
Computational
Fluid Dynamics

K12260_FM.indd   1 6/17/11   8:59 AM



CHAPMAN & HALL/CRC 
Numerical Analysis and Scientific Computing

Aims and scope: 
Scientific computing and numerical analysis provide invaluable tools for the sciences and engineering. 
This series aims to capture new developments and summarize state-of-the-art methods over the whole 
spectrum of these fields. It will include a broad range of textbooks, monographs, and handbooks. 
Volumes in theory, including discretisation techniques, numerical algorithms, multiscale techniques, 
parallel and distributed algorithms, as well as applications of these methods in multi-disciplinary fields, 
are welcome. The inclusion of concrete real-world examples is highly encouraged. This series is meant 
to appeal to students and researchers in mathematics, engineering, and computational science.

Editors

Choi-Hong Lai
School of Computing and  
Mathematical Sciences

University of Greenwich

Frédéric Magoulès
Applied Mathematics and  

Systems Laboratory
Ecole Centrale Paris

Editorial Advisory Board

Mark Ainsworth
Mathematics Department

Strathclyde University

Todd Arbogast
Institute for Computational  
Engineering and Sciences 

The University of Texas at Austin

Craig C. Douglas
Computer Science Department 

University of Kentucky

Ivan Graham
Department of Mathematical Sciences

University of Bath
 
 
 

Peter Jimack
School of Computing
University of Leeds

Takashi Kako
Department of Computer Science

The University of Electro-Communications

Peter Monk
Department of Mathematical Sciences

University of Delaware

Francois-Xavier Roux
ONERA

Arthur E.P. Veldman
Institute of Mathematics and Computing Science

University of Groningen

Proposals for the series should be submitted to one of the series editors above or directly to:
CRC Press, Taylor & Francis Group
4th, Floor, Albert House
1-4 Singer Street
London EC2A 4BQ
UK

K12260_FM.indd   2 6/17/11   8:59 AM

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
23

 0
4 

M
ar

ch
 2

01
6 



Published Titles

Classical and Modern Numerical Analysis: Theory, Methods and Practice
Azmy S. Ackleh, Edward James Allen, Ralph Baker Kearfott,  
    and Padmanabhan Seshaiyer

Computational Fluid Dynamics
Frédéric Magoulès

A Concise Introduction to Image Processing using C++
Meiqing Wang and Choi-Hong Lai

Decomposition Methods for Differential Equations:  
    Theory and Applications
Juergen Geiser

Discrete Variational Derivative Method: A Structure-Preserving Numerical          
    Method for Partial Differential Equations
Daisuke Furihata and Takayasu Matsuo

Grid Resource Management: Toward Virtual and Services Compliant Grid 
Computing
Frédéric Magoulès, Thi-Mai-Huong Nguyen, and Lei Yu 

Fundamentals of Grid Computing: Theory, Algorithms and Technologies
Frédéric Magoulès

Handbook of Sinc Numerical Methods
Frank Stenger

Introduction to Grid Computing
Frédéric Magoulès, Jie Pan, Kiat-An Tan, and Abhinit Kumar 

Mathematical Objects in C++: Computational Tools in a Unified Object-
Oriented Approach
Yair Shapira 

Numerical Linear Approximation in C
Nabih N. Abdelmalek and William A. Malek 

Numerical Techniques for Direct and Large-Eddy Simulations
Xi Jiang and Choi-Hong Lai 

Parallel Algorithms
Henri Casanova, Arnaud Legrand, and Yves Robert 

Parallel Iterative Algorithms: From Sequential to Grid Computing
Jacques M. Bahi, Sylvain Contassot-Vivier, and Raphael Couturier

K12260_FM.indd   3 6/17/11   8:59 AM

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
23

 0
4 

M
ar

ch
 2

01
6 



Computational
Fluid Dynamics

Edited by

Frédéric Magoulès
Ecole Centrale Paris

Châtenay Malabry, France

K12260_FM.indd   5 6/17/11   8:59 AM

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
23

 0
4 

M
ar

ch
 2

01
6 



Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor and Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4398-5661-1 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish 
reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the con-
sequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this 
publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material 
has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form 
by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and record-
ing, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.
com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a 
not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a 
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and 
explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Computational fluid dynamics / [edited by] Frédéric Magoulès.
p. cm. --  (Chapman and hall/crc numerical analysis and scientific computation series ; 14)

Summary: “This reference concentrates on advanced techniques of computational fluid dynamics. It offers 
illustrations of new developments of classical methods as well as recent methods that appear in the field. Each 
chapter takes a tutorial approach and covers a different method or application. Topics discussed include finite 
volumes, weighted residuals, spectral methods, smoothed-particle hydrodynamics (SPH), application of SPH 
methods to conservation equations, finite volume particle methods (FVPM), and numerical algorithms for 
unstructured meshes. The authors offer theory, algorithms, and applications for each topic”-- Provided by 
publisher.

Summary: “This book concentrates on the numerical of computational fluid mechanics (including 
mathematical models in computational fluid mechanics, numerical methods in computational fluid 
mechanics, finite volume, finite difference, finite element, spectral methods, smoothed particle 
hydrodynamics methods, mixed-element-volume methods, free surface flow) followed by some focus of new 
development of classical methods, and to the recent methods appearing in this field. The topics covered in 
this book are wide ranging and demonstrate the extensive use in computational fluid mechanics. The book 
opens with a presentation of the basis of finite volume methods, weighted residual methods and spectral 
methods. These specific approaches are particularly important in the context of fluid mechanics, where they 
cover complementary domains of application. A unified point of view is introduced, based on the weighted 
residuals description. Chapter 1 presents the finite volume method. Chapter 2 describes the principles of 
weighted residuals methods. Chapter 3 introduces the spectral method. Chapter 4 presents computational 
fluid dynamics based on the smoothed particle hydrodynamics (SPH) method. Chapter 5 focuses on an 
improved SPH method based on an arbitrary Lagrange Euler (ALE) formalism. Chapter 6, using the similarity 
with the finite volumes method, introduces high order flux schemes between interacting points. Chapter 7 
presents some numerical methods for compressible computational fluid dynamics. Chapter 8 deals with the 
prediction of turbulent complex flows as occur. Chapter 9 discusses the modeling and numerical simulation 
of free surface flows”-- Provided by publisher.

Includes bibliographical references and index.
ISBN 978-1-4398-5661-1 (hardback)
1.  Fluid dynamics--Mathematics. 2.  Numerical analysis.  I. Magoulès, F. (Frédéric) II. Title.

QA911.C622 2011
532.00285--dc22 2010041672

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com 

K12260_FM.indd   6 6/17/11   8:59 AM

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
23

 0
4 

M
ar

ch
 2

01
6 



Contents

List of figures xiii

List of tables xxiii

Preface xxv

Warranty xxxi

1 Finite volume methods 1
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Preface

Computational fluid dynamics has been a hot topic of research these last
forty years, and several books have been published on this topics. This book
concentrates on the numerical of Computational Fluid Mechanics, followed
by some focus of new development of classical methods, and to the recent
methods appearing in this field.

The present volume presents in nine chapters a selection of some
numerical methods used in computational fluid mechanics including:
mathematical models in computational fluid mechanics, numerical methods
in computational fluid mechanics, finite volume, finite difference, finite
element, spectral methods, smoothed particle hydrodynamics methods,
mixed-element-volume methods, free surface flow. The topics covered in this
book are wide ranging and demonstrate the extensive use in computational
fluid mechanics.

The book opens with a presentation of the basis of finite volume methods,
weighted residual methods and spectral methods. These specific approaches
are particularly important in the context of fluid mechanics, where they
cover complementary domains of application. A unified point of view is
introduced, based on the weighted residuals description.

Chapter 1 presents the finite volume method. This approach is widely
used in the context of industrial flows, for aerodynamic design for example.
This comes from its natural property of conservativity [Hirsch, 2007], which
is discussed at the beginning. Then, the integration on the control volumes
is presented, constituting the first discretization step of the finite volume
method. The second discretization step, the interpolation of the fluxes, is
then discussed in a general frame. Some basic elements of time-marching
resolution are briefly presented, on specific examples of finite volume
discretization. This brings the question of upwinding, particularly important
for aerodynamic design for example. This is discussed by focusing on the
well-known scheme proposed by Roe [Roe, 1981]. Finally, the particular case
of structured grids is presented, for which higher order schemes are easier to
develop [Jameson et al., 1981].

Chapter 2 describes the principles of weighted residuals methods. This
class of methods was developed mostly in the early 20th century, before the
advent of the silicium era, to obtain accurate solutions of continuum

xxv
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xxvi

mechanics differential equations by hand computations (as in the famous
Rayleigh-Ritz method). In weighted residuals methods, an approximation
function is expressed in a functional series. Constraints on the development
coefficients come from the residual minimization of the initial differential
problem applied to the approximation function. Usually, very few
coefficients are enough to achieve good accuracy of the solution. Weighted
residuals methods make a bridge between different methods, including finite
volume and spectral methods.

Chapter 3 introduces the spectral method [Fletcher, 1991], widely used in
academic research for its high accuracy and low dispersivity. Spectral
methods are a class of methods that rely on the approximation of the
solution of partial differential equations, and are thus completely defined
from the functional base used for developing the solution, along with the
projection base for minimizing the residual. Among these choices, wide
classes of methods appear, using trigonometric polynomials—Fourier,
Chebyshev—and different handlings of the weighting functions, that yield
collocation—Galerkin—or tau-type methods [Canuto et al., 1987]. This
chapter reviews these concepts, and illustrates them using simple cases of
partial differential equations. The authors also present several issues raised
by spectral methods, among which the treatment of nonlinear terms, the
aliasing problem and the Gibbs phenomenon. Some practical details of the
algorithm implemented for a spectral method are provided, especially the
all-important fast Fourier transform, and its characteristics. A short
discussion is finally proposed on the physical interpretation of wavespace
representation and spectra in the Fourier space.

In Chapter 4, the authors present a novel approach of computational fluid
dynamics based on the mesh-free technique named the smoothed particle
hydrodynamics (SPH) method [Monaghan, 1992]. Mesh-free numerical
methods have been much less investigated than mesh-based techniques
although they can bring clear advantages on specific flow configurations like
interfacial flows. The major benefit of using a mesh-free technique resides in
the simplified management of calculation points, whose spatial distribution
is not constrained by connectivity. In particular this allows large
deformation of the initial point distribution and consequently the use of a
Lagrangian description of the flow.

In Chapter 5, the authors focus on an improved SPH method based on an
arbitrary Lagrange Euler (ALE) formalism [Vila, 1999]. This approach
bridges the gap between the pure Lagrangian description used in the
standard SPH method and the classical Eulerian description encountered in
most of conventional computational fluid dynamics methods. The resulting
framework is applied to the weak form of conservation laws and can be
linked to a finite volume formalism. A generic treatment of boundary
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xxvii

conditions is introduced by taking profit of the dual description, bringing an
efficient answer to one of the main shortage of SPH [Marongiu et al., 2007c].

The similarity with the finite volumes method, in Chapter 6, is also used
to introduce high order flux schemes between interacting points, which
opens a way to increase the accuracy of the method. The underlying
integration scheme which serves to sum flux contributions coming from
neighboring points is at the heart of the mesh-free nature of SPH-ALE. It
uses a regularizing function called the kernel function. This function has a
great influence on the numerical behavior of SPH method and has been an
important field of research. The convergence of the integration is not always
ensured in practical configurations and in order to minimize the errors, the
integration domain has to hold a bigger number of points than a classical
numerical stencil in finite volumes, which is the reason for the relatively
higher cost of mesh-free techniques. Some correction techniques are
presented [Bonet and Lock, 1999], with a special emphasis on the finite
volume particle method (FVPM) [Warnecke, 2005]. They aim at modifying
locally the mesh-free integration procedure to improve its accuracy. Finally
applications of the SPH-ALE method to simulate free surface flows are
presented, demonstrating the ability of this method to represent properly
highly distorded interfaces and highly dynamic flows.

In Chapter 7, the authors present some numerical methods for compress-
ible computational fluid dynamics. This topic is a very animated one, since
at least four main mathematical theories, finite differences, finite volumes,
finite elements and spectral approximation, have been interacting in order to
produce a large and sophisticated panoply of methods for the discretization
of the compressible Navier-Stokes equations.

• The finite difference method remains the best reference for analyzing
discretization CFD schemes. Most time-advancing schemes are of finite
difference type and analyzed as such. Finite difference inspired notions
like dissipation and dispersion which was well clarified with the modified
or equivalent equation theory [Hirt, 1968], [Lerat and Peyret, 1974] and
which remain the reference properties for advection phenomena.

• The finite volume method brought a revolution in nonlinear hyperbolics
with the relation to weak solutions by Lax and Wendroff [Lax and Wen-
droff, 1972] and the introduction of Riemann solver by Godunov [Go-
dunov, 1959].

• The finite element method was early applied to incompressible CFD,
but entered through the back door for compressible CFD. There are
now many reasons to think that finite elements will provide the best
way to rise the order of accuracy for the simulation of compressible
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xxviii

flows on unstructured meshes, through, for example, the discontinuous
Galerkin formulations [Arnold et al., 2002].

This chapter deals with a low order scheme, the mixed-element-volume
method, which combines features of finite differences, finite volumes and
finite elements. On this basis several important problems, arising for any
scheme but easier to analyze with the mixed-element-volume method, are
addressed. Methods are proposed for addressing unstructured meshes,
moving meshes, mesh adaptation, nonlinear stability and positiveness, and
control of dissipation errors.

Chapter 8 deals with the prediction of turbulent complex flows, as occur
in most environmental problems or engineering applications. The prediction
of turbulent flows for such practical applications is one of the most difficult
modeling problems. After centuries of investigations, the prediction relies on
the combination of different methodologies, involving in first places turbulence
modeling and numerical simulation.

• A first approach is direct numerical simulation (DNS), which assumes
that the Navier-Stokes equations are an accurate model for a turbulent
flow, if all the relevant scales of turbulence are resolved. DNS requires
thus a very high accuracy in terms of number of unknowns and high-
order numerical methods. A typical pioneering work has been published
in [Kim et al., 1987]. DNS is very useful for the study of physical
phenomena related to turbulence, since it is able to provide a large
amount of information on the flow dynamics, most of which are very
difficult or impossible to be obtained experimentally. However, it is clear
that this approach, because of the huge computational requirements, is
limited to academic flows, characterized by low Reynolds numbers and
very simple geometry.

• The large majority of flows of practical interest are still nowadays sim-
ulated by numerical discretization of the Reynolds-averaged Navier-
Stokes equations (RANS). The aim of this approach is to provide the
time-averaged flow variables. A closure of the RANS equations is
needed, the so-called turbulence model, and this is the most critical
issue in the RANS approach, since all information on turbulence fluctu-
ations is contained in the model. A huge variety of closure models for the
RANS equations has been proposed up to now, see references [Baldwin
and Lomax, 1978], [Jones and Launder, 1972] for example of such mod-
els. However, most of them are strongly specialized to a particular class
of flows and it is almost impossible to find a model of general validity.
On the other hand, although the RANS approach produces rather stiff
differential systems, the advantage of only simulating the averaged flow
field is that this leads to moderate computational requirements also for
complex flow configurations and high Reynolds numbers. Moreover, a
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xxix

high level of accuracy of the numerical method is not required and this
makes the handling of complex geometries easier. As a consequence, in-
dustrial simulation tools were identified to RANS modeling, combined
with low-order accurate approximations and slightly more recently with
unstructured meshes.

• A third possible approach is large eddy simulation (LES), in which small
scales of the flow are damped and their effect on the large-scale motion
is provided by a closure model, the so-called subgrid-scale (SGS) model.
LES is able to provide more detailed information than RANS, since part
of the turbulent fluctuations are resolved, but this also brings computa-
tional costs much higher than RANS. Although LES was born for the
simulation of very high Reynolds number atmospheric flows [Smagorin-
sky, 1963], the widest and best-established use of LES up to now is as
a kind of extension of DNS, with strong accuracy requirements for the
numerics, and still severe Reynolds number and geometry limitations. It
is however expected that LES could be a well suited approach for some
particular (very) high Reynolds complex flows for which RANS do not
give accurate predictions. Paradigmatic examples are flows character-
ized by massive separation, such as bluff-body flows. In the last decade,
the development of computational resources has indeed enhanced the
tendency to apply LES-methodologies to turbulent flow problems of
significant complexity, such as arise in various applications in technol-
ogy and in many natural flows. However, in order that LES becomes
a completely reliable tool for such applications, some still open issues,
related to both modeling and numerics, must be solved. Just to give
one example, in order to obtain accurate LES predictions, an extremely
fine resolution in attached boundary layers is needed, which increases
with the Reynolds number and leads to prohibitive computational costs
for Reynolds numbers typical of practical applications. This motivated
the building of RANS-LES hybrid models, which try to combine RANS
and LES in the computational domain. A well-known example is the
detached eddy simulation model of Spalart et al. [Spalart et al., 1997].

In this chapter, the coupling of a numerical solver, originally designed for
RANS simulation of complex compressible flows on unstructured grids and
described in Chapter 7, with first, a LES approach, and, then, a RANS/LES
hybrid method, is described. The main numerical and modeling issues,
which are typical of LES of complex engineering problems, are discussed and
some solutions are proposed. Illustrative applications to massively separated
flows are finally presented.

In Chapter 9, the authors discuss the modeling and numerical simulation
of free surface flows, and with applications to liquids and ice. Free surface
flows are ubiquitous in nature, and arise in many fields of sciences and
engineering. A wide range of behaviors can be exhibited when considering
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xxx

various constitutive laws (Newtonian vs. non-Newtonian flows) and regimes
(small vs. large Reynolds numbers). In this chapter, the authors consider
two main examples, and gather them into one mathematical and numerical
framework. The first situation arises in mold casting, when a liquid is
injected at high velocity into a mold [Maronnier et al., 2003], [Caboussat
et al., 2005], [Caboussat, 2006]. This Newtonian flow is usually turbulent,
involves high Reynolds numbers in complex geometries, and frequent
topological changes. The second situation arises in glacier modeling, in order
to predict the evolution of alpine glaciers. This non-Newtonian ice flow
contain large viscous effects [Jouvet et al., 2008]. The applications are
numerous. Liquid flows in mold casting are used for instance in metallurgy,
material sciences, chemistry, and environmental sciences. Ice flows allow the
modeling and prediction of glaciers, which has huge implications on the
future management of natural risks, the energy production through
hydroelectric plants, the water supply for agriculture, the freshwater stocks,
and tourism. Since glaciers are one of the main agents suffering from global
warming, the numerical simulation and prediction of glaciers’ behavior is of
paramount importance for policy-makers and the electricity production. A
numerical method for the simulation of such flows that relies on an Eulerian
approach based on the volume-of-fluid formulation is advocated. A time
splitting algorithm, together with a two-grids method, allows the various
physical phenomena to be decoupled and computed accurately. Finite
element techniques on an unstructured mesh of tetrahedra are used for the
approximation of the diffusion phenomena, while the advection operators are
discretized with a characteristics method on a grid of small cubic cells. This
numerical framework allows a natural incorporation of additional effects,
such as the addition of compressible gas, addition of mass, surface tension
effects, treatment of a nonlinear viscosity, or various boundary conditions.
Then the chapter investigates real-world applications. Numerical results in a
wide range of applications (mold casting, sloshing problems, bubbles flow,
and alpine glaciers) show the ability of the numerical framework to simulate
with success very diverse free surface flows, at very large and very small
Reynolds numbers. In particular, the prediction of the future behaviors of
glaciers, following climate scenarios, shows the risks encountered due to a
global temperature increase.

The various technology presented in this book demonstrates the wide as-
pects of interest in computational fluid mechanics, and the many possibilities
and venues that exist in the research in this area. We are sure that this inter-
est is only going to further evolve, and that many exciting developments are
still awaiting us.

Frédéric Magoulès
Ecole Centrale Paris, France

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
23

 0
4 

M
ar

ch
 2

01
6 



xxxi

Warranty

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty of fitness is implied. The information is provided on
an as-is basis. The authors, editor and publisher shall have neither liability
nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book or from the use of the
code published in it.
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Chapter 1

Finite volume methods

Jérôme Boudet
Ecole Centrale de Lyon, LMFA
36 avenue Guy de Collongue
69134 Ecully Cedex, France
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1.1 Introduction

The finite volume method is a very popular approach for the computation
of industrial flows. Domains of application include aeronautics, for the simu-
lation of external or internal aerodynamics (see Figure 1.1). The popularity
of this approach comes from the particular attention paid to conservativity.
Indeed, the flux balance is controlled on the discrete level, the first discretiza-
tion step consisting in the integration of the equations on elementary control
volumes. The following presentation of the finite volume method only consti-
tutes an overall introduction to the strategy of discretization. More details
can be found in books such as [Hirsch, 2007], [Peyret, 1996], [Versteeg and
Malalasekera, 1995], and references cited in the text.

1



2 Computational Fluid Dynamics

Blade

Plate

FIGURE 1.1: Large eddy simulation of the tip-clearance vortex and turbulent
structures developing from the gap between a blade and a plate. Vortical
structures are visualized by an iso-surface of Q-criterion.

1.2 Conservativity

The transport equations of a flow can be generally written in the following
form:

∂U
∂t

+∇.F(U) = Q (1.1)

This expresses conservativity: the evolution of a scalar variable Ui is
controlled by the flux Fi and the source Qi. The form of the equation (1.1)
is called the conservative form, and the associated variables Ui are the
conservative variables.

For example, a viscous compressible flow is governed by the following set
of transport equations:

∂ρ

∂t
+

∂(ρuj)
∂xj

= 0 (1.2)

∂(ρui)
∂t

+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+

∂τij

∂xj
(1.3)

∂(ρet)
∂t

+
∂

∂xj
[(ρet + p)uj ] =

∂(uiτij)
∂xj

− ∂qj

∂xj
(1.4)

with summation on repeated indices. ρ is the density, ui (i = 1..3) are the
components of velocity, p is the pressure, et is the specific total energy, τij are
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Finite volume methods 3

the viscous constraints, and qj is the heat conduction flux. In this case, the
conservative form (1.1) is obtained with:

U =

⎛
⎜⎜⎜⎜⎝

ρ
ρu1

ρu2

ρu3

ρet

⎞
⎟⎟⎟⎟⎠

F =

⎛
⎜⎜⎝

ρu1 ρu2 ρu3

ρu1u1 + p − τ11 ρu1u2 − τ12 ρu1u3 − τ13
ρu2u1 − τ21 ρu2u2 + p − τ22 ρu2u3 − τ23
ρu3u1 − τ31 ρu3u2 − τ32 ρu3u3 + p − τ33

{(ρet + p)u1 − uiτi1 + q1} {(ρet + p)u2 − uiτi2 + q2} {(ρet + p)u3 − uiτi3 + q3}

⎞
⎟⎟⎠

REMARK 1.1 For resolution purpose, with given initial and boundary
conditions, the transport equations (1.2)-(1.4) must be completed with con-
stitutive laws on τij (e.g. Newtonian fluid hypothesis) and qj (e.g. Fourier
law), and equations of state (e.g. perfect gas).

Returning to the general equation (1.1), integration on a volume Ω and
application of the theorem of Reynolds yields:

d

dt

∫

Ω

Udv +
∫

δΩ

F(U).dS−
∫

δΩ

U(W.dS) =
∫

Ω

Qdv (1.5)

where δΩ represents the border of Ω, moving with local velocity W (= 0 for
a fixed domain), and dS is the outward normal surface vector. Considering
different domains Ωi whose union is connected, the summation of the corre-
sponding equations (1.5) results in the same equation for the union domain.
For example, considering the four domains presented in Figure 1.2, the sum
of the different equations is:

d

dt

∫

Ω1
S

Ω2
S

Ω3
S

Ω4

Udv +
∫

δΩ1
S

δΩ2
S

δΩ3
S

δΩ4

F(U).dS

−
∫

δΩ1
S

δΩ2
S

δΩ3
S

δΩ4

U(W.dS) =
∫

Ω1
S

Ω2
S

Ω3
S

Ω4

Qdv (1.6)

then:

d

dt

∫

Ω1
S

Ω2
S

Ω3
S

Ω4

Udv +
∫

δ(Ω1
S

Ω2
S

Ω3
S

Ω4)

F(U).dS

−
∫

δ(Ω1
S

Ω2
S

Ω3
S

Ω4)

U(W.dS) =
∫

Ω1
S

Ω2
S

Ω3
S

Ω4

Qdv (1.7)

which is indeed the equation (1.5) for the domain Ω1

⋃
Ω2

⋃
Ω3

⋃
Ω4. The

key point is the compensation of the fluxes on the inner boundaries, because
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4 Computational Fluid Dynamics

of the opposite normal vectors (in the example, the surface of integration
δΩ1

⋃
δΩ2

⋃
δΩ3

⋃
δΩ4 → δ(Ω1

⋃
Ω2

⋃
Ω3

⋃
Ω4)). This summation property

of the integral equations is the expression of conservativity.

4

Ω
Ω

Ω
Ω

1
2

3

FIGURE 1.2: Conservativity: 2D illustration.

1.3 Control volume integration

The finite volume method uses integration on elementary control volumes
as a first discretization step, in order to ensure conservativity at the discrete
level. Thus, a preliminary step consists in the division of the computational
domain into a finite number of elementary control volumes. Overlapping con-
trol volumes can be used, but internal boundaries (i.e. boundaries not on
the external frontier of the domain) must be common to two control vol-
umes, in order to allow conservativity by flux compensation on the internal
boundaries. Nevertheless, following illustrations will consider non-overlapping
control volumes, more generally encountered. From here, and for the follow-
ing presentation, the control volumes will be supposed fixed, but formulation
can be easily extended to moving computational grids. For a given control
volume ΩI (e.g. Figure 1.3), from equation (1.5), the first discretization step
yields:

∂

∂t
(UIΩI) +

∑
dSJ∈δΩI

FJ .dSJ = QIΩI (1.8)
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Finite volume methods 5

where by definition:

UI =
1

ΩI

∫

ΩI

Udv

QI =
1

ΩI

∫

ΩI

Qdv

FJ represent discrete estimates of the fluxes on the boundary faces. They
must be interpolated from the values UI on the neighboring control
volumes, in order to complete discretization. This is discussed in a following
section. It should just be noted that if the internal faces are common to two
control volumes (as previously mentionned), and fluxes are interpolated with
the same formula on each side, discrete conservativity is ensured. By
explicitely considering the fluxes on the discrete level, the finite volume
method yields a particularly convenient condition for conservativity.

6

Ω I

dS1

dS2

dS3

dS4

dS5

dS

FIGURE 1.3: Example of 2D control volume for finite volume integration.

By definition, the variable UI is the average of the conservative variable
vector on the control volume ΩI . For the interpolation of the fluxes on the
faces, it could be convenient to have a point of application for UI . If gI is
the center of gravity of ΩI , and (x̂j , j = 1..3) the coordinates centered on gI ,
a Taylor series expansion gives:

∀i : UIi =
1

ΩI

∫

ΩI

Uidv =
1

ΩI

∫

ΩI

[
Ui(gI) +

∂Ui

∂xj
(gI)x̂j

]
dv + O(Δx2)

UIi = Ui(gI) + O(Δx2)

UI can thus be identified with the vector of conservative variables at gI , at
order 2. This gives a point of application for UI .
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6 Computational Fluid Dynamics

REMARK 1.2 However, it should not be prematurely concluded that
finite volumes are limited to order 2. As will be seen in section 1.9.1 for
example, higher order discretizations can be built, by a proper balancing of
the discretization steps.

1.4 Grid

The grid is made of points and the edges between, covering the computa-
tional domain, and used for the definition of the control volumes.

A 3D structured grid is made of a topological parallelepiped, which means
each point can be identified by a set of three indices. The grid lines, defined
by a fixed couple of indices, can be curved for adaptation to the geometry of
the computational domain. All the cells are hexahedral.

By opposition, a grid that is not made of a topological parallelepiped is
called unstructured, and the cells can be tetrahedral, hexahedral, etc.

The structured grids are particularly effective for programming, the neigh-
bors of a given point (used for flux interpolation, see section 1.5) being directly
found by increment of the indices. Conversely, unstructured grids require spe-
cific procedures for the identification of the neighbors (link tables . . . ), but
are easier to adapt to complex geometries. Figure 1.4 presents examples of
2D structured and unstructured grids. The finite volume method can be ap-

(3,1)

2D structured grid 2D unstructured grid

(1,1) (1,2) (1,3)

(2,1)
(2,2)

FIGURE 1.4: Examples of 2D structured and unstructured grids.

plied to both structured and unstructured grid, even with different kind of
cells combined over the same computational domain (tetrahedral, hexahedral,
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Finite volume methods 7

. . . ). The control volumes are defined on the grid, and two major strategies
are possible:

• Cell-centered: the control volumes are centered on the cells of the grid;

• Cell-vertex: the control volumes are centered on the points of the grid.

The control volumes can be defined over one or more cells or points, and it is
also possible to use overlapping control volumes. Examples of control volumes
are given in Figure 1.5.

ΙΩΙ

(a) (b)

Ω

(c)

Ι

Ω

FIGURE 1.5: Examples of control volumes on a 2D structured grid. (a)
cell-centered; (b) cell-vertex; (c) cell-centered on two cells.

1.5 General flux interpolation

Returning to equation (1.8), the discretization then requires the estimate
of the fluxes FJ on the control volume boundaries (normal vectors: dSJ).
This is an interpolation step, the fluxes being functions of the conservative
variables UI that are defined on the control volumes.

In a general approach, different strategies are possible. For illustration, we
can consider the 2D case presented in Figure 1.6, where the flux FPQ on the
edge PQ have to be interpolated. A basic interpolation can be obtained from
the control volumes on each side, here Ω1 and Ω4. Two strategies are possible,
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8 Computational Fluid Dynamics

6Ω

Ω

Ω

4

5

P

Q

Ω

Ω3

2
Ω1

FIGURE 1.6: Flux interpolation: general case.

either interpolating the conservative variables:

FPQ = F
(

U1.V1 + U4.V4

V1 + V4

)

or interpolating the fluxes:

FPQ =
F(U1).V1 + F(U4).V4

V1 + V4

where Vi denote the volumes. Interpolation can also be constructed from the
end points:

FPQ =
1
2

(FP + FQ)

where:

FP = F
(

U1.V1 + U2.V2 + U3.V3 + U4.V4

V1 + V2 + V3 + V4

)

or:
FP =

F(U1).V1 + F(U2).V2 + F(U3).V3 + F(U4).V4

V1 + V2 + V3 + V4

1.6 Resolution and time discretization

From equation (1.8), with interpolation of the fluxes from the neighboring
control volumes, the semi-discrete finite volume equation can be expressed as:

∀I :
∂UI

∂t
= R(...,UI−1,UI ,UI+1, ...) (1.9)
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Finite volume methods 9

The residual R includes the fluxes and the sources, expressed as functions
of the conservative variables on the neighboring control volumes. The last
discretization step must address the time derivative.

1.6.1 Unsteady resolution

Classical strategies are employed for time discretization. For example, finite
difference:

Un+1
I −Un

I

Δt
(1.10)

constitutes an estimate of ∂UI/∂t between time steps n and n + 1. The fully
discrete equation obtained for each contre volume should then relate the
conservative variables (Un

J , J = 1..Jmax) at any instant n, to the variables
at the instant after (n + 1).

A scheme is said explicit when the conservative variable vector Un+1
I , for

a given control volume I and instant n + 1, can be directly expressed as a
function of the flow field at instant n (i.e. Un

J , J = 1..Jmax). For example, if
discretization is carried out at instant n with formula (1.10):

∀I :
Un+1

I −Un
I

Δt
= R(...,Un

I−1,U
n
I ,Un

I+1, ...)

thus:
∀I : Un+1

I = Un
I + Δt×R(...,Un

I−1,U
n
I ,Un

I+1, ...)

From the flow field (Un
J , J = 1..Jmax) at instant n, each vector Un+1

I can be
directly calculated.

In contrast, with an implicit scheme, the conservative variable vector Un+1
I ,

at a given control volume I and instant n + 1, is cross-dependant with other
control volumes at the same instant, and requires a coupled resolution. For
example, if time is discretized at instant n + 1 with the same formula (1.10):

∀I :
Un+1

I −Un
I

Δt
= R(...,Un+1

I−1 ,Un+1
I ,Un+1

I+1 , ...)

thus:
∀I : Un+1

I −Δt×R(...,Un+1
I−1 ,Un+1

I ,Un+1
I+1 , ...) = Un

I

The number of equations equals the number of unknowns (Un+1
J ,

J = 1..Jmax), but the equations are cross-dependant between various control
volumes at instant n + 1. A coupled resolution must be set-up,
computationally more expensive (requiring for example matrix inversions of
linear systems), but such schemes benefit from particularly interesting
stability properties that will be presented in section 1.7.
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10 Computational Fluid Dynamics

In should be noted that in the previous explicit and implicit discretizations,
the choice of the discretization time only influences the variables of R, the
discrete expression of the time derivative being the same for the instants n
and n + 1. A general θ-scheme, resulting from the linear combination of the
explicit scheme (coefficient 1− θ) and the implicit scheme (coefficient θ), can
be built:

∀I : Un+1
I = Un

I + Δt×
[
(1 − θ)R(...,Un

I−1,U
n
I ,Un

I+1, ...)

+θR(...,Un+1
I−1 ,Un+1

I ,Un+1
I+1 , ...)

]

where θ ∈ [0, 1], θ = 0 and 1 yielding the original explicit and implicit
schemes respectively.

Fractional step methods can involve multiple explicit steps to approach
implicit method properties, at moderate computational cost. For example,
the 4-step Runge-Kutta scheme writes:

Un+1
I = Un

I +
Δt

6
[
R(Un

I ) + 2R(Un+0.5∗
I ) + 2R(Un+0.5∗∗

I ) + R(Un+1∗
I )

]

where the predictors are:

Un+0.5∗
I = Un

I + 0.5ΔtR(Un
I )

Un+0.5∗∗
I = Un

I + 0.5ΔtR(Un+0.5∗
I )

Un+1∗
I = Un

I + ΔtR(Un+0.5∗∗
I )

Other variants are available, with different numbers of steps, and different
properties (precision, stability conditions, see section 1.7).

In a purely unsteady simulation, the initial flow field is provided by the
physical problem, and the temporal evolution is described iteratively by the
discretized equations. In cases where a statistically steady solution is investi-
gated, the initial flow field can be artificial, and a criterion must be designed
to define the end of the transient regime and the beginning of the regime
to investigate. For example, in a turbomachine unsteady computation (ro-
tor/stator interaction), the criterion can consider the level of periodicity of a
local or integral quantity.

1.6.2 Steady resolution

In this case:
∀I :

∂UI

∂t
= 0

and the equation writes for each control volume I:

R(...,UI−1,UI ,UI+1, ...) = 0
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Finite volume methods 11

Supposing appropriate boundary conditions are defined, this equation is
adapted for numerical resolution. It is generally non-linear (a basic feature in
fluid mechanics), which calls for iterative methods of resolution. A conceptu-
ally simple approach, known as time-marching, consists in starting from an
artificial flow field U0

I and computing the unsteady transient regime up to the
steady solution (from the complete unsteady equation (1.9)). This approach
comes down to the unsteady resolution, previously described. However, two
features distinguish the time marching resolution of a steady problem from
the unsteady resolution:

• The initial flow field is artificial, not given by the physical problem.

• The physical constraints on the time resolution are alleviated. For ex-
ample, local time stepping (i.e. spatially varying time steps) can be
employed in order to increase the convergence speed.

Convergence is theoretically achieved when:

∀I :
∂UI

∂t
= 0⇐⇒ R(...,UI−1,UI ,UI+1, ...) = 0

Practically, because the computational encoding of numbers induce truncation
errors, and because local flow instabilities often persist in apparently steady
problems (e.g. local flow separations, . . . ), the computed steady solution is
instead characterized by:

∀I : R(...,UI−1,UI ,UI+1, ...) = εI

with “low” magnitudes of εI . During a computation, in order to evaluate
if a steady solution is reached and decide at which iteration the computa-
tion can be stopped, a measure of the residual magnitude must be carried
out over the domain. At a given iteration n, and for a given scalar compo-
nent j, a norm of the residual over the control volumes can be calculated:
||Rj(...,Un

I−1,U
n
I ,Un

I+1, ...)||. Among the most popular norms:

L2-norm : ||Rn
j ||2 =

√∑
I

(
Rj(...,Un

I−1,U
n
I ,Un

I+1, ...)
)2

L∞-norm : ||Rn
j ||∞ = max

I

∣∣Rj(...,Un
I−1,U

n
I ,Un

I+1, ...)
∣∣

The L2-norm measures the global convergence of the computation, whereas
the L∞-norm focus on the least converged point. An example of residual con-
vergence is plotted in Figure 1.7. A logarithmic scale is used for the residual
norm, which is normalized by the value at the initial time step (n = 0), yield-
ing a reference level of 0 for the initial residual. These are common practices.
A steady computation will be considered as converged if both conditions are
achieved:
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12 Computational Fluid Dynamics

• The residuals reach a plateau. This means the solver reached its con-
vergence limit.

• The plateau is at a sufficiently low level. A threshold must be defined,
for example log 10

(
||Rn

j ||/||R0
j ||
)

= −4. This evaluates if the computed
flow field can be considered as a steady solution. Indeed, ||Rn

j ||/||R0
j ||

evaluates the unsteadiness ratio ||∂Un
j

∂t ||/||
∂U0

j

∂t || between the current flow
field and the initial flow field (considered as reference).

The value of the threshold must be defined with respect to the requested
physical precision and the computational encoding precision of the numbers.
In the example given in Figure 1.7, the solver has been compiled with a double
precision option, which allows for very small residuals to be reached (nearly
log 10

(
||Rn

j ||/||Rn
j ||
)

= −12).

0 10000 20000 30000 40000 50000
iterations n

-12

-10

-8

-6

-4

-2

0

lo
g1

0(
 ||

R
jn || 

/ |
|R

j0 || 
)

R
1

R
2

R
3

R
4

FIGURE 1.7: Example of convergence curves for a 2D compressible solver
computation on a wing. The four residuals are respectively associated with
the conservative variables: ρ, ρu1, ρu2 and ρet, and ||.|| is the L∞-norm.

Other convergence monitors can be used, such as the mass flow in a continuous
flux system, and the force or torque induced by the flow on a structure. For
these quantities, the steadiness of the flow will be evaluated by the stationarity
of the values, and the identity of the mass flow between the inlet and outlet
of the continuous flux system. Such monitors are interesting because of their
physical meaning, and their role in the interpretation of the computation.

Divergence Instabilities of the numerical schemes (see section 1.7), or
physical unsteadiness (including physical instabilities), can prevent the
solver from reaching the convergence criteria. Strong numerical instabilities
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Finite volume methods 13

will generally result in log 10
(
||Rn

j ||/||R0
j ||
)

>> 0, and can be detected by
un-physical flow quantities (negative pressure or density in compressible
solvers, etc). Weak numerical instabilities or physical unsteadiness will
generally result in insufficiently low values of log 10

(
||Rn

j ||/||R0
j ||
)
, and

possible oscillations.

Finally, it must be pointed out that time marching convergence can involve
physical phenomena perturbing the transient convergence to the steady solu-
tion. In a compressible solver, acoustic waves can be generated (e.g. from the
artificial initial flow) that should be evacuated properly by the boundary con-
ditions. Also, convergence can pass through a supersonic state that prevents
the upstream propagation of information, and blocks the convergence.

1.7 Consistency, stability, and convergence

Δx

i−2
un+1

i−1

n+1u
i

n+1u
i+1

n+1u
i+2

n+1u

i−2

nu
i−1

nu
i

nu
i+1

nu
i+2

nu

tΔ

FIGURE 1.8: Discretization space.

For illustration purpose, we consider the 1D scalar equation:

∂u

∂t
+ α

∂u

∂x
= 0 (1.11)

discretized with cell-vertex finite volumes:

Δx× ∂ui

∂t
+ αui+0.5 − αui−0.5 = 0

and explicit time discretization:

un+1
i − un

i

Δt
+ α

un
i+0.5 − un

i−0.5

Δx
= 0
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14 Computational Fluid Dynamics

Consistency A numerical scheme is consistent if the discrete equation tend
to the continuous differential equation when grid and time steps tend to zero.
In the present example, using a left-sided interpolation (i.e. un

i+0.5 = un
i and

un
i−0.5 = un

i−1):
un+1

i − un
i

Δt
+ α

un
i − un

i−1

Δx
= 0 (1.12)

Using Taylor series expansions with respect to point i and instant n, the
discretized equation is shown equivalent to:

∂un
i

∂t
+

Δt

2
∂2un

i

∂t2
+ O(Δt2) + α

∂un
i

∂x
− α

Δx

2
∂2un

i

∂x2
+ O(Δx2) = 0

The discrete equation actually tends to the continuous differential equation
(at point i and instant n), with order 1 in time and order 1 in space. The
orders can be increased by using a centered discretization. For example, using
a centered interpolation of the fluxes:

ui+0.5 =
ui + ui+1

2
and: ui−0.5 =

ui−1 + ui

2

then discretization yields:

un+1
i − un

i

Δt
+ α

un
i+1 − un

i−1

2Δx
= 0 (1.13)

⇐⇒ ∂un
i

∂t
+

Δt

2
∂2un

i

∂t2
+ O(Δt2) + α

∂un
i

∂x
+ α

Δx2

6
∂3un

i

∂x3
+ O(Δx3) = 0

In this case, the discretization is 1st order in time and 2nd order in space.
Centering the flux interpolation allowed increasing the order spatially. Con-
sidering again a left-sided interpolation, the order can also be increased by
increasing the number of interpolation points. For example, a left-sided in-
terpolation on 3 points can be designed:

ui+0.5 =
−ui−1 + 5ui + 2ui+1

6
and: ui−0.5 =

−ui−2 + 5ui−1 + 2ui

6

and the discrete equation writes:

un+1
i − un

i

Δt
+ α

un
i−2 − 6un

i−1 + 3un
i + 2un

i+1

6Δx
= 0

⇐⇒ ∂un
i

∂t
+

Δt

2
∂2un

i

∂t2
+ O(Δt2) + α

∂un
i

∂x
+ α

Δx3

12
∂4un

i

∂x4
+ O(Δx4) = 0

Stability A numerical scheme is stable if perturbations on the numerical so-
lution are bounded. Among other methods, the von Neumann stability anal-
ysis consists in calculating the amplification factor G = An+1/An of harmonic
perturbations wn

i = Anexp(̂iκiΔx), where î = −1, imposed on the numerical
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Finite volume methods 15

solution ui
n. The total flow field writes: un

i = ui
n + wn

i , and is controlled by
the discrete equation. The scheme is stable if ∀κ : |G| ≤ 1. For illustration,
considering equation (1.11), the left-sided discretization introduced in (1.12)
yields:

un+1
i =

(
1− αΔt

Δx

)
un

i +
αΔt

Δx
un

i−1

and the amplification factor is:

G =
An+1

An
=
(

1− αΔt

Δx

)
+

αΔt

Δx
exp(−îκΔx)

In this example, the numerical scheme is stable for: α ≥ 0 and
∣∣αΔt

Δx

∣∣ ≤ 1.
Alternative explicit schemes. For the same equation (1.11), the scheme con-

structed with the two-point centered interpolation (equation (1.13)) is shown
always instable. The right-sided interpolation scheme:

un+1
i − un

i

Δt
+ α

un
i+1 − un

i

Δx
= 0 (1.14)

is stable for: α ≤ 0 and
∣∣αΔt

Δx

∣∣ ≤ 1. Considering the lagged schemes (1.12)
and (1.14), beside the opposite condition on the sign of α, they both require∣∣αΔt

Δx

∣∣ ≤ 1. This is a CFL condition (CFL: Courant-Friedrichs-Lewy), com-
monly associated with explicit schemes. It limits the time step Δt for a given
grid density Δx. The finer the grid density, the lower the time step, which
increases the effective computational time.

Implicit scheme. The left-sided implicit scheme:

Δx× un+1
i − un

i

Δt
+ α(un+1

i − un+1
i−1 ) = 0

is stable for α ≥ 0. There is no CFL condition, and the time step only
needs to be adapted to the temporal evolution rate of the flow. The implicit
scheme is a pertinent alternative to the explicit methods: the much larger
time steps allowed can compensate the higher computational effort required
by the coupled resolution of all the grid points at each iteration.

Convergence A numerical scheme is said convergent if the discrete solution
tend to the continuous solution, when the discretization steps (spatial and
temporal) tend to zero. The equivalence theorem of Lax (cf. Hirsch [Hirsch,
2007]) states that for a well-posed initial-value linear problem, discretized in
a consistent way, stability is an equivalent condition to convergence. Conse-
quently, the practical analysis of linear numerical schemes will consist in a
consistency and stability analysis.
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16 Computational Fluid Dynamics

1.8 Upwind interpolation

Δx

i−2
un+1

i−1

n+1u
i

n+1u
i+1

n+1u
i+2

n+1u

i−2

nu
i−1

nu
i

nu
i+1

nu
i+2

nu

tΔ

FIGURE 1.9: Discretization space.

The discretization analysis of equation (1.11) is particularly instructive.
This equation is an elementary hyperbolic equation, describing advection at
a constant velocity α. Value α > 0 (resp. α < 0) corresponds to propagation
in the direction of positive x (resp. negative x). As a summary, the property
analysis on three different explicit discretizations have shown:

• The explicit centrered scheme (1.13) is 2nd order spatially, but always
instable.

• The explicit left-sided scheme (1.12) is 1st order spatially, and stable
for: α ≥ 0 and

∣∣αΔt
Δx

∣∣ ≤ 1.

• The explicit right-sided scheme (1.14) is 1st order spatially, and stable
for: α ≤ 0 and

∣∣αΔt
Δx

∣∣ ≤ 1.

For a given value of α imposed by the physical problem, among the three
explicit schemes considered, only the discretization lagged in the upwind
direction can be stable (left-sided for α > 0, and right-sided for α < 0).
Since the flow equations are strongly influenced by hyperbolic phenomena,
this stability property of the upwind schemes is particularly important. In
practice, dealing with unsteady or time marching resolutions, the flow
outside of the shear layers (boundary layers, . . . ) is mainly inviscid, and is
governed by hyperbolic equations. Upwind schemes then provide stable
methods, while the use of centered schemes requires artificial numerical
viscosity.

The analysis of the canonical one-dimensional scalar hyperbolic equation
is instructive, but generalization of upwinding to multidimensional non-linear
vectorial equations is not straightforward. Different approaches have been
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Finite volume methods 17

proposed, and two of them are briefly presented below. First, the continuous
equation (1.1) must be decomposed as:

∂U
∂t

+∇.Fvisc.(U) +∇.Finv.(U) = Q

where Fvisc. and Finv. represents respectively the viscous and inviscid fluxes,
with: F = Fvisc. + Finv.. The upwinding only addresses the inviscid fluxes,
associated with the hyperbolic tendency of the equations. In the following
presentation of the approaches, only the inviscid part of the equation will be
considered:

∂U
∂t

+∇.Finv.(U) = 0

When decomposing the divergence, the equation writes:

∂U
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= 0

with Finv. = (F|G|H). Moreover, only the x-component will be considered,
the methods applying similarly to the other components. Consequently, for
the presentation of the methods, the equation can be reduced to:

∂U
∂t

+
∂F
∂x

= 0 (1.15)

where F is the x-component of the inviscid fluxes, generally non-linear.

1.8.1 Steger-Warming approach

This approach [Steger and Warming, 1981b] constitutes a rather direct
generalization of the linear scalar case. First, the equation is written in a
quasi-linear form:

∂U
∂t

+ A
∂U
∂x

= 0

where A is the Jacobian matrix ∂F/∂U. Verifying F(U) is a homogeneous
function of degree one in U (i.e. ∀α : F(αU) = αF(U)), the Euler theorem
yields: F = AU. The equation then writes:

∂U
∂t

+
∂AU
∂x

= 0

where A can be diagonalized: A = L−1ΛL. The diagonal matrix Λ is made
of the real eigenvalues of A (the problem is hyperbolic). Splitting the matrix
Λ = Λ+ + Λ−, with Λ+ (resp. Λ−) made of the positive (resp. negative)
eigenvalues, the flux writes:

F = F+ + F− = L−1Λ+LU + L−1Λ−LU
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18 Computational Fluid Dynamics

and each contribution F± can be interpolated with an adequate upwind ap-
proach, i.e. a left-sided interpolation for F+ and a right-sided interpolation
for F−.

Considering for example a uniform grid, as shown in Figure 1.9, with cell-
vertex control volumes (width: Δx), the finite volume discretization of equa-
tion (1.15) writes:

Δx
∂Ui

∂t
+
(
F+

i+0.5 + F−
i+0.5

)
−
(
F+

i−0.5 + F−
i−0.5

)
= 0

The flux decomposition guides the upwind interpolation (i.e. left-sided for
F+, and right-sided for F−). For example, with a one-point interpolation:

Δx
∂Ui

∂t
+
(
F+

i + F−
i+1

)
−
(
F+

i−1 + F−
i

)
= 0

And the elementary explicit scheme yields:

Un+1
i = Un

i −Δt
F+n

i − F+n
i−1

Δx
−Δt

F−n
i+1 − F−n

i

Δx

Detailed examples of applications (e.g. mono-dimensional Euler equations)
are given in [Steger and Warming, 1981b].

1.8.2 Roe scheme: approximate Riemann solver

A Riemann problem is an initial value problem where equation (1.15) ap-
plies to a piecewise constant initial field with a single discontinuity. Ex-
perimentally, such conditions can be obtained in shock tube configurations.
Numerically, the flux interpolation at the boundary between two control vol-
umes can be seen as a Riemann problem. Indeed, the evolution of the flux
at the boundary is controlled by the conservative variables on each control
volume, with a discontinuity at the interface in the general case. The analysis
of such a problem requires to write the equation (1.15) in a quasi-linear form,
as previously done in the Steger-Warming approach:

∂U
∂t

+ A
∂U
∂x

= 0

where A = ∂F/∂U is the Jacobian matrix. Instead of carrying the direct
analysis of this problem (see Steger and Warming method in the previous
paragraph), Roe [Roe, 1981] proposes to study an approximate problem:

∂U
∂t

+ Â
∂U
∂x

= 0

where matrix Â(UL,UR), function of the variables on the left- (L) and right-
hand side (R) of the discontinuity, must respect the following conditions:
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Finite volume methods 19

• The eigenvalues of Â are real, and the eigenvectors are linearly inde-
pendant.

• Â(UL,UR)→ A(U) = ∂F/∂U when UL → U and UR → U.

• ∀UL, UR, Â(UL,UR)× (UR −UL) = FR − FL.

The characteristic variable U is defined by:

UR − UL = L (UR −UL)

where L is the left eigenvector matrix of Â. Then, the third property above
yields:

L−1Λ (UR − UL) = FR − FL

Identifying the left (L) and right (R) states with generic indices i and i + 1,
the following interpolations are then proposed on the boundary:

Fi+0.5 = Fi + L−1
i+0.5Λ

−
i+0.5 (Ui+1 − Ui)

Fi+0.5 = Fi+1 − L−1
i+0.5Λ

+
i+0.5 (Ui+1 − Ui)

An average of these interpolations makes the practical expression:

Fi+0.5 =
1
2

(Fi + Fi+1)−
1
2
L−1

i+0.5

(
Λ+

i+0.5 −Λ−
i+0.5

)
(Ui+1 − Ui)

⇐⇒ Fi+0.5 =
1
2

(Fi + Fi+1)−
|Âi+0.5|

2
(Ui+1 −Ui)

where: |Âi+0.5| = L−1
i+0.5

(
Λ+

i+0.5 −Λ−
i+0.5

)
Li+0.5. As shown in [Roe, 1981]

and [Peyret, 1996], a possible choice for Â is the Jacobian matrix A evaluated
from the Roe’s average variables, defined as:

ρ̂i+0.5 =
√

ρiρi+1

and for the other components:

Ûi+0.5 =
√

ρiUi +√ρi+1Ui+1√
ρi +√ρi+1

1.9 Particular case of structured grids

In this section, the special case of structured grids is considered. It allows
to construct higher order schemes, in a rather simple way, by some analogy
with the finite difference approach. The structured approach is popular in
different disciplines, such as aerodynamics, because of its numerical efficiency.
A first section is dedicated to the flux interpolation on regular grids. The
following section then discusses the generalization to curvilinear grids.
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20 Computational Fluid Dynamics

1.9.1 Flux interpolation on regular grids

For illustration, the 2D control volume ΩI , shown in Figure 1.10, is consid-
ered. The partial differential equation (1.1) yields in this case:

j

j+1

j−1

ii−1i−2 i+1 i+2

Ω I

FIGURE 1.10: Flux interpolation on a 2D regular grid.

∂U
∂t

+
∂F(U)

∂x
+

∂G(U)
∂y

= Q (1.16)

and the integration on the control volume ΩI gives:

∂

∂t
(UIΩI) + (Fi+0.5,j − Fi−0.5,j)Δy + (Gi,j+0.5 −Gi,j−0.5)Δx = QIΩI

Setting UI = Ui,j and QI = Qi,j , and dividing by ΩI = Δx×Δy, the space
discretization yields:

∂Ui,j

∂t
+

Fi+0.5,j − Fi−0.5,j

Δx
+

Gi,j+0.5 −Gi,j−0.5

Δy
= Qi,j (1.17)

As a first approach, the fluxes through the faces can be interpolated as:

Fi−0.5,j = (Fi−1,j + Fi,j) /2 ; Fi+0.5,j = (Fi,j + Fi+1,j) /2

Gi,j−0.5 = (Gi,j−1 + Gi,j) /2 ; Gi,j+0.5 = (Gi,j + Gi,j+1) /2

This yields:

∂Ui,j

∂t
+

Fi+1,j − Fi−1,j

2Δx
+

Gi,j+1 −Gi,j−1

2Δy
= Qi,j (1.18)
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Finite volume methods 21

The following Taylor series expansions can be drawn:

Fi+1,j − Fi−1,j

2Δx
=

∂Fi,j

∂x
+ O(Δx2) ;

Gi,j+1 −Gi,j−1

2Δy
=

∂Gi,j

∂y
+ O(Δy2)

This shows the semi-discrete equation (1.18) equals the partial differential
equation (1.16), at point indexed (i, j), at order 2 in space.

In order to increase the discretisation precision up to order 4 in space, the
interpolation must use the 4 neighboring points:

Fi−0.5,j = (−Fi−2,j + 7Fi−1,j + 7Fi,j − Fi+1,j) /12 (1.19)

and similarly for the other fluxes in (1.17). This yields:

∂Ui,j

∂t
+

Fi−2,j − 8Fi−1,j + 8Fi+1,j − Fi+2,j

12Δx

+
Gi,j−2 − 8Gi,j−1 + 8Gi,j+1 −Gi,j+2

12Δy
= Qi,j (1.20)

From the Taylor series expansions of the fluxes F and G at the different points,
with respect to the point indexed (i, j), this semi-discrete equation is actually
shown to be equivalent to:

∂Ui,j

∂t
+

∂Fi,j

∂x
+ O(Δx4) +

∂Gi,j

∂y
+ O(Δy4) = Qi,j

Which is the partial differential equation (1.16), at point indexed (i, j), with
a spatial discretization error of order 4. It is important to note that for-
mula (1.19) is not a 4th order interpolation of the flux F at point indexed
(i− 0.5, j). The coefficients are designed to yield a 4th order discretization of
the complete equation in which the interpolation is used.

1.9.2 Curvilinear grids

Regular grids are practically unsuitable for most of the flows. Indeed, com-
mon geometrical boundaries generally require the use of curvilinear grids.
Discretization then differs from the formula obtained on regular grids, mainly
concerning integration and flux interpolation. This is addressed below.

Integration Integration by substitution is a convenient tool to recover for-
mulas similar to the Cartesian grid case. The integral equation on the control
volume writes:

d

dt

∫

Ω

Udv +
∫

δΩ

F(U).dS =
∫

Ω

Qdv

then:

d

dt

∫

Ω′
U
√

g

3∏
j=1

dξj ±
3∑

i=1

∫

Si±
F(U).ai

√
g
∏
j �=i

dξj =
∫

Ω′
Q
√

g

3∏
j=1

dξj
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22 Computational Fluid Dynamics

where ξj (j = 1..3) are the coordinates on an intermediate computational grid
of Cartesian structure (as illustrated in Figure 1.11), ai = gradξi (i = 1..3),
and:

√
g =

D(x, y, z)
D(ξ1, ξ2, ξ3)

is the Jacobian of the geometrical transformation. A possible set of interme-
diate coordinates (ξ1, ξ2, ξ3) is provided by the point indices (i, j, k). Here,
(ξ1, ξ2, ξ3) will be supposed aligned with the indices (i, j, k), as illustrated in
Figure 1.11. Then:

y ξ

x
1

2

ξ

(i,j)
(i+1,j)

(i+1,j+1)

(i,j+1)

(i,j)

(i,j+1) (i+1,j+1)

(i+1,j)

Grid (curvilinear) Intermediate grid
(Cartesian)

FIGURE 1.11: Curvilinear grid and intermediate Cartesian grid for integra-
tion by substitution.

⎛
⎝

∂ξ1/∂x ∂ξ1/∂y ∂ξ1/∂z
∂ξ2/∂x ∂ξ2/∂y ∂ξ2/∂z
∂ξ3/∂x ∂ξ3/∂y ∂ξ3/∂z

⎞
⎠ =

⎛
⎝

∂x/∂ξ1 ∂x/∂ξ2 ∂x/∂ξ3

∂y/∂ξ1 ∂y/∂ξ2 ∂y/∂ξ3

∂z/∂ξ1 ∂z/∂ξ2 ∂z/∂ξ3

⎞
⎠

−1

The right-side matrix is easily computed at each point of the grid, using finite
differences. For example:

∂x

∂ξ1
=

xi+1,j,k − xi−1,j,k

2Δξ1
+ O(Δξ2

1 )

Finally, inverting the matrix poses no difficulty (dimensions are 3 × 3), and
when the grid is fixed, it only needs to be done at the beginning of the com-
putation.

REMARK 1.3 This approach is not mandatory, it only constitutes a
simplification when dealing with curvilinear structured grids.
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Finite volume methods 23

Flux interpolation As previously shown in section 1.9.1, higher orders of
discretization can be achieved by the finite volume method on structured grids.
In this approach, the integral variables on the control volume are assimilated
with the values on the grid points, similarly to the finite difference method. As
a consequence, when dealing with curvilinear grids, the interpolation will be
influenced by the grid point locations, and significantly more complex formula
are then obtained. Moreover, it must be kept in mind that the spatial orders
of discretization are calculated on the complete equation, which must guide
the optimization of the interpolation coefficients.

1.10 Boundary conditions

The interpolation strategies developed in the core of the computational
domain are constrained on the external boundaries because of the absence of
neighboring control volumes. Thus, specific interpolations must be set-up, in
conjunction with the specification of the physical boundary conditions. As
an illustration, the elementary hyperbolic equation (1.11) can be considered,
with α > 0 and a left-sided interpolation. The one-dimensional grid is shown
in Figure 1.12 (points i = 1..imax), together with a schematic representation
of discretization (1.12). The discrete equation cannot apply directly on the
first point (i = 1), because there is not neighbor on the left-hand side (i.e. u0

is not defined).

Boundary

u u u u
11 1 1

n+1n+1 n+1 n+1

u u u u
21 imax−1 imax

nn n nu
0

n

discrete equation

condition

FIGURE 1.12: Numerical sketch of discretization (1.12).

Boundary conditions must be defined in agreement with the nature of the
equations. Only physically ingoing quantities should be imposed. In the ex-
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24 Computational Fluid Dynamics

ample above, the equation represents advection of u in the positive x direction
(α > 0). Consequently, the value of u can be imposed on the left-hand side
boundary of the domain. This can be done by setting the value of un

0 to the
expected boundary condition. On the other end of the domain (i = imax),
no boundary condition can be imposed. Fortunately, the present interpola-
tion naturally requires no data on this side. In a more general case, when no
boundary condition can be imposed on a given frontier, a proper upwinding
should be defined, using only points from the interior of the domain. Such a
specific interpolation strategy can apply on the frontier only, while the inter-
polation remains unchanged in the core of the domain. More details about
the analysis of the equations and the specification of the boundary conditions
can be found in [Hirsch, 2007].
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Weighted residuals methods

Fabien Godeferd
Ecole Centrale de Lyon, LMFA
36 avenue Guy de Collongue
69134 Ecully Cedex, France
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2.8 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1 Introduction

Among the numerical methods used for the spatial resolution of partial
differential equations (PDE), the finite differences method (FD) and the fi-
nite elements (FE) method use a local approximation for the functions; for
instance, the FE are based on low-order polynomials, whose support—the
subdomain over which the function is not zero—is very reduced with respect
to the complete resolution domain. This allows to remove the strong coupling
between the approximation functions over each finite element. The corre-
sponding matrix systems are therefore more easily solved, their being very
often block-diagonal and sparse. Finite volumes methods (FV) use the con-
servative formulation of the PDEs, and evaluate integrals over the elementary
volumes, but eventually require FD approximations for the differential oper-
ators.

These methods use an approximation of the system of equations itself. An-
other possibility is to keep the system of PDEs unchanged, but specify an
approximation of the solution in a specific given form. Most often, the ap-
proximation function is written as a series of analytically known functions
chosen in a functional space of which they form a complete base, e.g. poly-
nomials or other families of functions. The formal projection of the system
of equations onto the reduced chosen functional space defines the essence of
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26 Computational Fluid Dynamics

the method. The original PDEs are then transformed into equations for the
coefficients of the development, and often become a simpler system of cou-
pled ordinary differential equations (ODE). The weighted residuals method
(WR) defines the condition for the approximation solution to converge to the
exact solution when increasing the number of degrees of freedom, that is the
number of coefficients in the series. These methods are well suited for simple
problems, for rapidly achieving an accurate solution, and are described for
instance in [Chung, 2002] or [Fletcher, 1991] among the other methods (FV,
FE, FD) which are local.

Contrary to local methods, spectral methods presented in Chapter 3 are also
a kind of global methods, in the sense that they use high-order polynomials or
Fourier series. The main difference with a general WR method is the careful
choice of the functional space such that the development functions are mutu-
ally orthogonal. When the context allows, the result is an unrivaled accuracy
with respect to local methods, at equivalent resolution; in other terms a very
fast convergence. Moreover, when the computation is done for very large do-
mains, this added accuracy allows to limit the increase in resolution, which
therefore also saves computational resources (computational memory, storage,
and the related operations). In addition, the numerical dissipation, which is
artificial with respect to physical dissipation terms in the solved equations, is
limited to a very low value. This is a major advantage for the computation of
high Reynolds number flows (roughly, high energy flows), since the Reynolds
number is inversely proportional to the molecular viscosity: � ∝ 1/ν. Local
methods such as finite differences require high-order discretization to avoid
this artifact. An illustration of a turbulent flow computed with a Fourier-
Fourier-Chebyshev collocation method is presented in Figure 3.1. Not only
a spectral method introduces very little numerical dissipation, but it is also
a low-dispersive technique, a property which is important for treating phe-
nomena such as wave propagation. The propagation and reflection of inertial
waves in a rotating channel is illustrated on Figure 3.2.

Two characteristics of the spectral methods prevent their use in the com-
putation of complex flows such as industrial or aeronautic flows. The spectral
methods “suffer” more than FD from the presence of solid boundaries with
complex geometry, since they require to find functional bases adapted to each
different geometry. Secondly, strong discontinuities in the solution are treated
with difficulty by series expansions. This is the case e.g. in the presence of
shocks in compressible flows. The treatment of complex geometries or discon-
tinuities can be addressed by an extension of the spectral method which is
called “spectral elements method”, in which the domain is decomposed into
sub-domains, or elements, over which the spectral method is applied, requir-
ing a suitable formulation of the matching conditions at the boundary of the
elements.

The spectral methods are generally classified in three categories: “Galerkin”
(a denomination which is also found in FE), “tau” and “collocation” (also
“pseudo-spectral”) method. The Galerkin and tau techniques are based on
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Weighted residuals methods 27

the coefficients of the functional global development of the approximation
solution, whereas the collocation method uses the values of this global devel-
opment at suitable discretization points. This last method will be discussed
more in the following in relation with the treatment of nonlinear terms ap-
pearing in PDEs. The spectral methods are very efficient by specific choices of
the development functions, since they often allow to convert differential space
operators into algebraic operators, and with a smart use of the properties of
the development functions, which can be trigonometric polynomials such as
the Fourier, Chebyshev, or Legendre polynomials.

A significant advantage of using trigonometric polynomials is the possibility
to implement numerically the spectral method by using the algorithm of fast
Fourier transforms (FFT) for performing the required discrete Fourier trans-
formations. This algorithm was first proposed by Cooley & Tukey in 1965.
Using the FFT reduces the numerical cost for evaluating a Fourier transform
from 8N2 real arithmetic operations to about 5N log2 N when the resolution
N is a power of two.

In the following, after the principles of the weighted residuals method are
given, a presentation of the spectral methods is given, illustrated with exam-
ples of application. The reader will thus get an introductory point of view
on the spectral methods, before entering more complex matter presented in
further readings of highly specialized and exhaustive presentations such as
that of [Canuto et al., 1987] or of [Boyd, 2001], the latter opus specializing in
Fourier and Chebyshev spectral methods.

2.2 Principles of the weighted residuals method

The discretization methods based on weighted residuals are procedures that
approach the solution of an ensemble of differential—or integral—equations
of the form

Au = f (2.1)

on the domain Ω, with given boundary conditions

Su = g (2.2)

on the sub-manifold Γ of Ω. The unknown function u depends on the space
variable x = (x1, x2, · · · , xn). The function u as the exact solution of (2.1)
and (2.2) is approached by an estimate uN built in the form of a combination
of base functions Φ(x):

uN(x) =
N∑

k=1

αkΦk(x) (2.3)
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28 Computational Fluid Dynamics

in which the αk are the N free parameters, and the functions Φ(x) form an
independent functional base (chosen in a space yet to be defined). We im-
pose that the functions Φk(x) satisfy the boundary conditions and are smooth
enough and with the needed properties required by equation (2.1). By insert-
ing the estimate (2.3) in (2.1), one obtains the error function, which is the
departure from the exact solution, also called the residual

ε = AuN − f = 0

The method consists in canceling ε in a certain sense, that is canceling the
integral of the residual function weighted as follows:

〈ε, Wi〉 =
∫

Ω

ε(x)Wi(x)dx = 0, i = 1, · · · , N (2.4)

in which the weighting functions are the Wi(x)’s. The various possibilities in
choosing the weighting functions yield various kinds of methods. One could
thus achieve a finite volume method, a finite elements method, a spectral
method, and even recover finite differences. The set of equations (2.4) cor-
respond to the projection of the residual onto the space generated by the
weighting functions Wi(x), i = 1, · · · , N , using the inner product in func-
tion space 〈f, g〉 =

∫
Ω f(x), g(x)dx. In a sense, this corresponds to defining a

projector over a functional space.

2.3 Collocation or pseudo-spectral method

As indicated by its name, in the collocation method one chooses to satisfy
exactly equation (2.1) in a finite number of points chosen in advance, in the
same amount as the unknowns αk to be determined in the development of the
approximation function. This corresponds to the specific choice

Wi(x) = δ(xi), Dirac functions in xi

and one obtains N equations in the form

∫

Ω

ε(x)Wi(x)dx = ε(xi) = 0, i = 1, · · · , N
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Weighted residuals methods 29

2.4 Least squares method

This methods consists in minimizing the square of the norm of the residual
function

F = 〈ε, ε〉 =
∫

Ω

ε2dx

and if u is approached by uN(x) =
∑N

k=1 αkΦk(x), then the minimum is
obtained by solving the following equations in the unknowns αk, k = 1, · · · , N :

∂F

∂αi
= 0 i = 1, · · · , N

(in which it is still necessary to check that the extremum is indeed a minimum).
This also gives

∂

∂αi
〈ε, ε〉 = 0, i = 1, · · · , N

whence for the general equation Au− f = 0, one obtains

∂

∂αi
(〈A
∑

αkΦk, A
∑

αkΦk〉 − 2〈A
∑

αkΦk, f〉+ 〈f, f〉 = 0

In the case in which A is a linear operator, the equation becomes simply

〈Au − f, AΦi〉 = 0, i = 1, · · · , N

The weighting functions Wi, corresponding to the least squares method, are
therefore in this case the images by A of the Φis. They are also automatically
obtained as Wi(x) = ∂ε(x)

∂αi
.

2.5 Method of moments

As hinted by its name, in this method the weighting functions are chosen
to be the elements of the suite {1, x, x2, · · · , xN}, whence the equations

0 =
∫

Ω

εdx =
∫

Ω

εxdx = · · · =
∫

Ω

εxNdx

corresponding to the cancelling of the N successive moments of the residual
function ε(x).

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
30

 0
4 

M
ar

ch
 2

01
6 



30 Computational Fluid Dynamics

2.6 Galerkin approximation

In the celebrated method of Galerkin, the weighting functions Wi are iden-
tical to the base functions Φi, or also Wi(x) = ∂uN (x)

∂αi
. One obtains the system

of equations ∫

Ω

εΦi(x)dx = 0 i = 1, · · · , N

REMARK 2.1 It is possible to provide a “physical” interpretation by
defining a variation δu = Φ1δα1 + Φ2δα2 + · · ·+ ΦNδαN with arbitrary δαis.
The Galerkin method therefore implies∫

Ω

(Au − f)δudx = 0

where δu is a virtual variation compatible with the boundary conditions. With
the background of continuum mechanics in mind, these variations can be seen
as virtual displacements, and the Galerkin method therefore derives from the
principle of virtual works.

2.7 Subdomains

In this method, the weighting functions are the characteristic functions of
subdomains Ωi that constitute a mapping of the initial resolution domain Ω,
namely Wi(x) = 1 if x ∈ Ωi, 0 otherwise; this yields

∫

Ω

εWi(x)dx =
∫

Ωi

εdx = 0 i = 1, · · · , N.

Unlike the collocation method, in this case the integral is still continuous,
and, provided the equations are written in conservative form, the resulting
equations are similar to those obtained in the finite volumes method described
in Chapter 1.

2.8 An example

We illustrate the way the WR method is applied on a very simple example
of ordinary differential equation for a purely spatial linear problem. One seeks
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Weighted residuals methods 31

an approximate solution uN(x) of the following equation with the boundary
conditions that prescribe a unique exact solution u(x):

du

dx
+ u = 2x , x ∈ [0, 1] , (2.5)

u(1) =
1
2

.

The exact solution can be computed easily: u(x) = 2x− 2 + 1
2e1−x. We shall

use an approximation function which satisfies the boundary conditions, and
allow two degrees of freedom in the development space, in the form:

uN(x) = α1(x− x2) + α2(x− 1) +
1
2
x (2.6)

where the first two coefficients of the functional development are α1 and α2,
and the first two functions are the linearly independent polynomials x−x2 and
x− 1. The third term 1

2x ensures the boundary conditions without having to
carry an additional explicit constraint on the approximation function. Upon
injecting this approximation in equation (2.5), one obtains the residual

ε(x) = α1(1− 2x) + α2 + 1/2 + α1(x− x2) + α2(x− 1) + x/2− 2x2

which is not necessarily zero since uN has no reason to be a solution of the
system (2.5) at this stage. The Galerkin method suggests to use the weight-
ing functions defined from Wi(x) = duN

dαi
, which yields W1(x) = x − x2,

W2(x) = x − 1. And by canceling the integrals of the weighted residual
Ii =

∫ 1

0 Wi(x)ε(x) dx, one obtains the system of equations in terms of the
unknown αis

1
30

α1 +
1
12

α2 = − 1
40 (2.7)

−1
4
α1 −

1
6
α2 = 1

6 , (2.8)

which provides the values for the coefficients of the Galerkin approximation,
which writes ugalerkine

N (x) = − 7
11 (x − x2) − 1

22 (x − 1) + 1
2x. In a similar

way, the approximation by the least squares method is obtained, with slightly
modified values for the coefficients. The approximation by the method of
subdomains depends on the choice of the intervals of the resolution domain;
we choose for instance the weighting functions such that w1(x) = 1 on [0, 1/2]
and w1(x) = 0 on ]1/2, 1], and w2(x) = 0 on [0, 1/2] and w2(x) = 1 on ]1/2, 1].
The resulting approximating solutions are compared for the values obtained at
x = 9

10 , given in Table 2.1, as well as using a Galerkin approximation with an
additional degree of freedom. One observes on the table that a good accuracy
is obtained already with only two coefficients in the development, but an order
of magnitude in the accuracy is obtained when using an additional coefficient,
illustrating the fast convergence of the WR methods.
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32 Computational Fluid Dynamics

exact Galerkin least squares subdomains Galerkin (three
coefficients)

uN ( 9
10 ) 0.352 0.397 0.377 0.378 0.358

Table 2.1: Solutions of problem (2.5) evaluated at x = 9
10 for the different

choices of the WR method. The last column corresponds to the Galerkin
method with three degrees of freedom using uN(x) = α1(x−x2)+α2(x−1)+
α3(x2 − x3) + 1

2x.
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Spectral methods
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3.3 Applications: Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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3.6 Evaluation of nonlinear terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Introduction

We present in this chapter the spectral methods, which are a kind of
weighted residuals methods with a specific choice of orthogonal development
functions. We start by providing the background principles underlying the
three main spectral methods applied to a linear problem. Then, we specialize
the presentation to the case of Burgers equation and of Helmholtz-type equa-
tions, giving progressively more details in the spectral technique for the case
of Fourier and Chebyshev polynomials. The implicit time-discretization of the
heat equation is presented exhaustively, so that the practical implementation
of the Chebyshev-tau method for this particular case can be done without
particular difficulty.

3.2 Linear problem: Galerkin, tau, and collocation
methods

The problem to be solved mixes the partial differential equation with pre-
scribed initial conditions and boundary conditions. We choose in a first time
to consider the linear problem for simplicity, the treatment of nonlinear terms
is postponed to a further section. Denoting f the possible external forcing

33



34 Computational Fluid Dynamics

FIGURE 3.1: Iso-surfaces of longitudinal velocity for the fully-developed high
Reynolds number turbulent flow in a plane channel. A spectral Fourier-
Chebyshev collocation method with 2563 mesh points is used. A simulation
with finite differences at the same resolution would require a sixth-order spa-
tial scheme to achieve an equivalent accuracy.

FIGURE 3.2: Inertial waves propagating in a fluid at rest within a two-
dimensional plane channel rotating in a direction normal to the solid walls.
A Fourier-Chebyshev collocation technique with 642 mesh points is used.
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Spectral methods 35

term,

∂u

∂t
(x, t) = L(x, t)u(x, t) + f(x, t) x ∈ D, t ≥ 0 (3.1)

B(x)u(x, t) = 0 x ∈ ∂D, t > 0 (3.2)
u(x, 0) = g(x) x ∈ D . (3.3)

The resolution of this system is performed over the spatial domain D with
boundaries ∂D, L(x, t) is a linear differential operator in space, and B(x)
represents the boundary conditions linear operator, independent of time. The
unknown function u here is a scalar for the sake of simplicity, however the
extension to a multi-variable problem is straightforward. In the short present
introduction, we limit the scope to a linear problem with homogeneous bound-
ary conditions. Since the spectral space of coefficients is discretized, although
not the physical space, the semi-discrete approximation of (3.1) is

∂uN

∂t
(x, t) = LNuN (x, t) + fN (x, t) (3.4)

in which at each time t the approximation function uN(x, t) belongs to a N -
dimensional subspace BN of the functional space B of functions that verify
the boundary conditions (3.2) (within the initial Hilbert space H), and LN is
a linear operator acting over H and resulting in BN of the form

LN = PNLPN

The operator PN is therefore the projector from H to BN such that for each
function f , the associated discrete function is fN = PNf . The choice of a
spectral method thus goes through the choice of an approximation space BN

and of a projection operator PN , in the same way we have chosen a set of
development functions and a set of weighting functions in Chapter 2.

In the following, we describe the corresponding spectral methods that are
more commonly used.

3.2.1 Galerkin approximation

Let us describe shortly the way one sets up a Galerkin approximation for
the problem (3.1)-(3.3). As done in the general weighted residual method in
Chapter 2, the approximation solution uN is sought in the form of a truncated
series

uN(x, t) =
N∑

m=1

αm(t)Φm(x) (3.5)

where the time-dependent functions Φn are linearly independent and belong to
BN . In this way, uN immediately satisfies the boundary conditions. The un-
steady coefficients αn of the development are obtained by solving the Galerkin
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36 Computational Fluid Dynamics

equation that are written as

d

dt
(Φn, uN) = (Φn, LuN) + (Φn, f) n = 1, . . . , N , (3.6)

or with (3.5)

N∑
m=1

(Φn, Φm)
dαm

dt
=

N∑
m=1

am (Φn, LΦm) + (Φn, f) . (3.7)

The inner product over BN is denoted ( , ) as in Chapter 2. One transforms
the previous equations, implicit in terms of the development coefficient, into
an explicit form by applying the projector PN such that

PNu(x) =
N∑

n=1

N∑
m=1

pnm (Φm, u)Φn(x)

in which the coefficients pnm are the components of the inverse matrix of order
N ×N whose components are (Φn, Φm).

In terms of the minimization of the weighted residual obtained for equa-
tion (3.4), this is therefore equivalent to the application of the orthogonal
projection operator PN on the residual, the problem may then be recast as:

uN ∈ BN

PN

(
∂uN

∂t
(x, t)− LN(x, t)uN (x, t)− fN (x, t)

)
= 0 (3.8)

or, from a variational point of view,

uN ∈ BN(
∂uN

∂t
(x, t) − LN(x, t)uN (x, t) − fN(x, t), v

)
= 0 ∀v ∈ BN (3.9)

Equations (3.7) provide a system of ODEs in terms of the unknowns αis.
The time-evolving solution of the problem is obtained by:

• (a) projecting the initial conditions onto the development functions for
obtaining the αi(t = 0);

• (b) time-marching the αis by finite differences of the time derivative ∂
∂t ;

• (c) obtain the solution at each desired time-step and space point by
computing the series (3.5).
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Spectral methods 37

3.2.2 Tau method

This method was first introduced by Lanczos as soon as 1938. The base
functions for the series development are the functions Φn (n = 1, 2 . . .), ele-
ments of a complete set of orthonormal functions. The solution uN (x, t) is
therefore expressed as

uN (x, t) =
N+k∑
n=1

αn(t)Φn(x) . (3.10)

The integer k is the number of boundary conditions applied to the approx-
imation function, expressed as BuN = 0. The most significant difference
between (3.10) for the tau approximation and (3.5) for the Galerkin approx-
imation, lies in the fact that the functions Φn, in the tau method do not
individually verify the boundary conditions (3.2). The boundary constraints
are, here, explicit:

N+k∑
n=1

αnBΦn = 0 , (3.11)

corresponding to as many as k equations, and are specified directly as con-
straints applied to the development coefficients an of the functions, such that
they belong to BN . The projection operator is therefore defined as

PN

( ∞∑
n=1

AnΦn

)
=

N∑
n=1

AnΦn +
k∑

m=1

bmΦN+m (3.12)

relation in which the bm (m = 1, . . . , k) are chosen so that they satisfy the
boundary conditions in the form: BPNu = 0, ∀u ∈ H. The tau approximation
of the problem (3.1)-(3.3) is fully defined by the relations (3.10), (3.11) and
the N equations

dαn

dt
= (Φn, LuN) + (Φn, f) n = 1, . . . , N . (3.13)

The name of this method, “tau”, comes from the fact that the approximation
function uN thus obtained is also the solution of a modified problem of type

∂uN

∂t
= LuN + f +

∞∑
p=1

τp(t)ΦN+p(x)

where the coefficients τp have to be determined such that uN ∈ BN .

3.2.3 Collocation method

This method is also known as the pseudo-spectral method, especially when
applied to the Navier-Stokes conservation equations for fluid flows. In the col-
location method, the projection operator PN is determined after the definition
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38 Computational Fluid Dynamics

of N points x1, x2, . . . , xN in the interior of the domain D over which the so-
lution is sought. These points are the “collocation points”. Again, we use
the functions Φn (n = 1, . . . , N) that constitute a base in the approximation
space BN such that det Φn(xm) = 0. Then, for each u ∈ H,

PNu =
N∑

n=1

αnΦn(x) (3.14)

with coefficients αn that are solutions of the equations

N∑
n=1

αnΦn(xi) = u(xi) i = 1, . . . , N . (3.15)

The collocation is thus characterized by the conditions PNu(xi) = u(xi) for
i = 1, . . . , N and PNu ∈ BN . It appears that the results of the collocation
depend both on the choice of the points xn and of the functions Φn(x) for
n = 1, . . . , N .

3.3 Applications: Fourier

We assume here that the domain has no solid boundary, that is the spatial
domain is assumed to be infinite or periodic. In the latter case, the spectral
methods are extremely efficient. One example of periodic conditions is found
in the global circulation models for geophysical flows, used by meteorologists
for the atmosphere around the Earth. Such models are spectral, as opposed
to predictions obtained by finite differences formulas for local meteorology.

3.3.1 Fourier Galerkin approximation for the Burgers equa-
tion

We seek here the solution of a problem constituted of the nonlinear Burgers
equation with given boundary conditions. We recall that Burgers’ equation
corresponds to a “pressureless” fluid:

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0 (3.16)

u(x, 0) = u0(x)

in which ν is a positive constant that represents the molecular viscosity in the
fluid. The domain is assumed to be periodic in space over the interval [0, 2π].
The functional space which is chosen is the set of trigonometric polynomials
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Spectral methods 39

of order ≤ N/2. The approximate solution function uN with N degrees of
freedom then writes

uN(x, t) =
N/2−1∑

k=−N/2

ûk(t)eikx . (3.17)

The unknowns of the problem are the spectral coefficients ûk(t) with k =
−N/2, . . . , N/2− 1, renamed with respect to the previous notation (αis) to
conform to the classical notation for Fourier spectral coefficients; the functions
eikx correspond to the development functions Φn(x). The ordinary differential
equations for their evolution are obtained upon writing that the residual is
orthogonal to each of the chosen weighting functions, identical as the devel-
opment functions in the case of the Galerkin method. This implies that
∫ 2π

0

(
∂uN

∂t
+ uN

∂uN

∂x
− ν

∂2uN

∂x2

)
e−ikx dx = 0 k = −N

2
, . . . ,

N

2
− 1 ,

(3.18)
in which the inner product of complex-valued functions is defined as (f, g) =∫ 2π

0 f(x)g∗(x)dx. Since by construction the test functions and the develop-
ment functions are orthogonal, one thus obtains

∂ûk

∂t
+

̂
(

uN
∂uN

∂x

)

k

+ k2νûk = 0 k = −N

2
, . . . ,

N

2
− 1 , (3.19)

with the following definition of the transform of the nonlinear term:

̂(
uN

∂uN

∂x

)

k

=
1
2π

∫ 2π

0

uN
∂uN

∂x
e−ikx dx . (3.20)

The initial conditions are readily obtained in spectral space by

ûk(0) =
1
2π

∫ 2π

0

u(x, 0)e−ikx dx . (3.21)

We postpone to section 3.6.2 the description of the evaluation of the nonlinear
convolution term (3.20). In equation (3.19), we note an interesting feature of
the spectral Fourier transform, in that it converts spatial differential operators,
e.g. here ν ∂2u

∂x2 , into algebraic operators, here k2νû. This is what allows to
convert PDEs in physical space into ODEs in spectral space in terms of the
development coefficients. Provided one knows how to compute the nonlinear
term (3.20), explained in section 3.6, the resolution of (3.19), starting from
the initial conditions (3.21), only involves time-marching by discretizing the
time derivative with a classical FD scheme; e.g. using a time-step Δt

∂û

∂t
=

ûn+1
k − ûn

k

Δt
+ O(Δt) .
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40 Computational Fluid Dynamics

3.3.2 Fourier collocation for Burgers’ equation

Let us consider the previous example (3.16) for which the approximation
function uN is this time represented by its values at the spatial points xj =
2πj/N , j = 0, . . . , N − 1, which constitute the chosen mesh points. It is
of course possible to switch from the values of uN at the mesh points to the
Fourier coefficients by the relations (3.77) and (3.79). The collocation method
requires the verification of equation (3.16) at each of the mesh point, that is

[
∂uN

∂t
+ uN

∂uN

∂x
− ν

∂2uN

∂x2

]

x=xj

= 0 j = 0, 1, . . . , N − 1 . (3.22)

The initial conditions are obviously uN(xj , 0) = u0(xj).
Let us note that the orthogonal projection operator is already included in

equation (3.22), with respect to the following discrete inner product:

(u, v)N =
2π

N

N−1∑
j=0

u(xj)v∗(xj) .

( ∗ represents the complex conjugate.) In this method, the derivative ∂uN/∂x
if efficiently evaluated by the spectral discrete differentiation operator DN

defined as:

(DNu)l =
N/2−1∑

k=−N/2

αke2iklπ/N l = 0, 1, . . . , N − 1 (3.23)

αk =
ik

N

N−1∑
j=0

uje
−2ikjπ/N . (3.24)

This differentiation operation may be represented by a matrix such that:

(DNu)l =
N−1∑
j=0

(DN )lj uj (3.25)

with matrix coefficients explicitly obtained with the following formula:

(DN )lj =

{
1
2 (−1)l+j cot

[
(l−j)π

N

]
l = j

0 l = j .
(3.26)

The resulting matrix is therefore skew-symmetric, and its eigenvalues are the
iks, k = −N/2 + 1, . . . , N/2 − 1, where 0 is an eigenvalue with order of
multiplicity 2, corresponding to the eigenfunctions 1 and cos(Nx/2). (The
case of an odd number of collocation points is slightly different, but is very
seldom used.)
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Spectral methods 41

Let us consider again equation (3.16) by rewriting Burgers equation in an
equivalent form, although slightly different, with a conservative expression of
the nonlinear term:

∂u

∂t
+

1
2

∂

∂x
(u2)− ν

∂2u

∂x2
= 0 . (3.27)

The nonlinear operator is therefore approximated here by the discretized op-
erator (1/2)DN

[
(u2)

]
. The collocation discretization of the problem therefore

becomes
∂uN

∂t
+

1
2
DN (uN � uN)− νD2

NuN = 0 (3.28)

whereas it amounted to

∂uN

∂t
+ uN �DNuN − νD2

NuN = 0 (3.29)

in the previous case. The operator � stands for the point-wise product in dis-
cretized space. In equation (3.28), the nonlinear term is evaluated by a square
power (point-wise, that is to say), then by the differentiation. The resulting
system of equations (3.28) is therefore not equivalent to equations (3.29), since
the operators � and DN do not necessarily commute. This is not the case
for the Galerkin method which provides the same system to be solved nu-
merically, independently of the precise way one writes the partial differential
equations of the problem.

3.4 Applications: Chebyshev

The Chebyshev polynomials are a kind of trigonometric polynomials with
uneven variations in space (see Figure 3.3) and limit values that prove useful
in spectral methods (see the illustrations of the computation of fluid motion
in a channel flow 3.2 and 3.1). A Chebyshev polynomial of order n is the
function Tn(x) = cos(n arccosx) for x ∈ [−1, 1]; for example T0(x) = 1,
T1(x) = x, T2(x) = 2x2− 1, . . . , with particularly useful recurrence relations,
e.g. Tn+1(x) = 2xTn(x)− Tn−1(x).

3.4.1 Computation of derivatives

Among many nice properties of the Chebyshev polynomials and the series
decomposition of functions on their base, the recurrence relations can be an
efficient way for obtaining the coefficients of the development of derivatives of
a function f(x) by using the coefficients of the development of f(x) itself.
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42 Computational Fluid Dynamics

FIGURE 3.3: Two Chebyshev polynomials of order k = 3 and order k = 16
showing the uneven distribution of extrema and zeros, upon which can be
defined grid points for an efficient Chebyshev collocation method. In addition,
non-zero values at the boundaries of the interval allow to specify Dirichlet
boundary conditions to the problem whenever necessary, in the context of a
Chebyshev-tau method.

For instance, in the case of the Chebyshev polynomials, the coefficients of
the development of the derivative are

α(1)
n =

2
cn

N∑
p = n + 1
p + n = odd

pαp (3.30)

(see below the details on the coefficients cn) and they verify the recurrence
relation

cnα(1)
n = α

(1)
n+2 + 2(n + 1)αn+1 (3.31)

with the understanding that, due to the truncation of the series, α
(1)
N =

α(1)N+1 = 0. In this way, α
(1)
n can be evaluated for each n in N opera-

tions. The existence of the recurrence relation (3.31) is guaranteed by the
properties of the Chebyshev polynomials, namely the relation

2Tn =
T ′

n+1

n + 1
−

T ′
n−1

n− 1
for n > 1 .

By writing analogous recurrence relations, on can also efficiently evaluate the
coefficients of arbitrary order derivatives.
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Spectral methods 43

3.4.2 Chebyshev tau approximation for Burgers’ equation

The solution of equation (3.16) is here sought over the interval [−1, 1] such
that it satisfies Dirichlet boundary conditions

u(−1, t) = u(1, t) = 0

The test functions, i.e. the set of functions over which one looks for the
solution, are polynomials of degree ≤ N , a space which we denote PN , which
take a zero value at x = ±1. The discrete solution of the problem is expressed
in terms of a Chebyshev series:

uN(x, t) =
N∑

k=0

ûk(t)Tk(x) (3.32)

One ensures that Burgers equation is verified by specifying that the residual
be orthogonal to the weighting (or test) functions, chosen within the set PN−2

(accounting for the two boundary conditions). This yields
∫ 1

−1

(
∂uN

∂t
+ uN

∂uN

∂x
− ν

∂2uN

∂x2

)
Tk(x)(1−x2)−1/2 dx = 0 k = 0, . . . , N−2

(3.33)
We note that the multiplying factors functions w(x) = (1−x2)−1/2 ensure the
orthogonality of the Chebyshev polynomials with one another, thus requiring
a slightly different inner product. Moreover, the boundary conditions impose
the two additional relations:

uN (−1, t) = uN (1, t) = 0 .

Equation (3.33) reduces to

∂ûk

∂t
+

̂(
uN

∂uN

∂x

)

k

− νû
(2)
k = 0 k = 0, 1, . . . , N − 2 (3.34)

where the second order derivative coefficients û
(2)
k are obtained from the ûk

by using the known formulas for differentiating Chebyshev polynomials, that
is

û
(2)
k =

1
ck

∞∑
p = k + 2
p+k even

p(p2 − k2)ûp

with

ck =
{

2 if k = 0
1 if k ≥ 1 ;

and the nonlinear term is formally expressed as

̂(
uN

∂uN

∂x

)

k

=
2

πck

∫ 1

−1

(
uN

∂uN

∂x

)
Tk(x)(1 − x2)−1/2 dx . (3.35)
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44 Computational Fluid Dynamics

Note that, when implementing the method, it is interesting to define a vector
of coefficients ck and use its components, instead of having to test on the
value of k, thus saving computational time. The boundary conditions are
stated through the relation Tk(±1) = (±1)k as follows:

N∑
k=0

ûk = 0 (3.36)

N∑
k=0

(−1)kûk = 0 ,

and the initial conditions are given by

ûk(0) =
2

πck

∫ 1

−1

u0(x)Tk(x)(1 − x2)−1/2 dx k = 0, 1, . . . , N .

This set of equations constitutes the complete system of ordinary differen-
tial equations to be solved for obtaining the solution approximation by the
Chebyshev tau spectral method.

From the point of view of the projection of the equations, on observes
that equation (3.33) is the variational expression of an orthogonal projection
PN . The latter operator is defined with respect to the continuous inner prod-
uct associated with the weighting functions w(x) as a transformation within
L2

w(−1, 1)—the set of functions with integrable square with respect to this
inner product—within PN−2.

REMARK 3.1 Note that the nonlinear term (3.35) is a specific case of
the transform of a product:

(̂uv)k =
2

πck

∫ 1

−1

uvTk(x)(1 − x2)−1/2 dx , (3.37)

which also amounts to

(̂uv)k =
1
2

∑
p+q+k

ûpv̂q +
∑
|p− q| = kûpv̂q . (3.38)

in discretized space.

A typical time scheme employs the explicit evaluation of the nonlinear term
and an implicit evaluation for the linear term. Using homogeneous bound-
ary conditions of the Neumann type (flux conditions) transforms the condi-
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Spectral methods 45

tions (3.36) into

N∑
k=0

k2ûk = 0 (3.39)

N∑
k=0

(−1)kk2ûk = 0 . (3.40)

3.4.3 Chebyshev collocation

In the collocation method for the Dirichlet problem, the set of base functions
for developing the approximation function is identical to the one chosen in the
preceding section, and the solution is represented by its values over the mesh
points xj = cos(πj/N), j = 0, 1, . . . , N . The values of uN on the grid are
linked to the Chebyshev coefficients by the matrices obtained explicitly by
writing the values of the Chebyshev series at the grid points, namely

Ckj =
2

Ncjck
cos

πjk

N

for the transformation from physical space to the Chebyshev coefficient space,
and (

C−1
)
jk

= cos
πjk

N

for the inverse transformation. The coefficients cj are given by

cj =
{

2 j = 0, N
1 1 ≤ j ≤ N − 1 .

These two transforms can be handled efficiently by using Fast Fourier Trans-
forms (FFT).

The discretization of the partial differential equation therefore is

∂uN

∂t
+ uN

∂uN

∂x
− ν

[
∂2uN

∂x2

]

x=xj

= 0 j = 1, . . . , N − 1 , (3.41)

with

uN(−1, t) = uN (1, t) = 0 (3.42)
uN(xj , 0) = u0(xj) j = 0, . . . , N . (3.43)

It is thus possible to identify the linear operator LNuN which amounts to
−νD2

NuN , in which DN is the differentiation operator of the Chebyshev col-
location, and the nonlinear term is uNDNuN . The orthogonal projection is
therefore expressed by the relations (3.41)-(3.43), that transform C0([−1, 1])
into the space of polynomials of degree ≤ N which verify the boundary con-
ditions (with respect to the previously introduced inner product).
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46 Computational Fluid Dynamics

3.5 Implicit equations

Often, in stationary problems, spectral methods appear to be very useful
in the case of implicit equations. Moreover, many unsteady problems can
be solved by using implicit or semi-implicit algorithms in time. We therefore
illustrate here the treatment of such implicit problems by considering elliptical
linear equations of Helmholtz type

Δu− λu = f (3.44)

where f represents a function of the space coordinate x and λ is a real positive
constant. This kind of equations gathers such problems as potential stationary
incompressible flows, and implicit time discretization of the heat equation.

The spectral collocation approximation transforms the problem in a linear
system of type

LU = F (3.45)

in which U and F are vectors of values over the mesh points for u and f
respectively, including the boundary conditions as well. The matrix L is the
matrix of a tensorial product in two dimensions in space, or more. For the
Galerkin and tau methods, U and F are the vectors gathering the coefficients
of the development of u and f , as well as the boundary conditions data, and
L is the corresponding matrix in spectral transform space. The linear system
is generally full, and may be solved in several ways, e.g. by direct inversion
methods or iterative methods.

3.5.1 Fourier approximation

In the Fourier approximation, we study the simple case of a one-dimensional
equation with constant coefficients for a space-periodic domain x ∈ [−1, 1]:

d2u

dx2
− λu = f . (3.46)

The Galerkin approximation gives

−k2ûk − λûk = f̂k k = −N

2
, . . . ,

N

2
− 1 (3.47)

where the Fourier coefficients ûk have been defined previously as well as the
corresponding truncated Fourier series. The solution of this equation is triv-
ially obtained with the simple algebraic operation

ûk = −f̂k/(k2 + λ) k = −N

2
, . . . ,

N

2
− 1 (3.48)

where û0 is arbitrarily chosen if λ = 0.
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Spectral methods 47

The collocation method itself provides the following equations
[
d2u

dx2
− λu− f

]

x=xj

= 0 j = 0, . . . , N − 1 . (3.49)

These may be solved by using the discrete Fourier transform ûk =
1
N

∑N−1
j=0 u(xj)e−ikxj in order to diagonalize (3.49):

−k2ûk − λûk = f̂k k = −N

2
, . . . ,

N

2
− 1 . (3.50)

The solution of the system is obtained in terms of the ûk, and the final solution
is obtained by transforming again using the inverse transform, so as to get
uj = u(xj), j = 0, . . . , N − 1. The cost of this solution method is of course
reduced by using Fast Fourier Transforms.

REMARK 3.2 Again, one notes that even if the collocation method is
stated in physical space through (3.49), the efficiency of the resolution requires
the passage to Fourier space.

3.5.2 Chebyshev tau approximation

We consider here a classical problem of one-dimensional heat diffusion

∂u

∂t
(x, t)− β2 ∂2u

∂x2
(x, t) = F (x, t) − 1 ≤ x ≤ 1 (3.51)

with Dirichlet boundary conditions

u(−1, t) = u0 = 2T0 (3.52)
u(1, t) = u1 = 0 (3.53)

and the initial condition u(x, t = 0) = u0. The inhomogeneous term F can
be a forcing, either source or sink. The heat diffusion coefficient is β2. The
implicit time discretization of equation (3.51) is:

un+1 − un

Δt
= β2

(
∂2u

∂x2

)n+1

+ F (x, t) , (3.54)

where Δt is the time-step. This requires the resolution at every time-step of
a problem of Helmholtz kind:

λun+1 −
(

∂2u

∂x2

)n+1

=
1
β2

(
un

Δt
+ F (x, t)

)
(3.55)
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48 Computational Fluid Dynamics

with λ = 1/(α2Δt). We shall adopt a resolution method of type Cheby-
shev tau for the resolution of this problem, by developing the approximation
solution in a series of Chebyshev polynomials Tn(x) truncated at order N :

uN(x) =
N∑

n=0

αnTn(x) . (3.56)

The right term in the equation is denoted

G(x, t) =
1
β2

(
un

Δt
+ F (x, t)

)
, (3.57)

and is developed in the following manner:

GN =
N∑

n=0

ĝnTn(x) . (3.58)

The spectral method consists in considering the residual of the equation, that
is

εN = −∂2uN

∂x2
(x) + λuN (x)−GN (x) (3.59)

which can be also written using (3.58) and (3.56):

εN =
N∑

n=0

[
−α(2)

n + λαn − ĝn

]
Tn(x) . (3.60)

We require the canceling of the projection of the residual onto the base of
Chebyshev polynomials:

(εN , Ti) =
∫ 1

−1

εNTi√
1− x2

dx i = 0, 1, . . . , N − 2 (3.61)

or again
(

N∑
n=0

[
−a(2)

n + λan − ĝn

]
Tn, Ti

)
= 0 i = 0, 1, ..., N − 2 (3.62)

and by using the orthogonality property of the development polynomials, one
obtains N − 1 equations

−α(2)
n + λαn − ĝn = 0 n = 0, 1, . . . , N − 2 . (3.63)

The unknowns are the N + 1 coefficients (αk)0≤k≤N , knowing that the devel-
opment coefficients of the second-order derivative may be computed as

α
(2)
k =

1
ck

∑
p = k + 2
p + k even

p(p2 − k2)αp .
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Spectral methods 49

One needs to complete the previous system with the two boundary conditions

uN (−1) =
N∑

k=0

(−1)kak = u0 (3.64)

uN(1) =
N∑

k=0

ak = u1 . (3.65)

Upon writing this system of N + 1 equations in matrix form, it is equiva-
lent to LU = G, in which the matrix L is upper triangular, whose resolution
requires N2 operations, and G is the vector of coefficients ĝn. A better res-
olution method is obtained by recasting the equations (3.63), each of which
being denoted Ek, using the recurrence relation for spectral coefficients of the
second-order derivative, known in the general form

Pkα
(2)
k−2 + Qkα

(2)
k + Skα

(2)
k+2 = αk 2 ≤ k ≤ N . (3.66)

The recurrence coefficients are

Pk =
ck−2

4k(k − 1)
Qk =

−ek+2

2(k2 − 1)
Sk =

ek+4

4k(k + 1)
(3.67)

with

cn =

⎧⎨
⎩

0 n < 0
2 n = 0
1 n > 0

en =
{

1 n ≤ N
0 n > N

. (3.68)

The following linear combination of equations

PkEk−2 + QkEk + SkEk+2 = 0 (3.69)

then provides, after very little algebra,

λPkak−2+(λQk−1)ak+λSkak+2 = Pkĝk−2+Qkĝk+Skĝk+2 k = 2, . . . , N .
(3.70)

Let us denote hk the right-hand side of this equation. Equation (3.70) leads
to an algebraic system in which the even-order coefficients and the odd-order
coefficients are decoupled. Accordingly, the system is separated in two linear
systems, whose unknowns are respectively the α0, α2, . . . and the α1, α3, . . ..
The boundary conditions write

α0 − α1 + α2 + . . . + αN = u0 (3.71)
α0 + α1 + α2 + . . . + αN = u1 (3.72)

and yield, by sum and difference,

α0 + α2 + . . . + αN =
u0 + u1

2
(3.73)

α1 + α3 + . . . + αN−1 =
u1 − u0

2
. (3.74)
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50 Computational Fluid Dynamics

One now needs to solve two linear systems:

MpAp = Fp MIAI = FI .

The unknowns are the vectors

Ap =

⎡
⎢⎢⎢⎢⎢⎣

α0

α2

...
αN−2

αN

⎤
⎥⎥⎥⎥⎥⎦

AI =

⎡
⎢⎢⎢⎣

α1

α3

...
αN−1

⎤
⎥⎥⎥⎦

and the matrices are quasi-tridiagonal, of the form:

Mp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λP2 λQ2 − 1 λS2 0 . . .
0 λP4 λQ4 − 1 λS4

. . . . . . . . .
λPN−2 λQN−2 − 1 0

0 λPN −1
1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

Mp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λP3 λQ3 − 1 λS3 0 . . .
0 λP5 λQ5 − 1 λS5

. . . . . . . . .
λPN−3 λQN−3 − 1 0

0 λPN−1 λQN−1 − 1
1 1 . . . 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

with right-hand terms

Fp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h2

h4

...
hN−2

hN
u0+u1

2

FI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h3

h5

...
hN−1

hN
u1−u0

2

.

REMARK 3.3 Note that these two linear systems are well-conditioned,
that is with dominant diagonal, whereas it was not the case of the system in
the initial formulation.

The inversion method by double-sweeping allows to solve the two systems
in terms of the unknowns (αk)0≤k≤N with a cost proportional to N . We recall
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Spectral methods 51

that the unknowns are the coefficients of the Chebyshev series development
of the solution function uN at time tn+1. The complete solution is therefore

un+1
N (x) =

N∑
n=0

αn+1
k Tk(x) ,

which can be evaluated at each desired point x in space. Let us stress that at
each step, the vectors Fp and FI change, since they are computed from the
solution un

N at the preceding timestep. It is therefore necessary to perform
the resolution of the linear systems at every timestep.

3.6 Evaluation of nonlinear terms

We have up to now considered linear equations as in (3.1), or have delayed
the explicit explanation on how to treat nonlinear terms in the considered
problems. Such terms appear in many problems of fluid mechanics due to
the convection operator (u · ∇)u in the Navier-Stokes equations, and can be
optimally computed in spectral numerical schemes by using transformation
methods. The basic idea is to apply the spectral transform (FFT or other) to
switch from the spectral space representation of the nonlinear terms to their
equivalent in physical space, instead of computing the explicit convolution
product which is required when spectrally transforming a nonlinear term. In
the case of Chebyshev series, fast Fourier transforms allow the computation of
the coefficients of arbitrary nonlinear terms with a computational cost propor-
tional to N log N arithmetic operations (in each direction of space). Generally
speaking, collocation methods are often more efficient for the computation of
the coefficients of nonlinear terms than the Galerkin or the tau methods. It
is therefore recommended for nonlinear problems. For PDEs with quadratic
nonlinearity, e.g. the Navier-Stokes equations for an incompressible fluid, as
mentioned, the cost of the Galerkin or tau method is at least double that of
the collocation method. However, the Galerkin approximation may be used
for its conservative character, when exact energy conservation properties are
required.

For instance, the hyperbolic problem

∂u

∂t
+ eu+x ∂u

∂x
= f(x, t) x ∈ [−1, 1], t > 0 (3.75)

u(−1, t) = 0 ,

is more complex to treat with a Galerkin or tau approach, but in a more
straightforward way with the collocation technique. Let us explain how the
time-stepping is performed for equation (3.75) approximated by a Chebyshev
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52 Computational Fluid Dynamics

collocation method. The N + 1 collocation points are xj = cos(πj/N) for
j = 0, . . . , N , such that the solution uj = uN(xj) is known in the form

uj =
N∑

n=0

an cos
πnj

N
. (3.76)

The application of the inverse fast Fourier transform to (3.76) allows to obtain
the coefficients αn for n = 0, . . . , N and thus to compute the coefficients of
∂u
∂x α

(1)
n by using the relationship (3.31). It is then necessary to evaluate

∂u

∂x

∣∣∣∣
x=xj

=
N∑

n=0

α(1)
n cos

πnj

N

by using the fast Fourier transform. Finally, one can also compute euj+xj ∂u
∂x

at each mesh point xj and use the result for the time advancement of the
solution over one timestep. However, when dealing with nonlinear terms in
the equations, another procedure is required (described in section 3.6.1), which
raises the problem of aliasing.

3.6.1 Problem of aliasing

The back and forth transforms between physical and spectral space car-
ries a drawback when manipulating truncated series of the functions. This
phenomenon called aliasing creates spurious spectral coefficients that are not
physically present; all the more when the amplitudes of the spectral coeffi-
cients do not decrease fast enough when increasing their order. A special
treatment is therefore required, which is called “de-aliasing”.

We illustrate the case of the discrete Fourier transform, based on a set of
grid points in physical space

xj =
2πj

N
for j = 0, . . . , N − 1 ,

where N is a positive integer. The discrete Fourier coefficients of a complex
valued function u(x) for x ∈ [0, 2π] using this physical space discretization are

ûk =
1
N

N−1∑
j=0

u(xj)e−ikxj k ∈
[
−N

2
,
N

2

]
. (3.77)

Using the orthogonality of the Fourier polynomials, we have

1
N

N−1∑
j=0

eipxj =
{

1 if p = Nm, m = 0,±1,±2, . . .
0 otherwise (3.78)
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Spectral methods 53

which allows to inverse the formula, which then writes

u(xj) =
N/2−1∑

k=−N/2

ûkeikxj j = 0, . . . , N − 1 . (3.79)

In this relation, one identifies the polynomial

Iu
N (x) =

N/2−1∑
k=−N/2

ûkeikx

as a trigonometric interpolation polynomial of order N/2 of the function u
using the grid points xj . It is therefore the discrete Fourier series of u.

As shown by (3.78), the issue of aliasing lies in the fact that a spectral
coefficient of order k is not distinguishable from a spectral coefficient of order
k + mN , where m is an integer, when the frequencies are confined to vary
within the interval

[−N
2 , N

2

]
; since, in the transform (3.77), the exponential

term e−ikxj = e−i(k+mN)xj when xj = 2πj
N . This is illustrated on Figure 3.4.

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2  2.5  3

sin(3x)
sin(-21x)

FIGURE 3.4: Illustration of aliasing: two sine functions with frequency k = 3
and k = −21 are indistinguishable when represented on a physical grid with
N = 24 points (symbols), due to the coarseness of the grid. For increasing
frequencies, the required number N of grid points required to avoid aliasing
increases dramatically.
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54 Computational Fluid Dynamics

3.6.2 Convolution sums

In a pseudo-spectral method, aliasing errors may arise whenever a FFT or
an inverse FFT transform occurs. In the Galerkin context, the treatment of
nonlinear terms, or terms in the equations in which the coefficients are non-
uniform and depend on space, introduce convolution products that need to
be computed.

Let us consider a term w(x) in the equation that needs to be solved, as a
product of the functions u(x) and v(x) in physical space:

w(x) = u(x)v(x) . (3.80)

In the context of developing terms in infinite series, one recovers the infinite
sum that corresponds to the convolution, in the form of

ŵk =
∑

m+n=k

ûmv̂m (3.81)

in which

u(x) =
∞∑

m=−∞
ûmeimx (3.82)

v(x) =
∞∑

n=−∞
v̂neinx (3.83)

and

ŵk =
1
2π

∫ 2π

0

w(x)e−ikx dx .

When u, v and w are approximated by their respective Fourier series truncated
at order N/2, the approximation of the convolution product becomes

ŵ(k) =
∑

m + n = k
|m|, |n| ≤ N/2

ûmv̂n (3.84)

in which |k| ≤ N/2. The direct computation of this sum involves O(N2) op-
erations, with an exaggerated cost compared to the O(N) cost for evaluating
this same term in a finite differences technique (these estimates correspond to
a one-dimensional problem).

The use of a transformation method allows to reduce this cost, which be-
comes exaggerated for computations with a large number of nodes, to a cost
of order O(N log2 N) (again in a one-dimensional setting).

3.6.3 Numerical evaluation by a pseudo-spectral transfor-
mation method

The pseudo-spectral method uses the inverse discrete Fourier transforms of
ûm and v̂n, since the functions u and v are known by their spectral coefficients,
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Spectral methods 55

either as the result of a previous timestep, or from initial conditions. Instead
of computing the nonlinear term by a convolution product in transformation
space, the product is therefore computed in physical space as in (3.80) by a
point-wise multiplication, that is at each grid point, and the result is Fourier
transformed again to obtain ŵk.

The discrete Fourier transforms are denoted

Uj =
N/2−1∑

k=−N/2

ûkeikxj

Vj =
N/2−1∑

k=−N/2

v̂keikxj for j = 0, 1, . . . , N − 1 (3.85)

and one defines
Wj = UjVj j = 0, 1, . . . , N − 1 (3.86)

and

Ŵk =
1
N

N−1∑
j=0

Wje
−ikxj k = −N/2, . . . , N/2− 1 (3.87)

where the mesh points coordinates in physical space are xj = 2πj/N , and Uj ,
Vj , Wj are the respective values of u(xj), v(xj), w(xj). Using the orthogonal
property of the Fourier exponential with respect to the inner product, one
gets

Ŵk =
∑

m+n=k

ûmv̂n

︸ ︷︷ ︸
ŵk

+
∑

m+n=k±N

ûmv̂n . (3.88)

In the latter formula, the required convolution product ŵk is identified, in
addition to an undesired term which corresponds to the aliasing error. As
explained in section 3.6.1, modes of order k + N are misinterpreted as modes
of order k in the second sum of the right-hand-side of equation (3.88).

The cost of evaluating the nonlinear term in such a way can be esti-
mated to (15/2)N log2 N multiplications (corresponding to three fast Fourier
transforms and N multiplications). The extension of the method to three-
dimensional space is straightforward. The objective at this point is to get rid
of the undesired term in (3.88), which can be realized using two techniques.
Each technique has a slightly different memory usage and computational cost,
and the choice of one or the other depends on the available computer.

3.6.4 De-aliasing by the 3/2 rule

The underlying idea of this method is to use Fourier series with a larger
dimension M ≥ 3N/2 instead of N in (3.87).
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56 Computational Fluid Dynamics

Using Fourier series of size M (denoted by ˜) transform the equation (3.88)
in

W̃k =
∑

m+n=k

ũmṽn

︸ ︷︷ ︸
w̃k

+
∑

m+n=k±M

ũmṽn . (3.89)

It is important to understand that in the context of a spectral methods with
N degrees of freedom, one needs to compute the convolution product W̃k for
|k| ≤ N/2 only. Thus, for being able to remove the contribution of aliased
coefficients in (3.89), one needs to force them to appear only beyond the
interval [−N/2, N/2] by an adequate choice of M . It can be shown that if
M ≥ 3N

2 − 1, the desired effect is obtained, that is the aliasing only appears
for the largest non useful coefficients. At each timestep after the M -size
transformation of the convolution product, it is necessary to set to zero all
the coefficients that lie beyond the interval [−N/2, N/2].

The additional cost associated with the transforms of size M points is 50%,
and the memory usage is of course more important. One must add that a
pseudo-spectral method based on Chebyshev polynomials is also subject to
aliasing, which also can be removed exactly with the 3/2 rule.

3.6.5 De-aliasing by phase-shifting

This method for de-aliasing consists in evaluating twice the transformation
product (3.87) using two different meshes: one based on the grid points xj

and another mesh which is shifted with grid points locations xj + Δ. In the
latter case, the convolution product is denoted Ŵ ′

k. One can show that the
unaliased convolution product is the result of the linear combination of the
two estimates:

ŵk =
1
2

[
Ŵk + Ŵ ′

k

]
,

provided Δ = π/N . The cost of this technique is slightly higher than that of
the 3/2 method. It can still be valuable in that it does not involve Fourier
transforms of augmented size, an increase that may be impossible when the
number of grid points reaches the limits of the memory size of the computer.

3.6.6 Errors and convergence

As in all methods for the numerical solution of PDEs, the discretization
with a finite number of points raises the questions about the accuracy of the
method, the errors, and its convergence when increasing the number of degrees
of freedom. As already mentioned in Introduction, the convergence of spectral
methods is very fast with respect to the geometric rate of convergence of DF,
EF or VF methods. In this respect the convergence of spectral methods is
super-geometric.
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Spectral methods 57

FIGURE 3.5: The truncated Fourier series representation of the step function
over the interval [0, 2π], using N = 8, 16 and 32 spectral coefficients.

We have also seen that the truncated series can be seen as interpolation
polynomials for the developed functions. In the collocation method, the use
of trigonometric interpolation over equidistant points raises a problem known
as the Gibbs phenomenon discovered at the beginning of the 20th century in
wave physics. This phenomenon refers to the typical oscillations of a truncated
Fourier series or a discrete Fourier series, for a bounded function close to
a discontinuity. More generally, steep gradients in the developed functions
require a very large number of spectral coefficients. A step function is the
worst case, in which an infinite number of frequencies are contained.

In general, all the truncated Fourier series present an oscillating behavior
around the exact function. These oscillations are often negligible, however, for
instance for the step function (and generally in the neighborhood of strong
gradients), these oscillations have specific properties. The maximal ampli-
tude of the oscillations close to the discontinuity—the overshoot—has a finite
limit, and the location of this overshoot gets closer to the discontinuity when
the retained number of spectral coefficients in the series increases. This is
clearly illustrated on Figure 3.5. In a formal way, if pN is the interpola-
tion polynomial of the analytical function f at order N , one can show that
the error ||f − pN || = O(1) when N → ∞. The methods to overcome this
problem still remain very costly, and remove partially the interest of using
spectral methods. The problem is less important when considering Legendre
or Chebyshev polynomials, since the error committed by the interpolation
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58 Computational Fluid Dynamics

is ||f − pN || = O(K−N ) where K > 1. In that case, even if f has strong
discontinuities, the errors converge to zero.

Other kinds of errors that have to be considered in spectral methods are
round-off errors. If the floating-point representation of real numbers is at a
given relative precision 10−m, one has to be careful when recurrence relations
are used for computing derivatives, since they can be an important source of
loss of accuracy by accumulation for a large number of arithmetic operations.
This is the case when the number of operations is of order 10m (a figure
which can be easily reached when considering three-dimensional problems
with a resolution larger than 200 in each direction os space) in single precision
computations. If that is the case, a re-conditioning of the problem can be
proposed by re-formulating the problem.

In general, transformation methods do not amplify truncation errors. It ap-
pears that, in terms of rounding errors, the evaluation of convolution integrals
using Fourier transforms provides better results than the direct computation
of these integrals.

The stability of spectral methods is not guaranteed for any values of the
numerical parameters N and time-step Δt. As for finite differences schemes,
conditions of stability have to be established. Since the discretization opera-
tors in spectral methods generally have a spectrum of eigenvalues wider than
that of finite differences operators, it is a good idea to use higher order time-
discretization, e.g. such as third-order Runge-Kutta schemes, or third-order
Adams-Bashforth. Moreover, the accuracy of the time discretization has to
be consistent with the accuracy of the spatial discretization, so as not to lose
the gain of the high-order spatial scheme.

3.6.7 Wavenumber, vortex, wavelet

When dealing with spectral methods, it is difficult to assign a physical
meaning to the spectral coefficients in general. However, Fourier coefficients
for instance can to some extent be given a significance in terms of structures
in the fluid flow.

Let us recall that one can define auto-correlation functions of a space-
varying function, < ui(x)uj(x + r) > (where <> stands for statistical en-
semble averaging), that establish the link between a velocity component ui at
point x and the velocity component uj at point x + r. When the fluid flow
exhibits a structural coherence, i.e. the presence of vortices, the value of the
correlation becomes closer to unity, with respect to a zero value for completely
uncorrelated fluid motion.

A vortex is a structure which has a motion similar to that of a rotating solid
body, with a given relationship between the displacement of fluid particles
with distinct distance to the center of the vortex, thus with a specific auto-
correlation function. Unlike the correlation function that depends on the
spatial separation, the spectrum is a function of the wavenumber, and may
be computed by a suitable average of ûi(k)ûj(−k). However, it is directly
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FIGURE 3.6: The spectrum of coefficients of the step function plotted on
Figure 3.5.

linked to the correlation function by a Fourier transform. Using this link, a
vortex of characteristic size � may then be associated with a given wavenumber
k with a scaling such that � = 2π/k (the wavelength associated with the
wavenumber k). A “vortex” of wavenumber k is therefore a structure in the
fluid which possesses energy in spectral space around k, that is dominant
spectral coefficients associated with this wavenumber. Such a point of view
is of course a very sketchy description of the reality of fluid flows, since in
reality several spectral coefficients are associated with a given vortex. For
instance, if the variation of the velocity were similar to the step function
shown in Figure 3.5—this would be a very clear-cut vortex—the distribution
of spectral coefficients would be as shown on Figure 3.6.

However, one element of the success of spectral methods using trigonomet-
ric polynomials is the fact that Fourier coefficients, directly obtained by the
method, allow a direct interpretation of the computed spectral coefficients
distribution in terms of length scales in the fluid flow, thus in terms of a
range of vortices with a wide range of length scales. This picture is better
justified in homogeneous flows, with no significant variation in space of the
statistical properties of the flow, which can be treated with periodic bound-
ary conditions. In more complex flows, with strong inhomogeneities, adapted
mathematical tools allow to extend the spectral description to be closer to the
physical reality. Wavelets are a kind of decomposition functions that not only
are associated to a given length scale, but have also a localization in physical
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60 Computational Fluid Dynamics

space. Numerical methods have recently been developed for the resolution of
fluid flow motion based on wavelets decomposition.

An illustration of the difference between the Fourier representation and
wavelets distributions is given in Figures 3.7 and 3.8. On Figure 3.7, vor-
tices in a periodic domain are plotted, corresponding to a stream function
sin(x) sin(y) whose spectrum in Fourier space correspond to a unique fre-
quency. In that case, the wavelength associated with the vortices in a single
value. The vortices are therefore perfectly characterized by one value of the
frequency corresponding to the non zero Fourier coefficient and its associated
wavelength.

Alternately, Figure 3.8 shows the physical distribution of a one-dimensional
wavelet function, which can correspond to an isolated vortex structure, and
its spectrum. Opposite to the previous example, the spectrum of Fourier
coefficients is continuous and rather localized in Fourier space. Of course, in
wavelets transform space, it corresponds to a single transform coefficient.

FIGURE 3.7: Taylor-Green vortices in a two-dimensional flow. Dashes indi-
cate counter-rotating vortices.
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FIGURE 3.8: Top figure: one kind of base wavelet function showing the
localization of its distribution, with respect to the sine dependence of the
Fourier polynomials; bottom: the Fourier spectrum of the wavelet, showing
that the frequency contents is not a single coefficient, as for a sine function,
but a continuous distribution over an interval localized in spectral space.D
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4.1 Introduction

Among the meshless numerical method, the SPH method (Smooth Particle
Hydrodynamics) has been now theoretically studied and developed in order to
allow numerous applications in fluid mechanics. It has been first introduced
by Lucy (1977) and formalized by Gingold and Monaghan (1977, 1983) ini-
tially for astrophysical applications. Monaghan has proposed many important
developments (see a list of references in this text).

The purpose of this text is to present the basic features of the SPH method
from a practical point of view, avoiding then to refer to mathematical theo-
rems. We will then introduce the use of SPH method for an ALE formalism
(Arbitrary Lagrange Euler). The combination of this ALE description to-
gether with a conservative (or weak) form of the Euler equations allows the
introduction of Godunov’s and higher order possible schemes; most of the ma-
terial in this part is issued from the work of Vila and his co-workers (1999).
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64 Computational Fluid Dynamics

A review of different techniques for accuracy improvement will be given, par-
ticularly close to the boundaries; this part is mainly based on the work of
Marongiu (2007 to 2009). A particular analysis of the Finite Volume Parti-
cle Method (FVPM), a particular SPH method, will be also given as it has
some nice features for conservation properties; it has been developed by Hietel
(2005), Struckmeier (2002, 2008) and applied to some complex flow phenom-
ena by Quinlan and his co-workers (2009). The influence of the boundaries
∂D(x) of the kernel support will be underlined in the various expressions;
these boundary terms are in general not considered in the various publication
except in Marongiu (2007 to 2009).

REMARK 4.1 In this chapter, the following notations will be considered.
The vector position are in general referred to as x. The position in the domain
of the particle is also referred as x′. The unknown flow values are noted φ;
this may be a scalar function or a vector, depending on the context. We have
chosen not to overload the text with superscript, and the vectors or matrices
will be specified when they appear the first time in the text.

4.2 SPH approximation of a function

The attractiveness of SPH methods is related to its ability to generate
numerical estimations for functions and their spatial derivatives without re-
sorting to a mesh.

Consider in a domain Ω, limited by a boundary ∂Ω, a set of disordered
points (or particles) as in Figure 4.1, with Δx the distance between two
neighbouring points, h the radius of the sphere of influence D(x) of parti-
cle x, centred at x. Let a field φ sufficiently regular, defined in the domain
Ω limited by a boundary ∂Ω. We may define the value φ(x) as the following
convolution product with δ the Dirac function:

φ (x, t) =
∫

D(x,t)

φ (x′, t) δ (x− x′) dx′d (4.1)

with d the number of dimension. The numerical estimation of this integral re-
quires that the δ function is approached by a regular function W , also referred
to as the smoothing kernel function or kernel. We then get an approximation
of the function φ(x) as:

φh (x, t) =
∫

D(x,t)

φ (x′, t)W (x− x′, h) dx′d (4.2)
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x
ht

Dx

Δx

FIGURE 4.1: Interpolation domain in 2D and neighboring points.

As W is scaled to one (see (4.7) below), (4.2) can be interpreted as a smooth-
ing process of φ over the domain D(x). The numerical estimation of the
integral (4.2) requires an integration formula.

φh (xi, t) �
∑

j∈D(xi)

φ (xj , t)W (xi − xj , h)ωj (xj , t) (4.3)

where ωj is a weight of the particle; ωj can be seen as the volume of the
particle or the jacobian of the transformation between the coordinate (ξ, t)
and the Lagrangian coordinate (x, t). In (4.3), the summation is performed
on all the neighbouring particles included in the domain D(x). Let v0 be
a velocity field, used to transport the particles i along the trajectories; it is
important to notice that v0 may be different from the velocity of the flow. We
have for a particle i and according to the Lagrangian transformation:

1
ωi

dωi

dt
= div (vo) (4.4)

dxi

dt
= ẋi = vo (xi, t) (4.5)
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66 Computational Fluid Dynamics

4.3 Properties of the kernel function W

The kernel function W should be a good approximation of the Dirac func-
tion:

lim
h→0

W (x− x′, h) = δ (x− x′) (4.6)

In practice, W is usually defined on a compact support, which implies that
W = 0 for x ≥ c h where c is of the order of 2 to 3 in general. W is continuous
and derivable. It should decrease monotonously away from x′ = x; and it is
always non-negative; if this last condition is not fulfilled then the integral φh of
a positive function (say the density for instance) could be negative according
to (4.2). Moreover, if we perform a Taylor series expansion around (x′ = x),
we get that (4.2) is a second order accurate approximation if:

∫

D(x)

W (x− x′, h) dx′d = 1 (4.7)

∫

D(x)

(x− x′)W (x− x′, h) dx′d = 0 (4.8)

This last relation is satisfied if the kernel W is symmetric around x′ = x,
W (x− x′) = W (x′ − x) and ∇xW (x− x′) = −∇xW (x′ − x). The discrete
equivalent equations deduced from (4.7) and (4.8) are:

∑
j∈D(x)

W (x− xj , h)ωj = 1 (4.9)

∑
j∈D(x)

(x− xj)W (x− xj , h)ωj = 0 (4.10)

REMARK 4.2 In order to get an order of approximation greater than two,
this would require the zeroing of all the higher moments of W (Belytschko,
1998, Liu, 1995, Dilts, 1999, 2000)

Mk =
∫

D(x)

(x− x′)k
W (x− x′, h)dx′ = 0, ∀k > 1.

This is not possible with a non-negative W function for all even k values.
Therefore an SPH kernel approximation with a non-negative smoothing func-
tion is of second order accuracy at most.

REMARK 4.3 If the particle is close to the boundary ∂Ω of the domain,
then the conditions (4.9) and (4.10) may be difficult to fulfil as the integral
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Smoothed-particle hydrodynamics (SPH) methods 67

could be truncated. This is a severe limitation of the method. We will see in
a following chapter that FVPM method easily overcome this limitation, see
Chapter 6.

REMARK 4.4 Numerically, none of the conditions (4.9) and (4.10) can
be exactly fulfilled because of particle disorder; it is then very difficult to
guarantee the second order accuracy of the numerical approximation of the
basic scheme without using other techniques.

REMARK 4.5 According to Vila (1999, 2005), (4.3) is a valid approxi-
mation of (4.2) only if Δx

h → 0, which requires that the number of particles
in D(xi) tends towards infinity as h tends to zero.

REMARK 4.6 Similarly if the derivatives of function φ(x) (up to kth
order derivative) are to be exactly reproduced, another group of expressions
about the smoothing function W can be obtained (Liu et al. 2003):

W k−1 (x− x′, h)∂D = 0

where W k−1 is the k − 1 derivative of the kernel function along (x − x′).
It expresses that the derivatives of W should also vanish on the boundary
∂D(x).

4.4 Barycenter of D(xi)

Let bi be the barycenter of the domain D(xi). Its position is defined as:

bi =
∫

Di

x′Wi (xi − x′, h) dx′d (4.11)

or in a discrete form: bi =
∑

xjW (xi − xj , h)ωj Consider a Taylor series’

expansion around x′ = bi:

φ (x′, t) ≈ φ (bi) + (x′ − bi) • ∇φ|x=bi
+ O

(
|x′ − bi|2

)

Compute the average in the sense of (4.2):

φh (x′, t) =
∫

D(x)

{
φ (bi) + (x′ − bi) • ∇φ|x=bi

}
W (x− x′, h) dx′d
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68 Computational Fluid Dynamics

Using the condition (4.7), far from the boundary ∂Ω:
∫

D(x)

W (x− x′, h) dx′d = 1

⇒ φh
i (x, t) = φ (bi) + ∇φ|xi=bi

∫

D(x)

(x′ − bi)W (x− x′, h) dx′d + O
(
h2
)

With the definition of bi, we get finally φh
i = φ (bi) + O

(
h2
)
, which shows

that the average of the function f is in fact computed at the barycentre of
the domain D(xi) with a second order of accuracy, provided that the condi-
tion (4.7) is fulfilled in practice. For any points xi, and for any other points
y in D(xi) such that y = bi, we get only Φ (xi) = Φ (y) + O (h) because
y =

∫
Di

x′Wi (xi − x′, h) dx′d

4.5 Choices of the kernel function W

Many possibilities exist for the kernel function W , but B-splines are often
used, with d the number of dimension.

W (x, h) =
C

hd
f
(x

h

)
(4.12)

Let q = x
h

Order 3 Monaghan and Lattanzio (1985) use a B-spline of order 3. Note
that W = 0 only at x

h ≥ 2 for this case

f (q) =

⎧⎨
⎩

1− 3
2q2 + 3

4q3 if 0 ≤ q ≤ 1
1
4 (2− q)3 if 1 ≤ q ≤ 2
0 elsewhere

(4.13)

C = 2/3, 10/7π and 1/π for d = 1, 2 and 3.

Order 4 For a B-spline of order 4, we get:

f (q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
5
2 − q

)4 − 5
(

3
2 − q

)4 + 10
(

1
2 − q

)4 if 0 ≤ q ≤ 0.5(
5
2 − q

)4 − 5
(

3
2 − q

)4 if 0.5 ≤ q ≤ 1.5(
5
2 − q

)4 if 1.5 ≤ q ≤ 2.5
0 elsewhere

(4.14)

C = 96/1199π, 10/7π and 1/20π for d = 2 and 3.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
32

 0
4 

M
ar

ch
 2

01
6 
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Order 5 Morris (1997) uses a B-spline of order 5.

f (q) =

⎧⎪⎪⎨
⎪⎪⎩

(3− q)5 − 6 (2− q)5 + 15 (1− q)5 if 0 ≤ q ≤ 1
(3− q)5 − 6 (2− q)5 if 1 ≤ q ≤ 2
(3− q)5 if 2 ≤ q ≤ 3
0 elsewhere

(4.15)

C = 7/478π, 10/7π and 1/120π for d = 1, 2 and 3.

Kernels of Wendland The kernels of Wendland (Wendland 1999) are also
often used (see Robinson and Monaghan 2008). Let q = r

2h , some examples
of Wendland’s kernels are written here with f = 0 for q > 1:
Wendland C2: with σ = 7

4π for d = 2 and σ = 21
16π for d = 3

f (q) =
σ

hd
(1− q)4 (4q + 1) (4.16)

Wendland C4: with σ = 3
4π for d = 2 and σ = 165

256π for d = 3

f (q) =
σ

hd
(1− q)6

(
35q2 + 18q + 3

)
(4.17)

Wendland C6: with σ = 39
14π for d = 2 and σ = 1365

512π for d = 3

f (q) =
σ

hd
(1− q)8

(
32q3 + 25q2 + 8q + 1

)
(4.18)

4.6 SPH approximation of differential operators applied
on a function φ

4.6.1 Basic formulation

Consider the average (4.2) of a differential operator ∇ (gradient or diver-
gence for instance):

∇φ (x) =
∫

D(x)

W (x− x′)∇x′φ (x′) dx′d

Using integration by parts, we get:

∇φ (x) = −
∫

D(x)

φ (x′)∇x′W (x− x′) dx′d+
∫

∂D(x)

φ (x′)W (x− x′)n (x′) dx′d−1
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70 Computational Fluid Dynamics

where n(x′) stands for the unit vector normal to the boundary. And finally

∇φ (x) =
∫

D(x)

φ (x′)∇xW (x− x′) dx′d +
∫

∂D(x)

φ (x′)W (x− x′)n (x′) dx′d−1

(4.19)
The last term in the second member stands for the effect of the boundary
∂D(x). It is zero in general for the previous choices of W , except if D(x)
intercepts the boundary ∂W of the computational domain. Provided that φ
is known on ∂W , this term can be easily computed; in other cases, specific
treatments on ∂W are required.

The nice feature of SPH method is that the computation of the average
of differential operator is then no more complicated than the average of the
function itself, according to (4.19) because ∇W can be analytically computed.

Performing a Taylor series expansion of φ(x′) around x, and replacing
in (4.19), it can be easily shown that this expression is second order accurate
with the same condition (4.7) provided that the boundary ∂D(x) does not
intercept ∂Ω.

The discrete equivalent of (4.19) is then:

(∇φ)h
i =

∑
j∈Di

φj∇Wi (xi − xj , h)ωj +
∑

j∈∂Di

φjWi (xi − xj , h)ω∂
j nj (4.20)

where ω∂
j stands for a weight of the surface element dx′d−1, not to be confused

with the volume weight as in (4.3) for instance. If φ is a vector as the velocity
v for instance, ∇v is a tensor of order d, we use a tensorial product ⊗ in the
previous expression in order to be clearer.

(∇v)h
i =

∑
j∈Di

vj ⊗∇Wi (xi − xj , h)ωj +
∑

j∈∂Di

vj ⊗ njWi (xi − xj , h)ω∂
j

4.6.2 Consistent formulation for a constant function or
global conservation

Applying this equation (4.20) far from a boundary ∂Ω on a constant func-
tion, we should get (∇φ)h

i = 0 if
∑

j∈Di

∇xiW (xi − xj , h)ωj = 0, which is the

consequence of the relation (4.9).
This is in general a difficult result to get for a general set of disordered

particles; for this reason, the differential operator is practically computed as:

(∇φ)h
i = (∇φ)h

i − φi∇ (1)h =
∑
j∈Di

(φj − φi)∇Wi (xi − xj , h)ωj (4.21)

+
∑

j∈∂Di

(φj − φi)Wi (xi − xj , h)ω∂
j nj
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Note that this expression does not enforce
∑

j∈Di

∇Wi (xi − xj , h)ωj = 0, but

it only diminishes its effect in the computation of the differential operator
(∇φ)h

i .

Although the previous relation enables the zeroing of the gradient of a
constant function for instance, it has a severe drawback. Assume for instance
that x is sufficiently far from ∂Ω such that the last term in (4.19) is zero
because W = 0 on ∂D. Consider now for instance the case for which φ ≡ p
the pressure. For two neighbouring particles i and j, we have:

(φj − φi)∇xiW (xi − xj , h) = (φi − φj)∇xj W (xj − xi, h)

because of the symmetry of the function W . The consequence is that (4.21)
is not able to fulfil the action-reaction principle between pressure forces. For
this reason, a different expression of the operator is often used as:

(∇φ)h
i = (∇φ)h

i + φi∇ (1)h =
∑
j∈Di

(φj + φi)∇Wi (xi − xj , h)ωj (4.22)

+
∑

j∈∂Di

(φj + φi)Wi (xi − xj , h)ω∂
j nj

We will see in a following paragraph 5.2.3 that global conservations of
transported flow quantities can be also guarantee with (4.22).

However, it is clear that (4.22) cannot guarantee the zeroing of the gra-
dient of a constant function. For this reason, (4.22) is often used with
other techniques as the renormalization, which allows the proper computa-
tion of a linear function. Moreover in the literature, the choice of the sign in
(∇φ)h

i = (∇φ)h
i ±φi∇ (1)h is also a matter of the quantity whose gradient has

to be computed. In the following, we will mainly use (4.22), except specifi-
cally. We will also call (4.21) the “constant zeroing” formula, and (4.22) the
“global conservation” formula.

4.6.3 The use of an adjoint operator of ∇φ

Following Vila (1999), consider a discrete scalar product defined by:

(f, g)Δ =
∑
i∈Ω

ωifigi (4.23)
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72 Computational Fluid Dynamics

We use the scalar product of ∇φ defined by (4.21) with g, and we assume the
particles to be located far from the boundary ∂Ω:(

(∇φ)h
i , g
)

Δ
=
∑
i∈Ω

ωi (∇φ)h
i gi

=
∑
i∈Ω

ωi

⎛
⎝∑

j∈Di

(φj − φi)∇Wi (xi − xj , h)ωj

⎞
⎠ gi

=
∑
i∈Ω

∑
j∈Di

φj∇Wi (xi − xj , h)ωiωjgi

−
∑
i∈Ω

∑
j∈Di

φi∇Wi (xi − xj , h)ωiωjgi

In the first term, we interchange the role of the indices i and j:(
(∇φ)h

i , g
)

Δ
=
∑
i∈Ω

ωi (∇φ)h
i gi

=
∑
j∈Ω

∑
i∈Ω

φi∇Wj (xj − xi, h)ωiωjgj

−
∑
i∈Ω

∑
j∈Ω

φi∇Wi (xi − xj , h)ωiωjgi

=
∑
i∈Ω

φiωi

∑
j∈Ω

(∇Wj (xj − xi, h) gj −∇Wi (xi − xj , h) gi)ωj

Using now the symmetry of the kernel function

∇Wj (xj − xi, h) = −∇Wi (xi − xj , h)

we get:(
(∇φ)h

i , g
)

Δ
=
∑
i∈Ω

ωi (∇φ)h
i gi = −

∑
i∈Ω

φiωi

∑
j∈Ω

∇Wi (xi − xj , h) (gj + gi)ωj

(4.24)
Let us define the adjoint operator (∇∗) of ∇φ by:
(
(∇φ)h

i , g
)

Δ
= −

(
φ, (∇∗g)h

i

)
Δ
⇒
∑
i∈Ω

ωi (∇φ)h
i gi = −

∑
i∈Ω

ωi (∇∗g)h
i φi

(4.25)
By identification of (∇∗) in (4.25) with the previous expression (4.24), we get:

(∇∗g)h
i =

∑
j∈Ω

(gj + gi)∇Wi (xi − xj , h)ωj (4.26)

We observe that the adjoint operator (∇∗) satisfies the global conservation
condition.

An important result due to Vila (1999) is that a weak discrete formula-
tion of the transport equation such as (5.1) should be based on the adjoint
operator (4.26). This allows the use of the global conservation formulation.
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4.6.4 Consistent formulation for a linear function – Renor-
malization

Johnson and Beisel (1996) and Randles and Liberski (1996) have introduced
renormalization in order to improve the accuracy of SPH method.

4.6.4.1 The work of Vila

Vila (1999, 2005) has also shown that this renormalization allows the con-
dition Δx

h → 0 to be relaxed, and that it is now sufficient that Δx
h = O (1)

for a consistent approximation. This technique is basically a correction of the
differential operators with the help of a weight matrix B(x), also called the
renormalization matrix.

The equation (4.21) (for instance) is then modified as:

(∇φ)h
i = B (x) (∇φ)h

i − φiB (x)∇ (1)h (4.27)

B(x) is chosen such that (4.27) is consistent for linear function. Vila (2005)
has shown that this is performed if and only if the matrix B(x) is given by

B (x) = E (x)−1

E (x)αβ =
∑

j∈D(x)

(
xβ

j − xβ
)

∂W (x−xj,h)
∂xα ωj

(4.28)

where xβ
j stands for the component β of the vector position xj and E (x)αβ is

the (α, β) component of the matrix E(x), which appears as an SPH approxi-
mation of

E (x)αβ =
∂xβ

∂xα
− xβ ∂ (1)

∂xα
≈ δαβ

For (4.21) and according to (4.27), we have then:

(∇φ)h
i = B (x) (∇φ)h

i −B (x) φi∇ (1)h =∑
j∈Di

(φj − φi)Bi∇Wi (xi − xj , h)ωj +
∑

j∈∂Di

(φj − φi) BiWi (xi − xj , h)ω∂
j nj

(4.29)
Vila (1999) has also introduced a slightly more compact formulation that
comes from the idea that B(x) is applied on the gradient of kernel ∇W and
not on (∇φ)h

i :

(∇φ)h
i =

∑
j∈Di

(φjBj − φiBi)∇Wi (xi − xj , h)ωj

+
∑

j∈∂Di

(φj − φi)Wi (xi − xj , h)ω∂
j nj

Note that the summation on the boundary ∂Di does not include the renor-
malisation matrix as the gradient of kernel ∇W is now corrected and not
(∇φ)h

i .
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74 Computational Fluid Dynamics

Considering also that Bj ≈ Bi because the two particles are very closed
from each other, we can also write that:

φjBj − φiBi = (φj − φi)
(Bi + Bj)

2
+

(φi + φj)
2

(Bj −Bi)

≈ (φj − φi)
(Bi + Bj)

2

Vila (2005) has also shown that all the results of convergence are also valid
for a symmetric variant of the method. Stating Bij = 1

2 (Bi + Bj):

(∇φ)h
i =

∑
j∈Di

(φj − φi)Bij∇Wi (xi − xj , h)ωj (4.30)

+
∑

j∈∂Di

(φj − φi)Wi (xi − xj , h)ω∂
j nj

and for this symmetric variant Bij∇Wi (xi − xj , h) = −Bji∇Wj (xj − xi, h)

REMARK 4.7 This renormalization method has some similarity with the
correction of the kernel function, as introduced by the RKPM method (Re-
producing Kernel Particle Method) proposed by Liu, Jun and Zhang (1995)
or the MLS method (Moving Least Square) proposed by Dilts (1999, 2000).
Although the renormalization is less general than RKPM or MLS, it provides
a very useful mathematical framework for stability and accuracy analysis as
shown by Vila (2005).

4.6.4.2 The approach of Bonet and Lok (1999)

Bonet and Lok have introduced a specific method of correction of the gradi-
ent with the purpose of preserving the angular momentum for non-dissipative
systems and in the absence of external forces. Note that rotational invariance
requires the correct evaluation of linear velocity fields. In this paragraph, we
restrict the field φ to the velocity field v.

Consider a solid body rotation defined by an angular velocity vector ω with
components (ωx, ωy, ωz). The matrix of rotation Mω is also given by:

Mω =

⎡
⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦

The velocity vector is given by v = ω ∧ x = Mωx. The gradient of v is:

∇v = Mω (4.31)
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The gradient of the velocity field can be computed with the SPH approxima-
tion such as (4.21) for instance.

(∇v)h
i =

∑
j∈Di

(vj − vi)⊗∇Wi (xi − xj , h)ωj

+
∑

j∈∂Di

(vj − vi)⊗ njWi (xi − xj , h)ω∂
j

Note that because ∇v is a tensor of order d, we have then introduced a
tensorial product ⊗ in the previous expression in order to be clearer.

We use now the expression of v = Mωx where Mω is constant for a solid
rotation, and is then assumed identical between particles i and j.

(∇v)h
i =

∑
j∈Di

(Mωxj −Mωxi)⊗∇Wi (xi − xj , h)ωj

+
∑

j∈∂Di

(Mωxj −Mωxi)⊗Wi (xi − xj , h)ω∂
j nj

(∇v)h
i = Mω[

∑
j∈Di

(xj − xi)⊗∇W (xi − xj , h)ωj

+
∑

j∈∂Di

(xj − xi)⊗Wi (xi − xj , h)ω∂
j nj ]

The last term in the previous expression is zero except if ∂Di intercepts the
boundary ∂Ω. The condition for preserving the solid body rotation is then
according to (4.31):
∑
j∈Di

(xj − xi)⊗∇Wi (xi − xj , h)ωj+
∑

j∈∂Di

(xj − xi)⊗Wi (xi − xj , h)ω∂
j nj = I

(4.32)
Bonet and Lok have proposed three practical implementations of condi-
tion (4.32).

Gradient correction The first implementation of (4.32) is similar to the
renormalization as described by Vila (2005).

Consider equation (4.29) with φ = v in the form:

(∇v)h
i = (∇v)h

i Bi (x) − vi∇ (1)h Bi (x) (4.33)

=
∑
j∈Di

(vj − vi)⊗∇Wi (xi − xj , h)ωjBi

+
∑

j∈∂Di

(vj − vi)⊗Wi (xi − xj , h)ω∂
j Binj

= Mω[
∑
j∈Di

(xj − xi)⊗∇Wi (xi − xj , h)ωj

+
∑

j∈∂Di

(xj − xi)⊗Wi (xi − xj , h)ω∂
j nj ]Bi
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The condition for preserving the solid body rotation is then

[
∑
j∈Di

(xj − xi)⊗∇Wi (xi − xj , h)ωj

+
∑

j∈∂Di

(xj − xi)⊗Wi (xi − xj , h)ω∂
j nj ]Bi = I

or

Bi = [
∑
j∈Di

(xj − xi)⊗∇Wi (xi − xj , h)ωj

+
∑

j∈∂Di

(xj − xi)⊗Wi (xi − xj , h)ω∂
j nj ]−1 (4.34)

Equation (4.34) is similar to (4.28), but note the position of the matrix B(x)
in (4.33) (because of the gradient of a vector) compared to (4.29) (which is
correct for the gradient of a scalar φ).

These expressions (4.32) and (4.34) will ensure that the gradient of a linear
vector field is exactly evaluated; moreover, if the vector field is a velocity
field, then angular momentum is preserved provided that the internal forces
are derived from variational principle (Bonet and Lok, 1999). Nestor and al.
(2009) uses this method also in FVPM.

REMARK 4.8 If we use the (4.22), the “global conservation” formula
for the gradient, then we get:

Bi = [
∑
j∈Di

(xj + xi)⊗∇Wi (xi − xj , h)ωj

+
∑

j∈∂Di

(xj + xi)⊗Wi (xi − xj , h)ω∂
j nj ]−1 (4.35)

Kernel correction This technique is similar to the MLS method of Liu,
already mentioned in the renormalization paragraph.

Consider a new corrected kernel ψ such that (4.3) is now written as:

φh (x) =
∑

j∈D(x)

φ (xj , t)ψ (x− xj , h)ωj (xj , t)

with
ψ (x− xj , h) = W (x− xj , h)α (x) [1 + β (x) (x− xj)] (4.36)
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The scalar α(x) and vector β(x) are computed by enforcing that any linear
vector field is exactly evaluated, that is:

φh (x) = φ0 + φ1x =
∑

j∈D(x)

(φ0 + φ1xj) ψ (x− xj , h)ωj (xj , t)

As φ0 and φ1 are arbitrary, we get:
∑

j∈D(x)

ψ (x− xj , h)ωj (xj , t) = 1 (4.37)

∑
j∈D(x)

(x− xj)ψ (x− xj , h)ωj (xj , t) = 0 (4.38)

These two equations enable the evaluations of α(x) and β(x) by using (4.36).
After some computations we get finally:

β (x) =

⎡
⎣ ∑

j∈D(x)

(x− xj)⊗ (x− xj)W (x− xj , h)ωj

⎤
⎦
−1

∑
j∈D(x)

(xj − x)W (x− xj , h)ωj (4.39)

α (x) =
1∑

j∈D(x)

[1 + β (x) (x− xj)] W (x− xj , h)ωj
(4.40)

This will allow condition (4.32) expressed in term of the corrected kernel ψ to
be satisfied thereby enforcing also the conservation of the solid body rotation.

REMARK 4.9 Although the evaluations of the scalar α(x) and vector
β(x) are easy, as it only requires the evaluation of a d×d matrix, the evaluation
of the gradient of ψ may be very costly because the α and β coefficients depend
on x through the local distribution of particles. It is then tempting to consider
the case β (x) = 0, then

α (x) =
1∑

j∈D(x)

W (x− xj , h)ωj
⇒ (4.41)

ψ (x− xj , h) =
W (x− xj , h)∑

j∈D(x)

W (x− xj , h)ωj
(4.42)

and

φh (x) =

∑
j∈D(x)

φ (xj , t)W (x− xj , h)ωj (xj , t)

∑
j∈D(x)

W (x− xj , h)ωj
(4.43)
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78 Computational Fluid Dynamics

This is just the Shepard’s interpolation of φ (Shepard, 1968). Although (4.43)
fails to preserve the rotational invariance, according to Bonet and Lok it
provides an improved interpolation especially close to the boundary ∂Ω.

REMARK 4.10 Using the Shepard’s kernel ψ (4.42), we fulfil automati-
cally the condition (4.9) for at least a first order approximation.

Mixed kernel correction and gradient correction It is possible to com-
bine the constant kernel correction proposed by (4.41) and a correction of the
gradient by means of a renormalization matrix. This will enable also to re-
cover the preservation of linear gradients that we lose with β (x) = 0. We use
then (4.43):

φh (x) =
∑

j∈D(xi)

φ (xj , t)ψ (x− xj , h)ωj (xj , t)

=

∑
j∈D(xi)

φ (xj , t)W (x− xj , h)ωj (xj , t)

∑
j∈Di

W (x− xj , h)ωj

with the gradient of φ given by (∇φ)h
i = (∇φ)h

i B (x) in function of the
corrected kernel ψ

(∇φ)h
i = (∇φ)h

i B (x)

=
∑
j∈Di

φj ⊗∇xiψ (xi − xj , h)ωjBi

+
∑

j∈∂Di

φj ⊗ ψ (xi − xj , h)ω∂
j njBi

In the previous expression of (∇φ)h
i , we have considered φ as a vector. Note

that the term −φi is no more necessary in this expression because the Shep-
ard’s approximation (4.43) allows the gradient of a constant field to vanish.

Applying this expression for a gradient of a velocity field created by a solid
rotation, we get:

(∇v)h
i = Mω[

∑
j∈Di

xj ⊗∇xiψ (xi − xj , h)ωj (4.44)

+
∑

j∈∂Di

xj ⊗ ψ (xi − xj , h)ω∂
j nj ]Bi

In order to preserve the solid body rotation, the matrix Bi is given by

Bi =

⎡
⎣∑

j∈Di

xj ⊗∇xiψ (xi − xj , h)ωj +
∑

j∈∂Di

xj ⊗ ψ (xi − xj , h)ω∂
j nj

⎤
⎦
−1

(4.45)
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The previous expression was given by Bonet and Lok without the boundary
term.

We can also modify the Bonet and Lok’s expression in order to fulfil the
action-reaction principle:

(∇φ)h
i =

∑
j∈Di

(φj + φi)⊗∇xiψ (xi − xj , h)ωjBi

+
∑

j∈∂Di

(φj + φi)⊗ ψ (xi − xj , h)ω∂
j njBi

Bi = [
∑
j∈Di

(xj + xi)⊗∇xiψ (xi − xj , h)ωj (4.46)

+
∑

j∈∂Di

(xj + xi)⊗ ψ (xi − xj , h)ω∂
j nj]−1

4.6.5 Derivatives with a Shepard’s kernel ψ

4.6.5.1 About the Shepard’s kernel

If Wi stands for the kernel function at xi, the Shepard’s kernel ψi is defined
by

ψi (xi, xi − xj , h) =
Wi (xi − xj , h)∑

j∈D(xi)

Wi (xi − xj , h)ωj

or

ψi (xi, qj , h) =
Wi (qj , h)∑

j∈D(xi)

Wi (qj , h)ωj
, qj = xi − xj (4.47)

Note that Wi (q, h) = Wi (−q, h) , ∇qWi (q, h) = −∇qWi (−q, h) and
ψi (xi, qj , h) = ψi (xi,−qj, h) , ∇qψi (xi, qj , h) = −∇qψi (xi,−qj, h)
If hi = hj then for two different particles we get also

Wi (q, h) = Wj (−q, h) , ∇qWi (q, h) = −∇qWj (−q, h)

We will note thereafter

σ (xi) =
∑

j∈D(xi)

Wi (qj , h)ωj (4.48)

But for SPH approximation, in general σi = σj = 1 particularly close to a
boundary ∂Ω. Then even if hi = hj we get also

ψi (xi, qj , h) = ψj (xj ,−qj , h) , ∇qψi (xi, qj , h) = ∇qψi (xj ,−qj , h)
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The SPH average of a function φ is then with the Shepard’s kernel:

φh (xi) =
∑

j∈D(xi)

φ (xj , t)ψi (xi, qj , h)ωj (xj , t)

=

∑
j∈D(xi)

φ (xj , t)Wi (qj , h)ωj (xj , t)

∑
j∈D(xi)

Wi (qj , h)ωj

Note that the definition of the Shepard’s kernel allows writing a condition
that enables the preservation of constant functions:

∫

D(x)

ψ (x, x− x′, h)dx′d = 1 (4.49)

or in a discrete form:
∑

j∈D(xi)

ψi (xi, qj , h)ωj (xj , t) = 1 (4.50)

We will note thereafter:
Di = D (xi)

Wij = Wi (qj , h)

ψij = ψi (xi, qj , h) =
Wi (qj , h)

σ (xi)

σi = σ (xi) =
∑
j∈Di

Wijωj

∇ψij = ∇qψi (xi, qj , h)

ẋi = v0

From (4.49) or (4.50) and using the SPH derivative of the constant function
φ = 1, we get also:

∫

D(x)

∇xψ (x, x− x′) dx′d +
∫

∂D(x)

ψ (x, x − x′) n (x′) dx′d−1 = 0

∑
j∈Di

∇ψi (xi, qj , h)ωj +
∑

j∈∂Di

ψi (xi, qj , h)ω∂
j nj = 0

or ∑
j∈Di

∇ψijωj +
∑

j∈∂Di

ψijω
∂
j nj = 0 (4.51)
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4.6.5.2 Derivatives of the Shepard’s kernel

The gradient ∇ψi is easy to compute:

∇ψij =
∇Wij

σi
− ψij

σi
∇σi =

∇Wij

σi
− ψij

σi

∑
j∈Di

(∇Wijωj + Wij∇ωj)

and particularly when the weight ωj is constant in Ω:

∇ψij =
∇Wij

σi
− Wij

σ2
i

∑
j∈Di

(∇Wijωj) (4.52)

We compute the time derivative of ψ in function of the gradient of W . Starting
from ψij = Wij

σi
and according to (4.48):

∂ψij

∂t
=

1
σi

∂Wij

∂t
− ψij

σi

∂σi

∂t
=

1
σi

∂Wij

∂t
− ψij

σi

∑
j∈Di

(
∂Wij

∂t
ωj + Wij

∂ωj

∂t

)

In the framework of an ALE description, we consider a particular Lagrangian
derivative with a transport field v0 = ẋ Assuming that h is constant, then

d

dt
Wij = 0⇒ ∂Wij

∂t
+ ẋi∇Wij =

∂Wij

∂t
− ẋj∇Wij = 0

∂ψij

∂t
= − ẋi

σi
∇Wij −

ψij

σi

∑
j∈Di

(
−ẋiωj∇Wij + Wij

∂ωj

∂t

)

∂ψij

∂t
= − ẋi

σi
∇Wij +

ẋiψij

σi

∑
j∈Di

(ωj∇Wij)−
ψij

σi

∑
j∈Di

(
Wij

∂ωj

∂t

)

Using the transport of ωi in equation (4.4):

1
ωi

dωi

dt
= div (vo)⇒

∂ωi

∂t
= −ẋi∇ωi + ωidiv (vo)

∂ψij

∂t
= − ẋi

σi
∇Wij

+ẋi
ψij

σi

∑
j∈Di

(ωj∇Wij)

−ψij

σi

∑
j∈Di

(Wij {−ẋj∇ωj + ωjdiv (vo)})
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or in function of the gradient of ψ only: ∇Wij

σi
= ∇ψij + ψij

σi
∇σi

∂ψij

∂t
= −ẋi

(
∇ψij +

ψij

σi
∇σi

)
(4.53)

+ẋiψij

∑
j∈Di

(
ωj

(
∇ψij +

ψij

σi
∇σi

))

−ψij

σi

∑
j∈Di

(Wij {−ẋj∇ωj + ωjdiv (vo)})

Using the normalisation of the kernel (4.50) and its gradient (4.51):

∂ψij

∂t
= −ẋi∇ψij + ẋiψij

∑
j∈Di

(ωj∇ψij)

−ψij

σi

∑
j∈Di

(Wij {−ẋj∇ωj + ωjdiv (vo)})

∂ψij

∂t
= −ẋi∇ψij − ẋiψij

∑
j∈∂Di

ψijω
∂
j nj (4.54)

−ψij

∑
j∈Di

(ψij {−ẋj∇ωj + ωjdiv (vo)})

From (4.54) we get immediately the Lagrangian derivative of the Shepard’s
kernel:

dψij

dt
=

∂ψij

∂t
+ ẋi∇ψij (4.55)

= −ẋiψij

∑
j∈∂Di

ψijω
∂
j nj − ψij

∑
j∈Di

(ψij {−ẋj∇ωj + ωjdiv (vo)})

We observe that if the transport field v0 of the particles is divergence free,
and if the initial set of particles has uniform weight ωi over Ω, then we get

dψij

dt
=

∂ψij

∂t
+ ẋi∇ψij = −ẋiψij

∑
j∈∂Di

ψijω
∂
j nj (4.56)

The second member is also zero if ∂Di does not intercept ∂Ω. In this par-
ticular case, we recover the particular feature of the original kernel W whose
Lagrangian derivative is zero everywhere.

4.7 Using a Taylor series expansion

Instead of applying sequentially the Shepard’s kernel in order to get C0

consistency, followed by the renormalisation in order to get a C1 consistency
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Smoothed-particle hydrodynamics (SPH) methods 83

as in Bonet and Lok approach, Liu and Liu (2006) have proposed to derive a
SPH approximation that allows to get simultaneously C1 consistency. Their
method is to write a Taylor series expansion for a function φ(x) around a
position xi:

φ (x′) = φi +
∑
α

(x′
α − xα,i)

(
∂φ
∂xα

)
i
+
∑
α

∑
γ

(x′
α−xα,i)(x′

γ−xγ,i)
2

(
∂2φ

∂xα∂xγ

)
i

+o (x′
α − xα,i)

3

(4.57)
In this expression, α and γ vary between 1 and d the number of dimensions.
We neglect thereafter all terms of order o (x′

α − xα,i)
2, then all second order

derivatives
(

∂2φ
∂xα∂xγ

)
i

disappear.

Multiply then (4.57) first by the kernel function W , and then by its deriva-
tives ∂W

∂xβ
, and integrate over the support of the kernel D(xi), we get d + 1

equations:
∫

D(xi)

φ (x′)Wi (x′ − xi) dx′d = φi

∫

D(xi)

Wi (x′ − xi) dx′d (4.58)

+
∑

α=1,d

(
∂φ

∂xα

)

i

∫

D(xi)

(x′
α − xα,i)Wi (x′ − xi) dx′d

∫

D(xi)

φ (x′)
∂Wi (x′ − xi)

∂xβ
dx′d = φi

∫

D(xi)

∂Wi (x′ − xi)
∂xβ

dx′d

+
∑

α=1,d

(
∂φ

∂xα

)

i

∫

D(xi)

(x′
α − xα,i)

∂Wi (x′ − xi)
∂xβ

dx′d

Or in a discrete SPH form:
∑

j∈D(xi)

φjW (xi − xj , h)ωj = φi

∑
j∈D(xi)

W (xi − xj , h)ωj (4.59)

+
∑

α=1,d

(
∂φ

∂xα

)

i

∑
j∈D(xi)

(xα,j − xα,i)W (xi − xj , h)ωj

∑
j∈D(xi)

φj
∂Wi (x′ − xi, h)

∂xβ
ωj = φi

∑
j∈D(xi)

∂Wi (x′ − xi, h)
∂xβ

ωj

+
∑

α=1,d

(
∂φ

∂xα

)

i

∑
j∈D(xi)

(xα,j − xα,i)
∂Wi (x′ − xi, h)

∂xβ
ωj (xj)

The system of equations (4.59) is then used in order to compute the d + 1
unknowns (

φi,
(

∂φ
∂xα

)
i

)
α=1,d
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84 Computational Fluid Dynamics

Liu and Liu (2006) have obtained very good results for model problems with
this method, even close to the boundary ∂Ω of the domain.

REMARK 4.11 We observe that the original kernel is not modified,
thereby keeping the basic properties of W (positive, symmetric).

REMARK 4.12 Compared to classical SPH method, we need to solve a
(d + 1, d + 1) system for each particle.

REMARK 4.13 This method can be extended in principle to higher order
by keeping for instance the second order derivatives in equation (4.57), with
a price to be paid in the computation time.

4.8 Concluding remarks

We have given the formulation of the SPH method in a general way
because the particles are transported with an arbitrary velocity v0, which is
not necessarily equal to the flow velocity v. This is a framework of the
SPH-ALE method.

The advantage of this SPH-ALE method is clearly to provide a tool for
computing a quantity in a domain Ω where a disordered set of particles is
allowed to move at a specific velocity v0. In principle, the computation of a
differential operator applied on flow quantities is no more difficult. Because
the choice of the transport velocity v0 is left to the user, v0 appears as a free
parameter that can be used for specific purpose as improving the accuracy of
the numerical results for instance.

The disadvantage of SPH methods is first the great number of particles
that is required to get sufficient accuracy; as shown by Vila (1999), the basic
scheme requires Δx

h → 0.
The second disadvantage is clearly the difficulty of getting sufficient

accuracy for the computation of differential operators. Various techniques
have been presented that allow at least treating linear fields. We recommend
the use of the renormalization technique, that Vila (2005) has shown to
allow also Δx

h = O (1); this is an important evolution, because we are now
justified to use a finite set of particles. This renormalization technique is
very close to the method proposed by Bonet and Lok (1999), which has been
shown to preserve also the angular momentum. Finally, one of the most
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Smoothed-particle hydrodynamics (SPH) methods 85

promising methods seems to be the mixed kernel correction and gradient
correction also proposed by Bonet and Lok: this is a combination of the
Shepard’s kernel, which allows the proper treatment of constant field,
coupled to a renormalization matrix. This technique has some common
features with the Finite Volume Particle Method (FVPM), which will be
presented at the end of this text.

An interesting point has been underlined in the care to preserve global flow
quantities simultaneously with the proper computation of a constant field; in
general, these two purposes can be reached with quite different and sometimes
incompatible schemes. We have chosen to underline the interaction with the
boundary ∂Ω of the domain; the boundary treatment is a key parameter in
engineering applications, but most of the references do not treat in general
this important point.
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5.1 General form of conservation equations

Consider a conservation equation written in the following form:

∂φ

∂t
+∇.F (φ) = S (φ) (5.1)

For instance for a fluid, φ stands here for the vector of unknowns φ (ρ, ρv, ρe)
where ρ is the density, v the velocity vector and e is the specific internal
energy. F (φ) is the matrix of flux and S(φ) is a source term.

F (φ) =

⎛
⎝

ρv
ρ (v ⊗ v + pI)
(ρe + p) v

⎞
⎠ (5.2)

We look for a weak SPH formulation for (5.1) written in an ALE form (Arbi-
trary Lagrange Euler).
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88 Computational Fluid Dynamics

5.2 Weak SPH-ALE formulation of the conservation
equations

5.2.1 SPH approximation of conservation equations

Let us perform the SPH approximation of the conservation equations. Mul-
tiply (5.1) by a kernel function W and integrate over a domain D(x) linked
to a particle; note that W could be either one of the function defined in
paragraph 4.5 or a corrected kernel such as the Shepard’s function ψ in equa-
tion (4.42)

∫

D(x)

(
∂φ

∂t
+∇x′ .F (φ)

)
Wdx′d =

∫

D(x)

S (φ) Wdx′d

Integrate by parts to get:

∫

D(x)

(
∂φW

∂t
+∇x′ . (F (φ) W )

)
dx′d −

∫

D(x)

φ
∂W

∂t
dx′d − (5.3)

∫

D(x)

F (φ)∇x′Wdx′d =
∫

D(x)

S (φ)Wdx′d

In order to compute ∂W
∂t , we will use the fact that h is constant both in space

and time. According to (4.12), W = W
(
h, q = x

h

)
and we can write with v0

the transport velocity field of the particles: dW
dt = ∂W

∂t + v0∇W and under
the previous hypothesis dW

dt = 0 so that:

∂W

∂t
= −vo∇W (5.4)

Note that vo can be different from the velocity of the fluid v. If vo = 0, then
we get a Eulerian description, while for vo = v we get a pure Lagrangian
description.

In order to compute the Lagrangian derivative of the SPH approximation
of φ:

∫
D(x)

φWdx′d we invoke the Reynolds theorem, which allows writing:

dvo

dt

∫

D(x)

φWdx′d =
∫

D(x)

∂φW

∂t
dx′d +

∫

D(x)

∇x′ . (φW ⊗ vo) dx′d (5.5)

We then replace into (5.5), the
∫

D(x)

∂φW
∂t dx′d term deduced from (5.3), and
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Application of SPH methods to conservation equations 89

use (5.4) to get:

∫

D(x)

∂φW

∂t
dx′d =

∫

D(x)

φ
∂W

∂t
dx′d +

∫

D(x)

F (φ)∇x′Wdx′d

−
∫

D(x)

∇x′ . (F (φ)W ) dx′d +
∫

D(x)

S (φ) Wdx′d

dvo

dt

∫

D(x)

φWdx′d =
∫

D(x)

φ
∂W

∂t
dx′d +

∫

D(x)

F (φ)∇x′Wdx′d

−
∫

D(x)

∇x′ . (F (φ)W ) dx′d

+
∫

D(x)

∇x′ . (φW ⊗ vo) dx′d +
∫

D(x)

S (φ) Wdx′d

dvo

dt

∫

D(x)

φWdx′d = −
∫

D(x)

φ⊗ vo∇x′Wdx′d +
∫

D(x)

F (φ)∇x′Wdx′d

−
∫

D(x)

∇x′ . (F (φ)W ) dx′d

+
∫

D(x)

∇x′ . (φW ⊗ vo) dx′d +
∫

D(x)

S (φ) Wdx′d

∫

D(x)

∂φW

∂t
dx′d =

∫

D(x)

φ
∂W

∂t
dx′d +

∫

D(x)

F (φ)∇x′Wdx′d

−
∫

D(x)

∇x′ . (F (φ)W ) dx′d

+
∫

D(x)

S (φ)Wdx′d

In the previous equation, we will use ∇x′W = −∇xW ; this seems to be
more stable in practical situations. Collecting similar terms, invoking Green’s
theorem for the divergence term, we get finally:

dvo

dt

∫

D(x)

φWdx′d = −
∫

D(x)

(F (φ)− φ⊗ vo)∇xWdx′d (5.6)

−
∫

∂D(x)

(F (φ)− φ⊗ vo) Wndx′d−1 +
∫

D(x)

S (φ)Wdx′d
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90 Computational Fluid Dynamics

Where n is the normal to ∂D(x). This is a weak formulation of the SPH
approximation of the conservation equations. It is written in an ALE form
(Arbitrary Lagrange Euler).

Note that according to (4.19), the first two terms in second member of (5.6)
is just the SPH approximation of minus the divergence of the matrix G defined
as:

G = F (φ)− φ⊗ vo (5.7)

It remains to write the discrete form of (5.6). First note that 1
ωi

dvo (ωiφ)
dt =

dvoφ
dt + φ

ωi

dvowi

dt = ∂φ
∂t +∇. (φvo) where the transport equation of ωi in equa-

tion (4.4) has been used. According to the Reynolds theorem, the first member
of (5.6) can then be written as:

dvo

dt

∫

D(x)

φWdx′d =
1
ωi

dvo (ωiφi)
dt

For the second member we get:

(∇.G)h
i =

∑
j∈Di

Gj∇xiW (xi − xj , h)ωj +
∑

j∈∂Di

GjW (xi − xj , h)ω∂
j nj

So that we get finally:

1
ωi

dvo (ωiφi)
dt

= −
∑
j∈Di

Gj∇xiW (xi − xj , h)ωj (5.8)

−
∑

j∈∂Di

GjW (xi − xj , h)ω∂
j nj

+
∑
j∈Di

S (φj)W (xi − xj , h)ωj

5.2.2 Improved SPH approximation accurate to second or-
der

A better SPH approximation can also be written using for instance the
renormalization technique described by Vila (2005) also given in para-
graph 4.6.3; using (4.29)

(∇.G)h
i = B (x) (∇.G)h

i −B (x)Gi∇ (1)h

=
∑
j∈Di

(Gj −Gi)Bi∇xiW (xi − xj , h)ωj

+
∑

j∈∂Di

(Gj −Gi)BiW (xi − xj , h)ω∂
j nj
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Application of SPH methods to conservation equations 91

As shown before, this expression allows treating exactly the components of
G, which depend linearly on x. We get for the renormalization form:

1
ωi

dvo (ωiφi)
dt

= −
∑
j∈Di

(Gj −Gi)Bi∇xiW (xi − xj , h)ωj (5.9)

−
∑

j∈∂Di

(Gj −Gi)BiW (xi − xj , h)ω∂
j nj

+
∑
j∈Di

S (φj) W (xi − xj , h)ωj

or the other form based on (4.22) and (4.30) which allows the global conser-
vation of quantities φ.
Note that the matrix of renormalisation does not appear in the surface sum-
mation as the normalisation is now assumed to apply on the gradient of the
kernel and not on the gradient of the function φ itself.

1
ωi

dvo (ωiφi)
dt

= −
∑
j∈Di

(Gj + Gi)Bij∇xiW (xi − xj , h)ωj (5.10)

−
∑

j∈∂Di

(Gj + Gi)W (xi − xj , h)ω∂
j nj

+
∑
j∈Di

S (φj) W (xi − xj , h)ωj

5.2.3 Global conservation of transported quantities φ

Consider the use of (5.10) far from the boundary ∂Ω. Remember that if
Bij = 1

2 (Bi + Bj), then Bij∇xiW (xi − xj , h) = −Bji∇xj W (xj − xi, h); this
allows the cancellation of the mutual interactions between particles, so that
we get by summing on all particles i in Ω:

dvo

(∑
i∈Ω

ωiφi

)

dt
=
∑
i∈Ω

ωi

∑
j∈Di

S (φj)W (x− xj , h)ωj

This is just the discrete form of the conservation equation of φ in Ω:

dvo

∫
Ω

φdx′3

dt
=
∫

Ω

Sdx′3

5.2.4 Numerical viscosity

Equation (5.10) looks like a central scheme, so that it is generally necessary
to add some numerical dissipation in order to allow a stable integration in time
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92 Computational Fluid Dynamics

with explicit schemes. We introduce then a Πij term, such that Πij = Πji

defined as:

Πij =

⎧⎨
⎩

βμ2
ij−αμijcij

(ρi+ρj)
2

if (vi − vj) . (xi − xj) < 0

0 elsewhere

μij = h(vi−vj).(xi−xj)

(xi−xj)
2+εh2

(5.11)

cij = (ci+cj)
2 is an averaged velocity of sound, ε ∈

[
10−3, 10−6

]
� 1 allows to

avoid a division by zero, and α, β are free parameters of order one that are
case dependant.

Monaghan has proposed these expressions. In practice, their main objective
is to correct the pressure p by a viscous term Πv, so that p + Πv will be used
in the transport equation of momentum and energy. This is related to the
work of Richtmeyer (1967) who defined the viscous pressure Πv by:

Πv =
{

βρl2 (∇.v)2 − αρlc∇.v if ∇.v < 0
0 elsewhere

(5.12)

with l ∼ h or Δx. From the minus sign in (5.11), and the original ex-
pression (5.12), it is clear that (5.11) is based on a “constant zeroing” for-
mula (4.21) of the divergence. See also (Issa, 2005, Violeau 2002, 2004).
Introducing the numerical viscosity in the conservation equations, we get for
instance from (5.10):

1
ωi

dvo (ωiφi)
dt

= −
∑
j∈Di

(Gj + Gi + Πij)Bij∇xiW (xi − xj , h)ωj (5.13)

−
∑

j∈∂Di

(Gj + Gi + Πij)W (xi − xj , h)ω∂
j nj

+
∑
j∈Di

S (φj)W (xi − xj , h)ωj

As mentioned by Gingold and Monaghan (1977) and Vila (2005), the nice fea-
ture of (5.11) is its compatibility with the second principle of thermodynamics.
Considering the definition of specific entropy:

Tds = de− p

ρ2
dρ

or its SPH discrete equivalent equation:

Ti
dsi

dt
= −1

2

∑
j∈Di

ρjωjΠij (vj − vi)∇xiW (q = xi − xj , h)

whose second member is non positive if dW
dq < 0, which is provided by a

B-spline kernel for instance.
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Application of SPH methods to conservation equations 93

5.2.5 Godunov’s scheme and Riemann solver

Riemann solver is a successful tool in order to increase the stability of a
numerical scheme. In practice, this type of solver also includes implicitly a
certain amount of numerical dissipation (see Vila (2005)). We will also show
how the summation over the neighbouring particles has some connection with
the summation over the faces of a control volume, as in finite volume method
for instance.

i

j

�nij

xijΦi

Φj

FIGURE 5.1: Flux balance at the interface xij between two particles i and j.

5.2.6 The analogy with finite volume method

Following the approach of Vila (2005), consider first the line connecting two
particles i and j (Figure 5.1). Let nij the unit vector defined as:

nij =
xj − xi

|xj − xi|

We have then, according to (4.12):

∇xiW (xi − xj , h) = −∇xjW (xi − xj , h)

= −Cnij

hd+1

=
df(qij

|xi−xj |
h )

dq

= −nij
C

hd+1

(
df

dq

)

ij

∇xiW (xi − xj , h) = nijdf
∗
q (5.14)

In the equation of conservation (5.10) , we may also write:

Bij∇xiW (xi − xj , h) = −Bijnijdf
∗
q ≈ −δijnijdf

∗
q = −nijdf

∗
q ,
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94 Computational Fluid Dynamics

and dAij = ωjdf
∗
q so that:

dvo (ωiφi)
dt

= ωi

∑
j∈Di

(Gj + Gi) dAijnij (5.15)

−ωi

∑
j∈∂Di

(Gj + Gi)W (xi − xj , h)ω∂
j nj

+ωi

∑
j∈Di

S (φj)W (xi − xj , h)ωj

Note that on the boundary ∂Di, ω∂
j stands for an element of surface. If we

define dA∂Ω
ij = ω∂

j W (xi − xj , h), we can then write also:

dvo (ωiφi)
dt

= ωi

∑
j∈Di

(Gj + Gi) dAijnij (5.16)

−ωi

∑
j∈∂Di

(Gj + Gi) dA∂Ω
ij nj

+ωi

∑
j∈Di

S (φj)W (x− xj , h)ωj

Define now 2gij (nij , φi, φj) = (Gj + Gi)nij where gij (nij , φi, φj) stands for
a numerical flux computed at xij midway between the two particles i and j,
and submitted to the two following conditions:

{
g (n, φ, φ) = G (φ) n

g (n, φ, φ) = −g (−n, φ, φ)

We get finally:

dvo (ωiφi)
dt =

∑
j∈Di

2gijdAij −
∑

j∈∂Di

2gijdA∂Ω
ij + ωi

∑
j∈Di

S (φj)W (xi − xj , h)ωj

(5.17)
This equation can be used in order to identify an analogy with the finite
volume method, in the domain Di. We observe that the point where the
flux gij is computed could be considered as being located at xij = xi+xj

2 . ωi

stands for a volume, gij (nij , φi, φj) is a flux in the direction of nij , and dAij

corresponds to a surface located at xij .
Similarly, dA∂Ω

ij stands for the surface element located on the boundary ∂Ω
that intercept ∂Di, while nj is the local normal to ∂Ω.

For a constant field φij , we have for the first term of the second member:
∑
j∈Di

2gijdAij = 2G (φi)
∑
j∈Di

nijdAij

This quantity is zero for a closed finite volume, while it is equivalent in SPH
to

∑
j∈D(xi)

W (x− xj) ωj = 1 in (4.9) or
∑

j∈Di

∇xiW (xi − xj , h)ωj = 0.
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Application of SPH methods to conservation equations 95

We have already discussed in chapter 9, various techniques in order to force
this last quantity to zero. See for instance (4.21), or the renormalization
technique or the use of Shepard’s kernel ψ (4.42). Again, we will see that
FVPM method theoretically fulfil the “closed volume” condition.

REMARK 5.1 If φ may be considered as constant over the intersection
of ∂Ω and ∂Di, then

∑
j∈∂Di

2gijdA∂D
ij = 2G (φi)

∑
j∈∂Di

njdA∂Ω

5.2.7 Riemann solver

Vila (1999) was the first to build a variant of the standard SPH method
based on a weak form. He noticed that the discretization of this conservative
formulation by the SPH method leads to the appearance of one-dimensional
Riemann problems between pairs of neighbouring points. Between the two
points, we thus consider a one-dimensional set of conservation laws, whose
initial condition is discontinuous at the mid-point. Considering two interact-
ing particles whose indexes are noted i and j, this can be expressed in the
homogeneous case as:

⎧⎪⎨
⎪⎩

∂φ
∂t + ∂

∂x(nij)
(G (φ) .nij) = 0

φ (xij , t = 0) =
{

φi if x(nij) < 0
φj if x(nij) > 0

(5.18)

The exact solution to (5.18) is self-similar and is given by:

⎧⎪⎪⎨
⎪⎪⎩

φ = φE

(
x(nij)+xo(t)

t , φi, φj

)

xo (t) =
t∫

O

vo (xij , τ) .nijdτ
(5.19)

Here vo (xij , t) is the velocity of the moving interface between points i and j.

With the previous considerations, it is then possible to discretize the con-
servation equation (5.10) as a true balance of numerical fluxes, these latter’s
being computed using Godunov’s schemes. Using the results of Vila (2005),
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96 Computational Fluid Dynamics

the system of discrete conservation laws can be written as:

1
ωi

dvo (ωiφi)
dt

= −
∑
j∈Di

2GEBij∇xiW (xi − xj , h)ωj (5.20)

−
∑

j∈∂Di

2GEW (xi − xj , h)ω∂
j nj

+
∑
j∈Di

S (φj)W (xi − xj , h)ωj

GE stands for Godunov’s fluxes adapted to the ALE description and is given
from (5.7) by:

GE (φi, φj) = FE

(
φij

(
λij

0

))
− φij

(
λij

0

)
⊗ vo (xij , t)

φij

(
λij

0

)
= φE

(
λij

0 , φi, φj

)

λij
0 = vo (xij , t) .nij

(5.21)

Equation (5.21) means that the solution of the moving Riemann problem is
searched along the direction x = λij

0 t that is to say along the move of the
interface xij in the direction nij .

This gives a numerical method, which is quite different from the standard
SPH one. First of all, the ALE description enables the use of an upwind
solution for velocity thanks to the convective fluxes, which are missing in
a pure Lagrangian description. Incidentally, one can notice that even if a
Lagrangian transport field, v0 = v, is chosen, mass fluxes are not necessarily
reduced to zero because of the upwind component of vE,ij , which means that
in all cases the mass of particles is no longer a constant variable along time
(even though total mass is globally conserved in Ω).

Another difference is that the geometric transformation of points distribu-
tion is explicitly taken into account through (4.4), which adds one equation
compared to the standard SPH set of equations. Clearly calculation points
should no longer be taken for particles but for moving control volumes, which
exchange not only momentum but also mass between each other’s. This seems
to be more appropriated to describe fluid flows than material particles. It also
connects this hybrid method to finite volumes formalism, at the difference
that the flux balance is not computed on the boundary surface of the control
volume but in a small surrounding volume.

5.2.8 Numerical viscosity and Riemann solver

Ben Moussa and Vila (2000) have indicated that the replacement in (5.10)
of 2gij (nij , φi, φj) = (Gj + Gi)nij , where gij (nij , φi, φj) stands for the nu-
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Application of SPH methods to conservation equations 97

merical flux, is equivalent to introducing a numerical viscosity in (5.10):

1
ωi

dvo (ωiφi)
dt

= −
∑
j∈Di

(Gj + Gi)Bij∇xiW (xi − xj , h)ωj (5.22)

−
∑
j∈Di

Q (nij , φi, φj) (φi − φj)∇xiW (xi − xj , h)

−
∑

j∈∂Di

(Gj + Gi)W (xi − xj , h)ω∂
j nj

+
∑
j∈Di

S (φj)W (xi − xj , h)ωj

where Q (nij , φi, φj) is a numerical viscosity defined from one-dimensional
analysis and a scalar case by:

Q (nij , φi, φj) (φi − φj) = G (φi, x, t) nij − 2gij (nij , φi, φj) + G (φj , x, t) nij

(5.23)

5.3 Application to flow conservation equations

5.3.1 Euler equation for a non-viscous fluid

The full set of discrete equations describing this hybrid method is finally
written here from (5.20) and (5.21) with Bij = δij and without the energy
equation for Euler equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) dxi

dt = v0 (x, t)
(b) dωi

dt = ωi

∑
j∈Di

ωj (v0 (xj , t)− v0 (xi, t)) .∇iW (xi − xj , h)

(c) d(ωiρi)
dt = −ωi

∑
j∈Di

ωj2ρE,ij (vE,ij − v0 (xij , t)) .∇iW (xi − xj , h)

−ωi

∑
j∈∂Di

2ρE,ij (vE,ij − v0 (xij , t))W (xi − xj , h)ω∂
j nj

(d) d(ωiρivi)
dt = −ωi

∑
j∈Di

ωj2 [ρE,ijvE,ij ⊗ (vE,ij − v0 (xij , t)) + pE,ijδij ]

.∇iW (xi − xj , h)
−ωi

∑
j∈∂Di

2 [ρE,ijvE,ij ⊗ (vE,ij − v0 (xij , t)) + pE,ijδij ]

W (xi − xj , h)ω∂
j nj + ωiρig

(5.24)
In the system of equations (5.24), (a) gives the trajectory of the particle, (b)
gives the evolution of the weight ωi according to (4.4), (c) is the conservation
of mass and (d) is the conservation of momentum in which only gravity forces
are considered as external source term.
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98 Computational Fluid Dynamics

5.3.2 Practical implementation of Riemann solver in an SPH
method

The equation (5.24) requires the solution of the non-linear Riemann prob-
lems of the form (5.18), which appear between each pair of neighbouring
points. The form of this solution depends also on the equation of state. We
will use the system of equations (5.24) for water in Chapter 5.5. The equation
of Tait (1888) will be used in order to link the density ρ and the pressure p
for a barotropic fluid:

p =
ρoc

2
0

γ

((
ρ

ρ0

)γ

− 1
)

(5.25)

where the density ρ0 and the velocity of sound c0 are references quantities.
We use γ = 7 for water.

Only the principle of an exact resolution will be presented here. More
details can be found in Marongiu (dec. 2007); the practical use of Riemann
solver for the treatment of boundary conditions is described in a following
paragraph as for instance on solid boundaries.

The general form of the one-dimensional Riemann problem is rewritten as:
⎧⎨
⎩

∂φ
∂t + ∂

∂x(nij)
(F (φ) .nij) = 0

φ (xij , t = 0) =
{

φL if x < 0
φR if x > 0

(5.26)

where subscripts L and R denote the so called left and right states on both
sides of the initial discontinuity situated on x = 0. The dimension of this
problem should only be two (density and velocity) but as this problem has
been introduced in the frame of multidimensional method, we add a second
component to the velocity in the tangential direction. The vectors of conser-
vative variables and fluxes are so given by:

φ =
(
ρ, ρv(1), ρv(2)

)

FE (φ) =
(
ρv(1), ρv(1)2 + κργ , ρv(1)v(2)

)

with κ = B
ργ
0
. Superscript (1) denotes the direction normal to the disconti-

nuity (the direction linking the two particles) while (2) denotes the direction
tangential to the discontinuity.

The system (5.26) has three real eigenvalues:
⎧⎨
⎩

λ1 = v(1)

λ2 = v(1) + c

λ3 = v(1) − c

As we have low Mach numbers, λ2 > 0 represents a non-linear wave moving
to the right and λ3 < 0 represents a non-linear wave moving to the left, each
of these can be either a rarefaction wave, or a shock wave. Figure 5.2 shows
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Application of SPH methods to conservation equations 99

that these waves delineate three regions in which the states Φ are constant:
the left and right states and an intermediate state Φ∗ called the star region.
The eigenvalue λ1 corresponds to a shear wave across which the tangential
component v(2) of the velocity varies discontinuously.

0
x

t

ρL

v
(1)
L

v
(2)
L

ρ∗

v
(1)
∗

v
(2)
L

ρ∗

v
(1)
∗

v
(2)
R

ρR

v
(1)
R

v
(2)
R

FIGURE 5.2: Structure of a typical solution to the one-dimensional Riemann
problem.

In the frame of an ALE numerical method, the solution along x
t = v

(1)
0 is

needed. In practice, although the transport field can be chosen arbitrarily, we
are principally interested in Eulerian, Lagrangian and intermediate descrip-
tions; this means that we can roughly consider that 0 ≤ ‖v0‖ ≤ ‖v‖. This
leads to ‖v0‖ � c and consequently the solution has to be searched in the star
region.

Solving for the Φ∗ state can be achieved by using the Rankine-Hugoniot
jump relations across shock waves and the Riemann invariants across isen-
tropic rarefaction waves. States on both sides of a non-linear wave can hence
be linked, leading to a system of non linear equations relating ΦL, ΦR and
Φ∗. The whole procedure is very well described in Ivings et al. (1998). The
principle of this methodology is illustrated in Figure 5.3. Two lines in the ρ-v
diagram can represent the set of states; they can be reached from ΦL or ΦR

through either a rarefaction or a shock wave. The solution is therefore the in-
tersection point of these two lines. In practice, because of the non-linearity, an
iterative method is required. We can use a Newton-Raphson procedure and
numerical experiments show that a maximum of four iterations are usually
necessary to reach convergence in our applications. Nevertheless the eval-
uation of each intermediate solution is costly and a simpler linear solver is
useful.
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100 Computational Fluid Dynamics

v

ρ

ΦR

ΦL

Φ∗

FIGURE 5.3: Exact solution to the Riemann problem.

5.4 Boundary conditions

Boundary conditions are certainly the major weakness for a practical use
of SPH in real cases. The free surface condition for a liquid is rather easily
handled, thanks to the Lagrangian description and provided that the influence
of gas and surface tension can be neglected. But other kinds of condition do
not benefit from a proper and general modeling. Inlet/outlet type boundary
conditions for instance are most of the time simply treated as supersonic ones,
meaning that the downward flow has no influence on the imposed physical
boundary condition, which restricts the field of applications.

We shall first describe three methods used in classical SPH methods, the
boundary repulsive force, the mirror particles and the ghost particles; one
other method uses a normalization of the density close to the boundary. We
then introduce the semi-analytical method of Vila (1999) that allows to avoid
the difficult task to determine the normal on a boundary. We shall then
present how SPH-ALE method can easily handle complex geometries and
flows with high dynamics.

5.4.1 Boundary repulsive forces

The case of wall boundary condition has been more widely considered.
Sirovich (1968) formulated the boundary condition as a boundary force.

Peskin (1977) developed a similar technique for immersed boundary
method. Monaghan (1994, 1995) proposed then to ensure non-penetration
of fluid particles across walls using repulsive forces in SPH, first similar to
Lennard-Jones forces of molecular dynamics and then considered as normal
boundary forces. The solid geometry is hence discretized with points, and
these wall points apply centred or normal forces on fluid particles, as shown
in Figure 5.4. The strength of these forces depends on the relative distance
between fluid particles and wall points and increases quickly enough to push
fluid particles back and prevent them from leaking. This model is simple,
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Application of SPH methods to conservation equations 101

cheap, and can easily be applied to walls of any shape, allowing the use of
SPH for complicated real cases. Monaghan and Kajtar (2009) have given
a good description of the practical use of this model; they consider radial
and sufficiently smooth forces to ensure that, when the total force on a fluid
particle is obtained by summing over the boundary particle forces, the final
result is independent of the discrete nature of the boundary to a high degree
of accuracy. They mention that the boundary particles must have a spac-
ing relative to the fluid particles of 1/3 to guarantee that the magnitude of
the tangential force relative to the normal force, and the relative variation in
the normal force for a fixed distance above the boundary, are both < 10−5.
The expression of the boundary force on a fluid particle i due to a boundary
particle j is:

Fj→i =
1
β

(
V 2

max

rij − d

)
rij

|rij |
W (rij)

2mj

mj + mi
(5.27)

where β is the ratio of the fluid particle spacing to the boundary points spac-
ing. d ≈ 0.

Apart from avoiding the penetration of fluid particles through the wall,
this model can trigger numerical instabilities in the vicinity of the boundary.
In fact this model doesn’t compensate for the truncated kernel support and
hence doesn’t restore mathematical consistency in the near wall region, mak-
ing gradient approximations very inaccurate. Moreover, wall pressure is not
explicitly involved in this model.

q
p

s

�f is

�f ip
�f iq

i

Solid boundaryWall points

�nq
�np

�ns

FIGURE 5.4: Repulsive wall forces directed along the normal vector to the
boundary.

5.4.2 Mirror particles

A more complex model is the mirror (or fictitious) particles developed by
Morris (1997). Mathematical consistency is first restored by extending the
computational domain outside the wall using a regular and pre-established
fictitious points distribution, so that the volume interpolation scheme has not
to be modified for near wall fluid particles (see Figure 5.5).
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102 Computational Fluid Dynamics

Physical properties of these mirror particles are then set so as to reproduce
the desired boundary condition. In particular the non-penetration condition
v.n = 0 is obtained through assigning to mirror particles the symmetric pres-
sure field of fluid particles. Issa (2005) noticed that numerical results could
be quite sensitive to the fictitious point’s distribution. Besides, the imposed
symmetric pressure field between fluid and mirror particles turns out to be
equivalent to ∂p

∂n = 0, which takes into account neither hydrostatic nor hy-
drodynamic effects. Finally, the fictitious point distribution has to be defined
initially, which is not always straightforward for complicated shaped solid
walls. For more than one fluid, the nature of the mirror particles has to be
chosen in advance, and the mirror should also change their state if an interface
is close to the boundary.

i

Δx

Δx

ΔxΔx

F luid particles Wall particles Mirror particles

Solid boundary

FIGURE 5.5: Regular distribution of wall and mirror particles.

5.4.3 Ghost particles

A more accurate model available to treat solid walls in SPH is the ghost
particles model (Colagrossi, Landrini, 2003). It retains the previous idea of
extending the computational domain so as to restore mathematical consis-
tency but this is achieved using the images of the fluid particles themselves
(Figure 5.6). Thus the position of fluid particles in the vicinity of a boundary
are symmetrized across the boundary; this creates the image particles, called
ghost particles, which are also involved in the discrete equations of motion.
A real particle produces an image, which has the same state quantities (den-
sity, pressure and temperature) as their real particle. In order to fulfil the
non-penetration condition, the normal component of ghost particles’ velocity

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
34

 0
4 

M
ar

ch
 2

01
6 



Application of SPH methods to conservation equations 103

/ /i

F luid particles

Ghost particles

Solid
boundary

FIGURE 5.6: Ghost particles distribution for a planar boundary.
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104 Computational Fluid Dynamics

Fluid particles Ghost particles

F luid volumes Ghost volumes

Solid
boundary

FIGURE 5.7: Variation of volumes for a curved boundary.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
34

 0
4 

M
ar

ch
 2

01
6 



Application of SPH methods to conservation equations 105

Fluid particles

Ghost particles, face 1

Ghost particles, face 2

Face 2

Face 1

FIGURE 5.8: Separated treatment of faces for a corner.

has an opposite sign to normal component of the real particle. The tangential
velocity component has the same sign for free slip condition or opposite for
no slip condition.

Some modifications are required to treat moving walls (Doring, 2006). A
pressure correction term can be added to take static effects (gravity) into
account (Oger, 2006). The main difficulty using this model is to obtain sat-
isfactory symmetry transformations in the case of complicated shaped walls.
Weights (volumes) of ghost particles should hence depend on the local ra-
dius of curvature of the wall, as mentioned in Vila (1999) (Figure 5.7). The
case of corners is very tricky and corner sides are generally treated separately
(Figure 5.8). The treatment of more than one fluid requires the interface to
appear among the ghost particles.

Unfortunately, this is still not sufficient to handle real and complicated
solid geometries particularly for flows with very high dynamics.

The standard SPH method is apparently very simple to implement and
comes along with a lot of boundary treatments that enables very easily to
conduct free surface simulations which would require more sophisticated nu-
merical techniques otherwise. But from the accuracy point of view, it seems
that a shift is needed to bring SPH to the same quality standards as mesh-
based methods. It will be shown in the sequel that an SPH-ALE description
of the flow enables the adoption of more sophisticated numerical schemes di-

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
34

 0
4 

M
ar

ch
 2

01
6 



106 Computational Fluid Dynamics

rectly inspired from existing finite volumes schemes.

5.4.4 Normalizing conditions

This method is due to Feldman and Bonet (2007). They obtain the SPH
density by using a Shepard’s kernel (4.42), thereby summing the density over
the particles and correcting the summation by a normalizing function.

ρh (x) = α (x)
∑

j∈D(xi)

ρ (xj , t)W (x− xj , h)ωj (xj , t) (5.28)

=

∑
j∈D(xi)

ρ (xj , t)W (x− xj , h)ωj (xj , t)

∑
j∈Di

W (x− xj , h)ωj
(5.29)

In general, γ (x) =
∑

j∈Di

W (x− xj , h)ωj is close to one inside the flow domain

Ω. However, close to the boundary ∂Ω, its value may be very different from
one because of the truncation of the particle domain Di; this term may then
correct for the absence of particles beyond the boundary ∂Ω. Feldman and
Bonet have then shown that using a Shepard’s kernel for the density (then
the pressure) allows extra forces to appear in the equations of motion, which
depends on ∇γ (x). These forces act normal to the surfaces, and tend towards
zero far from the boundary; their net effect is then to prevent the particles to
cross a solid boundary.

In order to avoid costly computation of the volume integral γ (x), the au-
thors introduce a vector function w such that:

∇.w = W (x− xj , h)
w = f (q) x, q = |x|

h

(5.30)

In this way, the volume integral γ is obtained from the divergence theorem
and its computation involves only the boundary of the compact support of
W :

γ (x) =
∫

D(x)

W (x− x′, h) dx′d =
∫

D(x)

∇.wdx′d =
∫

∂D(x)

w.ndx′d−1 (5.31)

Feldman and Bonet have given explicit expression for f (q) , γ (x) and∇γ (x)
for a two-dimensional case including the treatment of sharp corners:

f (q) =
1
q2

∫
Wq′dq′

Monaghan and Kajtar (2009) report that this method works well in the case
of fixed surfaces, but in more complicated situations it can be cumbersome.
For example in a flow containing several bodies which can interact, where any
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Application of SPH methods to conservation equations 107

two of the bodies are in rolling and sliding contact, the normalizing function
is different for every configuration of the bodies, and its evaluation is costly,
especially in three dimensions.

5.4.5 The semi-analytical method

Vila (1999) has proposed a method that treats the boundary term in the
conservation equation as a term distributed in the volume.

Consider the conservation equation in the following form:

1
ωi

dvo (ωiφi)
dt

= −
∑
j∈Di

2GEBij∇xiW (xi − xj , h)ωj

−
∑

j∈∂Di

2GEW (xi − xj , h)ω∂
j nj

+
∑
j∈Di

S (φj)W (xi − xj , h)ωj

The Figure 5.9 shows the interaction of a flow domain Di with the boundary

FIGURE 5.9: Interaction of the particle domain Di with the flow boundary
∂Ω.

∂Ω of the domain Ω. The boundary ∂Ω separates the volume of the support of
the kernel into two parts Di1 and Di2 where Di1 is assumed to be located in the
flow domain Ω while Di2 is outside Ω. Let assume also that the normal to the
boundary ∂Ω is directed from Di1 towards Di2. Because W (xj ∈ ∂Di, h) = 0
and as the boundary term −

∑
j∈∂Di

2GEW (xi − xj , h)ω∂
j nj must be under-

stood as computed on the intersection ∂DΩ of ∂Ω and of the volume of the
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support of the kernel Di (∂DΩ = Di∩∂Ω), we can then write on the boundary
of Di2:

−
∑

j∈∂Di

2GEW (xi − xj , h)ω∂
j nj = −

∑
j∈∂DΩ

2GEW (xi − xj , h)ω∂
j nj

=
∑

j∈∂Di2

2GEW (xi − xj , h)ω∂
j nj

Using then Green’s theorem, we get for the last integral:
∑

j∈∂Di2

2GEW (xi − xj , h)ω∂
j nj = −

∑
j∈Di2

∇xj (2GEW (xi − xj , h))ωj

= −2ḠE(∂DΩ)

∑
j∈Di2

∇xj W (xi − xj , h)ωj

where the last result is obtained by assuming that the numerical flux GE is
constant over Di2 and defined as its average ḠE(Di∩∂Ω) over ∂DΩ = Di ∩ ∂Ω.
Owing to the fact that over Di we have also as a consequence of (4.9)

∑
j∈Di

∇xiW (xi − xj , h)ωj = 0 (5.32)

so that
∑

j∈Di2

∇xiW (xi − xj , h)ωj = −
∑

j∈Di1

∇xiW (xi − xj , h)ωj , we get fi-

nally:

−
∑

j∈∂Di

2GEW (xi − xj , h)ω∂
j nj = 2ḠE(∂DΩ)

∑
j∈Di1

∇xj W (xi − xj , h)ωj

Note that in practice (5.32) is never numerically fulfilled exactly in the flow
domain Ω, so that using (5.32) explicitly is a way to force this condition for
the particles in contact with the boundary.

For the particles i whose domain Di intercepts the flow boundary ∂Ω (then
if ∂DΩ = 0), we get then the following conservation equation:

1
ωi

dvo (ωiφi)
dt

= −
∑

j∈Di,∂DΩ �=0

2
(
GE − ḠE(∂DΩ)

)
Bij∇xiW (xi − xj , h)ωj

+
∑
j∈Di

S (φj)W (xi − xj , h)ωj (5.33)

Consider for instance the interface between two flows (say a liquid and a gas).
Let Patm be the pressure in the gas. The particle close to the interface will
then feel a relative pressure P − Patm. This method is then particularly well
adapted to the treatment of the pressure boundary condition for a free surface
in a liquid. It avoids also the determination of the normal to the free interface,
which is particularly difficult in this case.
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Application of SPH methods to conservation equations 109

A similar treatment can be also used for a solid wall; however the wall
pressure cannot be estimated in advance as for the free surface from the gas.
The SPH-ALE boundary treatment will then propose a specific treatment in
order to determine the pressure from the flow behavior.

5.4.6 SPH-ALE boundary treatment

In the SPH-ALE framework, the boundary conditions can be much more
adequately set than in the standard SPH method. This is mainly due to the
choice of an ALE description, which enables the treatment of a boundary sur-
face travelling with its own velocity, independently of the fluid velocity. It will
be shown that upwinding is also of great interest to transmit effects of the fluid
onto the boundary, and reciprocally. The SPH-ALE boundary treatment can
be split into two steps. In the first, a mathematically consistent approxima-
tion of the boundary term is deduced from the kernel approximation itself. Its
discrete counterpart, similar to a particle approximation, leads to the setup
of boundary fluxes. These boundary fluxes are, in the second step, computed
in an upwind method, after an interpretation of the mutual influence of the
fluid and the boundary condition as a partial Riemann problem.

5.4.6.1 Surface integral boundary term

Ghost or mirror particles boundary treatments are facing the difficult task
to add extra calculation points outside the computation domain. This is
mandatory so as to cope with truncated kernel supports in the vicinity of
a boundary. In practice the spatial distribution of these points is not easy
to set because of geometric issues and field values attributed to these points
can be obtained only through a long-range (the size of the kernel support)
extrapolation of the field from inside the fluid domain. Besides, for reason of
accuracy, this extrapolation should be non-linear, as the Euler equations are.

If we go back to the kernel approximation of gradients (4.19), we observe
that the surface integral term is non-zero when the kernel support intersects
the boundary of the flow domain. We shall then compute directly this surface
term without resorting to added particles. In practice, the particle approxi-
mation of this surface term is obtained using the same quadrature formula, as
the one used for the volume term, provided a satisfactory discretization of the
boundary surface is available. Boundary fluxes are finally expressed in (5.20)
as:

2
∫

∂D(x)

(F (φ) − φ⊗ vo)Wndx′d−1 = 2
∑

j∈∂Di

GE (φi, φj)W (xi − xj , h)ω∂
j nj

(5.34)
where GE stands for boundary Godunov’s fluxes adapted to the ALE descrip-
tion and is given from (5.21); it is given explicitly in the next step. The
quantity ω∂

j is the weight of the boundary element j (area of the surface ele-
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110 Computational Fluid Dynamics

ment in 3D), which samples the boundary, and nj is the unit normal vector
to the boundary at location xj .

5.4.6.2 Partial Riemann problem

The Riemann problem described in 5.3.2 is used to determine the mutual
influence of two fluid states, namely the left state and the right state.
Considering now the interaction of a fluid state, let’s say a left state, and a
boundary condition; it is clear that no right state can be defined. However,
the influence of the boundary on the numerical solution is computed through
boundary fluxes arising at the boundary surface. The boundary surface thus
plays a similar role as the one played by an interface between two fluid
states. Following Dubois (2001), the boundary surface can hence be taken
for an interface of a partial Riemann problem, for which one state is missing.
Nevertheless, the solution to this partial Riemann problem is partially
defined by the physical boundary conditions imposed on the boundary
surface. The whole solution consequently results from the selection, among
all the states compatible with the imposed boundary condition, of the one,
which can be reached from the left state through a shock or a rarefaction
wave. Figure 5.10 helps understanding this concept.

We consider a one-dimensional partial Riemann problem along the normal
direction to the boundary, between a given left (fluid) state ΦL and a bound-
ary surface. Primitive variables are noted ρ and v where v stands for the
component of the velocity field normal to the boundary. The imposed bound-
ary condition turns out to be a given relation (implicit or explicit) between
ρ and v and is stated in a general form B (ρ, v) = 0. If two conditions are
imposed, the solution is fully determined by the boundary condition and the
fluid state plays no role. This configuration corresponds to a supersonic in-
let for instance. On the contrary, if no boundary condition is imposed, the
solution is fully determined by the fluid state, as it is the case for a super-
sonic outlet. The general case where only one condition is imposed is now
considered. In the ρ, v diagram, the relation B (ρ, v) = 0 can be represented
by a continuous curve noted CB. This curve describes the set of states that
are compatible with the boundary condition. We can also define the curve,
noted C−, which describes the set of states that can be reached from the left
state through either a shock or a rarefaction wave. The solution Φ∗ to the
partial Riemann problem is finally the intersection point between these two
curves. Some usual configurations are given in Figure 5.10, for an imposed ve-
locity (a), an imposed pressure (b) and an imposed mass flow (c). It is worth
noticing that this boundary modeling can be used for any kind of boundary
condition, and that ensures a full compatibility of the boundary treatments
with fluid interactions in the volume.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
34

 0
4 

M
ar

ch
 2

01
6 



Application of SPH methods to conservation equations 111

v

ρ

ΦL

Φ∗

C−

CB

v

ρ

ΦL

Φ∗

C−

CB

v

ρ

ΦL Φ∗

C−
CB

FIGURE 5.10: Various configurations corresponding to usual boundary con-
ditions: (a) Case of a solid wall or a subsonic inlet: velocity imposed; (b) Case
of a subsonic outlet: pressure imposed; (c) Case of a subsonic inlet: mass flow
imposed.

5.4.6.3 Global state

For a specific particle, the partial Riemann problem only assigns the con-
tribution of the particle to the boundary element. In order to get a solution
that accounts for the influence on the boundary surface of all the particles in
the field, for instance the pressure map at a point on a solid wall, we have to
sum up the interactions of that boundary element with all the fluid particles
in the neighbourhood.
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112 Computational Fluid Dynamics

In practice, the global pressure flux exchanged between the fluid particles
indexed by j in the fluid domain and the boundary element indexed by i
with the weight ω∂

i can be expressed from the discrete momentum equation
in (5.24) (d) with the boundary terms as in (5.20) as:

F p
i→Ω = −ω∂

i

∑
j∈Di

ωj2pE,ijW (xi − xj , h)ni (5.35)

On the other hand if pi stands for the pressure value assigned to the boundary
element i, this total pressure flux can be written:

F p
i→Ω = −ω∂

i pini (5.36)

Equating the two above relations, we get the relationship between the pressure
pi on the boundary element n◦i and the partial pressure pE,ij induced by each
local j particle of the fluid domain:

pi =
∑
j∈Di

ωj2pE,ijW (xi − xj , h) (5.37)

This is simply an averaged sum of the partial pressures resulting from the
partial Riemann problems. This definition is conservative, which means that
the total numerical force exerted by the fluid on the boundary is equal, in the
continuous limit, to the integral of the pressure field on the boundary surface:

FΩ→∂Ω =
∑

j∈∂Ω

ω∂
j pjnj ≈

∫

∂Ω

pndx′d−1 (5.38)

5.5 Applications of SPH and SPH-ALE methods

In this part the SPH-ALE method will be used to simulate unsteady com-
plex free-surface flows. The examples are taken from hydraulic turbines and
in particular from the Pelton turbine, which is a hydraulic impulse machine
well adapted for high head (from 200 to 2 000 meters) and low discharge in-
stallations. It is composed of several hydraulic components, among which the
runner plays the most important role. It is composed of 18 to 26 buckets that
are impinged by high velocity water jets (from 1 to 6). It will be shown that
the SPH-ALE method is particularly suited to study the interaction of the
jets and the buckets.

Static and rotating configurations are presented. Numerical simulations are
done at model scale, which is a usual setup for mesh-based simulations. In
order to save some computational cost, a symmetry condition is used. Indeed
the main components of a Pelton turbine are usually symmetric against the
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Application of SPH methods to conservation equations 113

middle plane of the runner. It is thus possible to consider the flows we are
interested in as symmetric, and to divide the computational domain size by
a factor of two. But for the correctness of simulations, the removed part
must be replaced by a symmetry condition. This is obtained by mirroring the
calculation points that are in the vicinity of the symmetry plane, i.e. points
whose kernel support intersects the plane. These duplicated points are used
only to compute fictitious fluxes that are then involved in the flux balance
of real computational points, in a way similar to the well-known technique of
ghost particles (Colagrossi and Landrini, 2003).

Water is modeled as a weakly compressible fluid whose behavior is governed
by the Tait’s equation of state (5.25):

p =
ρ0c

2
0

γ

[(
ρ

ρ0

)γ

− 1
]

where ρ0 and c0 are the reference density and speed of sound, respectively.
The parameter γ is set to 7, which is a classical practice among the SPH
practitioners community. The value of the speed of sound is not taken equal
to the real one for water, as it would lead to very small time increments. A
common practice is to take this parameter equal to ten times a velocity scale
of the case considered.

The first case presented is a single steady Pelton bucket impinged by a
water jet; the second involves a complete rotating Pelton runner impinged
by a water jet. On both cases a constant velocity profile is imposed at the
inlet boundary condition, where new particles are periodically injected in the
computational domain. Vortices are then not considered at inlet section.

5.5.1 Flow in a single steady Pelton bucket

The first application considered is a steady Pelton bucket impinged by a
water jet. The jet velocity is Cjet = 19.61 m/s and its diameter is d0 =
0.03 m. The discretization size is Δx = 1 mm. The simulation represents a
physical time of approximately 22 ms, so as to obtain a converged state in
time. The number of particles involved is 93 000 at the end of the simulation.
Only the inner surface of the bucket is considered, its discretization uses a
surface triangulation achieved with the commercial mesh tool ICEMR. This
triangulation is refined near sharp geometrical details like the leading edge.
The bucket is thus represented by a set of 48 738 surface elements.

The artificial speed of sound used in the Tait’s equation of state is set
to c0 = 200 m/s, and the reference density of water is ρ = 1000 kg/m3.
Figure 5.11 shows a view of the case. It can be seen that the escaping water
sheet can be properly represented far from the trailing edge of the bucket,
showing that the Lagrangian description allows a proper tracking of interfaces
on long distances.

Pressure distribution on the bucket surface is closely examined (see Fig-
ure 5.12). Results are compared with measurements and CFXR results at
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FIGURE 5.11: Global view of the flow in a steady Pelton bucket.

FIGURE 5.12: Pressure coefficient map on the bucket surface.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
34

 0
4 

M
ar

ch
 2

01
6 



Application of SPH methods to conservation equations 115

FIGURE 5.13: Position of the pressure sensors and mark of the plotted lines.

some given locations corresponding to pressure sensors locations (see Fig-
ure 5.13). Figure 5.14 shows the pressure profiles along two lines of sensors.
The hybrid method tends to underestimate the value of the pressure coef-
ficient. Results are here presented using one sensor as the reference, which
enables to compare the evolution only.

FIGURE 5.14: Pressure profiles along the X1 and Y5 lines boundary con-
ditions: (stars) experiments; (diamonds) VOF method; (dots) SPH-ALE
method.
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116 Computational Fluid Dynamics

FIGURE 5.15: Rotating Pelton runner impinged by a single jet of water.

5.5.2 Flows in a rotating Pelton runner

The runner is made of 21 buckets and at model scale its diameter is D1 =
327.71 mm and the buckets width is B2 = 80 mm. A single water jet impinges
it. The chosen operating point corresponds to a water head of H = 60 m and
a discharge of Q = 0.20205 m3/s and is situated in the high load part of the
operating range.

With these settings, the jet diameter is d0 = 0.02766 m and its velocity is
Cjet = 34.3 m/s. The typical discretization size is also Δx = 1 mm, while
the artificial speed of sound is set to c0 = 430 m/s. Duplicating and rotating
21 times the surface of a single bucket, so that all the buckets are equivalent,
make the surface representation of the runner. Each half-bucket is hence
represented by around 91 000 surface elements. The time integration scheme
used is the 3rd order Runge-Kutta with a CFL number of 0.8. Linearized
Riemann solver and 2nd order MUSCL reconstruction are chosen in the flow
solver.

Figure 5.15 shows the flow configuration at several instants along the sim-
ulation. The last picture corresponds to almost one complete rotation of the
runner. Two view angles are provided, one along the rotation axis, one along
the symmetry plane. Fluid particles are coloured by their velocity in the abso-
lute frame of reference. It can be observed that the escaping water sheets have
a very small residual velocity, which is the result of the exchange of energy
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Application of SPH methods to conservation equations 117

between the jet and the buckets along the rotation. The SPH-ALE method is
also able to track the water sheets on a long distance after the trailing edges
of the buckets, which is the clear advantage of the Lagrangian description.
In particular the water sheets remain separated as it can be observed on the
model in the hydraulic laboratory (see Figure 5.16). These clean water sheets
are more difficult to obtain with a classical mesh based technique like the VOF
method (Volume Of Fluid), which tends to diffuse the free surface interface
and to merge water sheets. This ability of the SPH-ALE method to capture
water sheets can then be used to study the flow when the runner is located in
the casing, which is very difficult to observe experimentally (see Figure 5.17).
One can also see that some isolated particles escape the buckets later, which
could be the result of the emptying process.

The evolution of the hydraulic torque on one bucket during the rotation
is presented in Figure 5.18 and compared to the torque obtained with a flow
solver based on the VOF method. For the SPH-ALE method, the torque is
obtained by integrating the torque contributions coming from the pressure
field on the bucket surface. For the VOF method, viscous contributions are
also taken into account. In Figure 5.18, torque values have been divided by the
maximum values, so that superposition of the curves is possible. It can be seen
that some differences exist at the beginning of the jet-bucket interaction and
also after the peak. But the agreement between the two curves is globally
good. Without the scaling of curves, the SPH-ALE method tends to over-
predict the torque values compared to the VOF method.

FIGURE 5.16: Water sheets observed at model scale.
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FIGURE 5.17: Impact of water sheets on the casing.

Hydraulic torque comparison SPH-ALE vs VOF 
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FIGURE 5.18: Hydraulic torque predicted by the SPH-ALE and VOF meth-
ods.
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6.1 Introduction

The Finite Volume Particle Method (FVPM) is a particular SPH method
that has some nice features for conservation properties; it has been developed
by Hietel (2005), Struckmeier (2002, 2008) and applied to some complex flow
phenomena by Quinlan and his co-workers (2009).

FVPM is based on the use of a sort of Shepard’s kernel ψ (4.42) but without
a weighting of the kernel W by the ωj .

ψ (x (t) , xj , h) =
W (x (t)− xj , h)∑

j∈Nx

W (xj − x (t) , h)
=

W (x (t)− xj , h)∑
j∈Nx

W (x (t)− xj , h)

where Nx is the set of particles j which contain the point x in their own
domain of influence Dj . Let

σ (x (t) , h) =
∑

j∈Nx

W (xj − x (t) , h)⇒ ψ (x (t) , xj , h) =
W (x (t)− xj , h)

σ (x (t) , h)
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Note that σ is different from one. In general (see Figure 6.1), this is because
the summation is done on the values at x of the kernel function of the particles
j that belongs to Nx; it does not represent an integral of the kernel function
associated to the particle at x as in (4.9). As a consequence, this is quite
different from the normalization used by Feldman and Bonet (2007) in their
CSPH method (see paragraph 5.4.4).

The disadvantage of using ψ instead of W is that the norm σ depends on
(x, t) and so ψ also, while W depends only on (x − xj , t); as a consequence,
the general shape of ψ as to be recomputed for each position (x, t).

6.2 Partition of unity

The main advantage of the kernel function ψi is that they form a partition
of unity: ∑

j∈Nx

ψ (x(t), xi, h) = 1 (6.1)

because

∑
i∈Nx

ψ (x(t), xi, h) =
∑
i∈Nx

W (x(t)− xi, h)
σ (x(t), h)

=

∑
i∈Nx

W (x(t) − xi, h)
∑

j∈Nx

W (x(t) − xj , h)
= 1

As a consequence, the analogy with Finite Volume is closer because the SPH
“box” is closed (see paragraph 5.2.5).

Note that condition (6.1) is always fulfilled (at least theoretically) even close
to the boundary ∂Ω, where the domain D(xi) of the particles are truncated.
To be more clear, consider the Figures 6.1, 6.2 and 6.3 similar to those found
in Junk and Struckmeier (2002). In Figure 6.1, we get the particle positions

0

1

-4 -2 0 2 4

x

FIGURE 6.1: Particles position xi and function Wi.

xi and the associated function Wi. Note the symmetry of each function Wi

around each position xi. The sum σ of function Wi is given in Figure 6.2 for
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0

1

2

3

-4 -2 0 2 4

x

FIGURE 6.2: The function σ corresponding to Figure 6.1.

0

1

-4 -2 0 2 4

x

FIGURE 6.3: The kernel ψi.

each position x. The kernel ψi is given in Figure 6.3. Note that this function
is non-symmetric around xi because σ depends on (x, t) and not on (x−xj , t)
and that the maxima of ψi vary along x.

6.3 Average of a function φ

A difference with the classical SPH method is related to the expression of
the average of a function over the domain D(x):

φ (x, t) =
1

V (x, t)

∫

D(x)

φ (x′, t)ψ (x (t) , x′, h) dx′d (6.2)

This discrete value φi is associated with each particle, as well as the volume
V :

V (x, t) =
∫

Di

ψ (x (t) , x′, h) dx′d (6.3)

Their discrete analogues are:

φ̃ (xi, t) �
1

V (xi, t)

∑
j∈Ni

φ (xj , t)ψ (xi (t) , xj)ωj (6.4)

and
V (xi, t) �

∑
j∈Ni

ψ (xi (t) , xj)ωj
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Note also that

V (xi, t) =
∫

Di

ψ (xi, x
′, t) dx′d =

∫

Di

W (xi − x′, h)
σ (xi, t)

dx′d ≈ 1
σ (xi, t)

This means also that the density can be computed from ρi = miσi =
mi

∑
j∈Di

W (xi − xj , h). This expression is particularly suited to the computa-

tion of the density closed to a boundary ∂Ω on a liquid-gas interface, provided
that the summation is performed on the particles located on one side of the in-
terface only, thereby allowing for a density gradient almost “naturally”. This
is the basis of the method developed by Hu and Adams (2006).

6.4 Derivatives of ψ

6.4.1 Lagrangian derivative of ψ

As we have a partition of unity
∑

i∈Nx

ψ (x (t) , xi) = 1, then

∇
(∑

i∈Nx

ψ (x (t) , xi)

)
=
∑
i∈Nx

∇ψ (x (t) , xi) = 0

We will note thereafter:

Wi = W (xi (t)− xj)

and

ψi = ψ (xi (t) , xj) =
W (xi (t)− xj)

σ (xi (t))

Assuming that h is constant, then d
dtWi = 0 ⇒ ∂Wi

∂t + ẋi∇Wi = 0. We
compute the gradient of ψ from the gradient of W . We start from

ψi =
Wi

σi
⇒ ∇ψi =

∇Wi

σi
− ψi

σi
∇σi =

∇Wi

σi
− ψi

σi

∑
j∈Nx

∇Wj

and

∂ψi

∂t
=

1
σi

∂Wi

∂t
− ψi

σi

∂σi

∂t

=
1
σi

∂Wi

∂t
− ψi

σi

∑
j∈Nx

∂Wj

∂t

= − ẋi

σi
∇Wi +

ψi

σi

∑
j∈Nx

ẋj∇Wj
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In order to compute the Lagrangian derivative of ψi, we need:

∂ψi

∂t
= −ẋi

∇Wi

σi
+

ψi

σi

∑
j∈Nxi

ẋj∇Wj =
∑

j∈Nxi

(
ẋjψi

∇Wj

σi
− ẋiψj

∇Wi

σi

)

∂ψi

∂t
= −

∑
j∈Nx

(
ẋiψj∇ψi − ẋjψi∇ψj + ψiψj

∇σi

σi
(ẋi − ẋj)

)
(6.5)

∇ψi =
∑

j∈Nxi

(
ψj
∇Wi

σi
− ψi

∇Wj

σi

)

=
∑

j∈Nx

(
ψj

(
∇ψi + ψi

∇σi

σi

)
− ψi

(
∇ψj + ψj

∇σi

σi

))

∇ψi =
∑

j∈Nx

(ψj∇ψi − ψi∇ψj) (6.6)

Assume that

Γij = ψi
∇Wj

σi
= ψi

(
∇ψj + ψj

∇σi

σi

)
(6.7)

We can write:
∂ψi (x, t)

∂t
= −

∑
j∈Nx

(ẋiΓji − ẋjΓij) (6.8)

∇ψi (x, t) =
∑

j∈Nx

(Γji − Γij) (6.9)

The Lagrangian derivative of ψi is then

dψi

dt
=

∂ψi

∂t
+ ẋi∇ψi = −

∑
j∈Nx

(ẋiΓji − ẋjΓij) + ẋi

∑
j∈Nx

(Γji − Γij)

dψi

dt
=
∑

j∈Nx

(ẋj − ẋi) Γij = −ψi

∑
j∈Nx

(ẋi − ẋj)
(
∇ψj + ψj

∇σi

σi

)
(6.10)

Note that the summation in all these equations (6.5) to (6.10) is not related
to integration as in (6.4) but to the normalisation in the kernel ψi.

6.4.2 Other useful coefficients and “closed box” condition

Define the following integrated coefficients by

γij =
∫

ΔΩ

Γijdxd
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124 Computational Fluid Dynamics

βij = γij − γji

βij =
∫

ΔΩ

(Γij − Γji) dxd

=
∫

ΔΩ

(
ψi∇ψj + ψiψj

∇σi

σi
− ψj∇ψi − ψjψi

∇σi

σi

)
dxd

βij =
∫

ΔΩ

(ψi∇ψj − ψj∇ψi) dxd

Note that the integration has to be done on a domain ΔΩ that is the inter-
section of the spheres of influence of the particles i and j. This is certainly a
key point because these coefficients β play an important role in the transport
equations. This seems also to be a very time consuming process. For instance,
Nestor (2009) reports 6d Gauss points to get an acceptable accuracy.

Integrating by parts, we get:

βij = 2
∫

ΔΩ

ψi∇ψjdxd −
∫

∂ΔΩ

ψiψjndxd−1

∑
j

βij =
∑

j

⎛
⎝2
∫

ΔΩ

ψi∇ψjdxd −
∫

∂ΔΩ

ψiψjndxd−1

⎞
⎠

= 2
∫

ΔΩ

ψi

∑
j

∇ψjdxd −
∫

∂ΔΩ

ψin
∑

j

ψjdxd−1

∑
j

βij = −
∫

∂ΔΩ

ψindxd−1 (6.11)

Setting nij = βij

|βij | , βij is the analogue in FVPM of the product of a surface
element |βij | and a normal nij joining two cell centres. So that (6.11) expresses
the closed “box” condition if the FVPM cell is far from the boundary ∂Ω:∑
j

βij = 0. We note also that βij = −βji, βii = 0

REMARK 6.1 It seems that (6.11) is not numerically fulfilled despite
of the normalisation of the kernel function through the use of the FVPM
kernel ψi probably because of the numerical errors on the computation of βij .
For instance Teleaga (2008) reports how to correct the fluxes terms in the
conservation equation through an artificial term βn

ii = −
∑
j �=i

βn
ij . Nothing is

said on the impact of this correction for the global conservation of the flow
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Finite volume particle methods (FVPM) 125

quantities. A different technique of correction of βij is also described by Keck
(2002).

6.4.3 Transport of the volume Vi

We have

d

dt
(Vi (t)) =

d

dt

∫

Di

ψi (t, x) dxd =
∫

Di

∂ψi

∂t
dxd +

∫

∂Di

ψiẋndxd−1

d

dt
(Vi (t)) = −

∑
j∈Ni

(ẋiγji − ẋjγij) +
∫

∂Di

ψiẋndxd−1 (6.12)

This is the equivalent for FVPM of (4.4) used for classical SPH method.

6.4.4 On the computation of the gradient ∇φi

Three formulations may be used:

• the mixed method of Bonet and Lok (1999) (4.44) that is based on
Shepard’s kernel.

• the method of Nestor (2009)

• the method of Keck (2005).

We shall detail the last two methods as the first one has already been given.

6.4.5 Method of Nestor

Nestor proposes to use a renormalized kernel ∇̃Sj (bi) based on the barycen-
tre bi of each particles, where bi = 1

Vi

∫
Di

xψidx. We have then

∇φi =
∑
j∈Ni

Vj (φj − φi) ∇̃Sj (bi)

∇̃Sj (bi) =

⎡
⎣∑

j∈Ni

Vj∇Sj (bi)⊗ (bj − bi)

⎤
⎦
−1

∇Sj (bi)

Sj is a cubic-spline used by Monaghan and Lattanzio (1985).
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6.4.6 Method of Keck

The method of Keck is based on consistency points xij , which may be
interpreted as midpoints of general cell faces. The consistency points are
used to modify the discrete gradient operator so that we obtain a consistent
approximation. We have then

ViI =
1
2

∑
j∈Ni

(bj ⊗ βij) =
1
2

∑
j∈Ni

⎛
⎝ 1

Vi

∫

Di

xψjdx⊗ βij

⎞
⎠

In practice, xij are explicitly given by:

xij = bi +

(∑
k∈Ni

βik ⊗ βik

)−1

βijVi

Note that in general xij = xji. The consistent form of the gradient is then
given by:

(∇φ)i = 1
Vi

∑
i∈Ni

βijφ
rec (xij)

φrec (xij) = φ (bi) + (xij − bi)∇T φ (bi) + o
(
h2
)

(∇φ)i = ∇φ (bi) + o (h)

where φrec is the reconstructed function at the consistency point xij . Linear
functions are then properly reproduced.

6.5 Conservation equation and FVPM

We introduce again a weak formulation of the conservation equation (5.1)
∫

D(x)

(
∂φ

∂t
+∇.F (φ)

)
ψidxd =

∫

D(x)

S (φ) ψidxd

Integrating the first member by parts, we get
∫

D(x)

(
∂φψi

∂t
+∇. (F (φ) ψi)

)
dxd =

∫

D(x)

φ
∂ψi

∂t
dxd +

∫

D(x)

F (φ)∇ψidxd

We use also the Reynolds theorem (5.5) in the form

dW

dt

∫

D(x)

φψidxd =
∫

D(x)

∂φψi

∂t
dxd +

∫

D(x)

∇. (φψiW ) dxd
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Combining the two equations, we get

dW

dt

∫

D(x)

φψidxd +
∫

D(x)

∇. ([F (φ)− φW ] ψi) dxd

=
∫

D(x)

φ
∂ψi

∂t
dxd +

∫

D(x)

F (φ)∇ψidxd +
∫

D(x)

S (φ) ψidxd

The derivatives of ψi are expressed with (6.8) and (6.9) which gives:

d

dt

∫

D(x)

φψidxd = −
∫

D(x)

φ
∑

j∈Nx

(ẋiΓji − ẋjΓij) dxd

+
∫

D(x)

F (φ)
∑

j∈Nx

(Γji − Γij) dxd

−
∫

∂D(x)

(F (φ)− φẋi)ψindxd−1

+
∫

D(x)

S (φ)ψidxd

d

dt

∫

D(x)

φψidxd = −
∑

j∈Nx

(
∫

D(x)

(F (φ)− φẋj) Γijdxd

−
∫

D(x)

(F (φ)− φẋi) Γjidxd)

−
∫

∂D(x)

(F (φ)− φẋi)ψindxd−1 +
∫

D(x)

S (φ)ψidxd

This equation appears in an ALE form with the transport of the particle at
the velocity v0 = ẋi

We state Gi = F (φ)− ẋiφ so that we get:

d

dt

∫

D(x)

φψidxd = −
∑

j∈Nx

⎛
⎜⎝
∫

D(x)

GjΓijdx3 −
∫

D(x)

GiΓjidxd

⎞
⎟⎠ (6.13)

−
∫

∂D(x)

Giψindxd−1 +
∫

D(x)

S (φ) ψidxd

Two important hypotheses are now used in order to reduce the cost of the
integrations:
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128 Computational Fluid Dynamics

1. The variation of φ are small over the domain Ω of intersection of the
two spheres i and j.

2.
∫
Ω

GjΓjidx ≈ Gjγji

Using these hypotheses, the conservation equation can be written:

d

dt

∫

D(x)

φψidxd ≈
∑

j∈Nx

{Giγji −Gjγij}−
∫

∂D(x)

Giψindxd−1 +
∫

D(x)

S (φ) ψidxd

(6.14)
We can also write:

∑
j∈Nx

{Giγji −Gjγij}

=
∑

j∈Nx

(Gi −Gj)
(γij + γji)

2
−
∑

j∈Nx

(Gi + Gj)
2

(γij − γji)

Using the first hypothesis, we then have:
∑

j∈Nx

{Giγji −Gjγij}

≈ −
∑

j∈Nx

(Gi + Gj)
2

(γij − γji)

= −
∑

j∈Nx

(Gi + Gj)
2

βij

So that:
d

dt

∫

D(x)

φψidxd(6.15)

= −
∑

j∈Nx

|βij |
(Gi + Gj)

2
nij −

∫

∂D(x)

Giψindxd−1 +
∫

D(x)

S (φ) ψidxd

(Gi+Gj)
2 nij is just a numerical flux computed in the direction nij , at the

point xij . We shall write it in a more general form Gm
ij (t, φi, xi, φj , xj , nij).

Note that φi is influenced by the particles j whose domain has a non-zero
intersection with the domain Di.

Finally, equation (6.15) is then:

d

dt
(φiVi) = −

∑
j∈Ni

|βij |Gm
ij −

∫

∂D(x)

Giψindxd−1 +
∫

D(x)

S (φ) ψidxd (6.16)

This form looks very similar to the weak form of Vila (2005) (5.17) for instance.
It is adapted to the use of Riemann solvers.
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Finite volume particle methods (FVPM) 129

6.6 Concluding remarks

FVPM is in practice very close to SPH methods. It is possible to apply
the same techniques of improvement of the computation of the gradient, and
an ALE formulation can also be derived, allowing the use of various Riemann
solvers. The theoretical advantage of local conservation associated with the
partition of unity linked to the FVPM kernel is limited to the accuracy of the
numerical integration of coefficient βij . The FVPM method will then have
an interest only if a quick algorithm can be used for the computation of the
integrals in the intersection of two spheres.
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7.1 Introduction

The simulation of compressible flows experienced in the ’90s a small
revolution with the arising of new algorithms able to compute flows through
(or around) any kind of shape. This was due to new numerical algorithms
and to new mesh generation algorithms. For both type, the main innovation
was related to unstructured meshes, and the way to do it first was to rely on
tetrahedrisations. The “any kind of shape” slogan has been progressively
completed by the adaptation to any kind of flow, for flows in moving meshes
and for automatic mesh adaptation, appearing as an important issue to
address in order to improve the expected benefits from a numerical
simulation.
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Several numerical methods have been developed for computing
compressible flows on unstructured meshes. First, low-order methods
(typically second-order) were developed. Let us mention central-differenced
cell-centered and vertex-centered finite-volume methods [Jameson,
1993], [Mavriplis, 1997], Taylor-Galerkin methods [Donea et al.,
1987], [Löhner, 2001], Galerkin Least-Square methods [Hughes and Mallet,
1986], and the distributive schemes [Deconinck et al., 1993] for second order
accurate methods. Higher accurate schemes have then been developed, let us
mention unstructured ENO methods [Abgrall, 1994] and Discontinuous
Galerkin methods [Cockburn, 2003], [Cockburn and Shu, 1989].

The purpose of this chapter is to describe and discuss a Mixed finite-
Element/finite-Volume (MEV) low order discretization for the Euler models
of aerodynamics applicable to a very general class of tetrahedrisations, and to
consider, a few crucial numerical issues for the application of an Euler scheme:

• mastering numerical dissipation,

• mastering positiveness,

• evaluating the synergy between such kind of numerics and high perfor-
mance mesh adaptation methods.

The application of the MEV method to Navier-Stokes is considered in the
companion chapter dealing with Large Eddy Simulation of turbulent flows.
The MEV discretisation method is a combination of a Finite-Element
method (FEM) with a vertex-centered Finite-Volume method (FVM). Like
any vertex-centered approximation, it enjoys the property of handling the
smallest number of unknowns for a given mesh and the possibility to
assemble the fluxes on an edge-based mode. The underlying FEM is the
standard Galerkin method with continuous piecewise linear approximation
on triangles or tetrahedra. The FEM is applied directly for discretising
second-order derivatives (diffusion or viscosity terms). For hyperbolic terms,
the FEM needs extra stabilization terms which are derived from an upwind
FVM. The underlying FVM is a vertex centered edge-based method. The
finite-volume cell is built around each vertex, generally by using medians
(2D) or median planes (3D), advection terms are stabilized with upwinding
or artificial dissipation, and second order “viscous” terms are discretized
with finite-elements. Among the different ways of constructing second-order
accurate upwind schemes, the MUSCL formulation introduced by Van Leer
in [Van Leer, 1979] for finite-volume methods is particularly attractive and
has been generally chosen.

This family of schemes was initiated by Baba and Tabata [Baba and
Tabata, 1981] for first-order upwind diffusion-convection models
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Numerical algorithms for unstructured meshes 133

and Fezoui, Dervieux and coworkers for Euler flows (see [Fezoui,
1985], [Dervieux, 1987], [Fezoui and Stoufflet, 1989], [Fezoui and Dervieux,
1989], [Stoufflet et al., 1996]). It has been studied by many CFD teams
(see in particular [Whitaker et al., 1989], [Anderson and Bonhaus,
1994], [Venkatakrishnan, 1996], [Barth, 1994], [Catalano, 2002]). The
framework proposed in [Selmin and Formaggia, 1998] can also be considered
as an extension of MEV. Current developments and results relying on this
family of schemes are regularly reported by Farhat and co-workers
(see [Farhat and Lesoinne, 2000]). A particular advantage of MEV is its
ability to perform well in combination with very rather irregular meshes. As
a consequence, this scheme was identified as particularly convenient for
developing methods for shape design [Farhat, 1995], [Nielsen and Anderson,
2002], [Vàzquez et al., 2004], for fluid-structure interaction with
moving meshes [Farhat and Lesoinne, 2000], and for anisotropic mesh
adaptation [Loseille et al., 2007].

Several theoretical or methodological questions concerning MEV are ad-
dressed in this chapter:

Accuracy The basic scheme is introduced in section 1. In case of meshes
with a bounded aspect ratio, the second order accuracy of the underlying
Galerkin method holds for steady-state problems, even for rather irregular
meshes. For the unsteady case, since the mass matrix diagonalisation is ap-
plied, the constraint on mesh regularity is somewhat stronger.

Highly stretched meshes The behavior of the upwind versions of the
MEV for highly stretched structured meshes is the main drawback of this
class of schemes. In [Barth, 1994], Barth suggests to modify the shape of
finite-volume cells. This idea is examined and developed in section 2.

Low Mach number A common property of Godunovmethods is to loose
accuracy when low Mach number flows are computed. We recall how to cure
this problem for steady and unsteady problems in section 3.

Superconvergent low dissipation versions In the case where the flow
field under study is smooth, the numerical dissipation can be importantly re-
duced while not allowing Gibbs oscillations. In the linear theory, oscillations
arise when high frequency components of the solution are dispersed, i.e. prop-
agated with large phase velocity error, without enough dissipation to damp
them. For reducing overall dissipation while avoiding oscillation, we follow the
lines of higher order upwinding. This is obtained by introducing a new type of
MUSCL reconstruction. Dissipation appears as relying on higher order even
derivatives. Some versions of the new family show higher order convergence
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134 Computational Fluid Dynamics

on regular or very smooth meshes. We call this property superconvergence.
This method is presented in section 4.

Robustness and positivity In the ’80s, robustness of numerical schemes
for hyperbolics was put in relation with positiveness, monotony and Total
Variation Diminishing properties. In section 5, we state several positivity
results for MEV schemes.

Mesh adaptation Mesh adaption is addressed in section 8. An interest
of the tetrahedra-based approximation which we use is its ability to combine
well with anisotropic metric-based mesh adaptation methods. We introduce
and discuss a Hessian-based and a goal-oriented method.

7.2 Spatial representation

7.2.1 A particular P1 finite-element Galerkin formulation

7.2.1.1 Mathematical model

We write the unsteady Euler equations as follows in the computational
domain Ω ⊂ R3:

Ψ(W ) =
∂W

∂t
+∇.F(W ) = 0 in Ω, (7.1)

where W = t(ρ, ρu, ρv, ρw, ρE) is the vector of conservative variables. F is
the convection operator F(W ) = (F1(W ),F2(W ),F3(W )) with:

F1(W ) =

⎛
⎜⎜⎜⎜⎝

ρu
ρu2 + p

ρuv
ρuw

(ρE + p)u

⎞
⎟⎟⎟⎟⎠

, F2(W ) =

⎛
⎜⎜⎜⎜⎝

ρv
ρuv

ρv2 + p
ρvw

(ρE + p)v

⎞
⎟⎟⎟⎟⎠

, F3(W ) =

⎛
⎜⎜⎜⎜⎝

ρw
ρuw
ρvw

ρw2 + p
(ρE + p)w

⎞
⎟⎟⎟⎟⎠

,

(7.2)
so that the state equation becomes:

∂W

∂t
+

∂F1(W )
∂x

+
∂F2(W )

∂y
+

∂F3(W )
∂z

= 0.

ρ, p and E hold respectively for the density, the thermodynamical pressure and
the total energy per mass unit. Symbols u, v and w stand for the Cartesian
components of velocity vector u = (u, v, w). For a calorically perfect gas, we
have

p = (γ − 1)
(
ρE − 1

2
ρ|u|2

)
,
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Numerical algorithms for unstructured meshes 135

where γ is constant. A weak formulation of this system writes for W ∈ V =[
H1(Ω)

]5 as follows:

∀φ ∈ V, (Ψ(W ) , φ) =
∫

Ω

(
φ

∂W

∂t
+ φ∇.F(W )

)
dΩ−

∫

Γ

φ F̂(W ).n dΓ = 0, (7.3)

where Γ is the boundary of the computational domain Ω, n the outward
normal to Γ and the boundary flux F̂ contains the boundary conditions. We
are interested by this unsteady formulation together with the steady one, in
which the time derivative is not introduced.

7.2.1.2 Discrete variational representation

We consider here the steady case, written:

∇.F(W ) = 0

also written in variational formulation:

∀φ ∈ V, (Ψ(W ) , φ) =
∫

Ω

(φ∇.F(W )) dΩ−
∫

Γ

φ F̂(W ).n dΓ = 0 (7.4)

The discretization chosen relies on two main focus. First, we consider a
tetrahedrisation as the discretization of the computational domain. This
choice is made in connection with the progresses made for automatically
generating and adapting meshes of this kind. Once the mesh is chosen, we
have to put on it a set of nodes, that are the geometrical supports of the
degrees of freedom. This option has the smallest number of nodes, viz. the
vertices.

Let Th be a tetrahedrization of Ω which is admissible for Finite-Elements
i.e., Ω is partitioned in tetrahedra, and the intersection of two different tetra-
hedra is either empty, or a vertex, or an edge, or a face. The test functions are
taken into the approximation space Vh made of continuous piecewise linear
functions included in V = [H1(Ω)]5:

Vh =
{
φh

∣∣∣φh is continuous and φh|T is linear ∀T ∈ Th

}
.

In order to avoid the management of projectors applicable in the whole H1

space, we shall work inside the following spaces:

V̄ = ([H2(Ω)]5) and V̄h = V̄ ∪ Vh .
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136 Computational Fluid Dynamics

It is useful to introduce Πh, the corresponding P 1 interpolation operator:

Πh : V̄h −→ Vh

φ �−→ Πhφ with Πhφ(i) = φ(i) ∀i vertex of Th .

Then from problem (7.3), the discrete steady formulation writes:

∀φh ∈ Vh,

∫

Ω

φh∇.Fh(Wh) dΩ−
∫

Γ

φhF̂h(Wh).n dΓ = 0 , (7.5)

where Fh is by definition the P 1 interpolate of F , in the sense that:

Fh(W ) = ΠhF(W ) and Fh(Wh) = ΠhF(Wh) , (7.6)

and, as the operator Fh applies to the values of W at the mesh vertices, we
have:

Fh(W ) = Fh(ΠhW ) = ΠhF(ΠhW ) . (7.7)

We get the same relations for F̂h(W ):

F̂h(W ) = ΠhF̂(ΠhW ) and F̂h(Wh) = ΠhF̂(Wh) . (7.8)

Practically, this definition of Fh means that nodal fluxes values are evaluated
at the mesh vertices. Consequently, discrete fluxes are derived from the nodal
values by P 1 extrapolation inside every element. In contrast to the standard
Galerkin approach, this definition emphasizes that the fluxes are projected in
Vh.

7.2.2 Mixed-element-volume basic equivalence

The discrete formulation (7.5) can be transformed into a vertex-centered
finite-volume scheme applied to tetrahedral unstructured meshes. This as-
sumes a particular partition in control cells Ci of the discretized domain Ωh:

Ωh =
nc⋃
i=1

Ci , (7.9)

each control cell being associated with a vertex i of the mesh. The corre-
sponding test functions are the piecewise constant characteristic functions of
cells:

χi(x) =
{

1 if x ∈ Ci,
0 otherwise.

Then the weak form of (7.1) is integrated in this new formulation by writing,
for each vertex i, i.e. for each cell Ci:

∫

Ci

∂W

∂t
+

∫

∂Ci

niF(W ) dσ = 0 (7.10)

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
39

 0
4 

M
ar

ch
 2

01
6 



Numerical algorithms for unstructured meshes 137

FIGURE 7.1: Illustration of finite-volume cells construction in two dimen-
sions with two neighboring cells, Ci and Cj around i (Pi on the figure) and
j (Pj on the figure) respectively, and of the upwind triangles Kij and Kji

associated with the edge ij. Definition of the common boundary ∂Cij with
the representation of the solution extrapolated values for the MUSCL type
approach.

FIGURE 7.2: The planes which delimit finite-volume cells inside a tetrahedron
(3D case).
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138 Computational Fluid Dynamics

FIGURE 7.3: Illustration for 3D case of finite-volume cell interface ∂Cij be-
tween two neighboring cells Ci and Cj .

The dual finite-volume cell is built by the rule of medians. In 2D, the median
cell is limited by segments of medians between centroids and mid-edge (Fig-
ure 7.1). In 3D, each tetrahedron T of the mesh is split into four hexahedra
constructed around each of its four vertices. For a vertex i, the hexahedron
Ci ∩ T is defined by the following points (Figure 7.2):

(i) the three middle points of the edges issued from i,

(ii) the three gravity centers of the faces containing i,

(iii) the center of gravity of the tetrahedron and

(iv) the vertex i.

The cell Ci of vertex i is the collection of all hexahedra linked to i. The
common boundary ∂Cij = ∂Ci ∩ ∂Cj between two neighboring cell Ci and
Cj is decomposed in several triangular interface facets. An illustration of this
construction is shown in Figure 7.3 for the 3D case.

The finite-volume fluxes between cells around vertices i and j are integrated
through the common boundary ∂Cij with a value of Fh equal to the half-sum
of Fh(Wi) and Fh(Wj):

ΦMEV
ij =

Fh(Wi) + Fh(Wj)
2

. νij , (7.11)

where νij denotes the integral of the normal ni to common boundary between
cells Ci and Cj ,

νij =
∫

∂Cij

ni dσ

and Wi = W (i). The finite-volume formulation for an internal vertex i writes
as the sum of all the fluxes evaluated from the vertices j belonging to V (i)
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Numerical algorithms for unstructured meshes 139

where V (i) is the set of all neighboring vertices of i. Taking into account the
boundary fluxes, the discrete Scheme (7.5) then writes:

∑
j∈V (i)

ΦMEV
ij −

∫

Γ∩∂Ci

F̄h(Wh).n dΓ = 0 . (7.12)

We obtain a vertex-centered finite-volume approximation which is P 1-exact
with respect to the flux function Fh. This scheme enjoys most of the accu-
racy properties of the Galerkin method [Mer, 1998b], such as the second-order
accuracy on any mesh for diffusion-convection models. However, it lacks sta-
bility and cannot be applied to purely hyperbolic models such as the Euler
equations. Before explaining how to stabilise this family of method, let us
introduce a second way to build dual cells.

7.2.3 Circumcenter cells

Median-based cells are the exact counterbalance of the P 1 finite element
formulation. They are well adapted to non-stretched unstructured meshes.
In the case of highly stretched meshes, upwind finite volume methods show a
truncation error which grows with aspect ratio. In some other case, cells with
shapes closer to rectangles may allow a higher accuracy. We describe now a
second option for defining the dual cells.

Two-dimensional circumcenter cells According to an idea of Barth
[Barth, 1994], a cell is built around each vertex by joining the center of edges
with the center of the smallest circle containing the considered triangle. We
observe that this center is located at middle of largest edge in a triangle involv-
ing an angle larger or equal to 90◦. As a result, a mesh made of rectangular
triangles has cells which are rectangles, see Figure 7.7.

FIGURE 7.4: Median cell construc-
tion.

FIGURE 7.5: Circumcenter cell con-
struction.

Three-dimensional circumcenter cells A 3D circumcenter cell can be
defined as the union of polyhedra such that, for a given element, the common
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FIGURE 7.6: Trace of median di-
vision on two Friedrichs-Keller ele-
ments.

FIGURE 7.7: Trace of circumcenter
division on two Friedrichs-Keller ele-
ments.

surface between two neighboring cells joins:

• the middle of the edge connecting these two vertices,

• the “surface center” of the faces of the element having this edge in
common,

• the “volume center” of the element,

where

• the “surface center” of a given face is its center of circumscript circle
if it comprises only acute angles, otherwise it is the middle of its longest
edge,

• the “volume center” of an element is its center of circumscript sphere
if this center is located inside the element; otherwise, it is the “surface
center” of the largest surface.

FIGURE 7.8: Trace of median cells
on a tetrahedron in a particular
Cartesian mesh.

FIGURE 7.9: Trace of a circumcenter
cell on a tetrahedron in a particular
Cartesian mesh.

In practical applications, we use the circumcenter cells for stretched meshes
with aspect ratio larger than 10 and for Cartesian meshes.
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REMARK 7.1 It is proposed in [Gourvitch et al., 2004] to combine the
Barth cell construction with a particular splitting of cubes into six identical
tetrahedra in a Cartesian mesh. With this combination, the cells are exactly
cubes and the scheme is equivalent to the usual vertex-centered finite volume
scheme.

7.2.4 Flux integration

Once the cells are defined, the spatial divergence divF is transformed via
the Stokes formula into integrals of normal fluxes F .n at cell boundaries.
In the proposed family of schemes, the accuracy of the integral geometrical
quadrature is not as crucial. We define a very simple option, the edge-based
integration. At the contrary, flux integration sets the important problem
of scheme stabilization. The variables are assumed to be constant by cell,
and therefore, they are discontinuous from a cell to its neighbor. Upwind
integration will rely on the Godunov method based on the two different values
at each side of the discontinuity.

7.2.4.1 Central differencing

Let us write a vertex-centered central differenced finite-volume scheme for
the Euler equations applied to an unstructured mesh as follows:

Ψh(γ, W )j = 0, with

Ψh(γ, W )j =
∑

k∈V (j)

Φcentral(Wj , Wk, νjk) + Bh(γ, W )j (7.13)

where V (j) is the set of vertices that are neighbors of j, νjk is the integral on
interface between j and k of the normal vector. Symbol Bh(γ, W )j holds for
boundary fluxes. The centered integration for elementary flux Φ is written as
follows:

Φcentral(Wj , Wk, νjk) = 0.5(Fj + Fk).νjk (7.14)

where Fj = F(Wj) are the Euler fluxes computed at Wj . This is equivalent
to introducing the following discrete space operator ∇∗

h:

∇∗
h(f)j =

∑
k∈V (j)

(fj + fk)/2 νjk / a(j) (7.15)

where a(j) is the measure of cell Cj .

7.2.4.2 Godunov differencing

Godunov-type methods rely on discontinous representations of the unknown
and computation of fluxes at discontinuities in function of both “left” and
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142 Computational Fluid Dynamics

“right” values by applying an approximate or an exact Riemann solver. This
process introduces numerical viscosity terms that are very useful for stabilizing
transonic flows.

We write a vertex-centered first-order Godunov scheme for the Euler equa-
tions applied to an unstructured mesh as follows:

Ψh(γ, W )j =
∑

k∈V (j)

Φ(Wj , Wk, νjk) + Bh(γ, W )j . (7.16)

The upwinding in elementary flux Φ is the Roe flux splitting. In the case of
the standard Roe splitting, we have:

Φ(Wj , Wk, νjk) = 0.5(Fj + Fk).νjk + 0.5|A|(Wj −Wk) (7.17)

where |A| is the absolute value of the Jacobian flux along νjk:

A = ( ∂F
∂W )1(νjk)1 + ( ∂F

∂W )2(νjk)2

A = TΛT−1 , Λ diagonal,

|A| = T |Λ|T−1 .

(7.18)

These matrices are computed at an intermediate value W jk of W : of Wj and
Wk, in short:

W jk = (ρ
1
2
j Wj + ρ

1
2
k Wk/(ρ

1
2
j ρ

1
2
k )

which enjoys the following property:

F(Wj)−F(Wk) − A(W jk)(Wj −Wk) .

In (high enough) supersonic case, A(W jk) = |A(W jk)| or A(W jk) =
−|A(W jk)| and Roe’s splitting is fully upwind. By the hyperbolicity assump-
tion, matrix A can be diagonalized. the absolute value |A| writes:

|A(W jk)| = T−1Diag(|λ1|, |λ2|, |λ3|, |λ4|)T = sign(A)A ,

where

sign(A) = T−1Diag(sign(λ1), sign(λ2), sign(λ3))T. (7.19)

thus this averaging also permits the following equivalent formulation:

(F(Wj) + F(Wk))/2 − sign(A(W jk))(F(WR)−F(WL))/2 . (7.20)

These schemes are spatially first-order accurate.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
39

 0
4 

M
ar

ch
 2

01
6 



Numerical algorithms for unstructured meshes 143

7.3 Towards higher spatial order

First-order upwind schemes of Godunov type enjoy a lot of interesting qual-
ities and in particular monotonicity or, more or less equivalently, positivity.
They can be extended to second order by applying the MUSCL method. We
give in the next subsection a descrition of how this can be done. Unfortu-
nately, even for the the second-order version, the amount of dissipation which
is introduces seems larger than that needed in many applications. In partic-
ular, the dominant term of the numerical error is carried by the dissipation.

We get inspired by Direct Simulation techniques in which non-dissipative
high-order approximations are stabilised in good accuracy conditions thanks
to filters which rely on very-high even order derivatives. In order to do this,
we have to further extend the discretization stencil. Then it can be also inter-
esting to choose a stencil extension which also improve dispersion properties,
since a less dispersive scheme needs less dissipation for avoiding Gibbs-like os-
cillations. This leads to the idea of superconvergent advection schemes which
are more accurate for a subclass of applications, typically, for a nonlinear
hyperbolic system solved Cartesian meshes (NLV6 version), or for a linear
hyperbolic system solved on a Cartesian mesh (LV6 version).

7.3.1 The MUSCL method

The Godunov method builds fluxes between cells in which unknown vari-
ables are considered as constant. This results in a first-order accurate scheme,
not enough accurate for most applications. Van Leer has proposed ( [Van Leer,
1979], [Van Leer, 1977a]) to reconstruct a linear interpolation of the variables
inside each cell and then to introduce in the Riemann solver the boundary
values of these interpolations. Further, the slopes used for linear reconstruc-
tion can be limited in order to represent the variable without introducing
new extremas. The resulting MUSCL method produces positive second-order
schemes. We describe now an extension of MUSCL to unstructured trian-
gulations with dual cells. The MUSCL ideas also applies to reconstructions
which are different on each interface between cells, or equivalently on each
edge. Several slopes of a dependant variable F are defined on the two vertices
i and j of an edge ij as follows:

First, the centered gradient (∇F )c
ij is defined as

(∇F )c
ij . �ij = Fj − Fi.

We consider a couple of two triangles, one having i as a vertex, and the second
having j as a vertex. With reference to Figure 7.10, we define εni, εmi, εjr

and εjs as the components of vector �ji (resp. �ij) in the oblique system of axes
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144 Computational Fluid Dynamics

(�in, �im) (resp. (�jr, �js)):

�ji = εni
�in + εmi

�im ,

�ij = εjr
�jr + εjs

�js .

We shall say that Tij and Tji are upstream and downstream elements with
respect to edge ij if the components εni, εmi, εjr, εjs are all nonnegative:

Tij upstream and Tji downstream ⇔Min(εni, εmi, εjr, εjs) ≥ 0.

The upwind gradient (∇F )u
ij is computed as the usual finite-element gradient

on Tij and the downwind gradient (∇F )d
ij on Tji. This writes:

(∇F )u
ij = ∇F |Tij and (∇F )d

ij = ∇F |Tji where ∇F |T =
∑
k∈T

Fk∇Φk|T are

the P1-Galerkin gradients on triangle T .
We now specify our method for computing the extrapolation slopes (∇F )ij

and (∇F )ji :

(∇F )ij .�ij = (1− β)(∇F )c
ij .�ij + β(∇F )u

ij .�ij . (7.21)

The computation of Fji is analogous:

(∇F )ji.�ij = (1− β)(∇F )c
ij .�ij + β(∇F )d

ij .�ij . (7.22)

The coefficient β is an upwinding parameter that controls the combination
of fully upwind and centered slopes and that is generally taken equal to 1/3,
according to the error analysis below.

FIGURE 7.10: Localization of the extra interpolation points D∗
ij and D∗

ji of
nodal gradients.
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Numerical algorithms for unstructured meshes 145

FIGURE 7.11: Downstream and upstream tetrahedra are tetrahedra having
resp. Si and Sj as a vertex and such that line SiSj intersects the opposite
face.

The scheme description is completed by replacing the first-order formula-
tion (7.16) by the following flux balance:

Ψh(γ, W )j =
∑

k∈V (j)

Φ(Wjk, Wkj , νjk) + Bh(γ, W )j . (7.23)

with

Wjk = Wj +
1
2
(∇W )ij .�ij , Wkj = Wk +

1
2
(∇W )ji.�ji .

This approximation is spatially second-order accurate. For a nonlinear flux
function the accuracy of MUSCL schemes is limited to second order, as re-
marked by Wu and Wang [Wu and Wang, 1995]. Further, the method com-
bines finite differences in the local reconstruction and finite volume for fluxes.
As a consequence, improving the reconstruction to higher order interpola-
tion does not carry a higher accuracy. We now examine how to change the
reconstruction in order to improve the scheme.

7.3.2 Low dissipation advection schemes: 1D

7.3.2.1 Spatial 1D MUSCL formulation

Let us first consider the one-dimensional scalar conservation law

ut + f(u)x = 0 . (7.24)

As in a MUSCL approximation, a mixed finite-difference/finite-volume
method is used for the discretization in space. Let xj , 1 ≤ j ≤ N denote
the discretization points of the mesh. For each discretization point, we state:
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146 Computational Fluid Dynamics

uj ≈ u(xj) and we define the control volume Cj as the interval [xj− 1
2
, xj+ 1

2
]

where xj+ 1
2

=
xj + xj+1

2
.

As in a finite-difference method, we define the unknown vector U = {uj}
as point approximation values of the function u(x) in each node j of the mesh.
The time advancing is written:

Uj,t + Ψj(U) = 0 (7.25)

where, similarly to finite-volumes, the vector Ψ(U) is built according to ap-
proximations of f(u) defined at cell boundaries:

Ψj(U) =
1

Δx
(Φj+ 1

2
− Φj− 1

2
) ; Φj+ 1

2
= Φ(uj , uj+1, fj+ 1

2
− , fj+ 1

2
+)(7.26)

where

Φ(u, v, f, g) =
1
2

[ (1 + δsign(c))f + (1− δsign(c))g ] , c = f ′(u/2 + v/2).

Let us write down a particular flux:

Φj+ 1
2

= Φ(uj , uj+1, fj+ 1
2
− , fj+ 1

2
+) =

fj+ 1
2
− + fj+ 1

2
+

2
+ δsign(c)

fj+ 1
2
− − fj+ 1

2
+

2
. (7.27)

The coefficient δ controls the spatial dissipation. For defining the integra-
tion values fj± 1

2
± of f at boundaries of control volume Cj , we apply the

MUSCL methodology [Van Leer, 1977a], to the left and right control volume
boundary fluxes; fj± 1

2
± is built using linear interpolation formulas:

fj+ 1
2
− = fj + 1

2 Δfj+ 1
2
− ; fj+ 1

2
+ = fj+1 − 1

2 Δfj+ 1
2
+

fj− 1
2
− = fj−1 + 1

2 Δfj− 1
2
− ; fj− 1

2
+ = fj − 1

2 Δfj− 1
2
+

where Δfj± 1
2
± are slopes, i.e. approximations of difference term

∂f

∂x
Δx:

Δfj+ 1
2
− = (1 − β) (fj+1 − fj) + β (fj − fj−1)

Δfj+ 1
2
+ = (1 − β) (fj+1 − fj) + β (fj+2 − fj+1) . (7.28)

We observe that if the fluxes are based on polynomial reconstruction from
the average values of the unknowns, as in ENO finite-volumes, choosing a
higher-order reconstruction will produces a higher-order finite-volume scheme.
In the present vertex-centered context, high-order accuracy is not obtained by a
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Numerical algorithms for unstructured meshes 147

Schemes δ β θc θd Order
1 1 1/3 0 0 3
2 1 1/3 - 1/6 0 4
3 1 1/3 0 - 1/6 4
4 1 1/3 - 1/10 - 1/15 5
4’ 0 1/3 - 1/10 - 1/15 6

Table 7.1: Accuracy of different versions of the V6 schemes in 1D case.

higher-order interpolation but by an interpolation that compensates the error
coming from the final central differencing in (7.26). This writes as follows:

Δfj+ 1
2
− = (1− β) (fj+1 − fj) + β (fj − fj−1)

+ θc (− fj−1 + 3fj − 3fj+1 + fj+2 )
+ θd (− fj−2 + 3fj−1 − 3fj + fj+1 )

Δfj+ 1
2
+ = (1− β) (fj+1 − fj) + β (fj+2 − fj+1)

+ θc (− fj−1 + 3fj − 3fj+1 + fj+2 )
+ θd (− fj + 3fj+1 − 3fj+2 + fj+3 ) (7.29)

where θc and θd are parameters that control the combination of fully upwind
and centered corrections. In order to analyze more simply this scheme, we
assume that

c = f ′(u) is constant and equal to 1.

Then:

Ψj(U) =
1

4Δx
( (1 + δ)θd fj−3

+ [(1 + δ)β + 2δθc − 4δθd − 4θd] fj−2

+ [−2(β + 2δβ + 1)− 8δθc + 5θd + 7δθd] fj−1

+ [6δβ + 12δθc − 8δθd] fj

+ [2(β − 2δβ + 1)− 8δθc − 5θd + 7δθd] fj+1

+ [−(1− δ)β + 2δθc − 4δθd + 4θd] fj+2

−(1− δ)θd fj+3)
(7.30)

which gives:

Ψj(U) =
∂f

∂x
+ C3

Δx2

6
∂3f

∂x3
+ C4

Δx3

4
∂4f

∂x4
(7.31)

+C5
Δx4

120
∂5f

∂x5
+ C6

Δx5

24
∂6f

∂x6
+ O(Δx6)
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148 Computational Fluid Dynamics

where:

C3 = 1− 3β

C4 = δ(β + 2θc + 2θd)
C5 = 1− 15β − 60θd

C6 = δ(β + 2θc + 8θd) .

We observe that schemes described in (7.26)-(7.29) are in general second-
order accurate but they become high-order accurate for some values of the
parameters β, δ, θc and θd. Fifth-order accuracy is obtained with an adequate
choice of the three coefficients, viz. β = 1/3, θc = −1/10, θd = −1/15. In that
case, the numerical dissipation takes the form:

Dj(U) =
δ

60Δx
(−fj−3 + 6fj−2 − 15fj−1 + 20fj − 15fj+1 + 6fj+2 + fj+3).

(7.32)

The corresponding dissipative flux writes:

D̄j+ 1
2
(U) =

δ

60
(−fj−2 + 5fj−1 − 10fj + 10fj+1 − 5fj+2 + fj+3). (7.33)

Since this dissipation term is based on an upwinding paradigm, it has good
explicit linear stability (analyzed in the sequel), together with a balanced
spatial stabilization property. Putting δ = 0, leads to a central-differenced
(non-dissipative) sixth-order accurate scheme.

7.3.2.2 Time advancing stability

We can combine the above scheme with the standard Runge-Kutta time
advancing.

U (0) = Un

V1 = Δt Ψ(Un)
V2 = Δt Ψ(Un + V1/2)
V3 = Δt Ψ(Un + V2/2)
V4 = Δt Ψ(Un + V3)
Un+1 = Un + V1/6 + V2/3 + V3/3 + V4/6

(7.34)

In many case a linearized version can be used. Let us recall the Jameson
variant [Jameson, 1993] which writes as follows (N -stage version):

U (0) = Un

U (k) = U (0) +
Δt

N − k + 1
Ψ
(
U (k−1)

)
, k = 1 . . .N

Un+1 = U (N).

(7.35)

An A-stability analysis as in [Hirsch, 1991] can be applied. We give in Ta-
ble 7.2 some typical maximal CFL numbers for the six-stage RK scheme,
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Numerical algorithms for unstructured meshes 149

β θc θd δ CFLmax

1 1
1/3 0 0 1 2.310
1/3 - 1/6 0 1 0.263
1/3 0 - 1/6 1 1.332
1/3 - 1/10 - 1/15 1 1.867
0 0 0 1 .303

Table 7.2: Maximal Courant numbers (explicit RK6 scheme) for the different
LV6 spatial schemes (1D analysis).

which ensure a global accuracy order of five for the two best schemes of the
proposed family. This table illustrates that the above schemes can be used
with CFL number of the order of the unity.

All of these schemes can be advanced in time with implicit schemes such
as BDF1 and BDF2, see [Debiez, 1996]. Combination with unsteady Defect
Correction [Martin and Guillard, 1996] is also possible. Linear stability is
unconditional in all cases.

7.3.3 Unstructured two-dimensional case

In order to increase the accuracy of the second-order MUSCL construc-
tion, we introduce an enriched method for computing the extrapolation slopes
(∇ f)ij and (∇ f)ji :

(∇f)ij .�ij = (1− β)(∇f)c
ij .�ij + β(∇f)u

ij .�ij

+ξc

[
(∇f)u

ij .�ij − 2(∇f)c
ij .�ij + (∇f)d

ij .�ij
]

+ξd

[
(∇f)D∗

ij
.�ij − 2(∇f)i.�ij + (∇f)j .�ij

]
,

(7.36)

The computation of fji is analogous:

(∇f)ji.�ij = (1− β)(∇f)c
ij .�ij + β(∇f)d

ij .�ij

+ξc

[
(∇f)u

ij .�ij − 2(∇f)c
ij .�ij + (∇f)d

ij .�ij
]

+ξd

[
(∇f)D∗

ji
.�ij − 2(∇f)j .�ij + (∇f)i.�ij

]
,

(7.37)

The term (∇f)D∗
ij

is the gradient at the point D∗
ij . This last gradient is

computed by interpolation of the nodal gradient values at the nodes contained
in the face opposite to i in the upwind triangle Tij .

(∇f)D∗
ij

= α (∇f)m + (1− α) (∇f)n with D∗
ij = αm + (1− α)n.

The coefficients ξc and ξd are upwinding parameters that control the combi-
nation of fully upwind and centered slopes.
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150 Computational Fluid Dynamics

β ξc ξd δ Order
β-scheme 1/3 0 0 1 3
β-scheme 1/3 0 0 0 4

NLV6 Method 1/3 -1/30 -2/15 1 5

Table 7.3: Accuracy of different versions of the presented scheme in 2D Carte-
sian case.

Analysis of Cartesian case (2D/median/2D/circumcenter) We re-
strict to an advection model:

Ut + aUx + bUy = 0 . (7.38)

The proposed schemes may have only sixth-order dissipation and are in general
second-order accurate but they become higher-order accurate for some values
of the parameters β (see [Desideri et al., 1987]), ξc and ξd, see [Carpentier,
1995] and Table 7.3. For the case of unstructured meshes we can show only
first-order accuracy in general, and second-order for smooth variation of mesh
size. Better convergence can be observed in practice, we refer to [Abalakin
et al., 2002a]. Also, the level of dissipation of this family of schemes is much
smaller than for usual MUSCL schemes, see [Debiez and Dervieux, 1999].

7.3.4 Extension to Euler: NLV6

The algorithm for assembling the new scheme, NLV6, can be summed up
as follows.

0. A background flow W = (ρ, ρu, ρv, E) on each vertex of the mesh are
given.

1. Compute the fluxes F̄ = F (W ), Ḡ = G(W ) on each vertex (vertexwise
loop).

2. Compute the nodal gradients ∇F̄ , ∇Ḡ of the fluxes on each vertex
(elementwise loop). This is done by applying the nodal gradient formula:

(∇F̄ )i =
1

meas(Ci)

∑
T ∈Ci

meas(T )
3

∑
k ∈ T

(F̄ )k∇ΦT
k . (7.39)

3. Start edgewise assembly loop:
Compute the extrapolated slopes:

(∇F̄ )ij · �ij = (1− β)(∇F̄ ))c
ij · �ij + β(∇F̄ ))u

ij · �ij
+ξc

[
(∇F̄ ))u

ij · �ij − 2(∇F̄ ))c
ij · �ij + (∇F̄ ))d

ij · �ij
]

+ξd

[
(∇F̄ ))D∗

ij
· �ij − 2(∇F̄ ))i · �ij + (∇F̄ ))j · �ij

]
,

(7.40)
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Numerical algorithms for unstructured meshes 151

and analog for (∇F̄ )ji.
Define flux interpolations:

F̄ = (F̄ , Ḡ)

F̄ij = F̄i +
1
2
∇F̄ij

F̄ji = F̄j −
1
2
∇F̄ji

(7.41)

The central differenced flux then writes:

Φij = 0.5 (F̄ij + F̄ji) · nij (7.42)

4. Evaluate the stabilisation term:

Dij = 0.5 δ sign(Aij)(F̄ji · nij − F̄ij · nij) (7.43)

where Aij is defined by:

Aij = (F ′, G′)((Wi + Wj)/2) · nij . (7.44)

5. Compute the final edge flux as:

Φupwind
ij = Φij − Dij (7.45)

and add (resp. substract) it to flux assembly at vertex i (resp. j).

REMARK 7.2 The combination of median cells and upwinding produces
inconsistent error terms under the form of quotients Δx

Δy or Δy
Δx which can pro-

duce large errors when the previous quotients are large, that is when mesh is
stretched. One way to escape this inconsistency without losing the low dis-
persion properties (typically, fifth-order accuracy) consists of using the Barth
construction of cells.

3D case: For the 3D case, high order is obtained only with the combi-
nation of circumcenter cell construction with the cube splitting proposed
in [Gourvitch et al., 2004]. In that case a dissipative fifth-order accurate
scheme is obtained, together with its non-dissipative sixth-order accurate vari-
ant.

7.3.5 High-order LV6 spatial scheme

Although very accurate on Cartesian meshes, NLV6 schemes may involve
too much complexity for many flow problems. We present now a more simple
family of scheme, the linear V6 schemes, LV6, introduced in [Debiez, 1996],
[Debiez and Dervieux, 1999] in which interpolation is applied to the primitive
variables. These schemes are built as follows:
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152 Computational Fluid Dynamics

0. A background flow U = (ρ, ρu, ρv, E) on each vertex of the mesh is
given.

1. Compute the primitive variable Ũ = (ρ, u, v, p) on each vertex (vertex-
wise loop).

2. Compute the nodal gradients ∇Ũ .

(∇Ũ)i =
1

meas(Ci)

∑
T ∈Ci

meas(T )
3

∑
k ∈ T

(Ũ)k∇ΦT
k . (7.46)

3. Start edgewise assembly loop:
Compute the extrapolated slopes:

(∇Ũ )ij · �ij = (1 − β)(∇Ũ))c
ij · �ij + β(∇Ũ))u

ij · �ij
+ξc

[
(∇Ũ))u

ij · �ij − 2(∇Ũ))c
ij · �ij + (∇Ũ))d

ij · �ij
]

+ξd

[
(∇Ũ))D∗

ij
· �ij − 2(∇Ũ))i · �ij + (∇Ũ ))j · �ij

]
,

(7.47)

and analog for ∇(Ũ)ji.
Define left and right variable interpolations:

Ũij = Ũi +∇Ũij

Ũji = Ũj −∇Ũji

(7.48)

and recover the left and right values of conservative variables Uij , Uji.
The upwind differenced flux then writes:

Φij = ΦRiemann(Uij , Uji) (7.49)

and add (substract) it to flux assembly at vertex i (j) and multiply flux
assembly by the inverse mass matrix in order to obtain the update of
the variable.

In order to recover consistency for stretched meshes, a modification similar
to the one applied to NLV6 is necessary. Boundary conditions can also be
addressed in the same way as for NLV6.

A crucial difference between both schemes is that positive extensions of the
LV6 versions are easily derived, as will be explained in next section.

7.3.6 Time advancing

For explicit time advancing, we can use, as in the 1D case, a standart
Runge-Kutta scheme or the linearized version defined above.
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Numerical algorithms for unstructured meshes 153

An implicit Backward-Differencing formula can also be applied with a
spatially-first-order accurate simplified Jacobian. An interesting option is the
second-order Backward-Differencing formula.

In case where we seek a steady solution or a slowly transient solution during
a long time, the efficiency of an explicit scheme applying on unstructured mesh
is severely limited by the Courant condition on the time step. It can be cru-
cial to apply a multigrid iteration in combination with pseudo time-advancing
(steady case) or (for both cases) an efficient implicit time advancing. Design-
ing a multigrid scheme for unstructured meshes rises the problem of defining
a series of coarser grids. In other words, we have to define several new meshes
or to find an alternative strategy. In [Lallemand et al., 1992], [Francescatto
and Dervieux, 1998], this is done in a transparent manner from the fine mesh
by using the so-called cell agglomeration. Parallel multigrid extensions are
proposed in [Mavriplis, 1997], [Fournier et al., 1998]. Concerning the implicit
time-stepping, it needs a solution algorithms for at least a linearised prob-
lem. This also can be done with a multigrid algorithm. Another option well
adapted to message passing parallelism is the Krylov-Newton-Schwarz (KNS)
algorithm, as in [Knoll and Keyes, 2004]. A first version of KNS, under the
form of the Restrictive Additive Schwarz RAS was developed in [Cai and
Sarkis, 1999], [Sarkis and Koobus, 2000]. This method can produce second
order convergence in space and time although using a spatially-first-order ac-
curate simplified Jacobian. This is obtained by means of the two-step-Newton
Defect Correction proposed by [Martin and Guillard, 1996].

7.3.7 Conclusion on superconvergent schemes

We have described a family of schemes for the Euler equations involving low
numerical dissipation. Interested readers are refeered to [Debiez, 1996], [De-
biez and Dervieux, 1999], [Debiez et al., 1998], [Abalakin et al., 2002a], [Abal-
akin et al., 2002b], [Abalakin et al., 2002c], [Abalakin et al., 2001], [Abalakin
et al., 2004], [Camarri et al., 2001a], [Camarri et al., 2002b], [Camarri et al.,
2004], [Gourvitch et al., 2004].

Based on MUSCL schemes, the LV6 schemes involve sophisticated primitive
variable reconstruction designed in order to enjoy low dissipation properties
thanks to a model of sixth derivative. In the case of advection with uniform
velocity, those schemes present superconvergence properties, in the sense that,
when applied to a Cartesian subregion of mesh, these second-order schemes
are of higher order (up to sixth-order).

With the NLV6 option, flux functions are reconstructed, instead of prim-
itive variables. Upwinding is made through sign-based Riemann solvers for
using only flux values. The proposed schemes still apply to unstructured tri-
angulations where they stay essentially second-order accurate. In contrast to
LV6 schemes, the NLV6 schemes enjoy superconvergence properties also for
nonlinear arbitrary fluxes. Superconvergent order of accuracy is between 4
and 6.
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154 Computational Fluid Dynamics

7.4 Positivity of mixed element-volume formulations

7.4.1 Introduction

Some of the most useful properties of upwind approximation schemes for
hyperbolic equations are their monotonicity and positivity properties. For
example, for the Euler equations, and by combining flux splitting and lim-
iters, Perthame and co-workers [Perthame and Khobalate, 1992], [Perthame
and Shu, 1996] have proposed second-order accurate schemes that maintain
a density and a temperature positive. We refer also to [Linde and Roe, 1998]
and to the workshop [Venkatakrisnan, 1998]. Non-oscillating schemes [Harten
et al., 1987], [Cockburn and Shu, 1989] propose high accuracy approximations
applicable to many problems. However, they do not enjoy a strict satisfaction
of positivity or monotony, which remains an important issue for stiff simu-
lations, particularly in relation with highly heterogeneous fluid flows (see for
example [Abgrall, 1996], [Murrone and Guillard, 2005]).

The purpose of the present section is to analyze the conditions of positivity
for the MEV scheme. We first examine the maximum principle for a scalar
conservation law, then we introduce a flux splitting that preserves density
positivity for the Euler equations. This provides a basis to construct multidi-
mensional schemes that ensure density positivity and maximum principle for
convected species. This is of paramount importance for most flows of indus-
trial interest for two reasons. A direct one is that most industrial flows are
at medium Mach number and they generally do not induce negative pressures
but more often negative densities that can arise at after bodies (negative pres-
sures are more often obtained in high Mach number detached shocks). The
second reason is that in many Reynolds-Averaged Navier-Stokes flows, lim-
iters are not necessary for the mean flow itself, but robustness problems arise
in the computation of turbulence closure variables such as k and ε.

This section is then organised as follows. First, a scalar nonlinear model is
considered and allows us to introduce the main features of the new scheme.
Second, well-known positivity 1D statements for the Euler equations are re-
formulated in such a way that we can derive the extension of the new scheme
to density-positive treatment of the 2D and 3D Euler equations. Lastly, we
present an example of numerical application.

7.4.2 Positive schemes and LED schemes for nonlinear scalar
conservation laws

This section recalls some useful existing results. We keep the usual
TVD/LED (TVD: Total Variation Diminishing, LED: Local Extremum di-
minishing) criterion preferably to weaker positivity criteria in order to deal
also with the maximum principle.
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7.4.2.1 Nonlinear scalar conservation laws in fixed and moving do-
mains

Fixed domains We consider a nonlinear scalar conservation law form for
the unknown U(x, t):

∂U

∂t
(x, t) +∇x · F

(
U(x, t)

)
= 0 (7.50)

where t denotes the time, x = (x1, x2, x3)t is the space coordinate and F(U) =
(F (U), G(U), H(U))t (3D case). Under some classical assumptions [Godlewski
and Raviart, 1996], the solution U satisfies a maximum principle that, for
simplicity, we write in the case of the whole space:

min
x

U(x, 0) ≤ U(x, t) ≤ max
x

U(x, 0) (7.51)

Moving domains We consider a nonlinear scalar conservation law in ALE
form for the unknown U(x, t). Similar notations to [Farhat et al., 2001] are
used. We denote an instantaneous configuration by Ω(x, t) and a reference
configuration by Ω(ξ, τ = 0) where ξ = (ξ1, ξ2, ξ3)t denotes the space coor-
dinate and τ the time. We have a map function x = x(ξ, τ), t = τ , from
Ω(ξ, τ = 0) to Ω(x, t), and J = det(∂x/∂ξ) denotes its determinant. Then,
the nonlinear scalar conservation law in ALE form can be written as:

∂JU

∂t
|ξ(x, t) + J ∇x ·

(
F(U(x, t)) −w(x, t)U(x, t)

)
= 0 (7.52)

where F(U) = (F (U), G(U), H(U))t and w = ∂x
∂t |ξ . As for fixed domain

problems, the solution U satisfies a maximum principle.

7.4.2.2 Positivity/LED criteria

Assuming that the mesh nodes are numbered, we call Ui the value at mesh
node i that can move in time for moving grids. We recall now the classical
positivity statement for an explicit time-integration (the proof is immediate).

LEMMA 7.1
A positivity criterion: suppose that an explicit first-order time-integration of
equation (7.50) or (7.52) can be expressed in the form:

Un+1
i − Un

i

Δt
= biiU

n
i +

∑
j �=i

bijU
n
j , (7.53)

where all the bij, j = i, are non-negative and bii ∈ IR. Then it can be
shown that the above explicit scheme preserves positivity under the following

condition on the time-step Δt: bii +
1

Δt
≥ 0.
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156 Computational Fluid Dynamics

REMARK 7.3 Under a possibly different restriction on Δt, a high-order
explicit time discretization can still preserve the positivity, see [Shu and Osher,
1988].

Another scheme formulation relies on the so-called incremental form that
dates back to Harten [Harten, 1983]. It was used by Jameson in [Jameson,
1987] for defining LED schemes (see also [Godlewski and Raviart, 1996]). We
recall now the theory introduced by Jameson [Jameson, 1987] on LED schemes
in the case of an explicit time-integration:

LEMMA 7.2
A LED criterion [Jameson, 1987]: suppose that an explicit first-order time-
integration of equation (7.50) or (7.52) can be written in the form:

Un+1
i − Un

i

Δt
=
∑

k∈V (i)

cik(Un) (Un
k − Un

i ) , (7.54)

with all the cik(Un) ≥ 0, and where V (i) denotes the set of the neighbours
of node i. Then the previous scheme verifies that a local maximum cannot
increase and a local minimum cannot decrease, and under an appropriate
condition on the time-step the positivity and the maximum principle are pre-
served.

PROOF Given Un
i a local maximum, we deduce that (Un

k − Un
i ) ≤ 0

for all k ∈ V (i) . Therefore equation (7.54) implies that
Un+1

i − Un
i

Δt
≤ 0,

and the local maximum cannot increase. Likewise, we can prove that a local
minimum cannot decrease. On the other hand, the reader can easily check
that the positivity and the maximum principle are preserved when the time-

step satisfies
1

Δt
−
∑

k∈V (i)

cik(Un) ≥ 0.

7.4.2.3 First-order space-accurate MEV schemes on fixed and
moving grids

Fixed grids We integrate (7.50) over a cell Ci, integrating by parts the
resulting convective fluxes and using a conservative approximation leads to
the following semi-discretization of (7.50):

ai
dUi

dt
+
∑

j∈V (i)

Φ(Ui, Uj , νij) = 0 (7.55)

where ai is the measure of cell Ci. In the above semi-discretization, the
values Ui and Uj correspond to a constant per cell interpolation of the variable
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Numerical algorithms for unstructured meshes 157

U , and Φ is a numerical flux function so that Φ(Ui, Uj , νij) approximates∫

∂Cij

F(U) · ni(σ)dσ. In general, the numerical flux function Φ : (u, v, ν) �→

Φ(u, v, ν) is assumed to be Lipschitz continuous, monotone increasing with
respect to u, monotone decreasing with respect to v, and consistent:

Φ(u, u, ν) = F(u) · ν . (7.56)

Moving grids In the case of moving grids, these cells can move and deform
with time according to vertices motion. Integrating (7.52) over a cell Ci(0)
of the ξ space, switching to the x space, integrating by part the resulting
convective fluxes and using a conservative approximation lead to the following
semi-discretization of (7.52):

d
(
ai(t)Ui

)

dt
+
∑

j∈V (i)

Φ(Ui, Uj, νij(t), κij(t)) = 0 (7.57)

where ai(t) is the measure of cell Ci(t), νij(t) =
∫

∂Cij(t)

ni(σ, t) dσ and

κij(t) =
∫

∂Cij(t)

w(σ, t) · ni(σ, t) dσ. In the above semi-discretized scheme, Φ

is a numerical flux function so that Φ(Ui, Uj, νij(t), κij(t)) approximates∫

∂Cij(t)

(F(U)−wU) · nidσ. As previously, Φ : (u, v, ν, κ) �→ Φ(u, v, ν, κ) is

assumed to be Lipschitz continuous, monotone increasing with respect to u,
monotone decreasing with respect to v, and consistent:

Φ(u, u, ν, κ) = F(u) · ν − κu . (7.58)

7.4.2.4 Limited high-order space-accurate MEV scheme on fixed
and moving grids

According to section 7.3, we replace the values Ui and Uj by “better” in-
terpolations Uij and Uji at the interface ∂Cij . More precisely, the first-order
MEV scheme becomes:

ai
dUi

dt
+
∑

j∈V (i)

Φ(Uij , Uji, νij) = 0 in the case of fixed grids, (7.59)

and

d
(
ai(t)Ui

)

dt
+
∑

j∈V (i)

Φ(Uij , Uji, νij(t), κij(t)) = 0 for moving grids,

(7.60)
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158 Computational Fluid Dynamics

where Uij and Uji are left and right values of U at the interface ∂Cij . Our
purpose is to build a scheme that is non oscillatory and positive. It has been
early proved that high-order positive schemes must be necessarily built with
a nonlinear process, often called a limiter. A limiter locally chooses between
the first-order monotone version of the schemes and a higher order one. In the
case of unstructured meshes and scalar models, second-order positive schemes
were derived using a two-entry symmetric limiter by Jameson in [Jameson,
1987]. Here, instead of the Jameson symmetric limiter, we choose to work
in a MUSCL formulation, involving two limiters per edge. The adaptation
to triangulations is close to the one proposed in [Fezoui and Dervieux, 1989]
and [Stoufflet et al., 1996]. Following [Debiez, 1996], we extend it to a three-
entry limiter which allows to design a positive scheme of third- (or even fifth-)
order far from extrema when U varies smoothly. Then (7.59) becomes for
fixed grids:

ai
dUi

dt
+
∑

j∈V (i)

Φ(Ui +
1
2
Lij(U), Uj −

1
2
Lji(U), νij) = 0, (7.61)

and (7.60) becomes for moving grids:

d(ai(t)Ui)
dt

+
∑

j∈V (i)

Φ(Ui +
1
2
Lij(U), Uj −

1
2
Lji(U), νij(t), κij(t)) = 0.

(7.62)
In order to define Lij(U) and Lji(U) we use the upstream and downstream
triangles (or tetrahedra) Tij and Tji (see Figures 7.12 and 7.11), as introduced
in [Fezoui and Dervieux, 1989]. Element Tij is upstream to vertex i with
respect to edge ij if for any small enough real number η the vector −η�ij is
inside element Tij . Symmetrically, element Tji is downstream to vertex i with
respect to edge ij if for any small enough real number η the vector η�ji is inside
element Tij . Let εri, εsi, εti, εjn, εjp and εjq be the components of vector �ji

(resp. �ij) in the oblique system of axes (�ir, �is, �it) (resp. �jn, �jp, �jq)):

�ji = εri
�ir + εsi

�is + εti
�it ,

�ij = εjn
�jn + εjp

�jp + εjq
�jq .

Then Tij and Tji are upstream and downstrean elements means
that they have been chosen in such a way that the components
εri, etc. are all nonnegative: Tij upstream and Tji downstream ⇔
εri, εsi, εti, εjn, εjp, εjq are all non-negative. Let us introduce the following no-
tations:

Δ−Uij = ∇U |Tij . �ij , Δ0Uij = Uj−Ui and Δ−Uji = ∇U |Tji · �ij ,

where the gradients are those of the P1 (continuous and linear) interpolation
of U . Jameson in [Jameson, 1987] has noted that (for the 3D case):
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Numerical algorithms for unstructured meshes 159

FIGURE 7.12: Two-dimensional case: splitting of vector �ji in the directions
of downstream and upstream triangles edges.

Δ−Uij = εri (Ui − Ur) + εsi (Ui − Us) + εti (Ui − Ut) ,

and
Δ−Uji = εjp (Up − Uj) + εjq (Uq − Uj) + εjn (Un − Uj) ,

with the same non-negative εri, εsi, εti, εjn, εjp and εjq.
Now, we introduce a family of continuous limiters with three entries, satisfy-
ing:

(P1) L(u, v, w) = L(v, u, w)

(P2) L(α u, α v, α w) = α L(v, u, w)

(P3) L(u, u, u) = u

(P4) L(u, v, w) = 0 if uv ≤ 0

(P5) 0 ≤ L(u,v,w)
v ≤ 2 if v = 0.

Note that there exists K− and K0 depending on (u, v, w) such that:

L(u, v, w) = K−u = K0v , with 0 ≤ K− ≤ 2 , 0 ≤ K0 ≤ 2 . (7.63)

A function verifying (P1) to (P5) exists, and in the numerical examples, we
shall use the following version of the Superbee method of Roe:

⎧⎨
⎩

LSB(u, v, w) = 0 if uv ≤ 0

= Sign(u) min( 2 |u| , 2 |v| , |w|) otherwise.
(7.64)

We define:

Lij(U) = L(Δ−Uij , Δ0Uij , ΔHOUij) ; Lji(U) = L(Δ−Uji , Δ0Uij , ΔHOUji).
(7.65)

where ΔHOUji is a third way of evaluating the variation of U which we can
introduce for increasing the accuracy of the resulting scheme (see the
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160 Computational Fluid Dynamics

following remark).

REMARK 7.4 Let assume that the option Lij(U) = ΔHO Uij gives a
high order approximation with order ω. For U smooth enough and assuming
that the mesh size is smaller than α (small), there exists ε(α) such that if
|∇U.�ij|
||�ij||

> ε(α) for an edge ij, the limiter Lij is not active, i.e. Lij(U) =

ΔHO Uij . Then, the scheme is locally of order ω.�.

REMARK 7.5 Second-order accuracy of MEV in case of arbitrary un-
structured meshes is difficult to state in general. We refer to [Mer, 1998b] for
proofs in simplified cases. �.

The proposed analysis does not need any assumption concerning the terms
ΔHOUij . For example, we can use the following flux:

ΔHO3Uij =
1
3

Δ−Uij +
2
3

Δ0Uij , (7.66)

which gives us a third-order space-accurate scheme for linear advection on
Cartesian triangular meshes. More generally, the high-order flux can use extra
data in order to increase the accuracy. In [Debiez et al., 1998] and [Camarri
et al., 2004], the following version is studied:

ΔHO5Uij = ΔHO3Uij

− 1
30
[
Δ−Uij − 2Δ0Uij + Δ−Uji

]

− 2
15

[
(∇U)M .�ij − 2(∇U)i.�ij + (∇U)j .�ij

]
. (7.67)

For a vertex k, the notation (∇U)k holds for the following average of the
gradients on tetrahedra T having the node k as a vertex:

(∇U)k = − 1
V ol(Ck)

∑
T,k∈T

V ol(T )
4
∇U |T . (7.68)

The term (∇U)M is the gradient at point M , intersection of line ij with
the face of Tij that does not have i as vertex, see Figure 7.11 (3D case).
It is computed by linear interpolation of the nodal gradient values at the
vertices contained in the face opposite to i in the upwind tetrahedron Tij .
This option gives fifth-order accuracy for the linear advection equation on
Cartesian meshes and has a dissipative leading error expressed in terms of
sixth-order derivatives.
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Numerical algorithms for unstructured meshes 161

7.4.2.5 Maximum principle for first-order space-accurate MEV
schemes on fixed and moving grids

Fixed grids the first-order explicit time-integration of (7.55) leads to the
following scheme:

Un+1
i − Un

i

Δt
=

∑
j∈V (i)

cij (Un
j − Un

i ) + di Un
i (7.69)

where the coefficients:

cij = − 1
ai

Φ(Un
i , Un

j , νij) − Φ(Un
i , Un

i , νij)
Un

j − Un
i

(7.70)

are always positive since the flux Φ is monotone decreasing with respect to
the second variable. The last term in (7.69) involves:

di = − 1
ai

∑
j∈V (i)

Φ(Un
i , Un

i , νij)

Un
i

(7.71)

which, due to the consistent condition (7.56), can be transformed as follows:

di = − 1
ai

1
Un

i

F(Un
i ) .

∑
j∈V (i)

νij . (7.72)

Therefore this term vanishes since the finite-volume cells are closed:
∑

j∈V (i)

νij = 0, ∀ i . (7.73)

According to Lemma 4, we conclude classically that the scheme resulting
from the first-order explicit time-integration of (7.55) is L∞-stable under the
CFL condition:

1
Δt
−

∑
j∈V (i)

cij ≥ 0. (7.74)

Moving grids The maximum principle has been extended to ALE formu-
lations by Farhat et al. in [Farhat et al., 2001] for first-order space-accurate
schemes. We recall this in short. The time-integration of (7.57) is obtained
by combining a given time-integration scheme for fixed grid with a procedure
for evaluating the geometric quantities that arise from the ALE formulation.
Since the mesh configuration changes in time, an important problem is the
correct computation of the numerical flux function Φ through the evaluation
of the geometric quantities νij(t) and κij(t). In order to address this problem,
the discrete scheme is required to preserve a constant solution. In the case of
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162 Computational Fluid Dynamics

a first-order explicit time-integration of (7.57), imposing this condition to the
discrete scheme leads to the following relation called the Discrete Geometric
Conservation Law (DGCL):

an+1
i − an

i = Δt
∑

j∈V (i)

κ̄ij (7.75)

with an
i = |Cn

i | and an+1
i = |Cn+1

i |, and where κ̄ij is a time-averaged
value of κij(t). This gives a procedure for the evaluation of the geometric
quantities in the numerical flux function based on a combination of suited
mesh configurations.

Then the first-order space-accurate ALE scheme (7.57) combined with a
first-order explicit time-integration can be written as follows:

an+1
i Un+1

i − an
i Un

i

Δt
+
∑

j∈V (i)

Φ(Un
i , Un

j , ν̄ij , κ̄ij) = 0 , (7.76)

where ν̄ij and κ̄ij are averaged value of νij(t) and κij(t) on suited mesh
configurations so that the numerical scheme satisfies the DGCL. Given that∑
j∈V (i)

ν̄ij = 0 since the cells Ci remain closed during the mesh motion, the

consistency condition (7.58) implies that:

Φ(Un
i , Un

i , ν̄ij , κ̄ij) = Φ(Un
i , Un

i , ν̄ij , κ̄ij)−
∑

j∈V (i)

F(Un
i ) · ν̄ij = −

∑
j∈V (i)

κ̄ijU
n
i .

Then, the above scheme can also be written as:

Un+1
i − Un

i

Δt
=

∑
j∈V (i)

cij (Un
j − Un

i ) + eiU
n
i , (7.77)

cij = − 1
an+1

i

Φ(Un
i , Un

j , ν̄ij , κ̄ij) − Φ(Un
i , Un

i , ν̄ij , κ̄ij)
Un

j − Un
i

, (7.78)

ei =

⎛
⎝an

i − an+1
i

an+1
i Δt

+
1

an+1
i

∑
j∈V (i)

κ̄ij

⎞
⎠ . (7.79)

We note again that the coefficients cij are always positive since the numerical
flux function Φ is monotone decreasing with respect to the second variable.
We observe also that the DGCL (7.75) is exactly the condition for which ei

defined by (7.79) vanishes. As for the fixed grids case, from Lemma 4 we
conclude that the ALE scheme (7.76) is L∞-stable under the CFL condition:

1
Δt
−

∑
j∈V (i)

cij ≥ 0. (7.80)
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Numerical algorithms for unstructured meshes 163

7.4.2.6 Maximum principle for limited high-order space-accurate
MEV scheme on fixed and moving grids

Fixed grids A first-order explicit time-integration of the high-order upwind
scheme given by equation (7.59) leads to the following equation:

aiU
n+1
i − aiU

n
i

Δt
+
∑

j∈V (i)

Φ(Un
ij , U

n
ji, νij) = 0 . (7.81)

LEMMA 7.3
The scheme defined by (7.81) combined with (7.64), (7.65) and (7.66)
or (7.67) satisfies the maximum principle under an appropriate CFL con-
dition.

PROOF Let us first introduce the following coefficients:

gij = − 1
ai

1
Un

ji − Un
i

(
Φ(Un

ij , U
n
ji, νij) − Φ(Un

ij , U
n
i , νij)

)
(7.82)

hij = − 1
ai

1
Un

ij − Un
i

(
Φ(Un

ij , U
n
i , νij) − Φ(Un

i , Un
i , νij)

)
(7.83)

di = − 1
ai

1
Un

i

⎛
⎝ ∑

j∈V (i)

Φ(Un
i , Un

i , νij)

⎞
⎠ . (7.84)

Then, the scheme (7.81) can be written as:

Un+1
i − Un

i

Δt
=

∑
j∈V (i)

gij (Un
ji − Un

i ) +
∑

j∈V (i)

hij (Un
ij − Un

i ) + di Un
i .

(7.85)
We can notice that the coefficients gij and hij are respectively positive and
negative since the numerical flux function Φ is monotone increasing with the
first variable and monotone decreasing with the second variable. As in the
previous section, the term di vanishes since the numerical flux function Φ
satisfies the consistency condition (7.56) and the finite-volume cells Ci are
closed so that identity (7.73) holds. On the other hand, according to (7.63)
and (7.65) we can write Lij(Un) as:

Lij(Un) = K−
ijΔ

−Un
ij

where K−
ij is a positive function of Un , so that we have:

Un
ij −Un

i =
1
2
Lij(Un) =

1
2
K−

ij

(
εri(Un

i −Un
r )+ εsi(Un

i −Un
s )+ εti(Un

i −Un
t )
)

.

(7.86)
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164 Computational Fluid Dynamics

Likewise, from (7.63) and (7.65) we can write Lji(Un) in the following form:

Lji(Un) = K0
jiΔ

0Un
ij

where K0
ji is a positive function of Un smaller than 2, so that we get:

Un
ji − Un

i = Un
j −

1
2
Lji(Un)− Un

i =
(
1−

K0
ji

2

)
(Un

j − Un
i ) (7.87)

in which the coefficient 1−
K0

ji

2
is positive. In the identity (7.85), we substi-

tute Un
ij − Un

i and Un
ji − Un

i respectively by their expressions given by (7.86)
and (7.87), so that we can write the discrete upwind scheme in the following
form:

Un+1
i − Un

i

Δt
=
∑

j∈V (i)

αij(1−
K0

ji

2
)(Un

j − Un
i ) +

∑
j∈V (i)

βij(Un
j − Un

i ) (7.88)

where the coefficients αij and βij are positive, so that this scheme satisfies
the maximum principle under a CFL condition according to Lemma 4.

Moving grids: A first-order explicit time-integration of the high-order up-
wind scheme given by (7.60) leads to the following equation:

an+1
i Un+1

i − an
i Un

i

Δt
+
∑

j∈V (i)

Φ(Un
ij , U

n
ji, ν̄ij , κ̄ij) = 0 (7.89)

where ν̄ij and κ̄ij are averaged value of νij(t) and κij(t) on suited mesh
configurations so that the numerical scheme satisfies the DGCL (7.75).

LEMMA 7.4
The scheme defined by (7.89) combined with (7.64), (7.65) and (7.66)
or (7.67) satisfies the maximum principle under an appropriate CFL con-
dition.

PROOF Let first introduce the following coefficients:

gij = − 1
an+1

i

Φ(Un
ij , U

n
ji, ν̄ij , κ̄ij) − Φ(Un

ij , U
n
i , ν̄ij , κ̄ij)

Un
ji − Un

i

(7.90)

hij = − 1
an+1

i

Φ(Un
ij , U

n
i , ν̄ij , κ̄ij) − Φ(Un

i , Un
i , ν̄ij , κ̄ij)

Un
ij − Un

i

, (7.91)

ei =

⎛
⎝an

i − an+1
i

an+1
i Δt

+
1

an+1
i

∑
j∈V (i)

κ̄ij

⎞
⎠ . (7.92)
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Numerical algorithms for unstructured meshes 165

Then, the scheme defined by (7.89) becomes:

Un+1
i − Un

i

Δt
=

∑
j∈V (i)

gij (Un
ji −Un

i ) +
∑

j∈V (i)

hij (Un
ij −Un

i ) + eiU
n
i .

(7.93)
We observe again that the coefficients gij and hij are respectively positive and
negative combinations of the unknown, and that ei vanishes due to the DGCL.
Using the expressions of Un

ij − Un
i and Un

ji − Un
i given by (7.86) and (7.87),

we can rewrite (7.93) in the following form:

Un+1
i − Un

i

Δt
=

∑
j∈V (i)

αij(1−
K0

ji

2
)(Un

j −Un
i )+

∑
j∈V (i)

βij(Un
j −Un

i ) (7.94)

where αij and βik are positive coefficients. As above, according to Lemma 4,
we conclude that the ALE scheme satisfies the maximum principle under a
CFL condition, provided that K0

ij ≤ 2. This last condition is satisfied thanks
to the property (P5) of the limiter L, which ends the proof.

7.4.3 Density-positive MEV schemes for the Euler equations

The building block for density positivity is flux splitting. We first consider
the unidirectional Euler equations and the Godunov exact Riemann solver
which is an example of flux difference splitting method that preserves the
positivity of ρ under an appropriate CFL condition. Then we derive the
multidimensional-CFL condition ensuring that the 2D and 3D schemes in-
volving the unidirectional positive splitting still preserve the positivity of ρ.

7.4.3.1 Unidirectional Euler positive MEV scheme: Godunov’s
method

Let us consider the unidirectional formulation of the Euler equations for
the usual five variables, applicable to fields which do not depend of y and z:

∂U

∂t
(x, t) +

∂F (U(x, t))
∂x

= 0 (7.95)

U =

⎛
⎜⎜⎜⎜⎝

ρ
ρu
ρv
ρw
e

⎞
⎟⎟⎟⎟⎠

F (U) =

⎛
⎜⎜⎜⎜⎝

ρu
ρu2 + P

ρuv
ρuw

(e + P )u

⎞
⎟⎟⎟⎟⎠

(7.96)

where (u, v, w) is the velocity and e denotes the total energy per unit volume
given by e = ρε + 1

2ρ(u2 + v2 + w2) in which ε is the internal energy per unit
mass. We restrict the study to the case of an ideal gas, the pressure P being
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166 Computational Fluid Dynamics

defined through an equation of state P = (γ − 1)ερ where γ is constant. The
general form of an explicit conservative scheme for the Euler equations is:

Un+1
i − Un

i

Δt
= − 1

Δx

(
Φn

i+1/2 − Φn
i−1/2

)
, (7.97)

where Un
i is the average over the cell [xi−1/2 , xi+1/2] and Φn

i+1/2 =
Φ(Un

i , Un
i+1) denotes the numerical flux approximation of F (Un)|i+1/2

. As-
suming that ρ and P are positive at time level n, we look for schemes which
keep this still true for time level n + 1. There exists in the literature a lot
of flux splittings which enjoy density and pressure positivity, some popular
examples are the Boltzman splitting [Perthame and Khobalate, 1992] and the
HLLE splitting [Einfeldt et al., 1991]. In the Godunov method, we solve two
independent Riemann problems at each cell interfaces, that do not interact in
the cell provided that:

|Vmax| Δt

Δx
≤ 1

2
, (7.98)

where |Vmax| denotes the maximum absolute value of the Riemann problem
wave speeds. We obtain Un+1

i by averaging:

Un+1
i =

1
Δx

∫ xi

x
i− 1

2

WRP

(x−x
i− 1

2
Δt , Un

i−1, U
n
i

)
dx +

1
Δx

∫ x
i+ 1

2
xi

WRP

(x−x
i+1

2
Δt , Un

i , Un
i+1

)
dx ,

(7.99)

where WRP is the exact ρ−positive solution of the Riemann problem. This
illustrates the well-known fact that under the CFL condition (7.98) the Go-
dunov scheme preserves the positivity of density. Let us consider now any
unidirectional scheme for the Euler equations, that is ρ-positive under a CFL
condition:

Δt|Vmax|
Δx

≤ α1 (7.100)

where α1 is a coefficient which depends only on the scheme under study. For
example, with Godunov scheme, positivity holds for Courant numbers
smaller than α1 = 0.5.

For any arbitrary couple of initial states UL = Ui and UR = Ui+1, the above
positivity property can be expressed as a property of the flux between these
states. For this we need a third state Ui−1 to assemble the fluxes around
node i. Let us choose it as the mirror state of Ui in x-direction, that is to
say ρn

i−1 = ρn
i , un

i−1 = −un
i , vn

i−1 = vn
i , wn

i−1 = wn
i , and en

i−1 = en
i . The first

component Φ1 of the numerical flux function Φn
i−1/2,1 should ideally be zero:

Φ1(Ui−1, Ui) = 0 if Ui−1 is the mirror state of Ui . (7.101)

This property is verified by the three previous refered positive schemes. In
particular for the Godunov scheme, due to symmetry reasons, we have:
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Numerical algorithms for unstructured meshes 167

Φn
i−1/2,1 = WRP,2(0, Un

i−1, U
n
i ) = 0 where WRP,2 denotes the second

component of the exact solution WRP of the Riemann problem.

We restrict our study to schemes which satisfy (7.101). Then the discretized
equation (7.97) for the density at node i can be written as:

ρn+1
i − ρn

i

Δt
= − 1

Δx
Φn

i+1/2,1 .

Let us denote φ+
i+1/2 = Max(0, Φn

i+1/2,1) and φ−
i+1/2 = Min(0, Φn

i+1/2,1), we
can write the previous equation as:

ρn+1
i =

(
1− Δt

Δx

φ+
i+1/2

ρn
i

)
ρn

i −
Δt

Δx
φ−

i+1/2 .

For ρn ≥ 0 and under condition (7.100), ρn+1 is positive. This implies that
either φi+1/2 is negative, or the coefficient of ρn

i in right hand side is positive.
Both cases are summed up as follows:

Δt φ+
i+1/2

ρn
i Δx

≤ 1 .

Which should hold for the maximum allowed Δtmax = α1Δx/|Vmax|. We
finally get:

LEMMA 7.5
An unidirectional scheme that can be written in the form (7.97), that veri-
fies (7.101) and that is ρ−positive under the CFL condition:

Δt|Vmax|
Δx

≤ α1

satisfies the following property:

α1 φ+
i+1/2

|Vmax|ρn
i

≤ 1 . � (7.102)

More generally, considering a Riemann problem between two states UR and
UL, |Vmax| being the maximum wave speed between these two states, we will
say that a flux splitting Φ is ρ-positive if there exists α1 so that:

|Vmax|Δt

Δx
≤ α1 implies

Δt Φ+
1 (UL, UR)
ρLΔx

≤ 1 . (7.103)

where Φ1 is the first component of Φ. For such a flux splitting, we have:

α1 Φ+
1 (UL, UR)
|Vmax|ρL

≤ 1 . (7.104)
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168 Computational Fluid Dynamics

The Godunov, HLLE [Einfeldt et al., 1991] and Perthame [Perthame and
Khobalate, 1992] schemes involve flux splittings that are ρ-positive according
to the above definition. Further, although derived for the x-direction, the
previous ρ-positivity statement extends to an arbitrary direction ν (by a ro-
tation of moments and their equations for example). The positivity relation
then writes:

α1 Φ+
1 (UL, UR, ν)
|Vmax|ρL

≤ 1 . (7.105)

7.4.3.2 First-order positive MEV scheme for the 3D Euler equa-
tions

Let us come back to the unsteady Euler model. Combining a first-order
space-accurate finite-volume discretization of the mass conservation equation
with a first-order explicit time-integration gives:

aiρ
n+1
i = aiρ

n
i −Δt

∑
j∈V (i)

Φ1(Un
i , Un

j , νij) = aiρ
n
i −Δt

∑
j∈V (i)

φij lij (7.106)

in which lij =
∣∣∣
∣∣∣νij

∣∣∣
∣∣∣=
∣∣∣
∣∣∣
∫

∂Cij

ni(σ) dσ
∣∣∣
∣∣∣ and Φ is defined as a ρ-positive flux

splitting in direction νij , and as previously Φ1 represents the first component
of Φ. Therefore, using (7.105), we successively get:

φij ≤
|Vmax|ρn

i

α1
, Δt

∑
j∈V (i)

φij lij ≤
|Vmax|ρn

i Δt

α1
Li

where Li =
∑

j∈V (i)

lij is the measure of the cell boundary ∂Ci. From equa-

tion (7.106) we finally get that the positivity of ρn+1
i is ensured when the

following condition on the time-step is satisfied:

|Vmax|Δt

α1

(
ai

Li

) ≤ 1 .

LEMMA 7.6
The three-dimensional first-order space-accurate scheme built from a ρ-positive
flux splitting is ρ-positive under the CFL condition:

|Vmax|Δt(
ai

Li

) ≤ α1 . (7.107)

REMARK 7.6 The above formula measures the loss with respect to 1D
case in positively-stable time step: the ratio ai

Li
is in general only a fraction

of mesh size Δx.
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Numerical algorithms for unstructured meshes 169

7.4.3.3 High-order positive MEV scheme for the 3D Euler equa-
tions

We now derive high-order ρ-positive schemes in several dimensions. For
sake of clarity we restrict our proof to the 2D case, but it works in a similar
way in 3D. We assume that all the ρn

j are positive. The general form of the
explicit high-order space-accurate scheme governing ρn+1

i writes:

aiρ
n+1
i = aiρ

n
i −Δt

∑
j∈V (i)

Φ1(Un
ij , U

n
ji, νij) (7.108)

= aiρ
n
i −Δt

∑
j∈V (i)

φHO
ij lij

= aiρ
n
i −Δt

∑
j∈V (i)

(
φHO+

ij lij

ρn
ij

)
ρn

ij +
(

φHO−
ij lij

ρn
ji

)
ρn

ji , (7.109)

where Φ is a ρ-positive flux splitting in direction νij and φHO
ij =

1
lij

Φ1(Un
ij , U

n
ji, νij) is a flux integration of “high-order” space-accuracy. Fol-

lowing the reconstruction of the solution at the interface ∂Cij given by equa-
tions (7.86) and (7.87), ρn

ij and ρn
ji write as:

ρn
ij = ρn

i +
K−

ij

2

(
εri(ρn

i − ρn
r ) + εsi(ρn

i − ρn
s )
)

ρn
ji = ρn

j −
K0

ji

2 (ρn
j − ρn

i )
(7.110)

where K−
ij , K0

ji, εri and εsi are positive. First, we can notice that ρn
ij and ρn

ji

are positive. Indeed, according to (7.64) and (7.65) we can also write ρn
ij as:

ρn
ij = ρn

i +
1
2
Lij(ρn) = ρn

i +
K0

ij

2
Δ0ρn

ij = ρn
i +

K0
ij

2
(ρn

j − ρn
i ) (7.111)

where K0
ij is positive. As the property (P5) of the limiter implies K0

ij ≤ 2
and K0

ji ≤ 2, we deduce from equations (7.110) and (7.111) that

min(ρn
i , ρn

j ) ≤ ρn
ij , ρn

ji ≤ max(ρn
i , ρn

j )

so that ρn
ij and ρn

ji are positive. Using (7.110), we can rewrite the discrete
equation (7.109) as follows:

ρn+1
i =

∑
j∈V (i)

αijρ
n
j +

ρn
i

(
1−Δt

ai

∑
j∈V (i)

(
φHO+

ij lij

ρijn

)
(1+K−

ij

εri + εsi

2
)+

Δt

ai

∑
j∈V (i)

(
−

φHO−
ij lij

ρn
ji

)
K0

ji

2

)

(7.112)
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170 Computational Fluid Dynamics

where αij are positive since K0
ji ≤ 2 as already seen. We deduce that the

positivity of ρ is preserved under the following condition on Δt:

Δt

ai

∑
j∈V (i)

(
φHO+

ij lij

ρijn

)
(1 + K−

ij

εri + εsi

2
) ≤ 1 . (7.113)

In the above equation, the mesh dependant quantity Mij = εri + εsi can be
written as:

Mij =
l2j

lslr

(
lr sin θr + ls sin θs

lj sin θ

)

where θr, θs and θt are defined as in Figure 7.12 and lp denotes the length of
the vector ip for p = r, s or j. Given Mi = max

j
Mij , the CFL condition (7.113)

ensuring the positivity of ρ is satisfied when:

Δt

ai

∑
j∈V (i)

(
φHO+

ij lij

ρijn

)
≤ 1

1 + Mi
, (7.114)

since K−
ij ≤ 2 thanks to the properties (P1) and (P5) of the limiter L. On

the other hand, we have φHO
ij = 1

lij
Φ1(Un

ij , U
n
ji, νij) with Φ a ρ-positive flux

splitting, so that we get according to (7.105):

α1φ
HO+
ij

|Vmax|ρij
≤ 1 . (7.115)

Given Li =
∑

j∈V (i)

lij the measure of the cell boundary ∂Ci, from equa-

tions (7.114) and (7.115) we derive a positivity statement for a class of high-
order schemes, that we write for simplicity for the previous third-order scheme:

LEMMA 7.7
The quasi third-order scheme introduced in section 2, see equations (7.64)-
(7.65)-(7.66), based on a ρ-positive flux splitting (7.103) is ρ-positive under
the CFL condition:

Δt |Vmax|(
ai
Li

) ≤ α1

1 + Mi
. (7.116)

In the ALE case, the model is modified in a manner that is similar to the
scalar conservation law case. For the spatial discretization, the Riemann solver
is modified by the term involving the mesh velocity, but its positivity property
is unchanged. Also, the time derivative d

(
ai(t)Ui(t)

)
/dt is now approximated

by (an+1
i ρn+1

i − an
i ρn

i )/Δt, and equation (7.112) becomes:

an+1
i

an
i

ρn+1
i =

∑
j∈V (i)

αijρ
n
j +
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ρn
i

(
1−Δt

an
i

∑
j∈V (i)

(
φHO+

ij lij

ρijn

)
(1+K−

ij

εri + εsi

2
)+

Δt

an
i

∑
j∈V (i)

(
−

φHO−
ij lij

ρn
ji

)
K0

ji

2

)

where αij are positive, so that we can derive the same ρ-positivity statement
than for the fixed grids case.

REMARK 7.7 We observe that the DGCL is not necessary for the pos-
itivity of ρ with the ALE formulation.

REMARK 7.8 In the case of a viscous flow, a particular attention has to
be paid to the discrete diffusion operators that should also preserve positivity
of variables; for finite-element discretization, this is related to standard acute
angle condition, see [Baba and Tabata, 1981].

REMARK 7.9 All the previous results are extended to passive specie
convection in [Cournède et al., 2006] and can be easily extended to boundary
for various boundary conditions by applying mirror principles.

7.4.4 A numerical example

The theoretical results presented in this chapter have three types of con-
sequence on software. Firstly, the extra robustness of the upwind-element
method with respect to the nodal gradient method gets a theoretical confir-
mation. Secondly, for the explicit upwind-element scheme, a nonlinear sta-
bility condition is available for software in order to get more robustness than
standard time-step length evaluations relying on unproved extensions of linear
and scalar heuristics. Thirdly, with the proposed methodology, we can intro-
duce and limit new higher-order schemes in such a way that density positivity
holds. The resulting robustness has been abundantly illustrated by high Mach
calculations in several papers, such as [Stoufflet et al., 1996] and papers ref-
erenced in it. The high Mach calculations presented in [Stoufflet et al., 1996]
were not possible with previous versions of the schemes (i.e. without the
upwind elements).

Instead of presenting more high Mach flow calculations, we show in this
section that the new limited scheme is useful for transonic flow simulations
since it represents a good compromise between robustness and accuracy.

Two 3D applications are then considered in order to illustrate the gain
obtained in accuracy when the standard second-order scheme equipped with
van Albada limiter as in [Stoufflet et al., 1996] is replaced by limiter (7.65)
combined with the HO5 flux (see (7.67)). In both case an implicit BDF2
time advancing is used. The first 3D example concerns the calculation of
the inviscid steady flow around a supersonic jet geometry at a farfield Mach
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172 Computational Fluid Dynamics

FIGURE 7.13: Flow around Dassault SSBJ geometry, Mach 1.6, incidence
0: Mach number contours on upper side obtained by applying the previous
version of the scheme.

FIGURE 7.14: Flow around Dassault SSBJ geometry, Mach 1.6, incidence 0:
Mach number contours on upper side obtained by applying the new version
of the scheme.
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Numerical algorithms for unstructured meshes 173

number set to 1.6 and an angle of attack of 0 degree. The unstructured
tetrahedral mesh involves 170000 vertices, which represents a medium-fine
mesh for this geometry. In Figures 7.13 and 7.14, we depict the Mach number
isolines on the upper surface of the wing-body set for the standard second-
order scheme and the new higher-order one, respectively. The comparison
of both results shows rather important differences, with extremas predicted
at different locations on the geometry and more flow details captured by the
higher-order scheme. Using scheme (7.65)-(7.67) produces an improvement of
4% for the drag (from 15940 to 15313) and of 2% for the lift (from 120690 to
123345).

FIGURE 7.15: Flutter of the Agard Wing 445.6 underlined by the amplitude
of the lift oscillation as a function of time. Dashes: the previous version
[Stoufflet et al., 1996] of the scheme is applied, the initial oscillation is damped.
Line: scheme (7.65)-(7.67) is applied, oscillations are consistently amplified
with the experimental results.

The second 3D example concerns the simulation of an unsteady inviscid
flow involving mesh deformations. We consider a rather standard flutter test
case: the flutter of the AGARD Wing 445.6 which has been measured with
various flow conditions by Yates [Yates, 1987]. We focus on a rather tricky
transonic case, for which the farfield Mach number is 1.072. More precisely,
the reference density is set to 9.838 10−8 slugs/inch3 and the reference
pressure to 16.8 slugs/(inch.sec2). According to the experimental results
detailed in [Yates, 1987], the flow conditions are inside the unstability
domain and the wing flutter is already pronounced.
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174 Computational Fluid Dynamics

The three-dimensional unstructured tetrahedral CFD mesh contains 22014
vertices. For the aeroelastic analysis, the structure of the wing is discretized
by a thin plate finite-element model which contains 800 triangular composite
shell elements and is based on the informations given in [Yates, 1987].

This transient aeroelastic case is computed with the fluid-structure interac-
tion methodology developed by Farhat and co-workers, see [Farhat, 1995]. We
compare again the scheme defined in [Stoufflet et al., 1996] to scheme (7.65)-
(7.67). The time step is defined according to a maximum fluid Courant num-
ber of 900. In Figure 7.15, we depict the wing lift coefficient as a function of
time. With the new scheme, the flutter amplification is well predicted consis-
tently with the experimental results while an important damping is predicted
with the previous scheme leading to erroneous results.

7.4.5 Conclusion for positiveness

This section focuses on the positivity of Mixed-Element-Volume upwind
schemes. We propose an analysis for defining a positive sub-family of MUSCL-
based second-order accurate schemes. Three types of positivity are examined:
maximum principle for a scalar nonlinear conservation law, density positivity
for the Euler equations, and maximum principle for convected species in a
multi-component flow. In each of the three cases, the proposed analysis is
extended to moving mesh ALE approximations. In particular we extend to
second-order accuracy the contribution of [Farhat et al., 2001]. We also a
posteriori state, as a particular case, the robustness of the upwind-element
scheme used in [Stoufflet et al., 1996] which was derived empirically for the
special treatment of very stiff flows, involving strong bow shocks at large Mach
numbers.

In the case of explicit time advancing, this analysis brings a rigorous time-
step evaluation for positivity. With this analysis, we have also defined new
schemes that are as robust but less dissipative than the previous basic upwind-
element scheme, because the conditions for positiveness are accurately iden-
tified.

The numerical study presented in this chapter highlights the benefits that
can be acquired when these new schemes are applied. With the new spatial
discretization schemes presented in this work, steady and unsteady flow cal-
culations show thin and monotone shock structures, and a lower amount of
numerical dissipation compared to the previous MEV schemes. It should be
noted that dissipation can be even more decreased by adding sensors dedicated
to the inhibition of limiters in regions where the flow is regular. The improve-
ment in control of both monotony and dissipation is finally demonstrated by
computing a rather critical flutter case for which the scheme accuracy is a
determining factor on qualitative outputs.

Let us specify some important limits of the above techniques. Limiters
should be avoided or well locally controlled in calculations which need a very
low level of dissipation, such as those addressed with the superconvergent V6
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Numerical algorithms for unstructured meshes 175

schemes (in practice, large eddy simulation, aeroacoutics). A second limitation
of the theory of this chapter is that it does not apply to the case where a low
Mach number preconditioner is used.

7.5 3D multi-scales anisotropic mesh adaptation

When dealing with real-life CFD problems, mesh adaptation is recognized
as a complementary approach to high-order schemes classically used to solve
the problem at hand. It provides a way to control the accuracy of the
numerical solution by modifying the domain discretization according to size
and directional constraints. Among mesh adaptation methods, anisotropic
unstructured adaptation is of paramount influence on the accuracy of many
CFD predictions [Castro-Diaz et al., 1997], [Frey and Alauzet, 2005], [Li
et al., 2005], [Pain et al., 2001], [Tam et al., 2000]. In the particular context
of flow with shocks, anisotropic mesh adaptation provides very accurate
solutions by reducing considerably the numerical dissipation of shock
capturing schemes. This technique allows (i) to substantially reduce the
number of degrees of freedom, thus impacting favorably the cpu time and
(ii) to reduce (optimize) the numerical scheme dissipation by automatically
taking into account the anisotropy of the physical phenomena inside the
mesh.

If the previous features of unstructured mesh adaptation are now quite
classical, it has been recently pointed out that mesh adaptation has further
consequences impacting directly numerical schemes used to approximate the
flow. Indeed, a loss of convergence order generally occurs due to the
presence of steep gradients (Naviers Stokes equations) or genuine
discontinuities (Euler equations) in the flow, even if a probably spatially
high order method is employed. The computed mesh convergence order on
uniformly refined meshes is not the theoretical expected one. In [Dervieux
et al., 2003], [Loseille et al., 2007], it has been demonstrated that the
convergence order of numerical schemes can be recovered thanks to this
mesh adaptation procedure. This ability to approach the asymptotic
convergence and, therefore, to obtain more easily an accurate prediction for
complex flows is another key feature of mesh adaptation

In this section, we focus on a recent family of methods, often refered to as
metric analysis methods, or Hessian-based methods that have shown
a very fertile development, from the pioneering works in [Castro-Diaz et al.,
1997], [Fortin et al., 1996]. Thanks to recent formalisms, see for instance [Lo-
seille and Alauzet, 2009], these ideas turned into a clean set of functional
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176 Computational Fluid Dynamics

analysis problematics relying on an ideal representation of the interpolation
error and of a mesh. Getting rid of error iso-distribution and prefering Lp

error minimization allow to take into account discontinuities with higher-
order convergence [Dervieux et al., 2007], [Loseille et al., 2007]. This theory
combines perfectly with unstructured mesh generation [Frey, 2000], [George
and Borouchaki, 1998] and addressed applications are either steady or un-
steady [Alauzet et al., 2007], [Frey and Alauzet, 2005], [Guégan, 2007]. Metric-
based mesh adaptation efficiency and genericity have been proved by many
successful applications for 3D complex problems [Alauzet et al., 2007], [Bot-
tasso, 2004], [Dompierre et al., 1997], [Formaggia et al., 2004], [Frey and
Alauzet, 2005], [Pain et al., 2001], [Schall et al., 2004], [Tam et al., 2000].

7.5.1 Anisotropic mesh generation

The generation of 3D anisotropic adapted meshes uses the notion of length
in a metric space [Frey and George, 2008]. The idea is to introduce a metric
tensor in the dot product definition to modify size evaluation in all directions.
In 3D, a metric is a 3 × 3 symmetric definite-positive matrix. The mesh is
automatically adapted by generating a unit mesh with respect to this metric,
i.e., the mesh is such that all edges have a length close to one in the metric
and such that all elements are almost regular. The mesh is then uniform in
prescribed metric space and, non-uniform and anisotropic in the Euclidean
space.

Consequently, every mesh generator which is able to deal with a metric
field can be utilized whatever the meshing technique it uses: Delaunay, local
Delaunay, local refinements, . . . Note that a lot of adaptive mesh generators
are now able to interpret this metric concept. Let us mention [Frey, 2001]
for discrete surface mesh adaptation and [Bottasso, 2004], [Coupez,
2000], [Dobrzynski and Frey, 2008], [George, 1999], [Jones et al., 2006], [Li
et al., 2005], [Pain et al., 2001], [Tam et al., 2000] in 3D.

In the context of numerical simulation, the accuracy level of the solution
depends on the current mesh used for its computation and the mesh adap-
tation prescription, i.e., the metric field, is provided by the current solution.
This points out the non-linearity of the anisotropic mesh adaptation prob-
lem. Therefore, an iterative process needs to be set up in order to converge
both the mesh and the solution, or equivalently the metric field and the so-
lution. For stationary simulations, an adaptive computation is carried out
via a mesh adaptation loop inside which an algorithmic convergence of the
couple mesh-solution is sought [Frey and Alauzet, 2005]. At each iteration, all
components of the mesh adaptation loop are involved successively: the flow
solver, the error estimate, the adaptive mesh generator [Dobrzynski and Frey,
2008], [George, 1999] and the solution interpolation step. This procedure is
repeated until convergence of the couple mesh-solution is reached.
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Numerical algorithms for unstructured meshes 177

7.5.2 Continuous mesh model and optimality

Let u be a smooth given function. The problem of deriving a mesh that
minimizes the Lp norm of the interpolation error is an active field of
research [Castro-Diaz et al., 1997], [Agouzal et al., 1999], [Frey and Alauzet,
2005], [Huang, 2005], [Vassilevski and Agouzal, 2005], [Courty et al., 2006].
Our approach is based on a promising continuous mesh model that allows to
predict effectively the interpolation error on a fictitious so called continuous
mesh [Loseille and Alauzet, 2009]. In addition to this interpolation estimate,
the main benefit is that we are practically able to generate a computational
optimal discrete mesh both in two and three dimensions.

A continuous mesh M = (M(x))x∈Ω of a domain Ω is a Riemannian metric
field [Berger, 2003]. For all x of Ω, M(x) is a symmetric tensor having
(λi(x))i=1,3 as eigenvalues along the principal directions R(x) = (vi(x))i=1,3.
Sizes along these directions are denoted (hi(x))i=1,3 = (λ−2

i (x))i=1,3. With
this definition, M admits the more practical decomposition:

M(x) = d
2
3 (x)R(x)

⎛
⎜⎝

r
− 2

3
1 (x)

r
− 2

3
2 (x)

r
− 2

3
3 (x)

⎞
⎟⎠ tR(x),

where

• the mesh density d is equal to: (h1h2h3)
−1 = (λ1λ2λ3)

1
2 =

√
det(M),

• the three anisotropic quotients ri are equal to: h3
i (h1h2h3)

−1.

The anisotropic quotients represent the overall anisotropic ratio of a tetrahe-
dron taking into account all the possible directions. It is a complementary
measure to anisotropic ratio given by maxi(hi)/ mini(hi). By integrating the
node density, we define the mesh complexity C of a continuous mesh which is
the continuous counterpart of the total number of vertices:

C(M) =
∫

Ω

d(x) dx =
∫

Ω

√
det(M(x)) dx.

This real-value parameter is useful to quantify the global level of accuracy of
the continuous mesh M = (M(x))x∈Ω.

It has been shown in [Loseille and Alauzet, 2009] that M defines a class
of equivalence of discrete meshes. The equivalence relation is based on the
notion of unit mesh with respect to M. A mesh H is unit wih respect to M
when each tetrahedron K ∈ H defined by its list of edges (ei)i=1...6 verifies:

∀i ∈ [1, 6], �M(ei) ∈
[

1√
2
,
√

2
]

and QM(K) ∈ [α, 1] with α > 0 .
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178 Computational Fluid Dynamics

A classical and admissible value of α is 0.8. The length of an edge �M(ei)
and the quality of an element QM(K) are integrated to take into account the
variations of M in Ω:

QM(K) =
36
3

1
3

|K|
2
3
M∑6

i=1 �2
M(ei)

∈ [0, 1], with |K|M =
∫

K

√
det(M(x)) dx,

and �M(ei) =
∫ 1

0

√
tabM(a + t ab) ab dt, with ei = ab.

This model is also particularly well suited to the study of the interpolation
error. Indeed, there exists a unique continuous interpolation error that models
the (infinite) set of interpolation errors computed on the class of unit meshes.
See [Loseille and Alauzet, 2009] for the proof along with equivalence between
discrete and continuous formulations. In 3D, for a smooth function u, the
continuous linear interpolate πMu is a function of the Hessian Hu of u and
verifies:

(u− πMu)(x) =
1
10

trace(M− 1
2 (x) |Hu(x)|M− 1

2 (x)) (7.117)

=
1
10

d−
2
3

3∑
i=1

r
2
3
i

tvi |Hu|vi,

where |Hu| is deduced from Hu by taking the absolute values of its
eigenvalues. πM replaces the discrete operator Πh in this continuous
framework. Note that (7.117) does not require any assumption linking u and
M as, for instance, any alignment condition.

In practice, returning to a unit mesh H with respect to M, then the follow-
ing estimate of the linear interpolation error u−ΠHu holds:

‖u−ΠHu‖Lp(Ωh) ≤
(∫

Ω

(
trace

(
M− 1

2 (x)|Hu(x)|M− 1
2 (x)

))p

dx
) 1

p

. (7.118)

The previous inequality turns out to be an equality for some p and some
smoothness assumptions on u. Choosing the continuous formulation of
[Alauzet et al., 2006], [Loseille, 2008], the right hand side of (7.118) can be
then minimized under the constraint of a mesh complexity equal to a param-
eter N , giving the unique optimal continuous mesh MLp = (MLp(x))x∈Ω

minimizing the right hand side of (7.118):

MLp = DLp (det |Hu|)
−1

2p+3 |Hu| with DLp = N
2
3

(∫

Ω

(det |Hu|)
p

2p+3

)− 2
3

,

(7.119)
where N = C(M) is the continuous mesh complexity fixing the accuracy
(size) of the mesh. DLp is a global normalization term set to obtain a
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Numerical algorithms for unstructured meshes 179

continuous mesh with complexity N and (det |Hu|)
−1

2p+3 is a local
normalization term accounting for the sensitivity of the Lp norm. Indeed,
the choice of a Lp norm is essential in a mesh adaptation process regarding
the type of problems solved. For instance in CFD, physical phenomena may
involve large scale variations. Capturing weak phenomena is crucial for
obtaining an accurate solution by taking into account all phenomena
interactions in the main flow area. Intrinsically, metrics constructed with
lower p norms are more sensitive to weaker variations of the solution whereas
the L∞ norm mainly concentrates on strong singularities (e.g. shocks).

Finally, the interpolation error (7.118) can be rewritten for MLp , the fol-
lowing bound follows up for a unit mesh HLp with respect to MLp :

‖u−ΠHLp u‖Lp(Ωh) ≤ 3N− 2
3

(∫

Ω

(det |Hu|)
p

2p+3

) 2p+3
3p

≤ Cst

N2/3
. (7.120)

A main result arises from the previous bound: a global second-order asymp-
totic mesh convergence is expected for the considered variable u. Indeed, a
simple analogy with regular grids leads to consider that N = O

(
h−3
)

so that
the previous estimate becomes: ‖u−ΠHLpu‖Lp(Ωh) ≤ Cst′h2. The second or-
der convergence property still holds even when singularities are present in the
flow field for all p ∈ [1,∞[, see [Loseille et al., 2007]. This theoretical result
is verified numerically in our simulations and is used to assess the obtained
numerical solutions.

7.5.3 Application to numerical computation

In our case, the numerical solution provides a continuous piecewise linear
by elements representation of the solution. Consequently, our analysis
cannot be applied directly to the numerical solution. The idea is to build
a higher order solution approximation u∗ of u from uh which is
twice continuously differentiable and to consider u∗ in our error
estimate. More precisely, the interpolation error is approximated as
‖u−Πhu‖Ω ≈ ‖u∗−Πhu∗‖Ω. If u∗ and uh coincide at mesh vertices then we
have ‖u∗ − Πhu∗‖Ω = ‖u∗ − uh‖Ω illustrating that our estimate
approximates the approximation error. Practically, only the Hessian of u∗ is
recovered. In the context of discontinuous flows, the numerical solution is
also piecewise linear by elements even if it approximates a discontinuous
solution. In this case, we still approximate the solution u with a continuous
higher order representation and we still apply our error estimate.

We briefly present a Hessian recovery method based on a Green formula-
tion. Let H be a mesh of a domain Ωh ⊂ R3. We denote by ϕi ∈ Vh the
basis function associated with vertex i, where Vh is the approximation space
associated with the P 1 Lagrange finite-element. We denote by Si the stencil
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ϕi, i.e., Si = supp ϕi, which is in fact the ball of i. K represents a mesh
element. The Hessian of the solution is recovered using a weak formulation,
based on the Green formula, considering that the gradient of uh is constant
by element. For each vertex k of H, we have for 1 ≤ i, j ≤ 3:

∫

H

∂2uh

∂xi∂xj
ϕk =

∫

Sk

∂2uh

∂xi∂xj
ϕk = −

∫

Sk

∂uh

∂xj

∂ϕk

∂xi
+
∫

∂Sk

∂uh

∂n
ϕk dσ

= −
∑

K∈Sk

∫

K

∂uh

∂xj

∂ϕk

∂xi
,

as the shape function is zero on the boundary of the stencil ∂Sk. A specific
treatment is done close to the boundary. Each component of the Hessian is
then recovered with the relation:

∂2u∗

∂xi∂xj
(k) :=

−
∫

Sk

∂uh

∂xj

∂ϕk

∂xi∫

Sk

ϕk

= −

∑
K∈Sk

(
∂uh

∂xj
)∣∣K
∫

K

∂ϕk

∂xi

|Sk|
4

.

7.5.4 Application to a supersonic business jet

In this section, we study a low-drag-shaped jet provided by Dassault Avia-
tion. The aircraft geometry is shown in Figure 7.17 (top). The length of the
jet is L = 37 meters and it has a wing span of 17 meters. The surface mesh
accuracy varies between 1 millimeter and 30 centimeters. The computational
domain is a cylinder of 2.25 kilometers length and 1.5 kilometers diameter.
This represents a scale factor of 106 if the size of the domain is compared to
the maximal accuracy of the jet surface mesh.

The flight conditions are a supersonic cruise speed of Mach 1.6 at an
altitude of 13 680 meters (45 000 feet). In this study, the cruise lift has been
set to Cl = 0.115 by Dassault Aviation. The angle of attack for the aircraft
is set such that this lift is attained. The obtained angle of attack is near to 3
degrees.

The multi-scales mesh adaptation considers a control of the interpolation
error in L2 norm of the local Mach number. The local Mach number has been
selected as it is really representative of supersonic flows. We have deliberately
avoided to adapt the aircraft surface mesh. Indeed, the provided surface mesh
is very accurate and is of high quality for the computation. A mesh gradation
of 2.5 has been set [Alauzet, 2009]. A total of 32 adaptations have been
performed. The mesh adaptation loop is split into 4 steps of 8 adaptations.
At each step, the couple mesh-solution is algorithmically converged at a fixed
metric complexity. This complexity is multiplied by two between two steps.
This strategy has two main advantages. First, it enables us to perform a
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Numerical algorithms for unstructured meshes 181

convergence study of the whole solution as a series of couple mesh-solution
with an increasing accuracy is obtained. Second, considering an increasing
dynamic complexity level accelerates the convergence of the whole process.
We have fixed the following complexities:

[100 000, 200 000, 400 000, 800 000],

which give meshes the size of which is almost 0.8, 1.7, 4 and 9 millions of
vertices.

To validate the CFD computations, the solution global convergence order
is analyzed with respect to a reference solution. The reference solution is the
final solution obtained on the finest adapted mesh for a complexity equal to
800 000. The convergence is computed in L2 norm on the local Mach
number which is the variable used for the mesh adaptation. A convergence
order equal to 2 is obtained as predicted by the theory, see Figure 7.16, left.

FIGURE 7.16: Left: global mesh convergence order for the SSBJ: a second
order spatial convergence is obtained. Right: the Mach cone emitted by the
SSBJ. The maximal Mach cone diameter is 1.25 kilometers.

As regards the obtained solution, a very accurate result in the whole
computational domain is achieved for the final adapted meshes containing
almost 9 millions vertices. In particular, the accuracy of the tetrahedral
meshes has reached the surface meshes accuracy and the refinements have
been propagated in the whole computational domain. This is illustrated in
Figure 7.16, right, where the Mach cones of the low drag SSBJ is depicted.
This result points out that the numerical dissipation of the flow solver has
been drastically reduced thanks to the anisotropic mesh adaptation. The
shock waves have been accurately propagated in the whole computational
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182 Computational Fluid Dynamics

domain, more than one kilometer below the jet.

Figure 7.17 shows the final adapted mesh (middle, in the symmetry plane
Oxz and, bottom, in the cut plane Oxy) and the associated local Mach number
iso-values. We notice that the shock waves and the anisotropic refinements
have been propagated in the whole domain without any dissipation. We also
remark the very accurate capture inside the mesh of all the shock waves. This
points out the multi-scales behavior of the mesh adaptation approach. Each
element of the geometry emits its own shock waves. The focalization of shocks
during their propagation is also illustrated inside the mesh. These pictures
also point out the great complexity of the physical phenomenon and of the
mesh refinement. This demonstrates the necessity to use a fully automatic
mesh adaptive method.

7.6 3D goal-oriented anisotropic mesh adaptation

7.6.1 Introduction

So far, anisotropic features are mainly deduced from an interpolation error
estimate as presented in the previous section. However, these methods are
limited to the minimization of some interpolation errors for some solution
fields. If for many applications, this standpoint is an advantage, there are
also many applications where Hessian-based adaptation is no more optimal
regarding the way the degrees of freedom are distributed in the
computational domain. Indeed, metric-based methods aim at controlling the
interpolation error but this goal is not often so close to the objective that
consists in obtaining the best solution of a PDE. This is particularly true in
many engineering applications where a specific functional needs to be
accurately evaluated: lift, drag, heat flux, pressure field. . . Unfortunately, a
Hessian-like anisotropic approach does not directly apply to the
goal-oriented mesh adaptation methods that take into account both the
solution and the PDE in the error estimation.

In contrast, the formulation of goal-oriented mesh adaptation [Giles,
1997], [Giles and Pierce, 1999], [Pierce and Giles, 2000], [Venditti and Dar-
mofal, 2002], [Venditti and Darmofal, 2003] has brought many improvements
in the formulation and the resolution of mesh adaptation for PDE approxi-
mations. Let us write the continuous PDE and the discrete one as:

Ψ(w) = 0 and Ψh(wh) = 0. (7.121)

In this context, we focus on deriving the best mesh to observe a given func-
tional j depending of the solution w. To this end, we examine how to control
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Numerical algorithms for unstructured meshes 183

FIGURE 7.17: Left: final adapted mesh for the SSBJ computation containing
9 465 835 vertices and 56 568 966 tetrahedra, right: the associated local Mach
number iso-value. From top to bottom: the surface mesh, view of the adapted
volume mesh through the cut plane along 0xz and view of the adapted volume
mesh through the cut plane along 0xy.
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184 Computational Fluid Dynamics

the approximation error of the functional: j(w) − j(wh). Nevertheless, the
objective of goal-oriented mesh adaptation is different from the one of deriv-
ing the optimal mesh to control the global approximation error ‖w − wh‖,
see [Becker and Rannacher, 1996], [Verfürth, 1996] for a posteriori error esti-
mate devoted to this task. The formulation of this problem is slightly different.
Assuming that the functional j is enough regular to be observed through its
jacobian g we simplifiy it as follows:

j(w) = (g, w).

We also assume that there is no discrete error evaluation on j, this means
that jh(wh) = j(wh). On this basis, we seek for the mesh H which gives the
smallest error for the evaluation of j from the solution wh:

min
H
|(g, wh)− (g, w)|, (7.122)

where w and wh verify (constraint) state equations (7.121). The mesh adap-
tation problem is recast with equation (7.122) as an optimization problem.
In order to go a step forward in the analysis, we need to implicitly take into
account constraints (7.121) in equation (7.122). The initial approximation
error on the cost functional |(g, wh)− (g, w)| can be simplified as a local error
thanks to the introduction of the adjoint state:

(g, wh − w) ≈ (g,

(
∂Ψ
∂w

)−1

Ψ(wh)) = (w∗, Ψ(wh)) ,

where the adjoint state w∗ is solution of:
((

∂Ψ
∂w

)∗
w∗, ψ

)
= (g, ψ) .

In practice, the exact adjoint w∗ is not available. By introducing an approxi-
mate adjoint w∗

h, we get:

(g, wh − w) ≈ (w∗
h, Ψ(wh)) .

The right hand side is a spatial integral the integrand of which can be used
to decide where to refine the mesh. The iso-distribution of the error can be
approximated by refining according to a tolerance, as in [Becker and Ran-
nacher, 1996]. In [Giles and Suli, 2002], it is proposed to use this right hand
side as a correction that importantly improves the quality (in particular the
convergence order) of the approximation of j by setting:

jcorrected = (g, wh) + (w∗
h, Ψ(wh)) .

However, by substituting w∗ by w∗
h, we introduce an error in O(w∗

h − w∗),
which results in being the main error term when we use jcorrected. In [Venditti
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Numerical algorithms for unstructured meshes 185

and Darmofal, 2002], [Venditti and Darmofal, 2003], it is proposed to keep
the corrector and to adapt the mesh to this higher order error term, i.e.:

jcorrected − j ≈ (w∗
h − w∗, Ψ(wh)) ,

or equivalently:

jcorrected − j ≈ (w − wh, g −
(

∂Ψ
∂w

)∗
w∗

h).

In order to evaluate numerically these terms, the authors chose to approach
these approximation errors, i.e., w∗

h − w∗ and wh − w, by interpolation er-
rors, by computing differences between the linear representation Lh

h/2 and a
quadratic representation Qh

h/2 reconstructed on a finer mesh.

The adjoint-L1 approach In this approach, metric analysis and goal-
oriented analysis are complementary. Indeed, a metric-based method specifies
the object of our search through an accurate description of the ideal mesh
while a goal-oriented method specifies precisely the purpose of the search in
terms of which error will be reduced. It is then very motivating to seek for
a combination of both methods, with the hope of obtaining a metric-based
specification of the best mesh for reducing the error committed on a target
functional. A few works address this purpose. In [Venditti and Darmofal,
2003], an anisotropic step relying on the Hessian of the Mach number is intro-
duced into the a posteriori estimate. In [Rogé and Martin, 2008], an adhoc
formula gives a better impact to the anisotropic component. This section
presents a different contribution to the combination of both methods.

The first key point of this work is to use a metric-based parameterization
of meshes. This means to work in a continuous (non-discrete) formulation
by following the continuous interpolation analysis proposed in the previous
section. Usually, metric-based methods use an interpolation error, the devia-
tion between the exact solution and its linear interpolation on the mesh. This
assumes the knowledge of the solution, this is an a priori standpoint.

In contrast, goal-oriented methods are generally envisaged from an a poste-
riori standpoint, we refer to [Apel, 1999], [Becker and Rannacher, 1996], [For-
maggia et al., 2004], [Giles and Suli, 2002], [Picasso, 2003], [Verfürth, 1996].
With this option, the error committed is known on an existing mesh element-
wise. Therefore, mesh refinement scheme based on a such a posteriori es-
timations depends on an equi-distribution principle and is thus intrinsically
isotropic. Fortunately, goal-oriented methods do not need to be systemati-
cally associated with an a posteriori analysis. Now, according to [Babuška
and Strouboulis, 2001] a priori analysis can bring many useful informations.
Anisotropy is often one of these informations [Formaggia and Perotto, 2001].
Further, the goal-oriented error can also be easily expressed by an a priori
analysis, as we will demonstrate. This is the second key point of this work.
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186 Computational Fluid Dynamics

The third key point results from working with a numerical scheme that
expresses the difference Ψh(w) − Ψ(w) in term of interpolation errors. This
can be done in a straightforward way by considering finite-element
variational formulations.

The theoretical abstract framework is first introduced. Within this frame-
work, a first a priori goal-oriented error estimate, equation (7.126), is de-
rived. Its application to the compressible Euler equations is then studied
in section 7.6.3 for a class of specific Galerkin-equivalent numerical schemes.
From this study, a generic anisotropic error estimate, equation (7.129), is ex-
pressed. The estimate is then minimized globally on the abstract space of
continuous meshes, section 7.6.4. Finally, the numerical part gives some de-
tails on the main modifications of the adaptive loop as compared to classical
Hessian-based mesh adaptation. The pratical optimal metric field minimizing
the goal-oriented error estimate is then exhibited, equation (7.132). 3D de-
tailed examples conclude this last section by providing a numerical validation
of the theory.

7.6.2 A more accurate nonlinear error analysis

An accurate error analysis cannot be done without specifying the operator
which permits to pass from continuous to discrete and vice versa. Since the
P 1 interpolate is the pivot of today metric analysis, this operator is naturally
used in our analysis. It is denoted by Πh in the sequel.

7.6.2.1 Assumptions and definitions

Let V be a space of functions (at least a Banach space). We write the state
equation under a variational statement:

w ∈ V , ∀ϕ ∈ V , (Ψ(w), ϕ) = 0, (7.123)

where the operator (, ) holds for a V ′×V product, V ′ is the topological dual of
V and w is the solution of this equation. Symbol Ψ holds for a functional that
is linear with respect to test function ϕ but a priori nonlinear with respect to
w. The continuous adjoint w∗ is solution of:

w∗ ∈ V , ∀ψ ∈ V ,

(
∂Ψ
∂w

(w)ψ, w∗
)

= (g, ψ), (7.124)

where g is the jacobian of a given functional j. Let Vh be a subspace of
V = V ∩ C0 of finite dimention N , we write the discrete state equation as
follows:

wh ∈ Vh , ∀ϕh ∈ Vh , (Ψh(wh), ϕh) = 0.
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Numerical algorithms for unstructured meshes 187

Then, we can write:

(Ψh(w), ϕh)− (Ψh(wh), ϕh) = (Ψh(w), ϕh)− (Ψ(w), ϕh) = ((Ψh−Ψ)(w), ϕh).
(7.125)

For the a priori analysis, we assume that the solutions w and w∗ are suffi-
ciently regular:

w ∈ V ∩ C0 , w∗ ∈ V ∩ C0,

and that we have an interpolation operator:

Πh : V ∩ C0 → Vh.

7.6.2.2 A priori estimation

We start from a functional defined as: j(w) = (g, w), where g is a function
of V . Our objective is to estimate the following approximation error on the
functional:

δj = j(w) − j(wh) ,

as a function of continuous solutions, of continuous residuals and of discrete
residuals. The error δj is split as follows:

δj = j(w) − j(wh) = (g, w −Πhw) + (g, Πhw − wh).

δj is now composed of an interpolation error and of an implicit error
which involves only discrete terms. Let us introduce the discrete adjoint
system:

w∗
h ∈ Vh , ∀ψh ∈ Vh ,

(
∂Ψh

∂w
(Πhw)ψh, w∗

h

)
= (g, ψh).

We can derive the following extension of δj with the choice ψh = Πhw − wh:

δj = (g, w −Πhw) +
(

∂Ψh

∂w
(Πhw)(Πhw − wh), w∗

h

)
.

This new right hand side second term is simplified by using an extension of
Ψh. According to (7.125), we have:

(Ψh(Πhw), w∗
h)− (Ψh(wh), w∗

h) = (Ψh(Πhw), w∗
h)− (Ψh(w), w∗

h)+
((Ψh −Ψ)(w), w∗

h),

which gives by using a Taylor extension:
(

∂Ψh

∂w
(Πhw)(Πhw − wh), w∗

h

)
=
(
Ψh(Πhw), w∗

h

)
−
(
Ψh(w), w∗

h

)
+

(
(Ψh −Ψ)(w), w∗

h

)
+ R1,

where the remainder R1 is:

R1 =
(

∂Ψh

∂w
(Πhw)(Πhw − wh), w∗

h

)
− (Ψh(Πhw), w∗

h) + (Ψh(wh), w∗
h).
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188 Computational Fluid Dynamics

Thus, we get the following expression of δj:

δj = (g, w −Πhw) + (Ψh(Πhw), w∗
h)− (Ψh(w), w∗

h) + ((Ψh −Ψ)(w), w∗
h) + R1,

We now apply a second Taylor extension to get:

(Ψh(Πhw), w∗
h)− (Ψh(w), w∗

h) =
(

∂Ψh

∂w
(w)(Πhw − w), w∗

h

)
+ R2,

with remainder term

R2 =
(
Ψh(Πhw), w∗

h

)
−
(
Ψh(w), w∗

h

)
−
(

∂Ψh

∂w
(w)(Πhw − w), w∗

h

)
.

This implies:

δj = (g, w−Πhw)+
(

∂Ψh

∂w
(w)(Πhw − w), w∗

h

)
+
(
(Ψh−Ψ)(w), w∗

h

)
+R1+R2.

In contrast to an a posteriori analysis, this analysis starts with a discrete
adjoint w∗

h. However, our purpose is to derive a continuous description of the
main error term. Thus, we get rid of the discrete solutions in the dominating
terms. To this end, we re-write δj as follows:

δj = (g, w −Πhw) +
(

∂Ψ
∂w

(w)(Πhw − w), w∗
)

+ ((Ψh −Ψ)(w), w∗) + R1 + R2 + D1 + D2 + D3,

where,

D1 =
((

∂Ψh

∂w
− ∂Ψ

∂w

)
(w)(Πhw − w), w∗

h

)
,

D2 =
(

∂Ψ
∂w

(w)(Πhw − w), w∗
h − w∗

)
,

D3 =
(
(Ψh − Ψ)(w), w∗

h − w∗).

The latter expression of δj can be even more simplified thanks to the contin-
uous adjoint of equation (7.124), leading to:

δj = ((Ψh −Ψ)(w), w∗) + R1 + R2 + D1 + D2 + D3 . (7.126)

At least formally, the Ri and the Dk are higher order terms, and the first
term in the right hand side of (7.126) is the dominating one. It remains to
give the studied context and to exhibit from (7.126) a formulation specifying
the optimal mesh.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
39

 0
4 

M
ar

ch
 2

01
6 



Numerical algorithms for unstructured meshes 189

7.6.3 The case of the steady Euler equations

In this section, we study how equation (7.126) can be applied in the context
of the steady Euler equations. To this end, we restrict to the particular
discretization of these equations given in this Chapter and we consider a
variational analysis.

7.6.3.1 Variational analysis

Equation (7.4) will play the role of equation (7.123) of the abstract analysis
of the previous section. For the discretization, we consider a discrete domain
Ωh and a discrete boundary Γh which are not necessarily identical to the
continuous ones. The MUSCL scheme introduced in the first sections can
be written as a variational Galerkin-type scheme complemented by a higher-
order term which can be assimilated to a numerical viscosity term Dh. This
gives: ∀φh ∈ Vh,

∫

Ωh

φh∇.Fh(Wh) dΩh −
∫

Γh

φhF̂h(Wh).n dΓh = −
∫

Ωh

φh Dh(Wh)dΩh.

(7.127)
According to [Mer, 1998a], the diffusion term is of higher order as soon as it
is applied to the interpolation of a smooth enough field W on a sufficiently
regular mesh:

∣∣∣∣
∫

Ωh

φh Dh(Wh)dΩh

∣∣∣∣ ≤ h3K(W )|φh|L2 .

As a result, the dissipation term will be neglected in the same way we neglect
the remainders Ri and Dk of Relation (7.126). In the case of a flow with
shocks, we have chosen to follow the strategy of the Hessian-based study
in [Loseille et al., 2007] which consists in avoiding to introduce the error term
from artificial dissipation.

7.6.3.2 Approximation error estimation

Returning to the output functional j(W ) = (g, W ) and according to Esti-
mate (7.126), the main term of the a priori error estimation of δj becomes:

δj = (g, W −Wh) ≈ ((Ψh −Ψ)(W ), W ∗) with
∂Ψ
∂W

W ∗ = g,

where W ∗ is the continuous adjoint state. Using the exact solution W in
equations (7.4) and (7.127) while neglecting the dissipation Dh leads to:

(g, W −Wh) ≈
∫

Ωh

W ∗ (∇.Fh(W )−∇.F(W )
)

dΩh

−
∫

Γh

W ∗ (F̂h(W )− F̂(W )
)
.n dΓh.
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190 Computational Fluid Dynamics

By integrating by parts the previous estimate, it comes:

(g, W −Wh) ≈
∫

Ωh

∇W ∗ (F(W )−Fh(W )
)

dΩh

−
∫

Γh

W ∗ (F̄(W )− F̄h(W )
)
.n dΓh,

where fluxes F̄ are given by:

F̄(W ).n = F(W ).n− F̂(W ).n.

By definition, Fh is the linear interpolate of F , i.e., ΠhF = Fh, thus we have:

δj ≈
∫

Ωh

∇W ∗ (F(W )−ΠhF(W )
)

dΩh−
∫

Γh

W ∗ (F̄(W )−ΠhF̄(W ))
)
.n dΓh.

(7.128)
We observe that this estimate of δj is expressed in terms of interpolation
errors for the fluxes and in terms of the continuous functions W and W ∗.

7.6.3.3 Error bound with a safety principle

The integrands in (7.128) contain positive and negative parts which can
compensate for some particular meshes. In our strategy, we prefer to avoid
these parasitic effects. To this end, all integrands are bounded by their abso-
lute values:

(g, Wh −W ) ≤
∫

Ωh

|∇W ∗| |F(W )−ΠhF(W )| dΩh +
∫

Γh

|W ∗| |(F̄(W )−ΠhF̄(W )).n| dΓh. (7.129)

In other words, we prefer to locally over-estimate the error.

7.6.4 Error model minimization

Starting from Bound (7.129), several options are possible to derive an opti-
mal mesh for the observed functional. We propose to work in the continuous
mesh framework by adopting a complete continuous view which is possible
with a priori estimates. It allows us to define proper differentiable optimiza-
tion [Absil et al., 2008], [Arsigny et al., 2006] or to use the calculus of variations
that is undefined on the class of discrete meshes. This framework lies in the
class of metric-based methods. Working in this framework enables us, as in
the previous section, to write Estimate (7.129) in a continuous form:

(g, Wh −W ) ≈ E(M) =
∫

Ω

|∇W ∗| |F(W )− πMF(W )| dΩ +
∫

Γ

|W ∗| |(F̄(W )− πMF̄(W )).n| dΓ,(7.130)
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Numerical algorithms for unstructured meshes 191

where M = (M(x))x∈Ω is a continuous mesh defined by a Riemannian metric
field and πM is the continuous linear interpolate defined hereafter. We are
now focusing on the following (continuous) mesh optimization problem:

Find Mopt = ArgminM E(M). (7.131)

A constraint is added to the previous problem in order to bound mesh fineness.
In this continuous framework, we impose the total number of nodes to be equal
to a specified positive integer N .

The same reasoning as section 7.5 can be applied for the three following
particular cases.

7.6.4.1 Weighted interpolation error

Let u be a twice continuously differentiable function and g be a strictly
positive function. We consider the following optimization problem in the
continuous framework:

Find Mwgt = ArgminMEwgt(M) with Ewgt(M) =
∫

Ω

g |u− πMu| dΩ,

under the equality constraint C(M) = N . The continuous interpolation error
related to continuous mesh M, can be expressed (up to a constant negligible
thanks to the constraint C(M) = N) in terms of the Hessian Hu of function u,
see equation (7.117). Following the reasoning of [Loseille et al., 2007] used for
Hessian-based mesh adaptation, we get the expression of the optimal metric:

Mwgt(g, u) = D(g, u) det(g |Hu|)−
1
5 g |Hu|

where D(g, u) = N
2
3

(∫

Ω

(det(g |Hu|))
2
5

)− 2
3

.

7.6.4.2 Sum of interpolation errors

The previous variational calculus extends to a linear combination of inter-
polation errors. Let u, v, α, β > 0 be four twice continuously differentiable
functions. We aim at finding the metric which optimizes the L1 norm of the
weighted sum of interpolation errors:

Find Msum = ArgminM Esum(M)

with

Esum(M) =
∫

Ω

α |u− πMu| dΩ +
∫

Ω

β |v − πMv| dΩ,

under the constraint C(M) = N . It can be shown that minimizing Esum is
equivalent to minimizing a single interpolation error of a function having as
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192 Computational Fluid Dynamics

Hessian the linear combination α |Hu|+ β |Hv|. The optimal metric is then

Msum(α, u, β, v) = D(α, u, β, v) det(α |Hu|+ β |Hv|)−
1
5 (α |Hu|+ β |Hv|),

where D(α, u, β, v) = N
2
3

(∫

Ω

det(α |Hu|+ β |Hv|)
2
5

)− 2
3

.

7.6.4.3 Mixing boundary and volume error contributions

We consider now an optimization problem involving at the same time vol-
ume and surface interpolation error terms. Let u and ū be two functions that
are defined on Ω and Γ = ∂Ω, respectively. The function ū is simply the
trace of u on the boundary. We consider g and ḡ two positive functions. The
problem reads:

Find (Mvol, M̄surf ) = ArgminM,M̄ Esurf (M, M̄),

with

Esurf (M, M̄) =
∫

Ω

g |u− πMu| dΩ +
∫

Γ

ḡ |ū− πM̄ū| dΓ,

under the constraint C(M)+ C(M̄) = N . The optimal solution is then sought
as a couple of two 3D metric fields: Mvol defined in the whole domain Ω
and Msurf defined only on the boundary Γ. A similar calculus as previously
dealing with both terms separately is applied. The global optimal metric
Mopt is then defined by:

Mopt(x) =
{
Mvol(x) for x ∈ Ω
Mvol(x) ∩Msurf (x) for x ∈ Γ .

7.6.5 Adaptive strategy

The adaptive strategy for the proposed goal-oriented mesh adaptation crite-
rion (7.130) is quite similar to any anisotropic metric-based mesh adaptation.
As both the solution and the mesh are changing during the computation, a
non-linear loop is set up in order to converge toward a fixed point for the
couple mesh-solution. From an initial couple mesh-solution (H0,S0), it is
composed of the following sequences. At step i, the flow is first converged on
the current mesh Hi to get the solution Si. Then, a metric tensor fieldMi is
deduced from (Hi,Si) thanks to an anisotropic error estimate. The latter is
used by the adaptive mesh generator which generates a unit mesh with respect
to Mi. The previous solution is then linearly interpolated on the new mesh.
This procedure is repeated until convergence of the couple mesh-solution. We
refer to [Loseille et al., 2007] for more details.

We now investigate the differences when dealing with the adjoint-based
anisotropic error estimate. The main modifications concern the flow solver
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Numerical algorithms for unstructured meshes 193

and the remeshing stage. In this section, the following notations are used. H
denotes the mesh of the domain Ωh, ∂H the mesh of the boundary Γh of Ωh,
Wh is the state provided by the flow solver and j(Wh) the observed functional
defined on γ ⊂ Ωh.

7.6.5.1 Flow solver and adjoint state

As compared to Hessian-based mesh adaptation, the new step in the solver
is the resolution of the linear system providing the adjoint state: A∗

h W ∗
h = gh,

where gh is the approximated jacobian of j(Wh) with respect to the conserva-
tive variables and W ∗

h is the adjoint state. A∗
h is the adjoint matrix of order

one deduced by linearizing the numerical scheme. Thus, the main over-cost
is memory. The linear system is solve with the iterative GMRES method
coupled with an incomplete BILU(0) preconditioner [Saad, 2003].

Once W ∗
h is computed, its point-wise gradient is recovered by using a L2

projection from the neighboring element-wise constant gradients [Alauzet and
Loseille, 2009]. We summarize the final couples of variables made available
by the flow solver:

• the gradients of the adjoint state
(

∂W ∗
h

∂x
,
∂W ∗

h

∂y
,
∂W ∗

h

∂z

)
associated with

fluxes (F1(Wh),F2(Wh),F3(Wh)).

• the adjoint state associated with the boundary fluxes F̄ on γ.

7.6.5.2 Optimal goal-oriented metric

The optimal metric found in section 7.6.4 is composed of a volume tensor
field Mgo defined in Ωh and a surface one M̄go defined on Γh. We then
compute:

• for each vertex x of H, the Hessian matrix arising from the volume
contribution of each component of the Euler fluxes:

H(x) =
5∑

j=1

([Δx]j + [Δy]j + [Δz]j) ,

where

[Δx]j =
∣∣∣∣
∂W ∗

h

∂x

∣∣∣∣
∣∣HR( [F1(Wh)]j )

∣∣, [Δy]j =
∣∣∣∣
∂W ∗

h

∂y

∣∣∣∣
∣∣HR( [F2(Wh)]j )

∣∣,

[Δz]j =
∣∣∣∣
∂W ∗

h

∂z

∣∣∣∣
∣∣HR( [F3(Wh)]j )

∣∣ with [Fi(Wh)]j denoting the jth

component of the vector Fi(Wh)

• for each vertex x of ∂H, the Hessian matrix arising from the surface
contribution:

H̄(x) =
5∑

j=1

∣∣∣W ∗
h

∣∣∣
∣∣∣HR

( 3∑
i=1

F̄i(Wh)ni

)∣∣∣,
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194 Computational Fluid Dynamics

where n = (n1, n2, n3) is the outward normal of Γ.

HR stands for the operator that recovers numerically the second order deriva-
tives of an initial piecewise linear by element solution field. The recovery
method is based on the Green formula [Alauzet and Loseille, 2009]. The stan-
dard L1 norm normalization is then applied independently on each metric
tensor field:

Mgo(x) = C det(|H(x)|)− 1
5 |H(x)| (7.132)

and M̄go(x) = C̄ det(|H̄(x)|)− 1
4 |H̄(x)|.

Constants C et C̄ depends on the desired complexity N .

7.6.5.3 Mesh adaptation

Goal-oriented mesh adaptation requires to adapt the surface mesh of the
surface γ on which the functional is observed. This standpoint is needed in
order to ensure a valid coupling between the volume mesh and the surface
mesh. This constraint implies numerous complications for the re-meshing
phase. In our case, a global re-meshing is carried out after re-meshing the
surface γ. We use Yams [Frey, 2001] for the adaptation of the surface and an
anisotropic extension of Gamhic [George, 1999] for the volume mesh. When
the surface is not adapted, we use Mmg3d [Dobrzynski and Frey, 2008].

7.6.6 Some examples

7.6.6.1 High-fidelity pressure prediction of an aircraft

We consider the flow around a supersonic business jet (SSBJ). The geometry
provided by Dassault-Aviation is depicted in Figure 7.17 (top left). Flight
conditions are Mach 1.6 with an angle of attack of 3 degrees. As for a body
flying at a supersonic speed, each geometric singularity generates a shock
wave having a cone shape; a multitude of conic shock waves are emitted
by the aircraft geometry. They generally coalesce around the aircraft while
propagating to the ground. The goal, here, is to compute accurately the
pressure signature only on a plane located 100m below the aircraft. The
observation plane has a length of 40m and a width of only 2m whereas the
wing span is about 17m. The scope of this test case is to evaluate the ability of
the adjoint to prescribe refinements only in areas that impact the observation
region. The functional is given by:

j(W ) =
1
2

∫

γ

(
p− p∞

p∞

)2

dγ,

with γ =
{
(x, y, z) ∈ R3 | 100 ≤ x ≤ 140, −1 ≤ y ≤ 1, z = −100

}
. Observa-

tion area γ and its position with respect to the aircraft is shown in Figure 7.18
(top right).
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Numerical algorithms for unstructured meshes 195

In order to exemplify how adjoint-based mesh adaptation gives an opti-
mal distribution of the degrees of freedom to evaluate the functional, this
adaptation is compared to the Hessian-based mesh adaptation presented in
section 7.5. The adaptation is done on the local Mach number and the inter-
polation error is controlled in L2 norm.

FIGURE 7.18: Top left: location of the observation plane below the aircraft.
Top right: pressure signature along x axis in the observation plane. Bottom,
local Mach number iso-surface for the adjoint-based (left) and Hessian-based
(right) methods.

The adaptive loop is divided into 5 steps, each step is composed of 6
sub-iterations having a constant complexity for a total of 30 adaptations.
The complexity sequence is [10 000, 20 000, 40 000, 80 000, 160 000].
Hessian-based and adjoint-based final adapted meshes are composed of
almost 800 000 vertices. They are represented in Figure 7.19 where several
cuts in the final adapted meshes for the adjoint-based (top) and
Hessian-based (bottom) adaptations are displayed.

For the Hessian-based adaptation, the mesh is adapted in the whole com-
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putational domain along the Mach cones and in the wake, see Figure 7.19
(right). Such an anisotropic adapted mesh provides an accurate solution ev-
erywhere in the domain, cf. Figure 7.18 (bottom right). But, if the aim is
to only compute an accurate pressure signature on surface γ then we clearly
notice that a large amount of degrees of freedom is wasted in the upper part
of the domain and in the wake where accuracy is not needed.

As regards the adjoint-based adaptation, the mesh is mainly adapted below
the aircraft in order to capture accurately all the shock waves that impacts
the observation plane Figure 7.19 (left). On the contrary, areas that do not
impact the functional are ignored with this new approach: the region over the
aircraft, the wake of the SSBJ and in the region just behind the aircraft, only
the lower half of the conic shock waves are refined and the angular amplitude
of the refined part keeps on decreasing along with the distance to the aircraft.

Another point of main interest, which is more technical, is that the Hessian-
based adaptation in L2 norm prescribes a mesh size that depends on the
shock intensity. A stronger shock is then more refined than a weaker one.
In this simulation, shocks directly below the aircraft have a lower intensity
than lateral or upper shocks emitted by the wings, see Figure 7.19 (bottom).
Consequently, the adapted meshes with the Hessian-based method are less
accurate in regions that directly affect the observation plane. On the contrary,
shocks below the aircraft are not uniformly refined with the adjoint-based
strategy. The shock waves are all the more refined as they are influent on the
functional independently of their amplitudes. This has a drastic consequence
on the accuracy of the observed functional, see Figure 7.18 (top left).

7.6.6.2 Wing tip vortices capture

In this example, we study the accurate prediction of wing tip vortices at
large distance in the wake for transonic flow conditions. We consider the
Falcon business jet geometry provided by Dassault Aviation, see Figure 7.20.
The jet is flying at transonic cruise speed with Mach number 0.8 and an angle
of attack of 3 degrees. The computational domain is a cylinder of radius 250 m
and of length 700 m. The Hessian-based adaptation on the local Mach number
is compared to the adjoint-based adaptation on the vorticity functional:

j(W ) =
1
2

∫

γ

‖∇× (u− u∞)‖22 dγ,

where γ is a plane located 400 m behind the aircraft orthogonal to the aircraft
path, u the velocity field and u∞ the velocity field at infinity.

As the aircraft is flying at a transonic speed, the flows is composed of
both shocks and smooth vortices. These phenomena have different
magnitudes and mathematical properties. Across a shock, all the variables
become discontinuous whereas a vortex corresponds to a smooth variation of
the variables while having a very small amplitude. These features are
exemplified in Figure 7.20 (right). An extraction of the pressure across the
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Numerical algorithms for unstructured meshes 197

FIGURE 7.19: Cut planes through the final adapted meshes for the adjoint-
based (left) and Hessian-based (right) methods. A cut in the symmetry plane
(top) and, two cuts with an increasing distance behind the aircraft orthogonal
to its path (middle and bottom).
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wing extrados where a shock occurs (light gray curve) is superposed to the
pressure variation in the wake across a vortex located 400 m behind the
aircraft (dark gray curve). The amplitude of the vortex is less than 2% of
the amplitude of the shock. Moreover, the smoothness property of the
vortex is a supplementary difficulty as its derivatives involved in our
estimate are also smooth. Consequently, vortices are difficult to detect and
to not diffuse. Detecting and preserving these vortices are still a challenge in
the field of CFD.

Final adapted meshes are composed of almost 1.5 million vertices for both
methods. Vorticity iso-values are visualized in Figure 7.22 for planes x = 100
m, x = 200 m and x = 400 m, that are located behind the aircraft and
orthogonal to the aircraft path. As regards Hessian-based adaptation, the
vortex is accurately captures up to 100 m behind the aircraft and then it is
diffused with the distance to the Falcon. On the contrary, with adjoint-based
method, the vortex keeps a constant size and its core is not diffused when
increasing the distance to the aircraft, see Figure 7.21. When looking at the
cuts in x = cte planes, the meshes are almost isotropic. Indeed, as the vortex
iso-values are circular the ideal mesh is isotropic. In fact, the anisotropic
gains are along the x-axis as illustrated in Figure 7.23. We also observe that
the wing shock is merely refined in the adjoint-based mesh contrary to the
Hessian-based mesh. In the observation plane 400 m behind the aircraft, the
adjoint-mesh is strongly anisotropic whereas Hessian-based mesh has already
lost the vortex and is poorly anisotropic, see Figure 7.23 (bottom).

FIGURE 7.20: Left: surface mesh of the Falcon business jet geometry, right:
pressure variation through a section across the wing (light gray curve) and
across the wake 400 m behind the aircraft (dark gray curve). For the light
gray curve, the jump represents the shock on the wing extrados. For the dark
gray curve, the small Gaussian curve represents the vortex amplitude.
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Numerical algorithms for unstructured meshes 199

FIGURE 7.21: Pressure iso-surfaces along a 400 m path behind the Falcon
obtained with the adjoint-based mesh adaptation.

7.6.6.3 Conclusions

As a conclusion, it is clear that in this context, the Hessian-based adaptation
gives a non-optimal result with an inappropriate distribution of the degrees
of freedom for the evaluation of the functional. It also demonstrates how
the adjoint defines an optimal distribution of the degrees of freedom for the
specific target. However, it is important to note that the mesh obtained with
the Hessian-based strategy is optimal to evaluate globally the local Mach
number.

It is worth mentioning that this method is completely automatic and gives
an optimal result. It seems quite difficult to find a manual adaptation strategy
to obtain an accurate evaluation of the functional while reducing the number
of degrees of freedom. For instance, one may consider an approach that would
consist in ignoring the upper part of the flow, however such a mesh would
not be optimal as there exists at each distance a specific angle for refinement
depending on the width of the observation plane γ. Moreover, considering the
amplitude on the physical phenomenon to deduce a size prescription is not
optimal as it gives weights that are not optimal to each physical phenomena
involved in the flow.

A similar conclusion as previous example also applied here: the utilization of
anisotropic meshes prevents the numerical diffusion of the physical phenomena
while an appropriate weighting of the physical variables captures the small
scale phenomena.

We have proposed a new method providing the anisotropic adapted mesh
optimizing the first error term in the approximation of a functional depending
of the solution of a flow problem. This method is based on a new formal
a priori estimation of the functional approximation error and its resolution
in an abstract continuous framework. It has been applied successfully to
the compressible Euler equations. This new method exploits two advanced
technologies and their good synergy:

• up-to-date anisotropic mesh generators that contribute to build optimal
anisotropic adapted meshes
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200 Computational Fluid Dynamics

FIGURE 7.22: Comparison between the solutions (vorticity) obtained with
the goal-oriented (left) and the Hessian-based (right) strategies in several
planes behind the Falcon and orthogonal to the aircraft path. From top to
bottom: planes 100 m, 200 m and 400 m behind the jet.
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Numerical algorithms for unstructured meshes 201

FIGURE 7.23: Comparison between the adapted meshes obtained with the
goal-oriented (left) and the Hessian-based (right) strategies. Cuts through the
volume along the planes z = 0 (top), y = 0 (middle) and x = 400 (bottom).
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202 Computational Fluid Dynamics

• the flow solver which is basically a P 1 Galerkin one relying on a con-
tinuous piecewise linear representation of the solution. It satisfies P 1-
exactness property allowing a P 1-interpolation based error estimate to
be used. Moreover, it is stabilized with a modern shock capturing
method enabling the accurate computation of thin numerical shocks
in strongly anisotropic adapted meshes.

The method has the following features:

• it produces an optimal anisotropic metric uniquely specified as the opti-
mum of a functional and explicitly given by variational calculus from the
continuous state and the adjoint state. The coupled system of the met-
ric and of the two states is the object of the discretization. This should
be put in contrast with the usual process of starting from a (discrete)
mesh and then improving it

• to apply it, there is no need to choose in a more or less arbitrary way
any local refinement “criterion” and no need to fix any parameter except
the total number of vertices which represents the error threshold

• mesh convergence is performed in a natural way by increasing the to-
tal number of prescribed vertices at each stage of the mesh adaptation
process

The new method has been applied to a sample of challenging 3D problems.
Numerical experiments show that the new method enjoys at best level the
advantages of Hessian-based anisotropic methods and of goal-oriented
methods. As compared to the Hessian-based method, the anisotropic
stretching of the meshes is not lost but even more strengthened and better
distributed along shocks. As compared with goal-oriented methods, the new
method behaves like a goal-oriented method, but also naturally takes the
anisotropy related to functional into account.

Some issues have not been addressed in this work such as the asymptotic
convergence order of the error on the functional. The authors are addressing
some of them, together with the issues of extending the above method to
viscous and unsteady flows.

7.7 Concluding remarks

In this chapter, we have presented several important questions that rise
when a numerical model for inviscid compressible flows needs to be extended
to a large set of applications. Each of the proposed methods relies on a
mathematical analysis.
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Numerical algorithms for unstructured meshes 203

The question of numerical dissipation is the central point in the use of
these collocated (in contrast to staggered) approximation. This dissipation
takes different forms which depend on the problem to deal with: low Mach
number flows, highly stretched meshes, applications requiring very low levels
of dissipation. For the latter case, applications to Large Eddy Simulation (see
the companion chapter in this book dealing with Large Eddy Simulation) and
aeroacoustic simulations (see for example [Abalakin et al., 2004]) have been
performed with good results.

Density positivity is the key strategy for robustness of this kind of numer-
ical models. The study proposed in this chapter gives a complete theory for
positivity relying on TVD-type limiters.

Then these approximation schemes are used for developing new anisotropic
mesh optimization methods. The central role of P 1 approximation allows
to apply two efficient strategies. The continuous mesh method combined
with Lp interpolation error minimization offers high quality predictions, with
higher order convergence properties for non-regular flows. The continuous
mesh method adapts also to goal-oriented adaptation, offering an optimal
anisotropy.

All the above methods extend or are being extended to Navier-Stokes mod-
els. In particular Navier-Stokes numerical models based on the numerics pre-
sented in this chapter are addressed in the companion chapter on Large Eddy
Simulation.
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8.1 Introduction

The numerical simulation of turbulent flows (for an introduction, see e.g.
[Pope, 2000], [Tennekes and Lumley, 1972], [Mathieu and Scott, 2000], [David-
son, 2004]) is one of the great challenges in Computational Fluid Dynamics
(CFD). It is commonly accepted that the physics of the flow of a continuous
fluid is well represented by the Navier-Stokes equations. The direct numeri-
cal simulation (DNS) (for a review, see [Moin and Mahesh, 1998]) discretizes
directly the three-dimensional Navier-Stokes equations. The basic require-
ment for such a simulation to succeed is the use of numerical schemes of
high-order accuracy and meshes fine enough to capture the smallest scales of
motion, to the order of the Kolmogorov scales. However, when the ratio of
inertial forces to viscous ones, quantified by the Reynolds number, increases
the smallest scales become smaller, and the amount of information (handled
and processed) necessary for a Navier-Stokes based prediction becomes enor-
mous. For homogeneous isotropic turbulence, for instance, the number of
grid points needed is typically proportional to the 9/4 power of the Reynolds
number. Then DNS applies well to rather academic problems characterized
by simple geometry and low Reynolds numbers, and is a wonderful tool for
the understanding of turbulence and validation of models. Nonetheless, the
prediction of most engineering flows cannot be done by DNS with today’s
computers, and probably not before computing power have been increased
during a couple of decades.

So far, the amount of information carried by DNS in a single computation
is not only large but also not necessary in practice. Only statistics derived
from it are used. In order to deal with the complex flows associated with
higher Reynolds numbers and complex geometries, as those encountered in
practical engineering applications, turbulence modeling was introduced. The
principle is to try to drastically reduce the simulation unknowns by solving a
mathematical model different from Navier-Stokes. The Reynolds-Averaged
Navier-Stokes equations (RANS) approach, in which only the time or
ensemble averaged flow is solved, is widely used for the simulation of
complex turbulent flows in engineering applications. Many extensive reviews
on these models are provided in the literature (see e.g. [Launder and
Spalding, 1972], [Rodi, 1982], [Jones and Launder, 1972], [Hanjalic and
Launder, 1976], [Newman and Launder, 1981], [Ahmadi, 1984], [Pope,
2000], [Wilcox, 2006], [Peyret and Krause, 2000]). Due to nonlinearities, the
pure mathematical averaging of the Navier-Stokes system introduces new
terms. The closure of the new system needs to be obtained from
phenomenological information provided by the study of simplified flows.
Ensemble averaging and the need of extra information for closure are indeed
two limitations of RANS:
- When the mean flow is steady, ensemble averaging reduces to time
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LES, variational multiscale LES, and hybrid models 207

averaging. Then an important part of the unsteady dynamics is not
described by the RANS. The idea of phase averaging as in [Martinat et al.,
2008] can improve this issue.
- Many closure models have been proposed in the literature. Each of them is
known to give satisfactory results only for a particular class of problems and
it is almost impossible to devise a model of general validity. However, the
RANS models made it possible to predict high Reynolds number flows.

In the large eddy simulation (LES) approach, the reduction of the sim-
ulation unknowns is obtained through the application of a spatial filter to
the Navier-Stokes equation. In most cases, the filter size is strictly related
to the typical size of the computational grid (grid scale). Only the set of
scales larger than the grid-scale, which we also call globally “grid-scale”, are
computed explicitly, while the small scales (subgrid-scale, SGS) are modeled.
This concept lies on two presumptions:
- most global flow features are essentially governed by the largest scales,
- small-scale turbulence tends to local isotropy, and thus their modeling in a
universal way can be found.

For solving complex unsteady flows as the flow around bluff-bodies, the
LES approach gives generally more accurate predictions than the
computationally cheaper RANS models, LES can also deliver an increased
level of details. While RANS methods provide averaged results, LES is able
to predict some instantaneous flow characteristics and to resolve important
turbulent flow structures. Recent books and reviews on this technique can
be found in [Sagaut, 2001], [Lesieur et al., 2005], [Mason, 1994], [Fureby,
2008], [Geurts, 2006].

In this chapter, we present a synthesis of our research activities carried
out towards the accurate prediction of complex turbulent flows through the
use of (i) LES, (ii) a variant of LES, i.e. the Variational Multiscale LES
(VMS-LES) method, and (iii) a hybrid RANS/LES technique. We will
consider the simulation of flows around bluff-body i.e. massively separated
flows which contain very important physical features that are encountered in
many engineering flows, including flow around offshore platforms, landing
aircraft, cars, buildings, etc. In the perspective of the complex geometries of
real life applications, we have used a mixed finite volume/finite element
numerical method applicable to unstructured grids.

The success of a large eddy simulation depends on the combination and
interaction of different factors, viz. the numerical discretization, which also
provides filtering when no explicit one is applied, the grid refinement and qual-
ity and the closure model. On the other hand, all these aspects can be seen as
possible sources of error in LES, especially in the simulation of complex flows.
Usually, LES SGS modeling is based on the assumption of an universal be-
havior of the subgrid scales. Due to this assumption, most energy-containing

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
37

 0
4 

M
ar

ch
 2

01
6 
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eddies should not be filtered. Then large Reynolds numbers cannot be ad-
dressed with reasonable coarse meshes, except, in particular regions of large
detached eddies. Even in the case of low Reynolds number or detached ed-
dies, a particular attention must be paid to energetic eddies. Note however
that for practical reasons LES simulations oriented to industrial or engineer-
ing applications are often characterized by coarse and very irregular grids.
Classical eddy-viscosity SGS models, such as, for instance the Smagorinsky
model [Smagorinsky, 1963], are purely dissipative, and thus they are unable
to model backscatter of energy from small scales to large ones. They often
apply, instead, a too large damping to the resolved energetic eddies. Indeed,
although damping of the smallest resolved scale is needed in order to have a
stable and accurate computation, this kind of models apply damping to the
whole range of resolved scales and this may lead to a too large dissipation of
energetic eddies. This situation is particularly critical in the case of irregular
meshes, in which large elements may be close to very small ones. A cure for
this can be the application of sophisticated adaptive SGS models as e.g. the
dynamic eddy-viscosity model [Germano et al., 1991] or the dynamic mixed
models [Meneveau and Katz, 2000]. Unfortunately, on unstructured grids, the
increase in complexity and in computational costs introduced by the dynamic
procedure is rather large.

Following the previous remarks, we have investigated the application of an
alternative approach to large eddy simulation. In the particular case of spec-
tral methods, the principle of Spectral Vanishing Viscosity consists in using
the phase space for restricting the action of dissipation [Pasquetti, 2005], [Pas-
quetti, 2006b], [Pasquetti, 2006a]. In a more general standpoint, the Varia-
tional Multiscale (VMS) concept was proposed by Hughes et al. [Hughes et al.,
2000]. Collis [Collis, 2001] proposed a new interpretation. The main idea of
VMS-LES is to decompose the resolved scales in an LES into the largest and
smallest ones and to add the SGS model only to the smallest ones. The VMS
approach was originally introduced by Hughes [Hughes et al., 2000], [Hughes
et al., 2001b] for the LES of incompressible flows and implemented in a Fourier
spectral framework. In this original approach, the separation between largest
and smallest scales was obtained through variational projection of the Navier-
Stokes equations and no filtering is introduced, although a filter analog of the
VMS approach may be also devised [Vreman, 2003]. Since the initial work
of Hughes, several VMS-LES methods have been proposed, mainly in a spec-
tral or finite element framework [Ramakrishnan and Collis, 2004], [Collis,
2002], [Gravemeier et al., 2004], [Gravemeier et al., 2005], [Gravemeier et al.,
2006], [John and Kaya, 2005], [Munts et al., 2007]. These works have shown
that the VMS-LES approach together with simple subgrid scale model, as the
Smagorinsky one, can give results as accurate as traditional LES combined
with dynamic formulation, but the former is less computationally expensive
and does not require any ad hoc treatment (smoothing and clipping of the
dynamic constant, as usually required with dynamic LES models) in order
to avoid stability problems. In this chapter, we describe the VMS-LES im-
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LES, variational multiscale LES, and hybrid models 209

plementation presented in [Koobus and Farhat, 2004] for the simulation of
compressible turbulent flows on unstructured grids within a mixed finite vol-
ume/finite element framework.

Another major difficulty for the success of LES for the simulation of complex
flows is the fact that the cost of LES increases as the flow Reynolds number
increases. Indeed, the grid has to be fine enough to resolve a significant part
of the turbulent scales, and this becomes particularly critical in the near-wall
region.

Initiated by a few pioneering papers like [Speziale, 1998], a new class of
models has recently been proposed in the literature which combines RANS
and LES approaches. The purpose is to obtain simulations as accurate as in
the LES case in some part of the flow but at reasonable computational costs
(for recent reviews, see [Frohlich and von Terzi, 2008], [Labourasse and Sagaut,
2004], [Vengadesan and Nithiarasu, 2007]). These so-called hybrid methods
can be divided in zonal approaches, in which RANS and LES are used in
a-priori defined regions, and the so called universal models, which should be
able to automatically switch from RANS to LES throughout the computa-
tional domain. In the perspective of the simulation of massively separated
unsteady flows in complex geometry, as occur in many cases of engineering
or industrial interest, we are primarily interested in universal hybrid models.
Among the universal hybrid models described in the literature, the Detached
Eddy Simulation (DES) has received the largest attention.

The DES approach [Spalart et al., 1997] is generally based on the Spalart-
Allmaras RANS model modified in such a way that far from solid walls and
with refined grids, the simulation switches to the LES mode with a one-
equation SGS closure. Another hybrid approach has been recently proposed,
the Limited Numerical Scales (LNS) [Batten et al., 2004], in which the blend-
ing parameter depends on the values of the eddy-viscosity given closure. In
practice, the minimum of the two eddy-viscosities is used. This should ensure
that, where the grid is fine enough to resolve a significant part of the turbu-
lence scales, the model works in the LES mode, while elsewhere the RANS
closure is recovered. An example of validation of LNS for the simulation of
bluff-body flows is given in [Camarri et al., 2005].

A major difficulty in combining a RANS model with a LES one is due to the
fact that RANS does not naturally allow for fluctuations, due to its tendency
to damp them and to “perpetuate itself”, as explained in [Spalart et al., 1997].
On the other hand, LES needs a significant level of fluctuations in order to
accurately model the flow. The abrupt passage from a RANS region to a
LES one may produce the so-called “modeled stress depletion” [Spalart et al.,
1997]. Another limitation of DES-type approaches is that the two components
need be of similar construction. We shall describe here a more general strategy
for blending RANS and LES approaches in a hybrid model [Salvetti et al.,
2007], [Pagano et al., 2006]. To this purpose, as in [Labourasse and Sagaut,
2002], the flow variables are decomposed in a RANS part (i.e. the averaged
flow field), a correction part that takes into account the turbulent large-scale
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210 Computational Fluid Dynamics

fluctuations, and a third part made of the unresolved or SGS fluctuations.
The basic idea is to solve the RANS equations in the whole computational
domain and to correct the obtained averaged flow field by adding, where the
grid is adequately refined, the remaining resolved fluctuations. We search
here for a hybridization strategy in which the RANS and LES models are
blended in the computational domain following a given criterion. To this
aim, a blending function is introduced, θ, which smoothly varies between
0 and 1. The correction term which is added to the averaged flow field is
thus damped by a factor (1− θ), obtaining a model which coincides with the
RANS approach when θ = 1 and recovers the LES approach in the limit of
θ → 0. In particular, two different definitions of the blending function θ will
be presented in this chapter. They are based on the ratios between (i) two
eddy-viscosities and (ii) two characteristic length scales. The RANS model
used in the proposed hybrid approach is a low-Reynolds version [Goldberg
et al., 1998] of the standard k − ε model [Launder and Spalding, 1979], while
for the LES part the VMS approach is adopted [Hughes et al., 2000].

Finally, the last key ingredient of an LES (or VMS-LES or hybrid
RANS-LES simulation) is the numerical discretization. As previously
mentioned, we use a mixed finite-volume/finite-element discretization on
unstructured grids, second-order accurate in space. The most critical point
with this type of co-located schemes on unstructured grids is the need of
numerical viscosity in order to obtain stable solutions. Due to the local
topological irregularity, dissipative methods built on unstructured meshes
generally produce more dissipation than those for structured ones. Further,
for both cases, structured or unstructured meshes, the dissipation needed for
stabilization increases with mesh irregularity, and in particular with mesh
size variation. The introduction of a numerical dissipation and its possible
interaction with the dissipation provided by the closure model is an
important controversial point. Indeed, the most frequent practice in LES
relies on the addition to the usual Navier-Stokes equations of a sub-grid
scale (SGS) term, generally an eddy-viscosity term, and assumes that this
same term is rather optimal for both turbulence modeling and numerical
scheme stabilization. If dissipative numerical schemes are combined with a
classical LES model, they can interact unfavorably with it, and significantly
deteriorate the results as pointed out, for instance, by Garnier and
co-workers [Garnier et al., 1999]. Conversely, in a different approach, a
purely numerical stabilization term may fulfill the role of SGS. A typical
example is the MILES method [Grinstein and Fureby, 2006] in which both
subgrid modeling and numerical stabilization rely on monotonic dissipation
by a second-order derivative (e.g. Flux-Corrected Transport (FCT) or
Total-Variation Diminishing (TVD) schemes). However this family of
model-free monotone methods seems to need a more refined grid than the
classical approach for a given prediction quality. Our proposition was to
dedicate the subgrid modeling to a physics-based model and to use for
numerics a second-order accurate MUSCL upwind scheme equipped with a
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LES, variational multiscale LES, and hybrid models 211

tunable dissipation made of sixth-order [Camarri et al., 2004] spatial
derivatives of all flow variables. Fourier analysis clearly shows that such a
dissipation has a damping effect which is much more localized on high
frequencies than the one of stabilizations based on second-order derivatives.
In this way we can reduce the interaction between numerical dissipation,
which damps in priority the highest frequencies, and the SGS modeling.
Moreover, a key coefficient (γs) permits to tune numerical dissipation to the
smallest amount required to stabilize the simulation.

This chapter is organized as follows: in section 2, the numerical model,
which is a key component for the success of a turbulent flow simulation, spe-
cially when LES type models are involved, is summarized. In section 3, the
LES approach is presented and applied to the prediction of flows around a
square cylinder at Reynolds number 22000 and around a forward-swept wing
at high angle of attack. Effects of numerical viscosity, SGS modeling, and grid
refinement are investigated. Section 4 reports on the description of the VMS-
LES model and on its application for the prediction of a flow around a circular
cylinder at Reynolds number 3900 and of vortex-induced motion of a com-
plex spar geometry maintained by elastic moorings. Effects of SGS models,
numerical viscosity, and grid resolution are discussed, and results obtained by
the VMS approach are contrasted with those predicted by various LES mod-
els. In section 5, the previously described hybrid model is presented and its
application to the flow around a circular cylinder at Reynolds number 140000
is shown. Effects of the blending function, SGS models and grid resolution
are investigated. Finally, concluding remarks are presented in section 6.

8.2 Numerical model

8.2.1 Navier-Stokes equations

Let us consider the compressible Navier-Stokes equations given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+∇ · (ρu) = 0

∂ρu
∂t

+∇ · (ρu⊗ u + P Id) = ∇ · τ

∂E

∂t
+∇ · [(E + P )u] = ∇ · (τu) +∇ · (λ∇T )

(8.1)
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212 Computational Fluid Dynamics

where ρ is the density, u the velocity, P the pressure, τ the viscous stress
tensor,

τij = 2μS∗
ij ; S∗

ij ≡
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
− 1

3
∂uk

∂xk
δij ,

E the total energy, λ the thermal conductivity, and T the temperature of the
fluid. This system is written in short:

Wt +∇ · F(W ) = R(W ), (8.2)

with W = (ρ, ρu1, ρu2, ρu3, E).

The spatial discretization is based on a mixed finite-volume/finite-element
method applied to unstructured tetrahedrizations. The adopted scheme is
upwind of MUSCL type as mentioned previously, and vertex centered, i.e. all
degrees of freedom are located at the vertices. P1 Galerkin finite elements
are used to discretize the diffusive terms R(W ). In this section, we will
briefly describe the numerical framework for the convective terms ∇.F(W )
and time scheme. More details on this numerical approach can be found in
the companion chapter entitled Numerical algorithms for unstructured meshes.

8.2.2 Discretization of hyperbolic fluxes

A dual finite-volume grid is obtained by building a cell Ci around each ver-
tex i. Different ways of constructing the finite-volume cells can be considered.
The classical one consists in building cells by the rule of medians (median
cells): the boundaries between cells are made of triangular interface facets.
Each of these facets has a mid-edge, a facet centroid, and a tetrahedron cen-
troid as vertices. The convective fluxes are discretized on this tessellation by
a finite-volume approach, i.e. in terms of the fluxes through the common
boundaries between each couple of neighboring cells:

∑
j∈V (i)

∫

∂Cij

F (W,�n) dσ , (8.3)

where V (i) is the set of neighboring nodes to vertex i, ∂Cij is the boundary
between cells Ci and Cj , �n is the outer normal to the cell Ci and F (W,�n)
the Euler flux in the direction of �n. In all the schemes considered herein,
the unknowns are discontinuous along the cell boundaries and this allows an
approximate Riemann solver to be introduced. The Roe scheme [Roe, 1981]
(with Turkel preconditioning) represents the basic upwind component for the
numerical evaluation of the convective fluxes F :Z

∂Cij

F (W,�n) dσ � ΦR (Wi, Wj , �n) =
F (Wi, �n) + F (Wj , �n)

2
−γsd

R (Wi, Wj , �n)

(8.4)

dR (Wi, Wj , �n) = P−1|PR (Wi, Wj , �n) | Wj −Wi

2
(8.5)
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LES, variational multiscale LES, and hybrid models 213

in which Wi is the unknown vector at the i-th node and R is the Roe Matrix.
The matrix P (Wi, Wj) is the Turkel-type preconditioning term, introduced
to avoid accuracy problems at low Mach numbers [Turkel, 1993]. Finally, the
parameter γs multiplies the upwind part of the scheme and permits a direct
control of the numerical viscosity, leading to a full upwind scheme (the usual
Roe scheme) for γs = 1 and to a centered scheme when γs = 0.

The spatial accuracy of this scheme is only first order. The MUSCL lin-
ear reconstruction method (“Monotone Upwind Schemes for Conservation
Laws”), introduced by Van Leer [Van Leer, 1977b], is employed to increase
the order of accuracy of the Roe scheme. The basic idea is to express the Roe
flux as a function of a reconstructed value of W at the boundary between the
two cells centered respectively at nodes i and j: ΦR (Wij , Wji, �nij). Wij and
Wji are extrapolated from the values of W at the nodes, as follows:

Wij = Wi +
1
2

(
�∇W

)
ij
· �ij (8.6)

Wji = Wj −
1
2

(
�∇W

)
ji
· �ij (8.7)

Schemes with different properties can be obtained by different numerical eval-
uation of the slopes

(
�∇W

)
ij
· �ij and

(
�∇W

)
ji
· �ij. All the considered recon-

structions can be written in the following general form:

(�∇W )ij · �ij = (1− β)(�∇W )C
ij · �ij + β(�∇W )U

ij · �ij
+ξc

[
(�∇W )U

ij · �ij − 2(�∇W )C
ij · �ij + (�∇W )D

ij · �ij
]

+ξd

[
(�∇W )M · �ij − 2(�∇W )i · �ij + (�∇W )j · �ij

] (8.8)

With reference to Figure 8.1, (�∇W )U
ij is the gradient on the upwind tetrahe-

dron Tij , (�∇W )D
ij is the gradient on the downwind tetrahedron Tji, (�∇W )i is

the nodal gradient computed over the finite-volume cell around node i, (�∇W )j

is the nodal gradient computed over the finite-volume cell around node j,
(�∇W )C

ij is the centered gradient ((�∇W )C
ij · �ij = Wj − Wi) and (�∇W )M is

the gradient at the point M . This last gradient is computed by interpolation
of the nodal gradient values at the nodes contained in the face opposite to i
in the upwind tetrahedron Tij . The reconstruction of Wji is analogous. In
choosing a particular set of free coefficients (β, ξc, ξd) in equation (8.8) atten-
tion has been dedicated to the dissipative properties of the resulting scheme
which is a key point for its successful use in LES simulations. Two schemes
can be applied: the first one is characterized by β = 1/3, ξc = ξd = 0. It
has a dissipative leading error proportional to the fourth-order derivatives of
unknowns. We therefore denote it the V4 scheme. It has been studied in
details in [Camarri et al., 2002a] The latter one is obtained by putting β = 1

3 ,
ξc = − 1

30 and ξd = − 2
15 . It has a dissipative leading error proportional to the
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Si

Sj M’

M

Tji

Tij

FIGURE 8.1: Sketch of points and elements involved in the computation of
gradients.

fourth-order derivatives of unknowns. We therefore denote it the V6 scheme.
It has been introduced in [Camarri et al., 2004].

The numerical dissipation in the schemes V4 and V6 is made of fourth- and
sixth-order space derivatives, respectively, and, thus, it is concentrated on a
narrow-band of the highest resolved frequencies. This is important in LES
type simulations in order to limit as far as possible the interactions between
numerical and SGS dissipation, which could deteriorate the accuracy of the
results.

8.2.3 Time advancing

Simulations can be advanced in time both with explicit or implicit schemes.
In the first case, low-storage Runge-Kutta schemes are used. As for the
implicit time advancing, a second-order time-accurate backward difference
scheme is adopted. For a constant time step it writes:

3Wn+1 − 4Wn + Wn−1

2Δt
+ ψn+1 = 0 (8.9)

in which ψn+1 denotes the discretized convective fluxes, diffusive and SGS
terms evaluated at time step n + 1.

To avoid the solution of a non-linear system at each time step, the
scheme (8.9) can be linearized by using the Jacobian of ψn+1 with respect
to the unknown variables. However, the evaluation of the Jacobian of ψn+1

for the second-order accurate spatial discretization previously described and
the solution of the resulting linear system implies significant computational
costs and memory requirements. Thus, a defect-correction technique [Martin
and Guillard, 1996] is used here, which consists in iteratively solving simpler
problems obtained through an approximate linearization of (8.9). Thus, the
following approximation is introduced:

ψn+1 � ψn + Jn
1 (Wn+1 −Wn)
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in which Jn
1 is the exact Jacobian of the spatial discretization terms when

the convective fluxes are evaluated at first order. Then, the defect-correction
iterations write as:

8>>>>>>>>><
>>>>>>>>>:

W0 = Wn

`
3

2Δt
V ol + Js

1

´
(Ws+1 −Ws) = −3Ws − 4Wn +Wn−1

2Δt
− ψs

for s = 0, · · · ,M − 1

Wn+1 = WM

where V ol is the diagonal matrix containing the cell volumes and M is typi-
cally equal to 2. Indeed, it can be shown [Martin and Guillard, 1996] that only
2 defect-correction iterations are needed to reach a second-order accuracy. In-
formation concerning the parallel implementation of the global algorithm can
be found in [Koobus et al., 2007].

8.3 Large eddy simulation (LES)

8.3.1 Smagorinsky and dynamic models

The LES approach consists in filtering in space the Navier-Stokes equations
in order to get rid of the high frequency fluctuations, and in simulating di-
rectly only the filtered flow. Due to the non-linearity of the problem, the
filtered equations contain some unknown terms which represent the effect of
the eliminated fluctuations on the filtered flow.

The filtered Navier-Stokes equations for compressible flows and in conser-
vative form are considered in this subsection. In our simulations, filtering is
implicit, i.e. the numerical discretization of the equations is considered as a
filter operator (grid filter). In the first series of LES simulations shown in
this section, two SGS models are used: the Smagorinsky model for compress-
ible flows [Lesieur and Comte, 1997] and its dynamic version [Germano et al.,
1991].

8.3.1.1 Smagorinsky model

The extension of the Smagorinsky model [Smagorinsky, 1963] to compress-
ible flows [Lesieur and Comte, 1997] adopted here is intended to be used to
study flows at high Reynolds numbers and such that low compressibility ef-
fects are present in the SGS fluctuations. In addition, we assume that heat
transfer and temperature gradients are moderate. Thus, the retained SGS
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term in the momentum equation is the classical SGS stress tensor:

Mij = ρuiuj − ρũiũj , (8.10)

where the over-line denotes the grid filter and the tilde the density-weighted
Favre filter (f̃ =

(
ρf
)
/ (ρ)). The isotropic part of Mij can be neglected

under the assumption of low compressibility effects in the SGS fluctuations
[Erlebacher et al., 1992]. The deviatoric part, Tij , is expressed by an eddy-
viscosity term:

Tij = −2μsgs

(
S̃ij −

1
3
S̃kk

)
, (8.11)

μsgs = ρ (CsΔ)2
∣∣∣S̃
∣∣∣ , (8.12)

S̃ij being the resolved strain tensor, μsgs the SGS viscosity, Δ the filter width,

Cs a constant that must be a priori assigned and
∣∣∣S̃
∣∣∣ =
√

2S̃ijS̃ij . To complete
the definition of the SGS viscosity, the grid filter width must be specified. Note
that no reliable criterion exist to define the width of the filter corresponding to
the numerical discretization on unstructured grids. Nevertheless, the following
expression has been employed here for each grid element l:

Δ(l) = max
i=1,..,6

(
Δ(l)

i

)
(8.13)

in which Δ(l)
i is the length of the i-th side of the l−th element.

In the total energy equation, the effect of the SGS fluctuations has been
modeled by the introduction of a constant SGS Prandtl number to be a priori
assigned:

Prsgs = Cp
μsgs

Ksgs
(8.14)

where Ksgs is the SGS conductivity coefficient; it takes into account the dif-
fusion of total energy caused by the SGS fluctuations and is added to the
molecular conductivity coefficient.

8.3.1.2 Dynamic model

The dynamic version of the Smagorinsky model is now described. We follow
the dynamic procedure proposed in [Germano et al., 1991] and extended to
compressible flows in [Moin et al., 1991]. Another adaptation of the Germano
dynamic model can be found in [Le Ribault et al., 2006]. Our adaptation of
the dynamic procedure is now briefly described. A test filter (denoted by a
hat) of larger width than the grid one is applied to the governing equations.
Thus, a sub-test stress tensor appears in the momentum equation, which is
modeled as the SGS stress tensor:

Mij = ρ̂uiuj −
(

ρ̂uiρ̂ui

ρ̂

)
= − CΔ̂2̂̃ρ|̂̃S| ̂̃P ij (8.15)
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LES, variational multiscale LES, and hybrid models 217

where Δ̂ is the test filter width.
The test filter used here consists in evaluating the value of a flow variable

on a given node by averaging on all the elements having this node as a vertex
with a linear weighting function, that is the relative base function used in the
P1 finite-element method.

It can be shown [Germano et al., 1991] that the SGS and the sub-test stress
tensors are related by the following identity:

Lij = ρ̂ũiũj −
1
ρ̂
(ρ̂ũiρ̂ũj) = Mij −

̂
M

(1)
ij (8.16)

Then, by injecting equations (8.11) and (8.15) in the identity (8.16), the
following tensorial equation is obtained:

Lij = (CΔ2) Bij (8.17)

in which Lij = Lij −
1
3
Lhhδij and Bij = ̂ρ|S̃|P̃ij −

(
Δ̂
Δ

)
2ˆ̃ρ|̂̃S| ̂̃P ij . The only

unknown in equation (8.17) is CΔ2 and it can be determined by a least-square
method. This gives:

(CΔ2) =
BijLij

BijBij
(8.18)

Note that we chose to compute CΔ2 instead of C to avoid the indetermination
in the definition of the filter width.

The parameter Prt is computed by an analogous procedure, which is omit-
ted here for sake of brevity. This results in:

Prt =
QjZj

QjQj
(8.19)

where

Qi =
h“ bρe+ bp” dρui

bρ

i
− ̂[(ρe+ p) ũi] and Zi = Cp

2
4
 bΔ

Δ

!
2bρ|beS| ∂

beT
∂xj

−
̂

 
ρ|eS| ∂ eT

∂xj

!3
5.

The dynamic procedure proposed in the present section is usually unstable
due to the oscillating behavior of CΔ2 with negative peaks and a large auto-
correlation time. In order to avoid this problem, a local smoothing is applied
by averaging over neighboring grid cells. A clipping procedure is also applied,
setting CΔ2 to zero when the sum of the SGS and the molecular viscosity is
negative.

8.3.2 Comparison of Smagorinsky and dynamic LES models

This application part has two main objectives: first to show the relative
performance of the classical Smagorinsky model and of its dynamic version
for the simulation of bluff-body flows on unstructured grids, and second to
show the improvement brought by the upwind scheme providing a numerical
dissipation based on sixth-order space derivatives, described in section 8.2.
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8.3.2.1 Flow around a square cylinder (LES)

The flow around a square cylinder at Re = 2.2 × 104 has been simulated.
This flow was investigated experimentally [Bearman and Obasaju,
1982], [Luo et al., 1994], [Lyn et al., 1995], [Lyn and Rodi, 1994], [Norberg,
1993]. LES results are also available in the literature [Fureby et al.,
2000], [Rodi et al., 1997], [Sohankar et al., 2000]. The simulations presented
here are performed at a Mach number M = 0.1, in order to have negligible
compressibility effects (experiments were performed for incompressible flow).
The computational domain is sketched in Figure 8.2. Boundary conditions

Inflow 
Steger−Warming
conditions

Reichardt

law
wall

Solid wall:

Slip conditions

Steger−Warming
Outflow 

conditions

Periodic

conditions
boundary

D
X

Y

X

Z

Li = 4.5*D Lo = 9.5*D

H = 7*D

Hz = 4*D

FIGURE 8.2: Flow past a square cylinder at Rey=22× 103. Computational
domain.

based on Steger-Warming decomposition [Steger and Warming, 1981a] are
used at the inflow and at the outflow surfaces. On the side surfaces, free-slip
is imposed and the flow is assumed to be periodic in the spanwise direction.
No-slip boundary conditions at solid walls may lead in LES to inaccurate
results, if very fine meshes are not employed. The use of such fine meshes is
not in accordance with the standpoint adopted here, i.e. to reduce as much
as possible the complexity of the simulation. We use instead the Reichardt
wall-law described in the sequel. For details see [Camarri and Salvetti, 1999]
and [Camarri et al., 2002a].

A first set of results has been obtained on a relatively coarse grid (GR1)
with about 105 nodes and 6× 105 elements (see also [Camarri et al., 2002a]);
a more refined grid (GR2), having approximately 2× 105 nodes and 1.1× 106

elements has also been used. The average distance of the first layer of nodes
from the cylinder surface is around 6 × 10−2D for GR1 and 4.5 × 10−2D
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LES, variational multiscale LES, and hybrid models 219

for GR2. For both grids, approximately 32 nodes are used in the spanwise
direction within the wake region, which corresponds to a spanwise resolution
Δz � 0.125D.

Simulations were performed on GR1 and GR2 using both the previously
described SGS models, different values of the upwinding parameter, γs, and
the schemes V4 and V6 for the discretization of convective fluxes. The simu-
lation parameters are summarized in Table 8.1. In all cases, time advancing
is carried out by a 4-stage explicit Runge-Kutta algorithm at CFL=1.

Simulation grid SGS model γs Convective fluxes
CSV4G05GR1 GR1 Smag. (Cs = 0.1) 0.05 V4
CSV6G05GR1 GR1 Smag. (Cs = 0.1) 0.05 V6
CSV6G05GR2 GR2 Smag. (Cs = 0.1) 0.05 V6
CDV4G05GR1 GR1 Dynamic 0.05 V4
CDV6G05GR1 GR1 Dynamic 0.05 V6
CDV4G10GR1 GR1 Dynamic 0.1 V4
CDV6G10GR1 GR1 Dynamic 0.1 V6
CDV6G05GR2 GR2 Dynamic 0.05 V6

Table 8.1: Flow past a square cylinder at Rey=22 × 103. Summary of the
simulations for the square cylinder test-case.

Results from simulations using the schemes V4 and V6 are evaluated in
terms of accuracy of predictions in comparison with the experiments, sensi-
tivity to numerical viscosity (γs) and effects of SGS modeling.

The main bulk coefficients obtained in the simulations are presented in
Table 8.2, together with results from other LES simulations and experimental
data.

Comparison with the experiments For a comparison in terms of ac-
curacy between V4 and V6, it is possible to consider simulations that dif-
fer only for the scheme used for the convective fluxes. This is the case for
(CSV4G05GR1, CSV6G05GR1), when the Smagorinsky model is used, and
for (CDV4G05GR1, CDV6G05GR1) and (CDV4G10GR1, CDV6G10GR1),
when the dynamic SGS model is used. Table 8.2 shows that the V6 scheme
systematically gives more accurate results than V4 for all the bulk coefficients
with the exception of C′

d, whose value does not show significant variations in
the different simulations considered. Moreover, the advantage of V6 over V4
increases as the upwinding parameter (γs) of the scheme is increased. This
tendency is also confirmed by the comparison of time averaged flow fields (not
shown here for sake of brevity).

It is also interesting to compare the accuracy obtained by V4 and V6 in
the description of local flow fluctuations in time. This has been done by con-
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LES C′
l Cd C′

d lr
CSV4G05GR1 0.79 1.84 0.10 1.45
CSV6G05GR1 0.84 1.89 0.09 1.41
CSV6G05GR2 1.10 2.2 0.18 1.15
CDV4G05GR1 0.91 2.03 0.12 1.24
CDV6G05GR1 0.94 2.06 0.10 1.33
CDV4G10GR1 0.84 1.94 0.09 1.53
CDV6G10GR1 0.86 2.02 0.09 1.47
CDV6G05GR2 1.09 2.10 0.15 1.15
[Rodi et al., 1997] [0.38,1.79] [1.66,2.77] [0.10,0.27] [0.89,2.96]
[Sohankar et al., 2000] [1.23,1.54] [2.0,2.32] [0.16,0.20] [1.29-1.34]

Experimental data C′
l Cd C′

d lr
[Lyn and Rodi, 1994] - 2.1 - 1.4
[Bearman and Obasaju, 1982] 1.2 2.28 - -
[Norberg, 1993] - 2.16 - -
[Luo et al., 1994] 1.21 2.21 0.18 -

Table 8.2: Flow past a square cylinder at Rey=22 × 103. Bulk coefficients;
comparison with experimental data and with other simulations in the litera-
ture. Cd is the mean drag coefficient, C′

d and C′
l are the r.m.s. of the drag

and lift coefficients and lr is the length of the mean recirculation bubble.

sidering the Reynolds stresses obtained in the simulations, reported together
with the experimental data in Figure 8.3 for a vertical section in the wake.

The Reynolds stresses are averaged in the spanwise direction (xj = x3) and,
consequently, only three components of the full Reynolds tensor are meaning-
ful: 〈u′

1u
′
1〉, 〈u′

2u
′
2〉 and 〈u′

1u
′
2〉. The symbol 〈 〉 stands for average in time

and in the homogeneous spanwise direction and the prime for the fluctuating
part of the velocity components, according to the Reynolds decomposition:
u′

j = uj −〈uj〉. Note that experimental results should be filtered in space be-
fore being compared with numerical results, and the filter should be as similar
as possible to the one used in the LES simulations. However, in our case it
was not possible to filter the experimental data, available only in a few points.
This explains the underestimate of the diagonal Reynolds stresses observed
in all the simulations. Nevertheless, it is evident that V6 gives systematically
more accurate results than V4, confirming that the more intense flow fluctua-
tions obtained with V6 are not the effect of an incipient numerical instability
but they are physically meaningful. In particular, V4 always gives definitely
lower values of 〈u′u′〉 and 〈v′v′〉, indicating that velocity fluctuations are more
damped than in V6 and the combination of V4 with the Smagorinsky model,
which is more dissipative than the dynamic one, results in a strong damping
of the velocity fluctuations.

Sensitivity to the numerical viscosity parameter γs Recall that γs

multiplies the upwind part of the scheme leading to a fully upwind scheme
(Roe scheme) for γs = 1 and to a centered scheme when γs = 0. As far as the
sensitivity to γs is concerned, let us compare simulations CDV4G05GR1 with
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FIGURE 8.3: Flow past a square cylinder at Rey=22×103. Reynolds stresses,
averaged in spanwise direction, on a vertical section at x/D = 1.75 (with
reference to Figure 8.2).
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CDV4G10GR1 for the V4 scheme and CDV6G05GR1 with CDV6G10GR1 for
V6. The qualitative variation of the bulk coefficients (Table 8.2) with γs is the
same for both V4 and V6, i.e. the agreement with the experiments improves
as γs is decreased, as already pointed out in previous studies [Camarri and
Salvetti, 1999], [Camarri et al., 2002a]. However, all the bulk coefficients
obtained by V6 (except for C′

l) are remarkably less sensitive to γs. The
sensitivity of the Reynolds stresses to γs is rather low with V6, while they are
more sensitive to the SGS model used, as shown in Figure 8.3.

Effect of SGS modeling and interaction with numerical viscosity
model Let us compare now V4 and V6 in terms of sensitivity of the results
to the SGS model. For this purpose, the simulation couples (CSV4G05GR1,
CDV4G05GR1) and (CSV6G05GR1, CDV6G05GR1) are considered. Ta-
ble 8.2 shows that the qualitative variations of the bulk coefficients with the
SGS model are the same for V4 and V6, i.e. the dynamic model generally
improves predictions with respect to the Smagorinsky model. However, quan-
titatively, the sensitivity to SGS modeling of the results obtained with V6
is lower than with V4. This is particularly evident from the comparison of
the Reynolds stresses obtained in the simulations, as reported, for instance in
Figure 8.3.

To better understand the reasons of this behavior, let us analyze more in
details how numerical and SGS viscosities depend on the employed scheme.
We expect that V6 introduces a numerical dissipation which is more localized
on the highest resolved frequencies than V4. An a posteriori support to this
speculation is indeed obtained in the present simulations, by analyzing, for
instance, the time velocity signals recorded in the cylinder wake. Indepen-
dently of the SGS model, in the simulations with V6 a larger energy content
than with V4 is found in all the resolved frequencies, and especially in the
highest ones, as shown for instance by the Fourier spectra in Figure 8.4.

The larger value of 〈u′
1u

′
1〉 and 〈u′

2u
′
2〉 obtained with V6 in all the simu-

lations (as shown, for instance, in Figure 8.3) also confirms that in V6 the
velocity fluctuations have a larger energy content than in V4. The mean con-
vection velocity in the considered points within the wake is large enough to
justify the Taylor hypothesis of frozen turbulence which allows us to assume
that high time frequencies correspond to small scale in space; thus, one might
conclude that small scales are less damped by the V6 scheme.

As far as SGS viscosity is concerned, for the Smagorinsky model it is prac-
tically insensitive to the scheme used for the convective fluxes. Conversely,
for the dynamic model it is significantly higher when V6 is used, as shown,
for instance, in Figure 8.5 for simulations CDV4G10GR1 and CDV6G10GR1.

This is again related to the lower damping of small scales introduced by
V6. Indeed, in the dynamic procedure the parameter entering in the defini-
tion of the SGS viscosity is obtained as the difference between the LES field
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FIGURE 8.4: Flow past a square cylinder at Rey=22 × 103. Simulations
CDV4G050GR1 and CDV6G050GR1. Fourier energy spectra of the velocity
components recorded at x = 3, y = 0.5 and z = 0. (a) Transversal velocity v;
(b) spanwise velocity w.

and a field twice filtered, with the second filter having a larger width than
the grid one; thus, since with V6 the smallest resolved scales contain more
energy than with V4, the dynamic procedure will compensate this and give a
higher SGS viscosity level. Since, with the value of C and the definition of Δ
used in the present study, the Smagorinsky model always gives in average a
higher SGS viscosity than the dynamic one (see also [Camarri et al., 2002a]),
in simulations with V6 the differences in μsgs given by the two models are
reduced and this may explain why the results are more similar.

Effect of grid refinement In spite of the global gain in accuracy obtained
with the V6 scheme, in all simulations carried out on GR1, we observe a sys-
tematic underestimate of the drag coefficient even if the base pressure is pre-
dicted rather well, as in CDV4G05GR1, CDV6G05GR1 and CDV6G10GR1
(see Table 8.2). This is due to the underestimate of the pressure coefficient
on the upwind face of the cylinder (see [Camarri et al., 2002a]), which is in
turn plausibly caused by the inadequacy of GR1. Indeed, as shown in Fig-
ure 8.6(a), large elements are located too close to face AB, where gradients are
high, and the grid refinement is too sharp to effectively increase resolution.

A better designed grid (GR2), shown in Figure 8.6(b), has been used in
order to verify the previous conjecture; GR2 has approximately 2×105 nodes
and 1.1×106 elements. Two simulations have been carried out on GR2, using
the Smagorinsky (CSV6G05GR2) and the dynamic models (CDV6G05GR2)
(see Table 8.1). The base pressure is well predicted and the mean drag co-
efficient is very close to the experimental value in both cases, as shown in
Table 8.2; indeed, in those simulations the pressure coefficient on the upwind
face of the cylinder matches very well the experiments (not shown here for
sake of brevity). The same applies for the rms of the lift and drag coefficients,
that are in both cases remarkably larger and closer to the experiments than
the ones predicted by simulations on GR1.
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(a)

(b)

FIGURE 8.5: Flow past a square cylinder at Rey=22× 103. Iso-contours of
the SGS viscosity at a time corresponding to a peak in the CL time history.
(a) Simulation CDV4G10GR1 (V4 scheme); (b) simulation CDV6G10GR1
(V6 scheme).
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(a) (b)

FIGURE 8.6: Flow past a square cylinder at Re=22 × 103. Node distribu-
tion in grids GR1 (a) and GR2 (b) in the symmetry section in the spanwise
direction.

The grid refinement improves results particularly when the Smagorinsky
model is used, while the simulations with the dynamic model give acceptable
results also on the grid GR1. This suggests that, with coarse grids, a dynamic
model is to be prefered, even if significantly more expensive for unstructured
grids (see [Camarri et al., 2002a]). Conversely, for rather resolved simulations
the dynamic model loses its advantages over the Smagorinsky model, at least
as far as the prediction of global flow quantities, such as bulk coefficients or
the time-averaged flow field, is concerned.

8.3.2.2 Forward-swept wing at high angle of attack (LES)

This example is less academic, although still with a rather low Reynolds.
The geometry of the considered wing is summarized in Table 8.3; a detailed
description can be found in [Lombardi, 1993].

aspect ratio taper ratio twist
5.7 0.4 0 deg

sweep angle wing section mean aerodynamic chord
-25 deg NACA0012 0.133 m

Table 8.3: Forward-swept wing at high angle of attack and Rey=193. Geom-
etry.
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226 Computational Fluid Dynamics

Simulations have been carried at an angle of attack of 20 deg. and at a
very low Mach number (0.014), in order to obtain negligible effects of com-
pressibility. The Reynolds number, based on the mean aerodynamic chord,
is equal to 1.9 × 104. The computational domain is a circular cylinder: the
diameter is equal to 20cr and the height to 5cr, cr being the length of the
chord at the wing root. The wing root is located on a cylinder base, at which
symmetry boundary conditions are imposed. On the remaining cylinder sur-
faces, inflow/outflow boundary conditions based on the Steger-Warming flow
decomposition are used [Steger and Warming, 1981a]. The employed grid
is unstructured and has 2.3×106 elements. Approximately 4.5×103 elements
have a face laying on the wing surface and the normal distance from the wing
of the first layer of nodes roughly varies from 0.01 to 0.02 of the local chord.
The main parameters of the different simulations are summarized in Table 8.4.
Time advancing of the equations has been carried out implicitly with a max-

Simulation SGS model γs Convective fluxes
WSV4G05 Smag. (Cs = 0.1) 0.05 V4
WSV6G05 Smag. (Cs = 0.1) 0.05 V6
WSV4G10 Smag. (Cs = 0.1) 0.1 V4
WSV6G10 Smag. (Cs = 0.1) 0.1 V6
WDV4G05 Dynamic 0.05 V4
WDV6G05 Dynamic 0.05 V6
WDV4G10 Dynamic 0.1 V4
WDV6G10 Dynamic 0.1 V6
WNV4G05 None 0.05 V4

Table 8.4: Forward-swept wing at high angle of attack and Rey=193. Sum-
mary of the simulations.

imum CFL number of 75. It has been verified that the corresponding time
step was not too large and that no significant information was lost in the time
history of aerodynamic forces.

The values of the aerodynamic coefficients obtained in the different simula-
tions are reported in Table 8.5, together with experimental values available for
Re = 105 [Lombardi, 1993]. Aerodynamic forces are averaged in time, since
unsteadiness are present in the flow due to the large separated flow on the
wing upper surface and the corresponding coefficients are defined as follows:

CL =
L

1/2ρU2S
; CD =

D

1/2ρU2S
(8.20)

in which L and D are respectively the global lift and drag, ρ and U are the
free-stream flow density and velocity and S is the wing surface.
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LES and experiments CL CD

WSV4G05 0.641 0.219
WSV6G05 0.648 0.222
WSV4G10 0.644 0.219
WSV6G10 0.643 0.222
WDV4G05 0.748 0.251
WDV6G05 0.740 0.248
WDV4G10 0.757 0.260
WDV6G10 0.735 0.254
WNV4G05 0.771 0.257
[Lombardi, 1993] 0.714 ± 0.017 0.305 ± 0.005

Table 8.5: Forward-swept wing at high angle of attack and Rey=193. Aero-
dynamic coefficients; CL and CD are the mean lift and drag coefficients.

Note that, in this case, a meaningful comparison with the experiments is
difficult because of the different Reynolds number and of the lack of detailed
information in experiments (only global coefficients are available). The wing
test-case, however, is useful to investigate the effects of numerical dissipa-
tion and SGS modeling for a more complex flow than the one around the
square cylinder; indeed, here the boundary layer separation is not fixed by
the geometry and no homogeneous directions is present.

Effect of SGS modeling The global lift values obtained in the simulations
with the Smagorinsky model are significantly lower than those given by the
dynamic model; the largest value is found in the simulation with no SGS
model. This behavior is due to the differences observed in the separated flow
region, shown, for instance, by the isocontours of the pressure coefficient on
the upper surface of the wing in Figure 8.7.

Indeed, independently of the numerical scheme, in the simulations with
the Smagorinsky model the flow is found to be completely separated (i.e.,
separation occurs practically at the leading edge) in a region ranging from
the wing root to approximately the 80% of the wing span. In the rest of
the upper surface the flow is attached. Conversely, in the simulations with
the dynamic model, moving from the wing root to the tip, flow separation
progressively moves downstream the leading edge. The simulation with no
SGS model has the same qualitative behavior as the ones with the dynamic
model, but boundary layer separation tends to occur more downstream than in
those with the dynamic model. As far as the spanwise extent of the separated
zone is concerned, it can be seen from the spanwise Cl distribution reported
in Figure 8.8 (Cl is the lift coefficient of the single wing sections) that for the
dynamic model and in the simulation without any model the reattachment
point is located at the 80% of the wing span, while the Smagorinsky model
predicts a slightly larger extent.
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(a) WSV4G05 (b) WDV4G05

(c) WNV4G05

FIGURE 8.7: Forward-swept wing at high angle of attack and Rey=193. Iso-
contours of the pressure coefficient on the wing upper surface. (a) Simulation
WSV4G05; (b) simulation WDV4G05; (c) simulation WNV4G05.
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FIGURE 8.8: Forward-swept wing at high angle of attack and Rey=193.
Effect of SGS modeling on the spanwise distribution of Cl.

It is also evident how in the separated zone the Smagorinsky model gives
a Cl much lower than in the other simulations (due to the larger streamwise
extent of separation) and this explains the underestimate of global lift. The
picture obtained in the simulations with the dynamic model and without SGS
model is certainly more accurate, at least from a qualitative point of view. In-
deed, the same separation mechanism was observed in experiments at higher
Reynolds numbers and different angles of attack [Lombardi et al., 1998] and is
confirmed also from the flow visualizations carried out with wool tufts for the
flow conditions considered here [Camarri et al., 2001b]. Moreover, this stall
behavior is typical of forward-swept wings and is due to three-dimensional ef-
fects (strong cross-flow in the inboard direction) [Lombardi, 1993], [Lombardi
et al., 1998]. If these effects are not well captured, one expects to obtain
a picture similar to that of the simulations with the Smagorinsky model,
i.e. stall occurring immediately close to the leading-edge, which is peculiar
of NACA0012 airfoils. Thus, as already found in the cylinder test-case, it
appears that the Smagorinsky model introduces excessive dissipation which
damps 3D effects.

The previous considerations also explain the significant quantitative differ-
ences in the prediction of the aerodynamic coefficients given by the Smagorin-
sky and the dynamic model. Indeed, in the simulations with the Smagorinsky
model the differences (with respect of the experiments) in the prediction of
CL and CD range between -9% and -10% and between -27% and -28% re-
spectively, while with the dynamic model they are reduced to [3%,6%] and
[-15%,-19%].
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Sensitivity to the numerical viscosity parameter γs Let us analyze
first the effect of the scheme, by comparing simulations differing only for the
discretization of convective fluxes, viz. (WSV6G05, WSV4G05), (WSV6G10,
WSV4G10), (WDV6G05, WDV4G05) and (WDV6G10, WDV4G10). The
effect of the scheme used for the discretization of the convective fluxes is
much lower than that of SGS modeling; differences between simulations using
V4 and V6 in the prediction of the aerodynamic coefficients are only of 1% for
the Smagorinsky model and of 1%-3% for the dynamic one (see Table 8.5). For
the wing flow the V6 scheme does not always improve the agreement with the
experimental data; however, as discussed previously, in this case comparison
with the experiments is not completely meaningful.

For both V4 and V6 schemes and for both SGS models, the predictions of
the aerodynamic coefficients are also scarcely sensitive to the value of γs; dif-
ferences between the aerodynamic coefficients obtained in the simulations with
(WSV4G05, WSV4G10) and (WSV6G05, WSV6G10), using the Smagorinsky
model, are lower than 1%. When the dynamic SGS model is employed, they
are not higher than 3% for V4 and of 2% for V6.

Some remarks on computational costs As for the cost of the SGS mod-
els, when the time advancing is explicit, the CPU per time-step is increased
of 180% for the dynamic model with respect to that corresponding to the
Smagorinsky model. Indeed, the dynamic procedure on unstructured grids
requires, at each node and at each time step, averages of several quantities
over the elements containing the node. This implies a significant increase
not only in CPU time, but also in memory requirements and communications
costs in parallel simulations. We did not carry out a systematic optimization
of the dynamic procedure implementation; however, it seems not trivial to
find an algorithm which could significantly reduce the computational costs
without further increasing the memory requirements.

As for the numerics, the V6 scheme requires approximately 100% more CPU
time than V4 for the discretization of the convective fluxes. When explicit
time advancing is used (square cylinder test-case), in the simulations with
the Smagorinsky model this implies about 60% increase in the global CPU
time, while with the dynamic model it reduces to 23%. For implicit time
advancing, as in the wing test-case , the increase of global CPU time for the
V6 simulations is practically negligible.

8.3.3 WALE and Vreman’s models

The Smagorinsky model is a powerful model based on the simplified assump-
tion of eddy-viscosity. Two more recent eddy-viscosity models have also been
considered. Both use first-order derivatives of the velocity in the definition of
eddy-viscosity so that they are rather simple and well-suited for engineering
applications, and they are designed in order to have a better behavior than
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the Smagorinsky model for near-wall, shear and transitional flows.

WALE model In the wall-adapting local eddy-viscosity (WALE) SGS
model, proposed by Nicoud and Ducros [Nicoud and Ducros, 1999], the eddy-
viscosity term μsgs of the model is defined by:

μsgs = ρ(CW Δ)2
(S̃ij

d
S̃ij

d
)

3
2

(S̃ijS̃ij)
5
2 + (S̃ij

d
S̃ij

d
)

5
4

(8.21)

with S̃ij

d
being the symmetric part of the tensor gij

2 = gikgkj , where gij =
∂ũi/∂xj :

S̃ij

d
=

1
2
(gij

2 + gji
2)− 1

3
δijgkk

2

The filter width Δ has been defined as done for the Smagorinsky model. As
recommended in [Nicoud and Ducros, 1999], the constant CW is set to 0.5.

Vreman’s model The model proposed by Vreman [Vreman, 2004a] defines
the eddy-viscosity μsgs as follows:

μsgs = ρCV

(
Bβ

αijαij

) 1
2

(8.22)

with αij = ∂ũj/∂xi, βij = Δ2αmiαmj and
Bβ = β11β22 − β2

12 + β11β33 − β2
13 + β22β33 − β2

23. As in [Vreman, 2004a], the
constant is set to CV ≈ 2.5C2

s where Cs denotes the Smagorinsky constant.
Again the filter width Δ has been defined as done for the Smagorinsky
model.

The Smagorinsky model, the WALE model, and Vreman’s model will also
be used inside the novel method referred as Variational multiscale LES.

8.4 Variational multiscale large eddy simulation (VMS-
LES)

8.4.1 Model features and description

A new approach to LES based on a variational multiscale (VMS) framework
was recently introduced by Hughes and his co-workers [Hughes et al., 2000],
[Hughes et al., 2001a], [Hughes et al., 2001b]. The VMS-LES differs from the
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traditional LES in a number of ways. In this approach, the scales are a priori
separated — that is, before considering numerical discretization. And most
importantly, a model for the effect of the unresolved scales is added only in the
equations representing the smallest resolved scales, and not in the equations
for the largest ones. Consequently, in the VMS-LES, energy is extracted from
the fine resolved scales by a traditional model such as the Smagorinsky eddy-
viscosity model, but no energy is directly extracted from the large structures in
the flow. For this reason, one can reasonably hope to obtain a better behavior
near walls, and less dissipation in the presence of large coherent structures.
Furthermore, in the original formulation, the Navier-Stokes equations are not
filtered but a variational projection is used instead. This is an important
difference because as performed in the traditional LES, filtering works well
with periodic boundary conditions but may raise mathematical issues in wall-
bounded flows. The variational projection avoids these issues.

In this subsection, we present the VMS-LES method used in our works. This
one has been developed for compressible flow equations, unstructured grids
and a mixed finite volume/finite element framework, so that this VMS-LES
method is well suited for engineering applications. More details concerning
the derivation of the following VMS-LES governing equations can be found
in [Farhat et al., 2006].

If we discretize the Navier-Stokes equations (8.1) by a mixed finite vol-
ume/finite element approach, we obtain the following set of equations:8>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

A(Xi,W) =

Z
Ω

∂ρ

∂t
Xi dΩ +

Z
∂SupXi

ρu · nXi dΓ = 0

B(Xi,Φi,W) =

Z
Ω

∂ρu

∂t
Xi dΩ +

Z
∂SupXi

ρu ⊗ unXi dΓ

+

Z
∂SupXi

PnXi dΓ +

Z
Ω

σ∇Φi dΩ = 0

C(Xi,Φi,W) =

Z
Ω

∂E

∂t
Xi dΩ +

Z
∂SupXi

(E + P )u.nXi dΓ

+

Z
Ω

σu · ∇Φi dΩ +

Z
Ω

λ∇T · ∇Φi dΩ = 0

where Xi is the characteristic function corresponding to the control volume
Ci associated with node i and Φi the P1 shape function associated with node
i.

Let VFV and VFE denote the spaces spanned by Xi and Φi, respectively.
The decomposition a priori of these spaces into large resolved scales, small
resolved scales and unresolved scales [Collis, 2001] can be written as

VFV = VFV ⊕ V ′
FV ⊕ V̂FV

VFE = VFE ⊕ V ′
FE ⊕ V̂FE

where the notation “ ¯ ”, “ ′ ” and “ ̂ ” denotes the large resolved scales,
small resolved scales and unresolved scales, respectively.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
37

 0
4 

M
ar

ch
 2

01
6 
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Let W = W+W′+Ŵ be the decomposition of W into large resolved scales,
small resolved scales and unresolved scales. Substituting this decomposition
into the previous semi-discretized equations and by variational projection onto
the large resolved scales space, small resolved scales space and unresolved
scales space, we obtain the following set of equations governing the large
resolved scales:8>>>>><

>>>>>:

A(X i,W + W′) +A∗(X i,W,W′,cW) = 0

B(X i,Φi,W + W′) + B∗(X i,Φi,W,W′,cW) = 0

C(X i,Φi,W + W′) + C∗(X i,Φi,W,W′,cW) = 0,

the following set of equations governing the small resolved scales:
8>>>>><
>>>>>:

A(X ′
i ,W + W′) +A∗(X ′

i ,W,W′,cW) = 0

B(X ′
i ,Φ

′
i,W + W′) + B∗(X ′

i ,Φ
′
i,W,W′,cW) = 0

C(X ′
i ,Φ

′
i,W + W′) + C∗(X ′

i ,Φ
′
i,W,W′,cW) = 0,

and the following set of equations governing the unresolved scales:
8>>>>><
>>>>>:

A( bXi,W + W′ + cW) = 0

B( bXi, bΦi,W + W′ + cW) = 0

C( bXi, bΦi,W + W′ + cW) = 0,

where terms A∗, B∗ and C∗ represent the effect of the unresolved scales on
the large and small resolved ones.

Since the unresolved scales can not be captured by the numerical
computation, the equations governing the unresolved scales are dropped
from the system to be solved. This leads to reinterpreting the three-level
formalism as a two-level framework:

VFEh
= VFEh

⊕ V ′
FEh

VFVh
= VFVh

⊕ V ′
FVh

⇒Wh = Wh + W′
h

where the subscript h emphasizes the resolved aspects of the scales. This leads
also to model the effect of the unresolved scales on the large and small resolved
ones represented by terms A∗, B∗ and C∗. Turbulence features a cascade
process in which the kinetic energy transfers from larger eddies to smaller
ones. Therefore, it can be assumed that energy transfer occurs mostly between
neighboring scales. For this reason, we neglect the effect of the unresolved
scales on the large resolved ones, and model only the effect of the unresolved
scales on the small resolved ones. This effect, which is of energy dissipation
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type, is modeled here by any of the three non dynamic eddy-viscosity models
previously presented (section 8.3.1.1 and 8.3.3). Furthermore, the so-called
small-small formulation is adopted, i.e. the modeled terms are computed as
a function of the smallest resolved scales only. Then, combining the resulting
equations which govern the small and large resolved scales (for more details,
see [Farhat et al., 2006]), we obtain the final equations:

8>>>>>>><
>>>>>>>:

A(Xih ,Wh) = 0

B(Xih ,Φih ,Wh) +

Z
Ω

τ ′
h∇Φ′

ih dΩ = 0

C(Xih ,Φih ,Wh) +

Z
Ω

Cpμ
′
t

Prt
∇T ′

h · ∇Φ′
ih
dΩ = 0

where τ ′
ij = μ′

t(2S′
ij − 2

3S′
kkδij), S′

ij = 1
2 ( ∂u′

i

∂xj
+ ∂u′

j

∂xi
), and μ′

t is given either
by the Smagorinsky, or the WALE or the Vreman models. The constants of
the models are the same as those used herein in classical LES and specified
in sections 8.3.1.1 and 8.3.3. In this approach, the local filter size Δ′ is set
in each tetrahedron Tl to its volume to the power one third. Here, Cp is the
specific heat at constant pressure and Prt is the subgrid scale Prandtl number
which is assumed to be constant.

REMARK 8.1 The laminar Navier-Stokes equations are recovered by
substituting τ ′

h = 0 and μ′
t = 0 in the above system of equations. The

classical Smagorinsky LES model is recovered by substituting τ ′
h = τh, μ′

t =
μt, T ′

h = Th and Φ′
ih

= Φih
.

8.4.1.1 A priori separation of the scales

Given a tetrahedral mesh, a corresponding dual mesh defined by cells or
control volumes can always be derived. Such a dual mesh can be partitioned
into macro-cells by a process known as agglomeration [Lallemand et al., 1992].
This process is graphically depicted in Figure 8.9 for the two-dimensional case.

Agglomeration

FIGURE 8.9: Unstructured mesh, dual mesh, and agglomeration of some cells
of the dual mesh into a macro-cell (two-dimensional case).
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Given an agglomeration into macro-cells, the idea then is to define the
coarse scale component Wh = P (Wh), in the diffusive terms, as the average
of Wh in the macro-cells in the following sense

Wh = P (
∑

k

Φkh
Wkh

) =
∑

k

Φkh
W̃kh

(8.23)

where

W̃kh
=

∑
j∈Ik

V ol(Cj)Wjh

∑
j∈Ik

V ol(Cj)
, (8.24)

Cj is the cell around the vertex j, V ol(Cj) denotes its volume, Ik = {j / Cj ⊂
Cm(k)}, and Cm(k) denotes the macro-cell containing the cell Ck.

From equation (8.23) and equation (8.24) it follows that Wh can also be
written as

Wh =
∑

k

Φkh
Wkh

(8.25)

where

Φkh
=

V ol(Ck)∑
j∈Ik

V ol(Cj)

∑
j∈Ik

Φjh
. (8.26)

Given the properties of the P1 shape functions Φkh
, it follows that the coarse

scale component Wh is approximated here by a continuous function which is
constant in each tetrahedron contained in a macro-cell, has the same constant
value in all the tetrahedrons contained in the same macro-cell, and is linear in
the tetrahedrons shared by at least two macro-cells. In other words, Wh can
be viewed as a piecewise constant function with linear connections between
its constant stages (see Figure 8.10 for a one-dimensional representation).

It also follows that

W′
h = Wh−Wh =

∑
k

Φkh
(Wkh

−W̃kh
) =
∑

k

Φ′
kh

Wkh
=
∑

k

(Φkh
−Φkh

)Wkh
.

(8.27)
The same averaging procedure outlined above can be applied to define the
coarse scale component W = P (W) in the convective terms, in which case
Φk is replaced by Xk. Hence, for the convective terms, P is defined by

P (Wh) =
∑

k

⎛
⎜⎜⎝

V ol(Ck)∑
j∈Ik

V ol(Cj)

∑
j∈Ik

Xjh

⎞
⎟⎟⎠Wkh

(8.28)
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W

macro−cell i macro−cell j macro−cell k macro−cell l

: Nodes

FIGURE 8.10: One-dimensional representation of a coarse scale component
W.

and for the diffusive terms, P is defined by

P (Wh) =
∑

k

⎛
⎜⎜⎝

V ol(Ck)∑
j∈Ik

V ol(Cj)

∑
j∈Ik

Φjh

⎞
⎟⎟⎠Wkh

. (8.29)

The reader can check that in both cases, P verifies P 2 = P and therefore is a
projector.

This completes the definition of the decompositions VFVh
= VFVh

⊕ V ′
FVh

and VFEh
= VFEh

⊕ V ′
FEh

, where VFVh
(VFEh

) denotes the space of approx-
imation of the coarse scales spanned by the functions {X kh

} ({Φkh
}), and

V ′
FVh

(V ′
FEh

) denotes the space of approximation of the fine scales spanned
by the functions {X ′

kh
} ({Φ′

kh
}). If n is the total number of nodes in the given

mesh and N is the total number of macro-cells defined by the agglomeration,
then the dimension of each of VFVh

and VFEh
is N , and that of each of V ′

FVh

and V ′
FEh

is n−N .
The reader can note that a dynamic version of this VMS-LES method, not

described in this chapter for the sake of brevity, based on variational analogues
of Germano’s algebraic identity and the same agglomeration based numerical
procedure has also been proposed in [Farhat et al., 2006].

8.4.2 The impact of VMS-LES vs. LES

This numerical part has many objectives: (i) to compare the relative perfor-
mance of LES and VMS-LES for the simulation of bluff-body flows through
our numerical framework (ii) to show the effects of SGS models, grid reso-
lution and numerical dissipation on the quality of the obtained predictions
(iii) to evaluate the performance of LES and VMS-LES for the simulation
of bluff-body flows around a moving complex geometry. For tasks (i) and
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(ii) we consider the flow around a circular cylinder at Reynolds number,
based on the free-stream velocity and on the cylinder diameter, equal to 3900.
This flow has been chosen since it is a classical and well documented bench-
mark (see e.g. [Parneaudeau et al., 2008] for experimental data and [Breuer,
1998], [Kravchenko and Moin, 1999], [Lee et al., 2006], [Parneaudeau et al.,
2008] for numerical studies). Moreover, it contains all the features and all
the difficulties encountered in the simulation of bluff-body flows also for more
complex configurations and higher Reynolds numbers, at least for laminar
boundary-layer separation. On the other hand the flow configuration consid-
ered for task (iii) is of direct interest in offshore engineering.

8.4.2.1 Flow around a circular cylinder (VMS-LES)

Test-case description and simulation parameters The flow over a cir-
cular cylinder at Reynolds number (based on the cylinder diameter and on the
free-stream velocity) equal to 3900 is simulated. The computational domain
is such that −10 ≤ x/D ≤ 25, −20 ≤ y/D ≤ 20 and −π/2 ≤ z/D ≤ π/2,
where x, y and z denote the streamwise, transverse and spanwise directions
respectively, the cylinder center being located at x = y = 0. Characteristic
based conditions are used at the inflow and outflow as well as on the lat-
eral surfaces [Steger and Warming, 1981a]. In the spanwise direction periodic
boundary conditions are applied and on the cylinder surface no-slip is im-
posed. The free-stream Mach number is set equal to 0.1 in order to make
a sensible comparison with incompressible simulations in the literature. As
described in the section devoted to the numerical framework, preconditioning
is used to deal with the low Mach number regime. The flow domain is dis-
cretized by two unstructured tetrahedral grids: the first one (GR1) consists
of approximately 2.9× 105 nodes. The averaged distance of the nearest point
to the cylinder boundary is 0.017D, which corresponds to y+ ≈ 3.31. The
second grid (GR2) is obtained from GR1 by refining in a structured way, i.e.
by dividing each tetrahedron in 4, resulting in approximately 1.46×106 nodes.

Several LES and VMS-LES simulations have been carried by varying the
SGS model, the value of γs, and the grid resolution. All the simulations have
been carried out with the same time step, such that a vortex-shedding period
contains approximately 400 time steps. The time-step independence of the
results has been checked.

Results for a coarse grid resolution Let us start to analyze the results
obtained in the simulations carried out on the coarser grid GR1. The main
parameters of these simulations are summarized in Table 8.6.

Statistics are computed by averaging in the spanwise homogeneous direc-
tion and in time on 20 vortex-shedding cycles. The main flow bulk parameters
obtained in our simulations are also shown in Table 8.6, while the correspond-
ing values obtained in experiments and LES in the literature are reported in
Table 8.7.
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Simulation Turb. model SGS model Grid γs Cd St lr -Cpb

C1 LES Smagorinsky GR1 0.3 1.16 0.212 0.81 1.17
C2 LES Vreman GR1 0.3 1.04 0.221 0.97 1.01
C3 LES WALE GR1 0.3 1.14 0.214 0.75 1.2
C4 VMS-LES Smagorinsky GR1 0.3 1.00 0.221 1.05 0.96
C5 VMS-LES Vreman GR1 0.3 1.00 0.22 1.07 0.97
C6 VMS-LES WALE GR1 0.3 1.03 0.219 0.94 1.01
C7 no model - GR1 0.3 0.96 0.223 1.24 0.90
C8 no model - GR1 0.2 0.94 0.224 1.25 0.89

Table 8.6: Flow around a circular cylinder at Rey=3900. Main simulation
parameters and flow bulk coefficients for simulations on grid GR1. Cd denotes
the mean drag coefficient, St the vortex-shedding Strouhal number, based on
the free-stream velocity and the cylinder diameter, lr the mean recirculation
bubble length and Cpb the base pressure.

LES data Cd St lr -Cpb

[Breuer, 1998] [0.969,1.486] – [0.397,1.686] [0.867,1.665]
[Kravchenko and Moin, 1999] [1.04,1.38] [0.193,0.21] [1.,1.35] [0.93,1.23]
[Parneaudeau et al., 2008] – 0.208±0.001 1.56 –
[Lee et al., 2006] [0.99,1.04] [0.209,0.212] [1.35,1.37] [0.89,0.94]

Experimental data Cd St lr -Cpb

[Dong et al., 2006] – – 1.47 –
[Lourenco and Shih, 1993] – – 1.18±0.05 –
[Kravchenko and Moin, 1999] 0.99±0.05 — – 0.88±0.05
[Ong and Wallace, 1996] – 0.21±0.005 — –
[Parneaudeau et al., 2008] – 0.208±0.002 1.51 –

Table 8.7: Flow around a circular cylinder at Rey=3900. Bulk flow parameters
obtained in experiments and in large eddy simulations in the literature. The
data from [Dong et al., 2006] are at Re=4000 and those of Norberg (taken
from [Kravchenko and Moin, 1999]) at Re=4020.

For the vortex-shedding Strouhal number, St (based on the free-stream
velocity and the cylinder diameter), experimental values in the range of
[0.205, 0.215] are generally obtained, which well agree with those obtained
in the LES in the literature (Table 8.7) and in our simulations (Table 8.6).

As for the mean drag coefficient, Cd = 0.99 ± 0.05 was obtained in the
experiments by Norberg at Re = 4020 (data taken from [Kravchenko and
Moin, 1999]), which well agrees with those computed in well resolved LES in
the literature [Kravchenko and Moin, 1999], [Lee et al., 2006]. A significant
overestimation of Cd is obtained in the LES simulations (C1-C3), which ranges
from 4.5% to 17% with respect to the upper limit of the experimental range.
Conversely, the prediction given by the VMS-LES simulations (C4-C6) and by
those without any SGS model (C7-C8) are better (the maximum discrepancy
from the experimental range being of 3.5%).
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Clearly, the mean drag depends on the pressure distribution on the cylin-
der surface. Figure 8.11 shows the mean pressure coefficient distribution at
the cylinder obtained in the simulations on GR1, together with experimental
data. From the discrepancy between numerical results and experimental data

(a) (b)

(c)

FIGURE 8.11: Flow around a circular cylinder at Rey=3900. Mean pres-
sure coefficient distribution at the cylinder obtained in the simulations on
the coarser grid GR1. (a) LES simulations on GR1 (C1-C3); (b) VMS-LES
simulations (C4-C6); (c) no-model (C7-C8).

in the zone of the negative peak it is evident that in all cases the boundary
layer evolution is not accurately captured in the simulations, due to the grid
coarseness. Other symptoms of a too coarse grid resolution (see the discus-
sion in [Kravchenko and Moin, 1999]) are the underestimation of the mean
recirculation length lr in all the simulations on GR1 (Table 8.6) and the V
shape of the mean streamwise velocity profiles in the near wake (not shown
here for sake of brevity).

Nevertheless, it is interesting to analyze the results obtained on GR1 be-
cause they show yet significant differences between LES and VMS-LES. More-
over, they are relevant to situations often encountered in the numerical sim-
ulation of complex industrial or engineering flows, in which only a rather
coarse grid resolution can be achieved. First of all, in LES the discrepancy
observed in the negative peak of mean Cp is larger and the differences among
the different SGS models are more pronounced than in VMS-LES.

Let us analyze now the SGS viscosity introduced by the different consid-
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ered SGS models. As qualitatively shown by the instantaneous isocontours
of μSGS/μ on the horizontal plane at z = 0 reported in Figure 8.12, in LES
simulations, as expected, the model is mainly acting in the wake. Generally,

(a) (b)

(c)

FIGURE 8.12: Flow around a circular cylinder at Rey=3900. Instantaneous
isocontours of μSGS/μ obtained in the LES simulations on the coarser grid
GR1. (a) Simulation C1, Smagorinsky model; (b) simulation C2, Vreman
model; (c) simulation C3, WALE model. All the considered instants corre-
spond to a maximum of the lift coefficient.

in the whole domain, the WALE model provides the highest values of SGS vis-
cosity, while the lowest ones are given by the Vreman model. The maximum
instantaneous values of μSGS/μ are of the order of 10 for the Smagorinsky
and Vreman models, while local values up to 100 are given by the WALE
model (the isocontour range in Figure 8.12c is saturated to 12 for sake of
comparison with the other models). No adaptation of the model constants
to the considered test-case has been made here. For the Vreman and WALE
models we used the values recommended in the original papers ( [Vreman,
2004a] and [Nicoud and Ducros, 1999] respectively), while for the Smagorin-
sky model the value generally indicated as optimal for shear flows. Thus,
the Smagorinsky model in some sense benefits from the fact that it has been
widely used and the knowledge on its behavior is deeper than for the other
two models.

Let us analyze now the same quantities obtained in the VMS-LES simu-
lations (Figure 8.13). Although the qualitative behavior of the SGS models
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(a) (b)

(c)

FIGURE 8.13: Flow around a circular cylinder at Rey=3900. Instantaneous
isocontours of μSGS/μ obtained in the VMS-LES simulations on the coarser
grid GR1. (a) Simulation C4, Smagorinsky model; (b) simulation C5, Vre-
man model; (c) simulation C6, WALE model. All the considered instants
correspond to a maximum of the lift coefficient.
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is similar to that found in LES simulation, it is evident that the SGS vis-
cosity introduced by all the considered models is significantly lower than in
the corresponding LES simulations in the whole domain and also near the
cylinder. Note that the maximum isocontour value in Figure 8.13 is 2.5. This
is due to the fact that in the VMS-LES case we use the so called small-small
approach, i.e. the SGS viscosity is computed as a function of the smallest
resolved scales. We recall that another fundamental difference, which can not
be appreciated from the values of the SGS viscosity is that in the VMS-LES
approach the SGS viscosity only acts on the smallest resolved scales.

The different behavior of the SGS models leads to additional inaccuracies
of the LES predictions, besides those due to grid coarseness and previously
discussed, which are not present in VMS-LES. For instance, Figure 8.11a
shows that the base pressure is inaccurately predicted in all LES simulations
except for the Vreman model (the least viscous one), leading to an inaccurate
value of the mean drag coefficient (Table 8.6). Conversely, for the VMS-
LES simulations the agreement with the experiments is fairly good (see also
Figure 8.11b). Differences between the LES and VMS-LES results are present
also in the mean velocity field (not shown here for sake of brevity). An
indication is given by the different predictions of the mean recirculation length
lr given by LES simulations with respect to those obtained in VMS-LES; in
particular, for a given SGS model, the VMS-LES simulations systematically
predict larger values of lr than the LES ones.

Simulations without any SGS model were also carried out. The pressure
distribution obtained in the simulations without any SGS model is very sim-
ilar to the one obtained in the VMS-LES ones (compare Figure 8.11c to Fig-
ure 8.11b); this results in a similar prediction of the mean drag coefficient
(Table 8.6). The same is for the mean velocity field in the near-wake. This
is an a-posteriori confirmation that the used MUSCL reconstruction indeed
introduces a viscosity acting only on the highest resolved frequencies [Camarri
et al., 2004], as the SGS viscosity in the VMS approach and that this limits
its negative effects. Moreover, the results obtained with two different (low)
values of the parameter γs are also very similar (Table 8.6 and Figure 8.11c),
consistently with our previous findings [Camarri et al., 2004]. However, more
downstream, when the contribution of the SGS model becomes significant,
the results obtained in the no-model simulations start to significantly deviate
from those obtained in LES or VMS-LES simulations. Again, an indicator of
the differences in the mean velocity field is the prediction of lr; the no-model
simulations give significantly larger values than those obtained in LES and
also in VMS-LES simulations (see Table 8.6). This is related to the fact that
in no-model simulation the shear-layer transition and vortex formation occur
more downstream than in VMS-LES simulations and even more than in LES
ones. Summarizing, from this analysis it seems that the larger is the SGS
viscosity introduced by the SGS models the shorter is the length of the shear
layers and of the mean recirculation bubble. For the set of simulations on
GR1, it seems that the no-model simulations give the best agreement with
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LES, variational multiscale LES, and hybrid models 243

experimental data also for the prediction of lr. However, this is an example
of error compensation; indeed, the grid coarseness leads to an underestima-
tion of lr (see also [Kravchenko and Moin, 1999]) and the fact that in the
no-model simulations the shear-layer transition and vortex formation occurs
more downstream tends to compensate this underestimation. It will be shown
in section 8.4.2.1 that on the finer grid GR2 the no-model simulation will give
a definitely too large value of lr.

Results for a finer grid resolution Let us analyze in this section the
results of the simulations on the finer grid GR2 in the light of these previous
considerations. The main parameters of these simulations are summarized in
Table 8.8.

Table 8.8: Flow around a circular cylinder at Rey=3900. Main simulation pa-
rameters and flow bulk coefficients for simulations on grid GR2. The symbols
are the same as in Table 1.

Simulation Turb. model SGS model Grid γs Cd St lr -Cpb

F1 LES Smagorinsky GR2 0.3 0.99 0.218 1.54 0.85
F2 LES Vreman GR2 0.4 0.92 0.227 1.83 0.78
F3 LES WALE GR2 0.3 1.02 0.221 1.22 0.94
F4 VMS-LES Smagorinsky GR2 0.3 0.93 0.226 1.68 0.81
F5 VMS-LES Vreman GR2 0.4 0.90 0.228 1.92 0.76
F6 VMS-LES WALE GR2 0.3 0.94 0.223 1.56 0.83
F7 no model - GR2 0.3 0.92 0.225 1.85 0.77

Statistics are computed by averaging in the spanwise homogeneous direction
and in time on 25 vortex-shedding cycles. Table 8.8 also shows the main flow
bulk parameters obtained in the simulations on GR2, to be compared to those
of LES in the literature and to experimental data, reported in Table 8.7.
A good agreement with the reference experimental data is obtained in the
prediction of the mean drag for all the simulations carried out on GR2, while
on the coarser grid significant errors were observed for the LES simulations.
The largest underestimation is found in the VMS-LES simulation with the
Vreman model with an approximately 4% error with respect to the lower
limit of the experimental range, and, thus much lower than that observed for
LES simulations on the coarse grid. Figure 8.14 shows the mean pressure
coefficient distribution at the cylinder obtained in the simulations on GR1,
compared with experimental data.

The negative peak of mean Cp is well captured in all the simulations, except
in the LES with the WALE model (F3). This indicates that the resolution near
the cylinder of GR2 is adequate to well capture the boundary layer evolution,
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(a) (b)

FIGURE 8.14: Flow around a circular cylinder at Rey=3900. Mean pressure
coefficient distribution at the cylinder obtained in the simulations on the finer
grid GR2. (a) LES simulations on GR2 (F1-F3); (b) VMS-LES (F4-F6) and
no-model simulations (F7).

while the discrepancy observed in the F3 simulation is probably due to the
too large SGS diffusivity introduced downstream the cylinder by the WALE
model in classical LES.

The same quantities as for the coarser grid GR1 (section 8.4.2.1) are shown
to analyze the behavior of the different SGS models in both classical and
variational multiscale LES for the finer grid resolution. More particularly,
Figures 8.15 and 8.16 show the instantaneous isocontours of μSGS/μ obtained
in LES and VMS-LES simulations on the finer grid (compare with Figures 8.12
and 8.13 for GR1).

First, as expected, for all the models and in both LES and VMS-LES the
SGS viscosity introduced on the finer grid is smaller that for coarser one and
in a narrower region in space due to a better resolution of the wake. Nonethe-
less, the differences among the SGS models are the same as those discussed
in section 8.4.2.1 for the coarser grid GR1, with the WALE model introduc-
ing the largest amount of SGS viscosity and the Vreman one the smallest.
Finally, the effect of the small-small VMS formulation is to significantly re-
duce the introduced SGS viscosity for all the considered models and this is
again in accordance with the observations made for the coarser grid in sec-
tion 8.4.2.1. Note how on the finer grid the amount of SGS viscosity given
by the Smagorinsky model, and in a larger extent by the Vreman one, in the
VMS-LES simulations is very small.

As anticipated previously, for the finer grid the no-model simulation gives
a value of lr largely overestimated with respect to the reference experimental
value. For the WALE model, the best agreement with the experiments is
found in the VMS-LES formulation, as for the mean velocity field (not shown
here) and the value of lr (see Table 8.8). However, this is not the case for the
other two considered SGS models. Indeed, for the Smagorinsky model, the
best results are obtained in the LES simulation (F1), while it seems that a
too low SGS viscosity is provided by this model in the VMS-LES formulation
(F4), as indicated by the overestimation of lr in Table 8.8 and by the shape of
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(a) (b)

(c)

FIGURE 8.15: Flow around a circular cylinder at Rey=3900. Instantaneous
isocontours of μSGS/μ obtained in the LES simulations on the finer grid GR2.
(a) Simulation F1, Smagorinsky model; (b) simulation F2, Vreman model; (c)
simulation F3, WALE model. All the considered instants correspond to a
maxim of the lift coefficient.
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(a) (b)

(c)

FIGURE 8.16: Flow around a circular cylinder at Rey=3900. Instantaneous
isocontours of μSGS/μ obtained in the VMS-LES simulations on the finer
grid GR2. (a) Simulation F4, Smagorinsky model; (b) simulation F5, Vre-
man model; (c) simulation F6, WALE model. All the considered instants
correspond to a maximum of the lift coefficient.
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LES, variational multiscale LES, and hybrid models 247

the velocity profiles (not shown here for sake of brevity). Finally, the Vreman
model is found to be not dissipative enough even in classical LES (F3) and
the results further deteriorate in VMS-LES (F5).

Thus, it seems that for the considered flow a significant sensitivity to the
SGS model is present also in VMS-LES and that the introduction of a proper
amount of SGS viscosity remains a crucial issue also in this approach.

8.4.2.2 Vortex-induced motion of a complex geometry

FIGURE 8.17: Spar geometry.

FIGURE 8.18: Flow past a spar at Re=3×105. VMS-LES with Smagorinsky
model, velocity module.
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248 Computational Fluid Dynamics

FIGURE 8.19: Flow past a spar at Re=3× 105. Time variation of the trans-
verse position of the spar at a reduced velocity of 7 m/s. for LES-Smagorinsky
(upper curve) and VMS-Smagorinsky (lower curve).

The prediction of vortex-induced motion of a complex spar geometry is an
important motivation for VMS modeling [Sirnivas et al., 2006]. The spar ge-
ometry consists of a cylinder equipped with helicoidal strakes, see Figure 8.17.
Each strake produces in the flow a shear layer that interacts with the large
flow structures and inhibits to a significant extent the von Karman vortex
street, see Figure 8.18. This is a typical backscatter effect and we investigate
the impact of the choice of a VMS model on the quality of a LES predic-
tion. In our computations, the obstacle is maintained by elastic moorings and
moves under the effect of the vortex shedding. The fluid-structure coupling
is computed at several reduced velocity between 4 and 9 (m/s) and Reynolds
numbers between 2×105 and 4×105. The mesh involves 5×105 vertices and
the computation is performed during 40 periods before statistics are com-
puted.

The behavior of the transverse position of the spar is a key output to be
accurately predicted. Figure 8.19 shows the time variation of the transverse
position of the spar at a reduced velocity of 7 m/s for LES and VMS mod-
els equipped with Smagorinsky’s subgrid scale model. The r.m.s. computed
in LES with the Smagorinsky model is 0.048, and the r.m.s. in VMS-LES is
0.070, which compares better with the experimental data of 0.077. The agree-
ment of the VMS calculations with experiments for the different velocities is
demonstrated in Table 8.9.
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Reduced velocity 4 5 6 7 8 9
LES - - - .048 - -
VMS-LES .0018 .020 .04 .070 .12 .118
Experiments .0018 .025 .05 .077 .13 .125

Table 8.9: Flow past a spar at Re=3 × 105. Vortex-induced motion: RMS
transverse deviation.

8.5 Hybrid RANS/LES

8.5.1 Model features and description

A major limitation of LES for the simulation of complex flows is the fact
that its cost increases as the flow Reynolds number rises. Indeed, the grid
has to be fine enough to resolve a significant part of the turbulent scales, and
this becomes particularly critical in the near-wall regions where small vortical
structures play a key role. One way to overcome this limitation is to introduce
Reynolds Average Navier-Stokes (RANS) modeling in these regions.

For this purpose, hybrid models have recently been proposed in the
literature (see for example [Travin et al., 1999], [Spalart et al., 1997],
[Labourasse and Sagaut, 2002], [Frohlich and von Terzi, 2008], [Vengadesan
and Nithiarasu, 2007], [Camarri et al., 2005]) in which RANS and LES ap-
proaches are combined together in order to obtain simulations as accurate as
in the LES case but at reasonable computational costs. These hybrid meth-
ods can be divided in zonal approaches, in which RANS and LES are used
in a-priori defined regions, and the so called universal models, which should
be able to automatically switch from RANS to LES throughout the compu-
tational domain. In the perspective of the simulation of massively separated
unsteady flows in complex geometry, as occur in many cases of engineering or
industrial interest, we are primarily interested in universal hybrid models. In
this context, we have proposed a new strategy for blending RANS and LES
approaches in a hybrid model.

We begin this section by recalling two different hybrid strategies that
are representative examples of universal RANS/LES hybridization before to
present the new hybrid model that we have proposed.

8.5.2 Detached eddy simulation

The original DES model [Spalart et al., 1997] is an extension of the Spalart-
Allmaras (S-A) RANS model, which we recall in short. In the S-A model,
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the turbulent eddy-viscosity is given by

νt = ν̃fv1, fv1 =
χ3

χ3 + C3
v1

, χ :=
ν̃

ν
(8.30)

∂ν̃

∂t
+ uj

∂ν̃

∂xj
= Cb1[1− ft2]S̃ν̃ +

1
σ
{∇ · [(ν + ν̃)∇ν̃] + Cb2|∇ν|2} −(8.31)

[
Cw1fw −

Cb1

κ2
ft2

](
ν̃

d

)2

+ ft1ΔU2 (8.32)

(8.33)

S̃ ≡ S +
ν̃

κ2d2
fv2, fv2 = 1− χ

1 + χfv1
(8.34)

where
S =≡

√
2ΩijΩij

Ωij ≡
1
2
(
∂ui

∂xj
− ∂uj

∂xi
)

fw = g

[
1 + C6

w3

g6 + C6
w3

]1/6

, g = r + Cw2(r6 − r), r ≡ ν̃

S̃κ2d2

ft1 = Ct1gt exp
(
−Ct2

ω2
t

ΔU2
[d2 + g2

t d2
t ]
)

ft2 = Ct3 exp(−Ct4χ
2).

Symbols σ, Cb1, Cb2, κ, Cw1, Cw2, Cw3, Cv1, Ct1, Ct2, Ct3, Ct4 hold for con-
stants. Symbol d holds for the distance to the closest surface.

The idea is to keep the S-A model near the wall and for the rest of compu-
tational domain, to transform the S-A model into a kind of Smagorinsky LES
model. To accomplish this, a modified distance function is introduced:

d̃ = min[d, CDESΔ], (8.35)

where CDES is a constant and Δ is the largest dimension of the grid cell in
question.

8.5.3 Limited numerical scales (LNS) approach

The basic idea of the LNS model [Batten et al., 2004] is to multiply the
Reynolds stress tensor, given by the RANS closure, by a blending function,
which permits to switch from the RANS to the LES approach.

Validation of this hybrid approach in a finite volume/finite element frame-
work on unstructured meshes can be found in [Camarri et al., 2005], [Koobus
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et al., 2007]. In these works, the standard k − ε model [Launder and Spald-
ing, 1979] is used for the RANS closure, in which the Reynolds stress tensor
is modeled as follows, by introducing a turbulent eddy-viscosity, μt:

Rij � μt

[
∂ũi

∂xj
+

∂ũj

∂xi
− 2

3
∂ũl

∂xl
δij

]

︸ ︷︷ ︸
ePij

−2
3
〈ρ〉kδij , (8.36)

where the tilde denotes the Favre average, the overbar time averaging, δij is
the Krönecker symbol and k is the turbulent kinetic energy. The turbulent
eddy-viscosity μt is defined as a function of k and of the turbulent dissipation
rate of energy, ε, as follows:

μt = Cμ
k2

ε
, (8.37)

in which Cμ is a model parameter, set equal to the classical value of 0.09 and
k and ε are obtained from the corresponding modeled transport equations
[Launder and Spalding, 1979].

The LNS equations are then obtained from the RANS equations by replac-
ing the Reynolds stress tensor Rij , given by equation (8.36), with the tensor
Lij :

Lij = αRij = αμtP̃ij −
2
3
〈ρ〉 (αk) δij , (8.38)

where α is the damping function (0 ≤ α ≤ 1), varying in space and time.
In the LNS model, the damping function is defined as follows:

α = min
{

μsgs

μt
, 1
}

(8.39)

in which μsgs is the SGS viscosity obtained from a LES closure model.
As discussed in [Batten et al., 2004], the model should work in the LES mode

where the grid is fine enough to resolve a significant part of the turbulence
scales, as in LES; elsewhere (α = 1), the k − ε RANS closure should be
recovered.

8.5.4 A second-generation hybrid model

In this subsection, we present an hybrid RANS/LES model that is
designed to combine two independent LES and RANS models.

As in Labourasse and Sagaut [Labourasse and Sagaut, 2002], the following
decomposition of the flow variables is adopted:

W = < W >︸ ︷︷ ︸
RANS

+ W c︸︷︷︸
correction

+WSGS
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where < W > are the RANS flow variables, obtained by applying an averag-
ing operator to the Navier-Stokes equations, W c are the remaining resolved
fluctuations (i.e. < W > +W c are the flow variables in LES) and WSGS are
the unresolved or SGS fluctuations.

Writing the Navier-Stokes equations for the averaged flow 〈W 〉 and applying
a filtering operator, the LES equations are obtained and we get first a closure
term given by a RANS turbulence model and then a SGS term. An equation
for the resolved fluctuations W c can thus be derived (see also [Labourasse and
Sagaut, 2002]).

The basic idea of the proposed hybrid model is to solve the equation for
the averaged flow in the whole domain and to correct the obtained averaged
flow by adding the remaining resolved fluctuations (computed through the
equation of the resolved fluctuations), wherever the grid resolution is adequate
for a LES. To identify the regions where the additional fluctuations must be
computed, we introduce a blending function, θ, smoothly varying between
0 and 1. When θ = 1, no correction to 〈W 〉 is computed and, thus, the
RANS approach is recovered. Conversely, wherever θ < 1, additional resolved
fluctuations are computed; in the limit of θ → 0 the full LES approach is
recovered. For θ going from 1 to 0, i.e. when, following the definition of the
blending function, the grid resolution is intermediate between one adequate for
RANS and one adequate for LES, the term containing the LES contribution in
the equation of the resolved fluctuations is damped through multiplication by
1− θ. Although it could seem rather arbitrary from a physical point of view,
this is aimed to obtain a smooth transition between RANS and LES. More
specifically, we wish to obtain a progressive addition of fluctuations when the
grid resolution increases and the model switches from the RANS to the LES
mode.

Summarizing, the ingredients of the proposed approach are: a RANS closure
model, a SGS model for LES and the definition of the blending function.

8.5.4.1 RANS closure

As far the closure of the RANS equations is concerned, the standard k − ε
model is a good basis.

Standard k − ε model

This is an eddy-viscosity model with a turbulent viscosity μt defined from
two extra variables (two-equation model) the turbulent kinetic energy k and
its dissipation rate ε, and given by expression (8.37). The Reynolds tensor,
the main term to model, is then given by equation (8.36).

The k and ε fields are evaluated by solving the two extra transport equa-
tions:
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∂〈ρ〉k
∂t

+ (〈ρ〉ũjk),j =
[(

μ +
μt

σk

)
∂k

∂xj

]

,j

+ Rij
∂ũi

∂xj
− 〈ρ〉ε , (8.40)

∂〈ρ〉ε
∂t

+ (〈ρ〉εũj),j =
[(

μ +
μt

σε

)
∂ε

∂xj

]

,j

+ Cε1

( ε

k

)
Rij

∂ũi

∂xj
− Cε2〈ρ〉

ε2

k
,

(8.41)

where constants Cε1, Cε2, σk and σε are defined by:

Cε1 = 1.44 Cε2 = 1.92 σk = 1.0 σε = 1.3

Historically these constants are deduced from the application of the model
to simple turbulent flows. They also can be mathematically derived by the
Renormalization Group method, see for example [Yakhot and Orszag, 1986].

Wall treatment by wall law The k,ε variables, the velocity and the tem-
perature can have stiff behavior and exhibit small scales near a wall. However,
their behavior presents in many case some common features, such as obeying
the logarithmic law for the tangent velocity component. In the theory and
in the k − ε formulation, this is a consequence of the equilibrium between
turbulent kinetic energy production and dissipation, which arises in a large
enough region close to wall. Wall law methods use this feature in order to
avoid the costly discretization of the wall behavior of these variables. Closer
to the wall, a different behavior needs be taken into account. This is well
modeled in Reichardt’s law (see for example [Hinze, 1959]) which writes in
terms of U+ and y+:

U+ =
U

Uτ
, (8.42)

y+ =
ρUτ

μ
y , (8.43)

where U is the statistical average of velocity. The friction velocity Uτ is given
by:

Uτ =
√

τp

ρ
. (8.44)

Then we set:

U+ =
1
κ

ln
(
1 + κy+

)
+ 7.8

(
1− e−

y+

11 − y+

11
e−0.33y+

)
. (8.45)

where κ = 0.41 si the von Kàrmàn constant.

A low Reynolds version The low Reynolds k− ε model proposed in [Gold-
berg et al., 1998], [Goldberg and Ota, 1990] is presented now. Let:

μt = Cμfμρ
k2

ε
(8.46)

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
37

 0
4 

M
ar

ch
 2

01
6 



254 Computational Fluid Dynamics

where Cμ = 0.09 is the usual coefficient and fμ a so-called damping function
(for damping the effect of model when closer to wall):

fμ =
1− e−AμRt

1− e−R
1/2
t

max(1, ψ−1) (8.47)

where ψ = R
1/2
t /Cτ . The turbulent Reynolds number Rt = k2/(νε)(ν = μ/ρ)

allows to avoid evaluating the distance to wall. Aμ = 0.01 is a constant. k et
ε are solution of:

∂〈ρ〉k
∂t

+ (〈ρ〉ũjk),j =
[(

μ +
μt

σk

)
∂k

∂xj

]

,j

+ Rij
∂ũi

∂xj
− 〈ρ〉ε , (8.48)

∂〈ρ〉ε
∂t

+ (〈ρ〉εũj),j =
[(

μ +
μt

σε

)
∂ε

∂xj

]

,j

+

(
Cε1Rij

∂ũi

∂xj
− Cε2〈ρ〉ε + E

)
T−1

τ ,

(8.49)

where Tτ is the realizable time scale:

Tτ =
k

ε
max(1, ψ−1), (8.50)

this time scale is k/ε for large values of Rt and thus of ψ, but tends to be
equal to the Kolmogorov scale Cτ (ν/ε)1/2 for Rt << 1. Constants are defined
as Cτ = 1.41, Cε1 = 1.42, Cε2 = 1.83, lastly:

E = ρAEV (εTτ )0.5ξ (8.51)

where AE = 0.3, V = max(
√

k, (νε)0.25) and ξ = max( ∂k
∂xi

∂τ
∂xi

, 0), with
τ = k/ε.

8.5.4.2 RANS and LES combination

For the LES mode, we wish to recover the variational multiscale approach
described in section 8.4. Thus, the Galerkin projection of the equations for
the averaged flow and for the correction term in the proposed hybrid model
become respectively:

(
∂〈W 〉

∂t
, ψl

)
+ (∇ · Fc(〈W 〉), ψl) + (∇ · Fv(〈W 〉), φl) =

−
(
τRANS(〈W 〉), φl

)
l = 1, N

(8.52)

(
∂W c

∂t
, ψl

)
+ (∇ · Fc(〈W 〉 + W c), ψl)− (∇ · Fc(〈W 〉), ψl)+

(∇ · Fv(W c), φl) = (1− θ)
[(

τRANS(〈W 〉), φl

)
−
(
τLES(W ′), φ′

l

)]
l = 1, N

(8.53)
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where τRANS(〈W 〉 is the closure term given by a RANS turbulence model, W ′

and φ′
l denote the small resolved component of 〈W 〉 + W c and φl as defined

in section 8.4, and τLES(W ′) is given by one of the SGS closures described in
section 8.3.

As a possible choice for θ, the following function is used in the present
study:

θ = F (ξ) = tanh(ξ2) (8.54)

where ξ is the blending parameter, which should indicate whether the grid
resolution is fine enough to resolve a significant part of the turbulence fluc-
tuations, i.e. to obtain a LES-like simulation. The choice of the blending
parameter is clearly a key point for the definition of the present hybrid model.
In the present study, different options are proposed and investigated, namely:
the ratio between the eddy-viscosities given by the LES and the RANS clo-
sures, ξV R = μs/μt, which is also used as a blending parameter in LNS [Batten
et al., 2004] and ξLR = Δ/lRANS , lRANS being a typical length in the RANS
approach, i.e. lRANS = k3/2ε−1 and, Δ measures the local mesh size.

To avoid the solution of two different systems of PDEs and the consequent
increase of required computational resources, equations (8.52) and (8.53) can
be recast together as:

(
∂W

∂t
, ψl

)
+ (∇ · Fc(W ), ψl) + (∇ · Fv(W ), φl) =

−θ
(

τRANS(〈W 〉), φl

)
− (1 − θ)

(
τLES(W ′), φ′

l

)
l = 1, N

(8.55)

where W stands now for 〈W 〉+ W c.
Clearly, if only equation (8.55) is solved, 〈W 〉 is not available at each time

step. Two different options are possible: either to use an approximation of
〈W 〉 obtained by averaging and smoothing of W , in the spirit of VMS, or to
simply use in equation (8.55) τRANS(W ). The second option is adopted here
as a first approximation.

8.5.5 The interest in hybridizing RANS and VMS-LES

In this numerical part, we evaluate the performance of our new hybrid
model for the simulation on unstructured grids of the flow around a circular
cylinder. The obtained numerical results are contrasted with those predicted
by RANS and various hybrid models, and compared with experimental data.

Flow around a circular cylinder (Hybrid RANS/LES) The new pro-
posed hybrid model (Fluctuation Correction Model, FCM) has been applied to
the simulation of the flow around a circular cylinder at Re = 140000 (based on
the far-field velocity and the cylinder diameter). The domain dimensions are:
−5 ≤ x/D ≤ 15, −7 ≤ y/D ≤ 7 and 0 ≤ z/D ≤ 2 where x, y and z denote
the streamwise, transverse and spanwise direction, respectively. The cylinder
of unit diameter is centered on (x, y) = (0, 0). Two grids have been used, the

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
37

 0
4 

M
ar

ch
 2

01
6 



256 Computational Fluid Dynamics

first one (GR1) has 4.6×105 nodes, while the second one has (GR2) 1.4×106

nodes. Both grids are composed of a structured part around the cylinder
boundary and a unstructured part in the rest of the domain. The inflow con-
ditions are the same as in the DES simulations of Travin et al. [Travin et al.,
1999]. In particular, the flow is assumed to be highly turbulent by setting the
inflow value of eddy-viscosity to about 5 times the molecular viscosity as in
the DES simulation of Travin et al. [Travin et al., 1999]. This setting corre-
sponds to a free-stream turbulence level u′2/U0 (where u′ is the inlet velocity
fluctuation and U0 is the free-stream mean velocity) of the order of 4%. As
discussed also by Travin et al. [Travin et al., 1999], the effect of such a high
level of free-stream turbulence is to make the boundary layer almost entirely
turbulent also at the relatively moderate considered Reynolds number. For
the purpose of these simulations, the Steger-Warming conditions [Steger and
Warming, 1981a] are imposed at the inflow and outflow as well as on the up-
per and lower surface
(y = ± Hy). In the spanwise direction periodic boundary conditions are
applied and on the cylinder surface no-slip boundary conditions are set.

The RANS model is that based on the Low-Reynolds approach [Goldberg
et al., 1998]. The LES closure is based on the VMS approach (see section 8.4).
The SGS models used in the simulations are those described in section 8.3.
The V6 scheme has been used and the numerical parameter γs, which con-
trols the amount of numerical viscosity introduced in the simulation, has been
set equal to 0.2. The main parameters characterizing the simulations carried
out with the FCM are summarized in Table 8.10. The main flow bulk pa-

Simulation Blending parameter Grid LES-SGS model
FCM1 VR GR1 Smagorinsky
FCM2 LR GR1 Smagorinsky
FCM3 LR GR2 Smagorinsky
FCM4 LR GR1 Vreman
FCM5 LR GR1 Wale

Table 8.10: Supercritical flow past a cylinder. Simulation name and their
main characteristics. VR stands for viscosity ratio and LR for length ratio.

rameters obtained in the present simulations are summarized in Table 8.11,
together with the results of DES simulations in the literature and some exper-
imental data. Let us analyze, first, the sensitivity to the blending parameter,
by comparing the results of the simulation FCM1 and FCM2. The results
are practically insensitive to the definition of the blending parameter. Con-
versely, the grid refinement produced a decrease of C̄d and a delay in the
boundary layer separation (compare FCM2 and FCM3). However, note that,
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Data from Re Cd C′
l St lr θsep

FCM1 1.4 105 0.62 0.083 0.30 1.20 108
FCM2 1.4 105 0.62 0.083 0.30 1.19 108
FCM3 1.4 105 0.54 0.065 0.33 1.13 115
FCM4 1.4 105 0.65 0.077 0.28 1.14 109 (99)
FCM5 1.4 105 0.66 0.094 0.28 1.24 109 (100)

Numerical data
(DES)

[Travin et al., 1999] 1.4 105 0.57-0.65 0.08-0.1 0.28-0.31 1.1 -1.4 93-99
[Lo et al., 2005] 1.4 105 0.6-0.81 – 0.29-0.3 0.6-0.81 101-105

Experiments
[James et al., 1980] 3.8 106 0.58 – 0.25 – 110
[Achenbach, 1968] 5 106 0.7 – – – 112

[Schewe, 1983] 8 106 0.52 0.06 0.28 – –

Table 8.11: Supercritical flow past a cylinder. Main bulk flow quantities.
Cd denotes the mean drag coefficient, C′

l the r.m.s. of the lift coefficient, St
the Strouhal number, lr the mean recirculation length: the distance on the
centerline direction from the surface of the cylinder to the point where the
time-averaged streamwise velocity is zero, and θsep the separation angle.

for unstructured grids, the refinement changes the local quality of the grid (in
terms of homogeneity and regularity of the elements) and this may enhance
the sensitivity of the results.

The agreement with the DES results is fairly good. As for the comparison
with the experiments, as also stated in Travin et al. [Travin et al., 1999], since
our simulations are characterized by a high level of turbulence intensity at
the inflow, it makes sense to compare the results with experiments at higher
Reynolds number, in which, although the level of turbulence intensity of the
incoming flow is very low, the transition to turbulence of the boundary layer
occurs upstream separation. The agreement with these high Re experiments
is indeed fairly good, as shown in Table 8.11 and in Figure 8.20. The behav-
ior of the separation angle requires a brief discussion. There is a significant
discrepancy between the values obtained in DES and the experimental ones.
For our simulations, the values of θsep shown in Table 8.11 are estimated by
considering the point at which the Cp distribution over the cylinder becomes
nearly constant (see e.g. Figure 8.20), as usually done in experimental stud-
ies. Indeed, the reported values are generally in better agreement with the
experiments than those obtained by DES. However, if we estimate the separa-
tion angle from the streamlines of the average or instantaneous velocity fields,
significantly lower values are found (reported in parentheses in Table 8.11 for
the simulations FCM4 and FCM5); these values are closer to those obtained
by DES. Finally, the model works in RANS mode in the boundary layer and
in the shear-layers detaching from the cylinder, while in the wake a full LES
correction is recovered. This is shown, for instance, in Figure 8.21, in which
the instantaneous isocontours of spanwise vorticity obtained in the simulation
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FIGURE 8.20: Supercritical flow past a cylinder. C̄p on the cylinder surface
compared to numerical and experimental results.

FCM2 are reported, to which the isolines of the blending function θ = 0.1 and
θ = 0.9 are superimposed.

As for the behavior with grid refinement, it is, at least qualitatively, correct.
Indeed, the extension of the zone in the detaching shear-layers in which the
model works in RANS mode decreases with grid refinement, as shown for in-
stance in Figure 8.22, reporting a zoom near the cylinder of the instantaneous
isocontours of the blending function θ, obtained in the simulations FCM2 and
FCM3.

8.6 Concluding remarks

Some modern methods for the prediction of separated flows around blunt
(possibly complex) geometries have been presented in this chapter. The chap-
ter recall the main steps followed in our research activity to integrate a tur-
bulence modeling relying entirely or partially on the large-eddy simulation
approach into an industrial-type numerical solver.

Our starting point was indeed a numerical solver for compressible flows
on unstructured grids, through a mixed finite-element/finite-volume formu-
lation, designed and validated for RANS simulations. The first main action
was to move to a LES approach in order to deal with massively separated
and highly unsteady 3D flows for which the RANS approach encounters ac-
curacy problems. This carries some issues to be tackled. First of all, the
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FIGURE 8.21: Supercritical flow past a cylinder. Instantaneous isocontours
of spanwise vorticity (simulation FCM2). The black and white lines are the
isolines of the blending function θ = 0.1 and θ = 0.9.

FIGURE 8.22: Supercritical flow past a cylinder. Instantaneous isocontours
of the blending function θ. Simulations FCM2 (a) and FCM3 (b).
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numerical method has to be adapted to the new turbulence treatment. The
most critical point is the possible negative interaction between the LES clo-
sure model and the numerical viscosity, required for numerical stability of our
co-located discretization. Our recommendation is to keep a physically-based
closure model and to modify the numerical MUSCL reconstruction in order to
obtain a numerical viscosity proportional to high-order (preferably 6th order)
spatial derivatives. In this way, the numerical dissipation is concentrated on
a narrow band of the smallest resolved scales and thus its interaction with
the SGS dissipation, usually proportional to second-order spatial derivatives,
is reduced. Moreover, a coefficient controls the numerical dissipation to the
smallest amount required to stabilize the simulation.

As for SGS models, some difficulties due to the use of classical models on
unstructured grids appear. For instance, the dynamic version of the Smagorin-
sky model gives, as generally found in the literature, more accurate results
than the Smagorinsky model, but results in a dramatic increase in the com-
putational cost, much larger than that observed for structured grids. This
leads to prefer the variational multiscale formulation, which was adapted to
the present mixed finite-element/finite-volume discretization on unstructured
grids. As shown in the present chapter, this approach gives results as ac-
curate as the dynamic Smagorinsky LES model but at computational costs
comparable with those of the classical Smagorinsky LES model. Further, a
paramount interest of VMS-LES is its lower damping of the largest resolved
flow eddies.

Another critical issue for the use of LES for the simulation of flows at high
Reynolds numbers is the near wall resolution. Indeed, the grid has to be fine
enough to resolve a significant part of the turbulent scales, and this becomes
particularly critical in the near-wall regions. This motivates to design new
hybrid models, in which RANS and LES approaches are combined.

A new strategy for blending RANS and LES has been described here. It is
based on a decomposition of the flow variables in a RANS part and a correction
part, which takes into account the resolved fluctuations. To identify the zones
in which the correction must be computed and added to the RANS part, a
blending function is introduced so that the model works in RANS mode where
the grid is coarse and tends with continuity to LES as the grid refinement
becomes adequate. For the closure of the LES part, the VMS approach has
been integrated in the proposed hybridization strategy. As a first choice, we
use a simplified version of the model in which only one set of unknowns is
computed. The proposed method has been applied to the hybrid simulation
of a flow around a circular cylinder.

Through this chapter we have tried to show how the result of a computation
can be assessed. The predictivity of LES methods remains a difficult issue,
addressed in regular conferences, see [Meyers et al., 2008]. Modeling error
remains relatively large. We have shown that mesh convergence is mandatory,
while needing a careful analysis. However, through the combined use of a
robust, but yet accurate enough, numerics, of unstructured grids and of VMS-
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LES or hybrid RANS/LES models, the accurate prediction of a large class
of industrial turbulent flows, including those characterized by massive 3D
separation, is certainly within the reach of present numerical tools.
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9.1 Introduction

Free surface flows arise in numerous applications of many fields of physics
or engineering. A list of applications includes (but is not limited to) fluid-
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structure interactions for blow flow modeling [Guidoboni et al., 2009], [Quar-
teroni and Formaggia, 2003], bubbles flow [Bunner and Tryggvason, 2002a],
[Kuzmin and Turek, 2004], [Sussman et al., 2007], mold casting [Caboussat
et al., 2005], [Cummins et al., 2005], [François et al., 2006], [Maronnier et al.,
1999], glaciers [Jouvet et al., 2009], [Jouvet et al., 2008], [Rappaz and Reist,
2005], [Picasso et al., 2004], visco-elastic material such as glue or honey [Bonito
et al., 2006], [Shelley et al., 1997], or aluminum processes [Flück et al., 2009].
Among all these applications, the common denominators are certainly the
complicated behavior of the interfaces between the different phases, and the
non-trivial coupling between various physical models on each side of those
interfaces.

One closely related topic is the modeling of particle flow, that also involves
the interaction between two phases [Glowinski et al., 2001], [Li and Ito, 2006],
[Peskin, 1980]. One particular field of applications is again the numerical
simulation of biological systems, such as red blood cells [Pan and Wang, 2009]
or valves [de Hart, 2002].

For these various reasons, the modeling of multi-phases flow has been a
very active field of research for the last decades, with an impressive amount
of simulations and publications. We focus in this chapter on two particular
applications: the modeling of liquid flows in the field of mold casting on
the one hand, and the modeling of ice flows such as glaciers on the other
hand. At first glance, these two applications have nothing in common. Mold
casting usually involves liquid flows that propagate in complex geometries,
with high Reynolds numbers, and many topological changes. Glaciers are
modeled by almost stationary models, with very low Reynolds numbers and
high viscosities. In both cases, the position of the interface is a crucial point
to guarantee accurate results.

The literature contains numerous models for complex liquid-gas free sur-
faces problems, see e.g. [François et al., 2006], [Scardovelli and Zaleski, 1999].
In most of the numerical models [Bunner and Tryggvason, 2002a], [Codina
and Soto, 2002], [Li and Renardy, 2000], [Sussman et al., 1998], [Sussman and
Puckett, 2000], [Unverdi and Tryggvason, 1992], it has been assumed that the
behavior of the liquid-gas mixture is that of an incompressible two-phase flow.
Compressibility effects in two-phase flows have been considered e.g. in [Ab-
grall et al., 2003], [Abgrall and Saurel, 2003], [Shyue, 1999b], while methods
mixing an incompressible liquid and a compressible gas have been proposed
in [Caiden et al., 2001], [Fedkiw et al., 1998]. For ice flows, involving large vis-
cosity, the influence of the surrounding medium is less important and usually
considered as vacuum [Jouvet et al., 2008], [Maronnier et al., 1999], [Maron-
nier et al., 2003].

When dealing with changes of topologies of the fluid domain (formation of
bubbles, breakage of ice), Eulerian methods are usually adopted. Such two-
phases flows are computationally expensive in three space dimensions since
(at least) both the velocity and pressure must be computed at each grid point
of the whole multi-phases domain.
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Numerical algorithms for free surface flow 265

The purpose of this chapter is to present a mathematical and numerical
framework that is able to include both the fast filling of liquid flow, and the
slow evolution of ice flow. The features of the model include a volume-of-fluid
method to track a liquid domain that can exhibit complex topology changes,
and conserve the mass of ice/liquid. The incompressible liquid can be modeled
either as a Newtonian or as a non-Newtonian fluid, by introducing nonlinear
implicit laws for the fluid viscosity. In both cases, the liquid phase is initially
surrounded by vacuum. Interfacial effects, such as the external pressure in
the surrounding gas, or the surface tension effects, or both, can be taken into
account on the liquid-gas free surface in a second step.

The novel numerical method is based on a time splitting algorithm [Glowin-
ski, 2003] and a two-grids method [Hackbusch, 1985]. This original approach
allows the various phenomena to be decoupled. Stabilized finite element tech-
niques [Franca and Frey, 1992] are used to solve the diffusion phenomena
using an unstructured mesh of the cavity containing the liquid. A forward
characteristics method [Pironneau, 1989] on a structured grid allows advec-
tion phenomena to be solved efficiently. The complete description of the
model can be found in [Bonito et al., 2006], [Caboussat, 2006], [Caboussat
et al., 2005], [Jouvet et al., 2009], [Jouvet et al., 2008], [Maronnier et al.,
1999], [Maronnier et al., 2003].

The chapter is organized as follows. Section 9.2 is a brief review of numerical
methods for two-phases flow with free boundaries. An introduction to ice
dynamics is given in Section 9.3. Section 9.4 introduces the two models,
namely the model for incompressible liquid flows surrounded with vacuum and
the model of ice flows for glacier simulations. Despite having very different
behaviors, both models are incorporated into the same numerical framework,
that allows to decouple advection and diffusion operators. A time splitting
scheme is described in Section 9.5, and a multi-grids method is presented
in Section 9.6. Approximation of interfacial effects, i.e. the effects of the
surrounding gas and the surface tension effects, are discussed in Section 9.7.
Finally, a wide range of numerical results are presented. Results of simulations
of liquid fluids are presented in Section 9.8, while simulations and predictions
of various glaciers based on real data are presented in Section 9.9.

9.2 A short review on two-phases flow with free surfaces

Free boundary problems are situations when the boundary of the domain
of interest is actually unknown, or when there exists an interface between two
(liquid) phases. Numerical methods for solving free surface problems have nu-
merous engineering applications. Indeed, problems with free surfaces appear
e.g. in fluid-structure interactions [Grandmont and Maday, 2000], [Quaini

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
48

 0
4 

M
ar

ch
 2

01
6 



266 Computational Fluid Dynamics

and Quarteroni, 2007], blood flows in moving arteries [Guidoboni et al.,
2009], [Quarteroni and Formaggia, 2003], heart simulations [Peskin, 1977], [Pe-
skin, 1980], motion of glaciers [Jouvet et al., 2009], [Jouvet et al., 2008], [Pi-
casso et al., 2004], visco-elastic flows [Bonito et al., 2006], [Renardy et al.,
2004], [Shelley et al., 1997], mold filling [Codina and Soto, 2002], [François
et al., 2006], [Kothe et al., 1998], bubbles and droplets simulations [Kuzmin
and Turek, 2004], [Popinet and Zaleski, 1999], [Renardy et al., 2003], naval
engineering [Parolini and Quarteroni, 2004], or particle flows [Glowinski et al.,
2001] to cite a few.

In order to account for the various characteristics of each of these problems,
different numerical techniques have been introduced in the past decades. A
short survey of some of them is the purpose of the following. From the theoret-
ical point of view, the analysis of moving and free boundary problems remains
complicated, due to the deeply nonlinear nature of these problems. A discus-
sion of the state-of-the-art of the literature in that direction is not included
here. Some partially incomplete information can be found in [Caboussat,
2005] and references therein. From the numerical point of view, the proposed
methods have to balance between accuracy and computational efficiency, the
latter being particularly important when dealing with industrial applications.

In the following, we focus mainly on two-phases free surface flows, namely
a liquid and a gas enclosed in a bounded cavity denoted by Λ. In mold filling
problems or metallurgy problems, large modifications in the topology of the
liquid domain, complex geometries, large Reynolds numbers and turbulent
flow can be expected. For ice flow in glaciers, the liquid domain does not
suffer strong deformations, and the viscosity of the flow is higher. Despite
these very different behaviors, an accurate approximation of the position of
the surface of the liquid is required in both cases. In the following, a short
review on the techniques for the simulation of free surface flow is given. This
review is not exhaustive, but focuses on the topics developed more precisely
in this chapter.

9.2.1 Incompressible and compressible media

In a two-phases flow, we can usually assume that both media are either
incompressible, see e.g. [Bänsch, 2001], [Boffi and Gastaldi, 2003], [Sussman
et al., 1998], or compressible, see e.g. [Abgrall et al., 2003], [Abgrall and Saurel,
2003], [Shyue, 1999a], [Shyue, 1999b]. In the incompressible case, the velocity
v and pressure p usually satisfy the incompressible Navier-Stokes equations in
the whole cavity and in a given time interval:

ρ
∂v
∂t

+ ρ(v · ∇)v −∇ · σ = f ,

∇ · v = 0,

where σ is the stress tensor, ρ the density (constant by material) and f the
external forces. The viscosity is denoted by μ. If the fluid is a Newtonian fluid,
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Numerical algorithms for free surface flow 267

σ = 2μD(v) + pI, where D(v) =
1
2
(∇v + ∇vT ) is the rate of deformation

tensor.
In the compressible case, the unknowns are the velocity v, the pressure p

and the total energy per unit volume E. They usually satisfy the compressible
Euler equations in the whole liquid-gas domain. In both approaches, the same
equations are solved in the whole domain but with different physical quantities
in each phase.

One can also assume that an incompressible liquid is interacting with a
compressible gas, see e.g. [Caboussat et al., 2005], [Caiden et al., 2001], [Fed-
kiw et al., 1998]. One typical example is to consider the (incompressible)
Navier-Stokes equations in the liquid domain, and the Euler equations in the
gas domain. In all cases, interfacial effects can be added on the free surface
between media, and initial and boundary conditions are added to make the
mathematical problem well-posed. Such models are expensive from a com-
putational point of view since the conservation equations are solved in the
whole two-phases domain. In contrast with these approaches, our model al-
lows the computation to be performed only in the liquid region, thus reducing
the computational complexity.

9.2.2 Eulerian vs. Lagrangian techniques

Independently of the nature of the flow (incompressible vs. compressible),
a numerical procedure must be added to compute the motion of the interfaces
between phases. Two main classes of methodologies can be distinguished: the
Lagrangian methods and the Eulerian methods. The Lagrangian methods
(including the ALE methods) are based on the displacement of a system of
coordinates at each point of the free surface to track the displacement of the
interface between the two phases. Eulerian methods introduce a new variable
in the model, denoted here by ϕ, to track the presence or absence of one of
the two phases in the whole domain, see Figure 9.1. Some reviews can be
found e.g. in [Hou, 1995], [Kothe et al., 1998], [Scardovelli and Zaleski, 1999].

9.2.3 Lagrangian methods

Lagrangian methods, and Arbitrary Lagrangian Eulerian (ALE) methods
[Maury, 1999], [Picasso et al., 2004], [Flück et al., 2009], are mainly used when
the displacement of the liquid domain is small, and when large distortions or
changes of topology of the domain are not expected. A review of Lagrangian
techniques may be found for instance in [Kothe, 1998].

In Lagrangian methods, every point of the liquid domain (i.e. every parti-
cle of liquid) is moved with the liquid velocity. The interface is stretched to
describe the position of the liquid domain. From the discrete viewpoint, the
vertices of the mesh are moving at each time step, as illustrated in Figure 9.2.
If the deformation of the liquid domain is large, for instance for high Reynolds
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moving mesh

fixed mesh

interface

reconstruction of
the interface

ϕ = 0

ϕ = 1

FIGURE 9.1: Two categories of methods for the tracking of free surfaces. Left:
Lagrangian methods, right: Eulerian methods (volume-of-fluid formulation).

numbers or for flows with complex topological shapes, the stretching of the
domains can lead to degenerate elements of the mesh. This situation is illus-
trated in Figure 9.2 in the case of a breaking wave: when the wave breaks,
the topology of the liquid domain is changed. The mesh is distorted, its con-
nectivity rules are no longer valid, the computation is impossible without a
complete remeshing of the domain. This requires a total or partial remeshing
of the domain (rezoning), which can be computationally very expensive.

On the other hand, Lagrangian methods offer a very good approximation
of the interface, since the mesh always matches with the interface between
the two media. Indeed, the interface is approximated by a piecewise linear
curve and the accuracy on the numerical approximation of the boundary only
depends on the mesh size. Boundary conditions, such as interfacial effects,
are enforced easily at the grid points lying on the boundary.

FIGURE 9.2: Lagrangian methods and moving meshes: between two time
steps, the mesh in the liquid domain may be stretched until degeneracy.
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Numerical algorithms for free surface flow 269

9.2.4 Arbitrary Lagrangian Eulerian (ALE) methods

The Arbitrary Lagrangian Eulerian method has been introduced in [Hirt
et al., 1974] to deal with small deformations. One important field of investi-
gations for these methods is fluid-structure interactions [Gerbeau and Lelièvre,
2009]: structure dynamics are typically described in a Lagrangian frame of
reference, while fluid equations can be written in Eulerian coordinates. The
moving domain is denoted by Ωt and given by the structure dynamics. It is
mapped at each time t into a reference domain, denoted by Ω0, by an arbitrary
mapping At : Ω0 → Ωt, where x = At(ξ), ξ ∈ Ω0. Introducing the notion

of domain velocity w =
∂At

∂t
(also called mesh velocity), a generic advection

equation or conservation law in the moving frame of reference, for instance

∂v
∂t

+∇F (v) = 0, (9.1)

defined on Ωt, can be written under an ALE form, that is

∂v
∂t

∣∣∣∣
ξ

−w∇v +∇F (v) = 0, (9.2)

thanks to the relation
∂v
∂t

∣∣∣∣
ξ

=
∂v
∂t

∣∣∣∣
x

+ w∇v. (9.3)

The mesh velocity w is distinguished from the motion of the liquid particles.
The governing equations are modified and written on a fixed reference domain
by adding the advection term (9.3). A careful choice of this velocity may
prevent the elements of the mesh to become singular. Figure 9.3 illustrates
the ALE method in the case of fluid-structure problems; the moving domain
allows to take into account the flexibility of the structure of the artery without
following every particle of liquid going through the section of it. The radius
of the artery varies but the inflow and outflow sections are fixed.

Ω0

Ωt

FIGURE 9.3: Arbitrary Lagrangian Eulerian methods. In full line: deformed
domain, in dashed line: reference domain.
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270 Computational Fluid Dynamics

ALE methods have been widely used in the modeling of flow with small
or slow domain deformation, i.e. blood flow [Boffi and Gastaldi, 2004],
[Guidoboni et al., 2009], motions of glacier [Kirner, 2007], [Picasso et al.,
2004], fluid dynamics in aluminum cells [Gerbeau et al., 2003], [Flück et al.,
2009] and elasticity. For instance, in [Picasso et al., 2004], the mesh is moved
at each time step to be adjusted to the height of the glacier, but the projection
of the mesh on the bedrock surface on which the ice is lying is unchanged.
Again changes of topology of the liquid domain cannot be dealt with. In
aluminum cells, the magneto-hydrodynamic problem provides numerous dif-
ficulties such as the computation of the surface tension effects [Gerbeau and
Lelièvre, 2009], [Flück et al., 2009], or the formation of bubbles of gas in the
aluminum bath, [Romerio et al., 2005].

9.2.5 Particles methods

The particles methods are mesh-free methods that allow to track the motion
of the liquid domain. The initial particle in cell method (PIC) has been intro-
duced in the sixties [Harlow, 1964]. Then front-tracking methods (or surface
tracking methods in two dimensions, see for instance [Torres and Brackbill,
2000]) have been derived from the original PIC method. The common goal is
the capture the interface between the two media by using mass-free particles
which are moving with the liquid velocity, independently of any mesh. This
means that, for each marker j, its position xj satisfies a Lagrangian equation
dxj/dt = v(xj), where v is the liquid velocity.

Among them, the volume markers method introduces markers in the whole
liquid domain, while the surface markers method introduces markers only
on the interface between the liquid and the gas, as illustrated in Figure 9.4.
The most famous volume markers method is the markers and cells (MAC)
method [Harlow and Welch, 1965]. Several other methods have been inspired
from the MAC method, see e.g. [McKee et al., 2004] for a review. A cell filled
with volume markers is a liquid cell, while an cell empty of markers belongs to
the gas domain. Surface markers methods have been introduced for instance
in [Kothe, 1998], [Scardovelli and Zaleski, 1999]. The interface is defined by
a set of particles, see Figure 9.4 (right). Examples may be found in [Aulisa
et al., 2004], [Popinet and Zaleski, 1999].

These methods to track the interface are usually mixed with Eulerian meth-
ods [Bunner and Tryggvason, 2002a], [Bunner and Tryggvason, 2002b], [Kim
and Lee, 2003], [Kim et al., 2003], [Shin and Juric, 2002], to capture details of
the liquid front on finer scales (compared to the size of the fixed mesh) while
keeping the advantages of the Eulerian approaches (see below) [Tryggvason
et al., 2001]. Generally speaking, surface markers are more used than volume
markers since they allow to track exactly the location of the interface with a
smaller computational cost.
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Numerical algorithms for free surface flow 271

FIGURE 9.4: Markers methods. Left: volume markers method, the liquid do-
main is given by massless particles; right: surface markers: massless particles
are located only on the free surface.

9.2.6 Immersed boundary methods

When dealing with a structure embedded within the flow, Lagrangian-type
methods can be used to track the position of the structure. The immersed
boundary methods, originally developed in [Peskin, 1977], [Peskin, 1980] for
cardiovascular flows, are examples of such methods. While the incompress-
ible (or compressible) equations are solved in the whole domain in Eulerian
variables, a Lagrangian point of view is used for the simulation of an embed-
ded flexible structure. The immersed structure is discretized as a sequence of
points Xj . The situation is illustrated in Figure 9.5.

Xj

v(Xj)

FIGURE 9.5: Immersed boundary methods. The structure immersed in the
fluid is discretized by a finite number of points Xj . The structure exerts a
force on the surrounding fluid; conversely the structure is advected with the
fluid velocity.
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272 Computational Fluid Dynamics

The structure is exerting a force on the fluid. Each of the vertices Xj of this
discretization therefore influences the flow in a neighborhood of its position
via a local force. The force exerted at the point x of the fluid is typically
characterized by the sum of all local contributions:

F(x) =
∑

|Xj−x|<ε

F(Xj)Dε(x−Xj),

where Dε(·) is a numerical approximation of the Dirac δ-function and ε is
a neighborhood size, around the embedded interface [Pan and Wang, 2009].
This expression implies that all the vertices lying in a neighborhood of size
ε of the point x in the fluid contribute to the force on the fluid. Conversely,
those points Xj describing the flexible structure are moving in the fluid along
the characteristics. The velocity of those points is obtained by interpolation
of the velocity of the fluid in a neighborhood of the point Xj . For instance,
one way to define the interpolated velocities [Pan and Wang, 2009] can be as
a weighted average:

V(Xj) =
∑

x:|Xj−x|<ε

ε2v(x)Dε(Xj − x).

Applications to the modeling of (flexible) red blood cells have been presented
in [Pan and Wang, 2009], [Tsubota et al., 2006], [Wang et al., 2009].

Eulerian methods introduce an additional unknown function in the whole
cavity in order to track the presence of liquid or gas, together with a corre-
sponding additional equation. The level sets methods, see [Codina and Soto,
2002], [Osher and Fedkiw, 2001], [Osher and Fedkiw, 2003], [Sussman et al.,
1999], the volume-of-fluid (VOF) methods, see [Hirt and Nichols, 1981], [Rider
and Kothe, 1998], [Xiao and Ikebata, 2003], or the pseudo-concentration meth-
ods, see e.g. [Thompson, 1986], [Unverdi and Tryggvason, 1992], are the most
important examples.

Let us introduce here some notations. Let T > 0 denote a finite time and
Λ a bounded cavity. Let Ωt ⊂ Λ, t ∈ (0, T ) denote the liquid domain. The
gas domain is defined by Λ\Ωt and the liquid-gas interface is denoted by Γt.
The velocity and pressure are denoted by v and p. The additional unknown
used to track the presence or not of liquid is denoted by ϕ : Λ× (0, T )→ R.

9.2.7 Level sets methods

In the level sets method, the free boundary is defined by the level line of a
smooth function ϕ:

Γt = {x ∈ Λ : ϕ(x, t) = 0} , t ∈ (0, T ).

The level set function is assumed to be positive in the liquid, and negative in
the gas:
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ϕ(x, t) =

⎧⎨
⎩

> 0, if x ∈ Ωt,

< 0, if x ∈ Λ\Ωt,
= 0, if x ∈ Γt.

The main advantage of the level sets approach is the regularity of the function
ϕ(·, t) (typically ϕ(·, t) is C2(Λ) to approximate surface tension effects). It
allows to accurately approximate interfacial effects on Γt, and capture motions
of smooth surfaces. Figure 9.6 visualizes such a situation in two dimensions.

Ωt

Γt

ϕ = 0

ϕ = 1
ϕ = 2

ϕ = −1

FIGURE 9.6: Level sets methods. The interface between the liquid and the
gas is the zero level line of the function ϕ. The level lines corresponding to
the negative values of ϕ are in the gas domain.

Without any addition of mass, the motion of the interface is obtained by
advecting the values of ϕ with velocity field v. Under the assumption that
each particle of liquid moves with the liquid velocity along the characteristic
curves and that each particle on the interface Γt remains on Γt, ϕ satisfies (in
a weak sense):

∂ϕ

∂t
+ v · ∇ϕ = 0. (9.4)

More precisely, v(X(t), t) = v(X(0), 0), where X(t) is the trajectory of a fluid
particle, thus X′(t) = v(X(t), t). Note that this relation requires to define
a velocity v in both fluids, i.e. on both sides of the interface. When only
the normal velocity to the interface is known (as it is the case in dendritic
growth for instance [Burman et al., 2004]), (9.4) is transformed by setting

vN = v · ∇ϕ

||∇ϕ|| to obtain an Hamilton-Jacobi equation:

∂ϕ

∂t
+ vN ||∇ϕ|| = 0. (9.5)

The quantity vN denotes the normal velocity along the gradient of ϕ. The
numerical solution of the Hamilton-Jacobi equation (9.5) and the compu-
tation of stable solutions is a difficult task, and usually requires high order
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algorithms. The ENO (essentially non-oscillatory) initially introduced by [Os-
her and Sethian, 1988], and the WENO (weighted essentially non-oscillatory)
schemes, see for instance [Jiang and Peng, 2000], are based on high order
finite differences approximations of each of the derivatives appearing in (9.5).
Solution methods for the stationary Hamilton-Jacobi equation are based on
fast marching methods [Sethian, 1999]; they are closely related to numerical
methods for the Eikonal equation [Dacorogna et al., 2003].

One well-known drawback of the level sets approach is the deterioration of
the function ϕ. When the function ϕ becomes flat in the neighborhood of the
free surface, the accuracy of the interface decreases dramatically. One remedy
consists in rescaling the function, so that it remains a distance function (the
function ϕ(x, t) represents the signed distance between a point x of the domain
and the interface at each time step).

Several techniques to re-build a function with such properties may be found
in the literature, see e.g. [Cummins et al., 2005], [Gomes and Faugeras, 2000],
but none of them can guarantee automatically the conservation of the mass
of liquid. Among all these techniques, let us mention a standard technique
for regularizing the level set function ϕ, see for example [Burger and Osher,
2005]. It consists in reinitializing it periodically by solving

∂ϕ

∂t
+ sign(ϕ0) (‖∇ϕ‖ − 1) = 0, (9.6)

with initial condition ϕ(x, 0) = ϕ0(x), which admits as a stationary solution
the signed distance to the initial interface {x ∈ Λ : ϕ0(x) = 0}. Here, ϕ0

plays the role of the level set function before regularization. The equation (9.6)
is again a first-order Hamilton-Jacobi equation and can be solved numerically
using the same methods as the ones discussed above.

REMARK 9.1 Pseudo-concentration methods One variation of the
level set approach is the pseudo-concentration method [Ceniceros and Roma,
2004], [Thompson, 1986], [Unverdi and Tryggvason, 1992]. The free boundary
Γt is also defined by a level set of a smooth function in the neighborhood
of the interface; this function has one fixed value in one media and another
in the other media and is smoothed in a neighborhood of the interface. For
instance

ϕ(x, t) =

⎧⎨
⎩

γ, if d(x) > γ,
−γ, if d(x) < −γ,
d(x) if |d(x)| < γ,

(9.7)

where d(x) is the signed distance between x and the interface and γ is a fixed
threshold.

REMARK 9.2 In both the level sets methods and the pseudo-
concentration methods, ϕ is smooth around the interface. This property
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facilitates the numerical approximation of interfacial effects, since the nor-
mal vector n and the curvature κ of the interface may be expressed by

n(x, t) = − ∇ϕ

||∇ϕ|| , κ(x, t) = −∇ · ∇ϕ

||∇ϕ|| . (9.8)

Such interfacial effects are crucial in slow moving processes, such as bubbly
flows [Tryggvason et al., 2001], [Josserand and Zaleski, 2003] or some vis-
coelastic flows [Renardy et al., 2004], [Shelley et al., 1997].

9.2.8 Volume-of-fluid methods

In the volume-of-fluid method (VOF), the fluid domain is tracked by its
characteristic function (or volume fraction of fluid), that is

ϕ(x, t) =
{

1, if x ∈ Ωt,
0, otherwise. (9.9)

This function jumps over the interface. In most of the VOF methods, it
satisfies the advection equation (9.4) when the velocity is continuous across
the interface, see for instance [Kothe et al., 1999], [Rider and Kothe, 1998],
since, from a Lagrangian point of view, the function ϕ is constant along the
trajectories of the fluid particles. The mass of fluid is conserved as long as
the numerical scheme is a discrete form of a conservative advection equation.
The volume-of-fluid method is also called volume tracking method, since it is
able to capture rather than follow the interface. The VOF method implicitly
takes into account the possible changes of topology of the liquid domain.

The drawback of the volume-of-fluid methods is for the approximation of
the interfacial effects; for instance, the computation of the curvature of the
interface is difficult since it involves the derivatives of the non-smooth function
ϕ at the interface. Therefore some regularization is needed. Moreover, since ϕ
is discontinuous at the interface, numerical diffusion is added. One category of
techniques tends to regularize the volume fraction of fluid in order to estimate
its derivatives: in [Brackbill et al., 1992], [Caboussat, 2006], the smoothing of
the volume fraction of fluid is done by convolution; in [Cummins et al., 2005],
the smoothing with kernel functions is compared with the interpolation of the
interface with a height function and an estimation via the reconstruction of a
distance function.

The numerical diffusion introduced by the advection of the characteristic
function implies that the reconstruction of the interface from the values of the
volume fraction of fluid is difficult. Figure 9.7 visualizes one simple example,
when ||v||Δt = 1.5Δx, where Δt denotes the time step, and Δx denotes the
step size. The first row illustrates the effects of the numerical diffusion after
two time steps, while the second row shows a corrected solution.

As illustrated in Figure 9.7 (top), the numerical diffusion induces a signif-
icant loss of accuracy around the interface. The most simple algorithm to
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1 1/21/21/2 1/41/4

111

1 1/21/2

FIGURE 9.7: Volume-of-fluid method: Numerical diffusion of the volume
fraction of fluid for a simple case of the advection of ϕ; Top: without any
reconstruction of the interface; Bottom: with the SLIC method, in which the
interface is defined as a straight line before the advection.

reduce the numerical diffusion is the SLIC algorithm (Simple Line Interface
Calculation), developed first in [Noh and Woodward, 1976]. The SLIC algo-
rithm reconstructs the liquid front by defining simple lines inside the cells, as
illustrated in Figure 9.7 (bottom). These straight lines are parallel to one of
the coordinate directions and their direction and position are deduced from
the values of the volume fraction of fluid in the cells in the neighborhood
of the considered cell, see e.g. [Hirt and Nichols, 1981], [Maronnier et al.,
1999], [Maronnier et al., 2003].

The SLIC algorithm is only a first order algorithm with respect to the
mesh size [Rider and Kothe, 1998]. The PLIC algorithm (Piecewise Linear
Interface Calculation) is also geometric in nature and has been introduced to
increase the order of convergence of SLIC for the reconstruction algorithm of
the interface, see [Aulisa et al., 2003], [Rider and Kothe, 1998], [Scardovelli
and Zaleski, 1999] and references therein. The PLIC methods are second order
algorithms [Rider and Kothe, 1998]. Instead of constructing the interface by
simple lines only along the coordinates directions, all directions are allowed for
the interface line inside one cell, defining the interface as a discontinuous chain
of segments, with asymptotic small discontinuities, see Figure 9.8 (right).
The key point in the algorithm is the determination of the direction of each
segment of the reconstructed interface, which corresponds basically to the
characterization of its normal vector [Rider and Kothe, 1998].

Generalizations for multi-phases flow have been proposed for instance in
[Caboussat et al., 2008], [Choi and Bussman, 2006], [Schofield et al., 2009].
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Numerical algorithms for free surface flow 277

FIGURE 9.8: Volume-of-fluid method: Reconstruction of the interface with
SLIC and PLIC algorithms. Left: the SLIC algorithm reconstructs the inter-
face as a set of horizontal or vertical segments. Right: the PLIC algorithm
allows the segments to be oriented arbitrarily.

9.3 Some preliminary remarks on ice and glacier mod-
eling

Ice flow is another example of free surface flows, but with drastically dif-
ferent characteristics than those involved in mold filling applications. Glacier
modeling is relevant for future management of natural risks, hydroelectric
plants, water supply for agriculture, and tourism. Glaciers are strongly suf-
fering from the current global warming, implying a retreat of most of them,
as emphasized in the IPCC 2007 report [IPCC, 2007]. Actually, such a re-
treat has been documented by glaciologists in the Swiss Alps for more than a
century, see e.g. [Mercanton, 1916].

The dynamics of a glacier are driven by different phenomena. Due to
gravity, ice is flowing down to the valley. According to empirical experiences,
ice can be considered as an incompressible non-Newtonian fluid and the
inertial force can be disregarded. The mechanical law of ice deformation (so
called “Glen’s flow law”) has been formalized in the 50’s by Glen [Glen,
1958]. In the upper part of the glacier, snow fall exceeds snow melt,
resulting in an addition of mass (accumulation). The melting of ice (due to
higher temperatures) is more important in the lower part of the glacier
(ablation). Therefore, given a glacier shape of non-Newtonian ice, the mass
and momentum equations reduce to a nonlinear stationary Stokes problem
under external weather conditions. A sliding law is added on the bedrock to
account for the sliding of the ice on the rock. Note that the sliding of the ice
is the most difficult quantity to measure in practice.

Due to the thin shape of glaciers, the first numerical models appearing in
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the literature (in the 80s) have been based on the assumption of a shallow
flow. The most popular one, called Shallow Ice Approximation, has been
introduced by Hutter, see [Hutter, 1983], [Paterson, 1994]. Later on, several
higher order shallow ice models have been proposed, among them, the First
Order Approximation [Blatter, 1995]. In any simplified model, the
assumption of a shallow flow leads to the elimination of the pressure (usually
assumed to be hydrostatic) and of some component of the velocity. The
decrease of the number of unknowns reduce the computational cost of
the numerical resolution, that can be done by using either finite
differences [Blatter, 1995], [Bueler et al., 2007], [Pattyn, 2003], finite
volumes [Deponti et al., 2006] or finite elements [Picasso et al., 2004]. More
recently, the full Stokes model has been used for computing the ice
flow [Gagliardini et al., 2007], [Jouvet et al., 2008] in order to avoid the
drawbacks of shallow models, such as the inaccuracy of the solution at the
glacier margins [le Meur et al., 2004].

When modeling the position and displacement of the ice, one can choose a
Lagrangian (or Arbitrary Lagrangian Eulerian) approach, this being justified
that the ice motion is slow and the deformation is small [Deponti et al.,
2006], [Picasso et al., 2004]. These methods are adapted to a coupling with
simplified models, such as the ’Shallow Ice Approximation’ or ’First Order
Approximation’ models. Indeed, Lagrangian or ALE methods can estimate
accurately the ice surface slope that appears in the equations of any shallow
model. However this type of approach does not allow to take into account
changes of topology (typically when the glacier breaks into several pieces
over an accidented bedrock) that happen over long periods of time.
Following section 9.2, we focus on Eulerian methods which overcome this
drawback.

Level set methods in glaciology have been considered in [Pralong and
Funk, 2004] to compute the onset of crevasse formation in 2D, but
conservation of mass is hard to obtain. Therefore a volume-of-fluid approach
is favored here to conserve the mass of ice. Mass conservation along the
ice-air interface yields a transport equation, similar to (9.4) which can be
used to determine the evolution of the glacier shape. The major difference
with the above mentioned model, resides in the changes in the ice mass due
to accumulation/ablation. A source term – the so-called mass balance – is
added to the right-hand side of this transport equation to account for those
terms containing the climatic input of the model. The determination of the
glacier surface mass balance results from a combination of long-term
measurements, performed by glaciologists, and parameter identifications,
based on climate data and observations of surface elevation change [Huss
et al., 2008a]. More details about the measured bedrock elevation can be
found in [Farinotti et al., 2009].
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Numerical algorithms for free surface flow 279

Climatic inputs are not entirely predicable for future times, and several
scenarios can be explored in order to predict the retreat of glaciers. Ultimately,
based on climate models in seasonal resolution [Frei, 2007], [Huss et al., 2008b],
climatic scenarios can be defined allowing the computation of future mass
balances, and predictions can be made.

9.4 Modeling

9.4.1 Modeling of liquid flow

Inspired from [Maronnier et al., 1999], [Maronnier et al., 2003], we consider
an incompressible liquid flow surrounded by vacuum. Let Λ, with boundary
∂Λ, be a cavity of Rd, d = 2, 3 in which a liquid must be confined, and
let T > 0 be the final time of simulation. For any given time t ∈ (0, T ),
let Ωt ⊂ Λ, with boundary ∂Ωt, be the domain occupied by the liquid, let
Γt = ∂Ωt\∂Λ be the free surface between the liquid and the surrounding
medium, and let QT be the space-time domain containing the liquid, i.e.
QT = {(x, t) : x ∈ Ωt, 0 < t < T }.

In the liquid region, the velocity field v : QT → Rd and the pressure
field p : QT → R are assumed to satisfy the time-dependent, incompressible
Navier-Stokes equations, that is

ρ
∂v
∂t

+ ρ(v · ∇)v − 2∇ · (μD(v)) +∇p = f in QT , (9.10)

∇ · v = 0 in QT . (9.11)

Here D(v) = 1/2(∇v +∇vT ) denotes the rate of deformation tensor, ρ the
constant density, μ is the dynamic viscosity, and f the external forces.

REMARK 9.3 Various choices of viscosity For laminar isothermal
flows, the dynamic viscosity μ is constant μ = μL (Newtonian fluid). When
considering turbulent flows, a simple turbulent viscosity can be added μ =
μL + μT , where:

μT = μT (v) = αT ρ
√

2D(v) : D(v),

where αT is a parameter to be chosen. The use of a turbulent viscosity is
required when large Reynolds numbers and thin boundary layers are involved
(Non-Newtonian fluid). When considering Bingham flows (in mud flows or
avalanches for instance), a plastic viscosity can be added:

μB =
α0ρ√

2D(v) : D(v) + ε
,
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where α0 and ε are two parameters to be chosen. Another nonlinear model for
the viscosity is presented in section 9.4.2 when modeling ice flow in glaciers.

We use a volume-of-fluid formulation, and let ϕ : Λ × (0, T ) → R be the
characteristic function of the liquid domain QT . The function ϕ equals one
if the liquid is present, zero if it is not, thus Ωt = {x ∈ Λ : ϕ(x, t) = 1}. In
order to describe the kinematics of the free surface, ϕ must satisfy (in a weak
sense):

∂ϕ

∂t
+ v · ∇ϕ = 0 in Λ× (0, T ), (9.12)

where the velocity v is extended continuously in the neighborhood of QT such
that ∇ · v = 0 [Cattabriga, 1961]. Relationship (9.12) is actually defined in a
neighborhood of the interface Γt. At initial time, the characteristic function
of the liquid domain ϕ is given, which defines the initial liquid region Ω0 =
{x ∈ Λ : ϕ(x, 0) = 1}. The initial velocity field v(0) = v0 is prescribed in Ω0.
A summary of the notations is illustrated in Figure 9.9, for the situation of
the filling of a cavity.

Ω0

Ωt

Λ

Λ
Λ

t = 0
t

t = T

Γt

x
y

t

FIGURE 9.9: Filling of a cavity with a liquid. The fluid is injected from the
left side and fills the cavity. Notations in the space-time domain.

The boundary conditions for the velocity field are the following. On the
boundary of the liquid region being in contact with the walls (i.e. ∂Ωt ∩ ∂Λ),
inflow, slip or Signorini boundary conditions are enforced, see [Maronnier
et al., 1999], [Maronnier et al., 2003]. On the free surface Γt, we establish the
equilibrium of forces on the free surface. Tangential forces are neglected on
the free boundary, as the two media are assumed not to ’slide’ on each other.
When we have two fluids with both velocity v and pressure p defined on both
sides of the interface, the equilibrium balance at the interface reads

[−pn + 2μD(v) · n] = σκn on Γt, t ∈ (0, T ), (9.13)
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where [·] denotes the jump across the interface, σ is the surface tension coeffi-
cient (a physical constant that depends on the two media), κ is the curvature
of the interface, and n is the unit normal vector of the liquid-gas free surface
oriented outside the liquid.

In a first step we consider the interaction between a liquid and a vacuum;
this implies that both velocities and pressure in the vacuum are vanishing,
and the vacuum does not exert any force on the fluid. If, in addition, we ne-
glect surface tension effects, the boundary condition (9.13) on the free surface
becomes

−pn + 2μD(v) · n = 0 on Γt, t ∈ (0, T ). (9.14)

The mathematical model is thus well-posed (i.e. with an adequate number of
boundary and initial conditions). The addition of some terms in (9.13) are
discussed in section 9.7.

9.4.2 Modeling of ice flow

Let us extend the model presented in section 9.4.1 to glacier dynamics,
and highlight the similarities and differences. Unless specified otherwise, the
notations are similar.

At time t, the ice domain is denoted by Ωt, the bedrock-ice interface is ΓB,t

and the ice-air interface is Γt. The ice region in the space-time domain is
denoted by QT , while v and p still denote the ice velocity and pressure, re-
spectively. When considering the motion of a glacier during years or centuries,
ice can be considered as an incompressible non-Newtonian fluid. Moreover, a
dimensionless scaling shows that inertial terms can be disregarded. Therefore,
the mass and momentum equations reduce at time t to a stationary nonlinear
Stokes problem in the ice domain: Find v : Ωt → Rd and p : Ωt → R such
that

− 2∇ · (μ(v)D(v)) +∇p = ρg, (9.15)
∇ · v = 0. (9.16)

Here the right-hand side force f = ρg only incorporates gravity effects in that
particular case. Glen’s flow law [Glen, 1958], [Hutter, 1983] holds for the
viscosity μ = μ(v). More precisely, for a given velocity field v, the viscosity
μ satisfies the following implicit nonlinear equation:

1
2μ

= A

⎛
⎝σm−1

0 +

(
2μ

√
1
2

(
D(v) : D(v)

))m−1
⎞
⎠ , (9.17)

where A is a positive number known as the rate factor, m ≥ 1 is Glen’s
exponent, and σ0 > 0 is a regularization parameter which prevents infinite
viscosity for zero strain. It should be noted that A depends on ice temperature
but, since temperature variations are very small in most Alpine glaciers, A
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can be considered as a constant. It is easy to see that μ = μ(v) is actually a

function of s :=
√

1
2 (D(v) : D(v)) only. Therefore we will write in the sequel

μ = μ(s). Moreover, when m > 1, it can be shown that μ is a positive, strictly
decreasing function with respect to s [Colinge and Rappaz, 1999], [Rappaz and
Glowinski, 2003]; the viscosity μ = μ(s) is bounded from above by its value at
s = 0 and has the following asymptotic behavior when s goes to the infinity:

μ(s) = O(s1/m−1). (9.18)

When m = 1, then μ is constant and the above problem corresponds to a
Newtonian laminar fluid. In glaciology models, m is often taken equal to 3,
see e.g. [Gudmundsson, 1999]. An example of this situation is visualized in
Figure 9.10.

0 0.02 0.04 0.06 0.08 0.1
0
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20
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FIGURE 9.10: Viscosity (unit: [bar year]) with respect to the strain’s norm

s =
√

1
2 (D(v) : D(v)) (unit: [year−1]). The parameters are A = 0.08 [bar−3

year−1], m = 3 and σ0 =
√

0.1 [bar].

The boundary conditions corresponding to (9.15) are the following. Since
the ice is surrounded by vacuum, no force is applied on the ice-air interface
Γt:

−2μ(s)D(v)n + pn = 0, (9.19)

where n is the unit outer normal vector on the boundary of the ice domain Ωt.
On the bedrock-ice interface ΓB,t, ice may slip or not, according to the bedrock
characteristics, and therefore a mix of slip and no-slip boundary conditions are
applied on ΓB,t. The no-slip conditions corresponds to imposing v = 0 on the
boundary. Many sliding laws have been proposed, see for instance [Gagliardini
et al., 2007], [Schoof, 2005], [Vieli et al., 2000]. A nonlinear law that links the
shear stress to the tangent velocity is considered here:
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v · n = 0 and (2μ(s)D(v)n) · ti = −αv · ti, i = 1, 2, on a part of ΓB,t,
(9.20)

where t1, t2 are two orthogonal vectors tangent to the boundary ΓB,t, and
α is the sliding coefficient. Following [Hutter, 1983, page 454] α = α(v) is
given by

α =
C

(||v||+ s0)
1− 1

m

, (9.21)

where m is the Glen exponent, C is a positive value tuned from experiments
and s0 is a small numerical parameter which prevents α → ∞ when the
velocity goes to zero.

The well-posedness of the nonlinear Stokes problem (9.15)-(9.16)-(9.17),
supplemented by the boundary conditions (9.19) in a prescribed smooth do-
main Ω can be proved using the property (9.18), proceeding as in [Colinge
and Rappaz, 1999], [Schoof, 2010].

The model for the volume fraction of ice is very similar to the one described
in section 9.4.1 for the incompressible liquid flow, and is based on the char-
acteristic function ϕ : Λ × (0, T ) → R of the ice domain. The use of the
characteristic function ϕ allows the description of topological changes that
have been observed in glaciers during the last century.

In the absence of snow fall or melting, the volume fraction of ice satis-
fies (9.12), in a weak sense in the space-time domain. In other words, ϕ is
constant along the trajectories of the fluid particles X(t) which are given by

X′(t) = v(X(t), t).

However, in glaciers, the total mass constantly changes, due to snow fall
and melting phenomena. Accumulation is the sum of all processes in which a
glacier gains in mass, such as snow precipitation or snow redistribution due
to wind. Conversely, ablation is the sum of all processes in which a glacier
loses in mass, such as erosion or melting due to high temperature or solar
radiation. The mass balance function b(x, t) is the water equivalent of ice
height added or removed along the ice-air interface Γt within one year. It is a
function of (x, y, S(x, y, t), t) where S(x, y, t) is the elevation of the ice-air free
surface at point (x, y) at time t with respect to the horizontal plane Oxy. In
any alpine glacier, two areas can be distinguished: the accumulation zone is
the region where b > 0, and is usually localized in the high-elevation regions.
The ablation zone is the region where b < 0, and is localized in the lower
reaches. The elevation at which the mass balance satisfies b = 0 is called the
equilibrium line altitude (ELA), see Figure 9.11.

The mass balance is mainly determined by the climate. It can be
measured by glaciologists for instance using stakes drilled into the ice. In the
applications of section 9.9, several models of various complexity are
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bedrock ice

accumulation b(x, t) > 0

ablation b(x, t) < 0

Ω(t)

v(x, t)

ELA

FIGURE 9.11: 2D section of a glacier and illustration of the mass-balance
function b. When b > 0 (resp. b < 0), there is accumulation (resp. ablation)
of ice at the ice-air interface. The line b = 0 defines the equilibrium line
altitude (ELA).

proposed in order to obtain b. In section 9.9.1, the function b is given by a
simple formula in which the equilibrium line altitude is the main parameter.
In section 9.9.2, the function b accounts a more important set of parameters
and data like precipitation and melting patterns based on daily weather
data, wind patterns, and the topology of the bedrock. The coefficients
involved are the result of a parameter identification problem [Huss et al.,
2008a].

To account for the mass changes (accumulation and ablation processes), a
source term must be added to the right-hand side of (9.12). Given the mass-
balance function b and following [Jouvet et al., 2009], [Jouvet et al., 2008],
(9.12) is modified as follows:

∂ϕ

∂t
+ v · ∇ϕ = bδΓt , (9.22)

where δΓt is the Dirac function on the ice-air interface Γt which satisfies, by
definition,

∫

V

f δΓt dx =
∫

V ∩Γt

fdS,

for all volume V and all smooth function f : V → R. A physical interpretation
can be obtained by writing the conservation of mass in an arbitrary volume V ,
as illustrated in Figure 9.12. Indeed, consider an arbitrary volume V contained
in the cavity Λ and containing the ice-air interface Γt. Integrating (9.22) over
V yields, using the divergence theorem:

d

dt

∫

V

ϕdx +
∫

∂V

v · nϕdS =
∫

Γt∩V

bdS, (9.23)
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thus the time derivative of the volume of ice contained within V plus the flux
of ice entering or leaving V equals the amount of ice added or removed by
accumulation or ablation.

V

Cavity Λ

ice domain Ω(t)

ΓA(t)
ice-air interface

bedrock

ϕ(t) = 0

ϕ(t) = 1

FIGURE 9.12: The mass conservation principle corresponding to (9.22) in an
arbitrary volume V (2D figure) is given by (9.23).

Our goal is therefore to find the volume fraction of ice ϕ in the whole cavity
Λ, together with the velocity v and pressure p in the ice domain only, which
satisfy (9.15)-(9.16)-(9.22). Boundary conditions (9.19)-(9.20) are added, as
well as the initial volume fraction of ice ϕ(x, 0), or equivalently the initial ice
domain Ω0.

REMARK 9.4 The ice thickness function H : Rd−1 × [0, T ] → R+ can
be associated to the volume fraction of ice ϕ (and vice versa) through the
following relations:

H(x, y, t) =
∫ S(x,y,t)

B(x,y)

ϕ(x, t)dz, (9.24)

where B(x, y) is the bedrock elevation, and S(x, y, t) is the elevation of the
ice-air free surface with respect to the horizontal plane Oxy. Conversely,

ϕ(x, t) =
{

1, if 0 ≤ z −B(x, y) ≤ H(x, y, t),
0, otherwise. (9.25)

This equivalence will be used for the design of a numerical technique to
solve (9.22) (see section 9.6).
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9.5 Time splitting scheme

An implicit splitting algorithm is proposed to solve the liquid flow (9.10)-
(9.12) and the ice flow (9.15)-(9.16)-(9.22) respectively, by decoupling the
advection operators from the diffusion ones. Let 0 = t0 < t1 < t2 < . . . <
tN = T be a subdivision of the time interval [0, T ], define δtn = tn+1 − tn

the n-th time step, n = 0, 1, 2, . . . , N , δt being the largest time step. Let ϕn,
vn, pn, Ωn be approximations of ϕ, v, p, Ωt at time tn, respectively. Then
the approximations ϕn+1, vn+1, pn+1, Ωn+1 at time tn+1 are computed by
means of an implicit splitting algorithm, as illustrated in Figure 9.13 and in
Figure 9.14. This splitting procedure is now detailed for both liquid and ice
flow separately.

9.5.1 Liquid flow

Two advection problems are solved first, leading to a prediction of the new
velocity vn+1/2 together with the new approximation of the characteristic
function ϕn+1 at time tn+1, which allows to determine the new liquid domain
Ωn+1 (and the new liquid interface Γn+1).

Then a generalized Stokes problem is solved on Ωn+1 with initial condition
vn+1/2 and boundary condition (9.14) on the liquid interface Γn+1, Dirichlet,
slip or Signorini-type conditions on the boundary of the cavity Λ, to obtain
the velocity vn+1 and pressure pn+1 in the liquid.

This splitting algorithm is of order O(δt), see e.g. [Marchuk, 1990], and
allows the motion of the free surface to be decoupled from the diffusion step,
which consists in solving a Stokes problem in a fixed domain [Glowinski, 2003].
These two problems are detailed in the following.

Λ

Ωn

Ωn+1

Γn Γn+1

tn tn+1

Advection Diffusion

vn pn

vn+1/2

vn+1

pn+1

ϕn

ϕn+1

FIGURE 9.13: The splitting algorithm (from left to right). Two advection
problems are solved to determine the new approximation of the characteristic
function ϕn+1, the new liquid domain Ωn+1 and the predicted velocity vn+1/2.
Then, a generalized Stokes problem is solved in the new liquid domain Ωn+1

in order to obtain the velocity vn+1 and pressure pn+1.
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Numerical algorithms for free surface flow 287

Advection step for liquid flow We solve between times tn and tn+1 the
two advection problems:

∂v
∂t

+ (v · ∇)v = 0,
∂ϕ

∂t
+ v · ∇ϕ = 0, (9.26)

with initial conditions vn and ϕn and boundary conditions on the inflow
boundary. This step is solved exactly by the method of characteristics [Maury,
1996], [Pironneau, 1989] which yields a prediction of the velocity vn+1/2 and
the characteristic function of the new liquid domain ϕn+1:

vn+1/2(x + δtnvn(x)) = vn(x), ϕn+1(x + δtnvn(x)) = ϕn(x), (9.27)

for all x ∈ Ωn. Then, the new liquid domain Ωn+1 is defined as

Ωn+1 =
{
x ∈ Λ : ϕn+1(x) = 1

}
.

Diffusion step for liquid flow The diffusion step consists in solving a
generalized Stokes problem on the domain Ωn+1 using the predicted velocity
vn+1/2 and the boundary condition (9.14). The following backward Euler
scheme is used:

ρ
vn+1 − vn+1/2

δtn
− 2∇ ·

(
μD(vn+1)

)
+∇pn+1 = fn+1 in Ωn+1,(9.28)

∇ · vn+1 = 0 in Ωn+1, (9.29)

where vn+1/2 is the prediction of the velocity obtained with (9.27) after the ad-
vection step. The boundary conditions on the free surface are given by (9.14).
The weak formulation corresponding to (9.28)-(9.29)-(9.14) therefore consists
in finding vn+1 and pn+1 such that i) vn+1 satisfies the essential boundary
conditions on ∂Λ and ii)

ρ

∫

Ωn+1

vn+1 − vn+1/2

δtn
·wdx + 2

∫

Ωn+1
μD(vn+1) : D(w)dx (9.30)

−
∫

Ωn+1
pn+1∇ ·wdx−

∫

Ωn+1
fn+1 ·wdx−

∫

Ωn+1
q∇ · vn+1dx = 0,

for all test functions (w, q) such that w is compatible with the essential bound-
ary conditions on ∂Λ.

REMARK 9.5 The numerical treatment of the slip boundary condition
v · n = 0 is done in a weak sense by introducing a penalized term in the
left-hand side of the weak formulation (9.30). Typically, this term reads

Cpen

∫

Γn+1
S

(
(vn+1 · n)(w · n)

)
dS,
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288 Computational Fluid Dynamics

where Cpen is a very large constant, and Γn+1
S ⊂ ∂Λ is the part of the boundary

where the liquid is sliding.

9.5.2 Ice flow

The time discretization for the decoupling of the computations of ϕ, v and
p is similar to the one detailed in section 9.5.1. The main differences reside
in the iterative solution of the nonlinear Stokes problem and in the compu-
tation of the new domain at each time step; these differences are detailed
hereafter. Figure 9.14 illustrates the splitting scheme and notations for the
glacier geometry.

Ωn
ϕn = 1 Ωn+1

ϕn+1 = 1

vn

vn+1

bedrock
bedrock

bedrock

cavity Λ

Time tn Time tn+1

FIGURE 9.14: Time discretization. At time tn, the previous volume fraction
of ice ϕn is known in the cavity Λ which yields the ice domain Ωn. Then,
the transport problem is solved between tn and tn+1 which yields ϕn+1 and
the new ice domain Ωn+1. Finally, the nonlinear Stokes problem is solved in
Ωn+1 to obtain the new velocity vn+1.

Advection step for ice flow In order to incorporate (9.22) instead
of (9.12), one has to modify the computation of the new domain at each
time step. Let us assume that an approximation ϕn of ϕ(tn) is known in the
cavity Λ. The ice region is defined by

Ωn = {x ∈ Λ; ϕn(x) = 1} ,

and the approximation of the bedrock-ice interface Γn
B and the ice-air interface

Γn can also be identified. Then, the transport problem

∂ϕ

∂t
+ vn · ∇ϕ = bδΓn ,

is solved between tn and tn+1 to obtain the new volume fraction of ice ϕn+1.
This transport problem is solved using an order one splitting scheme in time.
The first step of this splitting scheme consists, starting from ϕn, in solving
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Numerical algorithms for free surface flow 289

the homogeneous transport problem

∂ϕ

∂t
+ vn · ∇ϕ = 0,

between tn and tn+1 to obtain a prediction ϕn+1/2 of the volume fraction of ice.
A forward characteristics method is advocated as in (9.27), see section 9.5.1.

The second step consists, starting from ϕn+1/2, in solving

∂ϕ

∂t
= bδΓn , (9.31)

between tn and tn+1 to obtain the new volume fraction of ice ϕn+1. For
simplicity, the Euler scheme is used and yields

ϕn+1 = ϕn+1/2 + δtnbn+1δΓn , (9.32)

with bn+1 = b(tn+1). The new ice domain Ωn+1 is obtained from the values
of ϕn+1, and is defined as Ωn+1 =

{
x ∈ Λ : ϕn+1(x) = 1

}
.

REMARK 9.6 Unlike in the model for liquid flows presented in sec-
tion 9.5.1, there is no advection operator in the Stokes equations. Therefore,
the advection equation is only used to compute the approximation ϕn+1 of
the volume fraction of ice; a prediction of the velocity vn+1/2 is not needed.

Diffusion step for ice flow The nonlinear Stokes problem is then solved
on the new ice domain, that is find vn+1 : Ωn+1 → Rd and pn+1 : Ωn+1 → R

such that

− 2∇ · (μn+1D(vn+1)) +∇pn+1 = ρg, (9.33)

∇ · vn+1 = 0, (9.34)

together with a zero force boundary condition (9.19) along Γn+1 and slip or
no-slip boundary conditions along Γn+1

B as in (9.20). Here, μn+1 = μ(sn+1)
is the viscosity computed using (9.17) with velocity vn+1 instead of v, and

tensor sn+1 =
√

1
2 (D(vn+1) : D(vn+1)) instead of s. The weak formulation

corresponding to (9.33)-(9.34) with boundary conditions (9.19)-(9.20) there-
fore consists in finding vn+1 and pn+1 such that i) vn+1 satisfies the essential
boundary conditions on the part of Γn+1

B where no-slip boundary conditions
are applied, and ii) vn+1 and pn+1 satisfy the nonlinear problem:

2
∫

Ωn+1
μn+1D(vn+1) : D(w)dx −

∫

Ωn+1
pn+1∇ ·wdx− ρg

∫

Ωn+1
wdx

+
∫

Γn+1
B,S

αn+1
(
(vn+1 · t1)(w · t1) + (vn+1 · t2)(w · t2)

)
dS

−
∫

Ωn+1
∇ · vn+1qdx = 0 ,

(9.35)
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290 Computational Fluid Dynamics

for all test functions (w, q) such that w is compatible with the essential
boundary conditions on Γn+1

B . Here Γn+1
B,S ⊂ Γn+1

B is the part of the bedrock-
ice interface where slip boundary conditions are imposed. Finally, note that
αn+1 = α(vn+1) is defined by (9.21).

9.6 A two-grids method for space discretization

Advection and diffusion phenomena being now decoupled, two different
space discretizations are used to solve each problem. A structured grid of
small cells is used to solve (9.26) and (9.31), while an unstructured finite ele-
ment mesh of tetrahedrons is used for the solution of (9.30) and (9.35). The
introduction of the structured grid of small cells allows to treat more accu-
rately the advection operators, including the computation of the interfaces.

The two meshes/discretizations are now detailed. On a first hand, the cav-
ity Λ is embedded into a box that is meshed into a structured grid denoted by
Ch, made out of small cubic cells of size h, each cell being labeled by indices
(ijk). Let us denote by Nc the number of cells in Ch, and by C a generic
element (cell) of Ch. On the other hand, a family {ΛH}H of polyhedral ap-
proximations of the domain Λ is introduced such that limH→0 ΛH = Λ. Let
us consider a discretization TH of the cavity ΛH satisfying the usual compat-
ibility conditions between tetrahedra (see for instance [Glowinski, 2003] for a
precise definition), where H is the typical size of the elements. Let us denote
by Ne the number of elements of TH , and Nv the number of vertices of TH .
Let K denote a generic element of TH , and Pj , j = 1, . . . , Nv be the vertices
of TH .

Figure 9.15 visualizes the two meshes Ch and TH for the two applications
of interest. The grid of small cells is finer than the finite element mesh (ac-
tually H � 5h). Again, liquid and ice flow space discretizations are detailed
separately.

9.6.1 Liquid flow

Since the function ϕ is discontinuous across the interface, numerical diffu-
sion is introduced. In order to reduce the numerical diffusion and to have an
accurate approximation of the liquid region, (9.26) are first solved using the
method of characteristics on a structured mesh of small cells. Then, (9.30)
is solved on the unstructured finite element mesh with stabilized continuous
piecewise linear finite element techniques.

Advection step for liquid flow Let ϕn
ijk and vn

ijk be the approximate
values of ϕn and vn at the center of cell number (ijk) at time tn. The

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
48

 0
4 

M
ar

ch
 2

01
6 



Numerical algorithms for free surface flow 291

FIGURE 9.15: Two-grids method. The advection step is solved on a struc-
tured mesh Ch of small cubic cells composed of blocks whose union covers
the cavity Λ (left), while the diffusion step is solved on a finite element un-
structured mesh TH of tetrahedra (right). Top: three-dimensional cavity to
be filled with a liquid. Bottom: two-dimensional section of a glacier.
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292 Computational Fluid Dynamics

unknown ϕn
ijk is the volume fraction of liquid in the cell number (ijk); this

leads to an approximation of the characteristic function ϕ at time tn that is
piecewise constant on each cell of the structured grid. Therefore, let Pk be
the space of polynomials of degree k, and define

V 0
h =

{
v ∈ L2(Λ) : v|C ∈ P0, ∀C ∈ Ch

}
.

The forward characteristics method consists in advecting the values ϕn
ijk

along the flow lines, with the flow velocities, to compute ϕn+1
h ∈ V 0

h , and
vn+1/2

h ∈ (V 0
h )d such that ϕn+1

h

∣∣
Cijk

= ϕn+1
ijk . The advantage of using a

characteristics method is to avoid the restriction by the CFL condition, as
seen for instance in [Pironneau, 1989].

More precisely, the advection step for the cell number (ijk) consists in
advecting ϕn

ijk and vn
ijk by δtnvn

ijk and then projecting the values on the

structured grid, to obtain ϕn+1
ijk and a prediction of the velocity vn+ 1

2
ijk . This

step is illustrated in Figure 9.16 (left).

REMARK 9.7 Under the CFL condition, this characteristics method
with projection corresponds exactly to the upwind finite differences scheme
for the advection equation.

3
16

1
4

3
16

1
4

1
16

1
4

9
16

1
4

0 0

0

1

1
4

1

ϕn =
1
4

FIGURE 9.16: Advection of volume fractions with and without SLIC algo-
rithm. An example of two dimensional advection and projection when the
volume fraction of liquid in the cell is ϕn

ij = 1
4 . Left: without SLIC, the

volume fraction of fluid is advected and projected on four cells, with contri-
butions (from the top left cell to the bottom right cell) 3

16
1
4 , 1

16
1
4 , 9

16
1
4 , 3

16
1
4 .

Right: with SLIC, the volume fraction of fluid is first pushed at one corner of
the cell number (ij), then it is advected. Since the advected liquid is contained
in one cell only, no projection occurs.
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Numerical algorithms for free surface flow 293

Advection of non-smooth functions, such as the characteristic function in
the VOF method, is known to introduce numerical diffusion. This effect
smoothes/blurs sharp fronts and makes the accurate approximation of the
interfaces difficult.

Following section 9.2.8, a simple implementation of the SLIC (Simple Line
Interface Calculation) algorithm, described in [Maronnier et al.,
1999], [Maronnier et al., 2003] and inspired by [Noh and Woodward, 1976]
allows to reduce the numerical diffusion of the domain occupied by the
liquid, by pushing the fluid along the faces of the cell before advecting it.
The choice of how to push the fluid depends on the volume fraction of fluid
of the neighbor cells. An example in two dimensions of space is presented in
Figure 9.16 (right). The critical point is then to decide how to push the
volume fraction of fluid in a given cell along the sides of this cell. For a
given cell, the choice depends on the volume fraction of fluid of the neighbor
cells, and several cases are taken into account (when the liquid is pushed on
one side, around one corner, or in the middle of the cell). Details are given
in [Maronnier et al., 1999], [Maronnier et al., 2003] for the two-dimensional
and three-dimensional cases respectively.

While the SLIC procedure allows to avoid numerical diffusion, the approx-
imation of the volume fraction of fluid can be strictly larger than one after
projection on the grid: it may happen that several cells of the small grid are
transported at the same location. When neglected, this artificial effect leads
to a loss of mass, for instance if the VOF function is truncated to 1.

We propose a post-processing technique, based on global repair algorithms
(formalized in [Shaskov and Wendroff, 2004]), to guarantee the conservation
of the mass of liquid. This algorithm is called a decompression algorithm. Its
aim is to produce new values ϕn+1

ijk which are between zero and one. At each
time step, the amount of liquid in the cells having values ϕn+1

ijk greater than
one (strictly) is redistributed in the domain. When the redistribution is
executed throughout the whole domain, the algorithm is called global repair
algorithm; when the redistribution take into account local arguments, the
algorithm is called local repair algorithm. For liquids, let us describe now a
global decompression algorithm. A more local approach is detailed in the
framework of glacier modeling.

The algorithm reads as follows: all the cells having values ϕn+1
ijk greater

than one (strictly), or between zero and one (strictly) are sorted in descend-
ing order, according to their values ϕn+1

ijk . Cells advected outside of Λ are
incorporated in the sorting. This can be done in an efficient way using for
instance quick-sort algorithms. The cells having values ϕn+1

ijk greater than one
are called the dealer cells, while the cells having values ϕn+1

ijk between zero and
one are called the receiver cells. The algorithm then consists in moving the
fraction of liquid in excess in the dealer cells to the receiver cells, starting with
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294 Computational Fluid Dynamics

transferring liquid from the dealer cells with the most excess to the receiver
cells with values closest to one.

Since the sorting of the cells is done independently of their geographic
position in the domain, this algorithm globally guarantees that no fluid is
lost, but does not contain any local information for the transfers. However,
the method is still consistent since the number of cells involved decreases with
the mesh size and the time step.

Projection operator: from the cells to the finite elements The ad-
vection step is solved on the grid of small cells, while the diffusion step is
solved on a finite element grid of triangles (in two dimensions of space), or
tetrahedra (in three dimensions of space). Before addressing the diffusion
step, let us detail shortly the projection operator.

We consider in the sequel piecewise linear finite element approximations,
and therefore we define

V 1
H =

{
v ∈ C0(ΛH) : v|K ∈ P1, ∀K ∈ TH

}
.

For any vertex P of TH , let ψP be the corresponding piecewise linear finite
element basis function (i.e. the continuous, piecewise linear function having
value one at P , zero at the other vertices).

Once values ϕn+1
ijk and vn+1/2

ijk have been computed on the cells, a piecewise
constant approximation ϕn+1

h ∈ V 0
h is available. Then values of the fraction

of liquid ϕn+1
P and of the velocity field vn+ 1

2
P are computed at the vertices

P of the finite element mesh, to obtain an approximation ϕn+1
H ∈ V 1

H that
is piecewise linear on each tetrahedron K of the unstructured finite element
mesh TH . This multi-grid step is achieved with the projection operator

PhH : V 0
h → V 1

H ,

that is defined as follows. We take advantage of the difference of refinement
between a coarser finite element mesh and a finer structured grid of cells.
Thus, ϕn+1

P := PhH(ϕn+1
h )(P ), the volume fraction of fluid at vertex P and

time tn+1 is computed as follows:

ϕn+1
P =

∑
K∈TH
P∈K

∑
ijk

Cijk∈K

ψP (Cijk)ϕn+1
ijk

∑
K∈TH
P∈K

∑
ijk

Cijk∈K

ψP (Cijk)
, (9.36)

where Cijk is the center of the cell number (ijk), and where ψP is the usual
piecewise linear finite element basis function associated with the vertex P .
The same kind of formula is used to obtain a predicted velocity vn+ 1

2 at the
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Numerical algorithms for free surface flow 295

vertices of the finite element mesh. Figure 9.17 (left) visualizes the projection
operator.

REMARK 9.8 Relation (9.36) is a weighted average of the values on the
cells; thus PhH is an approximate L2-projection of ϕn+1

h onto V 1
H obtained

with the relation
∫

Λ

ϕn+1
h ψdx =

∫

Λ

ϕn+1
H ψdx, ∀ψ ∈ V 1

H ,

where the integrals are approximated by trapezoidal formulas.

P

Cijk

Cijk

P1

P2

P3

FIGURE 9.17: Multi-grid method: Left: Projection operator PhH from the
cells to the finite elements; right: interpolation operator IHh from the finite
elements to the cells.

When the values ϕn+1
P are available at the vertices of the finite element

mesh, the approximation Ωn+1
H of the liquid region Ωn+1 used for solving (9.30)

is defined as the union of all tetrahedra of the mesh K ∈ TH with (at least)
one of its four vertices P are such that ϕn+1

P > dliq, where dliq = 0.5 is a
given threshold. The approximation of the free surface is denoted by Γn+1

H .
The threshold dliq is arbitrary, but numerical results show that the method is
robust with respect to this parameter.

REMARK 9.9 Numerical experiments reported in [Maronnier et al.,
1999], [Maronnier et al., 2003] have shown that choosing the size of the cells
h of the structured mesh approximately 5 to 10 times smaller than the size
of the finite elements H is a good choice to reduce numerical diffusion of the
interface. Furthermore, since the characteristics method is used, the time
step is not restricted by the CFL condition. Numerical results in [Maronnier
et al., 1999], [Maronnier et al., 2003] have shown that a good choice generally
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296 Computational Fluid Dynamics

consists in choosing CFL numbers (ratio between the time step δt times the
maximal velocity divided by the mesh size h) ranging from 1 to 5.

Finite element techniques for liquid flow The diffusion step consists
in solving the Stokes problem (9.30) with finite element techniques on the
unstructured grid of tetrahedra.

Since Ωn+1
H is defined as the union of all elements K ∈ TH with (at least) one

vertex P such that ϕn+1
P > dliq, one can denote by Γn+1

H the approximation
(with a polynomial line) of Γn+1. Assuming Γn+1

H = ∅, let us define the
following functional spaces:

V 1,n+1
H =

{
v ∈ C0(Ωn+1

H )d : v|K ∈ (P1)d, ∀K ∈ TH

}
,

Qn+1
H =

{
p ∈ L2(Ωn+1

H ) : p|K ∈ P1, ∀K ∈ TH

}
.

The generalized Stokes problem is solved with stabilized P1−P1 finite elements
(Galerkin Least Squares, see [Franca and Frey, 1992]). It consists in finding
the velocity vn+1

H ∈ V 1,n+1
H and the pressure pn+1

H ∈ Qn+1
H such that i) vn+1

H

satisfies the essential boundary conditions on ∂ΛH and ii)

ρ

∫

Ωn+1
H

vn+1
H − vn+1/2

H

δtn
·wdx + 2

∫

Ωn+1
H

μD(vn+1
H ) : D(w)dx

−
∫

Ωn+1
H

fn+1 ·wdx −
∫

Ωn+1
H

pn+1
H ∇ ·wdx−

∫

Ωn+1
H

q∇ · vn+1
H dx (9.37)

+
∑

K∈TH

γK

∫

K

(
vn+1

H − vn+1/2
H

δtn
+∇pn+1

H − fn+1

)
· ∇qdx = 0,

for all w ∈ V 1,n+1
H and q ∈ Qn+1

H , such that w are compatible with the
essential boundary conditions. Following [Maronnier et al., 1999], [Maronnier
et al., 2003], the value of the parameter γK is given by

γK =

⎧⎪⎪⎨
⎪⎪⎩

1
12

H2
K

μ
, if ReK ≤ 3,

1
4ReK

H2
K

μ
, otherwise,

(9.38)

where HK is the diameter of the element K and ReK is the local Reynolds

number, defined as ReK =
ρhK maxx∈K

∣∣∣vn+1/2
H (x)

∣∣∣
2μ

.

Interpolation operator: from the finite elements to the cells The
diffusion step is solved on a finite element grid of triangles (in two dimensions
of space), or tetrahedra (in three dimensions of space), while the advection
step is solved on the grid of small cells. In order to resume with the advection
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Numerical algorithms for free surface flow 297

step at the next time step, the solution obtained by the Stokes solver on the
finite element mesh is interpolated back to the grid of small cells.

Therefore, when the value of the velocity vn+1
H is known at the vertices of

the finite element mesh, it has to be projected back onto the grid of cells.
Figure 9.17 (right) visualizes the corresponding interpolation operator

IHh : V 1
H → V 0

h ;

the interpolation of the continuous piecewise linear approximation vn+1
H back

on the cell number (ijk) is obtained by interpolation of the piecewise linear
finite element approximation at the center Cijk of the cell. When the cell
number (ijk) is located inside the tetrahedron K, the value is given by:

vn+1
ijk =

∑
P∈K

vn+1
P ψP (Cijk).

It allows to obtain an approximation vn+1
h ∈ (V 0

h )d, i.e. a value of the velocity
vn+1

ijk on each cell number (ijk) of the structured grid for the next time step.

REMARK 9.10 In number of industrial mold filling applications, the
shape of the cavity containing the liquid (the mold) is complex. Therefore, a
special, hierarchical, data structure has been implemented in order to reduce
the memory requirements needed to store the cells, see [Maronnier et al.,
2003], [Rappaz et al., 2000]. The cavity is meshed into tetrahedra for the
resolution of the diffusion problem. For the advection part, a hierarchical
structure of blocks, which cover the cavity and are glued together, is defined.
A computation is performed inside a block if and only if it contains cells with
liquid. Otherwise the whole block is deactivated and the memory correspond-
ing to the cells is not used.

9.6.2 Ice flow

As in section 9.6.1, two different space discretizations are used for the ad-
vection and diffusion operators. Figure 9.15 (bottom) visualizes these two
grids for the framework of a glacier domain. The two post-processing pro-
cedures described earlier (a SLIC method to avoid numerical diffusion, and
a decompression algorithm) are incorporated to the algorithm. Interpolation
and projection operators are the same as the ones described in section 9.6.1.

Advection step for ice flow Again, assume that the old values ϕn
ijk of

the volume fraction of ice are available at each cubic cell with coordinates of
center (xi, yj, zk) contained in the cavity Λ.

We now present more details of how to compute the new values ϕn+1
ijk , by

assuming that the values of the velocity vn
ijk are available at the center of

each cell ijk in the structured grid.
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298 Computational Fluid Dynamics

The two formulas (9.27) and (9.32) are discretized on the structured grid
to obtain new values ϕ

n+1/2
ijk , ϕn+1

ijk , respectively. The discretization of (9.27)
has been addressed in section 9.6.1. Let us turn to the solution of (9.32).

For each vertical column (ij) of the structured grid, the first task con-

sists in computing the height of ice H
n+ 1

2
ij , which is an approximation of

H(xi, yj , t
n+1/2), H being defined in (9.24). Using the rectangle formula to

evaluate (9.24), we obtain

H
n+ 1

2
ij = h

∑
k

ϕ
n+ 1

2
ijk .

According to (9.32), the amount of ice that has to be added or removed in
the column (i, j) is

∣∣∣b(xi, yj , B(xi, yj) + H
n+ 1

2
ij , tn)

∣∣∣ Δt,

where (xi, yj) are the horizontal coordinates of the center of the column (ij).
Thus

Iij :=
b(xi, yj , B(xi, yj) + H

n+ 1
2

ij , tn)Δt

h
,

denotes the number (not necessarily an integer) of cells to be filled (if Iij > 0)
or to be emptied (if Iij < 0), and we determine the largest vertical index k

such that ϕ
n+ 1

2
ijk−1 = 1 and ϕ

n+ 1
2

ijk < 1. With this information, the filling is
carried out from bottom to top while the emptying is carried out from top to
bottom, as visualized in Figure 9.18.

More precisely, the filling algorithm reads:

• If (Iij > 0), then : while (Iij > 0) do

ϕn+1
ijk = min(ϕn+ 1

2
ijk + Iij , 1),

Iij ← Iij − (ϕn+1
ijk − ϕ

n+ 1
2

ijk ),

k ← k + 1,

• If (Iij < 0), then : while (Iij < 0) do

ϕn+1
ijk = max(ϕn+ 1

2
ijk + Iij , 0),

Iij ← Iij − (ϕn+1
ijk − ϕ

n+ 1
2

ijk ),

k ← k − 1.

The solution of (9.12) with the proposed algorithm avoid artificial compres-
sion in a natural way, by redistributing the mass of ice column by column.
This local repair algorithm exploits the structure of the ice domain to provide
a better approximation of the ice domain than for the general case of liquid
flow.
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FIGURE 9.18: VOF filling (on the left) and VOF emptying (on the right) of
cells having index (ij). On the left, Iij = 0.4 means that 0.4 cells has to be
added starting from cell number (ijk). In the same way, Iij = −0.4 on the
right means that 0.4 cells has to be removed.

Finite element techniques for ice flow Once the approximation ϕn+1
ijk is

known on the structured grid, the ice domain is defined on the finite element
mesh with the same techniques as in section 9.6.1. The bedrock-ice interface
Γn+1

B,H and the ice-air interface Γn+1
H can be identified easily.

We look for a solution to the nonlinear problem (9.35) in the space of
continuous functions, piecewise linear on the tetrahedrons of the finite element
mesh TH , for both the velocity and the pressure. Since the combination of
piecewise linear approximations of the velocity and pressure is not stable, we
introduce additional stabilized terms as in (9.37). Consequently, we find the
velocity vn+1

H ∈ V 1,n+1
H and the pressure pn+1

H ∈ Qn+1
H such that i) vn+1

H

satisfies the essential boundary conditions on (some part of) Γn+1
B,H and ii)

2
∫

Ωn+1
H

μn+1
H D(vn+1

H ) : D(w)dx −
∫

Ωn+1
H

pn+1
H ∇ ·wdx− ρg

∫

Ωn+1
H

wdx

+
∫

Γn+1,S
B,S,H

αn+1
H

(
(vn+1

H · t1)(w · t1) + (vn+1
H · t2)(w · t2)

)
dS

−
∫

Ωn+1
H

q∇ · vn+1
H dx

+
∑

K⊂TH

γK

∫

Ωn+1
H

∇pn+1
H · ∇qdx =

∑
K⊂TH

γK

∫

Ωn+1
H

ρg · ∇qdx,

(9.39)
for all w ∈ V 1,n+1

H and q ∈ Qn+1
H , such that w is compatible with the

essential boundary conditions. Here Γn+1
B,S,H ⊂ Γn+1

B,H is the part
of the bedrock-ice interface where slip boundary conditions are
imposed. The coefficients are given by μn+1

H = μ(sn+1
H ) (with
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300 Computational Fluid Dynamics

sn+1
H =

√
1
2 (D(vn+1

H ) : D(vn+1
H ))) and αn+1

H = α(vn+1
H ) where μ and α are

defined respectively by (9.17) and (9.21). The nonlinearities appearing in the
coefficients μn+1

H and αn+1
H are taken into account via an iterative algorithm.

A fixed point algorithm, and a Newton method are detailed in the following.

A fixed point iteration method consists in freezing the nonlineari-
ties in (9.39), and solving a sequence of linear Stokes problems. At
each time step, let vn+1,0

H = vn
H be a given velocity, and sn+1,0

H =√
1
2 (D(vn+1,0

H ) : D(vn+1,0
H )). Then, for each k ≥ 0, define μn+1,k

H = μ(sn+1,k
H )

and αn+1,k
H = α(vn+1,k

H ), and solve

2
∫

Ωn+1
H

μn+1,k
H D(vn+1,k+1

H ) : D(w)dx −
∫

Ωn+1
H

pn+1,k+1
H ∇ ·wdx − ρg

∫

Ωn+1
H

wdx

+
∫

Γn+1
B,S,H

αn+1,k
H

(
(vn+1,k+1

H · t1)(w · t1) + (vn+1,k+1
H · t2)(w · t2)

)
dS

−
∫

Ωn+1
H

∇ · vn+1,k+1
H qdx

+
∑

K⊂TH

γK

∫

Ωn+1
H

∇pn+1,k+1
H · ∇qdx =

∑
K⊂TH

γK

∫

Ωn+1
H

ρg · ∇qdx.

(9.40)
to obtain (vn+1,k+1

H , pn+1,k+1
H ), and repeat until convergence.

A Newton iteration method consists of the replacement of (9.39) by a lin-
earized version. For the case without sliding, the following term is added to
the left-hand side of (9.40)

r

∫

Ωn+1
H

μ′(sn+1,k
H )

sn+1,k
H

(D(vn+1,k
H ) : D(vn+1,k+1

H ))(D(vn+1,k
H ) : D(w))dx, (9.41)

and the following term to the right-hand side of (9.40)

r

∫

Ωn+1
H

μ′(sn+1,k
H )

sn+1,k
H

(D(vn+1,k
H ) : D(vn+1,k

H ))(D(vn+1,k
H ) : D(w))dx. (9.42)

In this general method, r = 0 corresponds to the fixed point iteration
method, while r = 1 corresponds to the Newton method. Any choice of r in
(0, 1) allows to obtain another, hybrid, approximation method.

In order to evaluate the difference between the two methods, a two-
dimensional test problem is addressed, in which only the viscosity μ is a non-
linear function of the velocity. We consider a known vertical cut of the Gries
glacier (Switzerland) in year 1961 [Kirner, 2007]. We assume that there is no
sliding on the bedrock-ice interface, and standard parameters: m = 3 [Gud-
mundsson, 1999], σ0 =

√
0.1 [bar] and A = 0.08 [bar−3 year−1].
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Numerical algorithms for free surface flow 301

Starting with (v0
H , p0) := (0, 0), (9.39) together with (9.41)-(9.42) is con-

sidered for r = 0 (fixed point iteration), r = 1 (Newton method), and r = 1/2
(hybrid method). The stopping criterion for all algorithms applies with the

norm ||v||�2 =
(∑Nv

j=1 vT
j vj

)1/2

, where vj is the value of the field v at the

node number j. After 50 iterations, both solutions differ from less than 10−8,
which defines an exact reference solution, denoted by ū.

Thus we can compute the (normalized) error

Ek :=
||uk − ū||�2
||ū||�2

.

Figure 9.19 visualizes the results at each iteration for the three values of r.
As expected, the order 2 Newton method (r = 1) is very accurate. Typically,
around 5 iterations are enough to converge. The convergence is not influenced
by a refinement of the mesh, as noticed in [Colinge and Rappaz, 1999]. The
fixed point iteration is also robust but the convergence is slower.

10−8

10−6

10−4

10−2

100

E
k

E
k

10 20 30 40 50

Number of iterationsNumber of iterations

r = 0
r = 1

FIGURE 9.19: Convergence error Ek as a function of the number of iterations
(semi-log graph in the y-coordinate).

9.7 Modeling of interfacial effects

The assumption that the liquid/ice is surrounded by vacuum leads to a
vanishing force on the free boundary, see equation (9.14). Extensions due
to the external has pressure and surface tension effects are briefly presented
for Newtonian flows (see [Caboussat et al., 2005], [Caboussat, 2006] for more
details).
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302 Computational Fluid Dynamics

9.7.1 Modeling of gas pressure

When neglecting surface tension effects, (9.14) is replaced by

[−pn + 2μD(u) · n] = 0, (9.43)

where [·] denotes the jump across the interface, and the velocity and pres-
sure in the gas domain have to be computed outside the liquid domain, i.e.
in Λ. This can be computationally expensive, since it requires to solve the
incompressible Navier-Stokes or the compressible Euler equations in the gas.

In order to avoid such an important task, we have proposed a simplified
model [Caboussat et al., 2005] that assumes that the velocity in the gas
domain is zero, and takes into account only the pressure in the gas. We
assume that the gas is a compressible, ideal gas. Adding the pressure in the
gas allows to take into account the resistance of the gas onto the fluid. For
instance, when a bubble of gas is trapped by the liquid, the gas pressure
prevents the bubble to collapse rapidly, as it is the case for vacuum.

The simplified model is as follows: the pressure in the gas is denoted by
P , and assumed to be constant in space in each bubble of gas, i.e. in each
connected component of the gas domain. Let k(t) be the number of bubbles
of gas at time t and Bi(t) ⊂ Λ the domain occupied by bubble number i (the
ith connected component). Let Pi(t) denote the constant pressure in Bi(t),
with initial pressure Pi(0) constant in each bubble. If Vi(t) is defined as the
volume of Bi(t), the pressure in each bubble at time t is thus computed by
using the law of ideal gases at constant temperature:

Pi(t)Vi(t) = constant i = 1, . . . , k(t). (9.44)

This simplified model requires the tracking of the positions of the bubbles of
gas between two time steps. The additional unknowns in our model
are the locations and pressure of the bubbles of gas Bi(t). The
equations (9.10)-(9.12) are to be solved together with −pn+ 2μD(u) ·n = Pi

on the interface between the liquid and bubble number i.

The tracking of the bubbles of gas and the computation of their internal
pressure introduce an additional step in our time splitting scheme. This proce-
dure is inserted between the advection step and the diffusion step, in order to
compute an approximation of the force on the interface. The underlying idea
is as follows [Caboussat et al., 2005]: given the liquid domain Ωn+1, the key
point is to find the number of bubbles (that is to say the number of connected
components) and the bubbles Bn+1

j iteratively. Given a point P in the gas
domain Λ\Ωn+1, we search for a function u such that −Δu = δP in Λ\Ωn+1,
with u = 0 on Ωn+1, and u continuous (where δP is the Dirac measure at
point P ). By using the maximum principle, the solution u to this problem is
strictly positive in the connected component containing point P and vanishes
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Numerical algorithms for free surface flow 303

outside (in particular in the other connected components of Λ\Ωn+1). There-
fore it allows to track the first bubble. The procedure is repeated iteratively
until all the bubbles are recognized.

Let us denote by kn the number of bubbles at t = tn, and Pn
i , Bn

i , i =
1, 2, . . . , kn, the approximations of Pi, Bi, i = 1, 2, . . . , k, respectively at time
tn. Let ξn+1 : Λ → R be a bubble numbering function, negative in the liquid
region Ωn+1 and equal to i in bubble Bn+1

i . The approximations kn+1, Pn+1
i ,

Bn+1
i , i = 1, 2, . . . , kn+1 and ξn+1 are computed as follows. Given the new

liquid domain Ωn+1, the number of bubbles kn+1 (i.e. the number of connected
components) and the bubbles Bn+1

i , i = 1, . . . , kn+1 are obtained with the
following algorithm: Set kn+1 = 0, ξn+1 = 0 in Λ\Ωn+1 and ξn+1 = −1 in
Ωn+1, and Θn+1 =

{
x ∈ Λ : ξn+1(x) = 0

}
. While Θn+1 = ∅, do:

1. Choose a point P in Θn+1;

2. Solve the following problem: Find u : Λ→ R which satisfies:
⎧⎨
⎩
−Δu = δP , in Θn+1,

u = 0, in Λ\Θn+1,
[u] = 0, on ∂Θn+1,

(9.45)

where δP is Dirac delta function at point P , [u] is the jump of u through
∂Θn+1. The discretization of (9.45) is addressed with continuous piece-
wise linear finite elements, based on the triangulation TH ;

3. Increase the number of bubbles kn+1 at time tn+1: kn+1 = kn+1 + 1;

4. Define the bubble of gas number kn+1: Bn+1
kn+1 =

{
x ∈ Θn+1 : u(x) = 0

}
;

5. Update the bubble numbering function ξn+1(x) = kn+1, ∀x ∈ Bn+1
kn+1 ;

6. Update Θn+1 for the next iteration: Θn+1 =
{
x ∈ Λ : ξn+1(x) = 0

}
.

REMARK 9.11 The cost of this original numbering algorithm is bounded
by the cost of solving kn+1 Poisson problems in the gas domain. The corre-
sponding CPU time used to solve the Poisson problems is usually much less
expensive than solving a full model in the gas domain, and much less expensive
than solving the Stokes problem in the liquid domain.

Once the connected components of gas are numbered, an approximation
Pn+1

i of the constant pressure in bubble i at time tn+1 has to be com-
puted with (9.44). In the case of a single bubble in the liquid, (9.44) yields
Pn+1

1 V n+1
1 = Pn

1 V n
1 . In the case when two bubbles merge between times tn

and tn+1, this relation becomes Pn+1
1 V n+1

1 = Pn
1 V n

1 + Pn
2 V n

2 . When a bub-
ble Bn

1 splits onto two, each of its parts at time tn contributes to bubbles
Bn+1

1 and Bn+1
2 . Details of the implementation require to distinguish several

situations, and are given in [Caboussat et al., 2005].
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304 Computational Fluid Dynamics

The value of the pressure can be inserted as a boundary term in (9.30)
for the resolution of the generalized Stokes problem (9.28)-(9.29). By using
the divergence theorem in the variational formulation (9.30) and the fact that
Pn+1 is piecewise constant, the integral on the free surface Γn+1

H is transformed
into an integral on Ωn+1

H (see [Caboussat et al., 2005]).

9.7.2 Modeling of surface tension

Independently of the presence or not of gas around the liquid, surface ten-
sion effects can be incorporated into (9.13), by adding a normal force σκn
on the interface. This requires the approximation of the curvature κ and the
normal vector n. An additional step is added in the time splitting scheme to
compute these two unknowns before the diffusion part. When incorporating
the surface tension, the left-hand-side of (9.37) must be supplemented by

∫

Γn+1
H

σκn+1
H w · nn+1

H dS. (9.46)

Several strategies can be considered for the modeling and computation of
surface tension effects.

Continuum surface force model The Continuum Surface Force (CSF)
model has been detailed e.g. [Brackbill et al., 1992], [Caboussat, 2006], [Rider
and Kothe, 1998], [Williams et al., 1999]. Let us denote by κn+1 and nn+1

the approximations of κ and n respectively, at time tn+1. Since the charac-
teristic function ϕn+1 is not smooth, it is first regularized by convolution, see
e.g. [Caboussat, 2006], [Williams et al., 1999], in order to obtain a smooth
approximation ϕ̃n+1:

ϕ̃n+1(x) =
∫

Λ

ϕn+1(y)Kε(x − y)dy, ∀x ∈ Λ. (9.47)

The parameter ε is the smoothing parameter that describes the size of the
support of Kε, i.e. the size of the smoothing layer around the interface, and
Kε is a smoothing kernel.

The liquid-gas interface Γn+1 is given by the level line {x ∈ Λ : ϕ̃n+1(x) =
dliq}, with ϕ̃n+1(x) < dliq in the gas domain and ϕ̃n+1(x) > dliq in the liquid
domain (dliq ∈ (0, 1) is the threshold between liquid and gas phases). At each
time step, the normal vector nn+1 and the curvature κn+1 on the liquid-gas
interface are given respectively by

nn+1 = − ∇ϕ̃n+1

||∇ϕ̃n+1|| and κn+1 = −∇ ·
(
∇ϕ̃n+1

||∇ϕ̃n+1||

)
,

see e.g. [Osher and Fedkiw, 2001]. The discrete approximation of κn+1 is
achieved on the finite element mesh, in order to use the variational framework
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Numerical algorithms for free surface flow 305

of the finite element approximation. The normal vector nn+1
H is given by the

normalized gradient of ϕ̃n+1
H at each grid point Pj , j = 1, . . . , Nv where Nv

denotes the number of nodes in the finite element discretization. Details can
be found in [Caboussat, 2006]. The curvature κn+1 is approximated by the
L2-projection of the divergence of the normal vector on the piecewise linear
finite elements space with mass lumping and is denoted by κn+1

H , given by the
relation ∫

ΛH

κn+1
H ψP dx =

∫

ΛH

−∇ · ∇ϕ̃n+1
H∣∣∣∣∇ϕ̃n+1
H

∣∣∣∣ψP dx, (9.48)

for all vertices P of TH , where ψP are the piecewise linear finite element
basis functions. The left-hand side of this relation is computed with mass
lumping, while the right-hand side is integrated by parts. Explicit values
of the curvature of the level lines of ϕ̃n+1

H (the continuous piecewise linear
approximation of ϕ̃n+1) are obtained at the vertices of the finite element
mesh being in a layer around the free surface. The restriction of κn+1

H to the
nodes lying on Γn+1

H is used to compute (9.13).

Geometric surface tension model Following, [Bonito et al., 2010], [Ger-
beau and Lelièvre, 2009], the surface tension effects can also be written in
terms of a surface operator. By using the divergence theorem, see equa-
tion (20) in [Gerbeau and Lelièvre, 2009], the boundary term (9.46) can be
expressed as∫

Γn+1
H

σκn+1
H w · nn+1

H dS = −
∫

Γn+1
H

σTr
(
∇Γn+1

H
w
)

dS, (9.49)

where ∇Γn+1
H

is the surface gradient, defined for each vector field X on the

surface Γn+1
H as

∇Γn+1
H

X = PΓn+1
H
∇X = ∇X− nn+1

H ⊗ nn+1
H ∇X, (9.50)

and where PΓn+1(x) is the orthogonal projector on the tangential direction
of Γn+1

H at point x. This approach allows to reduce the computational cost
for the determination of the surface tension effects (compared to the CSF
model) without sacrificing the accuracy. If the liquid-gas interface is in contact
with the boundary of the cavity, this formulation allows to take into account
the contact angle between the Γt and ∂Λ. An additional boundary term is
therefore added to (9.49).

9.8 Numerical results for liquid flow

Originally designed for mold filling applications, the proposed algorithm
actually allows to cover a wider range of applications, as illustrated by the
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following numerical experiments having Reynolds numbers ranging from 0 to
105! Benchmark problems have been presented in [Caboussat et al., 2005],
[Maronnier et al., 1999], [Maronnier et al., 2003] to validate i) the accuracy of
the advection operator in stretching flow, and ii) the accuracy of the position
of the interface and the computation of the velocity and pressure. In the
following, examples from mold casting, sloshing problems, and bubbly flow,
are presented.

9.8.1 Casting problems

An S-shaped channel lying between two horizontal plates is filled. The
channel is contained in a 0.17 m×0.24 m rectangle. The distance between the
two horizontal plates is 0.008 m. Water is injected at one end with constant
velocity 9.2 m/s. Density and viscosity are taken to be respectively ρ = 1000
kg/m3 and μ = 0.01 kg/(ms). Slip boundary conditions are enforced to avoid
boundary layers. Since the ratio between Capillary number and Reynolds
number is very small, surface tension effects are neglected. The final time is
T = 0.0054 [s] and the time step is τ = 0.0001 [s]. The finite element mesh is
made out of 96030 elements.

In Figure 9.20 (top), 3D computations are presented when the liquid is
surrounded with vacuum (no external pressure due to the gas bubbles). The
CPU time for the simulations in three space dimensions is approximately
120 minutes for 540 time steps (Intel Core 2 Ghz CPU, with less than 2Gb
memory). Most of the CPU time is spent to solve the Stokes problem.

FIGURE 9.20: S-shaped channel: 3D results when the cavity is initially filled
with vacuum (top); when the cavity is initially filled with compressible gas at
atmospheric pressure (bottom). Time equals 8.0 ms, 22.0 ms, 35.0 ms and 50
ms.
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Numerical algorithms for free surface flow 307

A comparison with experimental results shows that the bubbles of gas
trapped by the liquid vanish too rapidly. In order to obtain more realistic
results, the effect of the gas compressibility onto the liquid must be consid-
ered. The same S-shaped channel is therefore initially filled with compressible
gas at atmospheric pressure P = 101300 [Pa]. A valve is located at the up-
per extremity of the channel allowing gas to escape, so that the gas domain
connected to this valve does not apply any pressure on the liquid. Numeri-
cal results in Figure 9.20 (bottom) show the persistence of the bubbles. The
CPU time for the simulations is approximately 130 [minutes] with the bubbles
computations; thus the overhead for computing the compressibility effects is
less than 10% of the total CPU time.

9.8.2 Sloshing simulations

The simulation of horizontal sloshing is usually difficult, due to the numer-
ical diffusion introduced at the interface. Here we show two examples that
involve nearly horizontal interfaces, namely the breaking dam and the impact
of a droplet on an horizontal surface.

We consider a cavity with size 0.09× 0.045× 0.045 [m3] and place a block
of water with size 0.03× 0.02× 0.04 [m3] along one of the vertical edges. The
finite element mesh contains 168750 elements. The water is released at initial
time and free to move under action of gravity. It is surrounded by vacuum and
surface tension effects are neglected, implying a zero boundary force condition
on the free surface. It splashes against the opposite walls of the cavity, before
sloshing from one end to the other. The final time is 0.5 [s] and 500 time steps
were used. Figure 9.21 visualizes snapshots of the liquid domain at several
times.

We consider the cubic cavity (0, 0.1)3. An horizontal liquid layer is located
at the bottom of the cavity below height z = 0.04, while a spherical droplet of
initial radius r = 0.015 center (0.05, 0.05, 0.06), and velocity v0 = (0, 0,−5) is
falling under gravity forces. The finite element mesh contains 367200 elements.
The droplet falls on the liquid layer under gravity forces, and splashes on the
horizontal surface. Interfacial effects are neglected.

Figure 9.22 visualizes snapshots of the liquid domain at several times of
the impact, before reflections are introduced by the boundaries of Λ. One can
observe that symmetries are perfectly respected, that the droplet is swallowed
by the water at impact, and forms a circular wave on the free surface.

9.8.3 Bubbles simulations with surface tension

Finally, we address the simulation of bubbly flow. In these cases, the
Reynolds numbers are very small, and the interfacial effects play a more
important role.
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t = 0.015[s] t = 0.06[s]

t = 0.12[s] t = 0.18[s]

t = 0.24[s] t = 0.30[s]

t = 0.36[s] t = 0.42[s]

FIGURE 9.21: Breakage of a dam in a confined cavity.
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Numerical algorithms for free surface flow 309

t = 0.002[s] t = 0.004[s] t = 0.006[s]

t = 0.008[s] t = 0.010[s] t = 0.026[s]

FIGURE 9.22: Impact of a liquid droplet onto an horizontal liquid surface.

We consider a bubble of gas of radius r =
√

0.0004 at the bottom of the
cylinder (0, 0.05)× (0, 0.05)× (0, 0.1) filled with liquid up to the surface z =
0.07, under gravity forces. The bubble rises and reaches the free surface
between water and air, see Figure 9.23. The compressible effects of the air,
and the surface tension effects are taken into account. The physical constants
are μ = 0.01 kg/(ms), ρ = 1000 kg/m3 and σ = 0.0738 N/m. The mesh made
out of 115200 tetrahedra. The smoothing parameter for the smoothing of the
volume fraction of liquid in the CSF model is ε = 0.005.

Numerical simulations for one bubble of gas have been benchmarked in
[Caboussat, 2006]. Let us consider then two bubbles of gas under gravity
forces starting at the bottom the cylinder (0, 0.05)× (0, 0.05)× (0, 0.1), that
is completely filled with liquid. The two bubbles have the same size (r =√

0.0002). Due to the pressure difference, the bottom bubble rises faster, and
coalesces with the top one. Figure 9.24 visualizes the rising and interactions
between bubbles at several time steps when the two bubbles are on-axis [Chen
and Li, 1998], [Hua et al., 2008], i.e. the center of both bubbles is located
on the symmetry axis of the cylinder. Numerical results capture accurately
the coalescence of the two bubbles (see [Chen and Li, 1998] and experimental
results therein).

Figure 9.25 visualizes the rising and interactions between bubbles at several
time steps when the two bubbles are off-axis; the center of the top bubble
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310 Computational Fluid Dynamics

FIGURE 9.23: Three-dimensional rising bubble under a free surface: Repre-
sentation of the gas domain at times t = 50.0, 75.0, 100.0, 150.0, 200.0 and
250.0 [ms] (left to right, top to bottom).

is initially located at (0.0175, 0.0175, 0.06), while the center of the bottom
one is at (0.0275, 0.0275, 0.01). One observes that the bottom bubble is first
attracted in the wake of the top one, before the rising and the coalescence.

9.9 Numerical results for ice flow

We present numerical results for two Alpine glaciers located in Switzerland,
the Muragl glacier, and the Rhone glacier (Rhonegletscher). Several mass
balance models of various complexity are used. In the first application, a
simple parametrization of b is considered because of the lack of data. In the
second application, a more complex mass balance model which involves daily
data of temperature and precipitation is used.

9.9.1 Muragl glacier

Presently, Vadret Muragl is a small glacier 200−300 [m] long in the highest
reaches of the Val de Muragl, in the Eastern Swiss Alps. Based on geomor-
phological evidence, several positions of the glacier terminus have been recon-
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Numerical algorithms for free surface flow 311

FIGURE 9.24: Rising and coalescence of two on-axis bubbles of same size.
Representation of the gas domain at times t = 10.0, 50.0, 80.0, 100.0., 150.0
and 180.0 [ms] (left to right, top to bottom).
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FIGURE 9.25: Rising and coalescence of two off-axis bubbles of same size.
Representation of the gas domain at times t = 5.0, 75.0, 150.0, 200.0., 225.0
and 250.0 [ms] (left to right, top to bottom).
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Numerical algorithms for free surface flow 313

structed throughout the ages. Among them, the “Margun” position with a
length of about 3.65 km, was close to the position of Vadret Muragl about
10,000 years ago [Imbaumgarten, 2005], [Rothenbühler, 2000]. Figure 9.26
visualizes the reconstructed “Margun” position. It can be used to illustrate
the numerical simulation of ice flows and to test climatological hypotheses.

FIGURE 9.26: Reconstructed position Punt Muragl for Vadret Muragl, from
T. Imbaumgarten master’s thesis (2005).

A (simple) mass balance mode is considered [Jouvet et al., 2008]. It is con-
sidered to be only elevation dependent, i.e. b(x, y, z, t) = b(z). This function
is defined by the melt gradient, am, the equilibrium line altitude, zELA, and
the maximum accumulation rate, ac :

b(z) = min [am (z − zELA) , ac]. (9.51)

Figure 9.27 illustrates the function b(z). This simplified parametrization fol-
lows the experience that the mass balance increases approximately linearly
with altitude in the ablation zone and often levels out in the accumulation
zone [Kuhn, 1981], [Stroeven, 1996]. In this model the mass balance is inde-
pendent of time.

For a given set of parameters (am, zELA, ac), the equilibrium shape of the
glacier is reconstructed, starting from two different initial shapes. Both com-
putations lead to the same equilibrium shape, illustrated in Figure 9.28.

The numerical values of the physical parameters in both runs were m = 3 for
the flow law exponent, rate factor A = 0.08 [bar−3year−1], and regularization
parameter σ2

0 = 0.1 [bar2]. The time step is Δt = 1[year] and the grid spacing
for the advection cells is h = 5 [m].
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b(z)

am

zELA

ac

z

FIGURE 9.27: Mass balance function b(z).

Figure 9.28 shows that, after a few hundred years, the two simulations
coincide within 50 [m], i.e. within the finite element grid resolution (H =
50 [m]).

It is then possible to use the model in an inverse problem framework in
order to find the appropriate mass balance distribution (am, zELA, ac) such
that the modeled glacier fits a given tongue position.

We therefore can use the reconstructed Margun position to determine the
set of parameters ac, am, zELA appearing in (9.51), for which the computed
steady state terminus position fits the given reconstructed glacier terminus.
The well-posedness of this inverse problem is not guaranteed, but, to favor
physical solutions, we restrict the values of the parameters to realistic inter-
vals.

For fixed values of the two parameters ac and am, the equilibrium line
altitude zELA can be found by an iterative process. Since the glacier length is
a monotonous function of zELA, a given tongue position can be obtained by
applying a secant method, as illustrated in Figure 9.29.

By repeating this procedure with a set of realistic parameters ac and am, it
is shown in [Jouvet et al., 2008] that the equilibrium line altitude of Muragl
Glacier that corresponds to the Margun position is about 2700.

REMARK 9.12 The numerical simulation of such glaciers obviously relies
on several sets of parameters, each estimated or calibrated from experiments or
measurements. Sensitivity of the simulations with respect to the parameters
must be discussed. Several examples of sensitivity studies can be found in
[Jouvet et al., 2008], for instance w.r.t the rate factor A, or the climatic
conditions.

9.9.2 Rhone glacier

A second example is presented here to illustrate the prediction capabilities
of numerical simulations of glaciers. The Rhone glacier has been thoroughly
investigated by glaciologists throughout the last century. As many Alpine
glaciers, it has significantly retreated since the end of the Little Ice Age around
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Numerical algorithms for free surface flow 315

FIGURE 9.28: Evolution of the glacier starting from a short position (top
left) and from a long position (top right). The parameter values for the steady
state corresponding approximately to the Margun position are zELA = 2700[m
a.s.l.], ac = 0.5[m year−1] and am = 0.004. Below: difference between the two
tongues’ location, the discrepancy is of the order of the mesh size H = 50 [m].D
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FIGURE 9.29: Computations of steady shapes for zELA = 2740 and zELA =
2680 provides two abscissa of the tongue’s end: L(2740) = 2785 and L(2680) =
3655. Using a secant method, zELA = 2709 is a judicious choice for the next
computation; the corresponding steady shape almost fits the target’s position.

1850, as shown in Figure 9.30. Measurements are actually available starting
already in 1874.

In this section, several numerical simulations of Rhone glacier, from 1874
to 2100, are presented. Firstly, the measurements available between 1874
and 2007 allow to calibrate the physical parameters. Secondly, simulations
between 2008 and 2100 are run, by setting the mass balance parameters to
probable climatic trends [Frei, 2007]. In all the simulations, the Glen’s
exponent is set to m = 3 (e.g. [Gudmundsson, 1999]), and the regularization
parameters are set to σ0 =

√
0.1 [bar] and s0 = 0.01 [m year−1]. Let us now

describe the complex mass balance model used for the simulation of Rhone
glacier. The parameters involved in this model are calibrated to fit
observations optimally [Huss et al., 2008a].

The mass balance b is a function of (x, y, t) defined by

b(x, y, t) = P (x, y, t)−M(x, y, t), (9.52)

where P corresponds to solid precipitation (snow) and M to melt processes.
The function P is given by

P = P (x, y, t) = Pws(t) (1 + Pz(S(x, y, t)− zws)) cprecD(x, y, t), (9.53)

where Pws is the precipitation measured at a nearby weather station at el-
evation zws, Pz and cprec are constant coefficients and D is the distribution
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Numerical algorithms for free surface flow 317

FIGURE 9.30: Left: Pictures of the Rhone glacier tongue in 1856
(from http://www.unifr.ch/geosciences/geographie/glaciers/); right:
in 2008.

pattern of solid precipitations, calculated from the curvature and slope of the
terrain. The function D(x, y, t) varies between 0 (complete snow erosion due
to the wind) and 2 (snow deposition). To distinguish between solid and liquid
precipitation, a threshold temperature is given. The function M(x, y, t) is
given [Hock, 1999] by

M(x, y, t) =
{

(fM + rice/snowI(x, y, t))T (x, y, t) if T (x, y, t) > 0,
0 otherwise, (9.54)

where fM and rice/snow are constant coefficients, I is the potential direct solar
radiation [Hock, 1999] and T is the temperature field computed from measured
air temperature Tws at the nearby weather station:

T (x, y, t) = Tws(t)−G (S(x, y, t)− zws),

where G is a constant temperature gradient. Note that mass balance is first
computed in a daily resolution by using (9.52) and next integrated over the
year to provide the function b. The five unknown coefficients fM, rice, rsnow,
cprec, Pz involved in (9.53) and (9.54) are calibrated according to i) ice volume
changes ii) point-based mass balance measurements and iii) water discharge
[Huss et al., 2008a]. The mass balance function is depicted in Figure 9.31 for
two extreme years in terms of accumulation and ablation.

Let us shortly describe the numerical implementation of this test case.
At each vertex (xi, yj) of a structured grid in the horizontal rectangle
(0, 4000)× (0, 10000), the bedrock elevation B(xi, yj) and the initial ice sur-
face S(xi, yj, 0) are provided [Farinotti et al., 2009]. The cell size in the x, y
directions is 50 [m]. A triangular finite element mesh of the bedrock is gener-
ated. A triangular finite element mesh of the top surface of the cavity Λ is also
generated by adding 150 [m] to the initial ice thickness. Then, a Delaunay un-
structured mesh of tetrahedrons is generated between the two surfaces using
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FIGURE 9.31: Mass balance function b for the Rhone glacier in (left) 1977
(mass gain of the glacier - cold year) and (right) 2003 (mass loss - warm year).
The unit of b is meter water equivalent. The results are shown using a local
system of reference. The abscissa of the lower left corner is 671250 while the
ordinate is 157400 (in the Swiss referential).
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TetMesh-GHS3D [Frey and George, 2008], filling the cavity Λ with tetrahe-
drons of typical size 50 [m]. The MeshAdapt remesher [MeshAdapt, 2003] is
used in order to refine the mesh in the Oz direction only (anisotropic mesh
of typical size 10 [m]). The final mesh of the cavity has 240147 vertices. The
number of vertices of the cavity contained in the initial ice region Ω0 is 84161.
The block (0, 4000)× (0, 10000)× (1700, 3600) containing the cavity Λ is cut
into 400 × 1000 × 200 structured cells. The time step is half a year. About
10 days are required for performing the simulation from 1874 to 2007 (AMD
Opteron 242 CPU with less than 8Gb memory).

Numerical simulation from 1874 to 2007 The sliding law (9.20) is sub-
ject to higher uncertainties than the flow model (9.15)-(9.17), which has been
used in several studies in the past. The influence of the slip boundary con-
ditions on the bedrock is an important point to evaluate. We first simulate
the retreat of the glacier from 1874 to 2007 with no-slip conditions along the
bedrock (no sliding, A = 0.08 [bar−3 year−1] [Gudmundsson, 1999]). Fig-
ures 9.32 and 9.33 show that the retreat of the glacier from 1874 to 1900 is
significantly too fast in comparison to observations. This can be explained by
the following uncertainties in the model:

1. the slip boundary conditions are not taken into account on the bedrock;

2. the value of the coefficient A is inaccurate;

3. the bedrock location is inaccurate in some regions of the glacier;

4. the ice flow model does not correctly describe the glacier dynamics.

Experimental data show that the sliding effect is a very important process
ahead the glacier, see e.g. [Jouvet et al., 2009], [Mercanton, 1916], [Nishimura,
2008]. The sole introduction of slip boundary conditions on the bedrock allows
to obtain a much better fit with the measurements. We consider the physical
parameters A = 0.1 and C = 0.3 (adjusted to the best fit), and a sliding
zone defined as in [Jouvet et al., 2009] (the ice located near the tongue of the
glacier - the lower part of the glacier - is sliding).

We compare the position of the tip of the glacier’s tongue, with no-slip
boundary conditions along the bedrock ΓB, or slip boundary conditions on
some portion of the bedrock-ice interface ΓB. Figure 9.32 visualizes the com-
parison with experimental data, showing that slip boundary conditions pro-
vide a convincing fit with measurements. Simulation results are given in
Figure 9.33.

Future predictions for the Rhone glacier Finally we emphasize the
role of numerical simulations for the prediction of the future behavior of the
Rhone glacier. This task requires the extrapolation of current and past data
in the future, according to various scenarios. The calibration of future data
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FIGURE 9.32: Comparison of measured and simulated retreat of the glacier
tongue between 1880 and 2007. Model runs using no-slip boundary conditions
on ΓB with A = 0.08 and runs using slip boundary conditions of some part
of ΓB with A = 0.10 are shown.

1874 1880 1890 1900
(b) (c) (d)

(b’) (c’) (d’)

FIGURE 9.33: Simulation of the Rhone glacier tongue over the period 1874-
1900. Left (a): initial glacier extent in 1874. Right, evolution from 1880 to
1900. Top (b, c, d): no-slip on ΓB and A = 0.08; bottom (b’, c’, d’): slip on
some part of ΓB, A = 0.10.
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is achieved as follows. Ice velocity measures are obtained from aerial pho-
tographs [Nishimura, 2008]; the factor A is given by A = 0.8 [bar−3 year−1];
no-slip boundary conditions are enforced on ΓB,t.

Three types of simulations are achieved. In a first step, mass balance terms
are calculated, according to three different climatic scenarios, in terms of
temperature and precipitations (denoted hereafter as median scenario S2 and
extreme scenarios S1 and S3). These scenarios are given explicitly in [Frei,
2007].

In order to emphasize the influence of the temperature and precipitations,
we perform two additional types of simulations. In the first one, several tem-
perature scenarios are considered for fixed precipitation levels (T0 through
T5); conversely, we finally change the precipitations level with a fixed tem-
perature (P1 through P3).

Simulations with three fixed scenarios Neutral data in terms of tem-
perature and precipitations are considered, i.e. random data in past periods
that do not contain major climatic changes. Seasonal effects are incorporated
into these time series [Frei, 2007]. The first one (S1) is ’cold and humid’. This
is the optimistic case, in terms of glacier life expectation. The second one (S2)
is ’median’. The last one (S3) is ’hot and dry’, and is the pessimistic one.
These three scenarios corresponds to the average and almost extreme predic-
tions among a pool of model simulations for future climatic conditions [Frei,
2007]. Figure 9.34 visualizes S1, S2 and S3, while the simulation results for
the three major scenarios in terms of temperature and precipitation trends
are illustrated in Figure 9.35.

These results confirm the trend of the retreat of Alpine glaciers in the 21st
century. The simulation based on the most realistic assumptions for future
climate change predicts a dramatic retreat of Rhonegletscher during the 21st
century. However, the uncertainty of climatic projections is still high and
allows for a wide range of possible glacier changes in the near future.

Simulations according to several temperature tendencies Let us con-
sider a fixed time series of precipitations, and six temperature projections,
called T0 through T5. They correspond to an increase of temperature of
0, 1, 2, 3, 4 and 5◦ between 2090 and 1990. Numerical simulations are pre-
sented in Figure 9.36, while the volumes of ice are represented in Figure 9.37b.
One degree increase of temperature implies a significant loss of ice in 2100.

Simulations according to several precipitations tendencies Con-
versely let us consider a fixed time series of (average) temperatures, and three
precipitation projections, called P1 through P3. They correspond to the vari-
ation depicted on Figure 9.34, bottom, already used for defining scenario S1,
S2 and S3. Numerical simulations are presented in Figure 9.36, while the
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FIGURE 9.34: Deviations of annual (top) mean temperature and (bottom)
precipitation from the climate in 1990. Measured data for the 20th century are
displayed by bars, annual changes as assumed by the three climate scenarios,
that are shown until 2100.

volumes of ice are represented in Figure 9.37 (c). One observes that the vari-
ations of the volume of ice in 2100 between P1, P2 and P3 are less important
than the variations due to a temperature increase.

9.10 Concluding remarks

In this chapter, an efficient computational model for the simulation of two-
phases flows has been presented. It allows to consider liquid and ice flows
with complex free surfaces and within a large range of Reynolds numbers. It
relies on an Eulerian framework and couples finite element techniques with
a forward characteristics method. It allows to incorporate many different
features, such as interfacial effects (surface tension), bubbles of gas, addition
of mass in the system, or various definitions of viscosity.

Numerical results illustrate the large range of applications covered by the
model, going from liquid modeling to ice modeling. Simulation of liquid flow
show the flexibility of the approach for large and small Reynolds numbers.
This allows to tackle casting problems, and bubbles simulations, although the
features of the volume-of-fluid method are more appropriate for large Reynolds
numbers.

Simulations of ice flow have been used to predict future behavior of glaciers.
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2025 2050 2075 2100

S1
Vol.=2.09 [km3] Vol.=1.93 [km3] Vol.=1.73 [km3] Vol.=1.40 [km3]

S2
Vol.=1.92 [km3] Vol.=1.38 [km3] Vol.=0.62 [km3] Vol.=0.10 [km3]

S3
Vol.=1.61 [km3] Vol.=0.66 [km3] Vol.=0.09 [km3] Vol.=0.00 [km3]

FIGURE 9.35: Simulation on the time interval 2007-2100 (from left to right)
for the scenarios S1, S2, and S3 (top to bottom). The volume of ice is indicated
on each figure.D
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T0 T1 T2

Vol.=2.29 [km3] Vol.=1.49 [km3] Vol.=0.84 [km3]

T3 T4 T5

Vol.=0.37 [km3] Vol.=0.09 [km3] Vol.=0.00 [km3]

P1 P2 P3

Vol.=2.68 [km3] Vol.=2.19 [km3] Vol.=1.74 [km3]

FIGURE 9.36: Numerical simulation of the Rhone glacier in 2100, according
to the various temperature and precipitations scenarios T0, T1, T2, T3, T4,
T5, P1, P2 and P3 (left to right, top to bottom. The volume of ice is indicated
on each figure.
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FIGURE 9.37: Volume of ice in the Rhone glacier during the time interval
2007-2100 according to scenarios S1, S2 and S3 (top), scenarios T0, T1, T2,
T3, T4 and T5 (middle), and scenarios P1, P2 and P3 (bottom).
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For such a slow flow, a nonlinear Stokes model has proved to be appropriate,
and benchmarked against real data. The same real data have been extrapo-
lated in the future to design climate scenarios, on the behavior and extinction
of glaciers. The model presented in this chapter has a high potential to predict
the impact of climate change on alpine glaciers during the coming decades.
This is of immediate interest for scientists, but also for tourism, electricity
production and economy in alpine environments (most of the drinkable water
supply is stocked as ice); it emphasizes once again the crucial role of numerical
simulations for policy-makers.
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Laboratoire de Mécanique des Fluides et d’Acoustique
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9:403–423.
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Convergence analysis of Schwarz methods without overlap for the Helmholtz
equation. Computers and Structures, 82(22):1835–1847.

[Magoulès et al., 2004b] Magoulès, F., Iványi, P., and Topping, B. (2004b).
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20):1109–1112.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

1:
47

 0
4 

M
ar

ch
 2

01
6 



Bibliography 361

[Romerio et al., 2005] Romerio, M., Lozinski, A., and Rappaz, J. (2005). A
new modelling for simulating bubble motion in a smelter. In Light Metals,
pages 547–552.

[Rothenbühler, 2000] Rothenbühler, C. (2000). Erfassung und Darstellung
der Geomorphologie im Gebiet Bernina (GR) mit Hilfe von GIS. Master’s
thesis, University of Zurich, Switzerland.

[Saad, 2003] Saad, Y. (2003). Iterative Methods for Sparse Linear Systems.
SIAM, Philadelpha, PA, 2nd edition.

[Sagaut, 2001] Sagaut, P. (2001). Large-eddy simulation for compressible
flows. Springer.

[Salvetti et al., 2007] Salvetti, M., Koobus, B., Camarri, S., and Dervieux, A.
(2007). Simulation of bluff-body flows through a hybrid RANS/VMS-LES
model. In Proceedings of the IUTAM Symposium on Unsteady Separated
Flows and their Control, Corfu, Grece, June 18-22.

[Sarkis and Koobus, 2000] Sarkis, M. and Koobus, B. (2000). A scaled and
minimum overlap restricted additive Schwarz method with application on
aerodynamics. Computer Methods in Applied Mechanics and Engineering,
184:391–400.

[Scardovelli and Zaleski, 1999] Scardovelli, R. and Zaleski, S. (1999). Direct
numerical simulation of free-surface and interfacial flow. Annual Review of
Fluid Mechanics, 31(7):567–603.

[Schall et al., 2004] Schall, E., Leservoisier, D., Dervieux, A., and Koobus, B.
(2004). Mesh adaptation as a tool for certified computational aerodynamics.
International Journal for Numerical Methods in Fluids, 45:179–196.

[Schewe, 1983] Schewe, J. (1983). On the forces acting on a circular cylinder
in cross flow from subcritical up to transcritical Reynolds numbers. Journal
of Fluid Mechanics, 133:265–285.

[Schmidt and Thiele, 2002] Schmidt, S. and Thiele, F. (2002). Comparison
of numerical methods applied to the flow over wall-mounted cubes. Inter-
national Journal of Heat and Fluid Flow, 23:330–339.

[Schofield et al., 2009] Schofield, S., Garimella, R., François, M., and
Loubère, R. (2009). A second-order accurate material-order-independent
interface reconstruction technique for multi-material flow simulations. Jour-
nal of Computational Physics, 228(3):731–745.

[Schoof, 2005] Schoof, C. (2005). The effect of cavitation on glacier sliding.
Royal Society of London Proceedings Series A, 461:609–627.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

1:
47

 0
4 

M
ar

ch
 2

01
6 



362 Computational Fluid Dynamics

[Schoof, 2010] Schoof, C. (2010). Coulomb friction and other sliding laws in
a higher order glacier flow model. Mathematical Models and Methods in
Applied Sciences, 20(1):157–189.

[Selmin and Formaggia, 1998] Selmin, V. and Formaggia, L. (1998). Unified
construction of finite element and finite volume discretizations for compress-
ible flows. International Journal for Numerical Methods in Engineering,
39(1):1–32.

[Sethian, 1999] Sethian, J. (1999). Fast marching methods. SIAM Review,
41(2):199–235.

[Shaskov and Wendroff, 2004] Shaskov, M. and Wendroff, B. (2004). The re-
pair paradigm and application to conservation laws. Journal of Computa-
tional Physics, 198(1):265–277.

[Shelley et al., 1997] Shelley, M., Tian, F.-R., and Wlodarski, K. (1997).
Hele-Shaw flow and pattern formation in a time-dependent gap. Nonlin-
earity, 10(6):1471–1495.

[Shepard, 1968] Shepard, D. (1968). A two-dimensional interpolation function
for irregularly spaced points. In Proceedings of A.C.M. National Confer-
ence, pages 517–524.

[Shin and Juric, 2002] Shin, S. and Juric, D. (2002). Modeling three-
dimensional multiphase flow using a level contour reconstruction method
for front tracking without connectivity. Journal of Computational Physics,
180:427–470.

[Shu and Osher, 1988] Shu, C. and Osher, S. (1988). Efficient implementation
of essential non-oscillatory shock capturing schemes. Journal of Computa-
tional Physics, 77:439–471.

[Shyue, 1999a] Shyue, K.-M. (1999a). A fluid-mixture type algorithm for com-
pressible multicomponent flow with van der Waals equation of state. Jour-
nal of Computational Physics, 156:43–88.

[Shyue, 1999b] Shyue, K.-M. (1999b). A volume-of-fluid type algorithm for
compressible two-phase flows. International Series of Numerical Mathe-
matics, 130:895–904.

[Sidilkover, 1994] Sidilkover, D. (1994). A genuinely multidimensional upwind
scheme and efficient multigrid solver for the compressible Euler equations.
Research Report 94-84, ICASE.

[Sirnivas et al., 2006] Sirnivas, S., Wornom, S., Dervieux, A., Koobus, B., and
Allain, O. (2006). A study of LES models for the simulation of a turbulent
flow around a truss spar geometry. In Proceedings of 25rd International
Conference on Offshore and Arctic Engineering (OMAE’06).

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

1:
47

 0
4 

M
ar

ch
 2

01
6 



Bibliography 363

[Smagorinsky, 1963] Smagorinsky, J. (1963). General circulation experiments
with the primitive equations. Monthly Weather Review, 91(3):99–164.

[Sohankar et al., 2000] Sohankar, A., Davidson, L., and Norberg, C. (2000).
Large-eddy simulation of flow past a square cylinder: comparison of differ-
ent subgrid scale models. Journal of Fluids Engineering, 122:39–47.

[Spalart et al., 1997] Spalart, P., Jou, W., Strelets, M., and Allmaras, S.
(1997). Advances in DNS/LES, chapter Comments on the feasibility of
LES for wings and on a hybrid RANS/LES approach. Columbus (OH).

[Speziale, 1998] Speziale, C. (1998). A combined large-eddy simulation and
time-dependent RANS capability for high-speed compressible flow. Journal
of Scientific Computing, 13(3):253–274.

[Steger and Warming, 1981a] Steger, J. and Warming, R. (1981a). Flux vec-
tor splitting for the inviscid gas dynamic equations with applications to the
finite difference methods. Journal of Computational Physics, 40(2):263–293.

[Steger and Warming, 1981b] Steger, J. and Warming, R. (1981b). Flux vec-
tor splitting of the inviscid gasdynamic equations with application to finite-
difference methods. Journal of Computational Physics, 40:263–293.

[Stoufflet et al., 1996] Stoufflet, B., Periaux, J., Fezoui, L., and Dervieux, A.
(1996). 3D hypersonic Euler numerical simulation around space vehicles
using adapted finite elements. AIAA, 86-0560.

[Stroeven, 1996] Stroeven, A. (1996). The robustness of one-dimensional,
time-dependent, ice-flow models: a case study from Storglaciären, Northern
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Assistant Professor of Applied Mathematics and Engineering, later
becoming Associate Professor. He received his HDR (Habilitation à Diriger
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