imager	performance	was	not	limited	by	
the	electronic	noise	of	the	read-out	integrated	circuits.	At	an	integration	time	of	0.5	ms	and	
a	frame	rate	of	1950	fps	with	reduced	region-of-interest,	an	analysis	of	SNR	versus	number	
of	photons29	revealed	that	the	overall	electronic	noise	of	the	imager	(28	e−)	was	much	less	
than	the	read-out	noise	of	(575	∼ 870	e−),	and	that	the	overall	imager	excess	noise	F	was	less	
than	1.	When	the	integration	time	is	halved,	the	electronic	noise	was	almost	twice	(47	e−).	
This	 is	 in	agreement	with	 the	 fact	 that	expected	electronic	noise	scales	down	 inversely	
with	integration	time.33	The	integration	capacitor	of	our	off-the-shelf	ROIC	prevents	longer	
integration	times.	However,	we	expect	the	imager	overall	noise	to	be	less	than	2	e−	RMS	at	
tint	=	10	ms	and	frame	rate	of	100	fps	(Figure	14.24).
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SNR	of	the	nanoinjection	imager	versus	number	of	photons,	gathered	using	images	acquired	at	different	photon	
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503Design of the Nanoinjection Detectors Using Finite Element Modeling

14.9 Conclusion

With	a	nontraditional	geometry	composed	of	nanoscale	sensing	and	amplification	nodes	
on	 thick	 absorption	 layers,	 the	 nanoinjection	 detectors	 offer	 high-sensitivity	 photon	
detection	and	amplification.	However,	due	to	their	nonplanar	design,	type-II	band	align-
ment	 and	 the	 coupled	 detection/amplification	 mechanisms,	 the	 design	 and	 develop-
ment	of	the	nanoinjection	devices	required	detailed	nonlinear	three-dimensional	FEM	
simulations.

The	FEM	simulation	provided	a	multi-physics	environment	for	stationary,	parametric,	
and	 transient	 simulations,	 all	 based	 on	 the	 drift-diffusion	 equations	 in	 two	 and	 three	
dimensions.	The	model	 incorporated	 several	nonlinearities	 such	as	 the	 incomplete	 ion-
ization	of	dopants,	bimolecular	recombination,	Auger	recombination,	nonlinear	mobility,	
impact	ionization,	thermionic	emission,	hot	electron	effects,	surface	recombination	effects,	
and	temperature	effects.

Once	the	devices	were	optimized	through	simulations,	the	nanoinjection	devices	were	
fabricated	through	micro-and	nanofabrication.	The	measurements	showed	amplification	
factors	reaching	10,000	with	low	dark	current	densities	and	Fano	noise	suppression.	The	
passivated	nanoinjection	devices	had	bandwidths	exceeding	3	GHz	with	a	jitter	of	15	ps.	
Nanoinjection	detector	arrays	of	320-by-256	pixels	were	hybridized	to	form	focal	plane	array	
infrared	cameras.	With	a	pixel	level	responsivity	exceeding	2500	A/W,	the	nanoinjection	
focal	plane	arrays	showed	a	noise	level	of	28	electrons	at	a	frame	rate	of	1950	fps.	These	
imagers	showed	two	orders	of	magnitude	improved	SNR	compared	to	commercial	SWIR	
imagers,	at	 thermoelectric	cooling	temperatures.	These	demonstrated	capabilities	of	 the	
nanoinjection	detectors	and	imagers	make	them	excellent	candidates,	extremely	suitable	
for	demanding	applications	such	as	optical	tomography,	satellite	imaging,	nanodestructive	
material	 inspection,	 high-speed	 quantum	 computing	 and	 cryptography,	 night	 vision	
imaging,	and	machine	vision	for	process	control.
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13.1 Introduction

13.1.1  Biotechnology: A New Science Requiring a Multi-Physics Approach

Starting	in	the	year	1980,	biotechnology	was	as	a	new	science	at	the	boundary	of	physics	
and	biology.	The	goal	was	to	bring	to	biology,	medical,	and	pharmaceutical	research	new	
automation	 tools	 to	boost	 the	development	of	new	drugs,	 fabricate	new	body	 implants,	
perform	 DNA	 and	 protein	 analysis	 and	 recognition,	 and	 increase	 the	 potentialities	 of	
fundamental	research.	In	reality,	this	vision,	imagined	by	pioneers	like	Feynman	[1],	de	
Gennes	[2],	and	Whitesides	[3],	has	been	extremely	effective.

Historically,	 genomics	 and	 proteomics	 have	 been	 the	 first	 beneficiaries	 of	 the	 devel-
opment	of	biotechnology,	and	it	 is	 the	turn	of	cellomics	now.	These	developments	have	
spread	beyond	the	domain	of	biotechnology	and	created	a	“cloud”	of	new	applications	in	
other	domains	such	as	bioinformatics,	bioengineering,	tissue	engineering,	etc.	At	the	same	
time,	 the	 microfluidic	 techniques	 developed	 for	 biotechnology	 reached	 other	 domains,	
like	materials	science,	optofluidics,	microelectronics,	and	mechatronics.

The	 foreseen	 goals	 have	 required	 the	 downscaling	 of	 fluidic	 systems	 to	 the	 “conve-
nient”	size	to	work	at	 the	proper	scale	characteristic	of	a	population	of	biologic	targets.	
At	the	same	time,	it	has	been	found	that	the	downscaling	was	bringing	economy	in	costly	
materials,	 fluids,	 and	 devices,	 that	 sensitivity	 was	 increased,	 and	 that	 operating	 times	
were	greatly	reduced	by	 the	 integration	of	many	functions	on	 the	same	microchip.	The	
increasingly	large	number	of	functions	implemented	on	the	same	chip	is	associated	to	a	
multi-physics	aspect.	For	example,	a	microsystem	can	require	the	use	of	microfluidics	for	
actuating	the	flows	through	the	chip,	the	use	of	magnetic	beads	to	bind	to	the	biological	
targets	and	concentrate	them	[4,5],	or	electric	fields	to	induce	dielectrophoretic	or	electroki-
netic	effects	to	separate	the	targets	[6,7];	acoustics	may	also	be	used	for	the	same	purposes	
[8,9].	Polymerase	chain	reaction	(PCR)	aimed	at	the	amplification	of	DNA	strands	require	
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very	localized	thermal	cycles	[10,11],	micromembranes	or	valves	require	micro-mechanical	
investigations	[12,13],	and	the	binding	(capture)	of	targets	to	ligands	is	based	on	chemi-
cal	recognition	[5,14].	It	is	frequent	that	these	phenomena	are	coupled,	like	microfluidics,	
thermics,	and	chemical	reactions,	for	example.

13.1.2  Role and Aims of Numerical Modeling in Biotechnology

The	 historical	 trend	 of	 most	 new	 domains	 in	 physics	 is	 to	 start	 with	 experiments	 and	
a	 theoretical	basis;	modeling	and	simulation	come	 later.	Biotechnology	 is	no	exception.	
Presently,	the	development	of	biotechnology,	and	micro	and	nano-technologies	in	general,	
is	sufficiently	mature	for	numerical	modeling	and	simulation	to	develop	quickly.

In	microsystems	for	biotechnology,	due	to	flow	laminarity,	the	velocity	field	can	be	extremely	
well	 calculated.	 On	 the	 other	 hand,	 phenomena	 like	 dielectrophoresis,	 electrokinetics,	
thermics,	and	chemical	reactions	are	also	well	prone	to	modeling.	However,	all	the	numerical	
problems	are	far	being	solved:	At	the	present	stage,	the	complexity	essentially	stems	from	
the	coupling	of	the	multi-physics	involved	with	the	microsystems,	from	the	multi-phase	flow	
aspects—tracking	an	interface	is	still	complex	and	time	consuming—and	from	the	difficulty	
to	model	the	transport	of	“large”	and	sometimes	deformable	objects	like	cells	and	vesicles.

In	this	chapter,	we	have	tried	to	give	the	reader	an	overview	of	the	modeling	develop-
ments	in	biotechnology.	First,	we	recall	the	theoretical	grounds	for	microfluidics,	with	an	
introduction	to	non-Newtonian	rheology—because	the	colloids	used	in	biotechnology	are	
often	viscoelastic;	then	we	take	the	example	of	cell	chips	in	which	cell	concentration	and	
separation	is	made	by	tailored	microfluidics;	finally,	we	present	DNA	hybridization	in	a	
microfluidic	system.

13.2 Theoretical Basis

13.2.1  Introduction

From	the	most	general	point	of	view,	pure	fluid	flows	are	determined	by	the	knowledge	of	
velocities	U	=	{ui,	i	=	1,	3},	pressure	P,	density	ρ,	viscosity	μ	(or	η),	specific	heat	Cp,	and	tem-
perature	T.	For	each	fluid,	density,	viscosity,	and	specific	heat	are	related	to	pressure	and	
temperature	(or	enthalpy)	via	characteristic	equations	of	state	(EOS):

	

ρ

µ

 = (

=

=

f P T

g P T

C h P Tp

, )

( , )

( , )

	 (13.1)

Pressure	and	temperature	characterize	the	number	and	the	state	of	the	molecules	that	are	
present	in	a	given	volume.	Equations	of	state	are	generally	complicated,	but	they	can	be	
approximated	by	analytical	functions	if	the	domain	of	variation	of	the	parameters	(P	and	
T)	is	not	too	large.	Thus,	we	are	left	with	five	unknowns:	ux,	uy,	uz,	P,	and	T.	These	unknowns	
are	related	by	a	system	of	three	equations:	(1)	a	scalar	equation	for	the	mass	conservation,	
(2)	a	vector	equation	for	the	conservation	of	momentum,	and	(3)	a	scalar	equation	for	the	
conservation	of	energy.	In	biotechnology,	fluid	flows	are	most	of	the	time	isothermal	or	
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426 Computational Finite Element Methods in Nanotechnology

variation	of	temperature	is	negligible.	Note	that	this	is	not	the	case	for	micro-chemistry	
where	chemical	reactions	are	seldom	isothermal,	or	for	specific	biological	protocols	like	
polymerase	chain	reaction	(PCR)	to	amplify	DNA	strands.	If	temperature	is	constant	or	
nearly	constant,	we	have	to	deal	with	four	unknowns,	ux,	uy,	uz,	and	P,	with	the	help	of	
the	mass	 conservation	equation	and	 the	conservation	of	momentum	equation,	plus	 the	
EOS:	ρ	=	f	(P),	μ	=	g	(P).	Some	authors	give	the	name	Navier–Stokes	equations	to	the	whole	
system,	others	restrict	this	name	to	the	second	equation	(momentum).

Remark	that	if	the	fluid	transports	micro	or	nanoparticles,	the	preceding	development	
must	be	adapted;	the	fluid	characteristics	depend	on	the	transported	species	concentration	c

	

ρ

µ

 = (

=

=

f P T c

g P T c

C h P T cp

, , )

( , , )

( , , )

	 (13.2)

and	an	additional	equation	for	the	transport	of	concentration	must	be	added.

13.2.2  Mass Conservation and Navier–Stokes Equations

The	 theoretical	 basis	 for	 hydrodynamics	 is	 the	 Navier–Stokes	 and	 mass	 conservation	
equations	[15].	The	conservation	of	mass	(continuity)	is	based	on	the	conservation	of	mass	
in	any	infinitesimal	volume:

	

∂
∂

+
∂( )

∂
+

∂( )
∂

+
∂( )

∂
=ρ ρ ρ ρ

t

u

x

v

y

w

z
0 	 (13.3)

This	equation	may	be	written	as
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∂
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∂
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and	under	a	vector	form

	

D
Dt

V
ρ ρ+ ∇⋅ =

�
0 	 (13.5)

where	the	operator	D/Dt	is

	

D
Dt t

u
x

v
y

w
z

= ∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂

	 (13.6)

in	a	three-dimensional	(3D)	Cartesian	coordinate	system.	Liquids	may	generally	be	con-
sidered	as	incompressible,	and	the	mass	conservation	equation	is	then	reduced	to

	 ∇⋅ =
�

V 0 	 (13.7)

In	Cartesian	coordinates,	we	have

	

∂
∂

+ ∂
∂

+ ∂
∂

=u
x

v
y

w
z

0 	 (13.8)
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The	second	equation	is	the	momentum	conservation	equation	(or	Navier–Stokes	equation).	
The	change	of	momentum	in	a	fluid	element	is	equal	to	the	balance	between	inlet	momen-
tum,	outlet	momentum,	and	exerted	forces	[2]:

	
ρ σ τ τDu
Dt x y z

Fx xy xz
x= − ∂

∂
+

∂
∂

+ ∂
∂

+ 	 (13.9)

Normal	stress	and	tangential	stress	are	for	most	fluids	(called	Newtonian	fluids,	see	dis-
cussion	later)	given	by	the	constitutive	relations
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	 (13.10)

where	μ	is	the	dynamic	viscosity.	Combining	(13.9)	and	(13.10),	and	extending	the	formula-
tion	to	the	three-dimensional	(3D)	case,	yields	the	Navier–Stokes	equation:
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The	vectorial	notation	is

	
ρ µDV
Dt

P V F

�
� �

= −∇ + +∆ 	 (13.12)

where	V⃗	is	the	velocity	vector	(u,v,w)	and	F	is	the	body	force	per	unit	volume.

13.2.3  Stokes Equations

At	very	low	velocities,	inertial	forces	become	very	small	compared	to	the	viscous	forces.	
The	Reynolds	number

	
Re = V d

v
	 (13.13)

is	much	smaller	than	1—because	the	average	velocity	V	and	the	characteristic	dimension	
d	are	small—and	the	inertia	terms	on	the	left	of	Equation	13.11	may	be	neglected	[5,16].	In	
this	regime,	the	Navier–Stokes	equation	reduces	to	the	Stokes	equation:
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In	the	case	where	the	external	force	is	just	the	gravity	force,	the	simplification	is	consider-
able	because	the	system	(13.14)	is	now	linear

	 ∇ = + ∇p V g zν ρ∆
�

	 (13.15)

where	we	have	used	the	notation	Δ	=	∇2	for	the	Laplacian	operator.	By	taking	the	rotational	
of	(13.15),	and	using	the	following	mathematical	relations

	

curl gradP p

curl A curl A

( ) = ∇ × ∇ =

( ) = ( )
0

∆ ∆
� �

we	obtain

	
∆ ∆∇ ×( ) = =

� �
V ω 0 	 (13.16)

where	ω	is	the	vorticity	of	the	flow.	Thus,	in	the	Stokes	formulation,	vorticity	is	a	harmonic	
function	[17]	and	the	problem	can	be	solved	in	the	vorticity-streamline	formulation	as	soon	
as	the	values	of	the	vorticity	on	the	boundaries	are	known.	Remark	that	harmonic	func-
tions	are	an	interesting	class	of	mathematical	functions;	in	particular,	they	cannot	have	a	
minimum	or	maximum	inside	the	computational	domain:	the	extremums	are	always	at	
the	boundaries.	In	our	case	here,	the	vorticity	is	generated	by	the	shear	at	the	wall	and	is	
maximum	or	minimum	(negative)	at	the	walls.	That	would	not	be	the	case	for	turbulent	
flows	where	free	vortices	evolve	in	the	flow	domain.

13.2.4  Creeping Flow Reversibility

Stokes	equations	are	linear.	Stokes	formulation	for	creeping	flows	is	very	attractive	because	
an	apparently	complex	problem	can	be	simplified	to	a	linear	formulation.	Besides	linearity,	
Stokes	equation	is	reversible	[16];	that	is,	a	change	of	the	velocity	u	to	its	opposite—u	on	the	
boundaries	of	the	domain—will	result	in	a	change	of	all	the	velocities	to	their	opposite.

An	example	of	 this	 reversibility	property	can	be	done	by	considering	a	cylinder	 in	a	
microflow,	as	sketched	in	Figure	13.1.	The	calculation	of	the	flow	has	been	performed	with	
the	numerical	software	COMSOL	using	the	complete	Navier–Stokes	equations	[18].	The	
flow	lines	are	shown	in	Figure	13.1,	for	an	inlet	velocity	of	1	mm/s	from	left	to	right.	If	the	
flow	is	reversed,	the	pattern	of	the	flow	lines	is	exactly	the	same.	This	is	typically	a	case	
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where	the	Stokes	equations	are	sufficient	to	describe	the	flow	because	the	Reynolds	num-
ber	is	much	smaller	than	1	anywhere	in	the	computational	domain.

On	the	other	hand,	if	the	inlet	velocity	is	progressively	increased,	the	inertial	effects	are	
increasing,	and	so	is	then	Reynolds	number.	The	flow	field	progressively	loses	its	symme-
try.	The	Stokes	equations	are	then	not	sufficient	to	describe	the	flow.

The	property	of	reversibility	is	very	important	because	it	shows	that,	at	very	low	veloci-
ties,	it	is	not	possible	to	design	a	microfluidic	“diode”	where	the	pressure	drop	would	be	
small	in	one	direction	and	large	in	the	opposite	direction.	A	microfluidic	“diode”	requires	
that	the	fluid	velocity	must	be	sufficiently	large	to	be	outside	the	Stokes	hypothesis,	or,	as	
will	be	shown	later,	the	fluid	must	be	non-Newtonian.

13.2.5  Laminarity of Microfluidic Flows

We	have	seen	that	microflows	in	microsystems	are	most	of	the	time	laminar—this	is	even	
more	the	case	when	the	dimensions	are	reduced	toward	the	nanoscale—and	in	such	lam-
inar	 flows,	 the	 flow	 streamtubes	 are	 very	 persistent	 as	 in	 Figure	 13.2	 which	 shows	 the	
merging	of	differently	colored	aqueous	flows.	The	 length	of	 the	domain	where	 the	dif-
ferent	flows	are	keeping	their	identities	depends	on	the	diffusion	coefficient	and	the	flow	
velocity.	We	will	analyze	the	merging	of	miscible	microflows	in	detail	in	Section	13.4.

13.2.6  Pressure Drop

Flow	channels	in	microsystems	are	often	rectangular.	This	is	due	to	the	microfabrication	
process.	Pressure	drops	in	such	channels	have	been	largely	documented	[5,19–23].	There	
exist	a	few	expressions	of	the	laminar	pressure	drop	in	a	rectangular	channel.	One	of	the	
most	accurate	is	that	of	Bahrami	et	al.	[22]	that	takes	into	account	the	aspect	ratio	ε	=	min	
(w/d,	d/w),	where	d	and	w	are,	respectively,	the	depth	and	width	of	the	channel.	The	pres-
sure	drop	is	related	to	the	flow	rate	by

	 ∆P RQ= , 	 (13.17)

(a)

Maximum local
Reynolds number 0.16 Maximum local

Reynolds number 45

(b)

FIGURE 13.1
Contour	plot	of	liquid	velocities	in	a	microchamber	obstructed	by	a	vertical	cylinder;	the	continuous	lines	are	
streamlines	originating	at	the	left	boundary:	(a)	at	low	Reynolds	number,	there	is	a	complete	symmetry;	revers-
ing	the	direction	of	the	flow	does	not	change	the	streamlines;	(b)	at	medium	Reynolds	number,	the	symmetry	
breaks	down	and	there	is	no	more	reversibility	of	the	flow	field.
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where	R	is	the	flow	resistance

	
R

L
wd w d q

= 4
2 2

µ
εmin( , ) ( )

, 	 (13.18)

and	the	function	q	is	the	form	factor	given	by

	
q( ) tanhε

π
ε π

ε
= − 











1
3

64
25 . 	 (13.19)

A	 good	 agreement	 with	 the	 theoretical	 formula	 is	 obtained	 by	 a	 3D	 calculation	 with	
COMSOL	 (Figures	 13.3	 and	 13.4)	 [24].	 In	 particular,	 Figure	 13.4	 shows	 a	 comparison	
between	the	closed	form	formula	(13.18)	and	the	numerical	results.

13.2.7  Non-Newtonian Fluids

13.2.7.1  Introduction

The	first	microfluidic	systems	for	biotechnology	used	conventional	liquids,	like	water,	or	
aqueous	solutions	and	organic	liquids,	like	mineral	oil.	Even	with	dilute	species,	these	flu-
ids	are	Newtonian,	that	is,	their	viscosity	depends	only	on	the	concentration	and	tempera-
ture.	Recently,	the	use	of	non-Newtonians	or	viscoelastic	fluids	has	become	increasingly	
widespread,	for	example,	with	the	use	of	whole-blood	(not	diluted)	for	home	test	systems	
or	liquid	polymers	like	alginates	and	agarose	for	cell	encapsulation	devices	[25–28].	Hence,	
it	has	become	necessary	to	understand	the	viscoelastic	behavior	and	be	able	to	predict	its	
effect	on	the	flow	field	and	pressure	drop.

500 µm 

(a) (b)
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Contour: concentration, c [mol/m3] arrow: velocity field

FIGURE 13.2
(a)	High	laminarity	of	microflows:	the	different	fluid	streams	flow	in	parallel,	without	mixing.	Remark	the	loca-
tion	of	the	stagnation	points	which	depends	on	the	flow	rates.	(b)	Numerical	simulation	with	COMSOL	showing	
a	progressive	slow	mixing.
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431Finite Element Method for Micro- and Nano-Systems for Biotechnology

Viscosity	 of	 usual	 (Newtonian)	 liquids	 depends	 on	 the	 temperature	 T.	 If	 micro	 or	
nanoparticles	are	transported	by	the	fluid,	their	concentration	has	an	important	influence	
on	the	viscosity.	The	general	expression	of	the	viscosity	is

	 η = ( )f T c, 	 (13.20)

Slice: velocity field (m/s) arrow: velocity field
Slice: pressure (Pa)

(a) (b)

FIGURE 13.3
(a)	Contour	plot	of	the	velocities	in	a	cross	section	of	the	channel,	with	velocity	vectors;	(b)	pressure	map	in	the	
channel	mid-plane.
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FIGURE 13.4
Comparison	between	COMSOL	and	analytical	law	of	the	pressure	profile	in	a	rectangular	channel	of	aspect	
ratio	½	(continuous	line	COMSOL,	dotted	line	analytical	model).
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432 Computational Finite Element Methods in Nanotechnology

Note	that	the	usual	notation	for	viscosity	is	μ	in	hydrodynamics	and	η	in	rheology.	This	
general	 category	 of	 fluids	 is	 called	 Newtonian.	 Non-Newtonian	 fluids—like	 polymeric	
solutions—have	a	more	complicated	viscosity	law	as	will	be	shown	in	the	next	section.

13.2.7.2  Non-Newtonian Viscosity

Polymeric	liquids	used	in	microfluidic	systems	are	more	or	less	viscoelastic	depending	on	
their	concentration.	Basically,	the	viscosity	of	viscoelastic	polymeric	liquids	depends	on	
the	concentration	in	polymers,	temperature,	and	shear	rate

	 η η γ= ( )c T, , � 	 (13.21)

where	 �γ 	is	the	shear	rate	(which	will	be	defined	in	the	next	section).

13.2.7.2.1  Influence of Concentration

In	 rheology	 of	 polymers,	 the	 very	 general	 Martin’s	 relation	 [29,30]	 usually	 applies	 for	
polymeric	solutions

	
η η η
sp

k cc e= [ ]( ) [ ]’ 	 (13.22)

where	ηsp	is	the	specific	viscosity	defined	by

	
η η η

ηsp = − 0

0
	 (13.23)

where	η0	is	the	viscosity	of	the	carrier	fluid	alone.	In	(13.22),	[η]	is	the	intrinsic	viscosity	
and	k′	the	Huggins	coefficient.	For	dilute	polymeric	solutions,	a	Taylor	expansion	yields	
the	Huggins	law:

	
η η ηsp c k c= [ ]+ ′ [ ]( )2

	 (13.24)

For	semi-dilute	solutions,	more	terms	in	the	expansion	of	(13.24)	should	be	kept.	However,	
it	has	been	shown	that	the	specific	viscosity	can	generally	be	approached	by	the	power	law:

	
η ηsp

n
a c= [ ]( ) 	 (13.25)

Taking	alginate	solutions	as	an	example,	it	can	be	shown	that	relation	(13.25)	fits	well	the	
experimental	results	with	a	=	0.1,	[η]	of	the	order	of	300–800	mL/g,	and	n	of	the	order	of	3–4	
depending	on	the	type	of	alginate	[28,31].	Finally,	the	viscosity	of	the	polymeric	solution	
depends	on	the	concentration	by	the	law

	
η η η= + [ ]( )



0 1 a c

n
	 (13.26)
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433Finite Element Method for Micro- and Nano-Systems for Biotechnology

13.2.7.2.2  Influence of Temperature

As	 a	 general	 rule,	 the	 viscosity	 of	 a	 polymeric	 liquid	 decreases	 with	 temperature.	 The	
Vogel–Fulcher–Tamman	(VFT)	hyperbolic	relation	is	often	used	to	describe	the	thermal	
dependency	of	the	viscosity	[30]	and	writes

	
logη = +

−
A

B
T T0

	 (13.27)

where	A	and	B	are	experimentally	determined	coefficients	(Figure	13.5).	The	change	in	vis-
cosity	with	temperature	of	a	polymeric	liquid	is	such	that	it	is	important	to	always	check	
the	temperature	before	performing	experiments	with	polymeric	liquids.

13.2.7.2.3  Influence of Shear Rate

Besides	 its	 dependency	 on	 concentration	 and	 temperature,	 the	 viscosity	 of	 polymeric	
solutions	decreases	with	 the	 shear	 rate	of	 the	flow,	because,	 in	high	shear	 regions,	 the	
long	polymer	chains	align	with	the	flow;	such	a	behavior	is	called	shear	thinning.	Many	
different	 laws	have	been	proposed	 for	 the	non-Newtonian	viscosity	depending	on	 the	
carrier	liquid	and	polymers.	The	most	common	law,	often	valid	for	small	to	medium	shear	
rates	is	the	Ostwald	law	or	“power	law”	[29,30].	It	is	recalled	that	the	viscosity	of	a	“power	
law”	fluid	has	the	form

	 η γ= −K n� 1 	 (13.28)

where
K	and	n	are	constants
�γ 	is	the	shear	rate

Log

VFTH relation

T temperature

FIGURE 13.5
Thermal	dependency	of	the	viscosity	of	a	polymeric	liquid.
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434 Computational Finite Element Methods in Nanotechnology

In	the	domain	of	medium	shear	rates,	for	shear	thinning	liquids,	like	xanthan	or	alginate,	
it	is	common	to	use	the	Carreau–Yasuda	relation	[29]

	 η η τ γ α α= +
−

0

1

1[( ( ) ]�
m

	 (13.29)

where
η0	is	the	viscosity	at	zero	shear	rate
τ	a	relaxation	time
α	is	a	constant
m	depends	on	the	concentration	of	the	solution

Again,	taking	alginates	as	an	example,	the	Carreau–Yasuda	relation	fits	well	the	experi-
mental	measurements	as	shown	in	Figure	13.6.	The	relaxation	times	are	deduced	from	a	fit	
of	(13.29)	on	the	different	experimental	curves.

Note	 that	 Carreau–Yasuda	 law	 and	 Ostwald	 law	 produce	 similar	 results	 for	 many	
polymeric	solutions,	like	alginates	for	example	(Figure	13.7).

In	the	general	relation	(13.21),	concentration	and	temperature	can	often	be	considered	as	
data,	because	concentration	and	temperature	are	often	constant.	In	order	to	close	the	sys-
tem,	an	expression	of	the	shear	rate	 �γ 	has	to	be	introduced.	The	shear	rate	can	be	derived	
from	 the	 expression	 of	 the	 deformation	 tensor.	 Liquid	 flows	 are	 characterized	 by	 their	
deformation	tensor	D	(or	rate-of-deformation	or	rate-of-strain	tensor)	[32]

	
D T= ∇ + ∇( )1

2
V V 	 (13.30)

101

100

10–1Vi
sc
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ity

 [P
a s

]

10–2

10–2 10–1

1
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1.5
0.8
0.35 0.024

0.047
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100

Calg(%) η0(Pa s) τ (s)

101

Shear rate [1/s]
102 103 104

FIGURE 13.6
Viscosity	of	Keltone	HV	alginate	solutions	versus	shear	rate:	the	dots	correspond	to	the	experimental	results,	
the	continuous	line	to	the	Carreau–Yasuda	model.	The	four	curves	correspond	to	four	alginate	concentrations:	
1,	1.25,	1.5,	1.75	wt%.	Alginate	viscosity	increases	with	the	concentration	and	decreases	with	the	shear	rate.	The	
relaxation	times	are	deduced	from	a	fit	of	(13.29)	on	the	different	experimental	curves.
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435Finite Element Method for Micro- and Nano-Systems for Biotechnology

where	V	is	the	velocity	vector	field.	One	defines	the	shear	rate	associated	to	a	fluid	defor-
mation	by

	
�γ = 2D D: . 	 (13.31)

In	a	3D	case,	the	general	Cartesian	expression	for	 �γ 	is

	

�γ = ∂
∂
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The	one-dimensional	shear	rate	corresponding	to	a	flow	along	a	planar	solid	surface	is

	
�γ = ∂

∂
u
y

. 	 (13.33)

In	the	case	of	a	rectangular	microchannel,	v	=	w	=	0,	and	u	is	only	a	function	of	y	and	z;	then	
(13.32)	simplifies	to

	

�γ = ∂
∂







+ ∂
∂







u
y

u
z

2 2

. 	 (13.34)

From	a	numerical	standpoint,	the	dependency	of	the	viscosity	η	with	the	shear	rate	requires	
an	iterative	solver	corresponding	to	a	nonlinear	problem,	just	because	η	is	a	function	of	the	
unknowns	u, v,	and	w.

Ostwald relation

Carreau–Yasuda relation
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FIGURE 13.7
Comparison	 between	 the	 Carreau–Yasuda	 relation	 for	 the	 viscosity	 of	 liquid	 alginates	 and	 the	 power	 law	
(Ostwald	relation).
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436 Computational Finite Element Methods in Nanotechnology

13.2.7.3  Non-Newtonian Pressure Drop

The	pressure	drop	determination	of	non-Newtonian	fluid	flows	is	complicated.	Indeed,	for	
a	Newtonian	fluid,	the	force	balance	on	a	control	volume	of	a	rectangular	channel	of	width	
w,	depth	d,	and	wall	surface	S	can	be	expressed	as

	

∆P
wd

dsw

S

= ∫1 τ 	 (13.35)

where	τw	is	the	wall	friction.	For	a	2D	case,	and	a	Poiseuille–Hagen	flow,	the	wall	friction	
is	simply	given	by

	
τ µ
w

U
d

= 6 	 (13.36)

where
μ	is	the	viscosity
U̅	the	average	velocity

Substitution	of	(13.36)	in	(13.35)	yields

	
∆P LU

d
= 12

2

µ
	 (13.37)

where	L	is	the	length	of	the	control	volume.	However,	in	the	case	of	a	non-Newtonian	fluid,	
Equation	13.35	becomes	a	complicated	integral

	

∆P
wd

dx dy dzw w

S

= ( )∫1 η γ γ� � 	 (13.38)

where	 �γ w	is	the	wall	shear	rate.	The	only	case	for	which	a	closed-form	formulation	exists	
is	that	of	a	cylindrical	duct	in	which	a	“power	law”	fluid	(Ostwald	fluid)	circulates.	Using	
(13.28),	the	friction	is	expressed	by

	 τ ηγ γ= =� �K n 	 (13.39)

In	such	a	case,	the	solution	has	been	formally	given	by	Rabinowitsch	and	Mooney	[29,30]

	
∆P L K

w
n
n

U
w

RM

n n n

= +











+2 3 12( )

	 (13.40)

where	K	and	n	are	the	constants	of	the	“power	law”	fluid.	Hence,	the	hydraulic	resistance	is

	
R

L K
w d

n
n

U
w

RM

n n n

= +











+ −
2 3 12

3

1( )

	 (13.41)
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437Finite Element Method for Micro- and Nano-Systems for Biotechnology

Relation	 (13.42)	 shows	 that	 the	 hydraulic	 resistance	 is	 not	 a	 geometrical	 constant	 and	
depends	 on	 the	 flow	 velocity.	 This	 is	 a	 drastic	 difference	 between	 Newtonian	 and	
non-Newtonian	 fluids	 that	 has	 important	 consequences	 on	 microfluidic	 networks	 [31].	
Inspired	by	the	cylindrical	approach,	approximated	relations	have	been	given	for	rectan-
gular	channels	[33–36],	leading	to	the	expression

	
∆P K L

w
c
n

c U
n

n

n
n= +





+

+
23 2

1
1

2 	 (13.42)

where	the	geometric	coefficients	c1	and	c2	are	given	by
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− c 	 (13.43)

and	ε	 is	 the	aspect	ratio	of	 the	rectangular	channel	 (ε	<	1).	The	hydraulic	resistance	of	a	
rectangular	channel	is	then

	
R

K L
w d

c
n

c
U
w

n n n

= +











+ −
23 2

3
1

2

1

	 (13.44)

As	expected,	the	hydraulic	resistance	depends	on	the	flow	conditions,	namely,	U̅.

13.2.7.4  Numerical Results for a Square Microchannel

In	 a	 cylindrical	 tube,	 a	 laminar	 flow	 field	 of	 a	 Newtonian	 fluid	 is	 determined	 by	 the	
Poiseuille–Hagen	 relation,	 and	 the	velocity	profile	 is	quadratic.	This	 is	not	 the	 case	 for	
a	 non-Newtonian	 viscoelastic	 fluid.	 Figure	 13.8	 shows	 the	 difference	 of	 velocity	 profile	
between	the	Newtonian	and	non-Newtonian	case	calculated	with	the	COMSOL	numerical	
program.

If	we	use	the	Ostwald	expression	τ ηγ= � n,	the	Fanning	friction	factor	can	be	expressed	
as	 16/ReNN,	 where	 ReNN	 is	 a	 non-Newtonian	 Reynolds	 number	 [29].	 However,	 to	 our	
knowledge,	there	is	no	closed-form	expression	for	a	Carreau	fluid	for	rectangular	chan-
nels,	and	one	must	rely	on	numerical	modeling.	In	the	following	section,	we	show	some	
consequences	of	this	change	of	frictional	pressure	drop.

Figure	 13.9	 shows	 a	 comparison	 between	 the	 literature	 results	 (Muzychka	 et	 al.	 [33],	
Kozicki	 et	 al.	 [34],	 Miller	 et	 al.	 [35])	 and	 COMSOL	 3D	 calculation	 for	 a	 100	μm	×	100	μm	
channel.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
22

 0
3 

M
ar

ch
 2

01
6 



438 Computational Finite Element Methods in Nanotechnology

13.2.7.5  Non-Newtonian Networks

An	assembly	of	capillary	tubes	or	microchannels	is	called	a	microfluidic	network.	Networks	
are	now	currently	used	in	biotechnology,	for	example,	to	perform	blood	separation	[37],	
concentration	gradients	[38],	flow	separation,	and	microporous	needles	[5,39].	Most	of	the	

Non-Newtonian
profile

Poiseuille profile

FIGURE 13.8
Newtonian	and	non-Newtonian	velocity	profiles	in	a	cylindrical	tube.
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FIGURE 13.9
Non-Newtonian	pressure	profiles	in	a	100	μm	×	100	μm	square	channel	of	length	L	=	500	μm.
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439Finite Element Method for Micro- and Nano-Systems for Biotechnology

time,	the	flow	rate	in	each	branch	depends	on	the	flow	resistances	of	all	the	branches	of	the	
system.	The	system	is	then	difficult	to	design.	If	the	fluid	is	Newtonian,	and	only	one	fluid	
is	used,	it	can	be	shown	that	the	viscosity	of	the	fluid	does	not	affect	the	flow	distribution	
[5].	However,	if	the	liquid	is	non-Newtonian,	the	design	of	the	system	must	be	adjusted	
specifically	[31].	Besides,	the	flow	rate	distribution	will	change	with	any	change	in	the	inlet	
conditions.	In	the	Newtonian	case,	the	hydraulic	resistance	R	of	a	branch	of	rectangular	
cross	section	(a,	b)	is

	
R R L a b

P
Q

= =( , , , )η ∆
	 (13.45)

where
P	is	the	pressure
Q	is	the	flow	rate

In	a	non-Newtonian	case,	we	can	write	symbolically	the	implicit	expression

	
R R Q L a b

P
Q

= ( ) =( , , , )η ∆
	 (13.46)

A	simple	numerical	calculation	shows	that	after	one	bifurcation,	the	distribution	of	flow	
rates	changes	between	a	Newtonian	and	non-Newtonian	fluid	(Figure	13.10).	This	is	even	
more	the	case	after	two	bifurcations:	The	flow	rate	inside	the	smaller	channels	is	dramati-
cally	reduced.	The	reason	for	this	behavior	is	obvious:	When	the	flow	rate	is	small	 in	a	
channel,	the	shear	rate	is	small	and	the	viscosity	high.	The	flow	redirects	into	the	larger	
channels.

400 µm

(a)

(c) (d)

(b)

FIGURE 13.10
Flow	in	microfluidic	networks:	(a)	and	(c)	Newtonian	fluid,	(b)	and	(d)	non-Newtonian	fluid	(alginate	2%wt).
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440 Computational Finite Element Methods in Nanotechnology

13.3  Shallow Channel or Hele–Shaw Model: A 2D 
Approach for a Pseudo 3D Microflow

13.3.1  Introduction

Flat	or	shallow	channels—channels	whose	aspect	ratio	d/w	is	very	small—are	common	in	
biotechnology.	For	example,	they	are	currently	used	to	force	biologic	targets	to	come	to	con-
tact	to	the	wall	and	to	bind	to	immobilized	ligands	on	the	solid	surface.	It	is	recalled	here	
that,	due	to	the	high	laminarity	of	the	microflows,	only	diffusion	can	trigger	the	contact	
of	transported	targets	with	a	solid	wall.	A	3D	approach	to	such	problems	is	not	practical.	
In	order	to	describe	precisely	the	vertical	velocity	profile,	very	small	meshes	are	required,	
and	 a	 large	 horizontal	 domain	 cannot	 be	 covered	 with	 such	 small	 meshes.	 Clearly,	 the	
situation	is	close	to	a	2D	situation,	with	a	vertical	quadratic	velocity	profile	everywhere	
in	the	channel.	An	approach	to	this	problem	has	been	investigated	by	many	researchers,	
Hele–Shaw	first,	Kirby,	Schiliething	and	others	[40]	assuming	that	the	pressure	does	not	
change	with	the	vertical	coordinate,	an	approximated	solution	is	that	of	a	potential	flow	in	
the	2D	horizontal	coordinate	systems	combined	with	a	quadratic	vertical	profile:

	

�
u z d z p= − −( )∇1

2µ
. 	 (13.47)

We	shall	see	next	that	we	can	avoid	the	approximated	two-dimensional	(2D)	potential	flow	
by	rigorously	solving	the	2D	problem	with	a	finite	element	formulation.

13.3.2  Model

Clearly,	friction	on	the	two	horizontal	walls	cannot	be	disregarded;	it	is	even	the	dominant	
friction	force.	In	such	a	case,	the	2D	Navier–Stokes	equations	need	to	be	modified	[41].	For	
a	steady	state	flow,	let	us	consider	the	following	equation:

	
ρ µ µ� � �
u u

P
x

u
x

u
y d

u.∇( ) = − ∂
∂

+ ∂
∂

+ ∂
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−
2

2

2

2 2

12 	 (13.48)

The	additional	force	in	the	right-hand	side	of	(13.48)	is	the	friction	on	the	upper	and	bottom	
solid	surfaces.	Indeed,	integrating	this	term	on	a	w d	Δx	parallelepiped	domain	leads	to
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U2 	 (13.49)

which	is	the	friction	force	on	two	parallel	plates	on	a	length	Δx	(Figure	13.11).	Using	(13.49)	
in	a	2D	formulation	produces	identical	flow	rates	and	pressures	than	would	a	3D	calcula-
tion.	 Remark	 that	 the	 maximum	 velocities	 are	 not	 identical	 because	 the	 2D	 calculation	
averages	the	velocity	in	the	vertical	z-direction.	Hence,	the	maximum	2D	velocity	is	only	
two-thirds	of	that	obtained	by	the	3D	calculation	(Figures	13.12	and	13.13).
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441Finite Element Method for Micro- and Nano-Systems for Biotechnology

A	good	agreement	 is	 also	obtained	by	using	a	2D	Helle–Shaw	calculation	when	 the	
aspect	 ratio	 is	 less	 than	 1/3.	 For	 larger	 aspect	 ratios	 (1/3	 to	 1),	 the	 agreement	 is	 a	 lit-
tle	 less	satisfactory,	but	this	method	still	yields	an	approximation	of	 the	pressure	drop	
(Figure	13.14).	In	a	typical	case	of	a	channel	of	width	w	=	100	μm,	length	L	=	400	μm,	and	
flow	rate	Q	=	1	μL/mn,	the	analytical	and	3D-COMSOL	pressure	profiles	are	nearly	indis-
cernible	for	any	aspect	ratio,	whereas	the	2D-HS	model	is	adequate	for	aspect	ratios	less	

d

x
u

w

FIGURE 13.11
Sketch	of	a	Hele–Shaw	microchamber.

3.25 mm/s
(maximum velocity)(a) (b)

4.89 mm/s
(maximum velocity)

FIGURE 13.12
Flow	velocity	map	obtained	with	(a)	the	2D	Hele–Shaw	model,	(b)	a	3D	model.	In	(b)	the	visualization	plane	is	
set	at	mid-height.	Note	that	the	ratio	of	the	velocities	between	(a)	and	(b)	is	2/3.

(a) (b)

FIGURE 13.13
Pressure	distribution	in	the	microchamber:	(a)	2D	with	Hele–Shaw	model;	(b)	full	3D	model.D
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442 Computational Finite Element Methods in Nanotechnology

than	 1/3	 approximately:	 Relative	 errors	 of	 2%,	 3%,	 and	 5%	 are,	 respectively,	 found	 for	
aspect	ratios	of	0.2,	0.5,	and	1.	Note	that	the	pressure	drop	is	much	larger	for	a	small	aspect	
ratio	channel	under	the	same	flow	rate	conditions.

13.3.3  Application to a Microfluidic Resonator

Microfluidic	resonators	have	appeared	recently	under	the	impulse	of	the	MIT	and	Caltech.	
They	combine	the	high	sensitivity	of	micro-cantilevers	for	detecting	minute	 increase	of	
mass	and	the	liquid	environment	required	in	most	biotechnological	devices	[42,43].	Let	us	
recall	that	micro-cantilevers	detect	extremely	small	masses	by	the	analysis	of	the	change	
of	frequency	associated	to	the	immobilization	of	a	mass.	However,	if	they	are	extremely	
efficient	in	an	open	(air)	environment,	the	presence	of	liquids	like	water	creates	a	damping	
that	impedes	the	sensitivity	of	the	device.	A	solution	is	to	introduce	a	liquid	channel	in	
the	interior	of	the	cantilever	blade.	This	solution	is	made	possible	by	the	improvements	in	
microfabrication.	Applications	to	DNA	immobilization	and	to	cell	culture	in	microfluidic	
resonators	have	been	recently	demonstrated	[44].	A	typical	microfluidic	resonator	is	shown	
in	Figure	13.15	[45].

The	 average	 flow	 velocity	 can	 be	 calculated	 using	 the	 shallow	 channel	 approach.	
Figure	13.16	shows	that	Helle–Shaw	formulation	is	well	adapted	to	this	type	of	geometry.

2
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FIGURE 13.14
Comparison	 of	 the	 axial	 pressure	 profile	 in	 a	 rectangular	 channel	 between	 analytical	 expression	 (squares),	
3D-COMSOL	(continuous	 line	with	diamonds)	and	2D-HS-COMSOL	(continuous	 line	with	circles)	 formula-
tions	for	three	different	aspect	ratios	1,	0.5,	and	0.4.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
22

 0
3 

M
ar

ch
 2

01
6 



443Finite Element Method for Micro- and Nano-Systems for Biotechnology

13.4 Mixing in Microsystems

13.4.1  Introduction

Mixing	 is	difficult	 in	microsystems	because	of	 the	high	 laminarity	of	 the	flows.	 If	only	
passive	methods	are	used—in	order	to	keep	the	system	simple—only	diffusion	contributes	
to	mixing.	From	a	numerical	 standpoint,	convection-diffusion	equations	 for	microflows	
are	difficult	to	solve,	mainly	because	of	the	large	ratio	between	convection	and	diffusion.	
Consider	the	convection-diffusion	problem	described	by	the	equation

	

∂
∂

+ ∇ = ∇ ∇( ) +c
t

V c D c f
�

. . 	 (13.50)

(a) (b)

FIGURE 13.15
(a)	View	of	a	microfluidic	 resonator	 from	CEA-Leti	with	 the	microfluidic	channel	embedded	diagonally;	 (b)
modeling	of	the	Lamé	mode	of	resonance	of	a	microplate	fixed	in	four	angles,	showing	a	maximum	amplitude	
in	the	middle	of	the	four	edges.	(From	Agache,	V.,	Blanco-Gomez,	G.,	Baleras,	F.,	and	Caillat,	P.,	An	embedded	
microchannel	in	a	MEMS	plate	resonator	for	ultrasensitive	mass	sensing	in	liquid,	Lab Chip,	11,	2598–2603,	2011.	
Reproduced	by	permission	of	The	Royal	Society	of	Chemistry.)

2D-Hele(a) (b) 3D-10,000 mesh

–2
0

2

2

–2
× 1e–6

0

2

0

50 µm

FIGURE 13.16
Microfluidic	resonator	with	two	microfluidic	channels	running	alongside	the	edges;	(a)	shallow	channel	formu-
lation;	(b)	full	3D	calculation.
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444 Computational Finite Element Methods in Nanotechnology

where
c	is	the	concentration	in	the	transported	species
D	the	diffusion	coefficient
f	a	source	term

On	one	hand,	the	mesh	Peclet	number	representing	the	ratio	between	the	convection	and	
the	diffusion,	defined	by

	
Pe

V x
D

= ∆
2

	 (13.51)

where	Δx	is	the	size	of	the	mesh	and	∥V∥	the	norm	of	the	velocity,	is	often	larger	than	1,	
principally	because	the	diffusion	coefficient	is	small,	of	the	order	of	10–10	m2/s.	The	numerical	
scheme	is	then	unstable;	oscillations	appear	where	steep	gradients	are	present,	mostly	at	
the	domain	boundaries,	and	these	oscillations	may	propagate	to	the	whole	domain;	as	a	
result,	negative	concentrations	appear.	Hence,	extremely	small	meshes	should	be	used—
most	of	the	time	this	is	not	possible—or	stabilization	is	required	to	achieve	the	calculation	
of	the	concentration	field.	The	easiest	way	to	stabilize	the	calculation	is	to	add	an	“artificial”	
isotropic	diffusion

	 D V xart = λ ∆ 	 (13.52)

where	λ	is	a	tuning	parameter,	the	value	of	which	is	comprised	between	0	and	0.5.	Indeed,	
for	λ	=	0.5,

	
Pe

V x
D D

V x
D V xart

=
+( ) =

+
<∆ ∆

∆2 2
1 	 (13.53)

However,	the	use	of	isotropic	artificial	diffusion	is	disastrous	in	microfluidics	due	to	the	
high	laminarity	of	the	flow	and	the	small	dimensions.	Upwind	schemes	like	the	stream-
line	upwind/Petrov–Galerkin	model	(SUPG)	are	more	adapted	to	the	problem.	A	review	
of	upwind	method	has	been	performed	by	Volker	and	Knobloch	[46].	In	fact,	the	use	of	
artificial	diffusion	should	be	reduced	to	a	minimum,	which	necessitates	a	trial	and	error	
process.	We	recommend	using	some	SUPG	diffusion	combined	 to	 the	 smallest	possible	
isotropic	artificial	diffusion.

13.4.2  Coflows

In	order	to	illustrate	the	difficulty	of	mixing	at	the	microscale,	we	consider	the	merging	of	
two	miscible	flows	in	the	geometry	of	a	T-junction	(Figure	13.17).	At	the	macroscale,	turbu-
lent	structure	would	develop	and	enhance	the	mixing	of	the	two	flows.	At	the	microscale,	
the	flowstreams	are	laminar,	and	mixing	is	based	on	diffusion	which	is	a	slow	process.	
The	two	flows	run	side	by	side	with	progressive	mixing	by	cross	diffusion.

In	the	“diffusing	zone,”	the	streamlines	are	parallel	and	directed	along	the	x-axis;	the	
substance/solute	progressively	diffuses	 in	 the	perpendicular	y	direction,	and	 there	 is	a	
growing	distance	δ(x)	of	concentration	gradient.	 It	 can	be	shown	that	 the	concentration	
profile	is	given	by	the	relation	[5,16]

	
c x y c erf

y U
Dx

( , ) = −










1
2

1
4

0 	 (13.54)
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445Finite Element Method for Micro- and Nano-Systems for Biotechnology

where	U	is	the	mean	flow	velocity.	Typical	concentration	profiles	in	different	cross	sections	
are	shown	in	Figure	13.18.

From	a	numerical	standpoint,	it	is	essential	to	reduce	as	much	as	possible	the	isotropic	
artificial	diffusion.	Figure	13.19	compares	the	concentration	field	for	two	values	of	the	arti-
ficial	diffusion	coefficient.

13.4.3  Herringbone Structures

Herringbone	 structures	 are	 ridges	 or	 troughs	 that	 are	 etched	 inside	 a	 microchannel,	 at	
the	bottom	or	at	 the	 top	of	 the	channel	 (Figure	13.20).	Herringbone	structures	are	used	
to	modify	the	flow	field	inside	a	microchannel	[47,48].	They	locally	induce	vorticity	that	
facilitates	mixing:	Figure	13.21	shows	the	transverse	component	of	the	velocity	showing	

(x)

x

Diffusion zone

c= c0

c= 0

FIGURE 13.17
Sketch	of	the	mixing	of	two	miscible	fluids	in	a	T-junction.

–w/2 0 w/2
Distance between the twowalls

Co
nc

en
tr

at
io

n

x3
x2

x1

0

1

FIGURE 13.18
Concentration	profile	of	diffusing	species	at	three	different	locations	in	the	channel.
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446 Computational Finite Element Methods in Nanotechnology

FIGURE 13.19
Concentration	 contours	 obtained	 with	 two	 different	 additional	 artificial	 diffusion	 (D	=	10–10	 m2/s	 and	
Vinlet	=	2	mm/s).

y

FIGURE 13.21
Vy-component	of	velocity	in	a	one-sided	herringbone	channel.

FIGURE 13.20
Typical	shapes	of	herringbone	structures.
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447Finite Element Method for Micro- and Nano-Systems for Biotechnology

a	 change	 of	 direction	 in	 front	 of	 the	 ridges.	 Besides,	 herringbone	 structures	 induce	 a	
distortion	of	the	streamlines,	which	result	 in	a	change	of	the	particles	trajectories	 in	the	
channel.	Figure	13.22	shows	that	relatively	large	particles	traveling	near	the	bottom	of	the	
channel	are	progressively	pushed	toward	an	angle	of	the	channel.	The	results	are	in	close	
agreement	with	the	experimental	results	of	Sungyoung	Choi	et	al.	[48].

13.4.4  Dean Flows

Fluid	 velocities	 are	 small	 in	 microsystems.	 The	 Reynolds	 number	 is	 almost	 always	
smaller	than	50,	and	most	of	the	time	smaller	than	1.	Inertial	forces	are	negligible	at	very	
low	Reynolds	number	(Re	<	1);	however,	at	medium	Reynolds	number	(Re	∼	5–50),	some	
inertial	effects	can	appear.	Particularly,	 in	the	case	of	a	strongly	curved	microchannel,	
inertial	forces	can	induce	a	centrifugal	effect.	This	is	called	the	Dean	effect,	and	this	is	
the	subject	of	this	section.

13.4.4.1  Hydrodynamics of Dean Microflows

It	has	been	observed	long	ago	by	W.R.	Dean	[49]	that	flows	in	curved	channels	present	a	
centrifugal	effect	at	medium	or	 large	Reynolds	numbers.	This	effect	 is	 called	 the	Dean	
effect.	In	this	section,	we	investigate	the	Dean	effect	in	microfluidics	and	show	how	it	can	
be	used	in	biotechnological	applications.

Usually,	 Reynolds	 numbers	 are	 very	 small	 in	 microsystems	 for	 biotechnology—most	
of	 the	 time	 smaller	 than	 1—and	 the	 flow	 is	 highly	 laminar.	 These	 types	 of	 flows	 are	
well	adapted	to	the	transport	of	very	small	molecules	like	DNA	but	not	cells	because	of	
sedimentation.	 Recently,	 medium	 ranges	 of	 Reynolds	 numbers	 (Re	 ∼	 5–50)	 have	 been	
investigated	 [50–53].	 These	 flows	 are	 strong	 enough	 to	 carry	 cells,	 but	 still	 completely	
laminar.	It	has	been	shown	that	such	flows	in	curved	or	bended	tubes	produce	two	opposite	
vortices—still	in	the	laminar	domain—with	spiral	streamlines	in	the	curved	regions	due	to	

(a)

(b)

FIGURE 13.22
(a)	One-sided	herringbone	structures	transport	10	μm	particles	toward	a	corner	of	the	channel	(COMSOL);	(b)
trajectories	of	HL60	cells	in	passivated	and	P-selectin-coated	channels.	(From	Choi,	S.,	Karp,	J.M.,	and	Karnik,	
R.,	Cell	sorting	by	deterministic	cell	rolling,	Lab Chip.,	34,	12(8),	1427–1430,	2012.	Reproduced	by	permission	of	
The	Royal	Society	of	Chemistry.)
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448 Computational Finite Element Methods in Nanotechnology

a	centrifugal	effect.	These	spiraling	streamlines	are	used	to	guide	and	concentrate	particles	
or	cells	and	to	enhance	mixing	[50].

Let	us	consider	the	example	of	Figure	13.23.	The	main	component	of	the	velocity	is	directed	
along	the	direction	of	the	tube,	but	the	transverse	component	of	the	velocity	(here	Vy),	which	
is	zero	at	low	Reynolds	number,	is	positive	in	two	quadrangles	and	negative	in	the	other	
two.	Hence,	there	is	a	recirculating	component	of	the	velocity	that	induces	a	spiral	flow.

Let	us	define	the	Dean	number	by

	 De U R R R R Rc c= =ν Re 	 (13.55)

where	R	is	the	radius	of	the	cylindrical	channel	and	Rc	its	curvature	radius.	For	a	square	or	
rectangular	channel,	one	must	replace	R	by	the	hydraulic	radius	RH.	The	inertia-induced	
spiral	motion	is	noticeable	when	the	Dean	number	is	larger	than	1.

Another	way	of	pinpointing	this	spiraling	motion	 is	by	plotting	the	vorticity	contour	
plot,	as	shown	in	Figure	13.24.

13.4.4.2  Concentration in Dean Microflows

Dean	flows	have	the	property	to	induce	mixing	by	centrifugal	effect.	Let	us	consider	the	case	
described	in	Figure	13.25,	where	two	aqueous	microflows	merge	before	the	curved	part	of	the	
channel,	with	one	of	the	two	flows	having	a	given	concentration	in	a	solute	species	while	the	
other	flow	having	a	zero	concentration	in	the	same	species.	Just	after	merging,	the	concen-
tration	isolines	are	vertical.	After	one	turn	of	the	channel,	the	Dean	effect	has	considerably	
modified	the	concentration	distribution,	a	little	like	the	Baker’s	transform	[9,54].

13.5 Cell Chips

Cell	 chips	 are	 becoming	 an	 essential	 tool	 for	 biologists	 and	 biotechnological	 and	
pharmaceutical	companies.	These	chips	are	very	efficient	to	study	the	reactions	of	a	cell	or	

x

y

Slice y-velocity [m/s]

z

FIGURE 13.23
Vy-contour	plot	for	a	flow	in	a	cylindrical	curved	tube	(Re	=	5)	(COMSOL	numerical	software).
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449Finite Element Method for Micro- and Nano-Systems for Biotechnology

a	group	of	cells	to	chemical	or	biochemical	agent.	Applications	are	numerous,	ranging	from	
the	study	of	the	cellular	response	to	different	concentrations	of	reagents	and	drugs—such	as	
antibiotics—to	cell	differentiation—especially	stem	cells—and	to	cellular	communication—
the	biochemical	species	produced	by	cells	and	migrating	in	the	fluid	domain.

13.5.1  Single-Phase Flow Focusing

Focusing	cells	or	particles	in	a	microfluidic	channel	is	an	essential	step	for	all	cell	chips.	
Two	types	of	flow	focusing	exist:	the	two-phase	flow	focusing	that	is	used	to	encapsulate	

Slice: verticity [1/s]

FIGURE 13.24
Vorticity	contour	plot	for	a	flow	in	a	cylindrical	curved	tube,	Re	=	5	showing	the	centrifugal	effect	(COMSOL	
numerical	software).

0.7
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12.1

FIGURE 13.25
(a)	Concentration	in	a	Dean	tube	(k	∼1)	showing	the	effect	of	the	centrifugal	force;	(b)	Experimental	observations.
(Data	from	Sundarsan,	A.P.	and	Ugaz,	V.M.,	Multivortex	micromixing,	PNAS,	103(9),	7228–7233,	Copyright	2006,	
National	Academy	of	Sciences,	USA,	reproduced	with	permission.)
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450 Computational Finite Element Methods in Nanotechnology

biological	objects	and	cells	[55,56]	and	the	single-phase	flow	focusing	that	is	used	to	con-
centrate	or	focus	a	“beam”	of	liquid	inside	a	sheath	flow	[57,58].	The	biologic	targets	trans-
ported	by	the	flow	are	focused	or	confined	in	a	fraction	of	the	cross	section	of	the	channel.	
Depending	on	the	device,	the	focusing	can	be	made	along	a	wall	of	the	microchannel	or	in	
a	pinched	streamflow	(Figure	13.26).	In	the	first	case,	the	flow	rate	ratio	is

	

Q
Q

w
w

1 11
2

= 	 (13.56)

where	Q1	and	Q	are,	respectively,	the	sample	fluid	flow	rate	and	the	total	flow	rate,	and	w1	
and	w	are,	respectively,	the	width	of	the	focused	region	and	the	total	width	of	the	channel.	
In	the	second	case,	the	characteristic	size	of	the	pinched	flow	R	is

	

Q
Q

R
wd

1
29

4
≈ 	 (13.57)

Figure	13.27	shows	how	a	side	sheath	flow	can	focus	the	fluid	of	interest	along	a	wall	of	
the	channel.	According	to	(13.57),	the	focusing	of	the	flow	by	the	sheath	flow	can	be	tuned	
by	adjusting	the	sheath	flow	rate.	Figure	13.28	shows	a	2D	calculation	of	the	same	type	of	
focusing,	demonstrating	how	particles	 (10	μm)	transported	by	the	carrier	fluid	and	ran-
domly	dispersed	in	the	carrier	fluid	are	deflected	toward	the	outside	wall	by	the	sheath	
flow.	Figure	13.29	 is	a	 similar	calculation	with	a	 focusing	 in	 the	channel	 center	by	 two	
symmetrical	sheath	flows.	Note	the	narrow	focusing	of	the	randomly	distributed	particles.

Three-dimensional	focusing	can	be	achieved	by	a	more	elaborate	device	like	that	shown	
in	Figure	13.30,	initially	proposed	by	Kennedy	and	colleagues	[57].

Depending	on	the	different	sheath	flow	rates,	the	focusing	may	be	adjusted	inside	the	
channel	cross	section,	as	shown	in	Figure	13.31.

2D-focusing 3D-focusing

Sample fluid Sheath fluid Particles or cells

FIGURE 13.26
Principle	of	single-phase	flow	focusing.
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0
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(a) (b)

0
1

2
5
0

0.5

1

FIGURE 13.27
Single-phase	flow	focusing.	(a)	streamlines	(continuous	line)	are	concentrated	along	the	wall	under	the	action	of	
the	incoming	sheath	flow;	a	trajectory	of	a	10	μm	particle	is	shown	with	the	streamlines	on	the	left	of	the	picture;	
(b)	concentration	in	slices	across	the	channel	showing	the	focusing.

(a)

(b)

FIGURE 13.28
(a)	Velocity	field	in	a	single	phase	focusing	device;	(b)	10	μm	diameter	particle	trajectories	showing	the	focusing	
(COMSOL).
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452 Computational Finite Element Methods in Nanotechnology

13.5.2  Bifurcations and Pinched Channel Microflows

In	cell	chips,	special	geometrical	designs	are	introduced	to	separate	and	isolate	different	
categories	 of	 cells	 or	 micro	 and	 nanoparticles.	 In	 this	 section,	 we	 present	 two	 types	 of	
designs:	 the	branched	channel	based	on	channel	bifurcations	and	 the	pinched	channel	
based	on	sudden	enlargement	of	the	main	channel.

13.5.2.1  Bifurcations

In	this	paragraph,	we	consider	a	main	channel	with	branches	perpendicular	to	the	main	
channel.	Because	the	flow	is	laminar,	the	streamlines	(and	pathlines	for	a	steady	flow)	are	
well	defined	(Figure	13.32).	It	is	possible	to	determine	the	widths	(δ1,	δ2,	δ3	in	Figure	13.32)	
that	correspond	to	the	stream	bifurcating	in	each	side	branch.

At	low	flow	rates,	we	make	use	of	the	assumption	already	used	earlier	that	a	cell/spherical	
particle	 follows	 the	streamline	passing	by	 its	centroid	 [59,60].	Let	us	consider	spherical	
particles	focused	near	a	wall	and	approaching	a	bifurcation	(Figure	13.33).

For	simplicity,	let	us	assume	a	2D	situation	and	neglect	the	effect	of	the	channel	depth.	It	
can	be	shown	that	the	complete	3D	calculation	produces	the	same	result	as	the	2D	calculation.	
The	velocity	field	can	be	approximated	by	the	Poiseuille–Hagen	quadratic	profile

FIGURE 13.29
Focusing	by	pinching	the	flow	using	two	sheath	flows.

U1 U2

U1

U2

U0

(a) (b)

FIGURE 13.30
(a)	Principle	of	3-D	single-phase	flow	focusing;	(b)	streamlines	obtained	by	using	COMSOL	numerical	program,	
showing	the	focusing.
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u y U

y w y

w
( ) =

−( )
6 2 	 (13.58)

where	U	is	the	mean	axial	velocity,	related	to	the	flow	rate	by	U	=	Q/(dw).	At	the	bifurca-
tion,	the	flow	rate	conservation	equation	requires	that

40
 µ

m
 

25 µm

(a)

(b)

FIGURE 13.31
(a)	Slices	showing	the	concentration	in	the	device	and	the	focusing	at	the	outlet;	(b)	different	focusing	obtained	
by	tuning	the	different	sheath	flow	rates.

1 2 3
Pin ,Qi

P0, Q*1 P0,Q*2 P0,Q*3 

P0,Q3Q1 Q2

y

x

P1 P2 P3

FIGURE 13.32
Flow	in	a	branched	network.
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d u y dy Q
w

( )
0

1

∫ = 1
* 	 (13.59)

where	Q1
*	is	the	flow	rate	in	the	secondary	channel.	Using	(13.58)	and	(13.59),

	
2 3 0

3
1

2
1w

w
w
w

Q
Q

1



 − 



 + =

*
	 (13.60)

Assuming	that	the	flow	rate	distribution	in	the	network	is	known,	Equation	13.60	can	be	
solved	 to	produce	 the	 threshold	width	w1.	Wall-focused	particles	with	a	diameter	D	<	2	
w1	will	turn	into	the	side	channel.	A	2D	numerical	example	is	presented	in	Figure	13.34,	
showing	the	bifurcation	of	the	particles.

13.5.2.2  Flow Focusing Combined with Bifurcations

It	has	been	found	that	the	efficiency	of	“branched	channel”	is	considerably	increased	by	
first	focusing	the	particles	or	cells	along	the	wall.	A	sheath	flow	first	focuses	the	cells	or	
particles,	and	then	the	separation	is	done	at	each	bifurcation.	Figure	13.35	shows	a	calcula-
tion	of	the	trajectories	of	10	μm	diameter	particles	in	a	300	μm/s	carrier	flow.

FIGURE 13.34
Computation	of	the	10	μm	spherical	particle	trajectories	in	a	branched	network	(COMSOL).

Stall line

w1

w Q1

Q*1

FIGURE 13.33
Trajectories	of	spherical	particles	at	a	bifurcation.
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455Finite Element Method for Micro- and Nano-Systems for Biotechnology

13.5.2.3  Pinched Flow Fractionation

Separation	of	cells	is	fundamental	for	the	study	of	a	precise	type	of	cell.	Cells	are	often	
sorted	 out	 according	 to	 their	 size.	 A	 simple	 yet	 efficient	 method	 is	 that	 of	 “pinched	
channel,”	sometimes	called	pinched	flow	fractionation,	or	simply	PFF	(Figure	13.36).

Pinched	channel	geometry	has	been	found	to	be	an	efficient	way	to	separate	particles	and	
cells	according	to	their	size	[61–63].	A	first	step	is	to	concentrate	all	cells	or	particles	alongside	
a	wall.	This	step	is	called	2D	focusing	and	has	been	presented	in	the	preceding	section.	The	
targets	are	then	transported	toward	a	sudden	enlargement.	Small	particles	have	their	mass	
center	closer	to	the	wall	than	that	of	larger	particles.	In	the	enlargement,	their	trajectories	will	
be	different,	the	small	and	large	targets	not	belonging	to	the	same	trajectory	(Figure	13.37).	
Let	us	denote	w1	the	half-width	of	the	pinched	channel,	w2	the	half-width	of	the	enlarged	
channel,	and	d	the	sphere	(particle	or	cell)	diameter;	then	the	homothetic	rule	yields

	

y
w

w d
w2

1

1

2≈ −
	 (13.61)

FIGURE 13.35
Particles	trajectories	in	a	device	combining	flow	focusing	and	bifurcations.

Emulsion

Continuous
phase

Microfluidic
device

FIGURE 13.36
The	principle	of	cell	sorting	by	pinched	channel	method.	(Data	from	Maenaka,	H.,	Yamada,	M.,	Yasuda,	M.,	
and	Seki,	M.,	Continuous	and	size-dependent	sorting	of	emulsion	droplets	using	hydrodynamics	in	pinched	
microchannels,	 Langmuir,	 24(8),	 4405–4410.	 Copyright	 2008	 American	 Chemical	 Society,	 reproduced	 with	
permission.)
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which	leads	to

	
y w d

w
w

≈ −( )1
2

1
2 	 (13.62)

If	we	write	relation	(13.62)	for	two	different	types	of	cells,	characterized	by	a	difference	of	
diameter	Δd,	the	increase	of	vertical	distance	between	the	two	trajectories	is

	
∆ ∆
y

d w
w

≈
2

2

1
	 (13.63)

Such	 a	 behavior	 can	 be	 obtained	 using	 COMSOL	 with	 a	 simplified	 expression	 of	 the	
drag	force

	
F C V Vdrag D f p≈ −( ) 	 (13.64)

where	CD	is	the	drag	coefficient	(CD	≈	6π	η	RH)	and	Vf	and	Vp	are,	respectively,	the	fluid	and	
particle	velocities.

The	modeling	with	COMSOL	in	three	dimensions	is	shown	in	Figure	13.38.	Streamlines	
and	trajectories	for	5	μm	radius	spherical	particles	have	been	added	to	the	graph,	showing	
that	the	hypotheses	of	the	simplified	analytical	model	are	approximately	justified.

13.5.2.4  Example of PFF Coupled to a Flow Focusing Device

An	interesting	example	of	investigation	of	the	efficiency	of	a	PFF	device	has	been	made	by	
Srivastav	and	colleagues	[64]	using	for	the	first	time	a	30	channel	device	and	a	continuous	
distribution	of	spheres	in	the	range	4–34	μm.	The	principle	 is	 illustrated	in	Figure	13.39	
with	only	12	outlet	channels.	The	carrier	flow	rate	is	Q1	and	the	sheath	flow	rate	is	Q2.	The	
drainage	flow	rate	Q3	is	aimed	to	increase	the	separation	efficiency	in	the	outlet	region.

Depending	on	the	location	of	their	centroid,	particles	follow	different	pathlines.	These	
pathlines	are	shown	in	Figure	13.40.	Particles	circulating	randomly	in	the	inlet	flow	Q1	are	
first	focused	alongside	the	wall	by	Q2	and	separated	in	the	pinched	chamber.	Separation	
distance	is	maintained	further	downstream	by	the	use	of	the	drainage	flow	rate	Q3.

The	separation	efficiency	of	PFF	devices	for	cell	separation	is	shown	in	Figure	13.41.

d/2

y

W1–d/2
y

y

x

FIGURE 13.37
Principle	of	pinched	channel.
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13.5.3  Deterministic Lateral Displacement

13.5.3.1  Introduction and Theory

Deterministic	arrays	are	a	type	of	micro-devices	for	sorting	out	particles	and	cells	[65–67].	
The	principle	of	deterministic	lateral	displacement	(DLD)	is	related	to	the	particle	shifting	
of	streamline	caused	by	an	obstacle.	This	principle	is	illustrated	in	Figure	13.42.	A	small	
particle—or	cell—slides	between	the	rows	of	pillars	and,	on	average,	follows	a	straight	line.	
A	large	particle	cannot	slide	between	the	pillars,	because	it	is	trapped	by	its	streamline	

–2
–1.5

–1
–0.5

0
0.5 1

1.5
2 0

0.2
0.4
0.6
0.8
1
5

4

×1e–4

×1e–4

×1e–4

3

2

1

0

FIGURE 13.38
Pinched	 channel	 and	 sudden	 enlargement:	 streamlines	 (continuous	 grey	 lines)	 and	 trajectory	 separation	 of	
particles	according	to	their	focusing	at	the	wall	(continuous	dark	lines).	Note	that	particle	trajectories	are	not	
exactly	identical	to	streamlines.

Pinched region

Q3
Q2 sheath flow 

Q1 carrier flow 

FIGURE 13.39
Velocity	contour	plot	in	a	PFF	device	with	streamlines.
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458 Computational Finite Element Methods in Nanotechnology

FIGURE 13.40
Trajectories	of	four	spherical	particles	showing	the	separation	efficiency	of	the	PFF	(continuous	blue	lines).

FIGURE 13.41
Separation	of	dispersed	particulate	suspension	by	pinched	channel	device.	(Data	from	Maenaka,	H.,	Yamada,	M.,	
Yasuda,	M.,	and	Seki,	M.,	Continuous	and	size-dependent	sorting	of	emulsion	droplets	using	hydrodynamics	
in	pinched	microchannels,	Langmuir,	24(8),	4405–4410.	Copyright	2008	American	Chemical	Society,	reproduced	
with	permission.)

Posts

g

Small particle Large particle

Streamlines

FIGURE 13.42
Sketch	of	a	deterministic	array:	small	particles	stay	in	their	own	stream	channel,	whereas	large	particles	are	
forced	to	shift	to	the	next	stream	channel	at	the	approach	of	a	post.
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459Finite Element Method for Micro- and Nano-Systems for Biotechnology

and	laterally	shifted	when	approaching	the	pillars.	On	average,	it	follows	an	oblique	path.	
Hence,	small	and	large	particles	do	not	behave	the	same.	There	 is	a	size	 threshold	that	
separates	particles	going	straight	and	diagonally.

Let	us	analyze	the	situation	in	more	detail.	In	the	schematic	Figure	13.43,	rows	of	posts	
have	been	placed	with	a	shift	ε	at	each	level	(here	the	shift	ε	=	1/3).	The	flow	can	be	decom-
posed	in	n	=	1/ε	streamlines	(here	n	=	3,	and	the	streamlines	are	noted	1,	2,	3)	having	the	
same	flow	rate,	equal	 to	ε	 times	 the	flow	rate	between	two	pillars.	Between	two	neigh-
boring	pillars,	the	flow	may	be	divided	in	n	sub-flows	occupying	a	width	β	of	the	gap	m.	
Consider	a	small	spherical	particle	in	the	stream	channel	1.	Always	using	the	assumption	
that	a	particle	or	a	cell	follows	the	streamline	passing	by	its	centroid,	because	the	diameter	
of	the	particle	D	is	less	than	2β,	the	particle	is	transported	in	its	initial	stream	channel	and	
globally	has	a	straight	trajectory.	On	the	other	hand,	a	particle	of	diameter	D	>	2β	cannot	
stay	in	channel	1	when	passing	through	the	gap	between	the	two	pillars;	it	is	forced	into	
the	next	channel,	for	example,	channel	2.	And	this	motion	is	repeated	at	each	row	of	pil-
lars.	Globally,	the	particle	follows	a	diagonal	trajectory	with	an	angle	ε.	In	the	following,	
we	 derive	 an	 expression	 for	 the	 critical	 particle	 diameter	 Dc,	 above	 which	 a	 particle	 is	
diagonally	deviated.

The	critical	particle	diameter	is	then

	 Dc = 2β 	 (13.65)

1 2 3 1 2 3

1 2 3

1 2

gβ
λ

λελ

3 1 2 3

1 2 31 2

Incoming flow

31 2 3

1 2 3

1 2 3

1 2 3

1 2 3

FIGURE 13.43
Schematic	of	a	DLD	device	with	ε	=	1/3.
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460 Computational Finite Element Methods in Nanotechnology

Let	us	now	calculate	the	value	of	β.	Using	the	notations	of	Figure	13.43,	we	have

	

u x dx u x dx
m

( ) ( )=∫ ∫ε
β

0 0

	 (13.66)

Assuming	 a	 parabolic	 velocity	 profile	 between	 two	 pillars,	 the	 velocity	 u(x)	 can	 be	
expressed	as

	
u x u

m
x

m
( ) max= − −















2 2

4 2
	 (13.67)

Upon	substitution	of	(13.67)	in	(13.66)	and	integration,	the	width	β	is	solution	of	the	cubic	
equation

	

β β ε
m m





 − 



 + =

3 23
2 2

0 	 (13.68)

And,	using	(13.65),	the	critical	diameter	is	solution	of

	

D
m

D
m

c c



 − 



 + =

3 2

6 4 0ε 	 (13.69)

A	plot	of	Dc/m	versus	ε	is	shown	in	Figure	13.44.
A	very	interesting	application	of	DLD	is	given	in	[66]	(Figure	13.45),	where	a	cell	is	pro-

gressively	 deviated	 into	 a	 lysis	 solution	 and	 is	 eventually	 lysed	 with	 chromosome	 and	
cell	contents	being	separated.	In	such	a	device,	the	cell	is	initially	larger	than	the	critical	
radius	and	is	deviated	into	the	high	concentration	lysis	solution.	Once	lysed,	the	chromo-
some	is	still	larger	than	the	critical	radius	and	continues	on	an	oblique	trajectory	whereas	
the	cellular	contents	of	small	size	follow	a	straight	horizontal	path.	Chromosome	is	then	

Row shift fraction 

Ra
tio

 D
c/m

0 0.50

1

Zigzag mode
(globally straight trajectory)

Bumpmode
(globally diagonal trajectory)

FIGURE 13.44
Plot	of	Dc/m	as	a	function	of	ε.
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461Finite Element Method for Micro- and Nano-Systems for Biotechnology

separated	from	the	rest	of	the	cellular	contents.	This	is	a	very	interesting	way	to	purify	the	
DNA	content;	besides	this	approach	has	a	generic	character.

13.5.3.2  Numerical Model

DLDs	are	complicated	to	model,	especially	 in	a	3D	approach,	for	the	mere	reason	that	
they	 necessitate	 a	 large	 number	 of	 meshes,	 due	 to	 their	 geometrical	 complexity.	 Most	
of	 the	 time,	 the	 approach	 will	 be	 2D.	 Figure	 13.46	 shows	 the	 streamlines—which	 are	
identical	to	the	pathlines	for	a	steady	flow—in	a	DLD	microdevice.	The	three	domains	
sketched	in	Figure	13.43	are	delimited	by	the	dark	continuous	lines	in	the	figure.	These	

Cell contents

Lysis

Solution gradient

Chromosome

FIGURE 13.45
View	of	the	DLD	of	a	cell	toward	a	lysis	solution	resulting	in	the	lyse	of	the	cell	and	the	separation	of	the	chro-
mosome	from	other	cell	contents.

FIGURE 13.46
Flow	in	a	micro	DLD	device	with	the	streamlines.
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462 Computational Finite Element Methods in Nanotechnology

lines	are	specific	streamlines	delimiting	the	three	regions,	confirming	the	approach	of	
Section	13.5.3.1.

However,	 if	 the	 computational	 domain	 is	 small	 enough,	 a	 full	 3D	 calculation	 can	 be	
done,	as	shown	in	Figure	13.47,	where	a	local	source	of	concentration	has	been	introduced	
at	the	inlet.

13.5.4  Trapping Chambers

Recirculation	 microchambers	 are	 fluid	 chambers	 placed	 alongside	 the	 main	 channel.	
Depending	on	the	conditions,	the	main	flow	may	induce	a	recirculating	vortex	in	the	cham-
ber	that	traps	cells	or	particles	transported	by	the	carrier	fluid.	Figure	13.48	shows	a	design	
proposed	by	Shelby	et	al.	[68],	and	Figure	13.49	another	design	by	Manbachi	et	al.	[69].

×1e–5

×1e–4

×1e–4

0
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0

y z x
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FIGURE 13.47
Concentration	stream	transported	through	a	DLD	(COMSOL).

55

200

150
(a) (b)

30100

30

FIGURE 13.48
Schematic	of	a	recirculation	chamber	(a),	with	the	trapping	of	particles	(b).	(Reproduced	by	permission	from	
Macmillan	Publishers	Ltd.	Nature,	Shelby,	J.P.,	Lim,	D.S.W.,	Kuo,	J.S.,	and	Chiu,	D.T.,	High	radial	acceleration	in	
microvortices,	425,	38,	Copyright	2003.)
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463Finite Element Method for Micro- and Nano-Systems for Biotechnology

Fluid	flow	recirculation	is	not	easy	to	obtain	in	microsystems,	principally	because	of	the	
important	friction	on	the	walls.	In	the	case	illustrated	in	Figure	13.50,	the	friction	of	the	fluid	
on	the	lower	and	upper	horizontal	walls	reduces	the	possibilities	of	recirculation.	In	such	a	
case,	the	Reynolds	number	of	the	main	flow	must	be	large	enough	and	the	“gate”	or	“open-
ing”	of	the	chamber	must	be	small.	Figure	13.50	shows	a	numerical	calculation	of	the	flow	
field	performed	with	the	finite	element	method	(FEM)	COMSOL.	A	compromise	between	

Recirculation

0.5

×1e–5

0
5
0

1

2

4

0

FIGURE 13.50
Recirculation	in	a	diamond-shaped	microchamber	(Re	=	1).	The	flow	is	focused	along	the	recirculation	chamber	
opening	by	the	main	flow.	Streamlines	are	marked	by	the	continuous	lines	and	a	10	μm	particle	focused	at	the	
wall	cannot	enter	the	chamber	(continuous	dark	lines).

25 µm 50 µm 75 µm 100 µm

50 µm

No recirculationRecirculation

U U

FIGURE 13.49
Trapping	 of	 particles	 in	 recirculation	 grooves.	 (From	 Manbachi,	A.,	 Shrivastava,	 S.,	 Cioffi,	 M.,	 Chung,	 B.G.,	
Moretti,	 M.,	 Demirci,	 U.,	Yliperttula,	 M.,	 and	 Khademhossini,	A.,	 Microcirculation	 within	 grooved	 substrates	
regulates	cell	positioning	and	cell	docking	inside	microfluidics	channels,	Lab Chip,	8,	747–754,	2008.	Reproduced	
by	permission	of	The	Royal	Society	of	Chemistry.)
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464 Computational Finite Element Methods in Nanotechnology

the	need	for	a	narrow	opening	to	promote	recirculation	in	the	chamber	and	the	need	for	a	
sufficiently	large	opening	to	let	the	particles	enter	the	chamber	must	be	found.	In	parallel,	
a	compromise	between	the	need	for	sufficiently	large	main	channel	velocities	to	promote	
recirculation	in	the	chamber	and	the	need	for	sufficiently	small	particle	velocity	to	allow	for	
entering	the	chamber	must	be	found.	This	complex	situation	requires	numerical	modeling.

Concentration	 calculation	 using	 small	 diffusion	 coefficients	 associated	 to	 large	 mole-
cules	shows	the	buildup	of	concentration	in	the	recirculation	chamber—when	the	condi-
tions	are	such	that	there	is	a	recirculation	(Figure	13.51).

13.5.5  Microsystems for Cell Culture

The	control	of	chemical	delivery	in	microfluidic	cell	culture	is	a	major	research	topic	at	
the	present	time.	The	solution	for	the	precise	delivery	of	a	chemical	signal	to	a	large	group	
of	cells	without	disturbing	the	cellular	environment	is	a	challenge.	On	one	hand,	the	con-
ventional	use	of	passive	diffusion	gradients	leads	to	overly	slow	and	very	approximate	
signal	delivery.	On	the	other	hand,	active	methods	using	convective	flow	profoundly	dis-
turb	the	cellular	environment:	Cells	can	be	removed	by	the	flow,	shear	stress	modifies	the	
direction	of	cellular	chemotaxis,	and	the	natural	cell	signals	are	blurred;	active	methods	
can	deliver	the	chemical	signal,	but	their	effect	on	the	cell	culture	is	too	invasive	[70,71].

A	proposed	solution	is	to	combine	the	two	approaches:	A	convective	microchannel	is	
used	to	quickly	transport	toward	a	microchamber	the	chemical	signals,	and	a	nanoporous	

4

Trapping
in the recirculating chamber

×1e–4

×1e–5

×1e–3

2

0
5
0

1

0.5

0

Focusing 
along the  wall

FIGURE 13.51
Slices	of	concentration	showing	an	accumulation	of	small	diffusivity	particles	(D	=	10−11	m2/s)	in	the	recirculat-
ing	chamber.
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465Finite Element Method for Micro- and Nano-Systems for Biotechnology

membrane	 (porosity	 ∼	 10%)	 is	 used	 to	 protect	 the	 microchamber	 from	 flow	 convective	
motions	(Figure	13.52)	[70].	Chemical	signals	can	then	be	delivered	quickly	to	a	large	cell	
culture	area	without	the	drawbacks	of	the	conventional	active	or	passive	methods.

Some	other	solutions	are	investigated,	using	micro-apertures	instead	of	the	nanoporous	
membrane,	which	makes	the	microfabrication	easier.	A	calculation	can	easily	be	done	with	
COMSOL	for	the	system	described	in	Figure	13.53.

Even	if	the	velocities	in	the	“feeding”	channels	are	large	(1	mm/s),	the	velocities	inside	
the	chambers	stay	small	(less	than	30	μm/s).

On	the	other	hand,	the	diffusion	of	species	to	the	cell	culture	chambers	is	quite	fast,	as	
shown	in	Figure	13.54.	A	bolus	of	concentration	at	the	“top”	inlet	propagates	very	fast	in	
the	system:	in	less	than	0.3	s,	it	affects	the	cell	culture.

Moreover,	 a	 progressive	 gradient	 can	 be	 achieved	 across	 the	 system,	 as	 shown	 in	
Figure	13.55,	where	a	stable	(steady)	gradient	is	obtained	across	the	cell	chambers.

13.6 Biochemical Reactions: DNA Recognition

13.6.1  Introduction

One	of	the	principal	aims	of	microsystems	for	biology	is	to	perform	biological	reactions.	
DNA	biochips	are	a	 typical	example	of	 such	reactions.	 In	 this	 section,	we	 focus	on	 the	

Porous membrane Culture well Coverslip

Waste

Flow
PDMS

PDMS

Signal in

Glass slide

FIGURE 13.52
Schematic	view	of	the	cell	culture	system.	(From	VanDersal,	J.J.,	Xu,	A.M.,	and	Melosh,	N.A.,	Rapid	spatial	and	
temporal	controlled	signal	delivery	over	large	cell	culture,	Lab Chip,	11,	3057–3063,	2011.	Reproduced	by	permis-
sion	of	The	Royal	Society	of	Chemistry.)

To waste

c1

c2

1 mm/s

1 mm/s V < 30 µm/s 

FIGURE 13.53
Velocity	field	inside	the	microsystem:	in	the	cell	culture	microchambers,	the	fluid	velocity	is	smaller	than	30	μm/s.
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466 Computational Finite Element Methods in Nanotechnology

hybridization	 reaction	 and	 on	 its	 modeling	 and	 simulation	 in	 microsystems	 [72,73].	 In	
microsystems,	hybridization	reactions	are	performed	at	the	walls,	on	an	active	(function-
alized)	surface.	This	type	of	reaction	is	called	heterogeneous	reaction.

13.6.2  Heterogeneous Reactions

Heterogeneous	reactions	are	reactions	that	occur	at	the	contact	of	a	solid	wall,	to	the	dif-
ference	of	homogeneous	 reactions	 that	occur	 in	 the	bulk.	DNA	hybridization	 follows	a	
Langmuir	 law.	We	first	present	the	theory	of	 langmuirian	reactions,	and	then	we	show	
examples	of	calculation	of	heterogeneous	reactions.

13.6.2.1  Theoretical Background: Static Case

A	very	important	class	of	reactions	in	biotechnology	is	the	adsorption	of	molecules	on	
a	solid	functionalized	surface.	In	particular,	it	is	the	case	of	DNA	hybridization.	In	such	
a	 reaction,	 there	 are	 three	 components:	 first,	 a	 “free”	 substrate	 in	 a	 buffer	 fluid	 some-
times	 called	 “target”	 or	 “analyte,”	 in	 concentration	 [S];	 second,	 a	 surface	 concentra-
tion	 [Γ]0	 of	 ligands—or	 capture	 sites—immobilized	 on	 a	 functionalized	 surface;	 third,	
a	 product	 which	 is	 the	 surface	 concentration	 of	 adsorbed	 targets,	 which	 we	 denote	 by	
[Γ]	 (Figure	13.56).	Remark	 that	 [S]	 is	a	volume	concentration	 (unit	mol/m3)	whereas	 [Γ]	
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FIGURE 13.55
Concentration	map	in	the	system.

To waste 

c1

c2

1 mm/s

1 mm/s

FIGURE 13.54
A	bolus	of	concentration	at	the	inlet	reaches	the	cell	culture	areas	in	less	than	0.3	s.
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467Finite Element Method for Micro- and Nano-Systems for Biotechnology

and	[Γ]0	are	surface	concentration	(unit	mol/m2).	Such	a	kinetics	 is	called	a	Langmuir–
Hinshelwood	mechanism.

The	reaction	is	weekly	reversible	because	targets	are	constantly	captured	by	ligands	and	
they	constantly	dissociate	(at	a	smaller	rate).	The	reaction	may	be	symbolized	by

	

S

S

→

→

Γ

Γ
	 (13.70)

In	 the	case	of	adsorption,	 the	 reaction	 rates	are	somewhat	different	 to	 the	definition	of	
the	usual	chemical	 rates,	mainly	because	 the	rate	 the	 immobilization	of	 the	substrate	S	
depends	not	only	on	the	volume	concentration	at	the	wall	but	also	on	the	available	sites	for	
adsorption.	Thus,	we	can	write

	

v
d S
dt

k S

v
d
dt

k

on w

off

= [ ] = [ ] − [ ]( )[ ]

′ = [ ] = [ ]

Γ Γ

Γ
Γ

0

	 (13.71)

where	kon	and	koff	are	called,	respectively,	the	adsorption	and	dissociation	rates	and	[S]w	is	
the	concentration	at	the	wall.	For	simplicity,	we	will	note	Γ	=	[Γ],	c	=	[S],	and	c0	=	[S]w.	The	net	
rate	of	adsorption	is	then

	

d
dt

k c kon off
Γ Γ Γ Γ= −( ) −0 0 	 (13.72)

This	last	equation	can	be	rewritten	under	the	form

	

d
dt

k c k c kon on off
Γ Γ Γ= − +( )0 0 0 	 (13.73)

Equation	13.73	can	be	integrated	and	we	obtain

	

Γ
Γ0

0

0
1 0=

+
−





− +( )k c
k c k

eon

on off

k c k ton off 	 (13.74)

Using	Equation	13.74,	we	obtain	the	surface	concentration	kinetics	shown	in	Figure	13.57.

S

Γ(t)

Γ0

FIGURE 13.56
Adsorption	of	targets	on	a	surface	functionalized	with	immobilized	ligands.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
22

 0
3 

M
ar

ch
 2

01
6 



468 Computational Finite Element Methods in Nanotechnology

At	small	times,	the	exponential	term	in	Equation	13.74	can	be	developed	in	a	Taylor	expan-
sion,	and	the	surface	concentration	kinetics	is	the	linear	function	of	the	time	defined	by

	 Γ Γ= k c ton 0 0 	 (13.75)

Equation	13.75	indicates	that	the	kinetics	described	by	the	Langmuir	equation	is	rapid	if	
the	term	konc0	is	large,	that	is,	when	the	adsorption	constant	on	the	surface	and	the	concen-
tration	in	molecules	are	large.	For	longer	times,	the	surface	concentration	approaches	an	
asymptotic	value	defined	by

	

Γ
Γ

∞ =
+0

0

0

k c
k c k

on

on off
	 (13.76)

It	can	be	verified	in	Equation	13.76	that	in	the	case	where	koff	is	zero,	the	asymptotic	value	is	
then	Γ0	and	the	surface	becomes	totally	saturated.	The	larger	the	coefficient	koff,	the	smaller	
the	value	of	Γ∞/Γ0.

Suppose	 that	after	 the	hybridization	has	 reached	 its	asymptotic	value,	 the	 remaining	
targets	or	analytes	in	solution	are	suddenly	washed	out.	Desorption	is	then	the	driving	
mechanism	and	the	corresponding	kinetics	is	schematized	by	Figure	13.58.

The	 starting	 time	 for	 desorption	 is	 the	 time	 ta,	 and	 the	 surface	 concentration	 at	 this	
instant	is	Γa:

	
Γ Γa

on

on off

k c
k c k

=
+

0

0
0 	 (13.77)
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Tangent at origin
konc0 Γ0

Time

FIGURE 13.57
Kinetics	of	surface	concentration	from	Equation	13.74.
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469Finite Element Method for Micro- and Nano-Systems for Biotechnology

The	Langmuir	equation	for	desorption	is

	

d
dt

koff
Γ Γ= − 	 (13.78)

and	the	kinetics	of	desorption	is

	

Γ
Γ a

k t te off a= − −( ) 	 (13.79)

Desorption	kinetics	follows	an	inverse	exponential	law	(Figure	13.58).	The	tangent	to	the	
desorption	kinetic	curve	at	t	=	ta	is	given	by

	

Γ
Γ a

off ak t t= − −( )1 	 (13.80)

and	the	derivative	at	t	=	ta	is

	

d
dt

k
k k c
k c kt ta

off a
off on

on off

Γ Γ Γ
=

= − = −
+

0

0
0 	 (13.81)
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FIGURE 13.58
Kinetics	of	adsorption	and	desorption.
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470 Computational Finite Element Methods in Nanotechnology

This	last	formula	may	be	written	under	the	following	form:

	

d
dt

k c k
t ta

on off

Γ Γ
=

= − 0

0

1 1+
	 (13.82)

When	desorption	follows	adsorption,	the	kinetics	of	desorption	depends	not	only	on	the	
desorption	coefficient	koff	but	also	on	the	values	of	Γ0	and	kon.	This	property	is	shown	in	
Figure	13.59	where	different	desorption	kinetics	are	sketched,	depending	on	the	value	of	
the	saturation	level.

13.6.2.2  Numerical Approach: Convection-Diffusion-Reaction Problem

From	a	numerical	standpoint,	solving	a	convection-diffusion-reaction	problem	requires	to	
solve	first	for	the	velocity	field	V⃗,	that	is,	solve	the	continuity	and	Navier–Stokes	(or	only	
Stokes)	equations,	store	the	results,	and	then	solve	the	concentration	equation	using	the	
previously	calculated	velocity	field:

	

∂
∂

+ ∇ = ∇ ∇( ) +c
t

V c D c f
�

. . . 	 (13.83)

In	the	case	of	a	homogeneous	(bulk)	reaction,	the	source	term	f	is	the	reaction	rate.	In	the	
case	of	heterogeneous	reactions,	the	source	term	f	must	be	replaced	by	the	wall	condition

	
− ∂

∂
=D

c
n

d
dt
Γ

	 (13.84)
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FIGURE 13.59
Different	adsorption	and	desorption	kinetics	depending	on	the	kinetic	constants.
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471Finite Element Method for Micro- and Nano-Systems for Biotechnology

where	n	is	the	unit	vector	normal	to	the	wall.	As	was	established	in	the	preceding	section,	
the	kinetics	for	the	immobilized	wall	concentration	is

	

d
dt

k c k c kon on off
Γ Γ Γ= − +( )0 0 0 . 	 (13.85)

Combining	(13.84)	and	(13.85)	yields

	
Γ

Γ
( )t

k c D
c
n

k c k

on

on off
=

+ ∂
∂

+

0 0

0
	 (13.86)

Let	us	present	here	some	examples.	Consider	 the	case	of	a	cylindrical	micro-pillar	per-
pendicular	to	a	laminar	flow.	The	pillar	surface	is	active,	that	is,	it	has	been	coated	with	
ligands,	and	a	hybridization	reaction	occurs	between	the	DNA	strands	transported	by	the	
flow	and	the	ligands	immobilized	at	the	wall.

Figure	 13.60	 shows	a	 concentration	map	 in	 the	fluid	 channel	 after	one	hour,	 in	 three	
cases:	first,	an	adherence	condition	(a	DNA	strand	is	 immobilized	as	soon	as	it	 touches	
the	wall);	second,	a	Langmuirian	reaction	at	the	wall	with	kon	=	1	and	koff	=	0;	and,	third,	a	
Langmuirian	reaction	at	the	wall	with	kon	=	0.1	and	koff	=	0.	Concentration	depletion	in	the	
channel	can	be	clearly	seen	in	the	figure,	and	it	is	more	pronounced	when	the	immobiliza-
tion	rate	is	larger.

The	preceding	result	can	be	generalized	to	a	pillared	microchannel.	Pillared	microchan-
nels	are	similar	to	ordered	microporous	media,	the	porosity	of	which	can	be	tuned	by	the	
size,	distance,	and	arrangement	of	the	pillars.	Some	pillared	microsystems	can	be	of	very	
small	dimensions,	as	shown	in	Figure	13.61,	representing	a	microfluidic	bypass	channel	in	
a	microfluidic	resonator	[45].

Figure	13.62	shows	the	efficiency	of	capture	of	a	pillared	microchannel	depending	on	the	
value	of	kon	calculated	with	COMSOL.

13.7 Conclusions

In	 this	 chapter,	 we	 have	 seen	 in	 a	 few	 examples	 the	 potentialities	 of	 FEM	 numerical	
approach	for	the	design	of	microfluidic	systems	for	biotechnology.	Microflows,	chemical	
and	 biochemical	 reactions,	 and	 concentration	 transport	 can	 be	 modeled	 by	 using	 FEM	

kon=∞ kon=1 kon=0.1

FIGURE 13.60
Comparison	of	 the	effect	of	a	 functionalized	micropillar	on	the	transported	concentration	of	DNA	for	three	
different	values	of	the	adsorption	rate	kon	=	∞,	1	and	0.1	m3/mol/s.
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Kon=0.1
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30% 0%20% 10%

Kon=∞

30% 20% 10%

Kon=1

FIGURE 13.62
Comparison	of	the	effect	of	a	functionalized	pillared	microchannel	on	the	transported	concentration	of	DNA	
for	five	different	values	of	the	adsorption	rate	kon	=	∞,	1,	0.1,	0.01	and	0.001	m3/mol/s.

1.76 µm

× 15. Ok 2.00 µm

1.22 µm

0.18 µm

1.36 µm

WD7

FIGURE 13.61
Pillared	channel	of	very	small	dimension	in	a	microfluidic	resonator.	(Courtesy	V.	Agache,	CEA-Leti.)
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methods.	However,	as	we	pointed	out	in	the	introduction	of	this	chapter,	much	remains	
to	be	done	in	the	domain	of	multi-phase	microflows	where	tracking	interface	motion	and	
pinning	is	essential,	and	in	the	domain	of	the	transport	of	large,	deformable	particles	(ves-
icles,	globules)	where	modeling	the	steric	aspects	and	deformation	associated	to	the	local	
shear	is	a	real	challenge.
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15.1 Introduction

“The	step	from	micro-technology	to	nano-technology	requires	more	than	a	reduction	of	
the	size	by	a	factor	of	a	thousand.	If	you	want	to	move	precisely	in	the	nano-world,	you	
don’t	succeed	by	perfecting	proven	techniques.”	This	statement	of	Handelsblat	is	cited	by	
Klocke	and	Gesang	(2002)	and	describes	briefly	the	innovative	approach	in	nanoscience.

Therefore,	to	provide	successful	design	of	mechanisms	for	operating	with	micro	and	nano	
objects,	we	need	to	understand	the	basic	ideas	and	goals	set	in	service	of	macro-space,	to	
refine	and	complete	the	final	technological	operation,	using	various	micro-/nano-structures.

In	addition,	it	must	not	be	forgotten	that	operating	with	micro-/nano	robots	is	directly	
related	to	the	type	of	driving	devices	(actuators).	As	there	is	no	precise	definition	and	dis-
tinction	between	different	conceptions	of	actuators,	micro-actuators,	driving	devices,	micro-
machines,	and	nano-machines	are	in	the	known	to	the	authors	of	literature	sources,	related	
to	micro-electro-mechanical	systems	(MEMS),	the	authors	make	the	following	assumptions:

•	 The	term	“micro”	defines	the	size	itself	as	a	property	of	the	object—micro,	small,	
large,	etc.

•	 The	actuator	is	a	set	of	physical	bodies	(elements)	that	when	activated	by	an	exter-
nal	energy	source	implements	a	single	or	continuous	mechanical	movement	(or	
action)	as	a	 result	of	 the	changes	 in	 their	body	size	and	 form.	An	actuator	can	
operate	as	an	energy	converter	also.

•	 Micro-motor	is	analogous	to	the	electric	drive,	but	based	on	the	principle	of	action	
of	the	electroactive	polymer	actuators.

•	 Nano-machines	are	devices	which	are	the	smallest	in	size	of	all	MEMS	devices,	
even	smaller	than	those	assembled	of	a	molecule.

Micro-	 and	 nano-robots	 are	 assembled	 of	 these	 micro-devices	 and	 other	 micro-
manipulators.	In	some	cases	the	micro-	and	nano-machines	themselves	act	as	robots.	The	
idea	of	the	size	of	a	micro-robot	is	illustrated	by	the	photos	in	Figures	15.1	and	15.2,	where	
a	nano-motor	and	a	nano-manipulator	of	a	match	size	are	given.

15.2 Basic Idea and Applied Methods

The	idea	of	the	chapter	is	to	examine	several	examples	of	cooperation	between	macro-	and	
micro-robots,	as	shown	in	Figure	15.3.	The	authors	focus	their	attention	to	the	accession	of	
micro-robot	downstream	to	the	macro-robot,	to	its	driving	and	control.

15.3.4	 Analysis	and	Synthesis	of	Mechanical	Bioreactors	
for	Bio-Nanotechnologies	.....................................................................................547
15.3.4.1	 Short	Review	of	Existing	Devices	for	Bioreactor	Systems	................547
15.3.4.2	 Kinematics	of	Spatial	Mechanisms	in	Biotechnologies	..................... 551
15.3.4.3	 Conclusions	on	the	Preceding	Example	.............................................. 555
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507Finite Element Method (FEM) for Nanotechnology Application in Engineering

More	substantial	benefits	of	the	cooperation	between	micro-	and	macro-robots	are

•	 The	two	robots	are	autonomous.	They	can	be	produced	independently	by	different	
companies.	Various	combinations	of	different	types	and	different	sizes	depending	
on	the	specific	defined	purposes	can	be	done.

•	 The	macro-robot,	without	cooperation	with	a	micro-robot,	can	be	used	for	other	
industrial	operations	requiring	adequate	accuracy.

FIGURE 15.1
Photo	of	a	nano-motor.

FIGURE 15.2
Photo	of	a	nano-manipulator.D
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508 Computational Finite Element Methods in Nanotechnology

•	 Multiple	stationary	operations,	such	as	injection,	pipette,	installing	of	micro-units,	
etc.,	can	be	manipulated	like	this.

Among	the	main	disadvantages	of	the	preceding	cooperation	are

•	 The	macro-robot	must	be	positioned	and	then	the	micro-robot	must	be	orientated	
inside	its	small	workspace.

•	 Besides	specific	technological	process	sensors,	the	use	of	cameras	is	often	required	
to	guarantee	precise	identification	of	the	position	of	the	manipulated	object	and	
the	micro-robot	itself.

•	 The	operations	of	the	two	robots	are	necessary	to	be	consistent.

The	methods	used	to	illustrate	the	idea	of	cooperation	between	macro-,	micro-,	or	nano-	
robots	can	be	classified	as	follows:

•	 Some	of	the	cited	examples	are	used	as	source	data	construction	drawings	of	exist-
ing	mechanisms.

•	 Classical	 analytical	 approach	 for	 determining	 the	 kinematic	 parameters	 of	 the	
macro-,	micro-,	and	integrated	mechanisms.

•	 Finite	element	method	(FEM)	for	static	analysis,	modal,	harmonic,	and	transient	
analysis	of	the	objects	and	structures,	time-history	analysis	of	mechanisms.

•	 Multiparametric	optimization.
•	 Neural	networks	(NNs).

15.3 Examples

The	basic	ideas	of	the	chapter	are	illustrated	through	some	examples.
The	first	one	examines	a	 three-finger	clamp	for	manipulating	with	 tools,	micro	and	

nano	objects.	The	operation	is	performed	by	piezoceramic	actuators.	Optional	types	of	
methodology	for	their	design,	both	through	a	displacement	analysis	by	FEM	software	

A
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FIGURE 15.3
Scheme	of	integrated	micro-	and	macro-robots.
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509Finite Element Method (FEM) for Nanotechnology Application in Engineering

package	 and	 through	 a	 selection	 of	 eligible	 pseudo-optimal	 solutions	 using	 NNs,	 are	
proposed.	The	authors	examine	the	clamp	structure,	varying	many	different	materials	
and	 selecting	 those	 which	 guarantee	 a	 predefined	 displacement	 of	 each	 finger	 of	 the	
clamp,	provoked	by	similar	forceful	impact	on	the	clamping	frame.	They	try	to	imple-
ment	proposed	algorithm	of	design	of	similar	clamping	devices	to	the	provided	example.

The	second	example	shows	an	algorithm	for	establishment	of	the	accessible	space	by	a	
monitored	vertex	in	the	face	of	the	proboscis	of	a	tripod	mechanism	with	built-in	rotary/
linear	drives.	The	aim	 is	 to	define	criteria	 for	 structural	design	of	UPU	couples	and	 to	
develop	a	decision	strategy	of	control	and	management	of	 the	motion	of	 the	monitored	
sensor.	 The	 established	 algorithm	 is	 realized	 through	 writing	 a	 computer	 code	 in	 the	
MATLAB®	environment.	It	is	applicable	for	solving	the	inverse	problem	of	kinematics	for	
space	mechanisms	of	that	type.	The	idea	is	to	use	the	rotary/liner	drives	for	establishment	
of	the	macro-configuration	of	the	mechanism	and	later	to	move	the	sensor	more	precisely	
(micro-motion)	to	the	exact	micro-disposition	through	piezo-actuators.	In	addition	a	CAD/
CAE	model	of	a	mechanism	of	that	type	is	developed	in	SolidWorks	environment.	All	its	
dimensions	are	numerically	introduced.	This	model	is	used	in	the	context	to	show	how	
a	trace	path	of	the	monitored	vertex	can	be	obtained,	regarding	the	true	boundary	and	
contact	conditions	and	loading.	This	model	is	user-friendly	and	easily	adaptable,	regard-
ing	dimensions,	material,	loads,	fixtures,	and	drives	implemented	on	the	mechanism.	All	
dynamic	phenomena	in	the	structured	system	can	also	be	examined	through	this	finite	
element	model.

The	third	example	shows	a	detailed	kinematic	analysis	of	a	hybrid	macro-micro	robot	
with	a	five-link	two-crank	closed	structure	and	the	established	solution	of	direct	prob-
lem	of	kinematics	 (DPK)	 through	basic	geometry	and	kinematic	 laws.	The	geometrical	
conditions	of	 full	rotation	of	 the	 two	input	 links	are	set	 forth,	 the	accessible	spaces	 for	
such	 a	 MS	 are	 outlined,	 and	 the	 transfer	 functions	 (TFs)	 of	 the	 actuators	 incorporated	
into	the	links	are	derived	assuming	that	the	system	linearization	is	legitimate.	The	aim	
of	the	present	example	is	to	solve	the	inverse	problem	of	kinematics	for	a	macro	mecha-
tronic	system	without	linearization	and	the	one	for	a	micro	mechatronic	system,	which	
is	redundant,	with	two	extra	degrees	of	freedom	(DoFs).	The	basic	algorithms	for	design-
ing	a	control	strategy	are	presented.	The	problem	is	considered	in	two	stages:	solving	the	
inverse	problem	of	kinematics	considering	the	macro-mechatronic	system	and	solving	the	
inverse	problem	of	the	kinematics	of	the	micro-mechatronic	system.	A	numerical	example	
is	considered	on	the	basis	of	derived	formulas.	In	addition	a	finite	element	spatial	model	
of	the	aforementioned	mechanism	is	presented.	The	CAD	model	is	created	in	SolidWorks	
environment.	The	piezo-actuators	are	situated	in	the	holes	of	the	links.	They	increase	the	
length	of	each	link	up	to	1/100.	Three	different	cases	of	driving	this	mechanism	are	com-
pared.	The	dead	weight	of	the	links	as	well	as	a	loading	force	of	1	N,	modeling	the	action	
on	the	mechanism	of	the	operated	object,	are	regarded	in	calculating	the	reaction	in	the	
hinges	through	the	given	finite	element	solution.	By	that	time	the	friction	in	the	hinges	
is	neglected	as	it	is	too	small	and	this	the	first	iteration	stage	of	the	promoted	numerical	
simulation.

The	last	example	is	focused	research	on	bioreactors.	Most	of	the	bioreactors	are	designed	
with	only	one	axis	of	rotation.	They	put	the	cell	growth	under	the	influence	of	one	force	
vector	only,	due	to	which	they	provide	a	physical	signal	only	in	the	direction	of	this	one	
force	vector.	Hence,	 cells	are	not	 inclined	 to	growth	of	 three-dimensional	 (3D)	cell	 cul-
tures.	 Bioreactor	 systems	 have	 controllable	 motors	 and	 monitoring	 sensors	 to	 control	
the	 processes	 in	 the	 bioreactor	 chamber,	 i.e.,	 they	 are	 mechatronic	 systems.	 The	 object	
of	the	example	is	a	bioreactor	device	with	spatial	mechanisms.	The	authors	analyze	the	
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510 Computational Finite Element Methods in Nanotechnology

possibilities	of	implementation	of	spatial	mechanisms	with	one	or	two	DoFs,	i.e.,	an	exten-
sive	analysis	of	coupler’s	spatial	motion	is	required.	Furthermore,	the	possibility	of	using	
the	coupler’s	rotation	around	its	own	axis	when	both	of	the	kinematic	couples	to	which	it	
is	linked	are	spherical	ones	is	studied.

15.3.1 Clamps for Operating with Micro or Nano Objects

15.3.1.1  Background of the Problem

In	the	late	twentieth	century	began	the	use	of	robotics	for	micro/nano	manipulation	pro-
cessing.	A	new	type	of	robots	with	appropriate	manipulating	systems	(MSs)	and	clamping	
devices,	with	new	controlling	configurations	and	sensors	(Ionescu	et	al.,	2004,	Kostadinov	
et	 al.,	 2004,	 2005a,b,	 Tiankov,	 2006a,b)	 have	 been	 developed	 for	 implementing	 different	
operations	with	micro/nano	objects	in	medicine	and	engineering.	For	successful	accom-
plishment	of	manipulations,	the	need	for	smaller	displacements	and	higher	precision	of	
disposition	and	impact	has	been	arisen.	Thus	a	new	type	of	actuators,	electromechanical	
or	electromagnetic	piezo-actuators	(Kostadinov	et	al.,	2004,	2005a,b,	Tiankov,	2006a)	has	
come	into	use.	Here,	a	three-finger	clamp,	called	later	“clamping	device,”	for	micro	and	
nano	objects	and	tools,	realized	by	three	identical	modules,	arranged	in	120°	(Figure	15.4)	
is	studied	through	FEM.	Each	of	the	modules	implements	a	radial	moving	of	its	finger,	not	
greater	than	tenths	of	a	millimeter	through	the	deformation	of	its	elements.	Piezoceramic	
actuators,	causing	element	deformation,	are	integrated	in	these	modules.	More	details	on	
the	clamp	configuration	and	its	functions	are	provided	in	Petrova	et	al.	(2011).

15.3.1.2  Aim of the Example

The	aim	of	the	example	is	to	demonstrate	how	to	choose	the	most	appropriate	material	from	
a	set	of	predefined	ones	through	stress	and	deformation	analysis	of	the	frame	of	the	described	

FIGURE 15.4
Scheme	of	the	clamping	device.
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511Finite Element Method (FEM) for Nanotechnology Application in Engineering

clamp.	The	gripping	of	micro	objects	is	achieved	by	the	motion	of	the	“proboscis”	to	the	
clamp	center,	arisen	by	built-in	piezoceramic	actuators.	Therefore,	a	given	displacement	at	
a	given	load/force	impact	on	the	frame	of	the	clamping	device	is	guaranteed.

15.3.1.3  Description of the Finite Element Model

First	a	3D	model	of	the	module	has	been	created	using	the	existing	design	documentation.	
The	 3D	 model	 has	 been	 created	 through	 the	 software	 SolidWorks	 (SolidWorks—Users	
Manual,	2009).	Figure	15.4	shows	a	scheme	of	the	clamping	device.

Second,	the	3D	model	has	been	transformed	to	a	model	of	spatial	finite	elements,	through	
software	 package	 SW-Simulation,	 a	 toolbox	 of	 SolidWorks	 (SolidWorks	 Simulation—
Training	Manual,	2010).	Spatial	finite	elements	of	type	tetrahedron	of	first	order	have	been	
used.	Through	the	FEM	(Zienkiewicz,	1972),	a	more	precise	computer	modeling	of	stress,	
strain,	and	displacement	distribution	in	structure	and	identification	of	endangered	areas	
is	performed.

The	 defined	 boundary	 conditions	 have	 been	 set	 as	 follows:	 attachment	 at	 all	 screw	
openings—type	 “fixed”	 (Figure	 15.5).	 The	 loading	 is	 implemented	 through	 uniformly	
distributed	forces	and	simulates	 the	pressure	on	the	 inner	radial	sides	of	 the	modules’		
frames	(see	Figure	15.6).	The	magnitudes	of	these	surface	loads	are	equal	to	the	magnitude	
of	the	impact	of		the	piezo-crystal	on	frame	inner	surfaces.	These	in-built	piezo-crystals	
are	not	shown	on	the	figures.

The	input	data	are	organized	into	two	sets:

	 1.	A	 set	 of	 different	 types	 of	 suitable	 materials,	 introduced	 by	 their	 modules	 of	
elasticity	and	coefficients	of	Poisson

	 2.	A	set	of	loads,	equal	to	the	known	values	of	the	forces	of	the	actuators

The	combinations	between	the	two	data	sets	are	infinite.

FIGURE 15.5
Finite	element	3D	model	of	the	clamping	module.
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512 Computational Finite Element Methods in Nanotechnology

The	number	of	eligible	solutions	and	extraction	of	pseudo-optimal	options	from	the	set	
of	eligible	solutions	has	been	limited	by	following	the	criteria:

•	 Radial	displacement	of	the	“proboscis”	within	a	predefined	range
•	 Minimum	stresses	in	the	vulnerable	zones

15.3.1.4  Solution for a Set of Materials

The	authors	illustrate	the	proposed	algorithm	in	the	following	text	(Figure	15.6).
The	modulus	of	elasticity,	E,	and	Poisson’s	ratio,	μ	on	one	side	and	the	force	value	on	the	

other	are	set	as	input	data.	The	software	calculates	the	shear	modulus,	according	to	the	

known	relation	G
E=

+
* .

.
0 5

1 µ
The	distribution	of	von	Misses	stress,	shown	in	Figure	15.7,	enables	easy	determination	

of	stress	endangered	areas.
Figure	15.8	shows	the	vertex	nodes	of	the	surface	of	the	“proboscis,”	in	which	radial	dis-

placements	(along	axis	Y,	shown	in	the	figure)	are	monitored.	Values	of	these	movements	
are	given	in	Tables	15.1	and	15.2.

15.3.1.5  Numerical Experiments and Results

Figures	15.9	and	15.10	show	graphical	and	numerical	results	of	FEM	analysis.	Figure	15.9a	
shows	a	general	picture	of	the	distribution	of	the	full	nodal	displacements	of	the	model.	
Figure	15.9b	shows	a	similar	motion	at	the	end	of	the	“proboscis.”	“Shade”	or	“loop”	shows	
the	nondeformed	shape.

Figure	15.10	shows	nodal	displacements	along	radial	axis	(radial	displacements	toward	
the	center).	For	the	detailed	figure,	the	radial	displacement	is	parallel	to	axis	Y.	Depending	
on	 the	chosen	material,	 the	 radial	displacement	can	be	either	positive	 (to	 the	center)	or	
negative.

FIGURE 15.6
3D	model	of	the	loaded	clamping	module.
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513Finite Element Method (FEM) for Nanotechnology Application in Engineering

The	finite	element	numerical	experiments	are	conducted	in	the	following	three	stages:
Stage	I:	Modulus	of	elasticity	E	is	varied
The	obtained	results	are	summarized	in	Table	15.1.

Stage	II:	Poisson’s	ratio	is	varied
Poisson’s	ratio	is	additionally	varied	in	order	to	refine	the	study.	In	case	of	pure	alumi-
num,	it	is	equal	to	0.22	and	for	aluminum	alloys	it	is	around	0.3.	The	results	are	shown	in	
Table	15.2.

0.0
Yield strength: 300.0

25.0
50.0
75.0
100.0
125.0
150.0
175.0
200.0
225.0
250.0
275.0
300.0

von Misses (N/mm2 (MPa))

FIGURE 15.7
Distribution	of	the	von	Misses	stress	in	the	studied	module.

1
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2

Y uv

FIGURE 15.8
Numbers	of	the	nodes	in	the	vertexes	of	the	surface	of	the	“proboscis,”	whose	movement	is	monitored.D
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FIGURE 15.9
Distribution	of	the	nodal	displacement	in	finite	element	model:	(a)	Scheme	of	the	deformed	shape	of	the	clamp	
and	nondeformed	shadow	shape	and	(b)	displacement	at	the	end	of	the	“proboscis”	(in	detail).
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FIGURE 15.10
Distribution	of	the	radial	nodal	displacement	in	finite	element	model:	(a)	Scheme	of	the	deformed	shape	of	the	
clamp	and	nondeformed	shadow	shape	and	(b)	Radial	displacement	of	the	surface	at	the	end	of	the	“proboscis.”
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Stage	III:	Additional	studies
In	 numerical	 simulation	 using	 material	 brass,	 type	 free-cutting	 brass	 with	 material	
characteristics:	 E	=	97	GPa,	 G	=	37	GPa,	 and	 μ	=	0.31	 the	 monitored	 displacements	 are	 in	
node	 1	→	0.11490	mm;	 in	 node	 2	→	0.11590	mm;	 in	 node	 61	→	0.11460	mm;	 and	 in	 node	
62	→	0.11570	mm.	The	average	displacement	of	the	surface	is	0.11767	mm.

TABLE 15.1

Numerical	Data	of	Averaged	Radial	Displacement	
(along	Axis	Y)	of	the	Surface	of	the	“Proboscis”	Shown	
in	Figure	15.8	While	Modulus	of	Elasticity	E	Is	Varied

Poisson’s Ratio 0.2 0.22 0.25

Modulus of Elasticity, GPa
Averaged Radial 

Displacement, mm

200 0.039069 0.035004 0.027429
150 0.051551 0.046354 0.036575
100 0.078051 0.069699 0.054869
90 0.086819 0.077708 0.060962
85 0.091824 0.082281 0.064548
80 0.097420 0.087293 0.068582
75 0.104070 0.091175 0.073154
70 0.111610 0.100010 0.078379
65 0.120210 0.106210 0.084611
60 0.130230 0.116390 0.093173
55 0.141700 0.126970 0.099739
50 0.156280 0.140010 0.109710

TABLE 15.2

Numerical	Data	of	Averaged	Radial	Displacement	(along	Axis	Y)	of	
the	Surface	of	the	“Proboscis,”	Shown	in	Figure	15.8	While	Poisson	
Ratio	μ	Is	Varied

Poisson’s Ratio

Radial Displacement (along Axis Y), mm

Node 1 Node 2 Node 61 Node 62 Average Value

Modulus	of	elasticity	E	=	70	GPa
0.20 0.1084 0.1063 0.1080 0.1073 0.1067
0.22 0.0953 0.0954 0.0950 0.0946 0.0943
0.25 0.0772 0.0745 0.0769 0.0759 0.0748
Modulus	of	elasticity	E	=	69	GPa
0.20 0.1099 0.1078 0.1095 0.1089 0.1082
0.22 0.1024 0.1011 0.1019 0.1017 0.1015
0.25 0.0778 0.0751 0.0775 0.0764 0.0075
Modulus	of	elasticity	E	=	68	GPa
0.20 0.1118 0.1096 0.1114 0.1107 0.1101
0.22 0.9871 0.9741 0.9835 0.0981 0.9777
0.25 0.0801 0.0773 0.0797 0.0787 0.0777
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517Finite Element Method (FEM) for Nanotechnology Application in Engineering

Stage	IV:	Model	of	NN
After	testing	a	set	of	materials	through	FEM,	a	one-direction	relation	is	established	between	
the	magnitude	of	the	force,	the	modulus	of	elasticity	and	Poisson’s	ratio	of	the	material	on	
one	side	and	the	radial	displacement	of	the	“proboscis”	on	the	other.

We	 will	 show	 how	 in	 combination	 with	 the	 other	 numerical	 methods	 such	 as	 NNs	
(Haykin,	1998),	the	FEM	can	be	transformed	into	a	powerful	mathematical	tool	for	design.	
Because	of	the	great	number	of	possible	solutions	of	this	design	problem,	it	is	appropriate	
to	use	NNs	to	narrow	the	range	of	possible	solutions	and	later	to	choose	the	most	applicable	
(the	optimum)	one.

Therefore,	an	NN	of	type	“Fitting	Function	through	software	product	MATLAB,	pack-
age	Neural	Networks”	(Hagan	et	al.,	2002,	Beale	et	al.,	2010)	is	set	up.	It	has	10	hidden	layers	
(Figure	15.11).

In	the	cited	case,	the	input	data	include	the	magnitude	of	the	force,	modulus	of	elasticity,	
and	Poisson’s	ratio	of	real	materials.	The	target	data	include	the	radial	displacements	of	the	
“proboscis”	obtained	through	FEM.	The	neural	net	automatically	removes	all	outcomes	
that	 do	 not	 meet	 the	 predefined	 radial	 displacement	 criterion	 and	 ensures	 compliance	
with	the	first	optimization	criterion.

The	results	of	NN	calculation	are	shown	in	Figure	15.12.
If	 all	 these	 calculations	 were	 made	 using	 traditional	 solving	 methods,	 for	 example	

“pure”	FEM,	they	would	have	taken	much	more	computer	time	and	human	resources.

15.3.1.6  Conclusions on the Cited Numerical Example

Based	on	the	performed	numerical	experiments,	conclusions	about	the	relation	between	
physical	characteristics	of	the	material/material	constants	and	monitored	displacement	as	
well	as	about	applicable	solutions	are	made.

FIGURE 15.11
Created	neural	network—basic	view,	used	algorithms,	progress.
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518 Computational Finite Element Methods in Nanotechnology

The	authors	hope	to	prove	that	a	comprehensive	solution	of	structural	design	problem	
can	be	obtained	by	combining	software	running	different	versions	of	FEM	with	those	
based	on	NNs.

The	 developed	 algorithm	 is	 unique	 and	 applicable	 to	 a	 wide	 range	 of	 design	
problems.

(a)

(b)

FIGURE 15.12
Graphs	 of	 the	 results	 obtained	 by	 trained,	 tested,	 and	 validated	 network:	 (a)	 best	 validation	 performance,	
(b)	training	characteristics	of	the	designed	network,
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519Finite Element Method (FEM) for Nanotechnology Application in Engineering

15.3.2 Analysis and Design of Parallel Micro-Robot Structures

An	analysis	of	the	accessible	space	of	the	monitored	vertex	in	the	face	of	the	proboscis	
of	a	tripod	mechanism	with	built-in	rotary/linear	drives	is	presented	in	this	example.	
The	aim	is	to	define	criteria	for	structural	design	of	UPU	couples	of	fourth	grade	and	
to	develop	a	strategy	for	decisions	on	the	control	and	management	of	the	motion	of	the	

(c)

(d)

FIGURE 15.12 (continued)
Graphs	of	the	results	obtained	by	trained,	tested,	and	validated	network:	(c)	regression	function,	and	(d)	error	
histogram.
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520 Computational Finite Element Methods in Nanotechnology

monitored	sensor.	The	established	algorithm	is	applicable	for	solving	the	direct	prob-
lem	of	kinematics	for	space	mechanisms	of	that	type.	The	idea	is	to	use	the	rotary/liner	
drives	for	establishment	of	the	macro-configuration	of	the	mechanism	and	later	to	move	
the	sensor	more	precisely	(micro	motion)	to	a	predefined	exact	disposition,	regarding	its	
spatial	orientation	toward	fixed	coordinate	system,	through	piezo-actuators.

The	 algorithm	 presented	 in	 the	 following	 regards	 the	 micro-motion	 of	 the	 tripod	
structure	only.	It	is	a	brief	geometrical	solution	realized	through	the	MATLAB	software	
(first	 part	 of	 the	 provided	 algorithm).	 Based	 on	 the	 numerical	 data,	 calculated	 through	
the	first	stage,	a	CAD/CAE	model	for	studying	the	structure	motions	is	established.	This	
model	can	be	used	 for	prediction	and	control	of	 the	vertex	motion	and	 is	a	 foundation	
of	a	developed	strategy	for	motion	management.	The	CAD/CAE	model	 is	 implemented	
through	SolidWorks	software	tools	(second	part	of	the	algorithm).

15.3.2.1  Why Tripod Structure?

Starting	in	the	last	two	decades	of	the	twentieth	century	up	to	the	present-day	manipulat-
ing	systems	(manipulators,	MS)	with	parallel	structures	are	particularly	relevant	(Chanhee	
Han	 et	 al.,	 2002,	 Han	 Sung	 Kim	 et	 al.,	 2005,	 Sadjadian	 et	 al.,	 2005,	 Conconi	 et	 al.,	 2009,	
Kanaan	et	al.,	2009,	Hexapod	&	Tripod,	2010).

Their	 main	 advantages	 are	 compactness,	 loading	 capacity,	 technological	 profile,	 and	
possibility	to	mount	their	drives	on	a	relatively	rigid	unit.	Solving	the	inverse	problem	of	
kinematics	for	this	type	of	manipulators	is	elementary,	i.e.,	the	algorithms	for	their	control	
are	relatively	simple.	The	main	drawbacks	of	these	manipulators	are	the	narrowly	acces-
sible	space	as	well	as	the	numerous	singular	configurations	of	the	structure.	Manipulators	
with	parallel	structures	can	be	implemented	as	tripods	and	more	frequently	as	sixpods,	
having	three	or	six	independent	degrees	of	freedom.	Later	several	types	of	parallel	manip-
ulators	are	illustrated.	Figure	15.13	(Chanhee	Han	et	al.,	2002)	shows	a	tripod	structure,	
and	Figure	15.14	a	sixpod	one	(Hexapod	&	Tripod,	2010).	Authors	who	studied	the	struc-
ture	shown	in	Figure	15.13	have	investigated	ways	of	avoiding	singular	situations	of	the	
parallel	MS	through	technological	gaps	in	the	joints.

Another	interesting	structure	of	three-arm	delta	robot	is	shown	in	Figure	15.15.	Conconi	
et	al.	(2009)	prove	that	use	of	parallelogram	“pods”	instead	of	linear	ribs	reduces	the	num-
ber	of	hazardous	singular	configurations,	increases	the	level	of	precision	of	operation,	and	
expands	the	accessible	space.

There	have	been	a	lot	of	publications	in	the	field	of	MSs	with	parallel	structures.	Without	
claiming	that	they	are	aware	of	all,	the	authors	can	define	some	not	entirely	explored	issues	
and	some	other	issues	that	have	not	been	in	the	focus	of	the	researchers	yet.	Among	them	are

•	 Hybridization	between	parallel	MS	(PMS),	servicing	the	macro-space,	and	PMS	
for	micro-operation	processing.

•	 Solving	the	direct	kinematic	problem,	which	is	significantly	more	difficult	 than	
finding	a	solution	of	the	inverse	one	for	this	type	of	manipulators.	Outlining	the	
accessible	space	enables	solving	a	lot	of	optimization	problems	related	to	strate-
gies	of	monitoring	and	control	of	structure	behavior	of	these	mechanisms.

15.3.2.2  Aim of the Provided Example

In	the	following	text,	the	authors	present	an	analysis	of	the	macro-accessible	space	by	a	
vertex	sensor	disposed	in	the	head	of	the	proboscis	of	a	tripod	structure	(Figure	15.16):
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Moving
plateform

Universal
joint

Universal
joint

Fixed
bane

Prianatic
joint
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y
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x

Z

Z
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B2

B3
B1

A3

A1
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O

FIGURE 15.13
Tripod	structure	of	the	type	UPU	Joint.	(From	Chanhee	Han	et	al.,	Mech. Mach. Theory,	37,	787,	2002.)

FIGURE 15.14
Sixpod	structures.	(From	http://www.physikinstrumente.com/en/products/primages.php?sortnr=700881&pic
view=2#gallery)

FIGURE 15.15
Photos	of	three-arm	delta	robots.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
33

 0
3 

M
ar

ch
 2

01
6 

http://www.physikinstrumente.com
http://www.physikinstrumente.com


522 Computational Finite Element Methods in Nanotechnology

•	 With	built-in	rotary	drives,	operating	the	rotation	angles	of	the	pods
•	 With	built-in	linear	drives,	operating	the	lengths	of	the	pods

The	stretches	of	the	proboscis	along	the	three	coordinate	axes	and	the	rotation	angles	of	
the	pods	are	calculated.	They	depend	on	the	characteristics	of	the	built-in	drives.	Similarly,	
the	accessible	space	of	the	sensor	vertex	disposed	in	the	proboscis	head	is	outlined.	The	
lengths	of	the	pods	are	varied	within	a	range	of	10%	of	their	maximum	length.

This	 information	 is	of	extreme	importance	during	 the	process	of	structural	design	of	
kinematic	couples,	which	in	this	case	are	of	the	type	of	UPU	couples	(see	Figure	15.13).	All	
decisions	on	management	strategies	are	carried	out	in	an	“off-line”	regime.

15.3.2.3   Description of the Established Mathematical Model 
and of the Developed Solution Strategy

15.3.2.3.1 Geometric Solution of Problem

To	determine	the	accessible	space	of	the	sensor	vertex	for	this	designed	MS,	a	spatial	geo-
metric	problem	is	initially	solved.	The	scheme	of	the	mechanism	is	shown	in	Figure	15.17.	
All	denoted	at	the	given	scheme	lengths	are	assumed	to	be	constant	during	one	calculat-
ing	cycle.

For	a	mechanism	with	rotary	drives,	the	angles	between	the	pods	and	the	base	vary	and	
for	a	mechanism	with	linear	drives	lengths	of	the	pods	do.	The	base	denoted	(Ab1,	Ab2,	
Ab3)	is	fixed.	It	is	assumed	that	the	nodes	(points	Abi,	i	=	1	÷	3)	coincide	with	the	vertexes	of	
an	equilateral	triangle.	Fixed	Cartesian	coordinate	system	(CS)	XYZ,	whose	origin	is	at	the	
point	Ab1	and	the	X-axis	coincides	with	the	segment	Ab1–Ab2	and	is	introduced	for	more	
convenient	derivation	of	equations.	It	is	assumed	that	the	mobile	platform	is	an	equilateral	
triangle,	whose	vertexes	Api,	i	=	1	÷	3	are	joined	to	the	pods	through	UPU-joints.	The	execu-
tive	 link	AC-C	 (Figure	15.17)	 is	fixed	perpendicularly	 to	 the	mobile	platform	and	point	

(a) (b)

FIGURE 15.16
A	general	3D-view	of	the	studied	tripod	structure:	(a)	a	photo	of	an	MS,	similar	to	the	studied	one	(From	Han,	
C.	et	al.,	Mech. Mach. Theory,	37,	787,	2002.)	and	(b)	3D	CAD	model	of	the	studied	MS	structure.
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523Finite Element Method (FEM) for Nanotechnology Application in Engineering

C coincides	with	its	geometric	(mass)	center.	All	links’	lengths	are	introduced	as	constants	
in	the	written	MATLAB	code.	All	used	parameters	are	shown	in	Figures	15.17	and	15.18.	
The	mathematical	solution	of	the	problem	of	identification	of	all	applicable	configurations	
of	the	mechanism	structure	while	varying	the	angles	between	the	pods	and	the	base	is	
implemented	in	two	stages	by	successively	solving	two	nonlinear	systems	of	equations.

•	 First stage:	A	pseudo-plane	closed	four	bar	mechanism	is	geometrically	described.	
The	problem	is	reduced	to	the	standard	problem	of	finding	geometrical	relations	
between	the	coordinates	of	its	joins,	its	generalized	coordinates,	and	the	lengths	of	
the	links.	The	point	is	that	instead	of	the	actual	lengths	of	the	units	Ap1–Ap2	and	
Ab2	–	Ap2,	the	lengths	of	their	projections	Ap1–Ap2′	and	Ab2	–	Ap2′	(Figure	15.18)	
are	used.	At	that	stage,	the	angles	denoted	di,	i	=	1	÷	3	vary	and	the	program	code	
itself	 retains	only	physically	assessable	solutions	according	to	specified	criteria.	
Then	 the	 algorithm	 continues	 with	 solving	 the	 system	 equations	 of	 the	 second	
stage,	but	 the	decision	 is	sought	only	among	initially	examined	and	marked	as	
applicable	during	the	first-stage	solutions.

Z

X

Ab1

Ab2

Ap1

Ap3

Ab3

Ap2

Y

Ab1 Ab2 = u1

Ab2 Ab3 = u2

Ab1 Ab3 = u3
Ap1 Ap2 = o1

Ap2 Ap3 = o2

Ap1 Ap3 = o3
AC C = H

Ab1 Ap1 = h1

Ab2 Ap2 = h2

Ab3 Ap3 = h3

y

C

AC

z

x

FIGURE 15.17
Geometrical	solution	of	the	solved	spatial	mechanism.

Z

X
s

YAb1

Ab2 Ab3

Ap1

Ap2Ap2

d1

d3

d2

z΄

y΄ Ab1 Ab2 Ap2
determine the plans s,
which is rotated at an angle
equal to b1, around axis X.
Coordinate axes X and z΄,
are situated in the plane s,
while axis y΄ is
perpendicular to s.

Ap2΄ Ap2 = h = O1* sin d3
Ap2΄ Ab2 = h2΄
Ap2΄ Ap1 = O1΄ = O1* cos d3

The angle between the axis X and
the axis Ab1 Ap1 is equal to d2.
Ap2΄ is the projection of Ap2 on s.

FIGURE 15.18
Geometrical	scheme	of	the	solved	pseudo-2D	four	bar	mechanism.
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524 Computational Finite Element Methods in Nanotechnology

•	 Second stage:	A	nonlinear	spatial	mathematical	system	for	finding	the	intersect-
ing	point	of	three	spheres,	each	centered	in	the	geometrical	center	of	the	couples	
Ap2,	Ap1,	and	Ab3	and	with	radii	equal,	respectively,	to	O2,	O3,	and	h3	(Figure	
15.19)	is	numerically	solved.	Based	on	the	input	data	from	the	first	stage	of	the	
calculation	algorithm,	i.e.,	the	coordinates	of	the	couples	Ap2,	Ap1,	and	Ab3,	all	
mathematically	possible	solutions	are	defined.	As	it	is	not	possible	to	find	a	physi-
cally	applicable	solution	for	all	input	data	sets,	the	software	displays	an	appropri-
ate	message	and	drops	the	data	set	out	of	the	group	of	applicable	configurations	
of	the	mechanism.	The	problem	is	defined	and	solved	like	an	optimization	prob-
lem	of	three	different	parameters,	which	are	the	searched	spatial	coordinates	of	
point	Ap3.	The	target	function	is	a	system	of	three	nonlinear	functions	whose	
minima	are	sought.

The	result	of	the	solution	is	a	set	of	all	assessable	physical	configurations	of	the	MS	at	
predefined	lengths	of	the	pods.

The	geometric	solution	is	implemented	through	MATLAB	environment,	while	some	of	
the	library	codes	of	the	optimization	package	are	implemented	in	the	written	new	soft-
ware	code.

15.3.2.3.2 Implementing the Design Solution, Regarding Some Constructive Requirements

The	obtained	solution	 through	the	written	computer	code	 is	a	database,	containing	 the	
entire	information	on	the	spatial	configuration	of	the	structure,	including	coordinates	of	
points	Ap1,	Ap2,	Ap3,	AC,	C	in	the	fixed	Cartesian	coordinate	system,	all	elements	of	trans-
ferring	matrixes	between	the	fixed	and	the	used	floating	coordinate	systems	or	vice	versa,	
depending	on	the	mission.	All	data	are	processed	and	exported	to	MS	Access	or	to	MS	
Excel.

Some	additional	restrictions,	due	to	the	construction	of	base	UPU	couples,	Ab1,	Ab2,	
and	Ab3,	are	 imposed.	Along	 the	directions	ai,	 i	=	1÷3	 (Figures	15.20	and	15.21),	 rotary	
drives,	which	enable	pods’	 rotation	around	 the	axes	xi,	 i	=	1	÷	3,	are	placed.	Measuring	
and	 defining	 of	 the	 rotation	 angle	 a3	 is	 shown	 in	 detail	 in	 Figure	 15.21.	 The	 same	 is	
the	case	for	the	other	two	angles	a1	and	a2.	The	following	restriction	on	the	angles	ai,	
i	=	1	÷	3,	is	imposed:	30°	<ai	<150°.	The	rotation	around	axes	yi,	i	=	1	÷	3	is	denoted	with	bi	

Z

Y

X

Ab2

Ab1

Ab3

Sphere (Ap2, R = o2)

Sphere (Ap1, R = o3)

Sphere (Ab3, R = h3)

h3Ap1

Ap2
Ap3

o3

o2

FIGURE 15.19
Geometrical	scheme	of	the	second	stage	in	solving	the	spatial	geometry	problem.
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(Figures	15.20	and	15.21).	This	rotation	depends	only	on	 the	geometrical	configuration	
of	the	structure,	but	the	constructive	design	of	the	joints	does	not	allow	the	angle	to	be	
greater	than	45°,	i.e.,	−45°	<	bi	<	45°,	i	=	1	÷	3.

Further	 the	 decisions	 that	 do	 not	 meet	 the	 preceding	 conditions	 are	 eliminated	 in	
MS	Excel	(MS	Access)	environment.	This	additionally	reduces	the	number	of	applicable	
solutions.
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Ab1

Ab2

Ap2

Ap3
h3

a3
b3
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xX

h1
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y1

a1

u1 o1

o2

o3

C

u3

u2

h2

x2

FIGURE 15.20
Scheme	of	the	studied	mechanism	with	given	UPU	joints.
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526 Computational Finite Element Methods in Nanotechnology

15.3.2.4   Numerical Examples for Outlining the Accessible Zone 
of the Vertex of the Controlled Link

15.3.2.4.1 Mechanism with Built-in Rotary Drives

Some	 numerical	 examples	 for	 the	 mechanism	 with	 the	 following	 lengths	 of	 the	 units:	
ui	=	60,	oi	=	40,	hi	=	50,	i	=	1	÷	3,	and	H	=	30	in	mm	are	given	in	the	following	text.	The	acces-
sible	space	of	vertex	C	is	outlined.

Let	us	assume	that	one	pod	(in	this	case	pod	Ab1-Ap1)	is	fixed	(angle	a1	=	−89.91°)	and	the	
other	one	(denoted	Ab2-Ap2)	rotates	about	an	axis	x2	within	a	range	of	−83.59°	to	−52.10°.	
The	sign	“−”	indicates	the	relative	displacement	of	the	plate	couple	Ap2	toward	the	cor-
responding	base	kinematic	couple	in	the	local	coordinate	system	Abi,	xi,	yi	(Figures	15.20	
and	15.21).	Figure	15.22	shows	two	possible	configurations	of	the	mechanism	and	the	trace	
path	of	vertex	C	under	the	preceding	conditions.
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FIGURE 15.22
Two	different	spatial	structure	configurations	and	the	trace	path	of	vertex	C	for	a	mechanism	with	one	fixed	
pod	and	one	operating	rotary	drive:	(a)	3D	scheme,	(b)	projection	of	the	mechanism	in	XZ	plane,	(c)	projection	
of	the	mechanism	in	XY	plane,	and	(d)	projection	of	the	mechanism	in	YZ	plane.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
33

 0
3 

M
ar

ch
 2

01
6 



527Finite Element Method (FEM) for Nanotechnology Application in Engineering

A	case	of	two	simultaneously	operating	rotary	drives	is	shown	in	Figure	15.23.	The	
first	operating	rotary	drive	is	built-in	pod	1	and	angle	a1	varies	in	between	71.98°	and	
80°.	 The	 second	 rotary	 drive	 operates	 angle	 a2	 in	 between	 −59.93°	 and	 −47.45°.	 The	
accessible	by	vertex	C	zone	is	a	part	of	the	spatial	surface,	which	is	shown	in	the	Figure	
15.23a–d.

If	an	operation	of	the	three	rotary	drives,	located	at	the	base	couples	Abi,	is	assumed	
and	 the	 angles	 of	 rotation	 of	 the	 three	 pods	 vary	 under	 the	 condition	 30°	 <	 ai	 <150°,	
i	=	1	÷	3,	 the	outlined	accessible	zone	of	vertex	C	of	 the	 implementing	unit	 is	given	 in	
Figure	15.24.	It	is	a	spatial	domain,	whose	approximate	size	along	the	axes	is	as	follows:	
along	 X—63.1	mm;	 along	 Y—56.8	mm;	 and	 along	 Z—62.5	mm.	 The	 domain	 is	 roughly	
symmetric	about	a	plane,	parallel	to	YZ,	displaced	at	a	coordinate	X	=	30	mm.	The	volume	
of	the	accessible	domain	is	about	one	third	of	the	volume	of	the	space	occupied	by	the	
structure	itself.
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FIGURE 15.23
Two	different	structure	spatial	configurations	and	trace	path	of	vertex	C	for	a	mechanism	with	two	operating	
rotary	drives:	(a)	3D	scheme,	(b)	projection	of	the	mechanism	in	XZ	plane,	(c)	projection	of	the	mechanism	in	XY	
plane,	and	(d)	projection	of	the	mechanism	in	YZ	plane.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
33

 0
3 

M
ar

ch
 2

01
6 



528 Computational Finite Element Methods in Nanotechnology

15.3.2.4.2 Mechanism with Built-in Linear Drives

The	following	numerical	results	are	about	a	mechanism	with	the	following	dimensions	in	
millimeters:	ui	=	60;	oi	=	40;	hi	=	45	÷	50;	i	=	1	÷	3;	and	H	=	30.	The	accessible	zone	of	vertex	C	
is	outlined.

If	it	is	assumed	that

•	 The	two	pods	(pod	Ab1-Ap1	and	pod	Ab2-Ap2)	are	of	a	constant	length	equal	to	
90%	of	the	maximal	pods’	length,	i.e.	equal	to	45	mm.

•	 The	length	of	the	third	pod	(pod	Ab3-Ap3)	varies	in-between	90%	and	100%.
•	 The	angle	between	the	fixed	pod	Ab1-Ap1	and	the	base	is	equal	to	30°.
•	 The	angle	between	the	pod	Ab2-Ap2	is	70°.
•	 Some	of	the	applicable	configurations	of	the	structure	and	the	accessible	zone	of	

vertex	C	are	shown	in	Figure	15.25.
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FIGURE 15.24
Accessible	by	vertex	C	zone	while	there	are	three	operating	rotary	drives:	(a)	3D	picture	of	the	accessible	by	
vertex	C	zone,	(b)	projection	of	the	accessible	zone	in	XZ	plane,	(c)	projection	of	the	mechanism	in	XY	plane,	and	
(d)	projection	of	the	mechanism	in	YZ	plane.
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529Finite Element Method (FEM) for Nanotechnology Application in Engineering

In	Figure	15.26	is	shown	the	case	when	there	are	two	simultaneously	operating	linear	
drives—the	one	built-in	pod	2	and	the	one	built-in	pod	3.	The	lengths	of	these	pods	vary	
in	the	range	of	45–50	mm,	and	it	is	assumed	that	the	length	of	pod	1	is	constant	during	the	
simulation.	It	is	equal	to	the	minimum	of	45	mm.	It	is	assumed	that	the	angles	between	the	
pods	1	and	2	and	the	base	are	constant	and	equal	to	30°,	while	the	angle	between	the	pod	3	
and	the	base	varies	in	between	0°	and	70°.	These	values	determine	the	limits	of	applicable	
configurations	of	 this	spatial	mechanism.	By	now	the	constructive	requirements	on	the	
joint	between	the	pod	3	and	the	base	are	neglected.	The	accessible	zone	of	vertex	C	is	a	
spatial	surface.

If	 the	 three	 built-in	 linear	 drives	 are	 in	 operation,	 the	 lengths	 of	 each	 pod	 vary	 in	
the	range	of	90%–100%	of	its	maximal	length,	i.e.,	their	limits	are	45	÷	50	mm.	In	addi-
tion,	it	is	accepted	that	the	angles	between	the	pods	and	the	base	are	fixed	during	the	
simulation.	 Then	 the	 accessible	 by	 vertex	 C	 zone	 is	 given	 in	 Figure	 15.27.	 The	 charts	
are	obtained	for	a	predefined	discrete	growth	of	the	pods’	lengths	and	that	causes	the	
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FIGURE 15.25
Trace	path	of	vertex	C	of	the	implementing	unit	while	only	the	one	linear	drive	is	in	operation:	(a)	3D	picture	of	
the	accessible	by	vertex	C	zone,	(b)	projection	of	the	accessible	zone	in	XZ	plane,	(c)	projection	of	the	mechanism	
in	XY	plane,	and	(d)	projection	of	the	mechanism	in	YZ	plane.
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530 Computational Finite Element Methods in Nanotechnology

gaps	 in	 the	 final	 chart	 of	 the	 accessible	 zone.	 In	 the	 cited	 example,	 it	 is	 situated	 in	 a	
space	of	the	following	limits:	along	axis	x—32	to	52	mm;	along	axis	y—2	to	20	mm;	along	
axis	z—−56	to	−62	mm.

15.3.2.5  FEM of a Spatial Three-Pod Mechanism with Three Built-in Drives

After	outlining	the	accessible	zone	of	the	vertex	C	of	the	implementing	unit,	some	numeri-
cal	 examples	of	a	 similar	 spatial	 three-pod	mechanisms	with	built-in	 rotary	or	built-in	
linear	drives	are	provided.

The	following	examples	are	of	mechanism	with	6	UPU	kinematic	couples	situated	 in	
both	ends	of	the	three	pods.	The	dimensions	of	the	mechanism	are	similar	to	the	earlier	
presented	ones:
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FIGURE 15.26
Two	different	spatial	structure	configurations	and	accessible	zone	of	vertex	C	for	a	mechanism	with	two	oper-
ating	linear	drives:	(a)	3D	picture	of	the	accessible	by	vertex	C	zone,	(b)	projection	of	the	accessible	zone	in	XZ	
plane,	(c)	projection	of	the	mechanism	in	XY	plane,	and	(d)	projection	of	the	mechanism	in	YZ	plane.
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531Finite Element Method (FEM) for Nanotechnology Application in Engineering

•	 The	fixed	vertexes	of	the	base	are	disposed	in	the	vertexes	of	an	equilateral	tri-
angle,	which	side	is	equal	to	60	mm.

•	 The	 longitudinal	 length	between	the	hinges	 in	both	ends	of	each	pod	varies	 in	
between	40	and	50	mm.

•	 True	constructive	dimensions	of	all	units	are	implemented	in	the	provided	CAD	
model.

•	 The	moving	plate	is	an	equilateral	triangle	with	a	side	of	60	mm.
•	 The	length	of	the	implementing	unit	is	30	mm.
•	 The	trajectory	of	its	vertex	is	traced.

It	is	assumed	that	the	mechanism	is	made	of	aluminum	alloy.
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FIGURE 15.27
Accessible	by	vertex	C	zone	while	there	are	three	operating	linear	drives:	(a)	3D	picture	of	the	accessible	by	
vertex	C	zone,	(b)	projection	of	the	accessible	zone	in	XZ	plane,	(c)	projection	of	the	mechanism	in	XY	plane,	and	
(d)	projection	of	the	mechanism	in	YZ	plane.
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532 Computational Finite Element Methods in Nanotechnology

The	 provided	 CAD	 model	 is	 developed	 in	 SolidWorks	 environment	 (SolidWorks—
Users	Manual,	2009).	The	established	FEM	is	made	through	SW	Simulation	environment	
(SolidWorks	Simulation—Training	Manual,	2010)	and	the	simulation	of	the	motion	of	the	
mechanism	is	performed	through	SW	Motion	(SolidWorks	Motion	Studies,	2011).

In	addition,	 the	mechanism	is	 loaded	by	gravity	 forces	 in	+Z	direction	and	a	vertical	
(in +Z	direction)	force	of	1	N,	applied	in	the	vertex	and	modeling	the	action	of	the	dead	
weight	of	the	operated	object.

Finite	element	model	is	created	by	tetrahedrons	of	order	1.
The	aim	of	the	cited	examples	in	the	later	sections	is	just	to	show	the	functions	of	the	

trace	path	and	of	the	displacement	of	the	vertex	as	well	as	the	rotation	of	the	plate	at	pre-
defined	laws	of	operation	of	the	drives.	The	type	of	software	used	prevents	the	impact	of	
body	deformations	on	the	kinematic	parameters	of	the	motion.

Simulating	 and	 studying	 the	 velocity,	 acceleration,	 contact	 forces	 between	 the	 units,	
stress,	 and	 deformed	 shapes	 of	 all	 elements	 is	 the	 next	 step	 in	 this	 study.	 The	 authors	
intend	to	create	a	methodology	which	will	enable	a	detailed	investigation	on	the	dynamic	
characteristics	of	the	motion	and	a	performance	of	some	constructive	(related	to	shapes	
and	dimensions	and	with	an	impact	on	stress	distribution)	and	some	driving	(related	to	
the	characteristics	of	drives	and	with	an	impact	on	acceleration,	dynamic	reactions,	dis-
placement	versus	time,	etc.)	optimization	criteria	on	the	structure.

15.3.2.5.1 FEM of a Spatial Three-Pod Mechanism with Three Built-in Rotary Drives

The	 established	 FEM	 is	 shown	 in	 Figure	 15.28.	 The	 three	 arcs	 at	 the	 pods’	 joint	 show	
the	 disposition	 of	 the	 three	 rotary	 drives.	 Next	 is	 shown	 a	 3D	 view	 of	 the	 traced	 path	
of	 the	 vertex	 of	 the	 implementing	 unit.	 Of	 course	 it	 strongly	 varies	 on	 the	 predefined	
laws	of	the drives,	disposition	of	UPU	couples,	and	a	lot	of	other	structural	parameters.	
It	is	assumed	that	the	displacement	laws	in	hinges	with	built-in	rotary	drives	are	of	sine	
oscillating	functions.	The	amplitudes	of	these	functions	are	introduced	in	degrees	and	are	
equal	to:	of	drive	1°–5°;	of	drive	2°–3°;	and	of	drive	3°–4°.	The	frequency	varies	as	follows:	
for	drive	1:	0.2	Hz;	for	drive	2:	0.5	Hz;	and	for	drive	3:	0.75	Hz	(see	Figure	15.29).

Figure	15.30	shows	the	function	of	the	displacement	of	the	traced	vertex—its	magnitude	
as	well	as	its	projections	along	coordinate	axis.	In	Figure	15.31	is	given	the	magnitude	of	
angular	displacement	of	the	implementing	unit	during	the	motion.

(a) (b)

X
Y

Z

X Y

Z

FIGURE 15.28
A	 3D	 view	 of	 the	 developed	 CAD-CAE	 model	 of	 a	 spatial	 three-pod	 mechanism	 with	 three	 built-in	 rotary	
drives:	(a)	disposition	of	rotary	drives	and	(b)	sketch	of	the	vertex	trace	path	during	the	operation	of	the	three	
drives.
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533Finite Element Method (FEM) for Nanotechnology Application in Engineering

15.3.2.5.2 FEM of a Spatial Three-Pod Mechanism with Three Built-in Linear Drives

The	established	FEM	with	built-in	linear	drives	is	shown	in	Figure	15.32.	The	three	arrows	
at	pods	mark	the	disposition	of	the	three	linear	drives.	Next	to	that	figure	is	shown	the	3D	
sketch	of	the	traced	path	of	the	vertex	of	the	implementing	unit.	The	blue	arrow	marks	the	
dead	weight	of	the	orated	object.

It	is	assumed	that	the	variations	of	the	lengths	of	the	pods	are	sine	oscillating	functions.	The	
amplitude	of	these	functions	is	introduced	in	millimeters	and	is	as	follows:	for	drive	1–5	mm;	
for	drive	2–3	mm,	and	for	drive	3–4	mm.	The	frequency	of	the	driving	functions	varies	as	
follows:	for	drive	1–0.2	Hz;	for	drive	2–0.5	Hz;	and	for	drive	3–0.75	Hz	(see	Figure	15.33).	The	
variations	of	pods’	lengths	due	to	the	operation	of	each	drive	are	given	in	the	same	figure.

Figure	15.34	shows	the	function	of	the	displacement	of	the	traced	vertex—its	magnitude	
as	well	as	its	projections	along	coordinate	axis	while	the	three	drives	are	operating	simul-
taneously.	 In	Figure	15.35,	 the	magnitude	of	angular	displacement	of	 the	 implementing	
unit	during	the	motion	is	given.

15.3.2.6  Conclusions on the Preceding Numerical Example

The	presented	methodology	uses	basic	geometric	spatial	relationships	between	units	of	the	
studied	mechanism	while	implementing	the	first	part	based	on	computer	code	developed	
in	MATLAB	environment.	Thus,	the	direct	problem	of	kinematics	of	MS	is	solved.	The	pre-
sented	algorithm	is	suitable	and	easily	adaptable	for	all	spatial	MSs	of	that	type.	Through	
this	methodology,	the	accessible	zone	of	the	sensor	vertex	of	the	implementing	unit	can	
be	found	for	some	given	initial	conditions	such	as	its	geometric	configuration,	the	type	of	
the	drives	(rotary	or	linear),	the	number	of	simultaneously	operating	drives,	the	range	of	
variation	of	the	angles	(for	a	mechanism	with	built-in	rotary	drives),	or	the	lengths	of	the	
pods	(for	a	mechanism	with	built-in	linear	drives).	Consequently,	it	is	easy	the	transferring		
functions	of	the	first	and	the	second	order	for	each	generalized	coordinate	to	be	derived.
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FIGURE 15.29
Characteristics	of	all	built-in	rotary	drives	and	corresponding	changes	in	hinges’	angles:	(a)	characteristic	of	
drive	1,	(b)	characteristic	of	drive	2,	(c)	characteristic	of	drive	3,	and	(d)	angular	displacement	in	the	hinges	with	
built-in	drives.
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535Finite Element Method (FEM) for Nanotechnology Application in Engineering

The	development	 of	 this	 mathematical	 code	enables	 the	authors	 to	 solve	 several	 spa-
tial	kinematic	tasks,	illustrated	by	the	aforementioned	examples	for	MS	with	three	rotary	
or	 three	 linear	 drives.	 Depending	 on	 the	 number	 of	 operating	 drives	 and	 additionally	
imposed	 restrictions	 on	 the	 angles	 of	 pods’	 rotation	 and	 on	 varying	 their	 lengths,	 the	
accessible	zone	is	either	a	spatial	path	(for	one	operating	drive)	or	a	spatial	surface	(for	two	
simultaneously	operating	drives)	or	a	spatial	domain	with	changing	characteristics	 (for	
three	operating	drives).

The	post-developed	finite	element	models	are	applicable	for	solving	precise	numerical	
problems	and	are	applicable	in	the	second	part	of	the	investigating	methodology.	They	are	
easily	adaptable	and	user-friendly—the	dimensions	of	the	units	can	be	varied	and	even	
the	material	and	the	laws	of	operating	drives	can	be	easily	changed.	The	initial	configura-
tion	can	also	be	easily	reconstructed.	The	advantage	of	this	approach	is	that	the	gravity	
and	 the	 additional	 loading	 are	 included	 in	 FE	 solution,	 which	 can	 be	 used	 for	 precise	
calculation	of	dynamic	reaction	of	the	mechanism	as	a	whole	and	for	performing	some	
optimizing	changes	for	better	operation	of	the	system	itself.
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Angular	rotation	of	implementing	unit	with	vertex	C,	compared	to	the	fixed	base.
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FIGURE 15.32
A	3D	view	of	the	developed	CAD-CAE	model	of	a	spatial	three-pod	mechanism	with	built-in	three	linear	drives:	
(a)	disposition	of	linear	drives	and	(b)	sketch	of	the	vertex	trajectory	during	the	operation	of	the	three	drives.
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The	authors	intend	to	focus	their	further	research	in	this	area	on

•	 Hybridization	 between	 parallel	 manipulating	 structures,	 servicing	 the	 macro-
space	and	driven	by	conventional	rotary/linear	drives,	on	one	side	and	parallel	
MSs,	servicing	the	micro-space	and	driven	by	piezo-actuators
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538 Computational Finite Element Methods in Nanotechnology

•	 Optimization	problems	related	to	management	strategy,	such	as	finding	a	trace	
path	with	minimum	deviations	from	a	predefined	one,	with	a	maximal	level	of	
uniformity	of	the	motion	of	all	units	of	the	MS,	with	minimum	number	of	picks	
in	velocity	and	acceleration	functions	during	a	given	integral	time	for	executing	
the	operation

Based	on	the	huge	number	of	applicable	solutions	of	the	earlier-defined	problems	and	
the	 necessity	 of	 handling	 large	 databases,	 aiming	 deriving	 of	 optimal	 decision	 accord-
ing	to	some	predefined	kinematic,	dynamic,	constructive,	stress,	and	deformation	criteria,	
the	use	of	NNs	could	be	appropriate.	As	it	has	been	proved	in	the	previous	example,	this	
opportunity	for	developing	an	interdisciplinary	methodology	combines	the	advantages	of	
the	classical	methods	of	mechanics,	theory	of	mechanisms	and	machines,	and	strength	of	
materials	with	newer	methods	such	as	FEM	and	NNs.	The	combination	works	very	well	
in	the	field	of	numerical	modeling,	simulation,	and	processing	control	of	mechanical	sys-
tems,	saving	human	and	computer	resources.

15.3.3 Kinematics of a Macro-Mechatronic System

15.3.3.1  Analytical Solution

The	following	example	shows	a	detailed	kinematic	analysis	of	a	hybrid	macro-micro	robot	
with	a	five-link	two-crank	closed	structure	and	the	established	solution	of	DPK	through	
basic	geometry	and	kinematic	laws.	The	geometrical	conditions	of	full	rotation	of	the	two	
input	links	are	set	forth,	the	accessible	space	for	such	an	MS	are	outlined,	and	the	TFs	of	the	
actuators	incorporated	into	the	links	are	derived	assuming	that	the	system	linearization	
is	legitimate.	Also,	the	conditions	for	unidirectionality	of	macro	motions	at	the	end	of	the	
cycle	and	micro	motions	at	the	start	of	the	cycle	are	found.	These	problems	are	specific	for	
the	DPK.

The	aim	of	the	presented	example	is	to	solve	the	inverse	problem	of	kinematics	(IPK)	for	
a	macro-mechantronic	system	without	linearization	and	the	one	for	a	micro-mechatronic	
system,	which	is	redundant,	with	two	extra	DoFs.	Conditions	for	unidirectionality	of	the	
basic	links	of	a	micro	MS	are	taken	as	optimization	conditions.	The	basic	algorithms	for	
designing	a	control	strategy	are	presented.	Calculated	through	the	first	 iteration	results	
can	be	used	to	choose	the	configuration	of	a	macro	MS	at	the	start	of	a	micro	operation.

A	numerical	example	is	considered	on	the	basis	of	formulas	derived	to	solve	the	inverse	
problem	of	kinematics.	The	validation	of	the	theoretical	setup	is	realized	by	designing	a	
virtual	model	of	the	robotized	system	and	performing	an	analysis	of	the	simulation	results	
obtained.

15.3.3.1.1 Inverse Problem of Kinematics Considering the Macro-Mechatronic System

A	macro-mechantronic	system	is	based	on	a	five-link	mechanism	shown	schematically	in	
Figure	15.36.	On	a	macro	level,	the	chain	consists	of	five	mobile	links	(1–5)	with	dimen-
sions	11–l5	and	angular	coordinates	φ2–φ5.	Those	whose	angular	displacements	are	speci-
fied	by	angles	φ2	and	φ5	are	chosen	as	active	pairs.	Note	that	 the	angular	displacement	
characterizes	a	mechanism	with	2	DoFs.	Chain	operational	space	is	specified	by	arcs	k2–k5,	
s2,	and	s5.	To	perform	finishing	operations	in	micro	and	nano	ranges,	a	piezo-actuator	is	
integrated	in	each	mobile	body	(λ1−λ4).

Coordinates	x	and	y	of	the	point	B	are	given	for	an	IPK	(note	that	velocities	can	also	be	
specified),	and	a	corresponding	configuration	of	KC	is	sought.	More	specifically,	we	look	
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539Finite Element Method (FEM) for Nanotechnology Application in Engineering

for	the	parameters	of	the	actuating	devices	(AD)—angle	φ2	and	the	respective	velocities.	
Point	B	is	the	cross	point	of	the	circles:

	

( ) ( ) ,

( ) ( ) ,

x x y y l

x x y y l

A A

C C

− + − =

− + − =

2 2
3
2

2 2
4
2 	 (15.1)

where

	 x l c y l sA A= =2 2 2 2ϕ ϕ, , 	 (15.2)

	 x l l c y l sC C= + =1 5 5 5 5ϕ ϕ, .

Here	one	can	consider	either	the	nominal	values	of	the	dimensions	of	links	li	or	dimension	
increase	after	actuator	activation.	After	elementary	transformations,	we	get	the	following	
via	Equations	15.1	and	15.2

	 x y xx yy l lA A
2 2

3
2

2
22+ − − = −( ) , 	 (15.3)

	 2 2 2( ) ( ) ,xx yy yy xx CC C A A− + − = 	 (15.4)

where	C2	=	l3
2	−	l2

2	−	l4
2	+	l5

2.
Equation	15.3	contains	parameter	φ2,	only,	while	Equation	15.4	contains	parameter	φ5.	

The	system	is	nonlinear	but	it	can	be	reduced	to	quadratic	equations

	
s

y l s
l

φ φ
3

2 2

3
= −

, 	 (15.5)
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FIGURE 15.36
Two-crank	closed	five-link	mechanism.
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s

y l s
l

φ φ
4

5 5

4
= −

, 	 (15.6)

which	are	used	to	calculate	angles	φ3	and	φ4.	The	positional	IPK	is	solved	via	those	relations.
We	 consider	 a	 numerical	 example	 using	 equations	 for	 solving	 the	 IPK	 of	 a	 macro-

mechantronic	system.	The	following	parameters	are	used	as	initial	data	for	the	structure	
shown	in	Figure	15.37:

	

l l l l l1 2 5 3 4

2 3 4 5

20 30 50

140 50 130 40

= ≡ = ≡ =

= = = =

mm mm mm; ;

; ; ;φ φ φ φ� � � �.. 	 (15.7)

Considering	 an	 absolute	 coordinate	 system	 XYZ	 (Figure	 15.2),	 we	 find	 the	 following	
angles	corresponding	to	the	specified	coordinates	(20	and	65)	of	point	B	along	axes	X	and	Y:

	 ϕ ϕ ϕ ϕ2 4 5115 49 116 42= ° = ° = ° = °, , , .3 	 (15.8)

We	also	find	the	angular	displacements	for	a	given	initial	state	in	the	joints:

	 ∆ ∆ ∆ϕ ϕ ϕ ϕ2 3 4 525 1 14 2= = = =� � � �, , , . 	 (15.9)

15.3.3.1.2 Inverse Problem of the Kinematics of the Micro-Mechatronic System

Using	the	actuators,	we	should	attain	a	position	with	coordinates	x	+	Δx	and	y	+	Δy,	i.e.,	we	
should	realize	additional	delta-displacement.	Hence,	Δx	=	a	and	Δy	=	b	are	known.	We	look	
for	values	of	λi,	i	=	2,	3,	4,	and	5,	which	would	realize	the	position	specified.	However,	we	
can	solve	the	problem	using	one,	two,	etc.,	operating	actuators.	For	small	values	of	λ	in	the	
DPK,	we	derive	the	following	equations:

	
a ij jx= ∑λ

2

5

, 	 (15.10)
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FIGURE 15.37
Operational	area	of	actuators	3,	4,	and	5.
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b ij jy= ∑λ

2

5

, 	 (15.11)

where

	

i c
s c
s

i c
s

tg

i
s

s

x

x

x

2 2
3 4 2

3 4

3 3
3

3 4

4
3

3

= − −
−

= −
−

=

φ φ φ φ
φ φ

φ φ
φ φ

φ
φ

( )
( )

( )

( −−

= −
−

φ

φ φ φ
φ φ

4

5
3 4 5

3 4

)

( )
( )

i
s c
s

x 	 (15.12)
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c c
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c
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i
c
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y

y

2 2
3 4 2

3 4

3 3
3
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4
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−
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−

= −

φ φ φ φ
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φ
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( 33 4

5
3 4 5

3 4

−

= − −
−

φ

φ φ φ
φ φ

)

( )
( )

i
c c
s

y 	 (15.13)

Obviously,	the	system	is	redundant—there	are	two	extra	DoFs.	Moreover,	due	to	the	
closed	kinematical	chain,	an	area	where	point	B	can	be	positioned	is	bounded	by	each	
of	the	actuators.	Areas	of	autonomous	operation	of	actuators	3,	4,	and	5	are	outlined	in	
Figure	15.37.

The	strategy	of	control	of	micro	motions	is	based	on	the	analysis	of	the	capabilities	of	
each	actuator	and	on	the	capabilities	of	each	couple	and	triad	of	actuators,	namely,	2	and	3,	
2	and	4,	2	and	5,	3	and	4,	3	and	5,	4	and	5,	3,	4,	and	5,	etc.

Examine	 the	 operation	 of	 actuators	 3,	 4,	 and	 5.	 Angles	 φ2	 and	 φ5	 are	 constants.	 The	
change	of	link	length	affects	the	change	of	angles	φ3	and	φ4,	and	it	is	found	via	the	follow-
ing	equalities:

	
∆φ

φ φ
φ φ3
4 4

3 4 3
=

+
−

c c c s
l s
x y

( )
, 	 (15.14)

	
∆φ

φ φ
φ φ4
3 3

4 4 3
=

+
−

c c c s
l s
x y

( )
, 	 (15.15)
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where

	

c c c c c

c s s s s

x

y

= − − + +

= − − + +

λ ϕ λ ϕ λ ϕ λ ϕ

λ ϕ λ ϕ λ ϕ λ ϕ

2 2 3 3 5 5 4 4

2 2 3 3 5 5 4 4 . 	 (15.16)

If	actuator	3	is	activated,	only,	it	follows	from	(15.14)	that

	
∆φ λ

φ φ
λ3

3

3 4 3
3 0= −

−
≠

l tg( )
, . 	 (15.17)

The	change	of	φ3	yields	a	change	of	φ4–Δ	φ4′,	which	is	found	via	the	condition	of	existence	
of	a	kinematical	chain	(Figure	15.3),	namely

	
c

l l l s

l l
∆

∆

′ =
′ + − ′

′
φ

φ

4

3
2

4
2

3
2 2 3

3 4

4
2

2
	 (15.18)

The	results	are	similar	if	actuator	λ4	is	activated,	only.	Then,	the	following	relations	are	
found:

	
∆φ λ

φ φ4
3

3 4 3
= −

−l tg( )
	 (15.19)

	
c

l l l s

l l
∆

∆

′ =
+ ′ − ′

′
≠φ

φ

λ3

3
2

4
2

4
2 2 4

3 4
4

4
2

2
0, . 	 (15.20)

It	is	seen	from	(15.17)	and	(15.19)	that	the	variations	of	angles	φ3	and	φ4	are	opposite	to	
one	another,	i.e.,	if	one	angle	increases	the	other	one	decreases.	Thus,	a	total	unidirectional	
effect	is	not	to	be	sought.	When	activating	the	actuator	of	link	5,	the	variation	of	the	two	
angles	takes	the	form

	
∆φ λ φ φ

φ φ
λ3

5 4 5

3 4 3
5 0= −

−
≠c

l s
( )
( )

, 	 (15.21)

	
∆φ λ φ φ

φ φ
λ4

5 5 3

4 4 3
5 0= −

−
≠c

l s
( )
( )

, . 	 (15.22)

Hence,	we	can	look	here	for	total	effects	being	unidirectional	with	the	effects	of	the	other	
two	actuators.

Note	that	when	a	single	actuator	is	operating,	the	solutions	are	sought	along	boundary	
circle	arcs	or	along	concentric	arcs	plotted	for	different	values	of	λj.	If	there	are	two	operat-
ing	actuators,	all	points	in	the	outlined	areas	are	possible	solutions.	This	fact	is	illustrated	
in	Figure	15.38.
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A	most	general	solution	of	IPK	can	be	found	via	the	system	of	Equations	15.7	and	15.8	
completed	by	equalities

	 sgn sgn ,�ϕ ϕ3 3= ∆ 	 (15.23)

	 sgn sgn .�ϕ ϕ4 4= ∆ 	 (15.24)

which	guarantee	elimination	of	 the	unidirectional	 looseness	of	 the	mechanical	 system.	
Velocities	of	links	2	and	5	of	a	macro	MS	are	specified	or	found	using	the	velocity	of	point	
B,	while	those	of	links	3	and	4—by	differentiation	of	the	equations	of	the	vector	contour	of	
the	kinematical	chain.	The	following	relations	are	found	in	this	case:

	

� � � � �
φ φ φ

φ φ2
2 2 2

2 2 2
= + − +

−
l xc ys xx yy

l xs yc
( ) ( )

( )
, 	 (15.25)

	

� � � �
� �

φ φ φ φ φ φ φ φ
φ5 2 2 2 2 2 2 2

5 2 5

5
= + + − + −

l yc xs l ys xc
l xc ys
l xs

( ) ( )
( )
( 55 5+









ycφ )
, 	 (15.26)

where

	

�

�

φ

φ

3
3

4
4

=

=

D
D

D
D

,

. 	 (15.27)
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D l l s l s

D l l

= −
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=

3 4 3 4

3 4 5 5 5 4 2 2 4 2

4 3 5

( ),

( ( ) ( )),

(

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ� �

�� �ϕ ϕ ϕ ϕ ϕ ϕ5 5 3 2 2 3 2s l s( ) ( )).− + − 	 (15.28)
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FIGURE 15.38
Working	area	of	a	five-link	mechanism	with	two	operating	actuators.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
33

 0
3 

M
ar

ch
 2

01
6 



544 Computational Finite Element Methods in Nanotechnology

15.3.3.2  Finite Element Solution

A	finite	element	spatial	model	of	the	earlier-described	mechanism	is	presented	in	the	fol-
lowing	text.	The	CAD	model	is	created	in	SolidWorks	environment.	All	linear	dimensions	
are	assumed	to	be	equal	to:	l1	=	20	mm;	l2	≡	l5	=	30	mm;	l3	≡	l4	=	50	mm	(Figure	15.39).	The	links	
are	made	of	aluminum	alloy.	The	traced	vertex	is	situated	in	hinge	B.	As	this	is	a	mecha-
nism	with	two	redundant	DoFs,	there	are	two	rotary	drives	in	hinges	O	and	D.	The	piezo-
actuators	are	situated	in	the	holes	of	the	links.	They	can	increase	the	length	of	each	link	
up	to	1/100.

Three	 different	 cases	 of	 driving	 the	 mechanism	 are	 compared	 through	 SolidWorks	
Motion	toolbox	(SolidWorks	Motion	Studies,	2011).	The	trace	paths	of	the	vertex	B,	where	
an	operating	clamp	 is	 situated,	and	 the	driving	 laws	 for	 these	 three	cases	are	given	 in	
Figure	15.40.	In	order	to	enable	the	entire	circle	motion	of	link	5	(CD)	in	case	3,	the	left	part	
of	the	immovable	link	1	(in	point	O)	is	flipped,	compared	to	the	cases	1	and	2.	The	rotary	
drives	in	cases	1	and	2	operate	in	oscillating	laws,	while	the	ones	in	case	3	are	5-power	
polynomials	fitted	through	predefined	points.	The	law	of	angular	velocity	and	the	law	of	
angular	acceleration	of	the	two	rotary	drives	in	case	3	are	also	shown.	The	dead	weight	of	
the	links	as	well	as	a	loading	force	of	1	N,	modeling	the	action	on	the	mechanism	of	the	
object	operated	by	the	clamp,	are	regarded	in	calculating	the	reaction	in	the	hinges.	By	that	
time	the	friction	in	the	hinges	is	neglected	as	it	is	too	small	and	this	is	the	first	iteration	
step	of	the	promoted	numerical	simulation.

If	 it	 is	accepted	that	due	to	the	action	of	piezo-actuators	the	lengths	of	the	links	have	
increased	with	1/100	up	to	l1	=	20	mm;	l2	≡	l5	=	30.03	mm;	l3	≡	l4	=	50.05	mm,	the	trace	path	of	
the	vertex	B	changes	a	little.	Mathematically	this	difference	can	be	described	through	the	
following	functions:

I1

I2
y

x

I5

O D

I3 I4

B

CA

FIGURE 15.39
CAD/CAE	model	of	the	mechanism	described	in	Section	15.3.3.
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FIGURE 15.40
Trace	paths	of	vertex	D	and	laws	of	rotary	drives	for	the	three	studied	cases.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
33

 0
3 

M
ar

ch
 2

01
6 



546 Computational Finite Element Methods in Nanotechnology

	

∆

∆

X X X

Y Y Y

WithoutPiezo WithPiezo

WithoutPiezo WithPiezo

= −

= −

;

;
	 (15.29)

Their	graphs	for	the	three	discussed	cases	are	given	in	Figure	15.41.	It	must	be	admitted	
that	the	projection	axes	X	and	Y,	used	in	Figure	15.41	for	comparing	the	results	are	not	
parallel	 to	 the	 axes	 of	 the	 global	 coordinate	 system	 shown	 in	 Figure	 15.40.	 They	 are	
mutually	perpendicular	axes,	whose	plane	orientation	depends	on	the	initial	configuration	
of	the	mechanism.

The	graphs	of	functions	(15.29)	prove	that	the	coordinates	of	the	trace	path	of	the	vertex	
can	be	precisely	controlled,	i.e.,	in	the	range	of	a	few	hundredths	of	millimeter,	through	
piezo-actuators.

The	linear	kinematic	parameters	of	the	motion	of	vertex	B	(linear	displacement,	linear	
velocity,	and	linear	acceleration)	for	the	last	two	of	the	studied	three	cases	are	shown	in	
Figures	15.42	and	15.43a.	The	differences	between	the	values	of	these	functions	due	to	the	
action	of	piezo-actuators	and	the	elongation	of	the	links	with	1/100th	of	their	length	are	
shown	in	the	right	side	of	corresponding	figures.

As	the	spatial	orientation	of	the	operated	object	is	important	for	the	researchers,	the	angu-
lar	motion	of	the	clamp	in	vertex	B	is	also	examined.	The	graphs	of	rotation,	angular	velocity,	
and	angular	acceleration	of	the	fixture	of	the	clamp	for	the	two	cases	presented	in	detail	are	
given	in	Figures	15.44	and	15.45—left	side.	The	comparison	between	the	values	of	the	func-
tion	without	or	with	acting	piezo-actuators	is	presented	at	the	right	side	of	the	same	figures.

Due	to	the	dead	weight	of	the	links	of	the	studied	mechanism	and	the	dead	weight	of	the	
operated	object	some	dynamic	reactions	in	the	hinges	of	the	mechanism	are	raised.	The	
graphs	of	the	reaction	in	hinge	B	joining	links	l3	and	l4	and	its	projection	on	two	mutually	
perpendicular	axes	are	given	in	Figure	15.46.

15.3.3.3  Conclusions on the Preceding Example

Studying	all	provided	graphs	proves	 that	 through	 the	use	of	 linear	piezo-actuators	 the	
kinematic	parameters	of	a	chosen	point	can	be	precisely	controlled	and	managed.	These	
examples	 do	 not	 aim	 to	 show	 the	 most	 even	 or	 the	 smoothest	 graphs	 of	 all	 kinematic	
parameters,	including	trace	path,	linear	and	angular	velocities,	linear	and	angular	accel-
eration	of	 the	clamp	and	of	 the	reactions	 in	hinges,	but	 to	emphasize	on	the	difference	
provoked	by	the	operation	of	the	piezo-actuators.
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FIGURE 15.41
Difference	functions	of	X	and	Y	coordinates	of	trace	paths	of	vertex	D,	due	to	action	of	piezo-actuators.
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15.3.4 Analysis and Synthesis of Mechanical Bioreactors for Bio-Nanotechnologies

15.3.4.1  Short Review of Existing Devices for Bioreactor Systems

Human	body	consists	of	over	200	types	of	cells	which	assemble	organs	such	as	skin,	bones	
and	muscles.	In	the	middle	of	the	last	century	the	molecular	biologist	Edmund	B.	Wilson	
wrote	 in	his	book	The Cell in Development and Heredity	 that	“the	key	 to	every	biological	
problem	must	finally	be	 solved	 in	 the	cell.”	Cells	are	about	five	 times	smaller	 than	 the	
smallest	visible	particle	and	they	contain	all	the	molecules	necessary	for	an	organism	to	
live	and	reproduce.	This	fact	prevents	the	scientists	from	seeing	their	structure,	disclos-
ing	 their	molecular	 composition	and	understanding	how	their	various	components	are	
functioning.	Therefore,	the	“in	vivo”	methods	cannot	give	an	answer	to	these	problems.	
Growth	of	human	cells	“in	vitro,”	outside	living	organisms,	allows	for	the	investigation	
of	basic	biological	and	physiological	phenomena	such	as	controlling	the	normal	life	cycle	
and	many	of	its	mechanisms.	The	design	of	3D	cell	cultures	is	necessary	which	are	eligible	
for	medical	 implants.	Numerous	experiments	have	shown	that	 this	 is	 impossible	using	
stationary	bioreactor	systems.	It	is	also	difficult	to	achieve	with	the	known	rotating	biore-
actors	under	the	conditions	on	earth.
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FIGURE 15.42
Kinematic	parameters	of	motion	of	vertex	D—case	2:	(a)	kinematic	parameters	along	axis	X	and	(b)	kinematic	
parameters	along	axis	Y.
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FIGURE 15.43
Kinematic	parameters	of	motion	of	vertex	D—case	3:	(a)	kinematic	parameters	along	axis	X	and	(b)	kinematic	
parameters	along	axis	Y.
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Angular	kinematic	parameters	of	motion	of	vertex	D—case	2.
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The	experiments	done	 in	simulated	weightlessness	achieved	by	free	 falling	of	an	air-
plane	are	successful	to	some	extent	[Wolf	A.—the	study	was	funded	by	NASA],	as	well	as	
those	using	microcarriers	which	play	the	role	of	skeleton	constructions	to	which	the	cells	
are	attached.	Manley	P.	and	Lelkes	P.	have	developed	an	experimental	device	to	study	the	
motion	of	cell	formations	in	rotating	bioreactors,	also	funded	by	NASA.	The	more	popular,	
commercially	 available	 rotating	 bioreactors	 with	 natural	 fluid	 circulation	 are	 shown	 in	
Figure	15.47a,b,	and	Figure	15.48	shows	forced-circulation-loop	bioreactors.

The	main	disadvantage	of	the	existing	rotating	bioreactors	is	the	permanent	orientation	
of	bioreactor’s	axis	of	rotation	to	the	acceleration	of	gravity.	This	fact	causes	the	precipita-
tion	of	cell	cultures,	their	clinging	to	the	bioreactor	walls	that	have	fatal	ending,	and	the	
inadequate	exchange	of	substances	between	cells	and	media.

The	dramatic	advance	in	the	fields	of	biochemistry,	cell	and	molecular	biology,	genetics,	
medicine,	biomedical	engineering,	and	material	science	gave	rise	to	the	development	of	
interdisciplinary	scientific	areas	such	as	tissue	engineering	and	the	solution	of	organ	prob-
lems	by	medical	implants.	To	achieve	satisfactory	results	in	cell	and	tissue	cultures,	bio-
reactors	have	to	operate	under	conditions	as	close	as	possible	to	“in	vivo”	conditions.	The	
difficulties	occurring	with	the	known	bioreactors	are	that	they	cannot	provide	a	constant	

(a) (b)

FIGURE 15.47
Rotating	bioreactor	with	natural	circulation	of	fluid.	(a)	A	photo	of	NASA’S	RWV	(rotating	wall	vessel)	bioreactor	
and	(b)	miniPERM	bioreactor.

FIGURE 15.48
Photo	of	a	rotating	bioreactor	by	force	fluid	circulation.
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and	regulated	feeding	and	metabolic	bioproducts	removal.	The	growth	of	3D	cell	forma-
tions	requires	physical	and	chemical	bonds.	The	chemical	bonds	are	accomplished	mainly	
through	the	culture	medium	components.	The	physical	bonds	for	the	growth	of	cell	and	
tissue	cultures	require	the	use	of	a	bioreactor.

The	known	bioreactors	are	designed	with	only	one	axis	of	rotation.	They	put	the	cell	
growth	under	the	influence	of	one	force	vector	only,	due	to	which	they	provide	a	physical	
signal	only	in	the	direction	of	this	one	force	vector.	Hence,	cells	are	not	inclined	to	growth	
of	3D	cell	cultures.

The	bioreactor	 systems	have	controllable	motors	and	monitoring	sensors	 to	control	 the	
processes	in	the	bioreactor	chamber,	i.e.,	they	are	mechatronic	systems.	The	aim	of	this	study	
is	mechanical	devices,	of	bioreactor	devices	with	spatial	mechanisms.	Spatial	mechanisms	
with	CKC	are	most	often	used	for	transmission.	The	output	link	(OL)	performs	a	rotational	
motion	(rocker	or	crank).	This	is	the	reason	why	in	the	traditional	literature	on	the	theory	of	
mechanisms	and	machines,	the	kinematic	and	dynamic	analysis	of	spatial	motions	of	coupler	
links	is	poorly	covered	or	not	mentioned	at	all.	We	analyze	the	possibilities	of	implementation	
of	spatial	mechanisms	with	one	or	two	DoFs	with	CKC	and	OL,	i.e.,	a	coupler	in	bioreactor	
devices,	which	required	the	extensive	analysis	of	coupler’s	spatial	motion.	Furthermore,	the	
possibility	is	studied	of	using	the	coupler’s	rotation	around	its	own	axis	when	both	of	the	
kinematic	pairs	(KP)	to	which	it	is	linked	are	spherical	ones	of	the	third	class.

15.3.4.2  Kinematics of Spatial Mechanisms in Biotechnologies

In	Figure	15.49,	the	kinematic	scheme	is	shown	of	a	spatial	four-bar	linkage	(SFL),	wherein	
the	planes	of	motion	of	the	rotating	links	2	and	4	make	an	angle	α.	This	mechanism	can	
function	adequately	if	axes	A	and	D	are	connected	to	the	frame	through	bearings—KP	of	
the	fifth	class,	the	joints	B	and	C	are	spherical	of	the	third	and	the	fourth	class	(the	latter	
is	spherical	with	a	pawl).	If	both	KP	are	of	the	third	class,	then	the	rotation	around	the	
coupler’s	 own	 axis	 is	 possible.	 In	 the	 traditional	 application	 of	 these	 mechanisms,	 this	
additional	DoF	 is	unwanted.	The	coupler	3	performs	the	spatial	motion.	The	bioreactor	
chamber	is	mounted	to	it.

Figure	15.50	shows	the	kinematic	scheme	of	an	SFL,	where	the	angle	α	 is	90°,	 i.e.,	 the	
trajectories	of	joints	B	and	C	are	onto	the	planes	Oxy	and	Oyz.

The	 scales	 (values)	 and	 angles	 necessary	 for	 the	 kinematic	 analysis	 are	 given	 in	
Figure	15.51.

3

4
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FIGURE 15.49
The	spatial	four-bar	linkage	wherein	the	planes	of	motion	of	the	rotating	links	2	and	4	make	an	angle	α.
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The	purpose	of	the	kinematic	analysis	is	to	determine	the	position	and	velocity	charac-
teristics	of	the	coupler’s	motion.	The	method	of	closed-loop	vectors	is	applied.	The	position	
relations	are

	
� � � �
l l l l1 2 3 4+ + = 	 (15.30)

	

l l

l l l l

l l

2 2 3 3

1 2 2 3 3 4 4

3 3 4 4
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ϕ β ϕ
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FIGURE 15.50
Kinematic	scheme	of	a	spatial	four-linkage	mechanism,	α	=	90°.
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FIGURE 15.51
Kinematic	scheme	of	the	spatial	four-bar	linkage,	wherein	the	planes	of	motion	of	the	rotating	links	2	and	4	
make	an	angle	α	=	90°.
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out	of	which	the	unknown	angle	parameters	of	the	coupler	are	determined:

	
cosϕ4 = c

a
	 (15.32)
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The	direction	cosines	of	the	vector	BC	are
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The	components	of	the	coupler’s	angular	velocity	in	its	own	coordinate	system	Bx3y3z3	
and	in	the	absolute	coordinate	system	Oxyz	are
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From	relations	(15.35)	and	(15.36),	it	follows	that

•	 All	the	components	of	the	coupler’s	velocity	are	periodic	functions	of	the	angle	of	
rotation	of	the	input	shaft.

•	 A	full	rotation	of	the	coupler	around	its	own	axis	is	not	possible	if	the	mechanism	
has	one	DoF.

•	 If	both	KP	are	from	the	third	class	(the	mechanism	has	two	DoFs),	another	actua-
tor	may	be	used,	with	 the	help	of	which	 the	 full	 rotation	of	 the	coupler,	or	 the	
bioreactor	chamber,	respectively,	will	be	performed	around	its	own	axis.

Several	 numerical	 experiments	 with	 varying	 input	 data	 are	 performed	 in	 MATLAB	
environment.	The	dimensions	of	the	units	provide	full	revolution	of	the	driving	unit.	The	
graphs	 in	Figure	15.52	show	the	results	of	simulations	of	 the	motion	of	 the	mechanism	
with	the	following	input	data:	l1	=	0,3	m;	l3	=	0,3	m;	l4	=	0,15	m;	ω2	=	1s−1;	and	varying	l2.	The	
functions	of	the	climate	projections	of	the	angular	velocity	vector	of	the	connecting	rods	
in	fixed	coordinate	system	Dxyz	are	shown	in	Figure	15.53.

(a)
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3
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(b)

FIGURE 15.52
Graphs	of	angular	velocity	and	angular	acceleration	of	rod	13	versus	the	rotation	of	the	driving	unit.	(a)	Angular	
velocity	of	rod	13	during	the	full	revolution	of	the	driving	unit	for	different	values	of	12.	(b)	Angular	acceleration	
of	rod	13	during	the	full	revolution	of	the	driving	unit	for	different	values	of	12.
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15.3.4.3  Conclusions on the Preceding Example

The	innovative	solutions	in	this	study	are

•	 Use	of	the	spatial	motion	of	the	coupler	from	the	traditional	SFL	as	an	OL	and	in	
particular,	as	a	carrier	of	the	bioreactor	chamber.

•	 Use	of	SFL	with	two	spherical	joints	and	two	DoFs,	wherein	the	full	rotation	of	the	
coupler	or	the	bioreactor	chamber,	respectively,	around	its	own	axis	is	performed	
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FIGURE 15.53
Projection	of	ω→3	about	Dxyz.D
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by	a	second	actuator.	The	module	of	the	bioreactor	chamber	with	the	actuator	is	
connected	to	the	coupler	of	the	mechanism	through	a	fixed	connection.

•	 With	reference	 to	 these	solutions,	detailed	kinematic	analyses	are	of	 the	spatial	
motion	of	the	SFL	coupler,	which	are	not	available	in	the	traditional	literature	on	
the	theory	of	mechanisms	and	machines	because	of	the	use	of	these	mechanisms	
for	transmission	between	the	two	links	with	elementary	rotating	motions.
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16
Modeling at the Nano Level: 
Application to Physical Processes

Serge Lefeuvre
Eurl Creawave, Toulouse, France

Olga Gomonova
Siberian State Aerospace University, Krasnoyarsk, Russia

16.1 Introduction

The processing of heterogeneous materials was, from the beginning of human activity, the 
fruit of experiments transmitted as hand-turns or empiric expressions. Nowadays, experi-
ments remain compulsory but are integrated into more accurate descriptions such as finite 
elements description. The partial differential equations, solved in orthogonal spaces, are 
now solved in more complicated geometries thanks to finite element method (FEM), but 
the constants characteristic of heterogeneous materials keep usually a touch of empiri-
cism. For instance, the use of polynomial approximations is still largely spread.

The modeling at the nano level is an attempt to achieve a more precise description of 
the blend, even if it remains impossible to describe the exact geometry of each nano grain. 
Apart from preserving the grain proportion of each component, the grain to grain descrip-
tion opens the way to the description of the surface activities. This point is crucial since 
more the volume is small, more its surface is active.

For a long time, the nano-level approach was understood as a pileup of spheres as shown 
in Figure 16.1.
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One of the best ways of modeling heterogeneous materials respecting granulometry is 
to work at the level of nano grains. Mostly, during the investigation of materials and their 
properties, researchers are interested in calculating the main characteristics of these mate-
rials, such as porosity, permeability, and permittivity [1,7].

Working at the nano level implies working on large numbers of objects. One way to 
draw these objects is to start from meshes already used in FEM techniques. Meshes are 
very attractive because they are automatically produced and because they completely fill 
the domain. At last, because the mesher reduces the dispersion of the meshes to get a fair 
description, the use of nano objects deduced from these meshes leads to a monodisperse 
compound of nanoparticles.

In this chapter, it is shown how to transform meshes into objects and how to modify 
them just using matrix analysis. The size and the number of the objects taken into consid-
eration are restricted by the memory number and the computational time of the computer 
and also by the need for readable figures. In most examples, 200–300 objects are taken 
into account depending on the number of PDEs to be solved after a general re-meshing.

The chapter is divided into two main parts: 2D and 3D modeling. Both of them begin 
with raw objects, straight transposition of meshes, and present modifications, namely, 
homothetic reduction to get capillaries, grain joins, and so on.

In dealing with large numbers of objects, a pioneer was Leibenzon who worked on the 
porosity of soils to understand, among others, the process of filtration. Some principal well-
known facts on the theory of granulated materials rest on his famous works, e.g.; on Ref. [6].

16.2 Filtration: An Ideal and a Fictitious Soil

Particles of natural fluids in natural soil [6] (such as water, gas, oil) move through the pores 
of the soil; that is, these particles are transferred through the finest channels which are 
formed by the not closely contacted grains of the soil. Such kind of fluid motion in the soil 
is called filtration [2,3].

FIGURE 16.1
Model of a granular material.
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Viscosity of fluid is very important because of utterly small cross section of pores and 
because of slow velocities of fluids inside the pores. As a rule, the motion inside the pores is 
accepted to be laminar, but it can be like vortical transfer because of curving canals and modi-
fication of their cross section. Seeing that soil particles are the granules of awkward shapes 
and different sizes, it is possible to find solution of equations which describe the motion of the 
viscous fluid in such kind of medium. That is why some simplified models were constructed.

There are two kinds of soils: an ideal and a fictitious. In case of ideal soil, all pores are 
considered as cylindrical, and axes of these cylinders are parallel to each other. In case of 
fictitious soil, all its granules are supposed to be spheres of the same diameter.

16.2.1 Porosity of Fictitious Soil

Assume that we have some natural soil of volume V1. All the granules of soil occupy 
volume V2 of the volume V1. Hence, a volume of pores in the V1 equals V3 = V1 − V2.

A value

 
m

V
V

V V
V

V
V

= = − = −3

1

1 2

1

2

1
1

is called porosity. It is obvious that 0 <  m <  1.
Slichter determined a value of porosity of fictitious soil by means of simple geometrical 

way [6,8,9]. The value of porosity obviously depends on configurations of the spheres (which 
represent grains of the soil). As all the spheres have got the same size, the distance between 
the centers of two of the closest spheres equals to diameter of the sphere. Therefore, centers 
of each eight contacting spheres are situated in summits of a parallelepiped, all planes of 
which are rhombuses (Figure 16.2).

This rhombohedron is a basic model of the fictitious soil in Slichter’s method. Studying 
of the geometrical properties of this model can give a possibility to calculate the value 
of porosity m. Different dispositions of the soils spheres have two limiting states. One of 
these states corresponds to the closest contact of spheres, another one implies not so close 
contact. But in both the situations, the spheres are contiguous.

It is evident that angle θ of the rhombohedron planes is included into interval [60°; 90°] 
(Figure 16.3). For every angle of the rhombohedron, there is another angle which is added 
up to 180°. That is why eight pieces of full spheres which are cut from eight concerned 
spheres form one whole sphere.

P

S

N M

O L

Q

FIGURE 16.2
Model of a fictitious soil: rhombohedron. (After Leibenzon, L.S., Motion of Natural Fluids in Porous Medium, 
Technical and Theoretical Literature Publishing, Moscow, Leningrad, 1947; Slichter, C.S., Theoretical investiga-
tion of the motion of ground water, U.S. Geological Survey 19th Annual Report, Part II, 1899; Slichter, C.S., The 
motions of underground waters, U.S. Geological Survey Water Supply Paper 67, 1902.)
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In Figure 16.4, there are diagonal sections SPLM and NOQR of the rhombohedron.
Let us obtain a value of the angle α of the parallelogram SPLM, for example. For this, we 

will circumscribe a full sphere from the vertex O of the rhombohedron. The radius of the 
sphere equals d (Figure 16.5).

The diagonal section, jointly with the faces OAD and OAB, crosses this full sphere in 
arcs which form spherical right-angled triangle ABC with right angle BCA. Perpendicular 
BE dropped on diagonal OC is the altitude h of the rhombohedron. From the triangle ABC 
follows

 cos  = cos cos .AB BC AC⋅

But AB AC BC� � �= = =θ θ α, , ,
2

P
P

O OL L

Q Q

θ θ

FIGURE 16.3
Limited dispositions of spheres.

P

RS NM

α

OL Q

FIGURE 16.4
Diagonal cross sections of the rhombohedron.

B

d
D

C

d

h

O A

E
θ θ/2

α

FIGURE 16.5
Intersections of the full sphere.
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Hence,

 

cos
cos

cos
.α θ

θ=

2

 (16.1)

From (16.1), we get

 

sin cos
cos cos

cos

sin sin

cos

sin
α α

θ θ

θ

θ θ

θ

θ

= − =
−

=
−

=1 2

2

2

2

4
22

2 2

2

2 2

2

2 ccos sin

cos

sin

cos
cos .

2 2

2

2

2 2

2

2

2

4
2

1

θ θ

θ

θ

θ
θ

−
=

= −

As 4
2

1 2 1 1 1 22cos ( cos ) cos ,
θ θ θ− = + − = +  that

 
sin tan cos .α θ θ= +

2
2 1

From this expression, we obtain finally

 

sin
sin cos

cos
cos

sin
cos

cos .α

θ θ

θ θ θ
θ

θ= + =
+

+
2

2 2

2
2

2 1
1

2 1
2

 (16.2)

Further, from the right-angled triangle BEO, we can find

 h d= sin .θ  (16.3)

As area of the base of the rhombohedron is d2 sin α, then volume of the rhombohedron 
equals

 V hd1
2= sin .θ

With respect to formulas (16.2) and (16.3), the last expression becomes

 
V

d
1

3 2 1
1

= +
+

sin cos
cos

.
θ θ

θ
 (16.4)

V2 is a sum of all eight pieces of full spheres located inside the rhombohedron; and as it 
was stated earlier, V2 equals to the volume of one whole sphere:

 
V

d
2

3

6
= π

.  (16.5)
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The porosity m, with respect to formulas (16.4) and (16.5), becomes

 
m

V
V

d

d
= − = −

+

+
1 1 6

1

1
2

1

3

3 2

π θ

θ θ

( cos )

sin cos
.

Substitute sin2 θ = (1 − cos θ)(1 + cos θ) into the last expression and obtain the fundamental 
Slichter’s formula:

 
m = −

− +
1

6 1 1 2
π

θ θ( cos ) cos
.  (16.6)

It follows from the Slichter’s formula that porosity of fictitious soil, which consists of 
spherical particles, does not depend on diameters of these particles; it depends only on 
their disposition and value of the angle θ.

The limit values of the angle θ are 60° and 90°; therefore, an interval of theoretical 
porosity, taking into account formula (16.6), is

 0.259 0.476.≤ ≤m

As one can see from Figure 16.2, the area of a free space among the full spheres in a plane 
which contains centers of these spheres, equals S:

 S S S= −1 2 ,

where
S1 is an area of a rhombus
S2 is a sum of areas of the circles’ parts inside this rhombus

It is easy to see that all four parts of the circles inside the rhombus form one whole circle 
with area

 
S

d
2

2

4
= π

.

The area of rhombus S1

 S d1
2= sin .θ

Hence,

 
S d= −



sin .θ π

4
2

Slichter introduced the following relation

 
n

S
S

S
S

= = −
1

2

1
1
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and called it free space. This value describes the area of a fluid which goes through the 
narrowest place of a pore channel. Taking into consideration expressions for S1 and S2, the 
value of n equals

 
n = −1

4
π

θsin
.  (16.7)

and it includes into the interval

 0.0931 0.2146.≤ ≤n

From the formula (16.7), one can see that the fictitious soil value of n does not depend on 
diameters of the granules.

These results were obtained by Slichter. We decided to improve his results, because we 
want to take into consideration not only the closest spheres’ contact but also the different 
sizes of spheres. That is why we can inscribe spheres of a smaller diameter into the free 
space among the granules. We consider the following model.

If we take into consideration not only the closest disposition of soil granules but also 
different sizes of these granules, it will be able to inscribe new spheres of a smaller radius 
into free space among the granules. So, we can get two variants of dislocation of the grains 
(Figure 16.6a and b).

Let us obtain values of free space (n) and porosity (m) for the first variant of dispositions of 
the grains (Figure 16.6a). Let R be the radius of the grain of bigger size and r be the radius 
of a smaller grain. Based on uncomplicated mathematical calculations, one can obtain that

 r R= −( ) ,2 1

area of the square OPQL is

 S R= 4 2 ,

and value of the free space among the grains is

 S R R r1
2 2 24= − −π π .

P
P

O OL L

Q
Q

θ

(a) (b)

θ

FIGURE 16.6
Improved model.
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Further, volume of a cube, vertexes of which are located in the centers P, Q, L, O of whole 
spheres, equals

 V R= 8 3 ,

and value of a free space among them is

 
V R R r1

3 38
4
3

4
3

= − −3π π .

Finally, one can obtain values of free space and porosity, respectively:

 

n
S
S

R R R
R

m
V
V

R R R

= = − − − = − −

= =
− − 3

1
2 2 2 2

2

1

3 3

4 2 1
4

1
2 2

2

8
4
3

4
3

2

π π π

π π

( )
,

( −−
= − −1

8
1

5 2 6
6

3

3

)
.

R
π

Applying the same way of reasoning to the second case of dislocation of the grains (Figure 
16.6b), one can obtain the following meanings of correspondent values:

 

r R

S R

S S R r

V R

V V R r

= −






=

= − −

=

= − −

2

2

2 3
3

1

2 3

2

4 3

4
3

8
3

1
2

3

1
3

;

;

;

,

π π

π π 33.

And values of free space and porosity in this case are as follows:

 
n

S
S

R R R

R
= =

− − −






= − −1

2 2 2

2

2

2 3 2
2 3

3
1

2 3
1

17 8 3
6 3

π π
π,

 
m

V
V

R R R

R
= =

− − −






= − −1

3 3 3

3

3

4 3
4
3

8
3

2 3
3

1

4 3
1

52 3 81
27 3

π π
π.
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16.3 Meshing of Geometry Objects: Examples in 2D

The aforementioned analytical approach is very powerful but remains limited because it 
is unable to describe any size of pores, up to no pores at all.

Working on the model represented in Figure 16.1, one can confront some difficulties. 
One of them arises during changing the value of porosity: It is possible but complicated 
to get the needed value using only the spheres and circles, even varying radii. And in this 
case, the real value of “opened” porosity seems to be very approximate. Another problem 
follows from the previous one—time of calculating and simulation. Even working with 2D 
model (which is in fact an intersection of the sample), it takes too much time to resolve the 
given task. Therefore, taking into consideration all these conditions, authors decided to 
construct and work with another model of grain material.

To construct the corresponding model, the authors dealt with any automatic meshing, 
used in FEM processes, which provides the user with all the necessary mathematical 
tools.

Among these tools are matrix of coordinates of nodes and matrix of meshes. Using these 
matrices, it is possible to process all the needed geometrical transformations: reconstruc-
tion of the grains elements, homothetic transformations, displacement, etc., to match all 
the elements contained in a heterogeneous material which are already known by using 
electronic microscopy [5].

The meshes used in FEM open the way to a new type of description, since they let 
absolutely no vacuum. The counterpart is that the meshes have an angular geometry 
as, for instance, triangles or tetrahedrons. To counterbalance this inconvenience, it is 
possible to include, before meshing, objects of given shape such as circles or spheres or 
any handmade form built using Bezier method. Bezier method is very useful in shaping 
because it traces smooth shapes with a minimum number of variables and so facilitates 
later computations.

The geometric objects are produced by meshing: Each mesh is transformed into an object 
and then adjusted as needed using geometric transformation. This is done using Comsol-
MATLAB® which exchanges their data quite easily: Comsol provides a mesher and a solver 
and exports data matrices to MATLAB which shapes and draws objects which, in turn, will 
be imported by Comsol.

16.3.1 Examples of Objects

This part of the paragraph gives different examples in order to show the flexibility of the 
method.

As it has already been said, the information about mesh and geometric objects is 
imported by Comsol Multiphysics into the main matrices: Pt, the matrix of nodes (i.e., 
the coordinates of each node), and Tr, matrix of meshes (which contains the list of all the 
nodes belonging to each mesh). For convenience, these matrices are contracted into one 
matrix TrP which contains, instead of the number of the nodes, the set of the coordinates, 
classified as x, y, and z. This matrix also has the interest to ignore the doubles, triples, etc., 
sometimes introduced by the mesher for its own convenience.

The matrix TrP contains all the necessary information to reshape and draw the objects.
The objects can be modified as needed. For instance, it is possible to reduce them by 

homothetic transformation in order to let appear capillaries or to join two neighbors or to 
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divide them. The order of objects, the lines of TrP, is given by the meshing. It is possible 
to modify it as needed, for instance, to begin by the objects closed to a side or closed to a 
point.

All these operations are made in MATLAB and then imported by Comsol; all the nano 
objects are remeshed again for computing.

Example 16.1 Triangles in a square

Comsol draws a square width: 0.001 m, corner: (0,0). The chosen meshes give the size 
of the triangles. For instance, the ultrafine meshing produces 25,127 meshes, that is, 
1582. This amount of meshes would give as many triangles with a mean side of some 
nanometers if the initial square would have a side around 0.1 μm. The final meshing of 
this arrangement will be at least 300,000 meshes which can be solved on a Station. Here, 
in order to obtain simple figures, the coarse method is preferred. Then, it is necessary 
to run an application, for instance, electricity. Comsol exports data in a txt file to get a 
matrix of coordinates:

Pt = […
0.0  2.0E-4
0.0  1.0E-4
6.4200256E-5  1.6731408E-4
0.0  0.0
6.4200256E-5  6.731408E-5

……………………………

7.461472E-4  9.097E-4
8.342704E-4  9.3145535E-4
6.922944E-4  8.1939995E-4
7.804176E-4  8.4115536E-4
8.685408E-4  8.629107E-4];

and a matrix of the numbers of elements (triangular):

Tr = […
2  3  5
1  3  2
2  5  4
3  6  5
8  9  11

……………………………

399  402  401
404  405  407
403  405  404
404  407  406
405  408  407];

Comsol Multiphysics also exports the values of the variable at each node, but this infor-
mation is not needed at this point. Then, the following short file produces a matrix TrP

[line,col] = size(Tr);
TrP = zeros(line,6);
for tt = 1:line
pt1 = Tr(tt,1);
pt2 = Tr(tt,2);
pt3 = Tr(tt,3);
TrP(tt,:) = [Pt(pt1,1) Pt(pt2,1) Pt(pt3,1) Pt(pt1,2) Pt(pt2,2) Pt(pt3,2)];
end
TrP;
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which is

TrP = […
0  6.4e-005  6.4e-005  1.0e-004  1.7e-004  6.7e-005
0  6.4e-005  0  2.0e-004  1.7e-004  1.0e-004
0  6.4e-005  0  1.0e-004  6.7e-005  0

……………………………

6.4e-005  1.3e-004  6.4e-005  1.7e-004  1.3e-004 6.7e-005
1.0e-004  6.4e-005  1.6e-004  0  6.7e-005 6.7e-005];

Each line of the matrix TrP gives the summits of triangle; the coordinates are ordered: 
the x’s first and then the y’s.

Then, it is just to add, in a loop [1:line], the expression

fprintf(1,strcat(‘g_’,num2str(tt),’ = line2([‘,x1s,’,‘,x2s,’,‘,x3s,’], 
[‘,y1s,’,‘,y2s,’,‘,y3s,’]);n’) )

where x1s and others are the string form of the abscissa’s of the first node to get on the 
screen

g_1 = line2([0,6.42e-005,6.42e-005],[0.0001,0.00016731,6.7314e-005]);

which will be imported by Comsol as a triangle to give Figure 16.7 (consists of 272 
triangles).

This geometry may support a lot of physical expressions. For instance, it could be 
a capacitance with a given repartition of permittivity on each triangle. Since the size 
of the sample is very small compared to the wavelength, only the following electrical 
equation is considered, that is, electric equation for a capacitance:

 ∂ + ∂ =( ) ,σ ωε εi Vr0 0

FIGURE 16.7
Triangles reconstructed from the mesh information.
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The boundary conditions are the following: ground, electric potential, electric insula-
tion, and distributed impedance

 
� �
n J⋅ = +( ) .σ ωε εi Vr0

which gives the possibility of surface properties different from volume ones.
The mean permittivity is obtained after integration of the normal current It over a 

boundary. For instance, if the upper side is at the potential V, the downer at the ground, 
and the left and right are isolated, It is

 I jC V j Vt m= =ω ε ε0

with j 2 = −1. In 2D, It and C have the meaning of a density in the z direction, and the exact 
length of the side disappears in the case of a square.

If the triangles have a pure permittivity and if there is a continuity between them, 
the value of It will be a pure imaginary number (e.g., 0.005596j [A/m]). But if the inside 
boundaries between the triangles are supposed to be lossy for any reason, as Comsol 
gives the possibility under the label “Distributed impedance,” then the behavior of the 
square is changed.

Figure 16.8 shows the current lines (plain lines) and the electric field (arrows). The 
electric field points the influence of the conductive layer. The frequency measurement 
gives an insight on the influence of the conductive boundaries, that is,

 f e I iy= → = +=1 9 49 868574 0 0945990 001[ ] . . [ ].( . )Hz A m/

FIGURE 16.8
The lines of current are plain; the arrows stand for the electric field.
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571Modeling at the Nano Level

Note that the following conditions were chosen in this example:
for the triangles, εr = 10;
ground for y = 0;

 V y = 1 for  = 0.001;

 σ ε = 1e5 [S/m],   = 10 for  = 0, and  = 0.001;r x x

for internal boundaries, σ = 1e5 [S/m], εr = 10.
The disturbances are due to the conductivity of the side of the triangles compared to 

the permittivity ωε of their surface.

Example 16.2 Capillaries in a square

Capillaries are introduced by reducing the size of the triangles. There are many possible 
ways to get this result. Among them, the homothetic reduction with the mass center as 
base point is the most simple because it is fully automated. Starting from TrP and giving 
rh as the reduction factor, the new nodes are immediately obtained. But this result is to 
be corrected so that the bases of the triangles on the side of the square form a straight 
line. Moreover, it is necessary to add an outside square to close the domain and get the 
following result.

To reconstruct triangles according to the meshing and to transform them into inde-
pendent objects, each number of nodes correlates with its coordinate. After that, it is 
possible to apply any transformation, for instance, to change sizes of this triangles-
objects applying homothety relative to the center of gravity of each triangle.

For this purpose, the mass center of each triangle (point PtG) using the well-known 
formula was calculated, and every point PtG was considered as a center of homothety. By 
changing a value of the homothety coefficient rh, we obtain needed sizes of the triangles:

% ptG - center of gravity of triangle
ptG = ([Pt(pt1,1)+Pt(pt2,1)+Pt(pt3,1),
Pt(pt1,2)+Pt(pt2,2)+Pt(pt3,2)])/3;
% coefficient of homothety
rh = 0.85;
xx = [Pt(pt1,1) Pt(pt2,1) Pt(pt3,1)];
yy = [Pt(pt1,2) Pt(pt2,2) Pt(pt3,2)];
% homothety
xx = ptG(1,1)+rh*(xx-ptG(1,1) );
yy = ptG(1,2)+rh*(yy-ptG(1,2) );
geomplot(poly1([xx], [yy]) );
hold(‘on’)

As a result, the following model was constructed (Figure 16.9). In this model, the tri-
angles represent the nanoparticles separated by pores. Obviously, the mathematical 
treatment can provide any desired grading of the particles’ size.

As noted, one can adjust a value of a free space among the triangles by changing the 
coefficient of homothety rh. This way, the needed value of porosity of the material can 
be obtained. Here, reduction ration rh = 0.8 (that corresponds to an approximate value 
of porosity 30%).

It is interesting to operate this drawing with Navier–Stokes equation because the tri-
angles are not active in the flow transfer or just active through the friction on their sides 
(no slip) or leaking wall. With the first physical conditions this drawing produces the veloc-
ity field shown on Figure 16.10. The arrangement of the Figure 16.9 produces the velocity 
field shown on the Figure 16.10 on which the lighter areas represent the higher velocities.
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572 Computational Finite Element Methods in Nanotechnology

Figure 16.10 shows the amplitude of the fluid velocity and the arrows its direction. 
Comsol Multiphysics provides the velocity in each output; this result immediately gives 
the mean value of the permeability function, among others, of the size of the capillaries.
The conditions which were chosen for this example are as follows:

Incompressible Navier–Stokes equation:

 

ρ η( ) ( ( ( ) )),

;

� � � �

�
u u u u

u

T⋅ ∂ = ∂ ∂ + ∂

∂ ⋅ =





 0

The triangles are inactive.
Capillaries: fluid density = 1000 [kg/m3], dynamic viscosity = 0.01 [Pa·s];
Boundaries: x = 0.001, P = 0.715 [Pa]; x = 0, P = 0; y = 0 and y = 0.001, wall;

The computed value of the integral velocity field is 1.223114e-10 [m2/s].

Example 16.3 Microwave sintering

The same geometry can be used to simulate the sintering of a mixture of large grains 
(triangles) coated with smaller ones supposed to fill the precedent capillaries [4,5]. The 
modeling uses two equations: one is for the electric capacitance and the other is for the 
heating. The source term of the heat equation is only in the capillaries (the very small 
nano grains have a good ability to catch the electrical energy and transform it into 
thermal energy while the larger grains do not have this ability). The large grains heat 
by conduction, and since the source is in the very heart, the heating is very fast. The 
surface of the square is not well heated; usually an infrared heating has to be added to 
get a fair homogeneity.

Figure 16.11 shows the temperature field with a lower temperature inside than on 
their boundaries. This is a typical requirement for sintering applications.

FIGURE 16.9
Capilleries in triangles.
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FIGURE 16.10
Velocity field.

FIGURE 16.11
Temperature field.
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Conditions in this example:
Heat transfer equation

 

ρC T t k T
microwave pover

p∂ ∂ − ∂ ∂ =





/ ( )

,

;

0

Boundary conditions: thermal insulation, temperature;
For triangles εr = 10;
For capillaries εr = 10 − i;
Thermal conductivity = 4 [W/m·K].

Example 16.4 Introduction of a bean into the geometry

It may be necessary to add grains which are not produced by an initial meshing, that is, 
which are not triangles. They will be produced, for instance, by copying a microphotog-
raphy. Nevertheless, the triangles will remain necessary to fulfill all the space. Figure 
16.12 gives an example in which a large grain looks like a bean. The line is made only 
with ellipses (Bezier curves) and straight lines to facilitate the meshing before computing.

This drawing was obtained in three steps.
The first step was to draw a square with the bean, and then to extract the bean from 

the square so that the domain had a hole inside it. This is to separate the meshes (tri-
angles) from the bean.

Then, the remaining space was meshed to give triangles and capillaries, exactly as 
previously. A rectangular envelop was added to close the domain.

In the third step, the bean was reintroduced after a slight reduction.
Navier–Stokes equation is a good tool to look at the behavior of this geometry. All the 

objects are supposed non-active and the boundary conditions are the same as the first 

FIGURE 16.12
Bean inscribed into geometry.
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575Modeling at the Nano Level

model. Figure 16.13 shows the fluid velocity, amplitude (shadow), and direction arrows. 
As expected, the bean is an obstacle with a shadow effect in the back and a badly irri-
gated area in the front.

Figure 16.14 is a lens effect on the upper left corner of the previous sample.
Obtained value of integral velocity field is 6.821822e-11 [m2/s]. As compared with the 

preceding case, the fluid flow is normally decreased by the bean.

Example 16.5 Introduction of corks in the geometry

Starting from the capillary geometry, it is possible to add, by hand, new objects in their 
junctions. These objects could simulate corks, for instance in wet clay, which stop the 
flow. When they are heated, they dry and shrink, opening the way to the flow in the 
capillaries (Figure 16.15). For instance, they catch energy and their gas permeability 
increases with their temperature. At the beginning, the capillaries are full of gas which 
escapes when the permeability of the corks increases.

Gas is confined in capillaries closed by corks. Electrical energy opens the doors. 
Figure 16.16 shows the gas pressure at a given time.

16.4 3D Modeling: Examples

The principle of 3D modeling is very similar to 2D:

• To start with a cube, 1 mm side with a lower left summit at (0; 0; 0)
• To choose a coarse meshing and run any application
• To export the data in txt file

FIGURE 16.13
Velocity field, the lighter areas represent higher velocities.
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576 Computational Finite Element Methods in Nanotechnology

The exported matrices look like

% Matrix of coordinates
Pt = [
0.0  0.0  0.0
0.0  2.5E-4  2.5E-4

×10–4

×10–4

9.5

8.5

7.5

0.5 1 1.5 2 2.5 3

8

9

FIGURE 16.14
Enlargement of the upper left corner of Figure 16.13.

FIGURE 16.15
Distribution of gas pressure, the higher pressures are in the centre of the square and the lower on the sides.
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577Modeling at the Nano Level

0.0  0.0  5.0E-4
0.0  5.0E-4  5.0E-4
0.0  2.5E-4  7.5E-4

………………………………………………

0.0  5.0E-4  5.0E-4
7.5E-4  5.0E-4  2.5E-4
7.5E-4  7.5E-4  5.0E-4
5.0E-4  5.0E-4  5.0E-4
0.0010  5.0E-4  5.0E-4];

and

% Matrix of elements (tetrahedrons)
Tr = […
2  5  8  3
3  2  7  8
3  7  9  8
8  3  5  9
7  3  1  2

………………………………………………

238  233  235  239
237  233  231  232
238  235  232  234
239  236  233  235
240  239  237  238];

As for the 2D case, it is convenient to form the matrix TrP which gathers, in each line, all 
the coordinates classified as x’s, y’s, and z’s. This matrix has 12 columns. Then, it is enough 
to add, in a loop on TrP lines, the following sentence

FIGURE 16.16
Corks in nodes of capillary net. 
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fprintf(1,strcat(‘g_’,num2str(tt),’ = tetrahedron3([‘,xxstr,’;‘,yystr,’;‘,
zzstr,’]);n’) )

to get on the screen

g_1 = tetrahedron3([0 0 0.00025 0;0.00025 0.00025 0.00025 0;0.00025 
0.00075 0.0005 0.0005]);

xxstr is the string corresponding to the four xx’s and similarly for yy’s and zz’s.

The set of all the g_i imported into Comsol produces a cube full of tetrahedrons 
(Figure 16.17).

Figures 16.18 and 16.19 give the result of the experimentation of this drawing seen as a 
capacitance: The ground is at the lower side (z = 0), the potential at the higher (z = 0.001), 
and the lateral sides are said to be isolated. The tetrahedrons have the same permittiv-
ity and all the internal boundaries have an electrical conductivity σ. The behavior of the 
capacitance is highly dependent on the ratio between σ and ωε. In the first figure, ωε ≫ σ; 
it is the opposite in the second one. The current lines are those of a pure capacitance in 
Figure 16.18, that is perfectly straight when they are highly disturbed in Figure 16.19.

The equipotential surface, the grey voile on the Figure 16.19, also show the influence 
of the conductive boundaries. This kind of result helps to understand the influence of 
surface defects, for instance, in a sintering: The measurement of the output current versus 
frequency gives an insight into the internal boundaries.

To obtain these results, the following conditions were chosen:
For tetrahedrons εr = 10;
On the boundaries: V = 1 for z = 0.001; ground for z = 0;

x
y
z

FIGURE 16.17
Cube full of tetrahedrons.
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579Modeling at the Nano Level

For lateral faces of the cube: isolation
Inside boundaries: σ = 1000, εr = 10.

The only difference between the two results is the frequency: 1e-6 Hz for the first, 1e9 Hz 
for the second. The use of non-continuous boundaries is lighter to be solved since it avoids 
the use of capillaries to simulate the grain joins.

At last, if the tetrahedrons have different physical values and if the repartition is known, 
this type of model gives a mean value of the cube behavior. When the repartition is not 
known, it is necessary to look to statistics, that is, to make different tries and choose.

FIGURE 16.18
Current flows straight lines in the capacitance if the tetrahedrons have no surface conductivity.

xy
z

FIGURE 16.19
Deformed current lines and equipotential surface (grey voile) in the capacitance if the tetrahedrons have a high 
surface conductivity.
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580 Computational Finite Element Methods in Nanotechnology

16.5 3D and Capillaries

The capillaries are obtained by homothetic reduction of the tetrahedrons centered on the 
mass center. Since the tetrahedrons are not identical, this reduction produces irregulari-
ties which must be corrected for the tetrahedrons on the face. Elsewhere, it would be very 
difficult to close the domain.

The correction has to be introduced before the loop on TrP transforming the meshes in 
objects. In fact, the preliminary treatment was the following:

• The matrix of the reduced tetrahedrons is called TrPr.
• Two loops on the lines and the columns of TrP find the points located on the faces 

of the cube, that is, x = 0 or x = 0.001 and the same for y and z. Let (line_i,col_j) be 
one of these results. It indicates that the value of TrPr (line_i,col_j) which is surely 
not null (neither equal to 0.001) must be kept to zero (or 0.001) to reintroduce the 
given points exactly on this surface.

• In this way, the tetrahedrons on the face will exactly fit to initial cube as shown 
in Figure 16.20. This figure shows grains and capillaries, and in shadow the input 
into capillaries from one face. Here, reduction factor is rh = 0.8, which corresponds 
to the value of porosity ≈ 7%.

16.6 Fluid Flow in the Capillaries

This cube is experimented by solving Navier–Stokes equations. The tetrahedrons are not 
active, input and output are on two opposite faces of the cube (x = 0 and 0.001), and the 
remaining lateral faces are said to be a wall. Figure 16.20 shows also the input face, and 
Figure 16.21 gives an example of the velocity field.

The tetrahedrons are active but only the capillaries are supposed to catch electrical 
energy. The cube is seen as a capacitance. The heat conductivity is supposed to be low, 
which is the case in many applications, and the face of the cube is chemically isolated.

xy z

FIGURE 16.20
Cube full of reduced tetrahedrons with input capillaries (in grey).
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581Modeling at the Nano Level

16.7 Microwave Heating

Figures 16.22 and 16.23 show the result of the microwave heating of the capillaries full of 
liquid water, nanoparticles, or any kind of susceptor. The electrical energy transformed 
into heat energy is, by the same time, diffused to the tetrahedrons. The result is deeply 

x yz

FIGURE 16.21
Velocity field.

FIGURE 16.22
Temperature of the tetrahedrons surface.
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582 Computational Finite Element Methods in Nanotechnology

dependant on the ratio between the input and the output power into and from the cap-
illaries. Moreover, the density of the capillary network is also an important factor of 
homogeneity.

16.8 Conclusion

Automatic meshing and its associated nano objects is a convenient way to produce, in 
2D and 3D as well, full spaces without any forgotten vacuum. As a consequence, it lets 
the boundaries play their specific behavior. At last, it is compatible with all the geometri-
cal shapes, circles, spheres, and so on but also shapes extracted from experimentation as 
shown with the bean.

Finally, automatic meshing can be seen as a way to fill with nanoparticles spaces let 
empty between objects previously implanted.
Two different applications were described throughout the chapter:

 1. Computation of mean values of physical constants of heterogeneous material, for 
instance, thermal and electric conductivity, permittivity, etc., with or without the 
grain joins influence

 2. Evaluation of capillary flows leading to an inside knowledge of permeability, let-
ting out of the computation the nanoparticles which act only by their surfaces, but 
keeping them

On these geometries, it is possible to use all the classical FEM used for drying, sintering, 
microwave heating [4], and so on.

FIGURE 16.23
Net heating in light and lines of thermal currents.
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583Modeling at the Nano Level

As a consequence, when a problem is solved in a small domain, it is possible to enlarge 
the solution to larger domains, just by matrices’ association. Comsol Multiphysics and 
MATLAB softwares were used (run on an HP Z800, 16 proc, 64 Gbits).
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Appendix A: Material and Physical Constants

A.1  Common Material Constants

TABLE A.1

Approximate Conductivity at 20°C

Material Conductivity (S/m)

1. Conductors
Silver 6.3 × 107

Copper (standard annealed) 5.8 × 107

Gold 4.5 × 107

Aluminum 3.5 × 107

Tungsten 1.8 × 107

Zinc 1.7 × 107

Brass 1.1 × 107

Iron (pure) 107

Lead 5 × 107

Mercury 106

Carbon 3 × 107

Water (sea) 4.8
2. Semiconductors

Germanium (pure) 2.2
Silicon (pure) 4.4 × 10−4

3. Insulators
Water (distilled) 10−4

Earth (dry) 10−5

Bakelite 10−10

Paper 10−11

Glass 10−12

Porcelain 10−12

Mica 10−15

Paraffin 10−15

Rubber (hard) 10−15

Quartz (fused) 10−17

Wax 10−17
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TABLE A.2

Approximate Dielectric Constant and Dielectric 
Strength

Material

Dielectric Constant 
(or Relative), εr 

(Dimensionless)
Dielectric 

Strength, E (V/m)

Barium titanate 1200 7.5 × 106

Water (sea) 80 —
Water (distilled) 8.1 —
Nylon 8 —
Paper 7 12 × 106

Glass 5–10 35 × 106

Mica 6 70 × 106

Porcelain 6 —
Bakelite 5 20 × 106

Quartz (fused) 5 30 × 106

Rubber (hard) 3.1 25 × 106

Wood 2.5–8.0 —
Polystyrene 2.55 —
Polypropylene 2.25 —
Paraffin 2.2 30 × 106

Petroleum oil 2.1 12 × 106

Air (1 atm) 1 3 × 106

TABLE A.3

Relative Permeability

Material
Relative 

Permeability, μr

1. Diamagnetic
Bismuth 0.999833
Mercury 0.999968
Silver 0.9999736
Lead 0.9999831
Copper 0.9999906
Water 0.9999912
Hydrogen (STP) ≃1.0

2. Paramagnetic
Oxygen (STP) 0.999998
Air 1.00000037
Aluminum 1.000021
Tungsten 1.00008
Platinum 1.0003
Manganese 1.001

3. Ferromagnetic
Cobalt 250
Nickel 600
Soft-iron 5000
Silicon-iron 7000
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587Appendix A: Material and Physical Constants

A.2  Physical Constants

Quantity
Best Experimental 

Value
Approximate Value 
for Problem Work

Avogadro’s number (/kg mol) 6.0228 × 1026 6 × 1026

Boltzmann constant (J/k) 1.38047 × 10−23 1.38 × 10−23

Electron charge (C) –1.6022 × 10−19 –1.6 × 10−19

Electron mass (kg) 9.1066 × 10−31 9.1 × 10−31

Permittivity of free space (F/m) 8.854
 
×

 
10−12 10

36

9−

π

Permeability of free space (H/m) 4π × 10−7 12.6 × 10−7

Intrinsic impedance of free space (Ω) 376.6 120π
Speed of light in vacuum (m/s) 2.9979 × 108 3 × 108

Proton mass (kg) 1.67248 × 10−27 1.67 × 10−27

Neutron mass (kg) 1.6749 × 10−27 1.67 × 10−27

Planck’s constant (J s) 6.6261 × 10−34 6.62 × 10−34

Acceleration due to gravity (m/s2) 9.8066 9.8
Universal constant of gravitation 
(m2/kg s2)

6.658 × 10−11 6.66 × 10−11

Electron volt (J) 1.6030 × 10−19 1.6 × 10−19

Gas constant (J/mol K) 8.3145 8.3
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Appendix B: Symbols and Formulas

B.1  Greek Alphabet

Uppercase Lowercase Name

A α Alpha
B β Beta
Γ γ Gamma
Δ δ Delta
E ε Epsilon
Z ζ Zeta
H η Eta
Θ θ, ϑ Theta
I ι Iota
K κ Kappa
Λ λ Lambda
M μ Mu
N ν Nu
Ξ ξ Xi
Ο ο Omicron
Π π Pi
Ρ ρ Rho
Σ σ Sigma
Τ τ Tau
Υ υ Upsilon
Φ ϕ, φ Phi
Χ χ Chi
Ψ ψ Psi
Ω ω Omega

B.2  International System of Units (SI) Prefixes

Power Prefix Symbol Power Prefix Symbol

10−35 stringo — 100 — —
10−24 yocto y 101 deka da
10−21 zepto z 102 hecto h
10−18 atto A 103 kilo k
10−15 femto f 106 mega M
10−12 pico p 109 giga G
10−9 nano n 1012 tera T
10−6 micro μ 1015 peta P
10−3 milli m 1018 exa E
10−2 centi c 1021 zetta Z
10−1 deci d 1024 yotta Y
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B.3  Trigonometric Identities

cot  = 
1

tan
, sec  = 

1
cos 

, csc  = 
1

sin 
θ

θ
θ

θ
θ

θ

tan  =
sin 
cos 

, cot  = 
cos 
sin 

θ θ
θ

θ θ
θ

sin2 θ θ θ θ θ θ + cos  = 1, tan  + 1= sec , cot  + 1= csc2 2 2 2 2

sin( ( (− − − − −θ θ θ θ θ θ) = sin  , = cos ) = cos  , tan ) = tan 

csc ) = csc  ,  sec ) = sec  , cot ) =( ( ( cot− − − − −θ θ θ θ θ θ

cos( sinθ θ θ θ θ θ1 2 1 2 1 2) = cos  cos  sin ± ∓

sin( cosθ θ θ θ θ θ1 2 1 2 1 2) = sin  cos  sin ± ±

tan ) = 
tan tan  

tan tan 1 2
1 2

1 2
(θ θ θ θ

θ θ
± ±

1∓

cos cos ) )θ θ θ θ θ θ1 2 1 2 1 2= 
1
2

cos( + cos(+ −[ ]

sin sin ) )θ θ θ θ θ θ1 2 1 2 1 2= 
1
2

cos(  cos( + − −[ ]

sin cos ) )θ θ θ θ θ θ1 2 1 2 1 2= 
1
2

sin( + sin(  + −[ ]

cos sin ) )θ θ θ θ θ θ1 2 1 2 1 2= 
1
2

sin( + sin(  − −[ ]

sin sin cosθ θ θ θ θ θ
1 2

1 2 1 2= 2 sin
+ 
2

 
2

+ 





−





sin sin sinθ θ θ θ θ θ
1 2

1 2 1 2= 2 cos
+ 
2

 
2

− 





−





cos cos cosθ θ θ θ θ θ
1 2

1 2 1 2= 2 cos
+ 
2

 
2

+ 





−





cos cos sinθ θ θ θ θ θ
1 2

1 2 1 2= 2 sin
+ 
2

 
2

− − 





−





a b b
b
a

cos sinθ θ θ φ φ = − + 





− = a cos(  + ),    where tan2 2 1

a b b
b
a

sin cos sinθ θ θ φ φ = − + 





− = a (  + ),    where tan2 2 1

cos( sin sin( cos tan( cot90 90 90° − ° − ° −θ θ θ θ θ = θ) = ,  ) =  ,  )
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591Appendix B: Symbols and Formulas

cot( tan sec( csc csc( sec90 90 90° − ° − ° −θ θ θ θ θ = θ) = ,  ) =  ,  )

cos( sin sin( sin ( cotθ θ θ θ θ = −± ° ± ° ± ± °90 90 90) = ,  ) =  ,  tan )∓ θθ

cos( cos sin( sin (θ θ θ θ θ =± ° − ± ° − ± °180 180 180) = ,  ) =  ,  tan ) tan  θ

cos cos sin sin cos2 2 2 22 2 2 2θ θ θ θ θ θ θ= − − = −,  cos  = 1 ,  cos2 1

sin sin
tan
tan

2 2
2

2θ θ θ θ θ
θ

 =  cos ,  tan2
1

=
−

cos 3  = 4 cos3θ θ θ− 3sin

sin 3  = 3 sin θ θ θ− 4 3sin

sin
2

 =
1

2
1+θ θ θ θ± − = ±cos

, cos
cos

,
2 2

tan
2

 =
1
1+ 2 2

θ θ
θ

θ θ
θ

θ θ
θ

± − =
+

= −cos
cos

, tan
sin

cos
, tan

cos
sin1

1

sin , cos , tan
(

θ θ θ
θ θ θ θ θ θ

θ =
e e

j
e e

j
e e
j e e

j j j j j j

j

− = + = −( ) = +
+

− − −

2 2
1 −− jθ)

e jj± = ± ′θ θ θcos sin    (Euler s identity) 

1 rad = 57.296°
π = 3.1416

B.4  Hyperbolic Functions

 
cosh x

e ex x

= + = − =
− −

2 2
, sinh , tanh

sinh
cosh

x
e e

x
x
x

x x

 
cosh x = 1 1 1

tanh
, sech

cosh
, csch

sinhx
x

x
x

x
= =

 sin sinh , cos coshjx j x jx x= =

 sinh sin , cosh cosjx j x jx x= =

 sin( ) sin cosh cos sinhx jy x y j x y± = ±

 cos( ) cos cosh sin sinhx jy x y j x y± = ∓

 sinh( ) sinh cosh cosh sinhx y x y x y± = ±

 cosh( ) cosh cosh sinh sinhx y x y x y± = ±

 sinh( ) sinh cos cosh sinx jy x y j x y± = ±

 cosh( ) cosh cos sinh sinx jy x y j x y± = ±
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592 Appendix B: Symbols and Formulas

 
tanh( )

sinh
cosh cos

sin
cosh cos

x jy
x

x y
j

y
x y

± =
+

±
+

2
2 2

2
2 2

 cosh sinh2 2 1− =x

 sech2 2 1+ =tanh x

B.5  Complex Variables

A complex number can be written as

 z x jy r re r jj= = = ∠ = = +θ θ θθ (cos sin ),

where

 x z r y z r= = = =Re cos Im sinθ, θ

 
r z x y

y
x

= = + = 





−2 2 1, tanθ

 
j

j
j j= − = − = −1

1
12, ,

The complex conjugate of z = z* = x − jy = r ∠ − θ = re−jθ = r(cosθ − j sinθ)
(ejθ)n = ejnθ = cos nθ + j sin nθ (de Moivre’s theorem)
If z1 = x1 + jy1 and z2 = x2 + jy2, then only if x1 = x2 and y1 = y2.
z1 ± z2 = (x1 + x2) ± j(y1 + y2)

 z z x x y y j x y x y r r e r rj
1 2 1 2 1 2 1 2 2 1 1 2 1 2 1 2

1 2= − + + = = ∠ ++( ) ( ) ( )θ θ θ θ

 

z
z

x jy
x jy

x jy
x jy

x x y y
x y

j
x1

2

1 1

2 2

2 2

2 2

1 2 1 2

2
2

2
2= +

+
⋅ −

−
= +

+
+( )

( )
( )
( )

22 1 1 2

2
2

2
2

1

2

1

2

y x y
x y

r
r
e

r
r

j−
+

= = ∠ −−( )θ θ
1 2

1 2 θ θ

ln(rejθ) = ln r + ln ejθ = ln r + jθ + j2mπ (m = integer)

 z x jy r e rj= + = = ∠( )θ/2 θ/2

 z x jy r e r n nn n n jn n= + = = ∠ =( ) θ θ ( )integer

 z x jy r e r m n m nn n n
j
n n

1 1 1 1

0 1 2 1= + = = ∠ = −( ) / , ( , , , , )
θ

θ / 2 + 2π …

B.6  Table of Derivatives

y =
dy
dx

=

c (constant) 0
cxn (n any constant) cnxn−1

eax aeax

ax(a > 0) ax ln a
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593Appendix B: Symbols and Formulas

y =
dy
dx

=

ln x(x > 0)
1
x

c
xa

−
+
ca

xa 1

logax
loga e
x

sinax a cos ax
cosax −a sin ax

tanax a ax
a
ax

sec
cos

2
2=

cotax − = −
a ax

a
ax

csc
sin

2
2

sec ax a ax
ax

sin
cos2

csc ax −a ax
ax

cos
sin2

arcsin ax = sin−1ax a

a x1 2 2−

arccos ax = cos−1ax −
−
a

a x1 2 2

arctan ax = tan−1ax
a
a x1 2 2+

arccot ax = cot−1ax
−

+
a
a x1 2 2

sinh ax a coshax
cosh ax a sinhax

tanh ax
a
axcosh2

sinh−1ax
a

a x1 2 2+

cosh−1ax a

a x2 2 1−

tanh−1ax
a
a x1 2 2−

u(x) + υ(x)
du
dx

d
dx

+ υ

u(x)υ(x) u
d
dx

du
dx

υ υ+

(continued)
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594 Appendix B: Symbols and Formulas

y =
dy
dx

=

u x
x

( )
( )υ

1
2υ

υ υdu
dx

u
d
dx

−





1
υ( )x

−1
2υ

υd
dx

y(υ(x) )
dy
d

d
dxυ
υ

y(υ(u(x) ) )
dy
d

d
du

du
dxυ

υ

B.7  Table of Integrals

 
adx ax c c= +∫ ( )is an arbitrary constant

 
x dy xy y dx∫ ∫= −

 
x dx

x
n

c nn
n

∫ =
+

+ ≠ −
+1

1
1, ( )

 

1
x
dx x c∫ = +ln

 
e dx

e
a

cax
ax

∫ = +

 
a dx

a
a

c ax
x

= + >∫ ln
( )for 0

 
ln ln ( )x dx x x x c x= − + >∫ for 0

 
sin

cos
ax dx

ax
a

c ∫ = − +

 
cos

sin
ax dx

ax
a

c ∫ = +

 
tan

ln|cos |
ax dx

ax
a

c ∫ = − +

 
cot

ln|sin |
ax dx

ax
a

c ∫ = +
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sec

ln
sin
sinax dx

ax
ax

a
c ∫ =

− −
+







+

1
1

2

 
csc

ln
cos
cosax dx

ax
ax

a
c ∫ =

−
+







+

1
1

2

 

1
2 2

1

x a
dx

x
a

a
c

+
=







+∫
−tan

 

1
22 2

1

x a
dx

x a
x a
a

c

x
a

a
c

−
=

−
+







+







+∫
−ln tanh

or

 

1
22 2a x

dx

x a
x a
a

c
−

=

+
−







+∫
ln

 

1
2 2

1

a x
dx

x
a

c
−

= 



 +∫ −sin

 

1
2 2

1

2 2

a x
dx

x
a

a
c x x a c

−
=







+ + + +∫
−sinh

ln( )or

 

1
2 2

2 2

x a
dx x x a c

−
= + + +∫ ln( )

 

1
2 2

1

x x a
dx

x
a

a
c

−
=







+∫
−sec

 
xe dx

ax e
a

cax
ax

∫ = − +( )1
2

 
x ax dx

ax ax ax
a

ccos
cos sin

 ∫ = + +2

 
x ax dx

ax ax ax
a

csin
sin cos

 ∫ = + +2

 
x x dx

x
x

x
cln ln ∫ = − +

2 2

2 4

 
xe dx

e ax
a

cax
ax

∫ = − +( )1
2

 
e bx dx

e a bx b bx
a b

cax
ax

cos
( cos sin )

 ∫ = +
+

+2 2
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596 Appendix B: Symbols and Formulas

 
e bx dx

e b bx a bx
a b

cax
ax

sin
( cos sin )

 ∫ = − +
+

+2 2

 
sin

sin2

2
2

4
x dx

x x
c ∫ = − +

 
cos

sin2

2
2

4
x dx

x x
c ∫ = − +

 
tan tan2 x dx x x c ∫ = − +

 
cot cot2 x dx x x c ∫ = − − +

 
sec tan2 x dx x c ∫ = +

 
csc cot2 x dx x c ∫ = − +

 
sec tan secx x dx x c  ∫ = +

 
csc cot cscx x dx x c∫ = − + 

B.8  Table of Probability Distributions

1. Discrete Distribution Probability P(X=x)
Expectation 

(Mean) μ Variance σ2

Binomial B(n, p)
n

r
p p

n p q
r n r

r n

r n r
r n r





− =
− ′

=

−
−

( )
!

!( )!

, , ,

1

0 1 …

np np(1–p)

Geometric G(p) (1–p)r−1 p
1
p

1
2

− p
p

Poisson p(λ) λ λne
n

−

!
λ λ

Pascal (negative binomial) 
NB(r, p)

x

r
p p

x r r

r x r−
−







−

= +

−1
1

1

1

( ) ,

, ,…

r
p

r p
p

( )1
2

−

Hypergeometric H(N, n, p)

Np

r

N Np

n r

N

n







−
−













np np p
N n
N

( )1
1

− −
−
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597Appendix B: Symbols and Formulas

2. Continuous Distribution Density f(x)
Expectation 

(Mean) μ Variance σ2

Exponential E(λ)
λ λe x

x

x− ≥
<







,
,

0
0 0

1
λ

1
2λ

Uniform U(a, b)
1

0
b a

a x b
−

< <





,

, elsewhere

a b+
2

( )b a− 2

12

Standardized normal N(0, 1) ϕ( ) =
π

x
e

x− 2

2

2
0 1

General normal
1
σ

ϕ µ
σ

x −





μ σ2

Gamma Γ(n, λ)
λ λ
n

n x

n
x e

Γ( )
− −1 n

λ
n
λ2

Beta β(p, q) a x x x

a
p q
p q

p q

p q
p q

p q

,

,

( ) ,

( )
( ) ( )

, ,

− −− ≤ ≤

=
+

> >

1 11 0 1

0 0
Γ
Γ Γ

p
p q+

pq
p q p q( ) ( )+ + +2 1

Weibull W(λ, β) λ ββ β λ β

λ β

x e x

F x e

x

x

− −

−

≥

= −

1 0

1

( )

( )

,

( )

1
1+

1
λ β

Γ






1
2

2

λ

β

β

( )A B

A

B

−

=






=






Γ

Γ

1+
2

1+
1

Rayleigh R(σ)
x
e x

x

σ
σ

2
2

2

2 0
−

≥, σ π
2

2 2σ π
1

4
−





B.9  Summations (Series)

 1. Finite element of terms

 
a

a
a

na a
N a Na

a
n

n

N N
n

N N

n

N

=

+ +

=
∑ ∑= −

−
= − + +

−






0

1 1

2
0

1
1

1 1
1

;
( )

( )

 
n

N N
n

N N N

n

N

n

N

= =
∑ ∑= + = + +

0

2

0

1
2

1 2 1
6

( )
;

( )( )
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n n

N N N

n

N

( )
( )( )

;+ = + +

=
∑ 1

1 2
3

0

 
( ) ,

!
!

( )! !
a b NC a b NC NC

NP
n

N
N n n

N
n

N n n
n N n

n

n

N

+ = = = =
−

−
−

=
∑ where 

0

 2. Infinite element of terms

 
x

x
x nx

x
xn n

nn

=
−

< =
−

<
=

∞

=

∞

∑∑ 1
1

1
1

1
12

00

, (| | );
( )

, (| | )

 
n x

a
x

x e
x

n
k n

n
a

k
k

k a

n

=

∞

→ −∑ = − ∂
∂ −





 < −

+
=

0
0

1 1
1

2 1
1lim( ) , (| | );

( ) −− + − + =
=

∞

∑ 1
3

1
5

1
7

1
4

0

� π
n

 

1
1

1
2

1
3

1
4

1
62 2 2 2

0
n

n

= + + + + =
=

∞

∑ � π2

 
e

x
n

x x xx
n

n

= = + + + +
=

∞

∑ ! ! ! !
1

1
1

1
2

1
3

2 3

0

�

 
a

a x
n

a x a x a xx
n n

n

= = + + + +
=

∞

∑ ( )
!

( )
!

( )
!

( )
!

ln ln ln ln 
1

1 2 3

2 2 3 3

0

�

 
ln( )

( )
, (| | )1

1
2 3

1
2 3

1

± = − ± = ± − ± − <
=

∞

∑x
x

n
x

x x
x

n x

n

�

 
sin

( )
( )! ! ! !

x
x

n
x

x x xn n

n

= −
+

= − + − +
+

=

∞

∑ 1
2 1 3 5 7

2 1

0

3 5 7

�

 
cos

( )
( )! ! ! !

x
x
n

x x xn n

n

= − = − + − +
=

∞

∑ 1
2

1
2 4 6

2

0

2 4 6

�

 
tan , (| | )x x

x x
x= + + + <

3 5

3
2
15

1�

 
tan

( )
, (| | )−

+

=

∞

= −
+

= − + − + <∑1
2 1 3 5 7

0

1
2 1 3 5 7

1x
x

n
x

x x x
x

n n

n

�
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599Appendix B: Symbols and Formulas

B.10  Logarithmic Identities

 log ln ( )e a a= natural logarithm

 log log ( )10 a a= common logarithm

 log log logab a b= +

 
log log log

a
b

a b= −

 log loga n an =

B.11  Exponential Identities

 
e x

x x x
ex = + + + + +1

2 3 4
2 7182

2 3 4

! ! !
, .� where �

exey = ex+y

(ex)n = enx

ln ex = x

B.12  Approximations for Small Quantities

If |a| ≪ 1, then

 ln( )1+ a a�

 e aa � 1+

 sin a a�

 cos a � 1

 tan a a�

 ( )1 1± ±a nan �
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600 Appendix B: Symbols and Formulas

B.13  Matrix Notation and Operations

Finite element analysis procedures are most commonly described using matrix notation. 
These procedures eventually lead to solution of a large set of simultaneous equations. 
Therefore, we describe here the basics of matrix notation and matrix operations.

 1. Matrices
 A matrix is a rectangular array of elements arranged in rows and columns. The array 

is commonly enclosed in brackets. Let a matrix A (expressed in boldface as A or in 
bracket as [A]) has m rows and n columns, then the matrix can be expressed by

 

A = [ ] =A

a a a a

a a a a
j n

j n

11 12 1 1

21 22 2 2

. . . . . .

. . . . . .
. . . . . . . . . .
. . . . . . .. . . .
. . . . . . . . . .

. . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . .

a a a ai i ij in1 2

.. . . . .
. . . . . .a a a am m mj mn1 2







































 where the element aij has two subscripts, of which the first denotes to the row ith 
and the second denotes to the column jth which the element locates in the matrix. 
A matrix with m rows and n columns, [A], is defined as a matrix of order or size 
m × n (m by n), or a m × n matrix. A vector is a matrix that consists of only one row 
or one column.

 Location of an element in a matrix:

 Let

 

A

a a a a

a a a a

a a a a

a a a a

=














11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44






 is matrix with size 4 × 4

 a11 is element a at row 1 and column 1.
 a12 is element a at row 1 and column 2.
 a32 is element a at row 3 and column 2.
 2. Special common types of matrices
 a. If m ≠ n, then the matrix [A] is called rectangular matrix.
 b. If m = n, then the matrix [A] is called square matrix of order n.
 c. If m = 1 and n > 1, then the matrix [A] is called row matrix or row vector.
 d. If m > 1 and n = 1, then the matrix [A] is called column matrix or column vector.
 e. If m = 1 and n = 1, then the matrix [A] is called a scalar.
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601Appendix B: Symbols and Formulas

 f. A real matrix is a matrix whose elements are all real.
 g. A complex matrix is a matrix whose elements that may be complex.
 h. A null matrix a matrix whose elements are all zero.
 i. An identity (or unit) matrix, [I] or I, is a square matrix whose elements are equal 

to zero except those located on its main diagonal elements, which are unity (or 
one). Main diagonal elements have equal row and column subscripts. The main 
diagonal runs from the upper left corner to the lower right corner. If the ele-
ments of an identity matrix are denoted as eij, then

 
e

i j

i jij =
=
≠





1
0
,
,

 j. A diagonal matrix is a square matrix which has zero elements everywhere 
except on its main diagonal. That is, for diagonal matrix aij = 0 when i ≠ j and 
not all aii are zero.

 k. A symmetric matrix is a square matrix whose elements satisfy the condition 
aij = aji for i ≠ j.

 l. An anti-symmetric (or skew symmetric) matrix is a square matrix whose elements 
aij = −aji for i ≠ j, and aii = 0.

 m. A triangular matrix is a square matrix whose all elements on one side of the 
diagonal are zero. There are two types of triangular matrices; first, an upper 
triangular U whose elements below the diagonal are zero, and second, a lower 
triangular L, whose elements above the diagonal are all zero.

 n. A partitioned matrix is a matrix whose can be divided into smaller arrays (sub-
matrices) by horizontal and vertical lines.

 3. Matrix operations
 a. Transpose of a matrix

  The transpose of a matrix A = [aij] is donated as AT = [aji] and is obtained by 
interchanging the rows and columns in matrix A. Thus, if a matrix A is of 
order m × n, then AT will be of order n × m.

 b. Addition and subtraction
  Addition and subtraction can only be performed for matrices of the same 

size. The addition is accomplished by adding corresponding elements of each 
matrix. For addition, C = A + B implies that cij = aij + bij.

Now, the subtraction is accomplished by subtracting corresponding ele-
ments of each matrix. For subtraction, C = A − B implies that cij = aij − bij where 
cij, aij, and bij are typical elements of the C, A, and B matrices, respectively.

Both A and B matrices are in the same size m × n. The resulting matrix C is 
also of size m × n.

  Matrix addition and subtraction are associative:

 

A B C A B C A B C

A B C A B C A B C

+ + = +( ) + = + +( )
+ − = +( ) − = + −( )
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602 Appendix B: Symbols and Formulas

  Matrix addition and subtraction are commutative:

 

A B B A

A B B A

+ = +

− = − +

 c. Multiplication by scalar
  A matrix is multiplied by a scalar by multiplying each element of the matrix by 

the scalar. The multiplication of a matrix A by a scalar c is defined as

 
c caijA =  

  The scalar multiplication is commutative.
 d. Matrix multiplication
  The product of two matrices is C = AB if and only if the number of columns 

in A is equal to the number of rows in B. The product of matrix A of size 
m × n and matrix B of size n × r resulting in matrix C of size m × r. Then,

c a bij ik

k

n

kj=
=

∑
1

. That is, the (ij)th component of matrix C is obtained by taking 

the dot product

 c i jij = ( )⋅ ( )th row of th column of A B

  Matrix multiplication is associative:

 ABC AB C A BC= ( ) = ( )

  Matrix multiplication is distributive:

 A B C AB AC+( ) = +

  Matrix multiplication is not commutative:

 AB BA≠

 e. Transpose of matrix multiplication
  Transpose of matrix multiplication, is usually denoted (AB)T, and is defined as

 AB B A( ) =T T T

 f. Inverse of square matrix
  The inverse of a matrix A is denoted by A−1. The inverse matrix satisfies

 AA A A I− −= =1 1
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603Appendix B: Symbols and Formulas

  A matrix that possesses an inverse is called nonsingular matrix (or invertible 
matrix). A matrix without an inverse is called a singular matrix.

 g. Differentiation of a matrix
  Differentiation of a matrix is differentiation of every element of the matrix 

separately. To emphasize, if the elements of the matrix A are a function of t, 
then

 

d
dt

da
dt
ijA = 





 h. Integration of a matrix
  Integration of a matrix is integration of every element of the matrix separately. 

To emphasize, if the elements of the matrix A are a function of t, then

 
A dt a dtij∫ ∫= 





 i. Equality of matrices
  Two matrices are equal if they have the same sizes and their corresponding 

elements are equal.
 4. Determinant of a matrix

 The determinant of a square matrix A is a scalar number denoted by |A| or det A.
  The value of a second-order determinant is calculated from

 
det

a a

a a

a a

a a
a a a a

11 12

21 22

11 12

21 22
11 22 12 21









 = = −

  By using the sign rule of each term, the determinant is determined by the first 

row

 

in the diagram 
+ − +
− + −
+ − +

.

 The value of a third-order determinate is calculated in form

 

det
a a a

a a a

a a a

a a a

a a a
11 12 13

21 22 23

31 32 33

11 12 13

21 22 2

















= 33

31 32 33a a a

=

 
a

a a

a a
a

a a

a a
a

a a

a a11
22 23

32 33
12

21 23

31 33
13

21 22

31 32
− +
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604 Appendix B: Symbols and Formulas

B.14  Vectors

 1. Vector derivatives
 a. Cartesian coordinates

Coordinates (x,y,z)

Vector A = Ax ax + Ay ay + Az az

Gradient ∇ = ∂
∂

+ ∂
∂

+ ∂
∂

A a a a
A
x

A
y

A
z

x y z

Divergence ∇⋅ = ∂
∂

+
∂
∂

+ ∂
∂

A
A
x

A
y

A
z

x y z

Curl ∇ × = ∂
∂

∂
∂

∂
∂

= ∂
∂

−
∂
∂







+ ∂

∂
− ∂

∂


A

a a a

a

x y z

x y z

z y
x

x z

x y z

A A A

A
y

A
z

A
z

A
x




+
∂
∂

− ∂
∂







a ay

y

x

x
z

A A
y

Laplacian ∇ = ∂
∂

+ ∂
∂

+ ∂
∂

2
2

2

2

2

2

2A
A
x

A
y

A
z

 b. Cylindrical coordinates

Coordinates (ρ,ϕ,z)

Vector A = Aρaρ + Aϕaϕ + Azaz

Gradient ∇ = ∂
∂

+ ∂
∂

+ ∂
∂

A
A
a

A
a

A
z
azρ φρ φ

1
ρ

Divergence ∇⋅ = ∂
∂

+
∂
∂

+ ∂
∂

A A
A A

z
z1

ρ ρ
ρ

φρ
φ( )

Curl ∇ × = ∂
∂

∂
∂

∂
∂

= ∂
∂

−
∂
∂







+
∂
∂

−

A

a a a

z
A A A

A A
z

a
A
z

z

z

z

1

1

ρ

ρ

φ
ρ

φ

ρ φ

ρ φ

φ
ρ

ρ

ρ

ρ
∂∂
∂







+ ∂
∂

−
∂
∂







A
a

x
A

A
az
zρ ρ

ρ
φφ φ

ρ1
( )

Laplacian ∇ = ∂
∂

∂
∂







+ ∂
∂

+ ∂
∂

2
2

2

2

2

2

1 1
A

A A A
zρ ρ

ρ
ρ ρ φ
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605Appendix B: Symbols and Formulas

 c. Spherical coordinates

Coordinates (r,θ,ϕ)

Vector A = A,a, + Aθaθ + Aϕaϕ

Gradient ∇ = ∂
∂

+ ∂
∂

+ ∂
∂

A
A
r
a

r
A
a

r
A
a,

sin
1 1

θ θ φθ φ

Divergence ∇⋅ = ∂
∂

+ ∂
∂

+
∂
∂

A
1 1 1
2

2

r r
r A

r
A

r
A

r( )
sin

( sin )
sinθ θ

θ
θ φθ

φ

Curl ∇ × = ∂
∂

∂
∂

∂
∂

= ∂
∂

A
r

a ra r a

r
A rA r A

r

r

r

1

1

2 sin

( sin )

( sin )

sin

θ

θ

θ φ
θ

θ θ

θ φ

θ φ

(( sin )
sin

( )A
A

a
r

A
r
rA a

r

r
r

φ
θ

φ θθ
φ θ φ

− ∂
∂







+ ∂
∂

− ∂
∂







+ ∂
∂

1 1

1
rr
rA

A
ar( )θ φθ

− ∂
∂







Laplacian ∇ = ∂
∂

∂
∂







+ ∂
∂

∂
∂







+ ∂2
2

2
2 2 2

21 1 1
A

r r
r

A
r r

A
rsin

sin
sinθ θ

θ
θ θ

AA
∂φ2

 2. Vector identity
 a. Triple products

 A B C B C A C A B⋅ = ⋅ = ⋅( ) ( ) ( )× × ×

 A B C B A C C A B× ×( ) ( ) ( )= ⋅ − ⋅

 b. Product rules

 ∇ = ∇ + ∇( ) ( ) ( )fg f g g f

 ∇ ⋅ = × ∇ + × ∇ + ⋅∇ + ∇( ) ( ) ( ) ( ) ( )A B A B B A A B B A× × ×

 ∇⋅ = ∇⋅ + ⋅ ∇( ) ( ) ( )f f fA A A

 ∇ × = ⋅ ∇ − ⋅ ∇( ) ( ) ( )A B B A A B× ×

 ∇ × = ∇ × − × ∇ = ∇ × = ∇ × + ∇ ×( ) ( ) ( ) ( ) ( ) ( )f f f f f fA A A A A A

 ∇ × × = ⋅∇ − ⋅∇ ∇⋅ − ∇⋅( ) ( ) ( ) ( ) (A B B A A B+A B A)
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606 Appendix B: Symbols and Formulas

 c. Second derivative

 ∇⋅ ∇ × =( )A 0

 ∇ × ∇ =( )f 0

 ∇⋅ ∇ = ∇( )f f2

 ∇ × ∇ × = ∇ ∇⋅ − ∇( ) (A A A) 2

 d. Addition, division, and power rules

 ∇ + = ∇ + ∇( )f g f g

 ∇⋅ = ∇⋅ + ∇⋅( )A B A B+

 ∇ × × = ∇ × + ∇ ×( )A B A B

 
∇







= ∇ − ∇f
g

g f f g
g

( ) ( )
2

 ∇ = ∇ =−f nf f nn n 1 ( )integer

 3. Fundamental theorems
 a. Gradient theorem

 

( ) ( ) ( )∇ ⋅ = −∫ f d f b f a
a

b

l

 b. Divergence theorem

 

( )∇⋅ = ⋅∫∫ A Adv d
surfacevolume

s�

 c. Curl (Stokes) theorem

 

( )∇ × ⋅ = ⋅∫∫ A Ad d
linesurface

s l�

 d. fd f d
surfaceline

l s= − ∇ ×∫∫ ��

 e. fd fdv
volumesurface

s = ∇∫∫�

 f. A A× = − ∇ ×∫∫ d dv
volumesurface

s�
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