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Photography suits the temper of this age — of active bod-
ies and minds. It is a perfect medium for one whose mind
is teeming with ideas, imagery, for a prolific worker who
would be slowed down by painting or sculpting, for one
who sees quickly and acts decisively, accurately.

—Edward Henry Weston, photographer
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Dedication

To my lovely daughter, Sofia
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Preface

Computational photography is a new and rapidly developing research field. It has evolved
from computer vision, image processing, computer graphics, and applied optics, and refers
broadly to computational imaging techniques that enhance or extend the capabilities of
digital photography. The output of these techniques is an image which cannot be produced
by today’s common imaging solutions and devices. Despite the recent establishment of
computational photography as a recognized research area, numerous commercial products
capitalizing on its principles have already appeared in diverse market applications due to the
gradual migration of computational algorithms from computers to image-enabled consumer
electronic devices and imaging software.

Image processing methods for computational photography are of paramount importance
in the research and development community specializing in computational imaging due
to the urgent needs and challenges of emerging digital camera applications. There exist
consumer digital cameras which use face detection to better focus and expose the image,
while others perform preliminary panorama stitching directly in the camera and use local
tone mapping to manage difficult lighting situations. There are also successful attempts
to use the information from a set of images, for instance, to reduce or eliminate image
blur, suppress noise, increase image resolution, and remove objects from or add them to a
captured image.

Thus it is not difficult to see that many imaging devices and applications already rely on
research advances in the field of computational photography. The commercial proliferation
of digital still and video cameras, image-enabled mobile phones and personal digital as-
sistants, surveillance and automotive apparatuses, machine vision systems, and computer
graphic systems has increased the demand for technical developments in the area. It is
expected that the growing interest in image processing methods for computational photog-
raphy and their use in emerging applications such as digital photography and art, visual
communication, online sharing in social networks, digital entertainment, surveillance, and
multimedia will continue.

The purpose of this book is to fill the existing gap in the literature and comprehensively
cover the system design, implementation, and application aspects of image processing-
driven computational photography. Due to the rapid developments in specialized areas of
computational photography, the book is a contributed volume in which well-known experts
deal with specific research and application problems. It presents the state-of-the-art as well
as the most recent trends in image processing methods and applications for computational
photography. It serves the needs of different readers at different levels. It can be used as
textbook in support of graduate courses in computer vision, digital imaging, visual data
processing and computer graphics or as stand-alone reference for graduate students, re-
searchers, and practitioners. For example, a researcher can use it as an up-to-date reference

xi
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xii Computational Photography: Methods and Applications

since it will offer a broad survey of the relevant literature. Development engineers, techni-
cal managers, and executives may also find it useful in the design and implementation of
various digital image and video processing tasks.

This book provides a strong, fundamental understanding of theory and methods, and
a foundation upon which solutions for many of today’s most interesting and challenging
computational imaging problems can be built. It details recent advances in digital imag-
ing, camera image processing, and computational photography methods and explores their
applications. The book begins by focusing on single capture image fusion technology for
consumer digital cameras. This is followed by the discussion of various steps in a camera
image processing pipeline, such as data compression, color correction and enhancement,
denoising, demosaicking, super-resolution reconstruction, deblurring, and high-dynamic
range imaging. Then, the reader’s attention is turned to bilateral filtering and its applica-
tions, painterly rendering of digital images, shadow detection for surveillance applications,
and camera-driven document rectification. The next part of the book presents machine
learning methods for automatic image colorization and digital face beautification. The
remaining chapters explore light field acquisition and processing, space-time light field
rendering, and dynamic view synthesis with an array of cameras.

Chapters 1 and 2 discuss concepts and technologies that allow effective design and high
performance of single-sensor digital cameras. Using a four-channel color filter array, an
image capture system can produce images with high color fidelity and improved signal-to-
noise performance relative to traditional three-channel systems. This is accomplished by
adding a panchromatic or spectrally nonselective channel to the digital camera sensor to
decouple sensing luminance information from chrominance information. To create a full-
color image on output, as typically required for storage and display purposes, single capture
image fusion techniques and methodology are used as the means for reducing the original
four-channel image data down to three channels in a way that makes the best use of the
additional fourth channel. Single capture image fusion with motion consideration enhances
these concepts to provide a capture system that can additionally address the issue of motion
occurring during a capture. By allowing different integration times for the panchromatic
and color pixels, an imaging system produces images with reduced motion blur.

Chapters 3 and 4 address important issues of data compression and color manipulation in
the compressed domain of captured camera images. Lossless compression of Bayer color
filter array images has become de facto a standard solution of image storage in single-lens
reflex digital cameras, since stored raw images can be completely processed on a personal
computer to achieve higher quality compared to resource-limited in-camera processing.
This approach poses a unique challenge of spectral decorrelation of spatially interleaved
samples of three or more sampling colors. Among a number of reversible lossless trans-
forms, algorithms that rely on predictive and entropy coding seem to be very effective in
removing statistical redundancies in both spectral and spatial domains using the spatial
correlation in the raw image and the statistical distribution of the prediction residue.

Color restoration and enhancement in the compressed domain address the problem of
adjusting a camera image represented in the block discrete cosine transform space. The
goal is to compensate for shifts from perceived color in the scene due to the ambient il-
lumination and a poor dynamic range of brightness values due to the presence of strong
background illumination. The objective of restoring colors from varying illumination is to
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Preface xiii

derive an illumination-independent representation of an image to allow its faithful render-
ing, whereas the enhancement process aims at improving the color reproduction capability
of a display device depending upon its displayable range of color gamut and the brightness
range it can handle. Both color correction and enhancement for the display of color images
may simultaneously be required when the scene suffers from both widely varying spectral
components and brightness of illuminants.

Chapters 5 to 8 are intended to cover the basics of and review recent advances in camera
image processing based on the concept of data estimation. Since digital camera images
usually suffer from the presence of noise, the denoising step is one of the crucial com-
ponents of the imaging pipeline to meet certain image quality requirements. Principal
component analysis-based denoising of color filter array images addresses the problem of
noise removal in raw image data captured using a sensor equipped with a color filter ar-
ray. Denoising such raw image data avoids color artifacts that are introduced in the color
restoration process through the combination of noisy sensor readings corresponding to dif-
ferent color channels. Principal component analysis can be used as the underlying concept
of a spatially adaptive denoising algorithm to analyze the local image statistics inside a
supporting window. By exploiting the spatial and spectral correlation characteristics of
the color filter array image, the denoising algorithm can effectively suppress noise while
preserving color edges and details. The denoised color filter array image is convenient for
subsequent demosaicking, which is an image processing operation used to restore the color
image from the raw sensor data acquired by a digital camera equipped with a color filter
array.

Regularization-based color image demosaicking constitutes an effective strategy which
consists of considering demosaicking as an inverse problem that can be solved by making
use of some prior knowledge about natural color images. Taking advantage of assump-
tions based on the smoothness of the color components and the high-frequency correlation
between the color channels in the regularization process allows the design of efficient de-
mosaicking algorithms that are suitable for any color filter array and that can be coupled
with other frequent problems in image reconstruction and restoration.

Super-resolution imaging is another image restoration operation that has become more
and more important in modern imaging systems and applications. It is used to produce a
high-resolution image or a sequence of high-resolution images from a set of low-resolution
images. The process requires an image acquisition model that relates a high-resolution im-
age to multiple low-resolution images and involves solving the resulting inverse problem.
The acquisition model includes aliasing, blurring, and noise as the main sources of informa-
tion loss. A super-resolution algorithm increases the spatial detail in an image, recovering
the high-frequency information that is lost during the imaging process.

Focusing on removing the blurring effect, which is mainly caused by camera motion
during exposure or a lens that is out-of-focus, the conventional approach is to construct an
image degradation model and then solve the inverse problem of the given model. Image
deblurring using multi-exposed images constitutes a new approach that takes advantage of
recent advances in image sensing technology that enable splitting or controlling the expo-
sure time. This approach exploits the mutually different pieces of information from multi-
exposed images of the same scene to produce a deblurred image that faithfully represents a
real scene.
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xiv Computational Photography: Methods and Applications

Chapters 9 and 10 deal with the enhancement of the dynamic range of an image us-
ing multiple captures of the scene. Color high-dynamic range imaging enables access to
a wider range of color values than traditional digital photography. Methods for capture,
composition, and display of high-dynamic range images have become quite common in
modern imaging systems. In particular, luminance-chrominance space-driven composition
techniques seem to be suitable in various real-life situations where the source images are
corrupted by noise and/or misalignment and the faithful treatment of color is essential. As
the objects in the scene often move during the capture process, high-dynamic range imag-
ing for dynamic scenes is needed to enhance the performance of an imaging system and
extend the range of its applications by integrating motion and dynamic scenes in underly-
ing technology targeting both photographs and movies.

Chapter 11 focuses on shadow detection in digital images and videos, with application to
video surveillance. Addressing the problem of color modeling of cast shadows in real-life
situations requires a robust adaptive model for shadow segmentation without strong restric-
tions on a priori probabilities, image quality, objects’ shapes, and processing speed. Such
a modeling framework can be generalized for and used to compare different color spaces,
as the appropriate color space selection is a key in reliable shadow detection and classifica-
tion, for example, using color-based pixel clustering and Bayesian foreground/background
shadow segmentation.

Chapter 12 presents another way of using information from more than one image. Doc-
ument image rectification using single-view or two-view camera input in digital camera-
driven systems for document image acquisition, analysis, and processing represents an
alternative to flatbed scanners. A stereo-based method can be employed to complete the
rectification task using explicit three-dimensional reconstruction. Since the method works
irrespective of document contents and removes specular reflections, it can be used as a pre-
processing tool for optical character recognition and digitization of figures and pictures. In
situations when a user-provided bounding box is available, a single-view method allows
rectifying a figure inside this bounding box in an efficient, robust, and easy-to-use manner.

Chapter 13 discusses both the theory and applications of the bilateral filter. This filter is
widely used in various image processing and computer vision applications due to its ability
to preserve edges while performing spatial smoothing. The filter is shown to relate to pop-
ular approaches based on robust estimation, weighted least squares estimation, and partial
differential equations. It has a number of extensions and variations that make the bilateral
filter an indispensable tool in modern image and video processing systems, although a fast
implementation is usually critical for practical applications.

Chapter 14 focuses on painterly rendering methods. These methods convert an input
image into an artistic image in a given style. Artistic images can be generated by simulating
the process of putting paint on paper or canvas. A synthetic painting is represented as a list
of brush strokes that are rendered on a white or canvas textured background. Brush strokes
can be mathematically modeled or their attributes can be extracted from the source image.
Another approach is to abstract from the classical tools that have been used by artists and
focus on the visual properties, such as sharp edges or absence of natural texture, which
distinguish painting from photographic images.

Chapters 15 and 16 deal with two training-based image analysis and processing steps.
Machine learning methods for automatic image colorization focus on adding colors to a
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Preface xv

grayscale image without any user intervention. This can be done by formally stating the
color prediction task as an optimization problem with respect to an energy function. Differ-
ent machine learning methods, in particular nonparametric methods such as Parzen window
estimators and support vector machines, provide a natural and efficient way of incorporat-
ing information from various sources. In order to cope with the multimodal nature of the
problem, the solution can be found directly at the global level with the help of graph cuts,
which makes the approach more robust to noise and local prediction errors and allows re-
solving large-scale ambiguities and handling cases with more texture noise. The approach
provides a way of learning local color predictors along with spatial coherence criteria and
permits a large number of possible colors.

In another application of training-based methods, machine learning for digital face beau-
tification constitutes a powerful tool for automatically enhancing the attractiveness of a face
in a given portrait. It aims at introducing only subtle modifications to the original image
by manipulating the geometry of the face, such that the resulting beautified face main-
tains a strong, unmistakable similarity to the original. Using a variety of facial locations to
calculate a feature vector of a given face, a feature space is searched for a vector that corre-
sponds to a more attractive face. This can be done by employing an automatic facial beauty
rating machine which has the form of two support vector regressors trained separately on
a database of female and male faces with accompanying facial attractiveness ratings col-
lected from a group of human raters. The feature vector output by the regressor serves as
a target to define a two-dimensional warp field which maps the original facial features to
their beautified locations. The method augments image enhancement and retouching tools
available in existing digital image editing packages.

Finally, Chapters 17 and 18 discuss various light field-related issues. High-quality light
field acquisition and processing methods rely on various hardware and software approaches
to overcome the lack of the spatial resolution and avoid photometric distortion and aliasing
in output images. Programmable aperture is an example of a device for high-resolution light
field acquisition. It exploits the fast multiple-exposure feature of digital sensors without
trading off sensor resolution to capture the light field sequentially, which, in turn, enables
the multiplexing of light rays. The quality of the captured light field can be further im-
proved by employing a calibration algorithm to remove the photometric distortion unique to
the light field without using any reference object by estimating this distortion directly from
the captured light field and a depth estimation algorithm utilizing the multi-view property
of light field and visibility reasoning to generate view-dependent depth maps for view in-
terpolation. The device and algorithms constitute a complete system for high-quality light
field acquisition.

Light field-style rendering techniques have an important position among image-based
modeling methods for dynamic view synthesis with an array of cameras. These techniques
can be extended for dynamic scenes, constituting an approach termed as space-time light
field rendering. Instead of capturing the dynamic scene in strict synchronization and treat-
ing each image set as an independent static light field, the notion of a space-time light field
assumes a collection of video sequences that may or may not be synchronized and can have
different capture rates. In order to be able to synthesize novel views from any viewpoint at
any instant in time, feature correspondences are robustly identified across frames and used
as land markers to digitally synchronize the input frames and improve view synthesis qual-
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xvi Computational Photography: Methods and Applications

ity. This concept is further elaborated in reconfigurable light field rendering where both
the scene content and the camera configurations can be dynamic. Automatically adjusting
the cameras’ placement allows achieving optimal view synthesis results for different scene
contents.

The bibliographic links included in all chapters of the book provide a good basis for
further exploration of the presented topics. The volume includes numerous examples
and illustrations of computational photography results, as well as tables summarizing the
results of quantitative analysis studies. Complementary material is available online at
http://www.colorimageprocessing.org.

I would like to thank the contributors for their effort, valuable time, and motivation to
enhance the profession by providing material for a wide audience while still offering their
individual research insights and opinions. I am very grateful for their enthusiastic support,
timely response, and willingness to incorporate suggestions from me to improve the quality
of contributions. I also thank Rudy Guttosch, my colleague at Foveon, Inc., for his help
with proofreading some of the chapters. Finally, a word of appreciation for CRC Press /
Taylor & Francis for giving me the opportunity to edit a book on computational photogra-
phy. In particular, I would like to thank Nora Konopka for supporting this project, Jennifer
Ahringer for coordinating the manuscript preparation, Shashi Kumar for his LaTeX assis-
tance, Karen Simon for handling the final production, Phoebe Roth for proofreading the
book, and James Miller for designing the book cover.

Rastislav Lukac
Foveon, Inc. / Sigma Corp., San Jose, CA, USA

E-mail: lukacr@colorimageprocessing.com
Web: www.colorimageprocessing.com
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2 Computational Photography: Methods and Applications

1.1 Introduction

A persistent challenge in the design and manufacture of digital cameras is how to im-
prove the signal-to-noise performance of these devices while simultaneously maintaining
high color fidelity captures. The present industry standard three-color channel system is
constrained in that the fewest possible color channels are employed for the purposes of
both luminance and chrominance image information detection. Without additional degrees
of freedom, for instance, additional color channels, digital camera designs are generally
limited to solutions based on improving sensor hardware (larger pixels, lower readout noise,
etc.) or better image processing (improved denoising, system-wide image processing chain
optimization, etc.) Due to being constrained to three channels, the requirements for im-
proved signal-to-noise and high color fidelity are frequently in opposition to each other,
thereby providing a limiting constraint on how much either can be improved. For example,
to improve the light sensitivity of the sensor system, one might wish to make the color
channels broader spectrally. While this results in lower image noise in the raw capture, the
color correction required to restore the color fidelity amplifies the noise so much that there
can be a net loss in overall signal-to-noise performance.

This chapter explores the approach of adding a fourth, panchromatic or spectrally non-
selective, channel to the digital camera sensor in order to decouple sensing luminance (spa-
tial) information from chrominance (color) information [1]. Now the task of improving
signal-to-noise can be largely confined to just the panchromatic channel while leaving the
requirement for high color fidelity captures to the three color channels. As any such system
must eventually create a full-color image on output, some means is needed for reducing
the original four-channel image data down to three channels in a way that makes the best
use of the additional fourth channel. To this end, image fusion techniques and method-
ology are selected as the means for accomplishing this task. Therefore, the remainder of
this introduction first reviews the concept of image fusion and then sets the stage for how
this body of work can be applied to the problem of capturing and processing a single four-
channel digital camera capture to produce a full-color image with improved signal-to-noise
and high color fidelity.

1.1.1 Image Fusion

It is a well-known fact that despite tremendous advances in sensor technologies, no single
sensor can acquire all the required information of the target reliably at all times. This
naturally leads to deployment of multiple sensors, having complementary properties, to
inspect the target, thus capturing as much information as possible. Data fusion provides
a framework to integrate redundant as well as complementary information provided by
multiple sensors in such a manner that the fused information describes the target better
than any of the individual sensors. The exploitation of redundant information improves
accuracy and reliability, whereas integration of complementary information improves the
interpretability of the target [2], [3], [4], [5], [6]. In a typical data fusion application,
multiple sensors observe a common target and a decision is taken based on the collective
information [7].
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Single Capture Image Fusion 3

The concept of data fusion is not new. It is naturally performed by living beings to
achieve a more accurate assessment of the surrounding environment and identification of
threats, thereby improving their chances of survival. For example, human beings and ani-
mals use a combination of sight, touch, smell, and taste to perceive the quality of an edible
object. Tremendous advances in sensor and hardware technology and signal processing
techniques have provided the ability to design software and hardware modules to mimic
the natural data fusion capabilities of humans and animals [3].

Data fusion applied to image-based applications is commonly referred to as image fusion.
The goal of image fusion is to extract information from input images such that the fused
image provides better information for human or machine perception as compared to any
of the input images [8], [9], [10], [11]. Image fusion has been used extensively in various
areas of image processing such as digital camera imaging, remote sensing, and biomedical
imaging [12], [13], [14].

From the perspective of fusion, information present in the observed images that are to
be fused can be broadly categorized in the following three classes: i) common informa-
tion – these are features that are present in all the observed images, ii) complementary
information – features that are present only in one of the observed images, and iii) noise –
features that are random in nature and do not contain any relevant information. Note that
this categorization of the information could be global or local in nature. A fusion algorithm
should be able to select the feature type automatically and then fuse the information ap-
propriately. For example, if the features are similar, then the algorithm should perform an
operation similar to averaging, but in the case of complementary information, should select
the feature that contains relevant information.

Due to the large number of applications as well as the diversity of fusion techniques, con-
siderable efforts have been made in developing standards for data fusion. Several models
for data fusion have been proposed in the recent past [15], [16]. One of the models com-
monly used in signal processing applications is the three-level fusion model that is based
on the levels at which information is represented [17]. This model classifies data fusion
into three levels depending on the way information present in the data/image is represented
and combined. If the raw images are directly used for fusion then it is called low level
fusion. In the case when the features of the raw images such as edge, texture, etc., are used
for fusion then it is called feature or intermediate level fusion. The third level of fusion
is known as decision or high level fusion in which decisions made by several experts are
combined. A detailed description of these three levels of fusion is given below.

• Low level fusion: At this level, several raw images are combined to produce a new
“raw” image that is expected to be more informative than the inputs [18], [19], [20],
[21], [22]. The main advantage of low level fusion is that the original measured
quantities are directly involved in the fusion process. Furthermore, algorithms are
computationally efficient and easy to implement. Low level fusion requires a precise
registration of the available images.

• Feature or intermediate level fusion: Feature level fusion combines various features
such as edges, corners, lines, and texture parameters [23], [24], [25]. In this model
several feature extraction methods are used to extract the features of input images and
a set of relevant features is selected from the available features. Methods of feature
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4 Computational Photography: Methods and Applications

fusion include, for example, Principal Component Analysis (PCA) and Multi-layer
Perceptron (MLP) [26]. The fused features are typically used for computer vision
applications such as segmentation and object detection [26]. In feature level fusion,
all the pixels of the input images do not contribute in fusion. Only the salient features
of the images are extracted and fused.

• Decision or high level fusion: This stage combines decisions from several ex-
perts [27], [28], [29], [30]. Methods of decision fusion include, for instance, sta-
tistical methods [27], voting methods [28], fuzzy logic-based methods [29], and
Dempster-Schafer’s method [30].

Typically, in image fusion applications, input images for fusion are captured using mul-
tiple sensors. For example, in a typical remote sensing system, multispectral sensors are
used to obtain information about the Earth’s surface and image fusion techniques are used
to fuse the outputs of multispectral sensors to generate a thematic map [4], [6]. As another
example, recent developments in medical imaging have resulted in many imaging sensors
to capture various aspects of the patient’s anatomy and metabolism [31], [32]. For exam-
ple, magnetic resonance imaging (MRI) is very useful for defining anatomical structure
whereas metabolic activity can be captured very reliably using positron emission tomogra-
phy (PET). The concept of image fusion is used to combine the output of MRI and PET
sensors to obtain a single image that describes anatomical as well as metabolic activity of
the patient effectively [33].

Image fusion techniques can also be applied to fuse multiple images obtained from a
single sensor [34], [35], [36], [37], [38], [39], [40]. An excellent example of generating
complementary information from a single sensor is the Bayer color filter array (CFA) pat-
tern [41] extensively used in digital cameras. To reduce cost and complexity, most digital
cameras are designed using a single CCD or CMOS sensor that has the panchromatic re-
sponsivity of silicon. As shown in Figure 1.1 panchromatic responsivity, which passes all
visible wavelengths, is higher than color (red, green, and blue) responsivities [42].
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FIGURE 1.1

Relative responsivity of panchromatic, red, green, and blue channels.
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Single Capture Image Fusion 5
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FIGURE 1.2

Bayer CFA pattern.

(a) (b)

FIGURE 1.3 (See color insert.)

CFA-based digital imaging: (a) Bayer CFA image, and (b) full-color reconstructed image.

Note that the pixels with panchromatic responsivity are spectrally nonselective in nature.
Therefore, digital cameras use a color filter array (CFA) to capture color images, an exam-
ple of which is the Bayer CFA pattern as shown in Figure 1.2. The CFA pattern provides
only a single color sample at each pixel location and the missing color samples at each
pixel location are estimated using a CFA interpolation or demosaicking algorithm [43],
[44], [45]. An example of a Bayer CFA image is shown in Figure 1.3a. The inset shows
the individual red, green, and blue pixels in the captured image. The corresponding full
color image generated by applying CFA interpolation to the Bayer CFA image is shown in
Figure 1.3b.

1.1.2 Chapter Overview

With the basics of image fusion stated, the remainder of the chapter discusses the design
and analysis of a single sensor / single capture image fusion system. This system will be
based on a four-channel CFA consisting of one panchromatic and three color channels. As
a somewhat arbitrary means of simplifying the discussion, it will be assumed that all pixels
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6 Computational Photography: Methods and Applications

color and tone

correction

CFA image demosaicking

sharpeningfully processed

image

noise cleaning

FIGURE 1.4

Example image processing chain for a four-channel system.

are exposed for the same amount of time during the capture period. This is, of course,
the standard situation. In Chapter 2, this assumption will be dropped and systems with
different, although concurrent, exposure times for panchromatic and color pixels will be
described. As such systems are ideal for the detection and compensation of image motion,
it is convenient to delay all motion-related considerations until the next chapter.

Figure 1.4 is an example image processing chain for the four-channel system that will
be the reference for the discussion in this chapter. Section 1.2 focuses on CFA image for-
mation, and color and tone correction. It begins by reviewing the fundamentals of digital
camera color imaging using standard three-channel systems. From this basis it extends
the discussion into the design of four-channel CFA patterns that produce high color fi-
delity while providing the additional degree of freedom of a panchromatic channel. It is
this panchromatic channel that, in turn, will be used to enable the use of image fusion
techniques to produce higher quality images not possible with typical three-channel sys-
tems. Section 1.3 discusses the problem of demosaicking four-channel CFA images both
from the perspective of algorithm design and spatial frequency response. Both adaptive
and nonadaptive approaches are presented and comparisons are made to standard Bayer
CFA processing methods and results. Section 1.4 focuses on noise cleaning and sharpen-
ing. This includes an analytical investigation into the effects of the relative photometric
gain differences between the panchromatic and color channels and how, through the use of
image fusion, these gain differences can result in a fundamentally higher signal-to-noise
image capture system compared to three-channel systems. Explicit investigations of how
image fusion techniques are applied during both the demosaicking and sharpening opera-
tions to achieve these advantages are discussed. Section 1.5 brings the preceding material
in the chapter together to illustrate with an example how the entire system shown in Fig-
ure 1.4 uses image fusion techniques to produce the final image. The performance of this
system compared to a standard Bayer system is assessed both numerically and qualitatively
through example images. Finally, the chapter is summarized in Section 1.6.

1.2 Color Camera Design

This chapter considers a camera that captures images for reproduction by a display or
print. Color reproduction is complex because the goal is a human perception, not a simple
matching of measured phenomena [46], [47]. Surround effects and viewer adaptation to
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Single Capture Image Fusion 7

different illuminants make the reproduction of a color image a challenge well beyond the
technological one of producing different color stimuli. While color reproduction is very
complex, the problem of camera design is slightly simpler. The camera design objective
is to capture scene information to support the best possible reproduction and to do this
under a wide range of imaging conditions. Because the reproduction is judged by a human
observer, information about the human visual system is used in determining whether image
information is common, complementary, or noise.

To set the context for this image capture problem, some history of color imaging will be
reviewed. One of the first photographic color reproduction systems was demonstrated in
Reference [48], later described in Reference [46]. This system captured black-and-white
photographs of a scene through red, green, and blue filters, then projects them through the
same filters. This technique was used as a demonstration of the trichromatic theory of color
vision, although the film he used was not sensitive to red light and limited the quality of the
demonstration [49]. Reference [50] reproduced color images by a very different technique.
This technique captured the spectrum of light from a scene in an analog fashion and re-
produced the actual spectrum when viewed by reflected light under the correct conditions.
This allowed good reproduction of color, yet the process was extremely slow — the emul-
sion used very fine grains (10 to 40 nm in diameter) and the process required minutes of
exposure even in strong daylight.

Fortunately, human color sensitivity is essentially a trichromatic system and capture of
detailed spectral information is not necessary for good color reproduction. That is, human
visual color response to different spectral stimuli is essentially based on three integrals over
wavelength, most commonly represented as follows:

X = k
∫ λmax

λmin

S(λ )R(λ ) x(λ )dλ ,

Y = k
∫ λmax

λmin

S(λ )R(λ ) y(λ )dλ ,

Z = k
∫ λmax

λmin

S(λ )R(λ ) z(λ )dλ ,

where S(λ ) is an illuminant spectral power distribution varying with wavelength λ , and
R(λ ) is a spectral reflectance curve. The visual response functions x(λ ), y(λ ), and z(λ )
are standardized color matching functions, defined over the wavelength range 380 nm to
780 nm and zero outside this range. The constant k is a normalization factor, normally
computed to produce a value of 100 for Y with a spectrally flat 100% reflector under a
chosen illumination, and X , Y , and Z are standard tristimulus values.

Different stimuli are perceived as matching colors if the different stimuli produce the
same three tristimulus values. Color matching studies in the 1920s and 1930s provided the
basis for the CIE standard color matching functions, providing a quantitative reference for
how different colors can be matched by a three primary system. While spectral cameras
continue to be developed and serve research needs, they are more complex than a trichro-
matic camera and usually require more time, light, or both, to capture a scene. For most
color reproduction purposes, the trichromatic camera is a better match to the human visual
system.
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8 Computational Photography: Methods and Applications

color correction tone correctionwhite balance

FIGURE 1.5

Color and tone correction block details.

Many different approaches have been developed to acquire trichromatic color images.
Some cameras scan a scene with a trilinear sensor incorporating color filters to capture
three channels of color information for every pixel in the scene [51], [52]. These cameras
can achieve very high spatial resolution and excellent color quality. Because the exposure
of each scan line of the scene is sequential, the exposure time for each line must be a small
fraction of the capture time for the whole scene. These cameras often take seconds or even
minutes to acquire a full scene, so they work poorly for recording scenes that have any
motion or variation in lighting. Some cameras use a single panchromatic area sensor and
filters in the lens system to sequentially capture three color channels for every pixel in the
scene. These are faster than the linear scanning cameras, since all pixels in a color channel
are exposed simultaneously, although the channels are exposed sequentially. These are
commonly used and particularly effective in astronomy and other scientific applications
where motion is not a factor. Some cameras use dichroic beam splitters and three area
sensors to simultaneously capture three channels of color for each pixel in the scene [53],
[54]. This is particularly common and successful in high-quality video cameras, where a
high pixel rate makes the processing for demosaicking difficult to implement well. These
are the fastest cameras, since all color channels are exposed simultaneously. Each of these
approaches can perform well, but they increase the cost and complexity of the camera and
restrict the range of camera operation.

Cost and complexity issues drive consumer digital color cameras in the direction of a
single sensor that captures all color information simultaneously. Two approaches based
on single array sensors are presently used. One approach fabricates a sensor with three
layers of photodiodes and uses the wavelength-dependent depth of photon absorption to
provide spectral sensitivity [55], [56]. This system allows sampling three channels of color
information at every pixel, although the spectral sensitivity poses several challenges for
image processing. The approach more commonly used is the fusion of multiple color chan-
nels from a sensor with a color filter array into a full-color image. This fusion approach,
specifically with a four-channel color filter array, is the focus of this chapter.

A camera embodying this approach includes a single lens, a single area array sensor with
a color filter array, and a processing path to convert pixel values read from the sensor to
a suitable image for color reproduction. The image processing chain used is shown as a
block diagram in Figure 1.4. The block labeled as color and tone processing is examined
in more detail here, as shown in Figure 1.5. This figure breaks the overall color and tone
processing down into three distinct steps. The first, white balance, applies gain factors to
each color channel of camera pixel values to provide an image with equal mean code values
in each color channel for neutral scene content. The second, color correction, converts the
white balanced image to a known set of color primaries, such as the primaries used for
sRGB. The final step applies a tone correction to convert the image to a rendered image
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FIGURE 1.6

(a) CIE xy chromaticity diagram, and (b) CIE 1931 color matching functions.

suitable for viewing. This is often referred to as gamma correction, although optimal tone
correction is rarely as simple as correcting for a standard display nonlinearity. More details
behind these operations are discussed in Reference [47].

1.2.1 Three-Channel Arrays

This section discusses spectral sensitivity and color correction for three-channel systems
to illustrate their limitations and show the motivation for a camera with four color channels.
Color correction from capture device spectral sensitivity to output device color will be
illustrated using an additive three-primary system, such as a video display.

The colors that can be reproduced with a three-color additive display are defined by the
tristimulus values of its three primaries [47]. The range of colors, or gamut, of the display
is a triangle in chromaticity space, such as shown in Figure 1.6a. This figure shows the
spectral locus and several sets of primaries. The spectral locus traces the chromaticity of
monochromatic (narrow band) light of each wavelength in the visible spectrum, with sev-
eral wavelengths marked for illustration. All visible colors are contained in this horseshoe
region. The XYZ set of primaries is a hypothetical set of primaries that bound a triangle
including the entire spectral locus. The sRGB primaries are standard video primaries sim-
ilar to most television and computer displays, specifically ones based on CRT technology.
The Reference Input Medium Metric (RIMM) RGB [57] primaries are used in applications
where a gamut larger that the usual video gamut is desired, since many real world colors
extend beyond the gamut of sRGB. Two of the RIMM primaries are also hypothetical, lying
outside the spectral locus.

Spectral sensitivities that are linear combinations of those shown in Figure 1.6b sup-
port the lowest possible color errors in reproduction. The curves shown are the standard
CIE XYZ color matching functions (CMFs) corresponding to the XYZ primaries shown
in Figure 1.6a. Linear combinations of these curves are also color matching functions,
corresponding to other sets of primaries. Data captured with any set of color matching
functions can be converted to another set of color matching functions using a 3×3 matrix
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FIGURE 1.7

Color matching functions and approximations: (a) sRGB, and (b) RIMM.

as PC = MPO, where PC and PO are 3× 1 vectors of converted pixel values and original
color pixel values, respectively. This matrix operation is also referred to as color correction.

Each set of primaries has a corresponding set of color matching functions. An exam-
ple shown in Figure 1.7a presents the color matching functions for the sRGB primaries.
Because cameras cannot provide negative spectral sensitivity, cameras use all-positive ap-
proximations to color matching functions (ACMF) instead. The figure also shows one
simple approximation to the sRGB color matching functions, formed by clipping at zero
and eliminating the red channel sensitivity to blue light. A second example, for the RIMM
set of primaries, is shown in Figure 1.7b, along with a set of simple all-positive approxi-
mations to these color matching functions. Note the RIMM color matching functions have
smaller negative lobes than the sRGB color matching functions. The size of the negative
excursions in the color matching functions correspond to how far the spectral locus lies
outside the color gamut triangle, as can be seen by comparing the curves in Figures 1.7
and 1.6b with the gamut triangles in Figure 1.6a. Cameras with spectral sensitivities that
are not color matching functions produce color errors because the camera integration of
the spectrum is different from the human integration of the spectrum. In a successful color
camera, the spectral sensitivities must be chosen so these color errors are acceptable for the
intended application.

Digital camera images are usually corrected to one of several standardized RGB color
spaces, such as sRGB [58], [59], RIMM RGB [57], [60], and Adobe RGB (1998) [61],
each with somewhat different characteristics. Some of these color spaces and others are
compared in Reference [62].

The deviation of a set of spectral sensitivities from color matching functions was consid-
ered in Reference [63], which proposed a q factor for measuring how well a single spectral
sensitivity curve compared with its nearest projection onto color matching functions. This
concept was extended in Reference [64], to the ν factor, which considers the projection of
a set of spectral sensitivities (referred to as scanning filters) onto the human visual sensi-
tivities. Because q and ν are computed on spectral sensitivities, the factors are not well
correlated to color errors calculated in a visually uniform space, such as CIE Lab.
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FIGURE 1.8

Example quantum efficiencies: (a) typical RGB, and (b) CMY from typical RGB.

Several three-channel systems are used to illustrate the impact of spectral sensitivity on
image noise. These examples use sample spectral sensitivity curves for a typical RGB
camera from Reference [56] converted to quantum efficiencies and cascaded with a typical
infrared cut filter. The resulting overall quantum efficiency curves are shown, together
with the quantum efficiency of the underlying sensor, in Figure 1.8a. One way to improve
the signal-to-noise ratio of this camera would be to increase the quantum efficiency of
the sensor itself. This is difficult and begs the question of selecting the optimal quantum
efficiencies for the three color channels. Given the sensor quantum efficiency as a limit for
peak quantum efficiency for any color, widening the spectral response for one or more color
channels is the available option to significantly improve camera sensitivity. The effects of
widening the spectral sensitivity are illustrated in this chapter by considering a camera
with red, panchromatic, and blue channels and a camera with cyan, magenta, and yellow
channels, shown in Figure 1.8. The CMY quantum efficiencies were created by summing
pairs of the RGB quantum efficiency curves and thus are not precisely what would normally
be found on a CMY sensor. In particular, the yellow channel has a dip in sensitivity near
a wavelength of 560 nm, which is not typical of yellow filters. The primary effect of this
dip is to reduce color errors rather than change the color correction matrix or sensitivity
significantly.

Reference [65] considers the trade-off of noise and color error by examining the sensitiv-
ity and noise in sensors with both RGB and CMYG filters. It is concluded that the CMYG
system has more noise in a color-corrected image than the RGB system. Reference [66]
proposes optimal spectral sensitivity curves for both RGB and CMY systems consider-
ing Poisson noise, minimizing a weighted sum of color errors and noise. Fundamentally,
the overlap between color matching functions drives use of substantial color correction
to provide good color reproduction. All three systems in the current illustration produce
reasonable color errors, so the illustration will compare the noise in the three systems.

This chapter focuses on random noise from two sources. The first is Poisson-distributed
noise associated with the random process of photons being absorbed and converted to
photo-electrons within a pixel, also called shot noise. The second is electronic ampli-
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12 Computational Photography: Methods and Applications

fier read noise, which is modeled with a Gaussian distribution. These two processes are
independent, so the resulting pixel values are the sum of the two processes. A pixel value
Q may be modeled as Q = kQ(q+g), where kQ is the amplifier gain, q is a Poisson random
variable with mean mq and variance σ 2

q , and g is a Gaussian random variable with mean
mg and variance σ 2

g . Note that σ 2
q = mq since q is a Poisson variable, and it is entirely de-

fined by the spectral power distribution impinging upon the sensor and the channel spectral
responsivities. Also note that for a given sensor mg and σ 2

g are independent from mq. For
this discussion, the original pixel values are assumed to be independent, so the covariance
matrix of the original pixel values, KO, is a diagonal matrix. Because the two random
processes are independent, the variance of the pixel values is the sum of the two variances:

KO = diag
(
k2

Q(mq,1 +σ 2
g ),k2

Q(mq,2 +σ2
g ),k2

Q(mq,3 +σ 2
g )

)
, (1.1)

where mq,i is the mean original signal level (captured photo-electrons) for channel i ∈
{1,2,3} and σ2

g is the read noise. In the processing path of Figure 1.5, the white bal-
ance gain factors scale camera pixel values to equalize the channel responses for neu-
tral scene content. The gain factors are represented here with a diagonal matrix, GB =
diag(G1,G2,G3). Accordingly, the covariance matrix for white balanced pixels, KB, is

KB = GBKOGT
B , (1.2)

where the superscript T denotes a transposed matrix or vector. Color correction is also a
3×3 matrix; the covariance matrix for color corrected pixels is

KC = MKBMT . (1.3)

Photometric sensitivity and noise amplification will be compared by examining the di-
agonal elements of KC and KB. The elements on the diagonal of the covariance matrix are
the variance of each color channel. Since the visual impression of noise is affected by all
three color channels, the sum of the variance terms can be used to compare noise levels.
This sum is referred to as Tr(a), the trace of matrix a. More precise noise measurements
convert the color image to provide a luminance channel and consider the variance in the
luminance channel [67]. The luminance coefficients recommended in the ISO standard are
L = [0.2125,0.7154,0.0721], so the appropriate estimate for the luminance variance is

σ2
L = LKCLT , (1.4)

where σ2
L is the variance observed in a luminance channel. The weighting values shown

are specified in the ISO standard and come from ITU-R BT.709, which specifies primaries
that sRGB also uses.

The following equation shows the calculation for the number of photo-electrons captured
by each set of spectral quantum efficiencies:

PO,i =
l2

IEI

55.6
683

∫
I0(λ )V (λ )dλ

∫ I0(λ )R(λ )
hc/λ

Qi(λ )dλ , (1.5)

where PO,i is the mean number of photo-electrons captured in a square pixel with size l, the
term I0 denotes the illuminant relative spectral power distribution, R is the scene spectral
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Single Capture Image Fusion 13

TABLE 1.1
Summary of channel sensitivity and color correction matrices. The balance gains and the
sensitivity gain are respectively denoted by {G1,G2,G3} and GE .

QE Set Channel Response {G1,G2,G3} GE M

RGB 261.6 397.2 315.9 1.518 1.000 1.257 2.616
1.558 −0.531 −0.027

−0.078 1.477 −0.399
0.039 −0.508 1.469

RPB 261.6 1039.0 315.9 3.972 1.000 3.289 1.000
2.000 −1.373 0.373

−1.062 3.384 −1.322
0.412 −1.248 1.836

CMY 513.4 548.6 592.9 1.155 1.081 1.000 1.752
−2.554 2.021 1.533

0.941 −1.512 1.571
1.201 1.783 −1.984

reflectance, Qi is the quantum efficiency, and IEI is the exposure index. The additional
values are Planck’s constant h, the speed of light c, the spectral luminous efficiency function
V , and normalization constants arising from the definition of exposure index. Using a
relative spectral power distribution of D65 for the illuminant, a pixel size of l = 2.2 µm,
and a spectrally flat 100% diffuse reflector, the mean number of photo-electrons captured
in each pixel at an exposure index of ISO 1000 are shown under “Channel Response” in
Table 1.1.

The balance gains listed are factors to equalize the color channel responses. The sensi-
tivity gain shown is calculated to equalize the white balanced pixel values for all sets of
quantum efficiencies. The color correction matrix shown for each set of quantum efficien-
cies was computed by calculating Equation 1.5 for 64 different color patch spectra, then
finding a color correction matrix that minimized errors between color corrected camera
data and scene colorimetry, as described in Reference [68].

The illustration compares the noise level in images captured at the same exposure index
and corrected to pixel value PC. For a neutral, the mean of the balanced pixel values is
the same as the color corrected pixel values. Since the raw signals are related to the bal-
anced signal by the gains shown in Table 1.1, the original signal levels can be expressed as
follows:

PO =




1
GE G1

0 0
0 1

GE G2
0

0 0 1
GE G3







PC

PC

PC


 . (1.6)

Defining a modified balance matrix including the sensitivity equation gain along with
the white balance gains, GB = GEdiag(G1,G2,G3) and substituting Equation 1.6 into Equa-
tion 1.1 produces the following covariance matrix for the white balanced and gain corrected
pixel values:

KB =




G2
EG2

1

(
PC

GE G1
+σ 2

g

)
0 0

0 G2
EG2

2

(
PC

GE G2
+σ2

g

)
0

0 0 G2
EG2

3

(
PC

GE G3
+σ2

g

)


 . (1.7)
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14 Computational Photography: Methods and Applications

TABLE 1.2
Summary of Relative Noise in White Balanced and Color Corrected Signals.

QE Set SB Tr(SB) σL,B SC Tr(SC) σL,C

RGB
3.97 0.00 0.00
0.00 2.62 0.00
0.00 0.00 3.29

9.88 1.24
10.38 −2.50 0.82
−2.50 6.25 −3.90

0.82 −3.90 7.78
24.41 1.60

RPB
3.97 0.00 0.00
0.00 1.00 0.00
0.00 0.00 3.29

8.26 0.84
18.22 −14.70 7.24

−14.70 21.68 −13.94
7.24 −13.94 13.32

53.22 2.51

CMY
2.02 0.00 0.00
0.00 1.89 0.00
0.00 0.00 1.75

5.67 1.03
25.05 −6.43 −4.71
−6.43 10.45 −8.28
−4.71 −8.28 15.84

51.34 1.90

In the case where σ2
g << PC/(GEGi), where i ∈ [1,2,3], this simplifies to

KB =




G1 0 0
0 G2 0
0 0 G3


GEPC. (1.8)

To focus on the relative sensitivity, the matrix SB is defined by leaving out the factor of PC:

SB =




G1 0 0
0 G2 0
0 0 G3


GE . (1.9)

The values on the diagonal of SB show the relative noise levels in white balanced images
before color correction, accounting for the differences in photometric sensitivity. To finish
the comparison, the matrix SC is defined as MSBMT . The values on the diagonal of SC in-
dicate the relative noise levels in color corrected images. The values σL,B and σL,C indicate
the estimated relative standard deviation for a luminance channel based on Equation 1.4.

As shown in Table 1.2, the Tr(SB) and σL,B are smaller for CMY and for RPB than for
RGB, reflecting the sensitivity advantage of the broader spectral sensitivities. However,
Tr(SC) and σL,C are greater for RPB and CMY than for RGB, reflecting the noise ampli-
fication from the color correction matrix. In summary, while optimal selection of spectral
sensitivity is important for limiting noise, a well-selected relatively narrow set of RGB
spectral sensitivies is close to optimum, as found in References [65] and [66]. Given these
results, it is tempting to consider narrower spectral bands for each color channel, reduc-
ing the need for color correction. This would help to a limited extent, but eventually the
signal loss from narrower bands would take over. Further, narrower spectral sensitivities
would produce substantially larger color errors, leading to lower overall image quality. The
fundamental problem is that providing acceptable color reproduction constrains the three
channel system, precluding substantial improvement in sensitivity.

Reference [65] considers the possibility of reducing the color saturation of the image,
lowering the noise level at the expense of larger color errors. However, the concept of
lowering the color saturation can be applied with RGB quantum efficiencies as well. Ref-
erence [66] shows that by allowing larger color errors at higher exposure index values, the
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Single Capture Image Fusion 15

optimum set of quantum efficiencies changes with exposure index. In particular, at a high
exposure index, the optimum red quantum efficiency peaks at a longer wavelength and has
less overlap with the green channel. This is another way to accept larger color errors to
reduce the noise in the color corrected image.

1.2.2 Four-Channel Arrays

Previous work considering optimal spectral sensitivities has repeatedly concluded that
adding a fourth channel can significantly reduce color errors without increasing noise sub-
stantially. References [69] and [66] both conclude that a four-channel system satisfies the
multiple objectives of a color camera better than a three-channel system. Reference [69]
considers the spatial sampling of the color filter array and reconstruction errors arising from
demosaicking. Reference [66] focuses on noise in the optimization, and recommends using
two different red channels in the CFA pattern, allowing a degree of adaptation as a function
of exposure index.

1.2.3 Color Fidelity versus Spatial Resolution

The family of CFA patterns selected in this chapter is motivated by recalling contrast
sensitivity research showing human sensitivity to luminance contrast is very different from
human sensitivity to chrominance contrast. Reference [70] examines the dependence of
chrominance contrast sensitivity on spatial frequency and on illuminance level; it was found
that contrast sensitivity degrades at lower luminance levels, for both chrominance and lumi-
nance. Despite limited comparison with luminance contrast sensitivity, the results suggest
that chrominance sensitivity degrades past one cycle/degree, while luminance sensitivity
peaks near two cycles/degree. Reference [71] provides a more in depth comparison of
chrominance and luminance contrast sensitivity. This work finds that red-green and blue-
yellow contrast sensitivity functions have similar spatial bandwidth, which is roughly 1/3
of the bandwidth of luminance contrast sensitivity. It was also found that luminance con-
trast sensitivity degrades below about 1 to 2 cycles/degree, while chrominance sensitivity is
constant below about 1/3 to 2/3 cycles/degree. The similarity of red-green and blue-yellow
contrast sensitivities and their substantial different from the luminance contrast sensitivity
suggests the decoupling of spatial detail and luminance sensitivity from color sensitivity.
The clearest way to accomplish this is to provide a highly sensitive luminance channel in
addition to three channels for chrominance data. The spectral response of the panchro-
matic channel is colorimetrically inaccurate for luminance, but it provides the best possible
signal-to-noise for a given sensor.

Introducing panchromatic pixels into a three-channel CFA pattern and allowing the color
sampling to drop off provide color resolution that is roughly 1/3 to 1/4 the panchromatic
sampling. Assuming that color artifacts and chromatic aliasing are successfully limited in
demosaicking, this approach, fusing a panchromatic image with a lower resolution color
image, provides a capture system most closely mimicking the capabilities of the human
visual system under most imaging conditions.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

3:
57

 0
9 

M
ay

 2
01

6 



16 Computational Photography: Methods and Applications

1.3 Demosaicking

Demosaicking, or color filter array interpolation, is the process of producing a full-color
image from the sparsely sampled digital camera capture. It generally involves some sort of
interpolation of neighboring pixel values within a given support region. This process may
be based on strictly linear, shift-invariant systems theory, or may be conducted in a more
heuristic nonlinear, adaptive manner. Both approaches will be described below. Because
of the large breadth of knowledge now available on demosaicking in general, the following
discussion will be restricted to a particular body of research conducted in the area of four-
channel color filter array image processing [72], [73], [74], [75].

1.3.1 Special Functions and Transforms

The following notation, conventions, and special functions used in the rest of this section
can be found in Reference [76]. In the following, b and d are positive values. Given a
function f (x), the Fourier transform and its inverse are:

F (ξ ) =
∫ ∞

−∞
f (α)e−i2πξ αdα,

f (x) =
∫ ∞

−∞
F (β )ei2πβxdβ .

The delta function, δ (x), is the function that has the following properties:

δ (x− x0) = 0, x 6= x0,

∫ x2

x1

f (α)δ (α− x0)dα = f (x0) , x1 < x0 < x2,

δ
(

x− x0

b

)
= |b|δ (x− x0) .

For convenience, pairs of delta functions can be defined as follows:

δδ
(

x− x0

b

)
= |b| [δ (x− x0 +b)+δ (x− x0−b)] .

The comb function

comb
(

x− x0

b

)
= |b|

∞

∑
n=−∞

δ (x− x0−nb)

is used for describing sampling arrays within the CFA pattern.
Linear interpolation is modeled as a convolution with the tri function

tri
(

x− x0

b

)
=

{
0 if |(x− x0)/b| ≥ 1,
1−|(x− x0)/b| if |(x− x0)/b|< 1.
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Single Capture Image Fusion 17

Fourier analysis of the tri function is expressed in terms of the sinc function:

sinc
(

x− x0

b

)
=

sin
[
π

( x−x0
b

)]

π
( x−x0

b

) .

The forward Fourier transform pairs of the aforementioned special functions are defined
as follows:

δ
(

x− x0

b

)
F−→ |b|e−i2πx0ξ ,

δδ
(

x− x0

b

)
F−→ 2be−i2πx0ξ cos(2πbξ ) ,

comb
(

x− x0

b

)
F−→ |b|e−i2πx0ξ comb(bξ ) ,

tri
(

x− x0

b

)
F−→ |b|e−i2πx0ξ sinc2 (bξ ) .

Two-dimensional versions of these special functions as well as their Fourier transforms can
be constructed by multiplying together one-dimensional versions, resulting in the following
(note that the results are separable):

δ
(

x− x0

b
,
y− y0

d

)
= δ

(
x− x0

b

)
δ

(
y− y0

d

)
,

δδ
(

x− x0

b
,
y− y0

d

)
= δδ

(
x− x0

b

)
δδ

(
y− y0

d

)
,

comb
(

x− x0

b
,
y− y0

d

)
= comb

(
x− x0

b

)
comb

(
y− y0

d

)
,

tri
(

x− x0

b
,
y− y0

d

)
= tri

(
x− x0

b

)
tri

(
y− y0

d

)
,

sinc
(

x− x0

b
,
y− y0

d

)
= sinc

(
x− x0

b

)
sinc

(
y− y0

d

)
,

cos(2πbx,2πdy) = cos(2πbx)cos(2πdy) ,

δ
(

x− x0

b
,
y− y0

d

)
F−→ |bd|e−i2π(x0ξ+y0η),

δδ
(

x− x0

b
,
y− y0

d

)
F−→ 4 |bd|e−i2π(x0ξ+y0η) cos(2πbξ ,2πdη) ,

comb
(

x− x0

b
,
y− y0

d

)
F−→ |bd|e−i2π(x0ξ+y0η)comb(bξ ,dη) ,

tri
(

x− x0

b
,
y− y0

d

)
F−→ |bd|e−i2π(x0ξ+y0η)sinc2 (bξ ,dη) .
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x

y

FIGURE 1.9

Panchromatic pixel neighborhood.

Finally, it is necessary to look at functions that have been rotated and skewed and their
corresponding Fourier transforms. The general rule to be used can be written as follows:

f
(

x− x0

b
− y− y0

d
,
x− x0

b
+

y− y0

d

)
F−→ |bd|

2
e−i2π(x0ξ+y0η)F

(
bξ −dη

2
,
bξ +dη

2

)
,

where
f (x,y) F−→ F (ξ ,η) .

1.3.2 The Panchromatic Sensor

As a preliminary step, an all-panchromatic pixel sensor is examined first. Each pixel
in the corresponding CFA has a broadband, spectrally nonselective response. Casually,
these pixels maybe thought of as being “white” or “clear.” Figure 1.9 shows a small pixel
neighborhood with a coordinate system superimposed. Many of the subsequent algorithm
analyses will deal with one-dimensional pixel neighborhoods. Therefore, restricting atten-
tion to the pixels lying along the x-axis, the row of panchromatic pixels f ′P can be expressed
(ignoring pixel size1) by the continuous panchromatic image fP and a comb sampling func-
tion sP as follows:

sP = comb(x) ,

f ′P = fPsP. (1.10)

The Fourier transform of Equation 1.10 can be used for evaluation of both signal fidelity
as well as sample aliasing. These Fourier transform terms can be written as

SP = comb(ξ ) ,

F ′P = FP ∗SP =
∫ ∞

−∞
FP (α)

∞

∑
n=−∞

δ (ξ −α−n)dα =
∞

∑
n=−∞

FP (ξ −n) . (1.11)

1In this analysis the pixels are considered to be point entities modeled by delta functions. These delta functions
could be convolved with a finite area mask such as rect function of Reference [77] to more accurately simulate
their physical dimensions. However, as doing so would not significantly impact the results of this analysis, this
is omitted for the sake of simplicity. The interested reader is referred to Reference [77] for a more detailed
discussion of this topic.
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generate colors

CFA image

generate color

differences

demosaick color

differences

demosaicked

image

panchromatic

demosaicking
panchromatic

image

FIGURE 1.10

Demosaicking Algorithm Flowchart.

It can be seen from Equation 1.11 that if the initial panchromatic image is appropriately
bandlimited to be zero beyond |ξ | ≥ 1/2, then the fundamental component (n = 0) is not
aliased by any of the sidebands (n 6= 0). In practice, this bandlimiting is usually imposed
by an optical antialiasing filter [78]. Restricting attention to the portion of the resulting
panchromatic spectrum 0≤ ξ < 1/2 and considering this to be the rendered portion of the
reconstructed image, this idealized case can be seen to produce perfect image reconstruc-
tion, that is, F ′P = FP,0≤ ξ < 1/2.

1.3.3 Demosaicking Algorithm Overview

Figure 1.10 shows a flowchart of the demosaicking algorithm discussed in this section.
Although its terminology reflects a four-channel CFA pattern (i.e., CFA image including
panchromatic pixels), it works equally well for three-channel systems with one of the color
channels, usually green, taking the place of the panchromatic channel. First, the panchro-
matic pixel data is demosaicked to produce a full-resolution panchromatic image. Color
differences are formed next by subtracting the panchromatic value from the color value at
each color pixel location; that is, Di j = Ci j −Pi j, where C is a color value (usually red,
green, or blue), P is a panchromatic value, and D is the resulting color difference. These
color differences are then demosaicked to produce full-resolution color difference image
channels. Finally, panchromatic values are added back to the color difference values to
produce the final full-resolution color image; that is, Ci j = Di j +Pi j.

The demosaicking of the panchromatic and color difference CFA data can be done in
either an adaptive or nonadaptive manner. Nonadaptive demosaicking generally employs
the standard methods of pixel replication, bilinear interpolation, or bicubic interpolation.
Frequently, these interpolation operations can be executed as simple convolution operations
with appropriately chosen kernels and initializing missing pixel values to zero. Adaptive
demosaicking also uses standard interpolation methods, but in a one-dimensional, direc-
tional manner. In the CFA patterns analyzed below, each pixel location to be demosaicked
can be done in at least two possible directions, usually horizontal and vertical. Sometimes
diagonal direction interpolation is also possible. To select the preferred direction for in-
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Dx , y +N0 0

Dx , y0 0

Dx +M , y +N0 0

Dx +M , y0 0

FIGURE 1.11

Color Difference Interpolation Rectilinear Neighborhood.

terpolation, primitive edge detection computations are performed and the direction of least
edge activity chosen. One set of terminology exists for describing this process. Classifi-
cation is the selection of a preferred interpolation direction through edge detection. In this
context, the edge detectors become classifiers. Prediction is the estimation of the miss-
ing pixel value. The expressions used for computing these missing values are then called
predictors.

The simplest demosaicking algorithms will use nonadaptive methods for both panchro-
matic and color difference interpolation. Since nonadaptive methods are not able to respond
to or take advantage of any feature (edge) information in the image, the algorithmic sim-
plicity comes as the cost of reconstruction image fidelity. Note that this is a liability for
the panchromatic channel, as the color differences are predominantly low spatial frequency
records, similar to the chrominance channels in a YCC color space. Color differences,
being largely devoid of edge information, are well suited to nonadaptive demosaicking
methods. For improved reconstruction image fidelity, adaptive methods can be used for the
demosaicking of the panchromatic channel. This, of course, comes at the price of increas-
ing the interpolation algorithm complexity.

1.3.3.1 Rectilinear Grid-Based Nonadaptive Interpolation

The nonadaptive method used most frequently for demosaicking is standard bilinear in-
terpolation. For the CFA patterns discussed in this chapter, the original pixels used in the
interpolation process are arranged either in a rectilinear pattern or a diamond (rotated or
skewed rectilinear) pattern. The former case is considered here and the latter case in the
next section. This method applies equally well to panchromatic, color, or color difference
values, although color difference values will be assumed below for convenience.

The rectilinear CFA interpolation neighborhood is shown in Figure 1.11. The term Di j

is a color difference and the © entries are luminance2 (generally panchromatic or green)
values initially devoid of color difference values. The interpolation of a color difference
value at each luminance value location is accomplished by a weighted average of each of
the four corner color difference values. This weighting function for bilinear interpolation
is a discrete version of the two-dimensional tri function defined as follows:

b = tri
( x

M
,

y
N

)
comb(x,y) .

2In this analysis the term luminance is used to refer to the CFA channel that is the primary source for the spatial
detail of the image.
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Single Capture Image Fusion 21

The interpolation operation can be treated as a convolution operation. Therefore, the
interpolation color difference plane, f ′D, can be expressed in terms of the original color
difference plane, fD, a sampling function, sD, and the convolution kernel, b, as follows:

f ′D = ( fDsD)∗b. (1.12)

The sampling function for the color differences in Figure 1.11 is given by

sD =
1

MN
comb

(
x− x0

M
,
y− y0

N

)
.

Standard Fourier analysis produces the spatial frequency response for Equation 1.12, as
follows:

F ′D = (FD ∗SD)B.

This translates into the general frequency response for bilinear interpolation on a rectilinear
grid:

F ′D =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FD

(
ξ − m

M
,η− n

N

)
, (1.13)

where

Amn =
e−i2π(x0

m
M +y0

n
N )

MN
B(ξ ,η) (1.14)

denotes the transfer function and B is defined as follows (see Appendix for more details):

B = MN
∞

∑
p=−∞

∞

∑
q=−∞

sinc2 [M (ξ − p) ,N (η−q)] ,

=

[
1+2

M−1

∑
j=1

tri
(

j
M

)
cos(2π jξ )

][
1+2

N−1

∑
k=1

tri
(

k
N

)
cos(2πkη)

]
. (1.15)

Equations of the form of Equation 1.13 occur several times in the subsequent analysis.
These equations can be viewed as consisting of two components: repeated spectral com-
ponents, for instance, FD

(
ξ − m

M ,η− n
N

)
, which describe the aliasing behavior, and the

transfer functions, Amn (ξ ,η), which describe the spectral component fidelity. As a rule
of thumb, the larger the values of M and N, the more likely the CFA is prone to aliasing
artifacts. Similarly, the greater the departure of the transfer functions from a unity response
over all spatial frequencies of interest, the more distorted the demosaicked image appears,
usually as a lack of sharpness or definition.

1.3.3.2 Diamond Grid-Based Nonadaptive Interpolation

The CFA interpolation neighborhood for color differences arranged in a diamond pattern
is shown in Figure 1.12. As before, Di j is a color difference and the© entries are luminance
values initially devoid of color difference values. The interpolation of a color difference
value at each luminance value location is accomplished by a weighted average of each of
the four corner color difference values. This weighting function for bilinear interpolation
is a rotated and skewed version of the tri function defined as follows:

b = tri
( x

2M
− y

2N
,

x
2M

+
y

2N

)
comb(x,y) .
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Dx , y0 0
Dx +2M , y0 0

Dx +M , y +N0 0

Dx +M , y -N0 0

FIGURE 1.12

Color Difference Interpolation Diamond Neighborhood.

The interpolation operation is formally the same as in the rectilinear case (Equation 1.12)
with only a change in the sampling function, sD, and the convolution kernel, b. The sam-
pling function for the color differences in Figure 1.12 is given by

sD =
1

2MN
comb

(
x− x0

2M
− y− y0

2N
,
x− x0

2M
+

y− y0

2N

)
.

Standard Fourier analysis produces the equivalent spatial frequency response for Equa-
tion 1.12 using the new values for sD and b as follows (see Appendix for more details):

SD = e−i2π(x0ξ+y0η)comb(Mξ −Nη ,Mξ +Nη)

B = 2MN
∞

∑
p=−∞

∞

∑
q=−∞

sinc2 [M (ξ − p)−N (η−q) ,M (ξ − p)+N (η−q)]

= 1+2
2M−1

∑
j=1

tri2
(

j
2M

)
cos(2π jξ )+2

2N−1

∑
k=1

tri2
(

k
2N

)
cos(2πkη)

+4
2M−1

∑
j=1

2N−1

∑
k=1

tri
(

j
2M

− k
2N

,
j

2M
+

k
2N

)
cos(2π jξ ,2πkη) (1.16)

The final result can be expressed as:

F ′D =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FD

(
ξ − m+n

2M
,η− −m+n

2N

)
, (1.17)

with the transfer function

Amn =
e−iπ(x0

m+n
M +y0

−m+n
N )

2MN
B(ξ ,η) . (1.18)

1.3.4 The Bayer Color Filter Array

Any four-channel CFA will ultimately be compared to the accepted industry standard
Bayer three-channel CFA. Figure 1.13a shows the CFA with an imposed coordinate system.
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-2 210-1

(b)

FIGURE 1.13

Bayer pattern: (a) CFA, and (b) row neighborhood.
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FIGURE 1.14

Fundamental transfer function frequency responses.

For the purposes of analysis, in the Bayer pattern the green channel will be taken to be the
luminance channel and the color differences will be red minus green and blue minus green.3

1.3.4.1 Bilinear Interpolation

In the case of demosaicking using solely bilinear interpolation, the green channel recon-
struction can be accomplished by using the method of Section 1.3.3.2 with M = 1, N = 1,
x0 = 0, and y0 = 0. The bilinear interpolating function, b, can be explicitly written as

b =
1
4

[4δ (x,y)+δδ (x)δ (y)+δ (x)δδ (y)] .

The equivalent convolution kernel can be expressed as

b =
1
4




0 1 0
1 4 1
0 1 0


 .

3While formally one justifies interpolating color differences by performing the computations in a logarithmic
space [79], for all but the most extreme pixel differences computing color differences in video gamma or even
linear space is usually visually acceptable.
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24 Computational Photography: Methods and Applications

(a) (b)

(c) (d)

FIGURE 1.15

Bayer green bilinear interpolation results: (a) original image, (b) bilinear green interpolation, (c) interpolation

error map, and (d) bilinear interpolation full color result.

The corresponding frequency response of the reconstructed green channel is then

F ′G =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FG

(
ξ − m+n

2
,η− −m+n

2

)
,

where

Amn =
2+ cos(2πξ )+ cos(2πη)

4
.

The ξ -axis response of Amn is plotted in Figure 1.14 as “Bayer green bilinear.” Another
way to analyze the performance of the Bayer bilinear algorithm is to test the algorithm
on a chirp circle test chart. Figure 1.15a is a chirp circle target in which the spatial fre-
quency of the circles increases linearly from the center out. Figure 1.15b is the equivalent
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Single Capture Image Fusion 25

demosaicked green channel produced by Bayer bilinear interpolation. Since it is difficult
to see differences between Figures 1.15a and 1.15b an interpolation error map of the two is
presented in Figure 1.15c. This map is created as follows:

ε =
{

1 if | fG− f ′G| ≤ t,
0 otherwise,

(1.19)

where t is the threshold set to a value of 22 for Figure 1.15c as well as all subsequent in-
terpolation error maps. Note that the original image code value range of Figure 1.15a is 0
to 255. The central circular region in Figure 1.15c represents an area of low interpolation
error whereas the rest of the error map is dominated by aliasing and transfer function dis-
tortions. A qualitative assessment of the resulting aliasing can be made from the full-color
results of the bilinear interpolation in Figure 1.15d. In this figure, the green-magenta alias-
ing patterns in the corners of the image represent the aliasing due to bilinear interpolation
of the green channel.

Once the green channel has been fully populated by the interpolation process, red and
blue color differences, DR = R−G and DB = B−G, can be formed at each red and blue
pixel location and the method of Section 1.3.3.1 can be used with M = 2, N = 2, x0 = 1,
and y0 = 0 for the red channel and x0 = 0 and y0 = 1 for the blue channel. The bilinear
interpolation function

b =
1
4

[2δ (x)+δδ (x)] [2δ (y)+δδ (y)]

is the same for both color difference channels. The equivalent convolution kernel would be

b =
1
4




1 2 1
2 4 2
1 2 1


 .

The frequency response of the interpolated color difference channels becomes

F ′D =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FD

(
ξ − m

2
,η− n

2

)
,

with the red and blue transfer functions, respectively, defined as follows:

Amn,R =
(−1)m

4
B(ξ ,η) ,

Amn,B =
(−1)n

4
B(ξ ,η) ,

and the frequency response of the bilinear interpolating function defined as

B = [1+ cos(2πξ )] [1+ cos(2πη)] .

The aliasing consequences of the final image can be seen in Figure 1.15d with the addition
of blue-orange aliasing patterns in the centers of the image sides.
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FIGURE 1.16

Bayer adaptive interpolation neighborhood.

1.3.4.2 Adaptive Interpolation

Adaptive demosaicking algorithms that respond to local edge activity are well-known in
the literature [43], [80], [81], [82]. When the green pixel value in the Bayer pattern is being
interpolated at a red or blue pixel location, there are several choices of pixel neighborhoods
that can be used to account for local edges. Figure 1.16 shows a typical neighborhood.
Interpolation can occur either horizontally or vertically. One strategy is to blend the results
based on the relative strengths of the classifiers u and v:

u = 2 |δ (x+1)−δ (x−1)|+ |δ (x+2)−2δ (x)+δ (x−2)| ,
= 2 |G4−G6|+ |R3−2R5 +R7| ,

v = 2 |δ (y+1)−δ (y−1)|+ |δ (y+2)−2δ (y)+δ (y−2)| ,
= 2 |G2−G8|+ |R1−2R5 +R9| ,

as follows:
f ′G = G′

5 =
u

u+ v
V +

v
u+ v

U, (1.20)

where U and V are the horizontal and vertical predictors to be derived below. It can be
seen in Equation 1.20 that the direction of the smaller classifier gives the greater weight
to the corresponding predictor; for example, a smaller value of u will produce a dominant
weighting of U . It can also be seen that the classifiers freely combine color Laplacians and
green gradients. This is an image fusion technique that will be discussed shortly.

In this adaptive algorithm the derivation of a suitable predictor becomes a one-
dimensional interpolation problem. Figure 1.13b shows an example of a five-point hori-
zontal neighborhood. The corresponding predictor is defined as follows (these results will
be stated more broadly in Section 1.3.5.1):

f ′G = fGsG +( fG ∗b)sR +( fR ∗h)sR ≈ fGsG +( fG ∗b)sR +( fG ∗h)sR, (1.21)
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Single Capture Image Fusion 27

(a) (b) (c)

FIGURE 1.17

Bayer green interpolation error maps: (a) bilinear interpolation error map, (b) adaptive linear interpolation with

α = 0, and (c) adaptive linear interpolation with α = 1/2.

where b and h denote, respectively, a low-pass filter and a high-pass filter, defined as:

b =
1
2

δδ (x) ,

h =
α
4

[
2δ (x)− 1

2
δδ

( x
2

)]
,

where α is a design parameter. The terms sG and sR are defined as follows:

sG =
1
2

comb
(

x−1
2

)
,

sR =
1
2

comb
( x

2

)
.

Image fusion occurs in the substitution of the high-pass image component ( fR ∗h)sR for
the unavailable high-pass image component ( fG ∗h)sR. This is justified on the assumption
that G = R + constant over the pixel neighborhood [83]. The corresponding frequency
response is given by

F ′G =
∞

∑
n=−∞

An (ξ )FG

(
ξ − n

2

)
,

An =
(−1)n [1+ cos(2πξ )]+α sin2 (2πξ )

2
.

The design parameter α can be set to satisfy a number of different constraints. Here, α
will be set to make the slope of the fundamental transfer function as follows:

A0 =
1+ cos(2πξ )+α sin2 (2πξ )

2
,

dA0

dξ

∣∣∣∣
ξ=0

⇒ α =
1
2
,

with zero at the origin. Therefore, h can be restated with this value of α and the predictors
written in terms of the pixel values in Figure 1.16 as follows:
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(a) (b)

FIGURE 1.18

Bayer adaptive interpolation results: (a) adaptive interpolation full color result, and (b) bilinear-adaptive inter-

polation difference green channel.

h =
1
8

[
2δ (x)− 1

2
δδ

( x
2

)]
,

U =
G4 +G6

2
+
−R3 +2R5−R7

8
,

V =
G2 +G8

2
+
−R1 +2R5−R9

8
.

The response of A0 is equivalent to one of the four-channel situations analyzed below and
is therefore the same as the plot in Figure 1.14 labeled “alternating panchromatic linear.”
The interpolation error map is shown in Figure 1.17c. If α is set to zero and just the linear
interpolation of green values is used in the adaptive interpolation, the fundamental transfer
function becomes

A0 =
1+ cos(2πξ )

2
.

This response of A0 is labeled as “two-point average” in Figure 1.14. The interpolation
error map is shown in Figure 1.17b. Comparing the bilinear interpolation error map shown
in Figure 1.17a with Figures 1.17b and 1.17c reveals that interpolation error is greatest
with bilinear interpolation and least with adaptive interpolation and α = 1/2. The adaptive
interpolation error with α = 0 is clearly between these two extremes.

Bilinear interpolation of color differences is still used for demosaicking the red and blue
channels. The resulting full color image from using adaptive interpolation for green and
bilinear interpolation for red and blue is shown in Figure 1.18a. A difference map of the
green channel between the all-bilinear interpolation case of Figures 1.15d and 1.18a is
shown in Figure 1.18b, indicating that the largest region of improvement realized in the
adaptive interpolation case is in the middle spatial frequency range of the green channel.
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FIGURE 1.19

Four-channel CFA patterns.

1.3.5 Four-Channel CFA Demosaicking

When considering four-channel CFA patterns, such as illustrated in Figure 1.19, a num-
ber of pixel neighborhoods for adaptive panchromatic interpolation soon suggest them-
selves. These are illustrated in Figure 1.20. Generalizing from the Bayer adaptive interpo-
lation case, there are two main components to panchromatic predictors. The panchromatic
pixel values can be used to compute linear, cubic, or possibly even higher-order inter-
polation values. To these interpolated panchromatic values an image fusion component
computed from the color pixel values can be added. These options are analyzed in turn
below.

x

y

CC P CP CP CP

(a)

x

y

PP C CP PP PC

(b)

x

y

PC P CP PP CP

(c)

x

y

DC P CP DP CP

(d)

FIGURE 1.20

Four-channel row neighborhoods: (a) alternating panchromatic, (b) double panchromatic, (c) triple panchro-

matic, and (d) two-color alternating panchromatic.
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1.3.5.1 Adaptive Linear Interpolation

For linear interpolation of panchromatic values plus a color Laplacian image fusion com-
ponent, the first three cases shown in Figure 1.20 can be generalized into one expression.
If there are N panchromatic pixels between subsequent color pixels of the same color, then
the following predictor can be written:

f ′P = fPsP +( fP ∗b+ fC ∗h)sC, (1.22)

where
sC = 1

N+1 comb
( x

N+1

)
, sP = comb(x)− sC,

b = 1
2 δδ (x) , h = 1

2(N+1)2

[
2δ (x)− 1

N+1 δδ
( x

N+1

)]
.

(1.23)

The resulting frequency response is given by

F ′P =
∞

∑
n=−∞

An (ξ )FP

(
ξ − n

N +1

)
, (1.24)

where

An =
cn +B

(
ξ − n

N+1

)
+H

(
ξ − n

N+1

)

N +1
,

cn =
{

N for n
N+1 ∈ Z,

−1 otherwise,

B = cos(2πξ ) H = 2
(N+1)2 sin2 [(N +1)πξ ] . (1.25)

The classifier is given below. The scale factor in front of the gradient term is to balance
the contributions of the gradient and Laplacian terms:

u =
(N +1)2

2
|δ (x+1)−δ (x−1)|+ |−δ (x+N +1)+2δ (x)−δ (x−N−1)| .

In the case of Figure 1.20d only h in Equation 1.23 (and H in Equation 1.25) and the
classifier need be modified as follows:

h =
1

2(2N +2)2

[
2δ (x)− 1

2N +2
δδ

(
x

2N +2

)]
, H =

2

(2N +2)2 sin2 [(2N +2)πξ ] ,

u = 2(N +1)2 |δ (x+1)−δ (x−1)|+ |−δ (x+N +1)+2δ (x)−δ (x−N−1)|
As in Section 1.3.4.2, h has been defined so that dAn/dξ = 0 at ξ = 0.

1.3.5.2 Adaptive Cubic Interpolation

For cubic interpolation of panchromatic values plus a color Laplacian image fusion com-
ponent, one need only change the expression for b in the linear interpolation case and adjust
the results accordingly. As it turns out, the design parameter α now becomes zero and the
image fusion term h drops out of the results.

b =
1
6

[
4δδ (x)− 1

2
δδ

( x
2

)]
, B = (4cos(2πξ )− cos(4πξ ))/3
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F ′P =
∞

∑
n=−∞

An (ξ )FP

(
ξ − n

N +1

)
, (1.26)

where

An =
cn +B

(
ξ − n

N+1

)

N +1
,

cn =
{

N for n
N+1 ∈ Z,

−1 otherwise.

Whereas the color Laplacian is not a part of the predictor, it can still be used as part of
the classifier.

u =
(N +1)2

2
|δ (x+1)−δ (x−1)|+ |−δ (x+N +1)+2δ (x)−δ (x−N−1)| .

These expressions works for N > 1, but the N = 1 case needs a slightly different expression
for b:

b =
1

16

[
9δδ (x)− 1

3
δδ

( x
3

)]
, B = (9cos(2πξ )− cos(6πξ ))/8 (1.27)

The design parameter α is still zero so Equation 1.26 is still applicable. Note that dAn/dξ
is still zero at the origin.

1.3.5.3 Alternating Panchromatic

The alternating panchromatic neighborhood of Figure 1.20a can be treated in the same
manner as the Bayer pattern. In this figure, C is one of the color channels, either red, green,
or blue. This occurs, for example, in two directions with the green channel, and in one
direction with the red and blue channels in the CFA pattern of Figure 1.19d. Applying the
general solution with linear interpolation with N = 1 produces the following:

F ′P =
∞

∑
n=−∞

An (ξ )FP

(
ξ − n

2

)
, (1.28)

An =
2(−1)n [1+ cos(2πξ )]+ sin2 (2πξ )

4
, (1.29)

u = 2 |δ (x+1)−δ (x−1)|+ |−δ (x+2)+2δ (x)−δ (x−2)| .
The cubic interpolation solution with N = 1 is the special case of the general solution

with the cubic interpolation section. The only change to Equation 1.28 is in the following
transfer function:

An =
(−1)n [8+9cos(2πξ )− cos(6πξ )]

16
. (1.30)

The fundamental components of Equations 1.29 and 1.30 are plotted in Figure 1.14 as
“alternating panchromatic linear” and “alternating panchromatic cubic,” respectively. In-
terpolation error maps of these algorithms assuming the pattern of Figure 1.19d are shown
in Figure 1.21. Due to the horizontal versus vertical asymmetry of Figure 1.19d, linear
interpolation can only be applied vertically at red and blue pixel locations. Horizontally,
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32 Computational Photography: Methods and Applications

(a) (b) (c)

FIGURE 1.21

Alternating panchromatic interpolation: (a) linear interpolation error map, (b) cubic interpolation error map,

and (c) fully processed image.

cubic interpolation is used. This is why Figure 1.21a appears to be a blend of Figures 1.17c
(linear in both directions) and 1.21b (cubic in both directions). As a result, the linear inter-
polation method appears to have marginally lower error overall than the cubic interpolation
method, as least along the vertical axis.

Color difference interpolation is done in the standard nonadaptive manner. Again refer-
ring to the CFA pattern of Figure 1.19d, the green color difference interpolation can be cast
as a convolution with the following kernel:

bG =
1
4




1 2 1
2 4 2
1 2 1


 .

Using the results of Section 1.3.3.1 with M = 2, N = 2 and x0 = 0, y0 = 0 the corresponding
frequency response can be written as follows

F ′D =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FD

(
ξ − m

2
,η− n

2

)
,

Amn =
1
4

[1+ cos(2πξ )] [1+ cos(2πη)] .

In the case of the red channel, M = 4, N = 2, x0 = 1, and y0 = 1. The corresponding
convolution kernel and frequency response are as follows:

bRB =
1
8




1 2 3 4 3 2 1
2 4 6 8 6 4 2
1 2 3 4 3 2 1


 ,

F ′D =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FD

(
ξ − m

4
,η− n

2

)
,

Amn =
e−iπ(m

2 +n)

8

[
1+

3
2

cos(2πξ )+ cos(4πξ )+
1
2

cos(6πξ )
]
[1+ cos(2πη)] .
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Finally, in the case of the blue channel, M = 4, N = 2 , and x0 = −1, y0 = −1. The
convolution kernel bRB is used for both the red and blue channels, providing

F ′D =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FD

(
ξ − m

4
,η− n

2

)
,

Amn =
eiπ(m

2 +n)

8

[
1+

3
2

cos(2πξ )+ cos(4πξ )+
1
2

cos(6πξ )
]
[1+ cos(2πη)] .

The aliasing characteristics of Figure 1.19d can be observed in Figure 1.21c. The aliasing
patterns along the edge of the image are different from the Bayer case, and some new faint
bands have appeared along the horizontal axis halfway out from the center.

1.3.5.4 Double Panchromatic

The CFA pattern of Figure 1.19b can be viewed as consisting of double panchromatic
neighborhoods of Figure 1.20b. These patterns, therefore, can be demosaicked with the
general solution with linear interpolation and N = 2, for which

F ′P =
∞

∑
n=−∞

An (ξ )FP

(
ξ − n

3

)
, (1.31)

An =
9cos

(2
3 nπ

)
[2+ cos(2πξ )]+9sin

(2
3 nπ

)
sin(2πξ )+2sin2 (3πξ )

27
, (1.32)

u =
9
2
|δ (x+1)−δ (x−1)|+ |−δ (x+3)+2δ (x)−δ (x−3)|

⇒ 9 |δ (x+1)−δ (x−1)|+2 |−δ (x+3)+2δ (x)−δ (x−3)| .
The general solution with cubic interpolation and N = 2 has the same functional form as

Equation 1.31 with a different transfer function:

An =
cos

(2
3 nπ

)
[6+4cos(2πξ )− cos(4πξ )]+ sin

(2
3 nπ

)
[4sin(2πξ )+ sin(4πξ )]

9
.

(1.33)
The fundamental components of Equations 1.32 and 1.33 are plotted in Figure 1.14 as
“double panchromatic linear” and “double panchromatic cubic,” respectively. Interpolation
error maps of these algorithms assuming the pattern of Figure 1.19b are shown in Fig-
ure 1.22. Using the aliasing patterns as a visual guide, no more than subtle differences can
be seen between the two error maps. It would appear that both interpolation methods are
comparable.

A benefit of the CFA pattern Figure 1.19b is that all three color difference channels can
be interpolated in the same manner. The corresponding convolution kernel is expressed as

bRGB =
1
9




1 2 3 2 1
2 4 6 4 2
3 6 9 6 3
2 4 6 4 2
1 2 3 2 1




.
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(a) (b) (c)

FIGURE 1.22

Double Panchromatic Interpolation: (a) Linear Interpolation Error Map, (b) Cubic Interpolation Error Map,

and (c) Fully Processed.

Using the results of Section 1.3.3.1 with M = 3, N = 3, x0 = 0, and y0 = 0, the correspond-
ing green color difference frequency response can be written as follows:

F ′D =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FD

(
ξ − m

3
,η− n

3

)
,

Amn =
1
9

[
1+

4
3

cos(2πξ )+
2
3

cos(4πξ )
][

1+
4
3

cos(2πη)+
2
3

cos(4πη)
]
.

In the case of the red channel, M = 3, N = 3, x0 = 1, AND y0 = −1. The corresponding
frequency response is as follows:

F ′D =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FD

(
ξ − m

3
,η− n

3

)
,

Amn =
e−i 2π

3 (m−n)

9

[
1+

4
3

cos(2πξ )+
2
3

cos(4πξ )
][

1+
4
3

cos(2πη)+
2
3

cos(4πη)
]
.

Finally, in the case of the blue channel, M = 3, N = 3, x0 =−1, and y0 = 1, for which

F ′D =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FD

(
ξ − m

3
,η− n

3

)
,

Amn =
ei 2π

3 (m−n)

9

[
1+

4
3

cos(2πξ )+
2
3

cos(4πξ )
][

1+
4
3

cos(2πη)+
2
3

cos(4πη)
]
.

The aliasing characteristics of Figure 1.19b can be observed in Figure 1.22c. The aliasing
patterns along the edge of the image have been largely eliminated at the expense of four sig-
nificant aliasing patterns two-thirds of the distance away from the center in both horizontal
and vertical directions. The two patterns along the color pixel diagonal of Figure 1.19b are
colored, whereas the other two patterns are neutral (i.e., luminance patterns).
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Single Capture Image Fusion 35

(a) (b) (c)

FIGURE 1.23

Triple panchromatic interpolation: (a) linear interpolation error map, (b) cubic interpolation error map, and (c)

fully processed image.

1.3.5.5 Triple Panchromatic

The triple panchromatic neighborhood of Figure 1.20c can be found in the CFA pattern
of Figure 1.19c. Therefore, this pattern can be demosaicked with the general solution with
linear interpolation and N = 3, characterized as follows:

F ′P =
∞

∑
n=−∞

An (ξ )FP

(
ξ − n

4

)
, (1.34)

An =
8(−1)n +8cos

(π
2 n

)
[2+ cos(2πξ )]+8sin

(π
2 n

)
sin(2πξ )+ sin2 (4πξ )

32
, (1.35)

u = 8 |δ (x+1)−δ (x−1)|+ |−δ (x+4)+2δ (x)−δ (x−4)| .

The general solution with cubic interpolation and N = 3 has the same functional form as
Equation 1.34 with a different transfer function:

An =
8(−1)n + cos

(n
2 π

)
[16+9cos(2πξ )− cos(6πξ )]

32

+
sin

(n
2 π

)
[9sin(2πξ )+ sin(6πξ )]

32
. (1.36)

The fundamental components of Equations 1.35 and 1.36 are plotted in Figure 1.14 as
“triple panchromatic linear” and “triple panchromatic cubic,” respectively. Interpolation
error maps of these algorithms assuming the pattern of Figure 1.19c are shown in Fig-
ure 1.23. A crossover has clearly occurred with the cubic interpolation method starting to
clearly produce less error overall than the linear interpolation method.

Color difference interpolation is once again done in the standard nonadaptive manner.
Referring to the CFA pattern of Figure 1.19c, the green color difference interpolation can
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36 Computational Photography: Methods and Applications

be cast as a convolution with the following kernel:

bG =
1
16




0 0 0 1 0 0 0
0 0 3 4 3 0 0
0 3 8 9 8 3 0
1 4 9 16 9 4 1
0 3 8 9 8 3 0
0 0 3 4 3 0 0
0 0 0 1 0 0 0




.

Using the results of Section 1.3.3.2 with M = 2, N = 2, x0 = 0, and y0 = 0, the correspond-
ing frequency response can be written as follows:

F ′D =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FD

(
ξ − m+n

4
,η− −m+n

4

)
,

Amn =
1
8

+
1
4

[
9

16
cos(2πξ )+

1
4

cos(4πξ )+
1
16

cos(6πξ )
]

+
1
4

[
9

16
cos(2πη)+

1
4

cos(4πη)+
1

16
cos(6πη)

]

+
1
2

[
1
2

cos(2πξ ,2πη)+
3
16

cos(2πξ ,4πη)+
3

16
cos(4πξ ,2πη)

]
.

In the case of the red channel, the results of Section 1.3.3.1, M = 4, N = 4, x0 = −1, and
y0 = 1. The corresponding convolution kernel and frequency response are as follows:

bRB =
1

16




1 2 3 4 3 2 1
2 4 6 8 6 4 2
3 6 9 12 9 6 3
4 8 12 16 12 8 4
3 6 9 12 9 6 3
2 4 6 8 6 4 2
1 2 3 4 3 2 1




,

F ′D =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FD

(
ξ − m

4
,η− n

4

)
,

Amn =
eiπ(m−n

2 )

16

{
1+2

[
3
4

cos(2πξ )+
1
2

cos(4πξ )+
1
4

cos(6πξ )
]}

×
{

1+2
[

3
4

cos(2πη)+
1
2

cos(4πη)+
1
4

cos(6πη)
]}

.

Finally, in the case of the blue channel, M = 4, N = 4, x0 = 1, and y0 = −1. The convo-
lution kernel bRB is used for both the red and blue channels. The corresponding frequency
response is as follows:

F ′D =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FD

(
ξ − m

4
,η− n

4

)
,
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Amn =
e−iπ(m−n

2 )

16

{
1+2

[
3
4

cos(2πξ )+
1
2

cos(4πξ )+
1
4

cos(6πξ )
]}

×
{

1+2
[

3
4

cos(2πη)+
1
2

cos(4πη)+
1
4

cos(6πη)
]}

.

The aliasing characteristics of Figure 1.19c can be observed in Figure 1.23c. Colored
aliasing patterns are evident along the edges of the image half-way of the distance to the
corners from both the horizontal and vertical axes. There are also four strong aliasing
patterns half-way out from the center in both the horizontal and vertical directions. The
two of these patterns along the color pixel diagonal of Figure 1.19c are colored, whereas the
other two patterns are neutral (that is, luminance patterns). There are also strong luminance
aliasing patterns in the corners of the image itself.

1.3.5.6 Two-Color Alternating Panchromatic

The two-color alternating panchromatic neighborhood of Figure 1.20d occurs in the CFA
patterns of Figures 1.19a and 1.19e. These patterns can be demosaicked in the same way
as the alternating panchromatic neighborhood with a change in h. As with the alternating
panchromatic neighborhood, N = 1, which gives

h =
1

16

[
2δ (x)− 1

4
δδ

( x
4

)]
,

F ′P =
∞

∑
n=−∞

An (ξ )FP

(
ξ − n

2

)
,

An =
8(−1)n [1+ cos(2πξ )]+ sin2 (4πξ )

16
, (1.37)

u = 8 |δ (x+1)−δ (x−1)|+ |−δ (x+4)+2δ (x)−δ (x−4)| .
Since there is no contribution due to h in the cubic interpolation solution, the cubic solution
for the two-color alternating panchromatic neighborhood is the same as the alternating
panchromatic neighborhood. The fundamental component of Equation 1.37 is plotted in
Figure 1.14 as “two-color alternating panchromatic linear.” The “alternating panchromatic
cubic” plot would apply in this two-color alternating panchromatic cubic interpolation case
as well. Interpolation error maps of these algorithms assuming the pattern of Figure 1.19a
are shown in Figure 1.24. Note that the error maps corresponding to Figure 1.19e are
similar. The interpolation error maps are almost identical, although minute differences can
be detected upon close inspection. Clearly the cubic interpolation terms are dominant in
the predictors for these CFA patterns.

The color difference interpolation for the CFA pattern of Figure 1.19a is identical in
execution to the previously described method used for the CFA pattern of Figure 1.19c.
The only difference is a small change to the phase term in the transfer functions. Using
the results of Section 1.3.3.2 with M = 2, N = 2, x0 = 0, and y0 = 0, the corresponding
frequency response can be written as follows:

F ′D =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FD

(
ξ − m+n

4
,η− −m+n

4

)
,
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(a) (b)

(c) (d)

FIGURE 1.24

Two-color alternating panchromatic interpolation: (a) linear interpolation error map, (b) cubic interpolation

error map, (c) fully processed image using Figure 1.19a, and (d) fully processed image using Figure 1.19e.

Amn =
1
8

+
1
4

[
9

16
cos(2πξ )+

1
4

cos(4πξ )+
1
16

cos(6πξ )
]

+
1
4

[
9

16
cos(2πη)+

1
4

cos(4πη)+
1

16
cos(6πη)

]

+
1
2

[
1
2

cos(2πξ ,2πη)+
3
16

cos(2πξ ,4πη)+
3

16
cos(4πξ ,2πη)

]
.

Adjustments are made to x0 and y0 in the case of the red and blue channels. For the red
channel the results of Section 1.3.3.1, M = 4, N = 4, x0 = 2, and y0 = 0 are used. The
corresponding convolution kernel bRB is as described in the previous section whereas the
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Single Capture Image Fusion 39

frequency response is expressed as follows:

F ′D =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FD

(
ξ − m

4
,η− n

4

)
,

Amn =
(−1)m

16

{
1+2

[
3
4

cos(2πξ )+
1
2

cos(4πξ )+
1
4

cos(6πξ )
]}

×
{

1+2
[

3
4

cos(2πη)+
1
2

cos(4πη)+
1
4

cos(6πη)
]}

.

For the blue channel, M = 4, N = 4, x0 = 0, and y0 = 2. The convolution kernel bRB is used
for both the red and blue channels. The corresponding frequency response is as follows:

F ′D =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FD

(
ξ − m

4
,η− n

4

)
,

Amn =
(−1)n

16

{
1+2

[
3
4

cos(2πξ )+
1
2

cos(4πξ )+
1
4

cos(6πξ )
]}

×
{

1+2
[

3
4

cos(2πη)+
1
2

cos(4πη)+
1
4

cos(6πη)
]}

.

Color difference interpolation for the CFA pattern of Figure 1.19e provides a minor twist
over the other patterns. This pattern can be viewed as consisting of diagonal pairs of like-
colored pixels. Assuming the salient high spatial frequency information of the image is
contained in the panchromatic channel, the option exists to treat each diagonal pair of color
pixels as a single larger pixel for the purposes of noise cleaning.4 Therefore, a strategy
that largely averages adjacent diagonal pixel pairs is used for color difference interpola-
tion. Beginning with the green channel, it is treated as the sum of two diamond-shaped
neighborhoods:

sD =
1
8

comb
(

x− y
4

,
x+ y

4

)
+

1
8

comb
(

x− y
4

,
x+ y−2

4

)
.

As a consequence of having two diamond-shaped neighborhoods, the interpolating function
must be scaled by 1/2 as follows:

bG =
1
2

tri
(

x− y
4

,
x+ y

4

)
comb(x,y) . (1.38)

4In all the other CFA patterns of Figure 1.19, the pixels of a given color are separated by at least one panchro-
matic pixel. Averaging these more widely spaced pixels would introduce greater amounts of color aliasing into
the demosaicked image.
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This results in the following convolution kernel:

bG =
1
32




0 0 0 1 0 0 0
0 0 3 4 3 0 0
0 3 8 9 8 3 0
1 4 9 16 9 4 1
0 3 8 9 8 3 0
0 0 3 4 3 0 0
0 0 0 1 0 0 0




.

The resulting frequency response is very similar to that described for CFA pattern Fig-
ure 1.19c and can be written as:

F ′D =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FD

(
ξ − m+n

4
,η− −m+n

4

)
,

Amn =
1+(−1)n

16
+

1+(−1)n

8

[
9
16

cos(2πξ )+
1
4

cos(4πξ )+
1

16
cos(6πξ )

]

+
1+(−1)n

8

[
9

16
cos(2πη)+

1
4

cos(4πη)+
1
16

cos(6πη)
]

+
1+(−1)n

4

[
1
2

cos(2πξ ,2πη)+
3
16

cos(2πξ ,4πη)+
3

16
cos(4πξ ,2πη)

]
.

The same approach is used for red and blue color difference interpolation. The sampling
function is the sum of two rectilinear grids and the interpolating function is scaled by one-
half. The red channel is considered first:

sD =
1

16
comb

(
x
4
,
y−2

4

)
+

1
16

comb
(

x−1
4

,
y−3

4

)
.

As a consequence of having two rectilinear neighborhoods, the interpolating function must
be scaled by 1/2, resulting in the following:

bRB =
1
2

tri
( x

4
,

y
4

)
comb(x,y) .

The convolution kernel is the same for the red and blue channels and is defined as follows:

bRB =
1

32




1 2 3 4 3 2 1
2 4 6 8 6 4 2
3 6 9 12 9 6 3
4 8 12 16 12 8 4
3 6 9 12 9 6 3
2 4 6 8 6 4 2
1 2 3 4 3 2 1




.

The resulting frequency response is given by

F ′D =
∞

∑
m=−∞

∞

∑
n=−∞

Amn (ξ ,η)FD

(
ξ − m

4
,η− n

4

)
,
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Amn =
(−1)n + e−i π

2 (m+3n)

32

[
1+

3
2

cos(2πξ )+ cos(4πξ )+
1
2

cos(6πξ )
]

×
[

1+
3
2

cos(2πη)+ cos(4πη)+
1
2

cos(6πη)
]
.

The blue channel frequency response requires only a change to the phase term in the transfer
functions.

Amn =
(−1)m + e−i π

2 (3m+n)

32

[
1+

3
2

cos(2πξ )+ cos(4πξ )+
1
2

cos(6πξ )
]

×
[

1+
3
2

cos(2πη)+ cos(4πη)+
1
2

cos(6πη)
]
.

The aliasing characteristics of Figure 1.19a can be observed in Figure 1.24c and the
aliasing patterns for Figure 1.19e are shown in Figure 1.24d. The predominant aliasing
patterns occur half-way out from the center with Figure 1.19a having four such patterns,
whereas Figure 1.19e has only two.

1.3.6 Comments

From the foregoing analysis a number of conclusions can be drawn. Even the simplest
adaptive demosaicking of the luminance (i.e., green or panchromatic) channel produces
greater image reconstruction fidelity than nonadaptive demosaicking, as illustrated in Fig-
ure 1.17. The best forms of adaptive demosaicking are either linear interpolation of lumi-
nance combined with appropriately weighted color Laplacians or cubic interpolation of lu-
minance values alone, for example, Figure 1.21. In a four-channel system, color aliasing in
the demosaicked image is determined by the number and arrangement of color pixels within
the CFA pattern. The fewer the number of color pixels present and the more widely they
are separated, the greater the resulting aliasing. Compare Figure 1.21c, which has a high
number of closely spaced color pixels to Figure 1.24c, which has a low number of widely
spaced color pixels. Of the four-channel CFA patterns discussed (see Figure 1.19), the
pattern of Figure 1.19d demosaicked with a combination of linear and cubic interpolation
strategy produces the highest overall reconstruction fidelity with the least low-frequency
color aliasing. It should be noted, however, that there are other possible considerations
when selecting a CFA pattern, most notably signal-to-noise performance (see Section 1.4).
With the opportunity to average diagonally adjacent color pixels, the CFA pattern in Fig-
ure 1.19e can be a better choice for certain applications, for instance, low light imaging. As
with all such trade-offs, the relative importance of aliasing versus signal-to-noise needs to
be assessed on a case-by-case basis.

1.4 Noise and Noise Reduction

An imaging sensor captures an image through the photo-electric conversion mechanism
of a silicon semiconductor. Incoming photons produce free electrons within the semi-
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42 Computational Photography: Methods and Applications

conductor in proportion to the amount of incoming photons and those electrons are gathered
within the imaging chip. Image capture is therefore essentially a photon-counting process.
As such, image capture is governed by the Poisson distribution, which is defined with a
photon arrival rate variance equal to the mean photon arrival rate. The arrival rate variance
is a source of image noise because if a uniformly illuminated, uniform color patch is cap-
tured with a perfect optical system and sensor, the resulting image will not be uniform but
rather have a dispersion about a mean value. The dispersion is called image noise because
it reduces the quality of an image when a human is observing it [84].

Image noise can also be structured, as is the case with dead pixels or optical pixel cross-
talk [85]. This book chapter does not discuss structured noise, but rather focuses on the
Poisson-distributed noise (also called shot noise) with the addition of electronic amplifier
read noise, which is modeled with a Gaussian distribution [85]. A pixel value Q may
be modeled as Q = kQ (q+g), where kQ is the amplifier gain, q is a Poisson variable with
mean mq and variance σ 2

q , and g is a Gaussian variable with mean mg and variance σ 2
g . Note

that σ2
q = mq since q is a Poisson variable, and it is entirely defined by the spectral power

distribution impinging upon the sensor and the channel spectral responsivities. The mean
signal level of pixel Q is derived from the pixel model and is written as mQ = kQ (mq +mg).

An objective measure of image noise is the signal-to-noise ratio (SNR). To increase the
perceived quality of an image it is desirable to increase the SNR [86]. The SNR is defined
as the signal mean level divided by the signal standard deviation and in this case the SNR
of a pixel is

SNRQ =
kQ (mq +mg)[

k2
Q

(
σ2

q +σ 2
g
)] 1

2
=

(mq +mg)(
σ2

q +σ 2
g
) 1

2
. (1.39)

If it is assumed that the read noise is negligible, this expression reduces to

SNRQ =
mq

σq
=
√

mq. (1.40)

That is, as the signal goes up, the SNR goes up and therefore also the perceived quality of
the image. One way to increase the signal is to use good-quality optics with wide apertures.
Another way is to control the illumination upon the objects to be photographed, as with a
flash. A third way is to increase the intrinsic efficiency of the photon-counting process
carried out within the semiconductor. If it is assumed that a system design has already
taken advantage of the aforementioned ways to increase the signal or that, for whatever
reason, one or more of these ways are not used (e.g., flash in a museum or good optics in a
mobile phone camera), a way to increase the SNR is to use panchromatic filters in the CFA.
Panchromatic filters have a passband that is wider than colored filters and typically have a
higher photometric sensitivity that results in a higher responsivity, as shown in Figure 1.1.

Suppose an image of a uniformly illuminated, uniform gray patch is captured with two
sensors: one that is an all-green pixel sensor and the other is an all-panchromatic pixel sen-
sor that has a higher photometric sensitivity than the green pixel sensor. Figure 1.25 shows
a simulation of the green and panchromatic images, and it can be seen that the panchromatic
image has less noise than the green image. A simple image fusion scheme, as described in
Section 1.3, may be employed to exploit the increased SNR of a panchromatic image while
producing a color image. Even though the SNR of a panchromatic channel may be higher
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(a) (b)

FIGURE 1.25

Simulated images of two identical sensors that have different filters: (a) green filters only, (b) panchromatic

filters only.

than that of a color channel, the panchromatic channel may still exhibit visible or even ob-
jectionable noise under low exposure conditions. Additionally, the chroma information is
obtained solely from the noisier color channels. It is therefore important to include noise
reduction techniques for both the panchromatic and color channels in the image processing
chain. Image fusion techniques may be included in the color noise reduction to again ex-
ploit the increased SNR of the panchromatic image. Such noise reduction techniques will
be discussed later in this section.

1.4.1 Image Noise Propagation

Suppose an image of a uniformly illuminated, uniform gray patch is captured with a
sensor that has a four-channel CFA such as those shown in Figure 1.19. Suppose that the
camera exposure and electronics are such that: i) the panchromatic channels are properly
exposed, ii) no signal clipping occurs, and iii) the color channels are gained up (if the
panchromatic channel has a higher photometric sensitivity) or down (if the panchromatic
channel has a lower photometric sensitivity) to the level of the panchromatic signal. This
last supposition may be expressed as mP−mg = kC (mC−mg), where kC is the gain. Note
that if the read noise is negligible, this expression implies that

kC = σ2
P/σ2

C. (1.41)

With these suppositions, the noise variance may be propagated through the demosaicking
process that is described in Section 1.3. For simplicity, suppose that the color Laplacian
image fusion component is not used to demosaick the panchromatic channel. Also for
simplicity, only the noise variance of one color channel C is derived here. It is of course
understood that the noise variance for any number of color channels may be propagated the
same way.
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44 Computational Photography: Methods and Applications

After panchromatic demosaicking, the variance of the resulting panchromatic pixels is

σ ′ 2
P = σ2

PTr
(
bbT )

,

where Tr(a) is the trace of matrix a and the superscript T denotes a transposed kernel. The
variance of the color difference, σ2

D, is obtained by adding the noise contribution from a
color channel C, gained by kC, to the noise contribution from the demosaicked panchro-
matic. Therefore,

σ2
D = k2

Cσ2
C +σ2

PTr
(
bbT )

.

Now suppose that a kernel d is used to demosaick the color differences. By defining a
kernel e = −b ∗ d, where ∗ is the convolution operator, the variance of the demosaicked
color differences may be written as follows:

σ ′ 2
D = k2

Cσ2
CTr

(
ddT )

+σ 2
PTr

(
eeT )

.

To finally derive the variance for the demosaicked color, the contribution from the
panchromatic pixel at the same location as the color pixel that is being demosaicked must
be added to the contribution from the demosaicked color difference. This panchromatic
contribution depends on whether that particular panchromatic pixel is an original sample or
the result of demosaicking. Let a kernel f be equal to b (zero-padded to make it the same
size as e) if the color difference demosaicking is centered on a color pixel and equal to the
discrete delta function if the color difference demosaicking is centered on a panchromatic
pixel. The variance of the demosaicked color is therefore written as

σ ′ 2
C = k2

Cσ2
CTr

(
ddT )

+σ2
PTr

[
(e+ f)(e+ f)T

]
. (1.42)

In order for the SNR of the demosaicked color pixels to be equal to or greater than the
gained original color pixels, the following constraint is introduced:

k2
Cσ2

C ≥ σ ′ 2
C . (1.43)

The implication upon kC that results from this expression depends on the negligibility of
the read noise. The case where the read noise is negligible is discussed next, followed by
the case where the read noise is considered.

For the case that the read noise is negligible, the gain given by Equation 1.41 is defined
with Poisson variances. Equation 1.41 with Poisson variances and Equation 1.43 together
imply that

kC ≥
Tr

[
(e+ f)(e+ f)T

]

1−Tr(ddT )
. (1.44)

Note that this result is independent of signal levels. As a simple example, suppose that
neighbor averaging is used in only the horizontal dimension to demosaick the neighborhood
shown in Figure 1.20a. Then, b = d = [0.5 0.0 0.5] and f = [0 0 1 0 0]. In this case
kC must be greater or equal than 3/4 for the SNR of the demosaicked color pixels to be
equal to or greater than the gained original color pixels. Of course, the higher kC is made,
the better the SNR of the demosaicked color pixels as compared to the SNR of the gained
original color pixels.
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FIGURE 1.26

A graph representation of Equation 1.46 where kC is plotted against ρ for (a) σg = 4, (b) σg = 8, (c) σg = 16,

and (d) σg = 64. Each subfigure depicts the graphs of mC−mg values between 0 and 250 in steps of 10. The

demosaicking kernels are b = d = [0.5 0.0 0.5] and f = [0 0 1 0 0].

When the read noise is significant, the color and panchromatic variances include both
the Poisson noise and the Gaussian noise contributions. Therefore, in this case σ 2

C = σ2
CP +

σ 2
g and σ 2

P = σ2
PP + σ2

g , where σ2
CP and σ2

PP are the Poisson variances for the color and
panchromatic pixels, respectively. By definition of the Poisson distribution, σ 2

CP = mC−mg

and σ 2
PP = mP −mg, where mC and mP are the mean signal responses of the color and

panchromatic pixels, respectively. The color gain is defined in this case as follows:

kC =
mP−mg

mC−mg
=

σ2
PP

σ 2
CP

. (1.45)

Using Equations 1.45 and 1.43, in order to have a demosaicked color pixel SNR equal to
or greater than the gained original color pixels the following inequality must hold:

kC ≥ σP

σC

√√√√Tr
[
(e+ f)(e+ f)T

]

1−Tr(ddT )
. (1.46)

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

3:
57

 0
9 

M
ay

 2
01

6 



46 Computational Photography: Methods and Applications

This result is not independent of signal levels and the right-hand side of the inequality,
which from now on is denoted as ρ , cannot be computed without first defining kC. To
illustrate the behavior of the inequality, the same demosaicking kernels as in the previous
simple example are used along with mC −mg values between 0 and 250 in steps of 10.
Figure 1.26a shows plots of kC against ρ for the case where σg is 4, where the graph for an
mC−mg of 0 is vertical and the graph for an mC−mg of 250 is the one with the least slope
for a given value of ρ . The dashed line indicates the values where kC is equal to ρ , and
therefore any value of kC that intersects a graph above the dashed line will yield the SNR
of the demosaicked color pixels that is equal to or greater than the gained original color
pixel for the mC−mg associated with the intersected graph. Figures 1.26b to 1.26d show
the same plots for the σg values of 8, 16, and 64, respectively. It is evident from the graphs
that at very low mC−mg, the read noise dominates over the shot noise in Equation 1.46 and
in the limit that mC−mg goes to zero, which is the same as σCP and σPP going to zero, ρ
becomes independent of both kC and σg because

lim
σCP→0

σP

σC
=

√
0+σ2

g√
0+σ2

g

= 1,

and therefore

lim
σCP→0

ρ =

√√√√Tr
[
(e+ f)(e+ f)T

]

1−Tr(ddT )
. (1.47)

If it is required that the SNR of the demosaicked color pixels be equal to or greater than the
gained original color pixels for any color pixel value, then the gain must be chosen to be
this limiting value in Equation 1.47, which is equal to

√
3/4 for the demosaicking kernels

in the previous example calculation.

1.4.2 Image Noise Reduction

Under low exposure conditions noise reduction techniques are used to increase the SNR
and therefore the perceived quality of an image. Figure 1.27a shows a simulated result
of demosaicking a Bayer CFA image corrupted with Poisson noise and Gaussian noise.
The captured image is a uniform gray patch, uniformly illuminated with light having a flat
power spectrum. The demosaicking process is similar to that described in Section 1.3.5.3
with the green channel substituting for the panchromatic channel. Figure 1.27e shows a
simulated result of demosaicking the four-channel CFA shown in Figure 1.19d corrupted
with the Poisson noise and Gaussian noise that correspond to the simulated light intensity
and simulated read noise of the Bayer image in Figure 1.27a. In both these experiments,
the simulated red, green, and blue relative responsivities are those shown in Figure 1.1.
Therefore, Figures 1.27a and 1.27e show simulations of the same image captured under the
same conditions and with the same sensor but with a different CFA. Figures 1.28a and 1.28b
shows the red channel noise power spectra (NPS) of the two demosaicked images and the
difference between the two spectra (four-channel spectrum minus Bayer spectrum). The
NPS for the blue channels are very similar to those for the red channels, and the green NPS
are slightly different in shape but the trends are the same as those shown. The demosaicking
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 1.27 (See color insert.)

Simulated images demosaicked from a Bayer CFA (top row) and the four-channel CFA shown in Figure 1.19d

(bottom row). The images shown are for the cases of: (a,e) no noise reduction, (b,f) median filtering only, (c,g)

median and boxcar filtering only, and (d,h) median, boxcar, and low-frequency filtering.

technique with panchromatic image fusion is shown to yield a lower NPS everywhere but
below about 0.035 cycles/sample. Any four-channel CFA will yield a similar situation
because it necessarily has the color pixels further away from each other to make room for
the panchromatic pixels. The exact frequency where the four-channel NPS becomes larger
than the Bayer NPS is dependent upon the specific four-channel CFA and the demosaicking
technique. Any noise reduction strategy for a four-channel CFA image must address this
low-frequency noise as well as the high-frequency noise.

Given the demosaicking strategies discussed in Section 1.3, it is clear that to take the most
advantage of the panchromatic channel it is best to apply noise reduction to the panchro-
matic pixels before any demosaicking is done. Any single-channel noise reduction strategy
may be used to process the panchromatic pixels, therefore only color-pixel noise reduc-
tion techniques are discussed in this section. It is assumed for the rest of this section that
the panchromatic pixels are median-filtered and boxcar-filtered. Since the green channel is
used as a substitute for the panchromatic channel in the Bayer CFA comparison, this sec-
tion also assumes that the Bayer green pixels are median filtered and boxcar filtered. The
assumed median filter is an adaptive filter as described in Reference [87] with a window
size that includes 9 of the nearest panchromatic (or green for the Bayer CFA) pixels. The
assumed boxcar filter kernel is adjusted for each type of CFA image such that it includes
15 of the nearest pixels.

1.4.2.1 High-Frequency Noise Reduction

Noise with significant high-frequency content makes an image appear “grainy,” and some
of this appearance is due to impulse noise. Median filters may be used to remove impulse
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FIGURE 1.28

(left) Noise power spectra (NPS) of the demosaicked red channel from a Bayer CFA and a four-channel CFA

shown in Figure 1.27 and (right) the associated difference of the four-channel NPS minus Bayer NPS. The

NPS and difference plots are shown for the cases of: (a,b) no noise reduction, (c,d) median filtering only, (e,f)

median and boxcar filtering only, and (g,h) median, boxcar, and low-frequency filtering. The horizontal axis is

in units of cycles per sample.

noise, which has spectral power from low to very high frequencies. Figures 1.27c and 1.27f
show the respective effects of median filtering the colors before demosaicking the Bayer
and the four-channel CFA images with an adaptive filter as described in Reference [87] with
window sizes that include nine like pixels in the filtering. The NPS and NPS-difference
plots in Figures 1.28c and 1.28d show that the overall effect is of slightly lowering the NPS
nearly uniformly across all frequencies. However, the appearance of the images is changed
the most at the highest frequencies. It is also clear that both images could be improved
with more noise reduction. A boxcar filter is a low pass filter that can be effectively used to
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reduce high frequencies in images. Figures 1.27c and 1.27g show the demosaicked results
of boxcar filtering the Bayer and four-channel CFA images after median filtering. The NPS
plots in Figures 1.28e and 1.28f show that for the image demosaicked from the Bayer CFA
the noise has been reduced for all but the lowest frequencies, but for the image demosaicked
from the four-channel CFA the noise still has some mid-frequency power. Again, one of
the effects of having panchromatic pixels is also shown; the low-frequency portion of the
NPS is much higher than that of the Bayer image because the color pixels are farther away
from each other in the four-channel CFA than in the Bayer CFA. Both images again could
be improved with more noise reduction.

1.4.2.2 Mid-Frequency and Low-Frequency Noise Reduction

Mid- and low-frequency noise artifacts appear as “blob” in an image and can span many
pixels. Figure 1.27e shows some noise features that span about eight pixels. The aver-
age size (frequency) and standard deviation of this type of noise depend on the specific
four-channel CFA and the demosaicking method. Given the large area covered by low-
frequency noise, a traditional noise reduction method where each channel is processed
independently will tend to remove image content. To avoid removing image content, an im-
age fusion approach may be used. Mid- and low-frequency noise reduction can be achieved
if a weighted average gradient of a color channel is set equal to a weighted average gradient
of the panchromatic channel [88]. This requirement may be written in general as follows:

M

∑
m=−M

N

∑
n=−N

gC(m,n) [ fκ(x,y)sC(x,y)− fC(x−m,y−n)sC(x−m,y−n)] =

M

∑
m=−M

N

∑
n=−N

gC(m,n)
[

f ′P(x,y)sC(x,y)− f ′P(x−m,y−n)sC(x−m,y−n)
]
,

where gC is a normalized low-pass kernel with a low cutoff frequency kernel that reduces
the desired frequencies, fκ is the noise-reduced color channel to be determined, sC is a
color sampling function, and x and y denote the location of the pixel being noise-reduced.
The equality may be rewritten as

fκ(x,y)sC(x,y)−
M

∑
m=−M

N

∑
n=−N

gC(m,n) fC(x−m,y−n)sC(x−m,y−n) =

f ′P(x,y)sC(x,y)−
M

∑
m=−M

N

∑
n=−N

gC(m,n) f ′P(x−m,y−n)sC(x−m,y−n).

Rearranging terms and switching away from the coordinate notation, as follows:
(

fκ − f ′P
)

sC = gC ∗
[(

fC− f ′P
)]

.

The quantities within parentheses are color differences so this last equality may be written
as

f∆sC = gC ∗ fDsC (1.48)

where fD is the noisy color-difference image, f∆ is a noise-reduced version of fD.
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linear high

pass filter
f (x,y)
R

g(x,y)

h(x,y)
l

f(x,y)

FIGURE 1.29

Linear sharpening for image enhancement.

The heuristic explanation for why this method tends to preserve image content is that
f∆ is a low-frequency signal and the final color image is derived by adding the panchro-
matic channel, which contains the high-frequency content. Figure 1.27h shows the result
of applying Equation 1.48 to the four-channel CFA image before demosaicking and after
median and boxcar filtering. For comparison, Figure 1.27c shows the equivalent noise re-
duction for a Bayer image, where the green channel is substituted for the panchromatic
channel in Equation 1.48. For the red channel of the four-channel example, gC is defined as
a 33×33 kernel that when centered on a red pixel it is 1/153 at the red pixel locations and
zero elsewhere. This means that gC averages together 153 red color differences (for this
case, red minus panchromatic). For the red channel of the Bayer example, gC is defined
as a 33×17 kernel that when centered on a red pixel it is 1/153 at the red pixel locations
and zero elsewhere. This means that this version of gC also averages together 153 red color
differences (for this case, red minus green). Note from the examples that even though the
same number of color differences are averaged together, because the panchromatic channel
has a higher SNR than the Bayer green channel, the final image simulated with the four-
channel CFA has much lower noise. The NPS plots in Figures 1.28g and 1.28h support the
visual appearance of the images by showing that the NPS of the Bayer image is now larger
than the NPS of the image from the four-channel CFA. To show that this method of noise
cleaning indeed preserves image content, Section 1.5 contains a discussion and results of
the full image processing chain. The noise reduction results obtained in Section 1.5 are
typical of the noise reduction techniques discussed in this section.

1.4.3 Image Sharpening

Due to the low-pass nature of optical system and low-pass filtering operations involved at
various stages of the image processing chain such as noise cleaning and demosaicking, the
demosaicked color image appears to be blurred. Therefore, image-sharpening techniques
are often employed to enhance the high frequency content, which significantly improves
the visual appearance of the image [89], [90], [91], [92], [93].

The classic linear sharpening is a pixel-level image fusion approach (Figure 1.29) in
which a scaled, highpass filtered record extracted from a reference image fR(x,y) is added
to the blurred image f (x,y) to produce sharpened image g(x,y) as follows:

g(x,y) = f (x,y)+λ [ fR(x,y)∗h(x,y)], (1.49)

where h(x,y), λ , and ∗ denote the high-pass filter point spread function, scale factor, and
convolution operator, respectively. Note that linear unsharp masking [89] is a special case
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(a) (b)

FIGURE 1.30

Four-channel demosaicked images: (a) color image, and (b) panchromatic image.

(a) (b)

FIGURE 1.31

High-frequency information extracted from: (a) the green channel, and (b) the panchromatic image.

of linear sharpening in which the blurred image is also used as the reference image, that is,
f (x,y) = fR(x,y). This method works well in many applications, however, it is extremely
sensitive to noise. This leads to undesirable distortions, especially in flat regions. Typically,
nonlinear coring functions are used to mitigate this type of distortion [93].

An example of linear sharpening is presented next. Figure 1.30 shows a four-channel
demosaicked color and a corresponding panchromatic image. The flat, gray patches shown
in the upper left quadrant of these images were inserted for measuring the noise presented
in these images. It is evident that the color image shown in Figure 1.30a is noisy and soft.
Therefore, a linear sharpening algorithm was applied to enhance its visual appearance.
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(a) (b)

FIGURE 1.32

Linear sharpening results: (a) sharpened using green channel high-frequency information, and (b) sharpened

using panchromatic high-frequency information.

The high-frequency details extracted from the green channel of the blurred color image
of Figure 1.30a and the corresponding panchromatic image are shown in Figures 1.31a
and 1.31b, respectively. The sharpened image shown in Figure 1.32a was obtained by
adding the green channel high-frequency information to the blurred color image. Sim-
ilarly, the sharpened image of Figure 1.32b was estimated by adding the panchromatic
high-frequency information to the blurred color image. The standard deviations of the gray
patches before and after sharpening are summarized in Table 1.3. Clearly, the panchromatic
image was less noisy than the blurred color image. Furthermore, it turned out to be a better
choice for high-frequency extraction as compared to the green channel for sharpening.

1.5 Example Single-Sensor Image Fusion Capture System

The results presented in this chapter can be used to constitute a full image processing
chain for achieving an improved image using a four-channel CFA pattern and image fusion
techniques. Figure 1.4 shows an image processing chain that can be used in this regard.

TABLE 1.3
Standard deviations of gray patches before and after sharpening.

Operation Red Green Blue Panchromatic

Original 10.06 10.04 10.00 5.07
High-pass N/A 7.67 N/A 3.73
Sharpened with Green 12.66 17.33 12.56 N/A
Sharpened with Panchromatic 10.73 10.65 10.62 N/A
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(a) (b) (c)

FIGURE 1.33

Image processing chain example, Part 1: (a) original CFA image, (b) noise-cleaned image, and (c) demosaicked

image.

The first step is to select the CFA pattern to be used with the sensor. In this case, the
CFA pattern of Figure 1.19e will be used. Using this pattern, a simulation of a capture is
generated and shown in Figure 1.33a. For the purposes of making noise measurements, a
flat, gray patch is placed in the upper left quadrant of the image. The first thing that can
be seen is that the image has enough noise, to the point that the underlying CFA pattern
is somewhat hard to discern. Table 1.4 shows the standard deviations of the gray patch
for each of the four channels present in the image. It can be seen that the panchromatic
channel standard deviation is roughly half of the color channel standard deviations. The
lower noise of the panchromatic channel is a consequence of its broader spectral response
and associated greater light sensitivity.

Once the original CFA image is in hand, it is noise-cleaned (denoised). Using the meth-
ods described in Section 1.4, the CFA image is cleaned to produce the image shown in
Figure 1.33b. The CFA pattern is now evident as a regular pattern, especially in the region
of the life preserver in the lower left-hand corner of the image. The standard deviations
(Table 1.4) have been reduced significantly with the panchromatic channel still having a
lower amount of noise.

TABLE 1.4
Standard deviations of gray patch in image processing chain example.

Operation Red Green Blue Panchromatic

Original CFA Image 10.48 9.71 9.87 5.02
Noise Cleaned 2.39 2.37 2.35 1.49
Demosaicked 1.44 1.45 1.46 N/A
Color & Tone Corrected 1.90 1.92 1.90 N/A
Sharpened 4.99 5.04 4.98 N/A
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(a) (b)

FIGURE 1.34

Image processing chain example, Part 2: (a) color and tone corrected image, and (b) sharpened image.

After noise cleaning, the image is demosaicked as discussed in Section 1.3. Figure 1.33c
shows the result; color has been restored, although it is desaturated and flat. As there are
now only three color channels in the image, Table 1.4 no longer has a panchromatic entry.
Of more interest is how the demosaicked color channels now have the same noise standard
deviation as the noise-cleaned panchromatic channel. This is a consequence of the image
fusion techniques used, specifically as accomplished through the use of color differences.

The color along with the tone scale of the image is next corrected using the techniques
described in Section 1.2 with the results shown in Figure 1.34a. Since color correction
and tone scaling are generally signal amplifying steps, the standard deviations of the gray
patch increase. In this particular case, these corrections are relatively mild, so the noise
amplification is correspondingly low.

As the image is still lacking a bit in sharpness, the final step is to sharpen the image as
shown in Figure 1.34b. As indicated in Table 1.4, the standard deviations have been sig-
nificantly amplified, although they are still about half of what the original CFA image had.
A nonadaptive sharpening algorithm was used here. An adaptive algorithm capable of rec-
ognizing flat regions and reducing the sharpening accordingly would reduce the resulting
noise amplification for the gray patch region. Still, the final image is certainly acceptable.

TABLE 1.5
Standard deviations of gray patch in Bayer image pro-
cessing chain example.

Operation Red Green Blue

Original CFA Image 10.09 9.70 9.76
Noise Cleaned 2.67 2.73 2.65
Demosaicked 2.65 2.66 2.63
Color & Tone Corrected 3.44 3.42 3.32
Sharpened 9.12 9.05 9.10
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(a) (b) (c)

FIGURE 1.35

Bayer image processing chain example, Part 1: (a) original CFA Image, (b) noise-cleaned image, and (c)

demosaicked image.

(a) (b)

FIGURE 1.36

Bayer image processing chain example, Part 2: (a) color and tone corrected image, and (b) sharpened image.

As a comparison, the simulation is repeated using the Bayer CFA pattern and processing
as shown in Figure 1.35 and Figure 1.36. The standard deviations of the gray patch are
given in Table 1.5. It can be seen that the original CFA image starts off with the same
amount of noise as in the four-channel case. Noise cleaning produces results comparable
to before. The demosaicking step produces the first notable differences as the color differ-
ences cannot benefit from a significantly less noisy luminance channel. The resulting noise
is amplified by the color and tone scale correction step as before. Finally, the sharpening
operation is performed and the resulting noise level has almost returned to that of the orig-
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inal CFA image. Comparison with the four-channel system shows a double increase in the
gray patch standard deviations over the four-channel example.

1.6 Conclusion

Image fusion provides a way of creating enhanced and even impossible-to-capture im-
ages through the appropriate combination of image components. These components are
traditionally full-image captures acquired from either a system consisting of several spe-
cialized sensors (e.g., each with different spectral characteristics) or as part of a multicap-
ture sequence (e.g., burst or video). This chapter describes a new approach that uses a
single capture from a single sensor to produce the necessary image components for subse-
quent image fusion operations. This capability is achieved by the inclusion of panchromatic
pixels in the color filter array pattern. Inherently, panchromatic pixels will be more light
sensitive, which results in improved signal-to-noise characteristics. Additionally, being
spectrally nonselective, edge and texture detail extracted from the panchromatic channel
will be more complete and robust across the visible spectrum. Image fusion techniques can
then be used to impart these benefits onto the color channels while still preserving color
fidelity. These image fusion techniques are generally implemented as parts of the noise
cleaning, demosaicking, and sharpening operations in the image processing chain. In addi-
tion to the benefits afforded requiring only one capture for enabling image fusion, the noise
cleaning and demosaicking operations described in this chapter work on sparsely sampled
CFA data. This reduction in the amount of data to be processed provides additional effi-
ciency in the application of image fusion techniques.
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Appendix

This appendix provides a derivation of the relationship first appearing in Equation 1.15
and restated below:

MN
∞

∑
p=−∞

∞

∑
q=−∞

sinc2 [M (ξ − p) ,N (η−q)]

=

[
1+2

M−1

∑
j=1

tri
(

j
M

)
cos(2π jξ )

][
1+2

N−1

∑
k=1

tri
(

k
N

)
cos(2πkη)

]
.
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FIGURE 1.37

Discrete tri function: (a) tri and comb functions, and (b) delta functions.

Since this relationship is separable, only one dimension needs to be derived, as follows:

M
∞

∑
p=−∞

sinc2 [M (ξ − p)] = 1+2
M−1

∑
j=1

tri
(

j
M

)
cos(2π jξ ) .

Figure 1.37a shows the functions tri(x/M) and comb(x) superimposed on coordinate
axes. The result of multiplying these two functions together is shown in Figure 1.37b.
Only a finite number of delta functions remain and these are scaled by the tri function.
Therefore, this discrete form of the tri function can be written as follows:

tri
( x

M

)
comb(x) = δ (x)+

M−1

∑
j=1

tri
(

j
M

)
1
j
δδ

(
x
j

)
. (1.50)

Taking the Fourier transform of each side produces the required relationship.

Msinc2 (Mξ )∗ comb(ξ ) = 1+
M−1

∑
j=1

tri
(

j
M

)
2cos(2π jξ ) ,

M
∞

∑
p=−∞

sinc2 [M (ξ − p)] = 1+2
M−1

∑
j=1

tri
(

j
M

)
cos(2π jξ ) .

The case of Equation 1.16 is handled in a similar manner, as follows:

tri
( x

2M
− y

2N
,

x
2M

+
y

2N

)
comb(x)

= δ (x)+
2M−1

∑
j=1

tri2
(

j
2M

)
1
j
δδ

(
x
j

)
+

2N−1

∑
k=1

tri2
(

k
2N

)
1
k

δδ
(y

k

)

+
2M−1

∑
j=1

2N−1

∑
k=1

tri
(

j
2M

− k
2N

,
j

2M
+

k
2N

)
1
jk

δδ
( x

2M
,

y
2N

)
.

Taking the Fourier transform completes the derivation.
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2.1 Introduction

In Chapter 1, an image capture system was introduced that uses a four-channel color filter
array to obtain images with high color fidelity and improved signal-to-noise performance
relative to traditional three-channel systems. A panchromatic (spectrally nonselective)
channel was added to the digital camera sensor to decouple sensing luminance (spatial)
information from chrominance (color) information. In this chapter, that basic foundation
is enhanced to provide a capture system that can additionally address the issue of motion
occurring during a capture to produce images with reduced motion blur.

Motion blur is a common problem in digital imaging that occurs when there is rela-
tive motion between the camera and the scene being captured. The degree of motion blur
present in an image is a function of both the characteristics of the motion as well as the
integration time of the sensor. Motion blur may be caused by camera motion or it may
be caused by object motion within the scene. It is particularly problematic in low-light
imaging, which typically requires long integration times to acquire images with acceptable
signal-to-noise levels. Motion blur is also often a problem for captures taken with signifi-
cant optical magnification. Not only does the magnification amplify the motion that occurs,
it also decreases the amount of light reaching the sensor, causing a need for longer integra-
tion times. A familiar trade-off often exists in these situations. The integration time can
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be kept short to avoid motion blur, but at a cost of poor signal-to-noise performance. Con-
versely, the integration time can be lengthened to allow sufficient light to reach the sensor,
but at a cost of increased motion blur in the image. Due to this trade-off between motion
blur and noise, images are typically captured with sufficiently long exposure time to ensure
satisfactory signal-to-noise levels, and signal processing techniques are used to reduce the
motion blur [1], [2], [3], [4]. Reducing motion blur, especially motion blur corresponding
to objects moving within the scene, is a challenging task and often requires multiple cap-
tures of the same scene [5], [6], [7], [8]. These approaches are computationally complex
and memory-intensive. In contrast, the proposed four-channel image sensor architecture al-
lows the design of computationally efficient image fusion algorithms for motion deblurring
of a color image from a single capture.

By varying the length of time that different image sensor pixels integrate light, it is possi-
ble to capture a low-light image with reduced motion blur while still achieving acceptable
signal-to-noise performance. In particular, the panchromatic channel of the image sen-
sor is integrated for a shorter period of time than the color channels of the image sensor.
This approach can be motivated from the perspective of spectral sensitivity. Panchromatic
pixels are more sensitive to light than color (red, green and blue) pixels, and panchro-
matic pixel integration time can be kept shorter to reduce motion blur while still acquiring
enough photons for acceptable signal-to-noise performance. This approach can also be
motivated from a human visual system perspective. The human visual system has greater
spatial sensitivity to high-frequency luminance information than high-frequency chromi-
nance information [9]. It is thus desirable to keep the panchromatic pixel integration time
as short as possible to retain high-frequency luminance information in the form of sharp
edges and textures. High frequencies are less important in the chrominance channels, thus
greater motion blur can be tolerated in these channels in exchange for longer integration
and improved signal-to-noise performance. The sharp panchromatic channel information is
combined with the low-noise chrominance channel information to produce an output image
with reduced motion blur compared to a standard capture in which all image sensor pixels
have equal integration.

An image captured with varying integration times for panchromatic and color channels
has properties that require novel image processing. Motion occurring during capture can
cause edges in the scene to appear out of alignment between the panchromatic and color
channels. Motion estimation and compensation steps can be used to align the panchromatic
and color data. After alignment, the data may still exhibit uneven motion blur between the
panchromatic and color channels. A subsequent image fusion step can account for this
while combining the data to produce an output image.

This chapter looks at the issues involved with using a four-channel image sensor and
allowing different integration times for the panchromatic and color pixels to produce an
image with reduced motion blur. Section 2.2 provides a brief introduction to the topics of
motion estimation and compensation and focuses on how these techniques can be applied to
align the panchromatic and color data in the proposed capture system. Section 2.3 discusses
the use of image fusion techniques to combine the complementary information provided
by the shorter integration panchromatic channel and longer integration color channels to
produce an output image with reduced motion blur. Section 2.4 presents an example single-
sensor, single-capture, image-fusion capture system. The processing path contains the steps
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of motion estimation and compensation, and deblurring through image fusion, as well as
techniques introduced in Chapter 1. Finally, conclusions are offered in Section 2.5.

2.2 Single-Capture Motion Estimation and Compensation

This section addresses the issue of motion occurring during an image capture in which the
panchromatic channel is integrated for a shorter duration than the color channels. Motion
estimation and compensation are reviewed in general and are discussed with particular
regard to the proposed capture system.

Imaging systems capture two-dimensional projections of a time-varying three-
dimensional scene. Motion in a two-dimensional image likewise refers to the projection
of the three-dimensional motion of objects in a scene onto the imaging plane. This true,
projected two-dimensional motion is not always observable, however. What is observed
and measured in a digital imaging system is the apparent motion. Apparent motion is mea-
sured as a change in image intensity over time. In most situations, apparent and projected
motion agree, but there are situations in which they do not match. For example, a circle of
uniform intensity rotating about its center has true motion but no change in intensity, and
hence no observable, apparent motion. Conversely, in a scene with a change in external il-
lumination, there is measurable apparent motion even if there is no true motion in the scene.
The motion techniques in this section are all based on an analysis of observable, apparent
motion, and it is assumed that this motion is equivalent to the true, projected motion.

Motion is commonly divided into two categories. A first category is global or camera
motion. Global motion affects all pixels of an image and can often be modeled succinctly
with just a few parameters. A six-parameter affine motion model is given below:

d(x,y) =
[

b1
b2

]
+

[
b3 b4
b5 b6

][
x
y

]
, (2.1)

where (x,y) is the pixel location, d(x,y) is the motion at (x,y), and b1,b2, ...,b6 are the six
parameters that define the affine model. This model can be used to represent translation,
rotation, dilation, shear, and stretching. Global motion typically occurs as a result of camera
unsteadiness during an exposure or between successive frames of an image sequence.

A second category of motion is local or object motion. Local motion occurs when an
object within a scene moves relative to the camera. Accurate estimation of object motion
requires the ability to segment an image into multiple regions or objects with different
motion characteristics. Often a compromise is made sacrificing segmentation accuracy for
speed by dividing an image into a regular array of rectangular tiles and computing a local
motion value for each tile, as discussed below. Additional discussion on the topic of motion
can be found in References [10] and [11].

Motion plays an important role in the proposed capture system, in which panchromatic
pixels have a shorter integration than color pixels. Given this difference in integration, the
color and panchromatic data may initially be misaligned. Should this be a source of ar-
tifacts such as halos beyond the apparent boundary of a moving object, it is desirable to
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(a) (b)

FIGURE 2.1

Captured image with short panchromatic integration and long color integration processed (a) without alignment

and (b) with alignment.

align the panchromatic and color data, particularly at edge locations where misalignment
is most visible. Figure 2.1 shows an example capture in which the color pixels were inte-
grated for three times as long as the panchromatic pixels, and there was movement of the
subject’s head throughout the capture. The image on the left shows the result of subsequent
processing without alignment, while the image on the right shows the result of equivalent
processing occurring after an alignment step. The misalignment of color and panchromatic
data is visible along the edge of the subject’s face. This halo artifact is reduced by a pre-
processing motion compensation step to align the panchromatic and color data. Note that
even after alignment, the color data and panchromatic data may retain differing degrees of
motion blur as a result of their differing integration times. The process of fusing the data
into a single output image while accounting for this varying motion blur is discussed later
in this chapter.

2.2.1 Motion Estimation Basics

Motion estimation comprises three major elements: a motion model, estimation criteria,
and search strategies. The motion model represents the apparent motion of the scene. In
general this model can be very complex to accurately represent the three-dimensional mo-
tion of the camera and objects in a scene as well as their projection onto a two-dimensional
image plane. In practice, two simple models have been used extensively: the affine model
given in Equation 2.1, and a translational model which is a special case of the affine model
when bi = 0, for i = 3,4, ...,6.
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At one extreme, a single motion model is applied to the entire image. In this case, global
motion is being modeled. Global motion estimation describes the motion of all image
points with just a few parameters and is computationally efficient, but it fails to capture
multiple, local motions in a scene [12], [13]. At the other extreme, a separate motion model
(for instance, translational) is applied to every individual pixel. This generates a dense
motion representation having at least two parameters (in the case of a translational model)
for every pixel. Dense motion representations have the potential to accurately represent
local motion in a scene but are computationally complex [14], [15], [16].

In between the extremes lie block-based motion models, which typically partition an
image into uniform, non-overlapping rectangular blocks and estimate motion for each in-
dividual block [17]. Block-based motion models have moderate ability to represent local
motion, constrained by the block boundaries imparted by the partition. Block-based trans-
lational motion models have been used extensively in digital video compression standards,
for example, MPEG-1 and MPEG-2 [18], [19].

A second element of a motion estimation algorithm is the criteria that are used to deter-
mine the quality of a given motion estimate. One common strategy is to evaluate a motion
vector based on a prediction error between the reference pixel(s) and the corresponding
pixel(s) that are mapped to by the motion estimate. The prediction error can be written as:

e(x,y) = α(Ik(x,y)− Îk(x,y)), (2.2)

where I is the reference image, (x,y) is the pixel being predicted, Î is the prediction, k
represents the kth image, and α is a function that assesses a penalty for non-matching data.
The prediction Îk incorporates the motion vector as Îk(x,y) = Ik−1((x,y)−d(x,y)). In this
case, the previous image, Ik−1, is used to form the prediction, and d(x,y) is the motion
vector for the given pixel (x,y).

A quadratic penalty function α(e) = e2 is commonly used. One of the drawbacks of the
quadratic penalty function is that individual outliers with large errors can significantly affect
the overall error for a block of pixels. Alternatively, an absolute value penalty function
α(e) = |e| can be used. The absolute value penalty function is more robust to outliers and
has the further advantage that it can be computed without multiplications. Another robust
criterion commonly used is a cross-correlation function

C(d) = ∑
(x,y)

(Ik(x,y)Îk(x,y)). (2.3)

In this case, the function is maximized rather than minimized to determine the optimal
motion vector.

The error function given by Equation 2.2 can be used to compare pixel intensity values.
Other choices exist, including comparing pixel intensity gradients. This corresponds to
comparing edge maps of images rather than comparing pixel values themselves. The use
of gradients can be advantageous when the images being compared have similar image
structure but potentially different mean value. This can occur, for example, when there is
an illumination change, and one image is darker than another. It can also occur when the
images correspond to different spectral responses.

A third element of a motion estimation algorithm is a search strategy used to locate the
solution. Search strategies can vary based on the motion model and estimation criteria in
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FIGURE 2.2

A color filter array pattern containing red, green, blue, and panchromatic pixels.

place. Many algorithms use iterative approaches to converge on a solution [14], [15], [16].
For motion models with only a small number of parameters to estimate and a small state
space for each of the parameters, an exhaustive matching search is often used to minimize a
prediction error such as given by Equation 2.2. A popular example of this approach is used
with block-based motion estimation in which each block is modeled having a translational
motion (only two parameters to estimate for each block of pixels), and the range of possible
motion vectors is limited to integer pixel or possibly half-pixel values within a fixed-size
window. Each possible motion offset is considered, and the offset resulting in the best
match based on the estimation criteria is chosen as the motion estimate. Many algorithms
have been proposed to reduce the complexity of exhaustive matching searches [20], [21].
These techniques focus on intelligently reducing the number of offsets searched as well as
truncating the computation of error terms once it is known that the current offset is not the
best match.

2.2.2 Motion Estimation for the Proposed Capture System

In the proposed capture system, color pixels are integrated for longer than panchromatic
pixels, resulting in some misalignment of the data when there is motion during the overall
capture. The motion estimation techniques discussed above can be used to detect this mo-
tion and compensate for it. For illustrative purposes, the specific four-channel CFA pattern
shown in Figure 2.2 is assumed in the remainder of this section. Motion estimation and
compensation issues are discussed with respect to this particular pattern of panchromatic,
red, green, and blue pixels.

In a color digital camera, motion is usually computed between two similar images, for
example, two grayscale images or two color images. In these cases, luminance informa-
tion is considered sufficient for motion estimation [22], although studies have shown that
additional accuracy can be obtained by including chrominance information in the motion
estimation process [23], [24]. For the proposed capture system, motion must be com-
puted between panchromatic data and color data. To facilitate this comparison, a synthetic
panchromatic channel, PSyn, can be computed corresponding to the color data. For a given
pixel location, a synthetic panchromatic value can be computed as a linear combination of
neighboring red, green, and blue pixel values:

PSyn = αR+βG+ γB. (2.4)
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The linear weights α , β , and γ are chosen to generate an overall spectral response for
PSyn as similar as possible to a natural panchromatic pixel spectral response. Details are
provided in the Appendix.

Depending on when motion estimation occurs in the overall image processing path, syn-
thetic panchromatic pixel values may be computed at some or all pixel locations. The
panchromatic and color pixel data are both initially available as sparse checkerboard ar-
rays, as shown in Figure 2.3. In one processing path, the data is interpolated to generate
fully populated panchromatic and color channels prior to motion estimation. In this case,
synthetic panchromatic pixel values can be computed at each pixel using the available red,
green, and blue values at that pixel, and motion can be estimated using the full images.

Alternatively, motion estimation can be carried out at lower resolution, with the objec-
tive of retaining a CFA image after motion compensation. Both the panchromatic and color
image data are reduced to lower resolution. The color data are interpolated to form a full-
color low-resolution image from which synthetic panchromatic pixel values are computed.
Motion is estimated using the low-resolution images, with the results of the motion esti-
mation applied to the original checkerboard pixel data [25]. In order to retain the original
checkerboard CFA pattern, the motion estimation can be constrained to appropriate integer
translational offsets.

Figure 2.3 also illustrates a scenario in which motion is estimated by directly comparing
the panchromatic and color data, bypassing the need to compute a synthetic panchromatic
channel. In this case, the green channel is used as an approximate match to the panchro-
matic channel. Each channel is fully populated by an interpolation step. Edge maps are
formed and used during motion estimation to minimize the effects of spectral differences
between the panchromatic and green channels [26].

The panchromatic and synthetic panchromatic channels are likely to differ in the amount
of noise present, as well as the amount of motion blur present. These differences make
estimation difficult for algorithms that derive individual motion vectors for every pixel.
Block-based motion estimation provides some robustness to the varying noise and blur
within the images while also providing some ability to detect local object motion in the
scene.

With appropriate hardware capability, the panchromatic channel integration interval can
align in various ways with the integration interval for the color channels, as shown in Fig-
ure 2.4 [27]. Different alignments produce different relative motion offsets under most con-
ditions, especially with constant or nearly constant motion (both velocity and direction), as
used in the following examples.

If the integration interval of the panchromatic channel is concentrically located within
the integration interval of the color channels, as in Figure 2.4a, the motion offset between
the channels will be very small or zero. This minimizes any need to align the color chan-
nels with the panchromatic channel during fusion of the channels, but also minimizes the
information that motion offset estimation can provide regarding motion blur in the captured
image. If the two integration intervals are aligned at the end of integration as in Figure 2.4b,
the motion offset between the panchromatic channel and the color channels will be greater
than with concentric integration intervals. This may require alignment of the color chan-
nels with the panchromatic channel to minimize artifacts during fusion of the images. In
this case, motion offset estimation can also provide more information about the blur in the
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FIGURE 2.3

Three options for motion estimation in the proposed capture system. The term PSyn represents the synthetic panchromatic channel whereas P′ and G′ are gradients of P

and G, respectively.
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color channels integration (tc)

panchromatic channel integration (tp)

time

(a)

color channels integration (tc)

panchromatic channel integration (tp)

time

(b)

color channels integration (tc)

panchromatic channel integration (tp)

time

(c)

FIGURE 2.4

Integration timing options: (a) concentric integration, (b) simultaneous readout integration, and (c) non-

overlapping integration.

captured image, to aid fusion or deblurring operations. If the integration intervals do not
overlap, as shown in Figure 2.4c, the motion offset between the panchromatic and color
channels will be still larger.

One advantage of overlapping integration intervals is to limit any motion offset between
the channels and increase the correlation between the motion during the panchromatic in-
terval and the motion during the color integration interval. The ratio of the color integration
time to the panchromatic integration time, tC/tP, also affects the amount of motion offset.
As this ratio decreases toward one, the capture converges to a standard single capture, and
the relative motion offset converges to zero.

The alignment of the integration intervals has hardware implications in addition to the
image processing implications just mentioned. In particular, use of end-aligned integration
intervals tends to reduce the complexity of readout circuitry and buffer needs, since all
pixels are read out at the same time. Concentric alignment of the integration intervals tends
to maximize the complexity of readout, since the panchromatic integration interval both
begins and ends at a time different from the color integration interval.

2.2.3 Motion Compensation for the Proposed Captured System

Motion compensation refers to the process of shifting the pixel data in an image accord-
ing to motion information derived during an estimation step. Given a reference image and
a comparison image, the motion information is used to form a shifted version of the com-
parison image that matches the reference image better than the original comparison image.
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FIGURE 2.5

Motion compensation with the reference image constituted by (a) the color data and (b) the panchromatic data.

For the proposed capture system, it is possible to consider either the panchromatic data
or the color data as the reference image. The choice of reference image affects which data
is left untouched, and which data is shifted, and possibly interpolated. The advantage of
selecting the panchromatic data as the reference image lies in keeping the sharp, panchro-
matic backbone of the image untouched, preserving as much strong edge and texture in-
formation as possible. The advantage of selecting the chrominance data as the reference
image becomes apparent in the case that the motion compensation is performed on sparse
CFA data with the intention of providing a CFA image as the output of the motion com-
pensation step, as illustrated in Figure 2.5. In this case, shifting a block of panchromatic
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(a) (b)

(c)

FIGURE 2.6

Single capture: (a) CFA image, (b) demosaicked panchromatic image, and (c) demosaicked color image.

data to exactly fit the CFA pattern requires integer motion vectors for which the horizon-
tal and vertical components have the same even/odd parity. Arbitrary shifts of a block of
panchromatic data require an interpolation step for which the four nearest neighbors are
no more than two pixels away. Shifting the chrominance data is more difficult, however,
due to the sparseness of the colors. Shifting a block of chrominance data to exactly fit
the CFA pattern requires motion vectors that are multiples of four, both horizontally and
vertically. Arbitrary shifts of a block of chrominance data require an interpolation step for
which neighboring color information may be four pixels away.

2.3 Four-Channel Single Capture Motion Deblurring

This section discusses a computationally efficient image fusion algorithm for motion
deblurring of a color image from a single capture. The relative motion between the camera
and the scene introduces motion blur that causes significant degradation of images [28],
[29], [30], [31]. It is a well-known fact that motion blur can be minimized by reducing
the pixel integration time appropriately. However, this approach leads to noisy images
as imaging pixels do not get sufficient photons to faithfully represent the scene content.
Due to this trade-off between motion blur and noise, images are typically captured with a
sufficiently long integration time.
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Signal processing techniques are also often used to reduce the motion blur [1], [2], [3],
[4]. As explained in Section 2.2, in a four-channel system, it is possible to capture an
image with acceptable signal-to-noise by using a relatively shorter integration time for
the panchromatic pixels as compared to the color (red, green, and blue) pixels. This is a
highly desirable feature for color image motion deblurring. Due to short integration time
and high photometric sensitivity, panchromatic pixels do not suffer much from motion blur
and at the same time produce a luminance image of the scene with high signal-to-noise,
whereas a long integration time for color pixels leads to a motion blurred color image
with reliable color information. An example of a four-channel CFA image is shown in
Figure 2.6a. The integration time ratio of panchromatic to color pixels was set to 1:5.
The corresponding demosaicked panchromatic and color images are shown in Figures 2.6b
and 2.6c, respectively. The basketball is more clearly defined in the panchromatic image
but appears blurred in the color image. This example illustrates that by using different
integration times for panchromatic and color pixels in the four-channel imaging sensor, it
is possible to generate complementary information at the sensor level, which subsequently
can be exploited to generate a color image with reduced motion blur. A pixel-level fusion
algorithm designed to fuse demosaicked panchromatic and color images [32] is explained
below.

2.3.1 Fusion for Motion Deblurring

The pixel-level fusion algorithm presented in this section is based on the fact that the
human visual system (HVS) is more sensitive to the high-frequency luminance than the
corresponding chroma components. Let R, G, B, and P be the demosaicked red, green,
blue, and panchromatic images, respectively, captured using a four-channel imaging sys-
tem. In this fusion approach, a synthetic panchromatic image (PSyn), which is comparable
to the observed panchromatic image (P), is computed using Equation 2.4. The red and blue
chroma images, represented by CR and CB, respectively, are computed as follows:

CR = R−PSyn, (2.5)

CB = B−PSyn. (2.6)

To restore the high-frequency luminance information of the deblurred color image, the
synthetic panchromatic image PSyn can be replaced with the observed panchromatic image
P. However, this operation only ensures reconstruction of the luminance information. In or-
der to restore color information, chroma images corresponding to P must be reconstructed.
Note that P is a luminance image and does not contain color information. Therefore, its
chroma images must be estimated from the observed RGB color image. In order to do this,
a system model is determined to relate PSyn and the corresponding chroma images (CR and
CB) which in turn is used to predict chroma images for P. For the sake of simplicity and
computational efficiency, the model is linear:

CR = mRPSyn, (2.7)

CB = mBPSyn, (2.8)

where mR and mB are model parameters.
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(a) (b)

(c)

FIGURE 2.7

Motion deblurring from a single capture: (a) panchromatic image, (b) color image, and (c) deblurred image.

Let CP
R and CP

B be the red and the blue chroma images, respectively, corresponding to P.
Then, from Equations 2.7 and 2.8 it is apparent that

CP
R = mRP =

CR

PSyn P, (2.9)

CP
B = mBP =

CB

PSyn P. (2.10)

The new motion deblurred color image (RN , GN , and BN) can be estimated as follows:

RN = CP
R +P, (2.11)

BN = CP
B +P, (2.12)

GN =
P−αRN − γBN

β
. (2.13)

ALGORITHM 2.1 Pixel-level image fusion for motion deblurring.

1. Compute synthetic panchromatic and chroma images using Equations 2.4, 2.5,
and 2.6.

2. Compute chroma images corresponding to observed panchromatic image P us-
ing Equations 2.9 and 2.10.

3. Compute deblurred color image using Equations 2.11, 2.12, and 2.13.
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A summary of the fusion algorithm is presented in Algorithm 2.1, whereas its feasibility
is demonstrated in Figure 2.7. The integration time ratio for panchromatic image shown in
Figure 2.7a and color image shown in Figure 2.7b was set to 1:5 and these two images were
read out of the sensor simultaneously as illustrated in Figure 2.4b. The restored image is
shown in Figure 2.7c.

2.4 Example Single-Sensor Image Fusion Capture System

Figure 2.8 shows the example image processing chain from Chapter 1 with motion esti-
mation, motion compensation, and motion deblurring blocks added. In this example motion
processing begins on the CFA image data rather than demosaicked data. The first motion
operation is motion estimation which in this example is performed by comparing edge maps
generated from the panchromatic and green channels from the CFA image.

Figure 2.9a shows the CFA image used as the input for edge detection. The correspond-
ing edge maps are shown in Figure 2.9b where the edges from the CFA panchromatic chan-
nel and the CFA green channel are depicted using mid and high intensities, respectively. It
can be seen that the most systematic differences between the two sets of edge maps occur
along the fronts and backs of the two ball players. From these edge maps motion vectors
are generated using block matching and a cross correlation penalty function (Equation 2.3).
The resulting motion compensation is applied to the CFA panchromatic data using bilinear
interpolation. The CFA panchromatic channels before and after motion compensation are
shown in Figure 2.9a and Figure 2.10a. For illustrative purposes, the edge maps are recom-
puted for the motion-compensated CFA image and shown in Figure 2.10b. As a reference,
the block boundaries used for computing the motion vectors are depicted in the figure.

Returning to the flowchart shown in Figure 2.8, the image is now demosaicked using
the motion-compensated CFA panchromatic data along with the original color data. Af-
terwards, motion deblurring is applied using the image fusion techniques described in
Section 2.3.1. Figure 2.11 shows the demosaicked image before motion deblurring (Fig-

motion estimation

color and tone

correction

CFA image noise cleaning

motion

compensation
motion deblurring demosaicking

fully processed

image
sharpening

FIGURE 2.8

Example image processing chain incorporating motion estimation and compensation.
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(a) (b)

FIGURE 2.9

Edge detection using the original CFA panchromatic channel: (a) CFA panchromatic channel, and (b) edge

map with mid and high intensities corresponding to the panchromatic and color pixels, respectively.

(a)

(b)

FIGURE 2.10

Edge detection using the motion compensated CFA panchromatic channel: (a) CFA panchromatic channel, and

(b) edge map with block boundaries and mid and high intensities corresponding to the panchromatic and color

pixels, respectively.

ure 2.11a) and after deblurring (Figure 2.11b). The differences between these two images is
dramatic, especially with respect to the two balls being tossed. Finally, color and tone cor-
rection and sharpening are applied and the final result shown in Figure 2.12a. For reference,
the same image without motion processing is shown in Figure 2.12b.

2.5 Conclusion

The estimation of motion and the compensation of associated artifacts classically requires
the capture of a sequence of images. Image fusion techniques are then used to reduce this
set of multiple images into a single image with reduced motion blur.
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(a) (b)

FIGURE 2.11 (See color insert.)

Motion deblurring of demosaicked image: (a) before motion deblurring, and (b) after motion deblurring.

(a) (b)

FIGURE 2.12 (See color insert.)

Fully processed images: (a) with motion compensation, and (b) without motion compensation.

This chapter described a new approach to motion deblurring that uses a single capture
from a single sensor, which produces the required image components for subsequent image
fusion. The result is a vastly simplified hardware system that is motion-aware and provides
the necessary information for performing motion deblurring. This is accomplished by the
use of a four-channel color filter array consisting of three color channels and a panchro-
matic channel. Due to superior light sensitivity, the panchromatic pixels are exposed for a
shorter duration than the color pixels during image capture. As a result, the panchromatic
channel produces a luminance record of the image with significantly reduced motion blur
while maintaining acceptable signal-to-noise performance. To this low motion blur lumi-
nance record, the chrominance information from the color channels is fused to produce a
final motion-deblurred color image. There are a number of ways to achieve this motion-
reduced result including the alignment of edges in motion between the panchromatic and
color image components and the exchange of panchromatic and color-derived luminance
image components. Many of these techniques can be applied to CFA data directly, thereby
reducing the computational overhead of the system. Finally, apart from the motion ele-
ments, the image processing chain is as described in Chapter 1, thus allowing the system to
realize most, if not all, of the advantages of the four-channel system as described there.
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Appendix: Estimation of Panchromatic Coefficients

Assuming the panchromatic (P) and the color (RGB) pixels to be sensitive in the wave-
length range [λmin,λmax], the pixel value of these channels acquired at a spatial location
(x,y) ∈ Ω can be modeled as follows:

P(x,y) =
∫ λmax

λmin

I(λ )QP(λ )S(x,y,λ )dλ ,

R(x,y) =
∫ λmax

λmin

I(λ )QR(λ )S(x,y,λ )dλ ,

G(x,y) =
∫ λmax

λmin

I(λ )QG(λ )S(x,y,λ )dλ ,

B(x,y) =
∫ λmax

λmin

I(λ )QB(λ )S(x,y,λ )dλ ,

where I(λ ) is the spectrum of the illumination as a function of wavelength, S(x,y,λ ) is the
surface spectral reflectance function. The spectral quantum efficiency of P, R, G, and B
sensors are represented by QP(λ ), QR(λ ), QG(λ ), and QB(λ ), respectively. The panchro-
matic coefficients α , β , and γ are computed by minimizing the cost function g(α,β ,γ), as
given below:

min
α,β ,γ

g(α,β ,γ) = min
α ,β ,γ

∥∥∥∥∥ ∑
x,y∈Ω

P(x,y)−α ∑
x,y∈Ω

R(x,y)−β ∑
x,y∈Ω

G(x,y)− γ ∑
x,y∈Ω

B(x,y)

∥∥∥∥∥
2

2

,

where ‖•‖2 denotes L2-norm. Note that the integration times for P, R, G, and B pixels are
assumed to be the same in this analysis.

References
[1] E. Shechtman, Y. Caspi, and M. Irani, “Space-time super-resolution,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 27, no. 4, pp. 531–545, April 2005.
[2] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring from a single image,” ACM

Transactions on Graphics, vol. 27, no. 3, pp. 1–10, August 2008.
[3] J. Jiya, “Single image motion deblurring using transparency,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, June 2007,
pp. 1–8.

[4] A. Levin, “Blind motion deblurring using image statistics,” in Proceedings of the Twentieth
Annual Conference on Advances in Neural Information Processing Systems, Vancouver, BC,
Canada, December 2006, pp. 841–848.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

4:
04

 0
9 

M
ay

 2
01

6 



80 Computational Photography: Methods and Applications

[5] M. Kumar and P. Ramuhalli, “Dynamic programming based multichannel image restoration,”
in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, Philadelphia, PA, USA, March 2005, pp. 609–612.

[6] L. Yuan, J. Sun, L. Quan, and H.Y. Shum, “Image deblurring with blurred/noisy image pairs,”
ACM Transactions on Graphics, vol. 26, no. 3, July 2007.

[7] A. Rav-Acha and S. Peleg, “Two motion-blurred images are better than one,” Pattern Recog-
nition Letters, vol. 26, no. 3, pp. 311–317, February 2005.

[8] X. Liu and A.E. Gamal, “Simultaneous image formation and motion blur restoration via mul-
tiple capture,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing, Salt Lake City, UT, USA, May 2001, pp. 1841–1844.

[9] K.T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow
chromatic gratings,” Journal of Physiology, vol. 359, pp. 381–400, February 1985.

[10] A.M. Tekalp, Digital Video Processing, Upper Saddle River, NJ: Prentice Hall, August 1995.
[11] A. Bovik, Handbook of Image and Video Processing, 2nd Edition, New York: Academic

Press, June 2005.
[12] F. Dufaux and J. Konrad, “Efficient, robust, and fast global motion estimation for video cod-

ing,” IEEE Transactions on Image Processing, vol. 9, no. 3, pp. 497–501, March 2000.
[13] J.M. Odobez and P. Bouthemy, “Robust multiresolution estimation of parametric motion mod-

els,” Journal of Visual Communication and Image Representation, vol. 6, no. 4, pp. 348–365,
December 1995.

[14] M. Black, “The robust estimation of multiple motions: Parametric and piecewise-smooth flow
fields,” Computer Vision and Image Understanding, vol. 63, no. 1, pp. 75–104, January 1996.

[15] J. Konrad and E. Dubois, “Bayesian estimation of motion vector fields,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 14, no. 9, pp. 910–927, September 1992.

[16] B.K.P. Horn and B.G. Schunck, “Determining optical flow,” Artificial Intelligence, vol. 17,
pp. 185–203, August 1981.

[17] F. Dufaux and F. Moscheni, “Motion estimation techniques for digital TV: A review and a new
contribution,” Proceedings of the IEEE, vol. 83, no. 6, pp. 858–876, June 1995.

[18] “Information technology-coding of moving pictures and associated audio for digital storage
media up to about 1.5 mbit/s.” ISO/IEC JTC1 IS 11172-2 (MPEG-1), 1993.

[19] “Information technology–generic coding of moving pictures and associated audio.” ISO/IEC
JTC1 IS 13818-2 (MPEG-2), 1994.

[20] R. Li, B. Zeng, and M.L. Liou, “A new three-step search algorithm for block motion es-
timation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 4, no. 4,
pp. 438–442, August 1994.

[21] S. Zhu and K.K. Ma., “A new diamond search algorithm for fast block-matching motion esti-
mation,” IEEE Transactions on Image Processing, vol. 9, no. 2, pp. 287–290, February 2000.

[22] K.A. Prabhu and A.N. Netravali, “Motion compensated component color coding,” IEEE
Transactions on Communications, vol. 30, no. 12, pp. 2519–2527, December 1982.

[23] N.R. Shah and A. Zakhor, “Resolution enhancement of color video sequences,” IEEE Trans-
actions on Image Processing, vol. 8, no. 6, pp. 879–885, June 1999.

[24] B.C. Tom and A. Katsaggelos, “Resolution enhancement of monochrome and color video
using motion compensation,” IEEE Transactions on Image Processing, vol. 10, no. 2, pp. 278–
287, February 2001.

[25] A.T. Deever, J.E. Adams Jr., and J.F. Hamilton Jr., “Improving defective color and panchro-
matic CFA image,” U.S. Patent Application 12/258 389, 2009.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

4:
04

 0
9 

M
ay

 2
01

6 



Single Capture Image Fusion with Motion Consideration 81

[26] J.E. Adams Jr., A.T. Deever, and R.J. Palum, “Modifying color and panchromatic channel
CFA Image,” U.S. Patent Application 12/266 824, 2009.

[27] J.A. Hamilton, J.T. Compton, and B.H. Pillman, “Concentric exposures sequence for image
sensor,” U.S. Patent Application 12/111 219, April 2008.

[28] M. Ben-Ezra and S.K. Nayar, “Motion-based motion deblurring,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 26, no. 6, pp. 689–698, June 2004.

[29] S. Bottini, “On the visual motion blur restoration,” in Proceedings of the Second International
Conference on Visual Psychophysics and Medical Imaging, Brussels, Belgium, July 1981,
p. 143.

[30] W.G. Chen, N. Nandhakumar, and W.N. Martin, “Image motion estimation from motion smear
– a new computational model,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 18, no. 4, pp. 412–425, April 1996.

[31] S.H. Lee, N.S. Moon, and C.W. Lee, “Recovery of blurred video signals using iterative image
restoration combined with motion estimation,” in Proceedings of the International Conference
on Image Processing, Santa Barbara, CA, USA, October 1997, pp. 755–758.

[32] M. Kumar and J.E. Adams Jr., “Producing full-color image using CFA image,” U.S. Patent
Application Number 12/412 429, 2009.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

4:
04

 0
9 

M
ay

 2
01

6 



3
Lossless Compression of Bayer Color Filter Array
Images

King-Hong Chung and Yuk-Hee Chan

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2 Concerns in CFA Image Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3 Common Compression Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4 Compression Using Context Matching-Based Prediction . . . . . . . . . . . . . . . . . . . . . 87

3.4.1 Context Matching-Based Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.1.1 Luminance Subimage-Based Prediction . . . . . . . . . . . . . . . . . . . . . 88
3.4.1.2 Chrominance Subimage-Based Prediction . . . . . . . . . . . . . . . . . . . 89

3.4.2 Adaptive Color Difference Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4.3 Subimage Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Compression Based on Statistical Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5.1 Statistic-Based Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5.2 Subband Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.6.1 Bit Rate Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.6.2 Complexity Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.1 Introduction

Most digital cameras reduce their cost, size and complexity by using a single-sensor
image acquisition system to acquire a scene in digital format [1]. In such a system, an
image sensor is overlaid with a color filter array (CFA), such as the Bayer pattern [2] shown
in Figure 3.1a, to record one of the three primary color components at each pixel location.
Consequently, a gray-scale mosaic-like image, commonly referred to as a CFA image, is
produced as the sensor output.

An imaging pipeline is required to turn a CFA image into a full-color image. Images
are commonly compressed to reduce the storage requirement and store as many images as
possible in a given storage medium. Figure 3.2a shows the simplified pipeline which first
converts the CFA image to a full-color image using color demosaicking [3], [4], [5] and
then compresses the demosaicked full-color image for storage.
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FIGURE 3.1

A Bayer color filter array with green-red-green-red phase in the first row: (a) complete pattern, (b) luminance

plane, and (c) chrominance plane.

This approach reduces the burden of compression, since one can use any existing image
coding scheme to compress the demosaicked full-color data in either a lossless or lossy
manner. However, it may be considered suboptimal from the compression point of view
because the demosaicking process always introduces some redundancy which should even-
tually be removed in the subsequent compression step [6], [7], [8].

To address this issue, an alternative approach, as shown in Figure 3.2b, aims at compress-
ing the CFA image prior to demosaicking [9], [10], [11], [12]. As a result, more sophis-
ticated demosaicking algorithms can be applied offline on a personal computer to produce
a more visually pleasing full-color output. Besides, as the data size of a CFA image to be
handled by the compression step is only one-third that of the corresponding demosaicked
image, this alternative approach can effectively increase the pipeline throughput without
degrading the output image quality.

Since this alternative pipeline has been proven to outperform the conventional one when
the quality requirement of the output color image is high [7], [8], it has been adopted in
many prosumer and professional grade digital cameras to serve as an optional imaging
path to deliver a precise, high quality output. This motivates the demand for CFA image
compression schemes accordingly.
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FIGURE 3.2

Simplified imaging pipelines for single-sensor digital cameras: (a) conventional approach, (b) alternative ap-

proach.
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Both lossy or lossless compression schemes can be applied to CFA image data. Lossy
compression schemes, such as those presented in References [13], [14], [15], [16], [17]
and [18], compress the CFA image by discarding its visually redundant information. Thus,
only an approximation of the original image can eventually be reconstructed. Since loss
of information is allowed, these schemes usually yield a higher compression ratio than the
lossless schemes. However, lossless compression schemes preserve all the information of
the original and hence allow perfect reconstruction of the original image. Therefore, they
are crucial in coding the CFA images which can be seen as digital negatives and used as an
ideal original archive format for producing high quality color images especially in high-end
photography applications such as commercial poster production.

Certainly, many standard lossless image compression schemes such as JPEG-LS [19] and
JPEG2000 (lossless mode) [20] can be used to compress a CFA image directly. However,
they only achieve a fair compression performance as the spatial correlation among adjacent
pixels is generally weakened in a CFA image due to its mosaic-like structure. To perform
the compression more efficiently, later methods [21], [22] aim at increasing the image spa-
tial correlation by de-interleaving the CFA image according to the red, green, and blue
color channels and then compress the three subsampled color planes individually with the
lossless image compression standards. Nevertheless, redundancy among the color channels
still remains. Recently, some advanced lossless CFA image compression algorithms [23],
[24], [25] have been reported to efficiently remove the pixel redundancy in both spatial
and spectral domains. These algorithms do not rely on any single individual coding tech-
nique but rather combine various techniques to remove the data redundancy using different
means. This chapter surveys relevant lossless coding techniques and presents two new loss-
less compression algorithms to show how to mix different techniques to achieve an effective
compression. Performance comparisons, in terms of compression ratio and computational
complexity, are included.

This chapter is structured as follows. Section 3.2 discusses some major concerns in
the design of a lossless compression algorithm for CFA images. Section 3.3 focuses on
some common coding techniques used in lossless CFA image coding. Sections 3.4 and 3.5
present two lossless compression algorithms which serve as examples to show how the
various coding techniques discussed in Section 3.3 can work together to remove the re-
dundancy in different forms. The simulation results in Section 3.6 show that remarkable
compression performance can be achieved with these two algorithms. Finally, conclusions
are drawn in Section 3.7.

3.2 Concerns in CFA Image Compression

Though a compression algorithm can be evaluated in a number of ways, rate-distortion
performance is one of the most important factors to be considered. For lossless CFA im-
age compression, no distortion is expected and hence rate-distortion performance can be
reflected by the compression ratio or the output bit rate directly once the input is fixed.
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The second consideration is the complexity of the algorithm. For in-camera compression,
real-time processing is always expected. As compression is required for each image, the
processing time of the compression algorithm determines the frame rate of the camera.
Parallel processing support can help reduce an algorithm’s processing time, but it still may
not be a solution as it does not reduce the overall complexity.

The complexity of an algorithm can be measured in terms of the number of operations re-
quired to compress an image. This measure may not be able to reflect the real performance
of the algorithm as number of operations is not the sole factor that determines the required
processing time. The number of branch decisions, the number of data transfers involved,
the hardware used to realize the algorithm, and a lot of other factors also play their roles.
The impact of these factors to the processing time is hardware oriented and can fluctuate
from case to case. The power consumption induced by an algorithm is also a hardware
issue and is highly reliant on the hardware design. Without a matched hardware platform
as the test bed of an algorithm, it is impossible to judge its real performance. Therefore,
in this chapter, the processing time required to execute an algorithm in a specified general
purpose hardware platform will be measured to indicate the complexity of the algorithm.

Since minimizing the complexity and maximizing the compression rate are generally
mutually exclusive, a compromise is always required in practice. Note that the energy
consumption increases with the complexity of any algorithm, thus affecting both the battery
size and the operation time of a camera directly. There are some other factors, such as the
memory requirements, that one has to consider when designing a compression algorithm,
but their analysis is beyond the scope of this chapter.

3.3 Common Compression Techniques

In lossless compression, bits are reduced by removing the redundant information carried
by an image. Various techniques can be used to extract and remove the redundant informa-
tion by exploring i) the spatial correlation among image pixels, ii) the correlation among
different color channels of the image, and iii) the statistical characteristic of selected data
entities extracted from the image. The performance of an algorithm depends on how much
redundant information can be removed effectively. A compression algorithm usually ex-
ploits more than one technique to achieve the goal. Entropy coding and predictive coding
are two commonly used techniques to encode a CFA image nowadays.

Entropy coding removes redundancy by making use of the statistical distribution of the
input data. The input data is considered as a sequence of symbols. A shorter codeword is
assigned to a symbol which is more likely to occur such that the average number of bits
required to encode a symbol can be reduced. This technique is widely applicable for various
kinds of input of any nature and hence is generally exploited in many lossless compression
algorithms as their final processing step. Entropy coding can be realized using different
schemes, such as Huffman coding and arithmetic coding. When the input data follows a
geometric distribution, a simpler scheme such as Rice coding can be used to reduce the
complexity of the codeword assignment process.
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Lossless Compression of Bayer Color Filter Array Images 87

Predictive coding removes redundancy by making use of the correlation among the input
data. For each data entry, a prediction is performed to estimate its value based on the
correlation and the prediction error is encoded. The spatial correlation among pixels is
commonly used in predictive coding. Since color channels in a CFA image are interlaced,
the spatial correlation in CFA images is generally lower than in color images. Therefore,
many spatial predictive coding algorithms designed for color images cannot provide a good
compression performance when they are used to encode a CFA image directly.

However, there are solutions which preprocess the CFA image to provide an output with
improved correlation characteristics which is more suitable for predictive coding than the
original input. This can be achieved by deinterleaving the CFA image into several sep-
arate images each of which contains the pixels from the same color channel [21], [22].
This can also be achieved by converting the data from RGB space to YCrCb space [10],
[12]. Although a number of preprocessing procedures can be designed, not all of them are
reversible and only reversible ones can be used in lossless compression of CFA images.

In transform coding, the discrete cosine transform and the wavelet transform are usually
used to decorrelate the image data. Since typical images generally contain redundant edges
and details, insignificant high-frequency contents can thus be discarded to save coding bits.
When distortion is allowed, transform coding helps to achieve good rate-distortion perfor-
mance and hence it is widely used in lossy image compression. In particular, the integer
Mallat wavelet packet transform is highly suitable to decorrelate mosaic CFA data [23],
[24]. This encourages the use of transform coding in lossless compression of CFA images.

Other lossless coding techniques, such as run-length coding [26], Burrows-Wheeler
transform [27], and adaptive dictionary coding (e.g., LZW [28]) are either designed for
a specific type of input other than CFA images (for example, run-length coding is suitable
for coding binary images) or designed for universal input. Since they do not take the prop-
erties of a CFA image into account, it is expected that the redundancy in a CFA image
cannot be effectively removed if one just treats the CFA image as a typical gray-level im-
age or even a raster-scanned sequence of symbols when using these coding techniques. A
preprocessing step would be necessary to turn a CFA image into a better form to improve
the compression performance when these techniques are exploited.

At the moment, most, if not all, lossless compression algorithms designed for coding
CFA images mainly rely on predictive, entropy, and transform coding. In the following,
two dedicated lossless compression algorithms for CFA image coding are presented. These
algorithms serve as examples of combining the three aforementioned coding techniques to
achieve remarkable compression performance.

3.4 Compression Using Context Matching-Based Prediction

The algorithm presented in this section uses both predictive and entropy coding to com-
press CFA data. First, the CFA image is separated into the luminance subimage (Fig-
ure 3.1b) containing all green samples and the chrominance subimage (Figure 3.1c) con-
taining all red and blue samples. These two subimages are encoded sequentially. Samples
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FIGURE 3.3

Structure of the context-matching-based lossless CFA image compression method: (a) encoder and (b) decoder.

in the same subimage are raster-scanned and each one of them undergoes a prediction pro-
cess based on context matching and an entropy coding process as shown in Figure 3.3a.
Due to the higher number of green samples in the CFA image compared to red or blue
samples, the luminance subimage is encoded before encoding the chrominance subimage.
When handling the chrominance subimage, the luminance subimage is used as a reference
to remove the interchannel correlation.

Decoding is just the reverse process of encoding as shown in Figure 3.3b. The lumi-
nance subimage is decoded first to be used as a reference when decoding the chrominance
subimage. The original CFA image is reconstructed by combining the two subimages.

3.4.1 Context Matching-Based Prediction

In the prediction process exploited here, the value of a pixel is predicted with its four
closest processed neighbors in the same subimage. The four closest neighbors from the
same color channel as the pixel of interest should have the highest correlation to the pixel
to be predicted in different directions and hence the best prediction result can be expected.
These four neighbors are ranked according to how close their contexts are to the context
of the pixel to be predicted and their values are weighted according to their ranking order.
Pixels with closer contexts to that of the pixel of interest contribute more to its predicted
value. The details of its realization in handling the two subimages are given below.

3.4.1.1 Luminance Subimage-Based Prediction

Since pixels in the luminance subimage are processed in a raster scan order, the four
nearest and already processed neighboring green samples of the pixel of interest g(i, j) are
g(i, j− 2), g(i− 1, j− 1), g(i− 2, j), and g(i− 1, j + 1) as shown in Figure 3.4a. These
neighbors are ranked by comparing their contexts with the context of g(i, j). In the lumi-
nance subimage, the term Sg(p,q), which denotes the context of a sample at position (p,q),
is defined as shown in Figure 3.4b. In formulation, Sg(p,q) = {g(p,q− 2),g(p− 1,q−
1),g(p−2,q),g(p−1,q + 1)}. The matching extent of the contexts of g(i, j) and g(m,n)
for g(m,n) ∈ Φg(i, j) = {g(i, j− 2),g(i− 1, j− 1),g(i− 2, j),g(i− 1, j + 1)} is determined
as follows:

D1
(
Sg(i, j),Sg(m,n)

)
= |g(i, j−2)−g(m,n−2)|+ |g(i−1, j−1)−g(m−1,n−1)|
+ |g(i−2, j)−g(m−2,n)|+ |g(i−1, j +1)−g(m−1,n+1)|. (3.1)
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FIGURE 3.4

Prediction in the luminance subimage: (a) four closest neighbors used to predict the intensity value of sample

g(i, j), and (b) pixels used to construct the context of sample g(i, j).

Theoretically, other metrics such as the well-known Euclidean distance can be accom-
modated in the above equation to enhance matching performance. However, the achieved
improvement is usually not significant enough to compensate for the increased implemen-
tation complexity.

Let g(mk,nk)∈Φg(i, j), for k = 1,2,3,4, represent four ranked neighbors of sample g(i, j)
such that D1

(
Sg(i, j),Sg(mu,nu)

)≤D1
(
Sg(i, j),Sg(mv,nv)

)
for 1≤ u < v≤ 4. The value of g(i, j)

can then be predicted with a prediction filter as follows:

ĝ(i, j) = round

(
4

∑
k=1

wkd(mk,nk)

)
, (3.2)

where wk, for k = 1,2,3,4, are normalized weights constrained as w1 +w2 +w3 +w4 = 1.
The weights are determined by quantizing the training result derived using linear re-

gression with a set of training images. The weights are quantized to reduce the imple-
mentation complexity the predictor filter. With the training image set containing the first
two rows of images shown in Figure 3.9a, the quantized training result is obtained as
{w1,w2,w3,w4}= {5/8,2/8,1/8,0}. The predicted green sample can then be determined
as follows:

d̂(i, j) = round
(

4g(m1,n1)+2g(m2,n2)+g(m1,n1)+g(m3,n3)
8

)
(3.3)

which requires only shift-add operations to implement.

3.4.1.2 Chrominance Subimage-Based Prediction

When the sample being processed is a chrominance (i.e., red or blue) sample, the pre-
diction is carried out in the color difference domain instead of the intensity domain. This
arrangement helps to remove the interchannel redundancy. Required color difference infor-
mation is obtained in advance from the CFA data using the procedure from Section 3.4.2.
Here, it is assumed that the estimation process has been completed and each chrominance
sample c(p,q) has its color difference value d(p,q) = g(p,q)− c(p,q) available.

For any color difference value d(i, j), its four closest neighbors in the estimated color
difference plane are d(i, j−2), d(i−2, j−2), d(i−2, j), and d(i−2, j+2), and its context
is defined as Sc(i, j) = {g(i, j− 1),g(i− 1, j),g(i, j + 1),g(i + 1, j)} using its four closest
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FIGURE 3.5

Prediction in the chrominance subimage: (a) four closest neighbors used to predict the color difference value

of sample c(i, j) = r(i, j) or c(i, j) = b(i, j), and (b) pixels used to construct the context of sample c(i, j).

available green samples, as shown in Figures 3.5a and 3.5b, respectively. This arrangement
is based on the fact that the green channel has a double sampling rate compared to the red
and blue channels in the CFA image and green samples are encoded first. As a consequence,
it provides a more reliable noncausal context for matching.

Color difference values d(i, j−2), d(i−2, j−2), d(i−2, j), and d(i−2, j+2) are ranked
according to the absolute difference between their context and the context of d(i, j). The
predicted value of d(i, j) is determinable as follows:

d̂(i, j) = round

(
4

∑
k=1

wkd(mk,nk)

)
, (3.4)

where wk is the weight associated with the the kth ranked neighbor d(mk,nk) such that
D2

(
Sc(i, j),Sc(mu,nu)

)≤ D2
(
Sc(i, j),Sc(mv,nv)

)
for 1≤ u < v≤ 4, where

D2
(
Sc(i, j),Sc(m,n)

)
= |g(i, j−1)−g(m,n−1)|+ |g(i, j +1)−g(m,n+1)|
+ |g(i−1, j)−g(m−1,n)|+ |g(i+1, j)−g(m+1,n)| (3.5)

measures the difference between two contexts.
Weights wk, for k = 1,2,3,4, are trained similarly to the weights used in luminance signal

prediction. Under this training condition, color difference prediction is obtained as follows:

d̂(i, j) = round
(

4d(m1,n1)+2d(m2,n2)+d(m3,n3)+d(m4,n4)
8

)
, (3.6)

which also involves shift-add operations only.

3.4.2 Adaptive Color Difference Estimation

When compressing the chrominance plane, prediction is carried out in the color differ-
ence domain to remove the interchannel redundancy. This implies that the color difference
value for each chrominance sample has to be estimated in advance.

Let c(m,n) be the intensity value of the available chrominance (either red or blue) sample
at a chrominance sampling position (m,n). The corresponding color difference d(m,n) is
determined as

d(m,n) = ĝ(m,n)− c(m,n), (3.7)
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Lossless Compression of Bayer Color Filter Array Images 91

where ĝ(m,n) represents an estimate of the missing luminance component at position
(m,n). In particular, ĝ(m,n) is adaptively determined according to the horizontal inten-
sity gradient δH and the vertical intensity gradient δV at position (m,n) as follows:

ĝ(m,n) = round
(

δH×GV +δV ×GH

δH +δV

)
, (3.8)

where GH and GV denote, respectively, the preliminary luminance estimates computed as
(g(i, j−1)+ g(i, j + 1))/2 and (g(i−1, j)+ g(i +1, j))/2. Gradients δH and δV are, re-
spectively, obtained by averaging the absolute differences between all pairs of successive
luminance samples along the horizontal and the vertical directions within a 5×5 supporting
window centered at (m,n). Using Equation 3.8, the missing luminance value is determined
in a way that a preliminary estimate contributes less if the gradient in the corresponding di-
rection is larger. The weighting mechanism will automatically direct the estimation process
along an existing edge, thus preserving important structural content of an image.

3.4.3 Subimage Coding

Entropy coding is exploited in the final stage to remove the redundancy. The prediction
error e(i, j) associated with pixel (i, j) is given by

e(i, j) =
{

ĝ(i, j)−g(i, j) if (i, j) refers to luminance subimage,
d̂(i, j)−d(i, j) if (i, j) refers to chrominance subimage,

(3.9)

where g(i, j) is the real value of the luminance sample, d(i, j) is the color difference value
estimated with the method described in Section 3.4.2, ĝ(i, j) is the predicted value of g(i, j),
and d̂(i, j) is the predicted value of d(i, j). The error residue, e(i, j), is then mapped to a
nonnegative integer via

E(i, j) =
{−2e(i, j) if e(i, j)≤ 0,

2e(i, j)−1 otherwise,
(3.10)

to reshape its value distribution from a Laplacian type to a geometric one for Rice coding.
When Rice coding is used, each mapped residue E(i, j) is split into a quotient Q =

floor(E(i, j)/2λ ) and a remainder R = E(i, j)mod(2λ ), where the parameter λ is a nonneg-
ative integer. The quotient and the remainder are then saved for storage or transmission.
The length of the codeword used for representing E(i, j) depends on λ and is determinable
as follows:

L(E(i, j)|λ ) = floor
(

E(i, j)
2λ

)
+1+λ . (3.11)

Parameter λ is critical for the compression performance as it determines the code length
of E(i, j). For a geometric source S with distribution parameter ρ ∈ (0,1) (i.e. Prob(S =
s) = (1−ρ)ρs for s = 0,1,2, . . .), the optimal coding parameter λ is given as

λ = max
{

0,ceil
(

log2

(
logφ

logρ−1

))}
, (3.12)
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where φ = (
√

5+1)/2 is the golden ratio [29]. Since the expectation value of the source is
µ = ρ/(1−ρ), it follows that

ρ =
µ

1+ µ
. (3.13)

As long as µ is known, parameter ρ and hence the optimal coding parameter λ for the
whole source can be determined easily.

To enhance coding efficiency, µ can be estimated adaptively in the course of encoding
the mapped residues E(i, j) as follows:

µ̃ = round
(

αµ̃p +Mi, j

1+α

)
, (3.14)

where µ̃ is the current estimate of µ for selecting λ to determine the codeword format
of current E(i, j). The weighting factor α specifies the significance of µ̃p and Mi, j when
updating µ̃ . The term µ̃p, initially set as zero for all residue subplanes, is the previous
estimate of µ̃ which is updated for each E(i, j). The term

Mi, j =
1
4 ∑

(a,b)∈ξi, j

E(a,b) (3.15)

denotes the local mean of E(i, j) in a region defined as the set ξi, j of four processed pixel
locations which are closest to (i, j) and, at the same time, possess samples from the same
color channel as that of (i, j). When coding the residues from the luminance subimage,
ξi, j = {(i, j−2),(i−1, j−1),(i−2, j),(i−1, j +1)}. When coding the residues from the
chrominance subimage, ξi, j = {(i, j−2),(i−2, j−2),(i−2, j),(i−2, j +2)}.

The value of the weighting factor α is determined empirically. Figure 3.6 shows the
effect of α on the final compression ratio of the above compression algorithm. Curves “G”
and “R and B” respectively show the cases when coding the residues from the luminance
and the chrominance subimages. The curve marked as “all” depicts the overall performance
when all residue subplanes are compressed with a common α value. This figure indicates
that α = 1 can provide good compression performance.
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FIGURE 3.6

Average output bit rates (in bpp) versus different α values.
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FIGURE 3.7

Workflow of the statistic-based lossless CFA image compression method: (a) encoder, and (b) decoder.

3.5 Compression Based on Statistical Learning

The algorithm presented in this section uses transform, predictive, and entropy cod-
ing. The use of transform coding follows an observation that a simple one-level two-
dimensional integer Mallat wavelet packet transform can effectively decorrelate the CFA
data [23], [24]. Accordingly, the algorithm converts the input CFA image to four sub-
bands with a simple one-level reversible 5/3 wavelet transform and encodes each subband
separately by scanning subband coefficients in a raster scan order and predicting each co-
efficient with its four causal neighboring coefficients by using a statistic-based prediction
scheme. The prediction residue is encoded with adaptive Rice code. The decoding process
is just the reverse process of encoding. Figure 3.7 shows the structure of this compression
method.

3.5.1 Statistic-Based Prediction

As already mentioned, coefficients in each subband are handled in a raster scan order.
Figure 3.8a shows the arrangement of four coefficients which are closest, in terms of their
distance, to c0, which is the coefficient under consideration. These four neighbors are
used to predict the value of c0 since they are highly correlated with c0 and available when
decoding c0. The predicted value of c0 is computed as

c
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c
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c
0
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FIGURE 3.8

Subband coefficient c0 and its causal adjacent neighbors used in statistic-based prediction: (a) causal template,

and (b) four possible optimal prediction directions for c0.
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94 Computational Photography: Methods and Applications

ĉ0 =
4

∑
k=1

wkck, (3.16)

where wk is the weight associated with the coefficient ck. These weights are constrained as
w1 +w2 +w3 +w4 = 1 and indicate the likelihood of the neighboring coefficients to have a
value closest to that of c0 under a condition derived based on the local value distribution of
the coefficients. The likelihood is estimated with the frequency of the corresponding event
occurred so far while processing the coefficients in the same subband.

Using the template shown in Figure 3.8a, the optimal neighbor of c0 is one which mini-
mizes the difference to c0, as follows:

argmin
ck
|ck− c0|, for k = 1,2,3,4. (3.17)

When there are more than one optimal neighbors, one of them is randomly selected. The
optimal neighbor of c0 can be located in any of four directions shown in Figure 3.8b. The
direction from c0 to its optimal neighbor is referred to as the optimal prediction direction
of c0 and its corresponding index value is denoted as dc0 hereafter.

The weights needed for predicting c0 can be determined as follows:

wk = Prob(dc0 = k|dc1 ,dc2 ,dc3 ,dc4), for k = 1,2,3,4, (3.18)

where dc j is the index value of the optimal prediction direction of the coefficient c j. The
term Prob(dc0 = k|dc1 ,dc2 ,dc3 ,dc4) denotes the probability that the optimal prediction di-
rection index of c0 is k under the condition that dc1 , dc2 , dc3 , and dc4 are known.

Since dc0 and hence Prob(dc0 = k|dc1 ,dc2 ,dc3 ,dc4) are not available during decoding, to
predict the current coefficient c0 in this method the probability is estimated as follows:

Prob(dc0 = k|dc1 ,dc2 ,dc3 ,dc4) =
C(k|dc1 ,dc2 ,dc3 ,dc4)

∑4
j=1C( j|dc1 ,dc2 ,dc3 ,dc4)

, for k = 1,2,3,4, (3.19)

where C(·|·) is the current value of a conditional counter used to keep track of the occur-
rence frequency of k being the optimal prediction direction index of a processed coefficient
whose western, northwestern, northern and northeastern neighbors’ optimal prediction di-
rection indices are dc1 , dc2 , dc3 , and dc4 , respectively.

Since dc j ∈ {1,2,3,4} for j = 1,2,3,4, there are totally 256 possible combinations of dc1 ,
dc2 , dc3 , and dc4 . Accordingly, 256×4 counters are required and a table of 256×4 entries
needs to be constructed to maintain these counters. This table is initialized with all entries
set to one before the compression starts and is updated in the course of the compression.
As soon as the coefficient c0 is encoded, counter C(dc0 |dc1 ,dc2 ,dc3 ,dc4) is increased by
one to update the table. With the table which keeps track of the occurrence frequencies
of particular optimal prediction direction index values when processing the subband, the
predictor can learn from experiences to improve its prediction performance adaptively.

3.5.2 Subband Coding

Entropy coding is used to remove the redundancy carried in the prediction residue of
each subband. The prediction error of a subband coefficient is given by

e(i, j) = c(i, j)− ĉ(i, j), (3.20)
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Lossless Compression of Bayer Color Filter Array Images 95

where c(i, j) is the real coefficient value and ĉ(i, j) is the predicted value of c(i, j). Similar
to the approach presented in Section 3.4.3, the error residue e(i, j) is mapped to a nonneg-
ative integer E(i, j) with Equation 3.10 and encoded with adaptive Rice code.

When estimating the expectation value of E(i, j) for obtaining the optimal coding pa-
rameter λ for Rice code with Equations 3.12, 3.13, and 3.14, the local mean of E(i, j) is
adaptively estimated with the causal adjacent mapped errors as follows:

Mi, j =
1
4 ∑

(m,n)∈ξi, j

E(m,n), (3.21)

where ξi, j = {E(i−1, j),E(i−1, j−1),E(i−1, j+1),E(i, j−1)}. Note that the members
of ξi, j are derived based on the coefficients in the same subband and they all have the same
nature. This estimation thus differs from the approach presented in Section 3.4.3 where the
members of ξi, j are obtained using samples from different color channels and hence should
not be used to derive the local mean of E(i, j).

With Mi, j available, the expectation value of E(i, j) is estimated adaptively using Equa-
tion 3.14. Through a training process similar to that discussed in Section 3.4.3, the weight-
ing factor α is set to one. The term µ̃ is updated for each E(i, j).

3.6 Simulation Results

Simulations were carried out to evaluate the performance of various lossless coding algo-
rithms for CFA images. In the first experiment, twenty-four full-color images (Figure 3.9a)
of size 768×512 pixels with eight bits per color component representation from the Kodak
test database [30] were sampled using the Bayer pattern to generate the test CFA images. In
the second experiment, sixteen real raw Bayer sensor images (Figure 3.9b) captured with
Nikon D200 camera were used as the test images. This camera has a 10M-pixel CCD image
sensor which can output a raw Bayer sensor image with resolution of 3898× 2614 pixels
and twelve bits per color component representation. DCRAW software [31] was used to
extract raw image data from native Nikon Electronic Format (NEF).

Coding approaches considered here can be classified into three categories:

• Standard or de facto standard approaches for compressing a gray-level or full-color
image: These approaches exploit various kinds of coding techniques such as LZW
coding and wavelet transform coding to reduce the bit rate. However, none of these
algorithms is dedicated to handling CFA images.

• Preprocessing-driven approaches which transform a CFA image into a form that can
be handled using the first category of approaches: Quincunx separation was used here
as the preprocessing step. The approaches based on JPEG-LS and JPEG2000 after
quincunx separation are respectively referred to as (S+JLS) [21] and (S+J2K) [32].

• Dedicated compression algorithms for CFA images: This category includes algo-
rithms presented in References [23] and [24], Section 3.4, and Section 3.5 which are
referred here to as LCCMI, CP and SL, respectively.
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(a)

(b)

FIGURE 3.9

Test images: (a) Kodak image set – referred to as Images 1 to 24 in raster scan order, and (b) real raw Bayer

image set captured with a Nikon D200 camera – referred to as Images 25 to 40 in raster scan order.

3.6.1 Bit Rate Comparison

Table 3.1 shows the output bit rates achieved by various coding approaches for the CFA
images extracted from the Kodak image set. The coding performance is measured in terms
of bits per pixel (bpp). It can be seen that the three dedicated compression algorithms
outperform all other evaluated methods remarkably due to their CFA-centric design char-
acteristics.

It can further be observed that the preprocessing step can significantly improve the per-
formance of JPEG-LS [19]. This may be due to the fact that JPEG-LS relies heavily on
prediction under the assumption that the spatial correlation of the input image is very high.
The preprocessing step makes the assumption valid and hence helps. However, the same
preprocessing step does not work when JPEG2000 is used. JPEG2000 is based on wavelet
transform coding which is not as sensitive to the validity of the assumption as predictive
coding.
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Lossless Compression of Bayer Color Filter Array Images 97

TABLE 3.1
Bit rates (in bpp) achieved by various lossless coding approaches for the Kodak image set. The original
input is an 8-bit CFA image of size 768×512 pixels.

Lossless coding approaches

Image LZW PNG JPEG-LS JPEG2000 S+JLS S+J2K LCCMI CP SL

1 8.773 6.472 6.403 5.825 5.944 6.185 5.824 5.497 5.613
2 7.796 6.425 6.787 5.142 4.632 4.847 4.629 4.329 4.513
3 6.843 6.003 5.881 4.225 4.117 4.311 3.965 3.744 3.882
4 8.209 6.621 6.682 4.941 4.827 4.966 4.606 4.367 4.514
5 8.849 6.567 6.470 5.956 6.187 6.516 5.859 5.427 5.586
6 7.598 6.015 5.870 5.219 5.220 5.412 5.139 4.894 4.966
7 7.222 6.085 5.974 4.509 4.426 4.716 4.299 3.989 4.193
8 8.969 6.507 6.295 5.908 6.044 6.408 5.966 5.635 5.716
9 6.590 5.556 5.074 4.400 4.440 4.597 4.319 4.192 4.285
10 6.998 5.768 5.395 4.565 4.558 4.810 4.415 4.226 4.377
11 7.447 5.951 5.370 4.995 5.070 5.319 4.952 4.693 4.790
12 6.942 6.076 5.628 4.494 4.404 4.617 4.308 4.097 4.228
13 9.325 6.762 6.747 6.381 6.568 6.795 6.503 6.130 6.188
14 8.324 6.428 6.288 5.565 5.740 6.011 5.487 5.169 5.261
15 7.622 6.406 6.317 4.666 4.335 4.591 4.396 4.098 4.312
16 6.632 5.448 5.289 4.561 4.724 4.913 4.521 4.387 4.407
17 6.857 5.277 4.965 4.556 4.801 5.018 4.499 4.286 4.384
18 8.672 6.474 6.184 5.579 5.766 5.961 5.538 5.274 5.328
19 7.727 5.905 5.470 4.918 5.084 5.219 4.898 4.747 4.795
20 5.338 4.202 4.317 4.035 3.402 3.685 4.054 3.542 3.902
21 7.292 5.944 5.467 5.048 5.073 5.260 4.983 4.804 4.843
22 8.311 6.410 6.188 5.227 5.239 5.417 5.060 4.842 4.938
23 7.902 7.014 6.827 4.536 4.097 4.205 3.960 3.839 3.936
24 7.857 5.971 5.719 5.232 5.401 5.759 5.257 4.895 5.010

Average 7.671 6.095 5.900 5.020 5.004 5.231 4.893 4.629 4.749

Table 3.2 lists bit rates for various coding approaches evaluated on real raw Bayer sensor
images. Similar to the previous experiment, CP provides the lowest output bit rate among
all the evaluated coding approaches. Note that the original bit rate is twelve bits per pixel
for this test set. The compression ratio is hence around two to one. As compared with the
original storage format (NEF), CP can save up to 1.558M bytes per image on average.

For this test database, quincunx separation helps both JPEG-LS and JPEG2000 to reduce
the output bit rates; achieving significant improvements against JPEG-LS and even outper-
forming LCCMI. This can be explained based on the observation that the spatial correlation
increases with image resolution. The larger the image size, the higher the spatial correlation
of the output of quincunx separation is and the more suitable it is for JPEG-LS compres-
sion. Based on this finding, it may be worth exploring if there is a better preprocessing step
to allow better coding performance using JPEG-LS.

3.6.2 Complexity Comparison

Table 3.3 allows comparison of various coding approaches in terms of their execution
time on a personal computer equipped with a 3.0 GHz Pentium IV processor and 2 GB
RAM. For each evaluated coding approach, all CFA images in the same testing set were
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TABLE 3.2
Bit rates (in bpp) achieved by various lossless coding approaches for the real raw Bayer sensor image set. The
original input is a 12-bit CFA image of size 3898×2614 pixels.

Lossless coding approaches

Image LZW PNG JPEG-LS JPEG2000 S+JLS S+J2K LCCMI CP SL NEF

25 11.613 10.828 7.551 6.584 6.535 6.726 6.523 6.172 6.304 7.615
26 10.596 10.344 8.637 5.948 5.470 5.521 5.522 5.382 5.403 6.331
27 11.136 9.839 8.438 6.551 6.108 6.277 6.321 6.085 6.132 7.364
28 11.511 10.447 8.058 6.381 6.024 6.186 6.247 6.014 6.035 7.163
29 10.454 8.935 6.981 5.489 5.137 5.211 5.387 5.295 5.244 6.867
30 12.202 11.147 8.796 6.993 6.742 6.958 6.804 6.483 6.582 7.633
31 11.658 10.242 7.013 6.528 6.364 6.379 6.623 6.408 6.368 6.805
32 11.962 10.944 7.994 6.373 6.198 6.332 6.220 5.970 6.015 7.375
33 11.546 10.725 7.290 6.295 6.145 6.360 6.124 5.840 5.952 7.551
34 12.040 10.727 7.920 6.812 6.596 6.679 6.769 6.537 6.523 7.466
35 12.669 10.882 8.667 6.933 6.621 6.670 6.779 6.505 6.595 8.051
36 11.668 10.809 8.708 6.784 6.526 6.717 6.660 6.395 6.435 7.413
37 11.446 10.530 8.585 6.948 6.633 6.804 6.852 6.607 6.609 7.448
38 10.106 9.925 6.866 5.660 5.460 5.589 5.476 5.288 5.347 6.991
39 11.864 10.955 7.705 6.364 6.192 6.390 6.201 5.925 6.001 7.339
40 11.713 10.552 7.752 6.566 6.534 6.735 6.461 6.127 6.252 8.158

Average 11.512 10.489 7.935 6.450 6.206 6.346 6.311 6.065 6.112 7.348

individually compressed ten times and the average processing time per image was recorded.
As can be seen, JPEG-LS is the the most efficient approach among considered approaches.
On average, it is almost twice as fast as other approaches among which SL shows the
highest efficiency when handling large real raw CFA images. Finally, it should be noted
that comparing the processing time for JPEG-LS and S+JLS indicates low complexity of
quincunx separation.

3.7 Conclusion

Compressing the CFA image can improve the efficiency of in-camera processing as one
can skip the demosaicking process to eliminate the overhead. Without the demosaicking
step, no extra redundant information is added to the image to increase the loading of the
subsequent compression process. Since digital camera images are commonly stored in
the so-called “raw” format to allow their high quality processing on a personal computer,
lossless compression of CFA images becomes necessary to avoid information loss. Though
a number of lossy compression algorithms have been proposed for coding CFA images [6],
[7], [10], [11], [12], [13], [14], [15], [16], [17], [18], only a few lossless compression
algorithms have been reported in literature [23], [24], [25], [33].

This chapter revisited some common lossless image coding techniques and presented two
new CFA image compression algorithms. These algorithms rely on predictive and entropy
coding to remove the redundancy using the spatial correlation in the CFA image and the
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TABLE 3.3
Average execution time (in seconds per frame) for compressing images from two test sets.

Lossless coding approaches

Image Set JPEG-LS JPEG2000 S+JLS S+J2K LCCMI CP SL

Kodak Set 0.0294s 0.0689s 0.0357s 0.0751s 0.0533s 0.0687s 0.0583s
Real Raw Set 0.7571s 1.7343s 0.9626s 1.9711s 1.8215s 1.8409s 1.6954s

TABLE 3.4
Approaches used in algorithms CP and SL to remove the image redundancy.

Approach

Redundancy CP SL

Interchannel redundancy Operates in color difference domain Uses integer Mallat wavelet packet
transform

Spatial redundancy Linear prediction with 4 neighbors, Linear prediction with 4 neighbors,
the neighbor whose context is
closer to that of the pixel of interest
is weighted more

the neighbor whose value is more
likely to be the closest to that of the
pixel of interest is weighted more

Statistical redundancy Adaptive Rice code Adaptive Rice code

statistical distribution of the prediction residue. Table 3.4 highlights the approaches used
in the proposed CP and SL algorithms to remove various kinds of data redundancy.

Extensive experimentation showed that CP provides the best average output bit rates for
various test image databases. An interesting finding is that quincunx separation greatly en-
hances the performance of JPEG-LS. When the input CFA image is large enough, quincunx
separation produces gray-level images with strong spatial correlation characteristics and
hence JPEG-LS can compress them easily. Considering its low computational complexity,
S+JLS could be a potential rival for dedicated CFA image compression algorithms. On the
other hand, since S+JLS does not remove the interchannel redundancy during compression,
well-designed dedicated CFA coding algorithms which take the interchannel redundancy
into account should be able to achieve better compression ratios than S+JLS.

Compressing raw mosaic-like single-sensor images constitutes a rapidly developing re-
search field. Despite recent progress, a number of challenges remain in the design of low-
complexity high-performance lossless coding algorithms. It is therefore expected that there
will be new CFA image coding algorithms proposed in the near future.
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4.1 Introduction

The quality of an image captured by a camera is influenced primarily by three main
factors; namely, the three-dimensional (3D) scene consisting of the objects present in it,
the illuminant(s) or radiations received by the scene from various sources, and the camera
characteristics (of its optical lenses and sensors). In a typical scenario, the 3D scene and the
camera may be considered as invariants, whereas the illumination varies depending on the
nature of the illuminant. For example, the same scene may be captured at different times
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of the day. The pixel values of these images then would be quite different from each other
and the colors may also be rendered differently in the scene.

Interestingly, a human observer is able to perceive the true colors of the objects even in
complex scenes with varying illumination. Restoration of colors from varying illumination
is also known as solving for color constancy of a scene. The objective of the computation of
color constancy is to derive an illumination-independent representation of an image, so that
it could be suitably rendered with a desired illuminant. The problem has two components,
one in estimating the spectral component of the illuminant(s) and the other one in perform-
ing the color correction for rendering the image with a target illumination. The latter task
is usually carried out by following the Von Kries equation of diagonal correction [1].

Another factor involved in the visualization of a color image is the color reproduction
capability of a display device depending upon its displayable range of color gamut and the
brightness range it can handle. The captured image may also have a poor dynamic range of
brightness values due to the presence of strong background illumination. In such situations,
for good color rendition in a display device, one may have to enhance an image. This
enhancement is mostly done independent of solving for color constancy; as usually, the
illuminants are assumed to be invariant conventional sources. However, one may require
to apply both color correction and enhancement for the display of color images, when the
scene suffers from both widely varying spectral components and brightness of illuminants.

Several methods have been reported in the literature for solving these problems, mostly in
the spatial representation of images. However, as more and more imaging devices are pro-
ducing end results in the compressed domain, namely in the block discrete cosine transform
(DCT) space of Joint Photographic Experts Group (JPEG) compression, it is of interest to
study these methods in that domain. The primary objective for processing these images di-
rectly in the compressed domain is to reduce the computational and storage requirements.
Due to the processing of the compressed images in their own domain, the computational
overhead on inverse and forward transforms of the spatial domain data into a compressed
domain gets eliminated by this process. In particular, processing in the DCT domain has
drawn significant attention of the researchers due to its use in the JPEG and Moving Picture
Experts Group (MPEG) compression standards. There are also other advantages of using
compressed domain representation. One may exploit the spectral separation of the DCT
coefficients in designing these algorithms.

This chapter discusses the two above aspects of color restoration. Unlike previous work
which dealt with color correction and color enhancement of images represented in the block
DCT space of JPEG compression independently, this chapter presents the color restoration
task as a combination of these two computational stages. Here, restoration of colors is not
considered from a noisy environment, the attention is rather focused on the limitation of
sensors and display devices due to varying illumination of a scene.

The following section presents the fundamentals related to the block DCT space. These
are required to understand and to design algorithms in this space. Next, the color constancy
problem is introduced and different methods for solving this problem with the DCT co-
efficients [2] are discussed. This is followed by the discussion on color enhancement in
the compressed domain. A simple approach based on scaling of DCT coefficients is also
elaborated here. Finally, some examples of color restoration using both color correction
and enhancement are shown and discussed.
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4.2 DCT: Fundamentals

The DCT of an N×N block of a two-dimensional (2D) image {x(m,n),0 ≤ m ≤ N−
1,0≤ n≤ N−1} is given by

C(k, l) =
2
N

α(k)α(l)
N−1

∑
m=0

N−1

∑
n=0

(
x(m,n) · cos

(
(2m+1)πk

2N

)
cos

(
(2n+1)πl

2N

))
, (4.1)

where 0≤ k, l ≤ N−1 and α(p) is defined as

α(p) =

{√
1
2 for p = 0,

1 otherwise.
(4.2)

The C(0,0) coefficient is the DC coefficient and the rest are called AC coefficients for a
block. The normalized transform coefficients ĉ(k, l) are defined as

ĉ(k, l) =
C(k, l)

N
. (4.3)

Let µ and σ denote the mean and standard deviation of an N×N image. Then µ and σ
are related to the normalized DCT coefficients as given below:

µ = ĉ(0,0), (4.4)

σ =

√
N−1

∑
k=0

N−1

∑
l=0

ĉ(k, l)2−µ2. (4.5)

In fact, from Equation 4.5, it is obvious that the sum of the square of the normalized AC
coefficients provides the variance of the image. Hence, any change in the DC component
does not have any bearing on its standard deviation (σ ). These two statistical measures
computable directly in the compressed domain, are quite useful for designing algorithms
of color constancy and enhancement. Moreover, there exist two interesting relationships
between the block DCT coefficients, namely the relationship between the coefficients of
adjacent blocks [3] and between the higher order coefficients and the lower ones (or sub-
band relationship) [4]. Using these relationships, one may efficiently compose or decom-
pose DCT blocks, or perform interpolation or decimation operations. For details, refer to
the discussion in Reference [5].

4.3 Computation of Color Constancy

The major challenge in the computation of the color constancy is to estimate the spectral
components of the illuminant, mainly three components in the Red (R), Green (G) and
Blue (B) spectral zones. Many techniques have been reported to address this problem;

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

4:
05

 0
9 

M
ay

 2
01

6 



106 Computational Photography: Methods and Applications

comprehensive surveys are available in References [6], [7], and [8]. All these techniques
solve the color constancy problem in the spatial representation of the images in the RGB
color space. In this chapter, the solution of this problem is considered in the block DCT
space. Moreover, since the color space in JPEG compression is YCbCr, the Von Kries
model will be adapted in the YCbCr space and demonstrated how this model could be
further simplified for obtaining reasonably good results with less computation.

In a simplified model [6], assuming all the reflecting bodies as ideal 2D flat Lambertian
surfaces, the brightness I(x) at an image coordinate x is related to the illuminant property
of the surface and camera sensor as follows:

I(x) =
∫

ω
E(λ )RX(λ )S(λ )dλ , (4.6)

where E(λ ) is the spectral power distribution (SPD) of the incident illuminant, X is the
surface point projected on x, RX(λ ) represents the surface reflectance spectrum at that point,
and S(λ ) is the relative spectral response of the sensor. The responses are accumulated over
the range of wavelength ω on which the sensors are active. In this chapter, it is assumed
that there is a single illuminant for a scene.

In an optical color camera with three sensors, each sensor operates on different zones
of the optical wavelengths namely with small wavelengths (Blue zone), mid wavelength
range (Green zone) and large wavelengths (Red zone). Computation for color constancy
involves estimating E(λ ) from these three responses. Typically, the SPD of the illuminant
for the three different zones of the optical range of wavelengths needs to be estimated. It is
explained in Reference [6] that the problem is underconstrained (the number of unknowns
are more than the number of observations). That is why many researchers have taken
additional assumption to reduce the number of unknowns.

Namely, in the gray world assumption [9], [10], average reflectance of all surfaces is
taken as gray or achromatic. Hence, the average of color components provides the colors
of the incident illuminant. This approach has been also extended in the gradient space of
images [11], where it is assumed that the average edge difference in a scene is achromatic.
This hypothesis is termed the gray edge hypothesis. Some researchers [12] assume the
existence of a white object in the scene; this assumption is referred to as the white world
assumption. In this case, the maximum values of individual color components provide the
colors of the incident illuminant. However, the method is very much sensitive over the
dynamic ranges of the sensors; although, given a scene whose dynamic range of brightness
distribution is in accordance with the linear response of the sensor, this assumption works
well in many cases. More recent trend on solving color constancy problem is to use sta-
tistical estimation techniques with prior knowledge on the distribution of pixels in a color
space given known camera sensors and source of illumination. In these techniques, an illu-
minant (or a set of illuminants) is chosen from a select set of canonical illuminants based
on certain criteria. There are color gamut mapping approaches both in the 3D [13] and the
2D [14] color spaces, where one tries to maximize the evidence of color maps with known
color maps of canonical illuminants. Reference [6] reports a color by correlation technique
which attempts to maximize a likelihood of an illuminant given the distribution of pixels in
the 2D chromatic space. The same work shows that many other algorithms, like the gamut
mapping method in the 2D chromatic space, could be implemented under the same frame-
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Color Restoration and Enhancement in the Compressed Domain 107

work. Note that all these techniques require significant amount of storage space for storing
the statistics of each canonical illuminant. As one of the motivations in this chapter is to
reduce the storage requirement for efficient implementation in the block DCT space, a sim-
ple nearest neighbor (NN) classification approach for determining the canonical illuminant
has also been explored. Interestingly, it is found that the nearest neighbor classification in
the 2D chromatic space performs equally well as other existing techniques such as color by
correlation [6] or gamut mapping [14].

Once the SPDs of the illuminant in three spectral zones are estimated, the next step is to
convert the pixel values to those under a target illuminant (which may be fixed to a standard
illumination). This computation is performed by the diagonal color correction following
the Von Kries model [1]. Let Rs, Gs and Bs be the spectral components for the source
illuminant (for Red, Green and Blue zones). Let the corresponding spectral components
for the target illuminant be Rd , Gd and Bd . Then, given a pixel in RGB color space with
R, G, and B as its corresponding color components, the updated color components, Ru, Gu,
and Bu, are expressed as follows:

kr =
Rd

Rs
, kg =

Gd

Gs
, kb =

Bd

Bs
,

f =
R+G+B

krR+ kgG+ kbB
, (4.7)

Ru = f krR, Gu = f kgG, Bu = f kbB.

The next section discusses the usage of these techniques in the block DCT domain.

4.4 Color Constancy with DCT coefficients

All the spatial domain techniques for solving the color constancy could be extended in
the block DCT space by treating the array of DC coefficients only, which is a low resolu-
tion or subsampled version of the original image. However, there are two things one needs
to take care of during this treatment. First, the color space used in the JPEG standard is
YCbCr. Next, one should take care of visible blocking artifacts, if any, due to the inde-
pendent treatment of the DC coefficients in each block. However, as the estimation of the
spectral components of the illuminant takes into account of all the DC coefficients together,
blocking artifacts do not make their appearances in most cases. These can be established
by using a measure of the quality of JPEG images in the experimentation.

4.4.1 Color Constancy in the YCbCr Color Space and Proposed Variations

The YCbCr color space is related to the RGB space as given below:

Y = 0.502G+0.098R+0.256B,
Cb = −0.290G+0.438R−0.148B+128,
Cr = −0.366G−0.071R+0.438B+128,

(4.8)

assuming eight bits for each color component.
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108 Computational Photography: Methods and Applications

For implementing the gray world algorithm in the YCbCr space, one can directly obtain
the mean values by computing the means of the DC coefficients in individual Y , Cb and Cr
components. However, finding the maximum of a color component is not a linear operation.
Hence, for the white world algorithm, one needs to convert all the DC coefficients in the
RGB space and then compute their maximum values. To this end, a simple heuristic can
be used; it is assumed here that the color of the maximum luminance value is the color of
the illuminant. This implies that only the maximum in the Y component is computed and
the corresponding Cb and Cr values at that point provide the color of the illuminant. This
significantly reduces the computation, as it does not require conversion of DC values from
the YCbCr space to RGB space. Further, the maximum finding operation is restricted to
one component only. This assumption is referred to as white world in YCbCr.

With regard to the statistical techniques, the color by correlation technique [6] and the
gamut mapping approach in 2D chromatic space [14] were adapted here for use in the
YCbCr space. Naturally, CbCr was chosen as the chrominance space instead of rg space
as used in Reference [6], where r = R/(R+G+B) and g = G/(R+G+B). This space
was discretized into 32×32 cells to accumulate the distribution of pixels. A new statistical
approach based on the nearest neighbor classification was also explored; this approach
will be described in the following subsection. Note that there are other techniques, such
as neural network-based classification [15], probabilistic approaches [16], [17], [18], and
gamut mapping in the 3D color space [13], which are not considered in this study.

4.4.2 Color by Nearest Neighbor Classification

In this method, the computation is only performed in the 2D chromatic space. Let C ∈
Cb×Cr denote the SPD of an illuminant in the CbCr space which follows a 2D Gaussian
distribution as described below:

p(C) =
1

2π|Σ| 1
2

e−
1
2 (C−µ)Σ−1(C−µ)t

, (4.9)

where µ(= [µCb µCr]) is the mean of the distribution and Σ is the covariance matrix defined
as

Σ(=
[

σ2
Cb σCbCr

σCbCr σ2
Cr

]
).

Following the Bayesian classification rule and assuming that all the illuminants are
equally probable, a minimum distance classifier can be designed. Let the mean chromatic
components of an image be Cm. Then, for an illuminant L with the mean µL and the covari-
ance matrix ΣL, the distance function for the nearest neighbor classifier is nothing but the
Mahalanobis distance function [19], as defined below:

d(Cm,µL) = (Cm−µL)Σ−1
L (Cm−µL)t . (4.10)

4.4.3 Color Correction in the YCbCr space

In the JPEG standard, the DCT coefficients of the color components are in the YCbCr
color space. As a result, it would be necessary to convert every DC coefficient to the
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Color Restoration and Enhancement in the Compressed Domain 109

RGB color space for applying the diagonal correction of Equation 4.7. Additionally it also
would be necessary to transform back the updated color values to the YCbCr space. The
color space transformations can be avoided by performing the diagonal correction directly
in the YCbCr space as outlined in the following theorem.

Theorem 4.1
Let kr, kg, and kb be the parameters for diagonal correction as defined in Equation 4.7.
Given a pixel with color values in the YCbCr color space, the updated color values Yu, Cbu,
and Cru are expressed by the following equations:

C′b = Cb−128,

C′r = Cr−128,

f =
3.51Y +1.63C′b +0.78C′r

1.17(kr + kg + kb)Y +(2.02kb−0.39kg)C′b +(1.6kr−0.82kg)C′r
,

Yu = f ((0.58kg +0.12kb +0.30kr)Y +0.2(kb− kg)C′b +0.41(kr− kg)C′r),
Cbu = f ((0.52kb−0.34kg−0.18kr)Y +(0.11kg +0.89kb)C′b +0.24(kg− kr)C′r)+128,

Cru = f ((0.52kr−0.43kg−0.09kb)Y +0.14(kg− kb)C′b +(0.3kg +0.7kr)C′r)+128.

The proof of the above theorem is straightforward. However, one should note that the
number of multiplications and additions in the above equations does not get reduced com-
pared to the diagonal correction method applied in the RGB color space. 2

4.4.4 Color Correction by Chromatic Shift

Because the chromatic components are more decorrelated in the YCbCr space, one may
apply the heuristics of color correction using the shift in the chromatic components of
a target illuminant with respect to the source illuminant. In fact, Reference [20] reports
that with this simple measure good quality of color rendition (or transfer) is possible. Let
Yd , Cbd and Crd be the color components of a target illuminant in the YCbCr space and
the corresponding components in the source illuminant are Ys, Cbs and Crs. Then color
correction by the chromatic shift (CS) is expressed by the following equation.

Yu = Y,
Cbu = Cb +Cbd −Cbs,
Cru = Cr +Crd −Crs.

(4.11)

4.5 Benchmark Dataset and Metrics of Comparison

The image dataset [21] captured using different illuminants was used to evaluate the
performances of different algorithms. This dataset is available at http://www.cs.sfu.ca/
∼colour/data. For every scene, it also provides an estimate of the spectral components
of the illuminant in the RGB color space. These were used here for collecting the statistics
(means and covariance matrices of the SPD of the illuminants) related to the nearest neigh-
bor classification-based technique. Further, from the chromatic components of the images

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

4:
05

 0
9 

M
ay

 2
01

6 

http://www.cs.sfu.ca/~colour/data
http://www.cs.sfu.ca/~colour/data


110 Computational Photography: Methods and Applications

(a) (b) (c)

FIGURE 4.1

Images of the same scene (ball) captured under three different illuminants: (a) ph-ulm, (b) syl-50mr16q, and

(c) syl-50mr16q+3202.

captured under different illuminants statistics related to the color by correlation and gamut
mapping techniques are formed. It should be mentioned that all these techniques provide
the estimate of an illuminant as its mean SPD in the RGB or YCbCr color space.

Experiments were performed using the images with objects having minimum specular-
ity. Though the scenes are captured at different instances, it was observed that the images
are more or less registered. The images are captured by three different fluorescent lights,
four different incandescent lights and also each of them in conjunction with a blue filter
(Roscolux 3202). In these experiments, Sylvania 50MR16Q is taken as the target illumi-
nant, as it is quite similar to a regular incandescent lamp. The list of different illuminants is
given in Table 4.1. Figure 4.1 shows a typical set of images for the same scene under some
of these illuminants.

Different metrics were used to compare the performances of all techniques in the block
DCT domain as well as their performances with respect to different spatial domain algo-
rithms. Four metrics described below, reported earlier in References [7] and [8], were also
used for studying the performances of different algorithms in estimating the spectral com-
ponents of illuminants. Let the target illuminant T be expressed by the spectral component
triplet in the RGB colors-pace as (RT ,GT ,BT ) and let the corresponding estimated illumi-
nant be represented by E = (RE ,GE ,BE). The respective illuminants in the (r,g) chromatic

TABLE 4.1
List of illuminants.

Name Nature of Source Short Name

Philips Ultralume Fluorescent ph-ulm
Sylvania cool white Fluorescent syl-cwf
Sylvania warm white Fluorescent syl-wwf
Sylvania 50MR16Q Incandescent syl-50mr16q
Sylvania 50MR16Q with blue filter syl-50mr16q+3202
Lamp at 3500K temperature Incandescent solux-3500
Lamp at 3500K with blue filter solux-3500+3202
Lamp at 4100K temperature Incandescent solux-4100
Lamp at 4100K with blue filter solux-4100+3202
Lamp at 4700K temperature Incandescent solux-4700
Lamp at 4700K with blue filter solux-4700+3202
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Color Restoration and Enhancement in the Compressed Domain 111

space can be expressed as (rT ,gT ) = (RT /ST ,GT /ST ) and (rE ,gE) = (RE/SE ,GE/SE),
where ST = RT + GT + BT and SE = RE + GE + BE . Then, different performance metrics
can be defined as follows:

∆θ = cos−1( T◦E
|T ||E|),

∆rg = |(rT −gT ,rE −gE)|,
∆RGB = |T −E|,
∆L = |ST −SE |,

(4.12)

where ∆θ , ∆rg, ∆RGB, and ∆L denote the angular, rg, RGB, and luminance error, respec-
tively. In the above definitions, ◦ denotes the dot product between two vectors and |.|
denotes the magnitude of the vector.

Next, the performances on image rendering were studied for different algorithms after
applying the color correction with the estimated illuminants. It was observed that the im-
ages in the dataset are roughly registered. In the experiment, the image captured at the
target illuminant (syl-50mr16q) is considered to be the reference image. The images ob-
tained by applying different color constancy algorithms are compared with respect to this
image. Two different measures were used for this purpose; the usual PSNR measure and
the so-called WBQM similarity measure proposed in Reference [22]. The latter measure
was used because the reference images are not strongly registered. For two distributions x
and y, the WBQM between these two distributions is defined as follows:

WBQM(x,y) =
4σ 2

xyx̄ȳ
(σ 2

x +σ2
y )(x̄2 + ȳ2)

, (4.13)

where σx and σy are the standard deviations of x and y, respectively, x̄ with ȳ denoting
their respective means, and σ2

xy is the covariance between x and y. It may be noted that
this measure takes into account the correlation between the two distributions and also their
proximity in terms of brightness and contrast. The WBQM values should lie in the interval
[−1,1]. Processed images with WBQM values closer to one are more similar in quality
according to human visual perception. Applying WBQM independently to each component
in the YCbCr space provides Y-WBQM, Cb-WBQM, and Cr-WBQM, respectively.

Reference [23] suggests another no reference metric, called here as JPEG qual-
ity metric (JPQM), for judging the image quality reconstructed from the block DCT
space to take into account of visible blocking and blurring artifacts. To measure the
quality of the images obtained by DCT domain algorithms, the source code available
at http://anchovy.ece.utexas.edu/∼zwang/research/nr jpeg quality/index.html was used to
compute JPQM values. It should be noted that for an image with a good visual quality, the
JPQM value should be close to ten.

4.6 Experimental Results on Computation of Color Constancy

For syl-50mr16q as the target illuminant, different color constancy algorithms were used
to render the images captured under other illuminants. Table 4.2 lists the algorithms im-
plemented either in spatial domain or block DCT domain. In subsequent discussion, these
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TABLE 4.2
List of algorithms for estimating the color components of
an illuminant. c© 2009 IEEE

Algorithmic Approach Domain Short Name

Gray world Spatial GRW
Gray world Block DCT GRW-DCT
White world Spatial MXW
White world in RGB Block DCT MXW-DCT
White world in YCbCr Block DCT MXW-DCT-Y
Color by correlation Spatial COR
Color by correlation Block DCT COR-DCT
Gamut mapping Spatial GMAP
Gamut mapping Block DCT GMAP-DCT
Nearest neighbor Spatial NN
Nearest neighbor Block DCT NN-DCT

algorithms are referred to by their short names as given in the table. These are followed
by any one of the two color correction techniques, which is either the diagonal correction
(DGN) method or the chromatic shift (CS) method, as discussed previously.

4.6.1 Estimation of Illuminants

Tables 4.3 to 4.6 compare the performance of different algorithms in estimating the il-
luminants using errors defined earlier in Equation 4.12. The average errors are presented
for each category of illuminant separately, making the performances of different techniques
for estimating illuminants of different nature easier to compare. Note that the compressed
domain techniques are grouped in the upper portion of the tables whereas the results related
to the spatial domain techniques are presented in the bottom of the tables. For each group
the best performances are highlighted by bold numerals.

TABLE 4.3
Average ∆θ for different techniques and various illuminants (IL).†

Method IL1 IL2 IL3 IL4 IL5 IL6 IL7 IL8 IL9 IL10 IL11

GRW-DCT 13.28 11.57 14.90 11.22 22.09 13.19 28.07 15.44 31.70 10.39 18.87
MXW-DCT 11.28 9.98 12.16 7.32 21.52 12.83 25.47 17.47 28.30 7.62 19.55
MXW-DCT-Y 15.26 12.94 17.80 8.30 22.52 13.55 27.55 16.34 29.33 6.04 19.18
COR-DCT 4.30 8.84 5.91 5.74 19.38 9.02 21.96 10.08 20.31 0.43 12.69
GMAP-DCT 4.65 9.99 6.57 6.88 16.40 8.77 16.71 11.42 16.17 0.43 10.09
NN-DCT 7.69 6.94 9.32 10.78 14.65 12.86 12.91 12.56 14.33 0.43 13.15

GRW 10.79 11.77 15.13 10.33 21.31 12.45 27.69 15.31 29.38 9.64 18.56
MXW 29.83 26.65 30.66 26.71 29.90 26.07 32.46 27.30 33.73 27.73 28.30
COR 4.64 10.03 7.28 7.04 21.32 10.06 23.39 9.97 22.05 0.43 15.89
GMAP 4.36 10.93 6.93 5.98 20.74 11.45 21.00 12.42 20.84 0.43 15.09
NN 8.90 13.17 7.50 7.77 11.71 9.60 12.22 13.35 12.87 0.43 10.01

† IL1: ph-ulm, IL2: syl-cwf, IL3: syl-wwf, IL4: syl-50mr16q, IL5: syl-50mr16q+3202, IL6: solux-3500, IL7:

solux-3500+3202, IL8: solux-4100, IL9: solux-4100+3202, IL10: solux-4700, IL11: solux-4700+3202.
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TABLE 4.4
Average ∆rg for different techniques and various illuminants (IL).†

Method IL1 IL2 IL3 IL4 IL5 IL6 IL7 IL8 IL9 IL10 IL11

GRW-DCT 0.093 0.081 0.119 0.087 0.161 0.100 0.205 0.114 0.239 0.075 0.136
MXW-DCT 0.081 0.082 0.089 0.058 0.197 0.112 0.244 0.160 0.278 0.056 0.188
MXW-DCT-Y 0.100 0.080 0.146 0.058 0.157 0.093 0.197 0.113 0.213 0.039 0.131
COR-DCT 0.036 0.060 0.056 0.044 0.129 0.062 0.148 0.071 0.137 0.003 0.086
GMAP-DCT 0.038 0.068 0.061 0.051 0.108 0.060 0.109 0.079 0.107 0.003 0.066
NN-DCT 0.058 0.054 0.085 0.082 0.102 0.093 0.090 0.089 0.099 0.003 0.092

GRW 0.078 0.081 0.135 0.078 0.146 0.087 0.191 0.107 0.206 0.077 0.127
MXW 0.199 0.186 0.211 0.176 0.271 0.195 0.317 0.217 0.339 0.177 0.240
COR 0.038 0.064 0.070 0.049 0.143 0.065 0.158 0.066 0.151 0.003 0.103
GMAP 0.037 0.073 0.064 0.045 0.139 0.078 0.142 0.086 0.142 0.003 0.100
NN 0.073 0.096 0.074 0.064 0.082 0.072 0.085 0.095 0.090 0.003 0.073

TABLE 4.5
Average ∆RGB for different techniques and various illuminants (IL).†

Method IL1 IL2 IL3 IL4 IL5 IL6 IL7 IL8 IL9 IL10 IL11

GRW-DCT 247.5 243.6 243.8 217.1 246.2 228.1 259.7 250.2 259.4 229.9 251.3
MXW-DCT 114.6 121.7 108.7 93.4 155.1 122.9 173.9 151.9 176.6 96.6 155.1
MXW-DCT-Y 139.7 145.0 143.0 105.2 179.8 140.4 205.2 171.3 209.8 109.0 181.0
COR-DCT 60.0 71.2 70.1 63.9 117.6 74.1 128.3 75.0 122.8 52.9 92.5
GMAP-DCT 60.6 71.0 75.2 65.1 102.8 75.8 103.2 83.4 102.1 52.9 83.4
NN-DCT 81.4 65.0 74.3 78.6 99.6 89.6 87.4 87.4 89.8 52.9 91.7

GRW 241.5 237.1 239.7 209.0 241.0 220.4 254.7 244.1 254.1 224.5 246.2
MXW 171.4 164.4 162.9 147.9 172.1 148.4 190.0 172.8 194.0 150.5 171.2
COR 60.7 76.5 71.6 67.2 122.2 78.9 135.1 73.4 131.7 52.9 98.9
GMAP 60.3 75.7 77.6 64.5 130.4 77.9 126.2 84.4 126.0 52.9 103.8
NN 79.9 88.1 72.6 71.5 84.8 78.3 86.3 90.9 85.2 52.9 81.8

TABLE 4.6
Average ∆L for different techniques and various illuminants (IL).†

Method IL1 IL2 IL3 IL4 IL5 IL6 IL7 IL8 IL9 IL10 IL11

GRW-DCT 426.8 420.4 420.8 374.0 420.4 391.8 443.5 429.5 443.7 397.1 432.8
MXW-DCT 179.6 191.8 169.3 147.0 224.6 187.9 259.4 231.0 259.8 156.9 244.4
MXW-DCT-Y 218.0 232.4 224.9 167.4 279.9 224.3 328.3 274.4 335.1 182.6 301.6
COR-DCT 95.0 87.0 105.9 95.6 135.0 95.4 146.5 95.1 146.3 91.3 119.1
GMAP-DCT 93.5 81.0 114.1 89.9 116.4 94.6 114.8 105.4 120.2 91.3 108.3
NN-DCT 125.4 89.2 94.0 95.1 121.5 107.6 105.9 107.8 96.5 91.3 113.1

GRW 416.7 409.2 413.9 359.9 410.8 378.3 434.1 418.7 433.7 388.0 423.8
MXW 189.5 194.8 159.3 129.3 200.3 159.7 237.4 204.3 255.7 127.4 223.0
COR 93.3 90.8 100.5 91.2 133.7 96.6 153.3 90.1 155.5 91.3 116.3
GMAP 94.8 87.9 117.2 93.3 158.5 84.4 150.0 102.0 150.3 91.3 126.7
NN 114.2 102.9 101.2 100.5 101.9 102.7 111.9 110.5 103.8 91.3 109.7

† IL1: ph-ulm, IL2: syl-cwf, IL3: syl-wwf, IL4: syl-50mr16q, IL5: syl-50mr16q+3202, IL6: solux-3500, IL7:

solux-3500+3202, IL8: solux-4100, IL9: solux-4100+3202, IL10: solux-4700, IL11: solux-4700+3202.
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TABLE 4.7
Overall average performances of different techniques on
estimating illuminants. c© 2009 IEEE

Error Measure

Technique ∆θ ∆rg ∆RGB ∆L

GRW-DCT 17.344 0.128 243.390 418.313
MXW-DCT 15.777 0.141 133.729 204.739
MXW-DCT-Y 17.169 0.121 157.243 251.764
COR-DCT 10.790 0.076 84.446 110.245
GMAP-DCT 9.829 0.068 79.654 102.726
NN-DCT 10.515 0.077 81.642 104.362

GRW 16.582 0.119 264.797 407.961
MXW 29.036 0.230 167.849 197.400
COR 12.014 0.083 88.150 110.300
GMAP 11.839 0.083 89.105 114.263
NN 9.780 0.073 79.338 104.661

Comparing different error measures in estimating the illuminants reveals that statistical
techniques perform better than the others in both the compressed domain and spatial do-
main. It is also noted that recovering illuminants in conjunction with the blue filter is more
difficult than those without it. Moreover, with the blue filter, in most cases proposed nearest
neighbor classification-based techniques (NN and NN-DCT) perform better than the oth-
ers. The proposed technique is found to be equally good with respect to the other statistical
techniques such as COR and GMAP. Finally, as shown in Table 4.7 which indicates the
overall performances of all considered techniques in estimating the illuminants, the GMAP
technique is found to have the best performance in the block DCT domain values whereas
the NN algorithm tops the list in all respects in the spatial domain.

4.6.2 Performances After Color Correction

The following presents a few typical results for transferring images to the target illu-
minant. In order to demonstrate the quality of rendering, examples for rendering scenes
of three typical illuminants are considered; namely, ph-ulm which is a fluorescent light
source, solux-4100 which is an incandescent light source, and syl-50mr16q+3202 which is

(a) (b) (c)

FIGURE 4.2 (See color insert.)

Target reference images captured under syl-50mr16q: (a) ball, (b) books, and (c) Macbeth.
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Color Restoration and Enhancement in the Compressed Domain 115

(a) (b) (c)

FIGURE 4.3 (See color insert.)

Source images captured under different illuminations: (a) ball under solux-4100, (b) books under syl-

50mr16q+3202, and (c) Macbeth under ph-ulm.

(a) (b) (c)

FIGURE 4.4 (See color insert.)

Color corrected images for the illuminant solux-4100: (a) MXW-DCT-Y, (b) COR, and (c) COR-DCT.

(a) (b) (c)

FIGURE 4.5

Color corrected images for the illuminant syl-50mr16q+3202: (a) MXW-DCT-Y, (b) COR, and (c) COR-DCT.

(a) (b) (c)

FIGURE 4.6 (See color insert.)

Color corrected images for the illuminant ph-ulm: (a) MXW-DCT-Y, (b) COR, and (c) COR-DCT.
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TABLE 4.8
Performances of different techniques for color correction of the ball from the illuminant
solux-4100 to syl-50mr16q.

Technique correction PSNR Y-WBQM Cb-WBQM Cr-WBQM JPQM

GRW-DCT DGN 32.85 0.93 0.91 0.90 13.32
MXW-DCT DGN 32.23 0.93 0.85 0.88 12.60
MXW-DCT-Y DGN 32.76 0.93 0.91 0.89 13.47
COR-DCT DGN 31.29 0.88 0.89 0.83 14.07
GMAP-DCT DGN 31.29 0.88 0.89 0.83 14.07
NN-DCT DGN 32.79 0.93 0.90 0.90 12.54

GRW DGN 33.49 0.93 0.92 0.92 -
MXW DGN 33.47 0.93 0.92 0.92 -
COR DGN 33.38 0.91 0.92 0.92 -
GMAP DGN 33.43 0.93 0.92 0.92 -
NN DGN 33.43 0.93 0.92 0.92 -

TABLE 4.9
Performances of different techniques for color correction of the books from the illuminant
syl-50mr16q+3202 to syl-50mr16q.

Technique correction PSNR Y-WBQM Cb-WBQM Cr-WBQM JPQM

GRW-DCT DGN 27.50 0.89 0.66 0.83 10.15
MXW-DCT DGN 27.02 0.88 0.34 0.96 11.23
MXW-DCT-Y DGN 29.51 0.73 0.82 0.94 11.93
COR-DCT DGN 27.07 0.46 0.63 0.97 12.78
GMAP-DCT DGN 27.07 0.46 0.63 0.97 12.78
NN-DCT DGN 29.43 0.71 0.79 0.96 12.13

GRW DGN 28.39 0.94 0.73 0.84 -
MXW DGN 29.65 0.67 0.83 0.97 -
COR DGN 29.30 0.58 0.84 0.98 -
GMAP DGN 29.30 0.58 0.84 0.98 -
NN DGN 29.79 0.73 0.81 0.97 -

TABLE 4.10
Performances of different techniques for color correction of the Macbeth from the illuminant
ph-ulm to syl-50mr16q.

Technique correction PSNR Y-WBQM Cb-WBQM Cr-WBQM JPQM

GRW-DCT DGN 25.97 0.91 0.88 0.92 12.59
MXW-DCT DGN 25.65 0.88 0.89 0.92 12.48
MXW-DCT-Y DGN 16.94 0.38 0.41 0.61 9.54
COR-DCT DGN 26.21 0.92 0.92 0.89 12.95
GMAP-DCT DGN 26.21 0.92 0.92 0.89 12.95
NN-DCT DGN 26.21 0.92 0.92 0.89 12.95

GRW DGN 26.32 0.91 0.91 0.92 -
MXW DGN 26.13 0.89 0.92 0.92 -
COR DGN 26.39 0.92 0.92 0.89 -
GMAP DGN 26.39 0.92 0.92 0.89 -
NN DGN 26.39 0.92 0.92 0.89 -
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Color Restoration and Enhancement in the Compressed Domain 117

the target illuminant itself in conjunction with the blue filter. The reference images cap-
tured under syl-50mr16q are shown in Figure 4.2 for three different objects — ball, books,
and Macbeth. The corresponding source images are shown in Figure 4.3. The results are
first presented for the diagonal color correction method. This is followed by the results
obtained using the chromatic shift color correction method.

4.6.2.1 Diagonal Correction

Figures 4.4 to 4.6 show a few typical color corrected images after applying some of
the representative compressed domain and spatial domain techniques. Tables 4.8 to 4.10
summarize the corresponding performance measures for all techniques.

One could observe that for most cases the PSNR values obtained in the compressed
domain are quite close to those of equivalent spatial domain techniques. However, in some
cases, there are significant degradations. For example, the techniques such as MXW-DCT,
COR-DCT, and GMAP-DCT suffer in rendering the ball and books images. The fact is also
corroborated with a larger drop in PSNR values from the corresponding values in the spatial
domain. Interestingly, the proposed MXW-DCT-Y technique performs quite well in these
two cases while failing in the third scene (Macbeth under ph-ulm illuminant). Though there
exists a distinctive white patch in that image (see Figure 4.2c), the proposed white world
assumption in the YCbCr space does not hold well in this case. In all such cases the JPQM
values for the compressed domain techniques are more than 10. This indicates that the
algorithms in the compressed domain do not seriously suffer from visible blocking artifacts
or blurring in the reconstruction of images from the block DCT domain.

Similar experiments were performed with the complete dataset, that is, 223 images of 21
objects. The averages of the performance metrics are shown in Tables 4.11 to 4.15. It can
be seen that the results corresponding to the block DCT domain are quite close to those ob-
tained in the spatial domain. Moreover, though the errors of estimation of illuminants using
the gray world techniques (GRW and GRW-DCT) are relatively higher than the statistical
techniques, their performances as reflected by different measures, are not so poor. In fact,

TABLE 4.11
Average PSNR for different techniques (under diagonal correction) and various illuminant (IL).†

Method IL1 IL2 IL3 IL4 IL5 IL6 IL7 IL8 IL9 IL10

GRW-DCT 23.99 23.46 24.20 26.75 22.76 27.26 21.06 24.35 20.28 22.71
MXW-DCT 24.57 23.60 24.82 27.39 22.36 26.72 20.65 24.35 20.71 22.63
MXW-DCT-Y 22.66 23.20 23.25 26.77 22.65 27.27 21.06 24.45 20.96 22.94
COR-DCT 24.93 23.81 25.24 27.46 22.50 26.45 20.93 24.04 20.73 22.62
GMAP-DCT 24.82 23.46 25.21 27.96 22.47 26.83 20.53 24.02 20.51 22.42
NN-DCT 24.49 23.37 25.06 26.44 22.17 27.38 20.14 24.31 20.17 22.94

GRW 24.24 23.65 24.50 27.42 22.91 28.22 21.21 24.55 20.99 22.82
MXW 24.82 23.69 25.36 28.04 22.62 27.28 21.03 24.29 20.93 23.08
COR 24.95 24.05 25.44 28.53 22.80 27.08 21.09 24.21 20.87 23.16
GMAP 25.02 23.58 25.16 29.22 22.85 27.55 20.80 24.19 20.74 23.09
NN 24.01 23.58 25.48 27.09 21.90 27.09 20.20 24.62 20.35 22.72

† IL1: ph-ulm, IL2: syl-cwf, IL3: syl-wwf, IL4: solux-3500, IL5: solux-3500+3202, IL6: solux-4100, IL7:

solux-4100+3202, IL8: solux-4700, IL9: solux-4700+3202, IL10: syl-50mr16q+3202
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TABLE 4.12
Average Y-WBQM for different techniques (under diagonal correction) and various illuminant (IL).†

Method IL1 IL2 IL3 IL4 IL5 IL6 IL7 IL8 IL9 IL10

GRW-DCT 0.789 0.750 0.814 0.861 0.683 0.850 0.604 0.764 0.540 0.693
MXW-DCT 0.812 0.788 0.852 0.937 0.733 0.885 0.655 0.801 0.580 0.751
MXW-DCT-Y 0.725 0.718 0.720 0.916 0.647 0.841 0.548 0.734 0.464 0.657
COR-DCT 0.838 0.768 0.879 0.936 0.608 0.834 0.469 0.690 0.343 0.585
GMAP-DCT 0.836 0.767 0.876 0.929 0.574 0.844 0.395 0.699 0.296 0.549
NN-DCT 0.842 0.759 0.863 0.875 0.580 0.849 0.360 0.734 0.262 0.627

GRW 0.792 0.739 0.808 0.867 0.655 0.836 0.566 0.744 0.481 0.663
MXW 0.817 0.763 0.848 0.944 0.615 0.853 0.498 0.728 0.412 0.633
COR 0.836 0.795 0.874 0.950 0.653 0.859 0.502 0.685 0.383 0.648
GMAP 0.837 0.783 0.873 0.952 0.655 0.861 0.463 0.710 0.360 0.635
NN 0.820 0.767 0.867 0.907 0.544 0.841 0.358 0.740 0.276 0.569

TABLE 4.13
Average Cb-WBQM for different techniques (under diagonal correction) and various illuminant (IL).†

Method IL1 IL2 IL3 IL4 IL5 IL6 IL7 IL8 IL9 IL10

GRW-DCT 0.796 0.785 0.795 0.917 0.717 0.876 0.586 0.795 0.462 0.698
MXW-DCT 0.781 0.739 0.714 0.936 0.541 0.829 0.334 0.670 0.241 0.489
MXW-DCT-Y 0.713 0.750 0.718 0.925 0.720 0.862 0.610 0.784 0.534 0.708
COR-DCT 0.818 0.800 0.769 0.937 0.778 0.899 0.650 0.817 0.542 0.714
GMAP-DCT 0.815 0.792 0.790 0.933 0.775 0.902 0.634 0.823 0.528 0.727
NN-DCT 0.819 0.780 0.823 0.921 0.734 0.900 0.569 0.815 0.480 0.710

GRW 0.824 0.827 0.848 0.922 0.788 0.914 0.691 0.859 0.602 0.781
MXW 0.813 0.809 0.802 0.953 0.744 0.904 0.647 0.819 0.567 0.733
COR 0.819 0.817 0.816 0.939 0.785 0.923 0.657 0.837 0.550 0.770
GMAP 0.821 0.806 0.813 0.951 0.777 0.919 0.640 0.828 0.537 0.754
NN 0.820 0.812 0.841 0.940 0.726 0.917 0.574 0.842 0.478 0.720

TABLE 4.14
Average Cr-WBQM for different techniques (under diagonal correction) and various illuminant (IL).†

Method IL1 IL2 IL3 IL4 IL5 IL6 IL7 IL8 IL9 IL10

GRW-DCT 0.789 0.839 0.811 0.906 0.866 0.934 0.790 0.893 0.707 0.851
MXW-DCT 0.819 0.846 0.856 0.901 0.889 0.931 0.861 0.933 0.853 0.904
MXW-DCT-Y 0.733 0.826 0.778 0.875 0.853 0.911 0.798 0.905 0.781 0.858
COR-DCT 0.796 0.848 0.828 0.910 0.870 0.929 0.854 0.917 0.865 0.894
GMAP-DCT 0.795 0.835 0.817 0.919 0.886 0.932 0.888 0.913 0.889 0.911
NN-DCT 0.726 0.851 0.790 0.933 0.903 0.930 0.910 0.909 0.903 0.905

GRW 0.804 0.853 0.827 0.936 0.874 0.946 0.797 0.902 0.761 0.855
MXW 0.816 0.853 0.850 0.921 0.899 0.947 0.840 0.931 0.818 0.901
COR 0.802 0.832 0.826 0.933 0.856 0.936 0.830 0.939 0.834 0.877
GMAP 0.803 0.831 0.809 0.930 0.839 0.939 0.831 0.916 0.842 0.867
NN 0.738 0.839 0.824 0.935 0.921 0.949 0.918 0.915 0.915 0.925

† IL1: ph-ulm, IL2: syl-cwf, IL3: syl-wwf, IL4: solux-3500, IL5: solux-3500+3202, IL6: solux-4100, IL7:

solux-4100+3202, IL8: solux-4700, IL9: solux-4700+3202, IL10: syl-50mr16q+3202
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Color Restoration and Enhancement in the Compressed Domain 119

TABLE 4.15
Average JPQM for different techniques in the compressed domain (under diagonal correction) and
various illuminant (IL).†

Method IL1 IL2 IL3 IL4 IL5 IL6 IL7 IL8 IL9 IL10

GRW-DCT 12.06 12.25 12.05 12.12 11.24 12.02 10.79 12.00 10.04 11.84
MXW-DCT 12.31 12.26 12.33 12.35 11.06 12.00 10.72 11.75 10.70 11.61
MXW-DCT-Y 11.65 12.16 11.69 12.25 11.41 12.06 11.15 11.93 11.16 11.93
COR-DCT 12.51 12.39 12.53 12.38 11.73 12.35 11.73 12.38 12.03 12.37
GMAP-DCT 12.50 12.28 12.51 12.30 12.00 12.37 12.17 12.28 12.38 12.62
NN-DCT 12.30 12.50 12.36 12.11 12.07 12.03 12.50 12.19 12.64 12.35

† IL1: ph-ulm, IL2: syl-cwf, IL3: syl-wwf, IL4: solux-3500, IL5: solux-3500+3202, IL6: solux-4100, IL7:

solux-4100+3202, IL8: solux-4700, IL9: solux-4700+3202, IL10: syl-50mr16q+3202

TABLE 4.16
Overall average performances of different techniques on rendering color cor-
rected images across different illumination.

Technique PSNR Y-WBQM Cb-WBQM Cr-WBQM JPQM

GRW-DCT 23.737 0.735 0.743 0.839 11.645
MXW-DCT 23.784 0.779 0.627 0.879 11.713
MXW-DCT-Y 23.525 0.697 0.732 0.832 11.744
COR-DCT 23.876 0.675 0.772 0.871 12.245
GMAP-DCT 23.827 0.677 0.772 0.879 12.346
NN-DCT 23.652 0.675 0.755 0.876 12.311

GRW 24.057 0.715 0.806 0.856 -
MXW 24.116 0.711 0.779 0.878 -
COR 24.244 0.719 0.791 0.867 -
GMAP 24.244 0.713 0.785 0.861 -
NN 23.708 0.669 0.767 0.888 -

TABLE 4.17
Average PSNR for different techniques (under CS) and various illuminant (IL).†

Method IL1 IL2 IL3 IL4 IL5 IL6 IL7 IL8 IL9 IL10

GRW-DCT 23.05 22.47 23.21 24.10 21.19 25.11 19.78 22.86 19.89 21.74
MXW-DCT 19.25 20.68 19.24 23.07 17.73 21.59 16.61 19.37 16.06 18.04
MXW-DCT-Y 18.17 20.91 19.16 23.63 19.40 23.09 18.26 21.27 18.63 20.43
COR-DCT 23.25 20.48 22.18 22.94 18.69 22.26 17.56 21.09 17.88 19.47
GMAP-DCT 23.04 20.22 21.93 22.99 19.68 22.44 18.45 21.04 18.53 20.09
NN-DCT 22.13 20.64 20.80 21.30 19.19 20.82 18.60 20.22 18.09 19.09

GRW 23.55 22.85 23.70 25.11 21.32 25.84 19.82 23.18 19.88 21.91
MXW 20.80 22.15 21.23 24.72 19.65 23.62 18.19 21.27 18.37 20.19
COR 23.14 20.90 21.87 23.51 18.76 22.53 17.47 21.33 17.91 19.24
GMAP 23.27 20.91 21.34 24.27 19.06 22.06 18.17 20.72 18.14 19.30
NN 20.87 19.26 21.41 22.45 19.83 22.35 19.14 20.09 18.59 19.70

† IL1: ph-ulm, IL2: syl-cwf, IL3: syl-wwf, IL4: solux-3500, IL5: solux-3500+3202, IL6: solux-4100, IL7:

solux-4100+3202, IL8: solux-4700, IL9: solux-4700+3202, IL10: syl-50mr16q+3202
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(a) (b) (c)

FIGURE 4.7 (See color insert.)

Chromaticity shift corrected images by GRW-DCT: (a) ball, (b) books, and (c) Macbeth.

in many categories of illuminants, their performance measures have topped the list. This
is also observed for the MXW-DCT-Y technique which has achieved the highest average
PSNR among other techniques for the illuminants solux-4700 and solux-4700+3202. For
judging the recovery of colors, one may look into the values corresponding to Cb-WBQM
and Cr-WBQM. It is generally observed that with the blue filter, the reconstruction of Cb
component is relatively poorer. This may be the reason lower performance measures are
obtained in such cases. In the compressed domain, the statistical techniques performed
better than the others in reconstructing the color components.

Table 4.16 summarizes the overall performances of all the techniques in transferring the
images to the target illuminant. One may observe that in the block DCT domain the overall
performances of the COR-DCT are usually better than the others. In the spatial domain,
the GMAP and the COR techniques have better performance indices in most cases. It is
interesting to note that though the errors of estimation of illuminants in the block DCT
domain are usually less than those in spatial domain (see Table 4.7), the end results after
color correction provide higher PSNR values in the spatial domain. It is felt that the color
correction to all the pixels in spatial domain, as compared to those made with only DC
coefficients in the block DCT domain, makes the rendering more successful.

4.6.2.2 Chromatic Shift Correction

Focusing on the performances of the color constancy algorithms followed by the chro-
matic shift (CS) for color correction reveals that the quality of the rendered images is sig-
nificantly degraded. However, in most cases the GRW and GRW-DCT techniques perform
better than the others (see Table 4.17). In this case, the degradation of the PSNR values
(with respect to the diagonal correction) remains around 0.5 dB to 3.5 dB.

Figure 4.7 shows typical results on image rendering of same source images using the
GRW-DCT technique. It is trivial to note that the chromatic shift correction technique is
much faster than the diagonal correction technique.

4.7 Complexity of Computation of Color Constancy

This section discusses the computational complexity of different techniques. The com-
putational complexity can be expressed by the number of multiplications, additions, and
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Color Restoration and Enhancement in the Compressed Domain 121

comparisons. In the employed notation, αM + βA + γC represents α number of multipli-
cations, β number of additions, and γ number of comparisons. It is also considered that the
computational cost for multiplication and division are equivalent.

It can be easily shown that for a total number n of pixels, both the GRW and the MXW
techniques require 3M + 3(n− 1)A and 3(n− 1)C computations, respectively. In the im-
plementation approach for using statistical techniques, there is an overhead of converting
pixels from the RGB color space to the YCbCr color space at a cost of 9nM + 6nA for n
pixels. The techniques also depend on the number of illuminants, nl , and the fractional
coverage, f , over the discretized chromaticity space. Let the size of the discretized space
be nc (here, it is 32× 32). For both COR and GMAP techniques the number of computa-
tions for n pixels is f ncnlA+(nl −1)C. However, one may note that the GMAP algorithm
performs only integer additions. While computing with the NN technique, for each illu-
minant it is necessary to determine the Mahalanobis distance with its chromatic mean (of
dimension 2× 1) and covariance matrices (which are symmetric and of dimension 2× 2).
This computation can be performed by 8M +4A computations. Hence, the total number of
computations become 8nlM +4nlA for n pixels.

For storing the statistics, every statistical technique needs to store the mean of the illu-
minant (of dimension 3× 1). In addition, the NN technique would be required to store 3
elements of the covariance matrix per illuminant. It makes its minimum storage require-
ment of 6nl number of elements. But both the COR and GMAP require ncnl number of
elements per illuminant for storing the chromatic mapping. In addition, they also require
to store the mean illuminant (3 per illuminant).

In the block DCT space, color constancy techniques handle only the DC coefficients. As
a result of this, the input data size itself gets reduced by the size of the block (in JPEG
compression, it is 8× 8 = 64 times). This speeds up all the nonstatistical techniques. On
the other hand, the computation using the statistical techniques is relatively independent of
the input data size. However in such cases, the conversion from the RGB color space to the
YCbCr color space is not required. This makes computation of statistics in the chromatic
space faster in the compressed domain. It should be noted that in the compressed domain,
the additional overhead of reverse and forward transforms to and from the spatial domain
is also avoided in the block DCT-based approaches. As can be shown, the MXW-DCT-Y
technique is the fastest among all such techniques, as it performs comparisons only with
the Y components. On the other hand, the MXW-DCT algorithm is relatively slower as it
requires the conversion of each DC coefficient to the RGB color space from the YCbCr
color space. The computational and storage complexities of all techniques are summarized
in Table 4.18.

4.8 Color Enhancement in the Compressed Domain

For better visualization of images, particularly when the scene suffers from both widely
varying spectral components and brightness of illuminants, one has to also consider the
right combination of brightness, contrast, and colors of pixels in an image. One may con-
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TABLE 4.18
Algorithm complexities given nl number of illuminants, nc as the size of the
2D chromaticity space, and n number of image pixels. c© 2009 IEEE

Algorithms Computational Complexity Storage Complexity

GRW 3M +3(n−1)A -
GRW-DCT 3M +3( n

64 −1)A -
MXW 3(n−1)C -
MXW-DCT 9

64 nM + 6
64 nA+3( n

64 −1)C -
MXW-DCT-Y ( n

64 −1)C -
COR 9nM +(6n+ f ncnl)A+(nl −1)C ncnl +3nl
COR-DCT f ncnlA+(nl −1)C ncnl +3nl
GMAP 9nM +(6n+ f ncnl)A+(nl −1)C ncnl +3nl
GMAP-DCT f ncnlA+(nl −1)C ncnl +3nl
NN (9n+8nl)M +(6n+4nl)A 6nl
NN-DCT 8nlM +4nlA 6nl

jecture that for natural images the inherent combination of brightness, contrast, and colors
should be preserved in the process of enhancement. This leads to the development of a con-
trast and color preserving enhancement algorithm in the compressed domain [24], which
is elaborated below.

4.8.1 Preservation of Contrast and Color

The contrast measure has been defined in various ways in the literature. One of the
intuitive definitions comes from the model based on the Weber’s law. This measure can be
used to define contrast at a pixel. Let µ and σ denote the mean and standard deviation of
an N×N image, respectively. The contrast ζ of an image as modeled by the Weber’s law
is given by ζ = ∆L/L, where ∆L is the difference in luminance between a stimulus and
its surround, and the L is the luminance of the surround [25]. As µ provides a measure for
surrounding luminance and σ is strongly correlated with ∆L, the contrast ζ of an image
can be redefined as follows:

ζ =
σ
µ

. (4.14)

The above definition can be restricted to a N×N block of an image in order to simplify the
processing in the block DCT domain.

The following theorem states how the contrast of an image is related to the scaling of its
DCT coefficients. The proof of this theorem is given in Reference [24].

Theorem 4.2
Let κdc be the scale factor for the normalized DC coefficient and κac be the scale factor for
the normalized AC coefficients of an image Y of size N×N, such that the DCT coefficients
in the processed image Ỹ are given by:

Ỹ (i, j) =
{

κdcY (i, j) for i = j = 0,
κacY (i, j) otherwise.

(4.15)

The contrast of the processed image then becomes κac/κdc times the contrast of the original
image. 2
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Color Restoration and Enhancement in the Compressed Domain 123

One may note here that in the block DCT space, to preserve the local contrast of the
image, scale factor should be kept as κdc = κac = κ in a block. However, though the above
operations with the Y component of an image preserve the contrast, they do not preserve
the colors or color vectors of the pixels. Hence, additional operations with the chromatic
components, that is, Cr and Cb components of the image in the compressed domain, need
to be carried out. Theorem 4.3 states how colors could be preserved under the uniform
scaling operation. The proof of this theorem is given in Reference [24].

Theorem 4.3
Let U = {U(k, l)|0 ≤ k, l ≤ (N − 1)} and V = {V (k, l)|0 ≤ k, l ≤ (N − 1)} be the DCT
coefficients of the Cb and Cr components, respectively. If the luminance (Y ) component of
an image is uniformly scaled by a factor κ , the colors of the processed image with Ỹ , Ũ
and Ṽ are preserved by the following operations:

Ũ(i, j) =
{

N(κ(U(i, j)
N −128)+128) for i = j = 0,

κU(i, j) otherwise,
(4.16)

Ṽ (i, j) =
{

N(κ(V (i, j)
N −128)+128) for i = j = 0,

κV (i, j) otherwise.
(4.17)

2

4.8.2 Color Enhancement by Scaling DCT Coefficients

It is straightforward to design an algorithm for enhancing a color image in the block DCT
domain by scaling its coefficients by making use of the above theorems. In the process of
scaling different types of coefficients (of different components), one would carry out the
following operations:

1. Adjustment of local background illumination. This adjustment is made by scaling
the DC coefficients of each block using a global monotonic function. A few typical
examples of these functions [26], [27], [28] are given below:

τ(x) = x(2− x), 0≤ x≤ 1, (4.18)

η(x) =
(x

1
γ +(1− (1− x)

1
γ ))

2
, 0≤ x≤ 1, (4.19)

ψ(x) =
{

n(1− (1− x
m)p1) for 0≤ x≤ m,

n+(1−n)( x−m
1−m)p2 for m≤ x≤ 1,0≤ m≤ n≤ 1, p1, p2 > 0.

(4.20)

Note that the same scale factor is used for scaling other coefficients subsequently as
discussed below.

2. Preservation of local contrast. Once the scale factor is obtained from the mapping
of the DC coefficient using any of the functions mentioned above, the same fac-
tor is used for scaling the AC coefficients of the block (according to Theorem 4.2).
However, while performing this operation, there is a risk of crossing the maximum
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displayable brightness value at a pixel in that block. To restrict this overflow, the
scale factor is clipped by a value as stated in Theorem 4.4. The proof of this theorem
is given in Reference [24].

3. Preservation of colors. Finally, the colors are preserved by performing the scaling of
the DCT coefficients of the Cb and Cr components as described in Theorem 4.3.

Theorem 4.4
If the values in a block are assumed to lie within µ±λσ , the scaled values will not exceed
the maximum displayable brightness value Bmax if 1≤ κ ≤ Bmax/(µ +λσ). 2

Due to the independent processing of blocks, blocking artifacts near edges or near sharp
changes of brightness and colors of pixels can occur. To suppress this effect, in such cases
the same computation is carried out in blocks of smaller size. These smaller blocks are
obtained by decomposing the given block using the block decomposition operation [3].
Similarly, the resulting scaled coefficients of smaller blocks are recomposed into the larger
one using the block composition operation [3]. It may be noted that both these operations
can be performed efficiently in the block DCT domain. Hence, the algorithm for color
enhancement remains totally confined within the block DCT domain. For detecting a block
requiring these additional operations, the standard deviation σ of that block was used here
as a measure. If σ is greater than a threshold (say, σth), the 8× 8 blocks are decomposed
into four subblocks to perform the scaling operations. The typical value of σth in these
experiments was empirically chosen as 5.

4.8.3 Results

This section presents the results of the enhancement algorithms and compares these re-
sults with that of other compressed domain techniques reported in the literature. Table 4.19
lists considered techniques including the algorithms discussed in this section, referred un-
der the category of color enhancement by scaling (CES). The details of these techniques
and the description of its different parameters can be found in the literature cited in the
table. For the sake of completeness, parameter values are also presented in the table.

TABLE 4.19
List of techniques considered for comparative study.

Techniques Short Names Parameter Set

Alpha rooting [29] AR α = 0.98
Multi-Contrast Enhancement [30] MCE λ = 1.95
with Dynamic Range Compression [27] MCEDRC γ = 1.95,τ1 = 0.1,τ2 = 1.95
CES using τ(x) TW-CES-BLK Bmax = 255, k = 1.0,
with blocking artifact removal [24] σth = 15
CES using η(x) DRC-CES-BLK λ = 1.95, Bmax = 255,
with blocking artifact removal [24] k = 1.0, σth = 5
CES using ψ(x) Bmax = 255, k = 1.0,
with blocking artifact removal [24] SF-CES-BLK σth = 5, m = n = 0.5, p1 = 1.8, p2 = 0.8
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(a)

(b)

(c)

FIGURE 4.8

Original images used in the implementation of the color enhancement algorithms: (a) Bridge, (b) Mountain,

and (c) Under-water.

To evaluate these techniques, two measures for judging the quality of reconstruction in
the compressed domain were used. One, based on JPEG-quality-metric (JPQM) [23], is
related to the visibility of blocking artifacts, whereas the other one, a no-reference metric
of Reference [25], is related to the enhancement of colors in images. The definition for this
latter metric in the RGB color space is given below.

Let the red, green and blue components of an image I be denoted by R, G, and B, respec-
tively. Let α = R−G and β = (R+G

2 )−B. Then the colorfulness of the image is defined as
follows:

CM(I) =
√

σ2
α +σ 2

β +0.3
√

µ2
α + µ2

β , (4.21)

where σα and σβ are standard deviations of α and β , respectively. Similarly, µα and µβ are
their means. In this comparison, however, the ratio of CMs between the enhanced image
and its original for observing the color enhancement factor was used and it is referred here
as color enhancement factor (CEF).

Typical examples of the enhanced images are presented here for the set of images shown
in Figure 4.8. The average JPQM and CEF values obtained on these set of images are
presented in the Table 4.20. From this table, one can observe that the color enhancement
performance indicated by the measure CEF is quite improved using the color enhancement
by scaling (CES) algorithms. In particular, the TW-CES-BLK algorithm, which uses a very
simple mapping function (Equation 4.18), is found to provide excellent color rendition
in the enhanced images. However, the JPQM measure indicates that its performance in
suppressing blocking artifacts is marginally poorer than the other schemes.

TABLE 4.20
Average performance measures obtained by different color enhancement techniques.

Techniques

Measures AR MCE MCEDRC TW-CES-BLK DRC-CES-BLK SF-CES-BLK

JPQM 9.80 9.38 9.67 9.06 9.50 9.41
CEF 1.00 0.91 1.00 1.63 1.32 1.37
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 4.9 (See color insert.)

Color enhancement of the images: (a,d,g) MCE, (b,e,h) MCEDRC, and (c,f,i) TW-CES-BLK.

(a) (b) (c)

FIGURE 4.10

Color enhancement of the image Bridge with increasing number of iterations: (a) 2, (b) 3, and (c) 4.

Figure 4.9 shows the enhancement results obtained by three typical techniques. Namely,
these techniques are MCE, MCEDRC, and TW-CES-BLK. One may observe that in all
these cases the TW-CES-BLK provides better visualization of these images than other two
techniques.

One may further enhance images by iteratively subjecting the resulting image to the next
stage of enhancement using the same algorithm. Figure 4.10 shows a typical example
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TABLE 4.21
Performance measures after iterative ap-
plication of the TW-CES-BLK algorithm
on the image Bridge.

number of iterations

Measures 2 3 4 5

CEF 2.76 3.48 3.79 3.74
JPQM 7.10 6.48 6.06 5.81

of iterative enhancement of the image Bridge. It was observed that for a few iterations
the CEF measure shows improvements with respect to the original image. However, the
process suffers from the risk of making blocking artifacts more and more visible. This is
also evidenced by an increased degradation of the JPQM values with an increase in the
number of iterations, as shown in Table 4.21.

4.9 Color Enhancement with Color Correction

There are situations when color restoration demands both color correction and color en-
hancement for better visualization of an image. In particular, if an image is captured under
artificial illumination, color enhancement will not provide the desired effect, unless its col-
ors are corrected or the image is recomputed for a target illumination. A typical example is
shown in the Figure 4.11. Namely, Figure 4.11a shows the original image of a manufactur-
ing unit scene. It is evident that this image is captured under the illumination constrained
by its environment. If the image itself is subjected to color enhancement, the resulting im-
age does not have proper color rendition, as shown in Figure 4.11b. However, the enhanced
result shows significant improvement, if the color correction is performed through the com-

(a) (b) (c)

FIGURE 4.11 (See color insert.)

Color restoration through color correction followed by enhancement: (a) original image, (b) enhanced image

without color correction, and (c) enhanced image with color correction.
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128 Computational Photography: Methods and Applications

putation of color constancy, as demonstrated in Figure 4.11c. In this case, the illumination
is transferred to the Syl-50mr16q (see Section 4.3) using the COR-DCT method [6] fol-
lowed by the TW-CES-BLK enhancement algorithm applied to the color corrected image.

4.10 Conclusion

This chapter discussed the restoration of colors under varying illuminants and illumina-
tion in the block DCT domain. The basic computational task involved in this process is to
obtain an illuminant independent representation by solving the problem of color constancy.
Once the spectral components of the (global) illuminant of a scene are computed, one is
required to transfer the image under a canonical illuminant. This computational task is
marked as color correction. However, due to wide variation of illumination in a scene and
the limited dynamic range of displaying colors, one would be required to further modify
the colors of pixels by the process of enhancement. It may be noted that in an ordinary
situation color enhancement may not necessarily follow the color correction stage.

This chapter reviewed several color constancy algorithms and discussed the extension
of these algorithms in the block DCT domain. It was observed that many algorithms are
quite suitable for computation considering only the DC coefficients of the blocks. This
chapter further discussed the enhancement algorithm in the block DCT domain. As the
computations are restricted only in the compressed domain, overhead of compression and
decompression is avoided. This makes the algorithms fast and less memory intensive.
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5.1 Introduction

In the last decade, advances in hardware and software technology have allowed for mas-
sive replacement of conventional film cameras with their digital successors. This reflects
the fact that capturing and developing photos using chemical and mechanical processes
cannot provide users with the conveniences of digital cameras which record, store and ma-
nipulate photographs electronically using image sensors and built-in computers. The ability
to display an image immediately after it is recorded, to store thousands of images on a small
memory device and delete them from this device in order to allow its further re-use, to edit
captured visual data, and to record images and video with sound makes digital cameras
very attractive consumer electronic products.

To create an image of a scene, digital cameras use a series of lenses that focus light onto
a sensor which samples the light and records electronic information which is subsequently
converted into digital data. The sensor is an array of light-sensitive cells which record the
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FIGURE 5.1

The concept of acquiring the visual information using the image sensor with a color filter array.

total intensity of the light that strikes their surfaces. Various image analysis and processing
steps are then typically needed to transform digital sensor image data into a full-color fully
processed image, commonly referred to as a digital photograph.

This chapter focuses on denoising of image data captured using a digital camera equipped
with a color filter array and a monochrome image sensor (Figure 5.1). The chapter presents
a principal component analysis-driven approach which takes advantage of local similari-
ties that exist among blocks of image data in order to improve the estimation accuracy of
the principal component analysis transformation matrix. This adaptive calculation of a co-
variance matrix and the utilization of both spatial and spectral correlation characteristics
of a CFA image allow effective signal energy clustering and efficient noise removal with
simultaneous preservation of local image structures such as edges and fine details.

The chapter begins with Section 5.2, which briefly discusses digital color camera imag-
ing fundamentals and relevant denoising frameworks. Section 5.3 presents principal com-
ponent analysis basics and notations used throughout this chapter, and outlines the concept
of a spatially adaptive denoising method using principal component analysis of color filter
array mosaic data. Section 5.4 is devoted to the design of the denoising method. Included
examples and experimental results indicate that principal component analysis-driven de-
noising of color filter array mosaic images constitutes an attractive tool for a digital camera
image processing pipeline, since it yields good performance and produces images of rea-
sonable visual quality. The chapter concludes with Section 5.5, which summarizes the main
camera image denoising ideas.

5.2 Digital Color Camera Imaging Fundamentals

Digital cameras acquire a scene by first focusing and then actuating the shutter to allow
light through the optical system. Once the light reaches the sensor surface, it is sampled by
the sensor and transformed from an analog signal to a digital output in order to obtain the
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(a) (b)

FIGURE 5.2

Color filter array imaging: (a) acquired image and (b) cropped region showing the mosaic layout.

corresponding digital representation of the sensor values. Since common image sensors,
such as charge-coupled devices (CCD) [1], [2] and complementary metal oxide semicon-
ductor (CMOS) sensors [3], [4], are monochromatic devices, digital camera manufacturers
place a color filter on top of each sensor cell to capture color information. Figure 5.1 shows
a typical solution, termed as a color filter array (CFA), which is a mosaic of color filters
with different spectral responses. Both the choice of a color system and the arrangement of
color filters in the array have significant impacts on the design, implementation and perfor-
mance characteristics of a digital camera. Detailed discussion on this topic can be found in
References [5], [6], [7], and [8].

The acquired CFA sensor readings constitute a single plane of data. Figure 5.2 shows an
example. The image has a mosaic-like structure dictated by the CFA. It can either be stored
as a so-called raw camera file [9] together with accompanying metadata containing infor-
mation about the camera settings to allow its processing on a personal computer (PC) or
directly undergo in-camera image processing realized by an application-specific integrated
circuit (ASIC) and a microprocessor. In the former case, which is typical for a digital sin-
gle lens reflex (SLR) camera, the Tagged Image File Format for Electronic Photography
(TIFF-EP) [10] is used to compress image data in a lossless manner. This application sce-
nario allows for developing high-quality digital photographs on a PC using sophisticated
solutions, under different settings, and reprocessing the image until certain quality criteria
are met. In the latter case, the captured image is completely processed in a camera under
real-time constraints to produce the final image which is typically stored using lossy Joint
Photographic Experts Group (JPEG) compression [11] in the Exchangeable Image File
(EXIF) format [12] together with the metadata. Image compression methods suitable for
these tasks can be found in References [13], [14], [15], and [16].

In either case, extensive processing is needed to faithfully restore full-color information
required by common output media such as displays, image storage systems, and printers.
Various image processing and analysis techniques usually operate based on the assumption
of noise-free CFA data. Unfortunately, this assumption does not hold well in practice.
Noise is an inherent property of image sensors and cannot be eliminated in the digital
camera design.
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(a) (b)

FIGURE 5.3

Example digital camera images corrupted by sensor noise: (a) CFA image, and (b) demosaicked image.

5.2.1 Digital Camera Image Noise

Noise in digital camera images usually appears as random speckles in otherwise smooth
regions (Figure 5.3). Typically, noise is caused by random sources associated with quan-
tum signal detection, signal independent fluctuations, and inhomogeneity of the sensor
elements’ responses. The appearance of noise in images varies amongst different digital
camera models. Noise increases with the sensitivity (ISO) setting in the camera, length of
exposure, and temperature. It can vary within an individual image; darker regions usually
suffer more from noise than brighter regions. The level of noise also depends on character-
istics of the camera electronics and the physical size of photosites in the sensor [17]. Larger
photosites usually have better light-gathering abilities, thus producing a stronger signal and
higher signal-to-noise (SNR) ratio.

As shown in Figure 5.3, noisy pixels deviate from their neighbors. In full-color RGB
images, such as images output by a digital camera or images produced on a personal com-
puter using supporting software able to handle raw camera image formats, noise can be
seen as fluctuations in intensity and color [5]. Noise significantly degrades the value of
the captured visual information, altering the desired image characteristics and decreasing
the perceptual quality and image fidelity. It also complicates other image processing and
analysis tasks. To overcome the problem, image denoising, which refers to the process of
estimating the original image information from noisy data, is an essential part of the digital
camera image processing pipeline [5], [18], [19].

5.2.2 Camera Image Processing Pipeline

Early steps in the camera image processing pipeline aim at compensating for sensor non-
linearities and nonidealities, such as a nonlinear pixel response, thermal gradients, defective
pixels, and dark current noise [19], [20], [21]. These preprocessing routines are followed
by various image restoration and color manipulation steps such as demosaicking [22], [23],
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(a) (b)

(c) (d)

FIGURE 5.4 (See color insert.)

Different stages of the camera image processing pipeline: (a) demosaicked image, (b) white-balanced image,

(c) color-corrected image, and (d) tone / scale-rendered image. The results correspond to Figure 5.2a.

[24], [25] to restore full-color information from CFA mosaic data, white balancing [26],
[27] to compensate for the scene illuminant, color correction [19] to achieve visually pleas-
ing scene reproduction, and tone / scale rendering to transform the color data from an
unrendered to a rendered space and make the tonality of a captured image match the non-
linear characteristics of the human visual system [18]. Figure 5.4 illustrates the effect of
these steps on the image as it progresses through the pipeline. Visual quality of the captured
image also is highly dependent on denoising [28] to suppress noise and various outliers, im-
age sharpening [29] to enhance structural content such as edges and color transitions, and
exposure correction [30] to compensate for inaccurate exposure settings.

In addition to the above processing operations, a resizing step [31] can be employed to
produce images of dimensions different from those of the sensor. Red-eye removal [32] is
used to detect and correct defects caused by the reflection of the blood vessels in the retina
due to flash exposure. Face detection [33], [34] can help to improve auto-focus, optimize
exposure and flash settings, and allow more accurate color manipulation to produce pho-
tographs with enhanced color and tonal quality. Image stabilization [35] compensates for
undesired camera movements, whereas image deblurring [36] removes the blurring effect
caused by the camera optical system, lack of focus, or camera motion during exposure.
Advanced imaging systems can enhance resolution [37], [38] and dynamic-range [39].
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denoisingdemosaickingCFA

image

denoised

color image

(a)

joint demosacking

and denoising
CFA

image

denoised

color image

(b)

demosaickingdenoisingCFA

image

denoised

color image

(c)

FIGURE 5.5

Pipelining the demosaicking and denoising steps: (a) demosaicked image denoising, (b) joint demosaicking

and denoising, and (c) color filter array image denoising.

The overall performance of the imaging pipeline can vary significantly depending on
the choice and order of the processing steps. The way an image processing pipeline is
constructed usually differs among camera manufacturers due to different design charac-
teristics, implementation constraints, and preferences regarding the visual appearance of
digital photographs. Note that there is no ideal way of cascading individual processing
steps; therefore, the problem of designing the pipeline is often simplified by analyzing just
a very few steps at the time. Detailed discussion on pipelining the image processing and
analysis steps can be found in References [5], [18], and [19].

5.2.3 Denoising Strategies for Single-Sensor Digital Color Cameras

Since demosaicking is an inseparable component of most consumer digital color cam-
eras, the position of any processing step employed in the single-sensor imaging pipeline
can be related to the position of demosaicking. Practically any processing step can be used
before or after demosaicking. Performing steps before demosaicking can allow signifi-
cant computational savings due to the grayscale nature of CFA image data, as opposed to
performing the same operation on demosaicked color data which basically increases the
number of calculations three-fold. Some processing operations can also be implemented
in a joint manner with demosaicking, thus potentially reducing the cost of implementation,
enhancing performance of processing tasks, and producing higher visual quality. Imple-
menting various steps in a joint process is usually possible if they employ similar digital
signal processing concepts. Additional information about these three processing frame-
works can be found in Reference [5].

Figure 5.5 shows three simplified pipelines which use a CFA image as the input to pro-
duce a denoised demosaicked image as the output. Note that a CFA image is basically
a mosaic-like grayscale image as opposed to a full-color demosaicked image. This fun-
damental difference in representation of these two images and the different order of de-
mosaicking and denoising operations in each of the three simplified pipelines suggest the
following characteristics:
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• The framework shown in Figure 5.5a performs denoising after demosaicking. Algo-
rithms directly adopted from grayscale imaging, such as various median [40], [41],
averaging [42], [43], multiresolution [44], and wavelet [45], [46], [47] filters, process
each color channel of the demosaicked image separately, whereas modern filters for
digital color imaging process color pixels as vectors to preserve the essential spectral
correlation and avoid new color artifacts in the output image [41], [48], [49]. Un-
fortunately, the CFA sensor readings corresponding to different color channels have
different noise statistics and the demosaicking process blends the noise contributions
across channels, thus producing compound noise that is difficult to characterize and
remove by traditional filtering approaches.

• Figure 5.5b shows the framework which produces the output image by performing
demosaicking and image denoising simultaneously. Approaches designed within
this framework include additive white noise assumption-driven demosaicking us-
ing minimum mean square error estimation [50], bilateral filter-based demosaick-
ing [51], and joint demosaicking and denoising using total least square estima-
tion [52], wavelets [53], [54], color difference signals [55], and local polynomial
approximation-based nonlinear spatially adaptive filtering [56]. At the expense of
increased complexity of the design, performing the two estimation processes jointly
avoids the problem associated with the other two processing frameworks which tend
to amplify artifacts created in the first processing step.

• Finally, the framework depicted in Figure 5.5c addresses denoising before demo-
saicking. This approach aims at restoring the desired signal for subsequent color
interpolation, thus enhancing the performance of the demosaicking process which
can fail in edge regions in the presence of noise. Existing denoising methods for
grayscale images cannot be directly used on the CFA image due to its underlying
mosaic structure. However, these methods are applicable to subimages [13], [15]
extracted from the CFA image; the denoised CFA image is obtained by combining
the denoised subimages. This approach often results in various color shifts and arti-
facts due to the omission of the essential spectral characteristics during processing.
Therefore, recent methods for denoising the CFA mosaic data exploit both spatial
and spectral correlations to produce color artifact-free estimates without the need to
extract subimages [57].

This chapter focuses on denoising the CFA image, that is, the framework depicted in
Figure 5.5c, as this is the most natural way of handling the denoising problem in the digital
cameras under consideration. The framework can effectively suppress noise while pre-
serving color edges and details. Since it performs denoising before color restoration and
manipulation steps, it gives the camera image processing pipeline that uses this strategy an
advantage of less noise-caused color artifacts. Moreover, since CFA images consist of three
times less data compared to demosaicked images, this framework has an obvious potential
to achieve high processing rates.
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5.3 Principal Component Analysis

Principal component analysis (PCA) [58], [59] is a popular decorrelation technique used
for dimensionality reduction with direct applications in pattern recognition, data compres-
sion and noise reduction. This technique, as formally described below, will be adapted to
solve the problem at hand.

5.3.1 Notation and Basics

Let x = [x1 x2 · · · xm]T be an m-component vector variable and

X =




X1
X2
...

Xm


 =




x1
1 x2

1 · · · xn
1

x1
2 x2

2 · · · xn
2

...
...

...
...

x1
m x2

m · · · xn
m




be the sample matrix of x, with x j
i denoting the discrete samples of variable xi and

Xi = [x1
i x2

i · · · xn
i ] denoting the sample vector of xi, for i = 1,2, ,m and j = 1,2, ,n. The

centralized version X̄ of the sample matrix X can be written as

X̄ =




X̄1
X̄2
...

X̄m


 =




x̄1
1 x̄2

1 · · · x̄n
1

x̄1
2 x̄2

2 · · · x̄n
2

...
...

...
...

x̄1
m x̄2

m · · · x̄n
m


 ,

where x̄ j
i = x j

i −µi is obtained using the mean value of xi estimated as follows:

µi = E [xi]≈ 1
n

n

∑
j=1

Xi( j).

A set of all such mean values gives µ = E[x] = [µ1 µ2 · · · µm]T which is the mean value
vector of x. This mean vector is used to express the centralized vector as x̄ = x−µ, with the
elements of x̄ defined as x̄i = xi−µi and the corresponding sample vectors as X̄i = X̄i−µi =
[x̄1

i x̄2
i · · · x̄n

i ], where x̄ j
i = x j

i −µi. Accordingly, the covariance matrix of x̄ is calculated as
Ω = E

[
x̄x̄T

]≈ 1
n X̄X̄T .

The goal of principal component analysis is to find an orthonormal transformation matrix
P to decorrelate x̄. This transformation can be written as ȳ = Px̄, with the covariance matrix
of ȳ being diagonal. Since Ω is symmetrical, its singular value decomposition (SVD) can
be expressed as follows:

Ω = ΦΛΦT ,

where Φ = [φ1 φ2 · · · φm] denotes the m×m orthonormal eigenvector matrix and Λ =
diag{λ1 λ2 · · · λm} is the diagonal eigenvalue matrix with λ1 ≥ λ2 ≥ ·· · ≥ λm. By setting
P = ΦT , the vector x̄ can be decorrelated, resulting in Ȳ = PX̄ and Λ = E

[
ȳȳT

]≈ 1
n ȲȲT .
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Principal Component Analysis-Based Denoising of Color Filter Array Images 139

(a) (b)

(c) (d)

FIGURE 5.6

Digital camera noise modeling: (a) original, noise-free CFA image and (b) its demosaicked version; (c) noised

CFA image and (d) its demosaicked version.

Principal component analysis not only decorrelates the data, but it is also an optimal
way to represent the original signal using a subset of principal components. This property,
known as optimal dimensionality reduction [59], refers to the situations when the k most
important eigenvectors are used to form the transformation matrix PT = [φ1 φ2 · · · φk], for
k < m. In this case, the transformed dataset Ȳ = PX̄ will be of dimensions k×n, as opposed
to the original dataset X̄ of dimensions m×n, while preserving most of the energy of X̄.

5.3.2 Noise Modeling

To design a filter capable of removing noise and simultaneously preserving image edges
and details, the effect of noise on the desired signal is usually studied in simulated condi-
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140 Computational Photography: Methods and Applications

tions. As shown in Figure 5.6, noise observed in digital camera images can be approximated
using specialized models. Many popular noise models are based on certain assumptions
which simplify the problem at hand and allow for a faster design.

Image sensor noise is signal-dependent [52], [60], [61], as the noise variance depends
on the signal magnitude. Reference [60] argues that various techniques, such as Poisson,
film-grain, multiplicative, and speckle models can be used to approximate such noise char-
acteristics. Reference [52] proposes simulating the noise effect using Gaussian white noise
and sensor dependent parameters. A widely used approximation of image sensor noise is
the signal-independent additive noise model, as it is simple to use in the design and anal-
ysis of denoising algorithms and allows modeling signal-dependent noise characteristics
by estimating the noise variance adaptively in each local area [50]. By considering the
different types of color filters in the image acquisition process, it is reasonable to use a
channel-dependent version of the signal-independent additive noise model [55]. This ap-
proach allows varying noise statistics in different channels to simulate the sensor’s response
in different wavelengths while keeping the sensor noise contributions independent of signal
within each channel to simplify the design and analysis of the denoising algorithm [57].

The channel-dependent additive noise model can be defined as follows [56], [57]:

r̃ = r +υr, g̃ = g+υg, b̃ = b+υb, (5.1)

where υr, υg and υb are mutually uncorrelated noise signals in the red, green and blue loca-
tions of the CFA image. Following the additive nature of this model, the noise contributions
are added to the desired sample values r, g and b to obtain the noisy (acquired) signals r̃, g̃,
and b̃, respectively. Note that the standard deviations σr, σg, and σb corresponding to υr,
υg and υb, may have different values. Figure 5.6 shows that this noise model can produce
similar effects as can be seen in real-life camera images in Figure 5.3.

5.3.3 Block-Based Statistics

Principal component analysis is used here as the underlying concept of a spatially adap-
tive denoising method for CFA mosaic data. The method presented in this chapter builds
on the approach introduced in Reference [62] which uses the optimal dimensionality re-
duction property of principal component analysis in the design of a denoising algorithm for
monochromatic images. To fully exploit the correlation among the samples acquired using
different types of color filters, the so-called variable block is defined to include at least one
pixel for each type of color filter used in the acquisition process [57]. The pixels inside this
block are used as the variables in PCA training.

Each variable vector is associated with the so-called training block which contains ad-
ditional samples for training [57]. The training block should be much bigger than the
variable block in order to ensure that the statistics of the variables can be reasonably calcu-
lated. If any part of the training block matches the variable block, the pixels of that part are
considered as the samples of the variable vector. Since such parts occupy different spatial
locations in the image, the samples can be assumed to be independent draws of the variable.

For the sake of simplicity in the following discussion, Figure 5.7 shows the minimum
size variable block and the corresponding training block for the mosaic data captured using
the Bayer CFA [63]. This variable block can be written as a four-element vector x =
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FIGURE 5.7

Illustration of the 6× 6 variable block and 2× 2 training block (g1, r2, b3, and g4) in the spatially adaptive

PCA-based CFA image denoising method.

[g1 r2 b3 g4]T . Practical implementations, however, can use larger size variable blocks. The
whole dataset of x can be written as X = [GT

1 RT
2 BT

3 GT
4 ]T , where G1, R2, B3, and G4 denote

the row vectors containing all the samples associated with g1, r2, b3, and g4, respectively.
The mean values µg1 , µr2 , µb3 , and µg4 of variables g1, r2, b3, and g4 can be estimated

as the average of all the samples in G1, R2, B3, and G4, respectively. These mean values
constitute the mean vector µ = [µg1 µr2 µb3 µg4 ]

T of the variable vector x. Using the
mean vector µ, the centralized version of x and X can be expressed as x̄ = x−µ and
X̄ = [GT

1 −µg1 RT
2 −µr1 BT

3 −µb3 GT
4 −µg4 ]

T , respectively.
Using the additive noise model, the noisy observation of x can be expressed as x̃ = x+v,

where v = [υg1 υr2 υb3 υg4 ]
T is the noise variable vector. Assuming additive noise with

zero mean, the mean vectors of x̃ and x are identical, that is, E [x̃] = E [x] = µ. Since x is
unavailable in practice, µ is calculated from the samples of x̃, resulting in ¯̃x = x̃−µ = x̄+v
as the centralized vector of x̃.

The whole dataset of additive channel-dependent noise v can be written as V =
[V T

g1
V T

r2
V T

b3
V T

g4
]T , where Vr2 comes from the red channel noise υr, Vg1 and Vg4 come from

the green channel noise υg, and Vb3 comes from the blue channel noise υb. The available
measurements of the noise-free dataset X can thus be expressed as X̃ = X+V. Subtracting
the mean vector µ from X̃ provides the centralized dataset ¯̃X = X̄+V of the vector ¯̃x.

The problem can now be seen as estimating X̄ from the noisy measurement ¯̃X; the use
of PCA to complete this task is discussed in the next section. Assuming that ˆ̄X, which is
the estimated dataset of X̄, is available, then the samples in the training block are denoised.
Since pixels located far away from the location under consideration have usually very little
or even no influence on the denoising estimate, the central part of the training block can
be used as the denoising block [57]. The CFA image is denoised by moving the denoising
block across the pixel array to affect all the pixels in the image.

5.4 Denoising in the PCA Domain

Since the energy of a signal usually concentrates in a small subset of the PCA trans-
formed dataset, as opposed to the energy of noise that spreads evenly over the whole dataset,

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
00

 0
9 

M
ay

 2
01

6 



142 Computational Photography: Methods and Applications

the optimal dimensionality reduction property of principal component analysis can be used
in noise removal. Namely, keeping the most important subset of the transformed dataset to
conduct the inverse PCA transform can significantly reduce noise while still being able to
restore the desired signal.

5.4.1 Denoising Procedure

The covariance matrix Ωx̄ of x̄ can be used to obtain the corresponding optimal PCA
transformation matrix Px̄ using the approach discussed in Section 5.3.1. Since the available
dataset ¯̃X is corrupted by noise, Ωx̄ cannot be directly computed; instead it can be estimated
using the linear noise model ¯̃x = x̄+v. Assuming that n training samples are available for
each element of ¯̃x, this can be realized via the maximum likelihood estimation (MLE), a
method that fits a statistical model to the data to obtain model’s parameters, as follows [57]:

Ω ¯̃x = E
[
( ¯̃x−E [ ¯̃x]) ( ¯̃x−E [ ¯̃x])T

]
, (5.2)

≈ 1
n

¯̃X ¯̃X
T

=
1
n
(X̄X̄T + X̄VT +VX̄T +VVT ). (5.3)

Given the fact that the signal term X̄ and the noise term V are uncorrelated, X̄VT and
VX̄T are negligible. The above equation can thus be reduced to the following:

Ω ¯̃x = Ωx̄ +ΩV ≈ 1
n
(X̄X̄T +VVT ), (5.4)

where Ωx̄ ≈ 1
n X̄X̄T and ΩV ≈ 1

n VVT are the covariance matrices of x̄ and v, respectively.
Since the elements of the noise vector v = [υg1 υr2 υb3 υg4 ]

T are uncorrelated with each
other, ΩV can be expressed as follows:

ΩV = E
[
vvT ]

= diag
{

σ2
g ,σ2

r ,σ2
b ,σ2

g
}

, (5.5)

where σg, σr, and σb are standard deviations of channel-dependent noise in υg, υr and υb
in Equation 5.1. The covariance of x̄ can thus be calculated as Ωx̄ = Ω ¯̃x−ΩV, with possible
negative values in the diagonal positions replaced with zeroes.

By decomposing Ωx̄ as Ωx̄ = Φx̄Λx̄Φ
T
x̄ where Φx̄ = [φ1 φ2 φ3 φ4] is the 4×4 orthonormal

eigenvector matrix and Λx̄ = diag{λ1,λ2,λ3,λ4} is the diagonal eigenvalue matrix with
λ1 ≥ λ2 ≥ λ3 ≥ λ4, the orthonormal PCA transformation matrix for X̄ can be expressed as
Px̄ = ΦT

x̄ . For the identical noise levels of υr, υg, and υb in Equation 5.1, that is, σr = σg =
σb, the covariance matrix ΩV will reduce to an identity matrix with a scaling factor σ 2

g . In
this case, the singular value decomposition of Ω̄̃x and Ωx̄ will give the same eigenvector
matrix and hence the same PCA transformation matrix Px̄. In all other cases, the singular
value decomposition of Ω ¯̃x and Ωx̄ will yield different eigenvector matrices.

Applying Px̄ to the noisy dataset ¯̃X gives ¯̃Y = Px̄
¯̃X = Px̄(X̄+V). This can be equivalently

written as ¯̃Y = Ȳ+VY, where Ȳ = Px̄X̄ and VY = Px̄V denote the decorrelated dataset for
signal and the transformed dataset for noise, respectively. Since Ȳ and VY are uncorrelated,
the covariance matrix of ¯̃Y can be expressed as follows [57]:

Ω ¯̃y = Ωȳ +Ωvy ≈
1
n

¯̃Y ¯̃Y
T
, (5.6)
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where Ωȳ = Λx̄ ≈ 1
n ȲȲT and Ωvy= Px̄ΩvPT

x̄ ≈ 1
n VYVT

Y are the covariance matrices of Ȳ
and VY, respectively.

Given the fact that most of the energy of Ȳ concentrates in the first several rows of ¯̃Y
whereas the energy of VY is distributed in ¯̃Y much more evenly, setting the last several
rows of ¯̃Y to zero preserves the signal Ȳ while removing the noise VY. Unaltered rows
of ¯̃Y constitute the so-called dimension reduced dataset ¯̃Y′. It holds that ¯̃Y′ = Ȳ′ + VY′

where Ȳ′ and VY′ represent the dimension reduced datasets of Ȳ and VY, respectively. The
corresponding covariance matrices relate as Ω ¯̃y′= Ωȳ′ +Ωvy′ .

Further denoising of ¯̃Y′ can be achieved via linear minimum mean square error estimation
(LMMSE) applied to individual rows, as follows [57]:

ˆ̄Y
′
i = ci · ¯̃Y

′
i, for ci = Ωȳ′(i, i)/(Ωȳ′(i, i)+Ωvy′ (i, i)), (5.7)

where i denotes the row index. Repeating the estimation procedure for each nonzero row
of Ȳ′ yields the denoised dataset ˆ̄Y′. The denoised version of the original dataset ¯̃X, which
represents the estimate of an unknown noiseless dataset X̄, can be obtained as ˆ̄X = P−1

x̄
ˆ̄Y′

by performing the transform from the PCA domain to the time domain. The denoised CFA
block is produced by reformatting ˆ̄X.

5.4.2 Performace Improvements

The proposed denoising method effectively removes noise in CFA images [57]. Unfor-
tunately, the method can produce noise residual-like effects in smooth areas with low local
signal to noise ratio or low contrast. This phenomenon is caused by the lack of structural
content in the image, resulting in less significant principal components and hence less ef-
fective discrimination between noise and signals. It should also be noted that mean value
estimation can be biased due to the availability of only one color component in each spa-
tial location of the CFA image, resulting in an estimation bias of the covariance matrix
and hence the PCA transformation matrix. Another problem is the occurrence of phantom
artifacts along edge boundaries with smooth backgrounds. This can be attributed to the
difference between the sample structure and the local training block statistics. Depend-
ing on the color and structural characteristics of the captured image, the presence of the
above-described effects can significantly reduce visual quality of the final image.

5.4.2.1 CFA Image Decomposition

Noise residual-like effects can be removed by tuning the denoising parameters in the
proposed method. Another possible solution is to decompose [57] the noisy CFA image
Iυ into a low-pass smooth image Il

υ = Iυ ∗G and a high-pass image Ih
υ = Iυ − Il

υ , where G
denotes the convolution kernel of a two dimensional Gaussian low-pass filter defined as

G(x,y) =
1√
2πs

exp
(
−x2 + y2

2s2

)
. (5.8)

Choosing a suitable value of the scaling parameter s allows for Il
υ with blurred structural

content and almost completely removed noise. This implies that a complementary image
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Ih
υ contains almost complete high-frequency content, including the essential edge informa-

tion to be preserved and undesired structures which are attributed to noise. Since noise is
dominant in the flat areas of Ih

υ , it can be effectively suppressed by LMMSE filtering in the
PCA domain using the method described in the previous section. The denoising procedure
outputs the image Îh

υ which can be used to produce the denoised CFA image Î = Il
υ + Îh

υ .

5.4.2.2 Training Sample Selection

Phantom artifacts around edge boundaries with smooth backgrounds are caused by in-
appropriate training samples in the training block. In PCA training, this problem can be
overcome by using only blocks which are similar to the underlying variable block, result-
ing in better estimates of the covariance matrix of the variable block and hence outputting
a more accurate PCA transformation matrix [57].

By following the description in Section 5.3.3, the variable block x̃ in Ih
υ is associated

with the training dataset X̃ generated from the training block centered on x̃. Each column
of X̃ can thus be seen as a sample vector of x̃. Selecting the best samples from X̃ for PCA
transformation requires to evaluate the difference between the sample vector ~̃x0 containing
the samples of the variable block x̃ and the vector ~̃xk which denotes the k-th column of X̃,
for k = 1,2, ...,n. This can be done using the Euclidean distance as follows [57]:

dk =
1
m

m

∑
i=1

(
~̃xk(i)−~̃x0(i)

)2
(5.9)

≈ 1
m

m

∑
i=1

(~xk(i)−~x0(i))
2 +σ 2

a , (5.10)

where m denotes the vector length and σa = (σ2
r + 2σ2

g + σ2
b )1/2/2. Vectors ~xk and ~x0 are

the noiseless counterparts of ~̃xk and ~̃x0, respectively. Obviously, the smaller the distance dk
is, the more similar~xk is to~x0.

The training sample selection criterion can be defined as follows [57]:

dk ≤ T 2 +σ2
a , (5.11)

where T is a predetermined parameter. If the above condition is met, then ~̃xk is selected as
one training sample of x̃. Note that a high number of sample vectors may be required in
practice to guarantee a reasonable estimation of the covariance matrix of x̃. Assuming that
X̃b denotes the dataset composed of the sample vectors that give the smallest distance to ~̃x0,
the algorithms described in Section 5.4.1 should be applied to X̃b, instead of the original
dataset X̃.

5.4.3 Experimental Results

The size of the variable and training blocks is an important design parameter in the pro-
posed method to achieve good performance. Note that the size of the denoising block
should not exceed the size of the variable block. Different block size settings lead to dif-
ferent results and have an impact on the computational efficiency. In general, denoising
low-resolution images requires a small variable block since the spatial correlation in such
images is also low. It was found empirically that 4×4, 6×6, or 8×8 variable block size
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(a) (b)

(c)

FIGURE 5.8

PCA-driven denoising of an artificially noised image shown in Figure 5.6c: (a) denoised CFA image, (b) its

demosaicked version, and (c) original, noise-free image.

settings can produce good results in most situations, while the size of training block should
be at least 16 times larger, that is, 24×24 or 30×30 for a 6×6 variable block.

Figure 5.8a shows the result when the proposed method is applied to the CFA image
with simulated noise. Comparing this image with its noisy version shown in Figure 5.6c
reveals that noise is effectively suppressed in both smooth and edge regions while there is
no obvious loss of the structural contents. Visual inspection of the corresponding images
demosaicked using the method of Reference [64] confirms what was expected. Namely,
as shown in Figure 5.6d, demosaicking the noisy CFA image with no denoising produces
poor results; in some situations the noise level actually increases due to blending the noise
contributions across channels. This is not the case of the demosaicked denoised image in
Figure 5.8b which is qualitatively similar to the original test image shown in Figure 5.8c.
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(a) (b)

FIGURE 5.9

PCA-driven denoising of a real-life camera image shown in Figure 5.3a: (a) denoised CFA image and (b) its

demosaicked version.

The performance of the proposed method will now be evaluated using digital camera im-
ages with real, non-approximated noise. Denoising raw sensor images using the proposed
method requires calculating the noise energy of each channel from the acquired CFA data.
This can be accomplished by dividing the CFA image into subimages and then processing
each subimage using the one-stage orthogonal wavelet transform [65]. Assuming that w
denotes the diagonal subband at the decomposed first stage, the noise level in each subim-
age can be estimated as σ = median(w)/0.6475 [66] or σ = ((MN)−1 ∑M

i ∑N
j w2(i, j))0.5,

where (i, j) denotes the spatial location and M and N denote the subband dimensions. In
the situations when there is more than one subimage per color channel, the noise level is
estimated as the average of σ values calculated for all spectrally equivalent subimages.

Figure 5.9 and 5.10 demonstrate good performance of the proposed method in environ-
ments with the presence of real image sensor noise. Comparing the denoised CFA images
with the acquired ones clearly shows that the proposed method efficiently uses spatial and
spectral image characteristics to suppress noise and simultaneously preserve edges and im-
age details. The same conclusion can be made when visually inspecting the corresponding
demosaicked images.

Full-color results presented in this chapter are available at http://www4.comp.polyu.edu.
hk/∼cslzhang/paper/cpPCA.pdf. Additional results and detailed performance analysis can
be found in Reference [57].

5.5 Conclusion

This chapter presented image denoising solutions for digital cameras equipped with a
color filter array placed on top of a monochrome image sensor. Namely, taking into con-
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(a) (b)

(c) (d)

FIGURE 5.10

PCA-driven denoising of a real-life digital camera image: (a) acquired CFA sensor image and (b) its demo-

saicked version; (c) denoised CFA image and (d) its demosaicked version.

sideration the fundamentals of single-sensor color imaging and digital camera image pro-
cessing, the chapter identified three pipelining frameworks that can be used to produce a
denoised image. These frameworks differ in the position of the denoising step with respect
to the demosaicking step in the camera image processing pipeline, thus having their own
design, performance, and implementation challenges.

The framework that performs denoising before demosaicking was the main focus of this
chapter. Denoising the color filter array mosaic data is the most natural way of handling
the image noise problem in the digital cameras under consideration. The framework can
effectively suppress noise and preserve color edges and details, while having the poten-
tial to achieve high processing rates. This is particularly true for the proposed principal
component analysis-driven approach that adaptively calculates covariance matrices to al-
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low effective signal energy clustering and efficient noise removal. The approach utilizes
both spatial and spectral correlation characteristics of the captured image and takes advan-
tage of local similarities that exist among blocks of color filter array mosaic data in order
to improve the estimation accuracy of the principal component analysis transformation ma-
trix. This constitutes a basis for achieving the desired visual quality using the proposed
approach.

Obviously, image denoising solutions have an extremely valuable position in digital
imaging. The trade-off between performance and efficiency makes many denoising meth-
ods indispensable tools for digital cameras and their applications. Since the proposed
method is reasonably robust in order to deal with the infinite number of variations in the
visual scene and varying image sensor noise, it can play a key role in modern imaging sys-
tems and consumer electronic devices with image-capturing capabilities which attempt to
mimic human perception of the visual environment.
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6.1 Introduction

Demosaicking is the process of reconstructing the full color representation of an image
acquired by a digital camera equipped with a color filter array (CFA). Most demosaicking
approaches have been designed for the Bayer pattern [1] shown in Figure 6.1a. However, a
number of different patterns [2], [3], [4], such as those shown in Figures 6.1b to 6.1d, have
been recently proposed to enhance color image acquisition and restoration processes.

Various demosaicking methods have been surveyed in References [5], [6], [7], and [8].
Popular demosaicking approaches rely on directional filtering [9], [10], [11], wavelet [12],
[13], frequency-domain analysis [14], and reconstruction [15] methods. In particular, an
effective strategy consists in considering demosaicking as an inverse problem which can be
solved by making use of some prior knowledge about the natural color images. This ap-
proach, generally known as regularization, has been also exploited for demosaicking [16],
[17], [18], [19], [20], [21], as it allows to design algorithms that are suitable for any CFA.
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(a) (b) (c) (d)

FIGURE 6.1 (See color insert.)

Examples of existing CFAs: (a) Bayer [1], (b) Lukac [2], (c) Hamilton [3], and (d) Hirakawa [4]. c© 2009

IEEE

This chapter presents regularization methods for demosaicking. Namely, Section 6.2 fo-
cuses on the problem formulation and introduces the notation to be used throughout the
chapter. Section 6.3 surveys existing regularization methods for sole demosaicking or
jointly with super-resolution. Section 6.4 presents a new regularization technique which
allows noniterative demosaicking. Section 6.5 presents performance comparisons of differ-
ent methods. Finally, conclusions are drawn in Section 6.6.

6.2 Problem Statement

Given a continuous color image Ic(u) = [Rc(u),Gc(u),Bc(u)], where u∈R2 and Rc(u),
Gc(u), and Bc(u) denote the red, green, and blue color component, a digital camera aims at
acquiring a discrete image I (n) = [R(n),G(n),B(n)], with n ∈ Γ, where Γ is the desired
sampling lattice. It is assumed here that Ic(u) is bandlimited, such that sampling in the
lattice Γ does not generate aliasing.

However, existing imaging systems are subject to some design requirements and tech-
nology limits which do not allow acquisition of the desired image. Therefore, the image
acquisition process in a digital camera is as not straightforward as the ideal sampling (see
Figure 6.2). The continuous color components Xc(u), for X = R, G, and B, are captured at
each pixel n ∈ Γ through spatial integration over the pixel sensor that can be represented as
a convolution with a low-pass filter pX(·) as follows:

Xp(n) = pX ∗Xc(n), for n ∈ Γ. (6.1)

I (u) +CFAp(×) ¯ G

R
I (n)sc

h(n)

2

FIGURE 6.2

Image acquisition in a digital camera. c© 2009 IEEE
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Common practical models for the impulse response of the prefilter are the Gaussian or the
rect functions. However, today’s digital cameras use a CFA placed in front of the sensor to
capture one color component in each pixel location [1], [2]. Moreover, some CFAs capture
colors which can be expressed as a linear combination of the traditional red, green and blue
components [3], [4]. The CFA-sampled image Is(n) can thus be expressed as

Is(n) = ∑
X=R,G,B

cX(n)Xp(n)+η(n), (6.2)

where the acquisition functions cX(n), for X = R, G, and B, are periodic and for any pixel
n ∈ Γ constrained as cR(n)+cG(n)+cB(n) = 1. The term η(n) characterizes sensor noise
introduced during image acquisition. It is assumed here that η(n) is uncorrelated with
respect to the acquired image Is(n). More complex models for the noise can be found in
Reference [22].

To this end, the image acquisition process can be represented as in Figure 6.2, and the
relation between Is(n), for n ∈ Γ, and the continuous image Ic(u) is given by

Is(n) = ∑
X=R,G,B

cX(n)pX ∗Xc(n)+η(n), for n ∈ Γ. (6.3)

Based on these considerations, frequency-domain analysis of the acquired image Is(n) can
be carried out. Since the acquisition functions cX(n) are periodic, they can be represented
as a finite sum of harmonically related complex exponentials using the discrete Fourier
series as follows:

cX(n) = ∑
k∈P(Λ)

αX(k)e jkT 2πV−1n, (6.4)

where V is the periodicity matrix and Λ is the lattice1 generated by V. The term P(Λ)
is a fundamental parallelepiped of the lattice Λ and the coefficients α(k) are complex, but
α(k) = ᾱ(−k), in order to ensure real values for c(n).

Equation 6.2 can thus be rewritten as

Is(n) = ∑
X

∑
k

αX(k)e jkT 2πV−1nXp(n)+η(n), (6.5)

where X = R,G,B and k ∈ P(Λ). The Fourier transform of the acquired image can be
expressed as follows:

Is(ω) = ∑
X=R,G,B

∑
k∈P(Λ)

αX(k)Xp(ω−kT 2πV−1)+η(ω), (6.6)

where Xp(ω) denotes the Fourier transform of the color component Xp(n). As a conse-
quence, the spectrum of a CFA image has at most |P(V)| frequency peaks and each peak
is a linear combination of the spectra of the three color components. In particular, the base-
band component is given by a weighted positive sum of the three color channels, where
each weight αX(0) is equivalent to the ratio between the number of acquired samples for

1When the acquisition functions are periodic on different lattices, Λ indicates the densest lattice over which all
the c(n), for X = R,G,B, are periodic. This lattice denotes also the periodicity of the CFA.
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FIGURE 6.3

Spectrum of the test image Lighthouse sampled using the Bayer pattern. c© 2009 IEEE

the component X and the number of the pixels in the image. In many demosaicking strate-
gies it is suitable to define this weighted sum as the luminance component of the image,
representing the achromatic information of the original scene.

For instance, in the case of the Bayer pattern, under the assumption of ideal impulse
response and zero noise, (see also Reference [23]):

Is(ω1,ω2) =
1
4

[B(ω1±π,ω2)−R(ω1±π,ω2)]+
1
4

[R(ω1,ω2±π)−B(ω1,ω2±π)]

+
1
4

[−R(ω1±π,ω2±π)+2G(ω1±π,ω2±π)−B(ω1±π,ω2±π)]

+
1
4

[R(ω1,ω2)+2G(ω1,ω2)+B(ω1,ω2)] , (6.7)

where ω1 and ω2 indicate the horizontal and vertical frequencies. Therefore, it is possible
to identify nine regions containing the signal energy, where the central region corresponds
to the luminance and the others to the modulated chrominance components. Due to the
correlation between the high-frequencies of the color components, the chrominance repli-
cas have limited support, while the luminance overlies a large part of the frequency plane.
This is clearly shown in Figure 6.3 which depicts the spectrum of the Kodak test image
Lighthouse sampled with the Bayer pattern.

6.3 Regularization-Based Methods

The desired image I (n) has to be estimated from the acquired data Is(n). It is evident
that this is an ill-posed problem due to the loss of information introduced by the CFA-
sampling process. A general principle for dealing with the instability of the problem is that
of regularization [24], [25].

The regularized solution Î is defined as the solution to the following problem:

Î = argmin
I

{
Ψ(I ,Is)+∑

k
λkJk(I )

}
, (6.8)
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where the first term Ψ(I ,Is), called the data-fidelity term, denotes a measure of the dis-
tance between the estimated image and the observed data, while the terms Jk(I ) denote
regularizing constraints based on a priori knowledge of the original image. The regulariza-
tion parameters λk control the tradeoff between the various terms.

In the matrix notation used in this chapter, r, g, and b denote the stacking vectors of
the three full-resolution color components R(n), G(n), and B(n), respectively. The term
i denotes the vector obtained by stacking the three color component vectors, that is, iT =
[rT ,gT ,bT ], whereas is is the stacking version of the image Is(n) acquired by the sensor
and η is the stacking vector of the noise. Then, the relation between the acquired samples
is and the full-resolution image i is described as follows:

is = Hi+η, (6.9)

where the matrix H is given by

H = [CRPR,CGPG,CBPB]. (6.10)

The square matrices PX account for the impulse response of the filters pX(n), respectively.
The entries of the diagonal matrices CX are obtained by stacking the acquisition functions
cX(n).

Using the above notation, the solution to the regularization problem in Equation 6.8 can
be found as follows:

î = argmin
i

{
Ψ(i, is)+∑

k
λkJk(i)

}
. (6.11)

The data-fidelity term Ψ(i, is) is usually defined according to least-squares approaches,
using the residual norm, that is

Ψ(i, is) = ‖is−Hi‖2
2, (6.12)

where ‖ · ‖2 indicates the `2 norm. However, in some techniques, the characteristics of the
sensor noise are considered and the weighted `2 norm

Ψ(i, is) = ‖is−Hi‖2
R−1

η
, (6.13)

where Rη denotes the autocorrelation matrix of the noise η, is preferred.
The main differences among the several regularization-based demosaicking methods re-

late to the regularizing terms considered in Equation 6.11. Reference [16] uses the total-
variation technique [26] to impose smoothness on each color component and estimate the
three color channels independently. Therefore, the prior terms are

Nx

∑
i=1

√
|∇h

i x|2 + |∇v
i x|2 +β 2, for x = r,g,b, (6.14)

where ∇h
i x and ∇v

i x are discrete approximations to the horizontal and vertical first order
difference, respectively, at the pixel i. The term Nx denotes the length of the vector x, and
β is a constant that is included to make the term differentiable in zero. Then, the energy
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functional in Equation 6.11 is minimized with an iterative algorithm for any color compo-
nent. References [18] and [19] improve this approach using the total-variation technique to
impose smoothness also to the color difference signals G−R and G−B and the color sum
signals G + R and G + B. This is the same as requiring strong color correlation in high-
frequency regions, which is a common assumption in many demosaicking approaches [6].
The estimation of the green component, which has the highest density in the Bayer pattern,
is obtained as in Reference [16]. The missing red and blue values are estimated with an
iterative procedure taking into account total-variation terms both of the color components
and of the color differences and sums.

Reference [17] introduces a novel regularizing term to impose smoothness on the chromi-
nances. This demosaicking algorithm uses suitable edge-directed weights to avoid exces-
sive smoothing in edge regions. The prior term is defined as follows:

N1

∑
n1=1

N2

∑
n2=1

1

∑
l=−1

1

∑
m=−1

ẽl,m
n1,n2

[
(Xcb(n1,n2)−Xcb(n1 + l,n2 +m))2

+ (Xcr(n1,n2)−Xcr(n1 + l,n2 +m))2] , (6.15)

where Xcb and Xcr are the chrominances obtained using the following linear transform:

Xcb =−0.169R−0.331G+0.5B,

Xcr = 0.5R−0.419G−0.081B.
(6.16)

The terms N1 and N2 denote the width and the height of the image, respectively. The
weights ẽl,m

n1,n2 , computed using the values of the CFA samples in the locations (n1,n2)
and (n1 + 2l,n2 + 2m), are used to discourage smoothing across the edges. Using vector
notation, Equation 6.15 can be rewritten as follows:

1

∑
l=−1

1

∑
m=−1

(
‖xcb−Zl,mxcb‖2

Wl,m
is

+‖xcr−Zl,mxcr‖2
Wl,m

is

)
, (6.17)

where xcb and xcr denote the vector representation of the chrominances, and Zl,m is the
operator such that Zl,mx corresponds to shifting the image x by l pixels horizontally and m
pixels vertically. The matrix Wl,m

is is diagonal; its diagonal values correspond to the vector

representation of the weights ẽl,m
n1,n2 . This constraint set is convex and a steepest descent

optimization is used to find the solution.
Reference [20] exploits the sparse nature of the color images to design the prior terms.

Instead of imposing smoothness on the intensity and chrominance values, it is assumed
that for any natural image i there exists a sparse linear combination of a limited number of
fixed-size patches that approximates it well. Given a dictionary D, which is a 3Nx×k matrix
which contains the k prototype patches, this implies that for any image there exists α ∈ Rk

such that i ' Dα and ‖α‖0 ¿ 3Nx where ‖ · ‖0 denotes the `0-quasi norm which counts
the number of nonzero elements. Based on these assumptions, novel regularizing terms
can be proposed and an estimate î of the original image can be found using an iterative
method that incorporates the K-SVD (single value decomposition) algorithm, as presented
in Reference [27].
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6.3.1 Joint Demosaicking and Super-Resolution

An approach to enhance the spatial resolution is to fuse together several low-resolution
images of the same scene in order to produce a high-resolution image (or a sequence of
them). This approach is called super-resolution image reconstruction and has proved to be
useful in many practical situations where multiple frames of the same scene are available,
including medical imaging, satellite imaging, video-surveillance and other video applica-
tions. Many techniques for super-resolution imaging have been proposed and an overview
of them can be found in Reference [28]. Since the low-resolution images are often acquired
by digital cameras equipped with a CFA, it may be desired to enhance image resolution by
directly using the raw-data in a joint demosaicking and super-resolution reconstruction pro-
cess.

The problem can be formulated by relating each observed image isk to the original scene
i as follows:

isk = Hki+ηk, (6.18)

where Hk takes into account the effects of the motion, the point-spread function, the down-
sampling, and the CFA-sampling. The term ηk denotes the noise affecting the kth-image.
Given K observed images isk , the goal is to estimate the original image i.

A solution to this problem is proposed in Reference [29] using a method which exploits
two regularization constraints. The first constraint is obtained through high-pass operators
Sd which evaluate directional smoothness of the luminance component of YIQ data in the
horizontal, vertical, diagonal, and isotropic directions as follows:

J1(i) = ∑
d
‖ΛdSdxY‖2

2, (6.19)

where the diagonal matrix Λd contains suitable weights determined by detecting the edge
orientation at each pixels.

The second constraint imposes isotropic smoothness on the chrominance components
with a high-pass filter S as follows:

J2(i) = ‖SxI‖2
2 +‖SxQ‖2

2, (6.20)

with xI and xQ denoting the chrominance components in the YIQ space.
Another joint demosaicking and super-resolution approach is proposed in Reference [30].

The first regularization constraint imposes smoothness to the luminance component with
the bilateral total-variation technique, an extension of the total-variation criterion [26]. It is
defined as

J1(i) =
P

∑
l=−P

P

∑
m=−P

α |m|+|l|‖xY −Zl,mxY‖1, (6.21)

where the matrices Zl,m are defined as in Equation 6.17 and the scalar weight 0 < α < 1 is
applied to give a decreasing effect when l and m increase. The quadratic penalty term in
Equation 6.20 is used to describe the bandlimited characteristic of the chrominances, and
another term penalizes the mismatch between locations or orientation of edges across the
color bands using the element by element multiplication operator ¯, as follows:
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160 Computational Photography: Methods and Applications

J3(i) =
1

∑
l=−1

1

∑
m=−1

[
‖g¯Zl,mb−b¯Zl,mg‖2

2

+ ‖b¯Zl,mr− r¯Zl,mg‖2
2 +‖r¯Zl,mg−g¯Zl,mr‖2

2

]
. (6.22)

The data fidelity term measuring the similarity between the resulting high-resolution im-
age and the original low-resolution images is based on the `1 norm. A steepest descent
optimization is used to minimize the cost function expressed as the sum of the three terms.

6.4 Non-Iterative Demosaicking

As described, the techniques presented in the previous section use iterative approaches
to find an approximation of the solution to the inverse problem of Equation 6.8. However,
this strategy could be too computationally demanding for real-time applications. Therefore,
this section presents a non-iterative demosaicking strategy [21] that is more efficient than
previous approaches.

6.4.1 Quadratic Estimation

Regularization constraints Jk(i) can be designed according to the Tikhonov method.
This method incorporates prior information about the image I through the inclusion of
quadratic terms, Jk(i) = ‖Mki‖2

2, where Mk are appropriate matrices.
Using the characteristics of natural color images, two constraints are included in the reg-

ularization method. The first constraint J1(i) is chosen in order to impose smoothness to
each single color component, that is M1 = I3⊗S1, where I3 is the 3×3 identity matrix, ⊗
denotes the Kronecker operator, and S1 represents a high-pass filter. As discussed in Sec-
tion 6.3, S1 is commonly chosen as discrete approximations of two-dimensional gradient
(e.g., Laplacian operators), but two directional filters can also be used. In this latter case,
ST

1 =
[
ST

1h,S
T
1v

]
where S1h and S1v represent a horizontal and a vertical high-pass filter Sh

and Sv, respectively.
The second constraint forces smoothness on the differences between the three color com-

ponents. Therefore, J2(i) can be expressed as follows:

J2(i) = ‖S2r−S2g‖2
2 +‖S2g−S2b‖2

2 +‖S2r−S2b‖2
2, (6.23)

where S2 represents a high-pass filter with a cut-off frequency lower than S1 since color
differences are smoother than the color channels2. Equation 6.23 can be reformulated as

J2(i) = iT



2ST
2 S2 −ST

2 S2 −ST
2 S2

−ST
2 S2 2ST

2 S2 −ST
2 S2

−ST
2 S2 −ST

2 S2 2ST
2 S2


 i = iT








2 −1 −1
−1 2 −1
−1 −1 2


⊗ST

2 S2



 i. (6.24)

2In Reference [21], a finite impulse response (FIR) filter with coefficients [0.2,−0.5,0.65,−0.5, l0.2] for Sh
and Sv is chosen. For the second constraint the filter coefficients [−0.5,1,−0.5] are used.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
11

 0
9 

M
ay

 2
01

6 



Regularization-Based Color Image Demosaicking 161

Then, exploiting the properties of the Kronecker product, this constraint can be expressed
as J2(i) = ‖M2i‖2

2, where

M2 = sqrt







2 −1 −1
−1 2 −1
−1 −1 2


⊗ST

2 S2


 =




1.547 −0.577 −0.577
−0.577 1.547 −0.577
−0.577 −0.577 1.547


⊗S2. (6.25)

Using the two regularizing constraints J1(i) and J2(i) defined as above and the data-
fidelity term defined in Equation 6.13, the solution of Equation 6.11 can be obtained by
solving the problem

(
HT R−1

η H+λ1MT
1 M1 +λ2MT

2 M2
)

î−HT R−1
η is = 0, (6.26)

that is, î = G is, with

G =
(
HT R−1

η H+λ1MT
1 M1 +λ2MT

2 M2
)−1 HT R−1

η . (6.27)

The coefficients of the filters that estimate the three color components from the CFA
sampled image can be extracted from the matrix G . In fact, G can be written as G =
[GR,GG,GB], where the submatrices GR, GG, and GB are the representation (according to
the matrix notation introduced in Section 6.2) of the filters that estimate the red, green and
blue components from the CFA image. Due to the data sampling structure of the CFA, the
resulting filters are periodically space-varying and the number of different states depends
on the periodicity of the CFA.

6.4.1.1 Estimation of the Luminance

An alternative and effective demosaicking approach focuses on finding an estimate L̂(n)
of the luminance component of the image, from which the three color components can be
easily computed by interpolating the color differences R− L̂, G− L̂, and B− L̂, as proposed
in Reference [14]. By introducing A = [αR(0)I,αG(0)I,αB(0)I], where I is the identity ma-
trix, the stacking vector of the luminance component can be expressed as ` = Ai. Therefore,
an estimate of the luminance from the CFA-sampled data is given by

ˆ̀= G` is, (6.28)

where G` = AG represents the filter that estimates the luminance component from the CFA
data.

As for the estimation of the red, green, and blue components, the resulting filter is peri-
odically space-varying. Reference [14] describes the luminance estimation process for the
Bayer pattern with the sensor PSFs assumed to be ideal impulses, that is, pX(n) = δ (n).
In this case, inspecting the rows of the matrix G` reveals two different states for the recon-
struction filter. For pixels corresponding to the red and blue locations of the Bayer pattern
the resulting filter has the frequency response as shown in Figure 6.4a. For pixels corre-
sponding to the green locations in the Bayer pattern, the frequency response of the filter is
as shown in Figure 6.4b.

Recalling the frequency analysis of a Bayer-sampled image reported in Section 6.2, the
estimation of the luminance corresponds to eliminating the chrominance replicas using
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FIGURE 6.4

(a) Frequency response of the 9×9 filter used for the luminance estimation in the red/blue pixels. (b) Frequency

response of the 5×5 filter used for the luminance estimation in the green pixels. c© 2009 IEEE

appropriate low-pass filters. For green pixels in the quincunx layout, the color difference
terms modulated at (0,±π) and (±π,0) vanish, as reported in Reference [14]. Thus, only
the chrominance components modulated at (±π,±π) have to be eliminated. This is not
the case of the red and blue locations, where all the chrominance components have to be
filtered and the spectrum of the image is as shown in Figure 6.3. Therefore, the frequency
response of the low-pass filters follows Figure 6.4. Since the requirements imposed on the
filter design are less demanding in the green locations than in the red and blue locations, a
smaller number of filter coefficients is usually sufficient. A similar analysis can be carried
out for other CFA arrangements.

6.4.2 Adaptive Estimation

In the previous section, some global properties of the images are exploited and a gen-
eral approach is applied to solve the demosaicking problem. In particular, the addition of
quadratic penalties Jk(i) = ‖Mki‖2

2 to the least-squares (and hence quadratic) data fidelity
criterion permits an efficient computational method. However, natural images are often
inhomogeneous and contain abrupt changes in both intensity and color due to the presence
of edges. Hence, quadratic approaches produce unacceptable artifacts in high-frequency
regions, as opposed to adaptive approaches that usually give better results.

Local adaptivity can be included in the regularization framework by considering some
non-quadratic regularizing constraints of the following form:

Jk(i) = ‖Mki‖2
Wi

, (6.29)

where Wi is a diagonal matrix estimated from the image in order to adapt the penalty term
to the local features of the image [31]. If a regularization term of this type is considered
together with the two quadratic penalties J1(i) and J2(i) proposed in the previous section,
the solution to Equation 6.11 is found by solving

(
HT R−1

η H+λ1MT
1 M1 +λ2MT

2 M2 +λ3MT
3 WiM3

)
i−HT R−1

η is = 0. (6.30)

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
11

 0
9 

M
ay

 2
01

6 



Regularization-Based Color Image Demosaicking 163

Since Wi depends on i, Equation 6.30 is nonlinear, and often is solved with a Landweber
fixed point iteration [25], [31]. However, a large number of iterations can be required before
convergence is reached, precluding fast implementations.

An alternative approach is proposed below. An initial estimate, ĩ, of the original image
is used such that the value of MT

3 WĩM3 ĩ approximates MT
3 WiM3i. Therefore, the resulting

image î is obtained as follows:

î =
(
HT R−1

η H+λ1MT
1 M1 +λ2MT

2 M2
)−1 (

HT R−1
η is−λ3MT

3 WĩM3 ĩ
)
. (6.31)

Since the operator M3 is set to be equivalent to the first quadratic operator M1, and both the
matrices are designed using two directional filters, it can be written that

M1 = M3 = I3⊗S1 = I3⊗
[
S1h
S1v

]
, (6.32)

in order to detect the discontinuities of the image along horizontal and vertical directions,
respectively. The diagonal entries of Wĩ depend on the horizontal and vertical high fre-
quencies of the estimated image ĩ. In fact, Wĩ = diag

(
Wr,h,Wr,v,Wg,h,Wg,v,Wb,h,Wb,v

)
,

where diag(·) denotes the diagonal entries and Wx,h and Wx,v, for x = r,g,b, are diagonal
matrices with their values defined as follows:

{Wx,h} j = ξ
( {ex,v} j

{ex,h} j +{ex,v} j

)
, (6.33)

{Wx,v} j = ξ
( {ex,h} j

{ex,h} j +{ex,v} j

)
, (6.34)

where {ex,h} j and {ex,v} j are the energies of the j-th value of S1hx and S1vx, respectively,
and ξ (·) is a function defined as

ξ (y) =





0 if y < ε
y− ε

1−2ε
if ε ≤ y≤ 1− ε

1 if y > 1− ε
(6.35)

with 0 ≤ ε ≤ 1/2 (in Reference [21] ε = 0.25 is used). In this way, when {S1hx} j À
{S1vx} j the presence of a vertical edge can be assumed; therefore, {Wx,h} j = 0 and the
constraint of smoothness of the color components is not considered along the horizontal
direction, while it is preserved for the vertical direction. The same analysis holds when hor-
izontal edges are found. Finally, when {Shx} j and {Svx} j have similar energies, smoothing
is imposed along both horizontal and vertical directions.

A similar approach was adopted in Reference [31], where a visibility function was applied
to compute the diagonal values of Wi. The visibility function depends on the local variance
of the image and goes to zero near the edges. However, this technique does not discriminate
between horizontal and vertical edges, so the high-frequency penalty is disabled for both
directions. Moreover, this approach is applied in iterative restoration methods.

It can be pointed out that there are two smoothing penalties in Equation 6.31, as the
adaptive term J3(i) is included together with the quadratic constraint J1(i). In fact, J1(i)
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cannot be removed, as the matrix HT R−1
η H+λ2MT

2 M2 is not invertible since ker(HT H)∩
ker(MT

2 M2) 6= {0}. Therefore, the regularization process with respect to the spatial smooth-
ness of the color components uses two constraints, where the quadratic one allows inverting
the matrix HT R−1

η H + λ1MT
1 M1 + λ2MT

2 M2 and the second one includes adaptivity in the
solution of the problem. The same approach is applied also in the half-quadratic minimiza-
tion methods in the additive form [32]. However, in these approaches, the diagonal subma-
trix Wx,h for the horizontal details and Wx,v for the vertical details does not accommodate
the vertical frequencies S1vx and the horizontal frequencies S1hx, respectively. Thus, the
local adaptivity is not based on the comparison between S1hx and S1vx as in Equations 6.33
and 6.34, and convergence to the optimal solution is therefore reached more slowly after
many iterations.

As for the initial estimate ĩ used in Equation 6.31, an efficient solution is to apply the
quadratic approach described in Section 6.4.1, leading to ĩ = G is. In this way, the approxi-
mation MT

3 WĩM3 ĩ'MT
3 WiM3i is verified, and the proposed scheme provides a reliable es-

timate of the color image i, as proved by the experimental results reported in Reference [21]
and in Section 6.5.

6.4.2.1 Luminance Estimation Using an Adaptive Scheme

As discussed in Section 6.4.1, estimating the luminance instead of the three color com-
ponents usually reduces the computational cost of the algorithm. In fact, the three color
components can be computed through bilinear interpolation of the color differences using
the estimated luminance as a reference component.

Considering that the luminance can be expressed as ` = Ai, an estimate of the luminance
using the spatially adaptive scheme of Equation 6.31 is given by

ˆ̀= A
(
HT R−1

η H+λ1MT
1 M1 +λ2MT

2 M2
)−1 (

HT R−1
η is−λ3MT

3 WĩM3 ĩ
)
. (6.36)

Since M3 = I3⊗ S1 and Wĩ = diag(Wr̃,Wg̃,Wb̃), with Wx̃ = diag(Wx̃,h,Wx̃,v), it can be
written that

MT
3 WĩM3 ĩ =




ST
1 Wr̃S1r̃

ST
1 Wg̃S1g̃

ST
1 Wb̃S1b̃


 , (6.37)

and, considering that the high frequencies of the three color components are highly corre-
lated with those of the luminance, the following approximation holds:

ST
1 Wr̃S1r̃' ST

1 Wg̃S1g̃' ST
1 Wb̃S1b̃' ST

1 W ˜̀S1 ˜̀. (6.38)

and the term in Equation 6.37 can therefore be replaced with

MT
3 WĩM3 ĩ = I3⊗ST

1 W ˜̀S1 ˜̀. (6.39)

By introducing the matrix

F` = A
(
HT R−1

η H+λ1MT
1 M1 +λ2MT

2 M2
)−1

[I,I,I]T ,

Equation 6.36 becomes
ˆ̀= G`is−λ3F`ST

1 W ˜̀S1 ˜̀ (6.40)
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FIGURE 6.5

Adaptive luminance estimation scheme. c© 2009 IEEE

where G` is defined in the previous section. If the initial estimate of the luminance ˜̀ is
computed with the quadratic approach described in Section 6.4.1, that is, ˜̀ = G`is, Equa-
tion 6.40 can be written as

ˆ̀=
(
I−λ3F`ST

1 W ˜̀S1
)
G`is. (6.41)

This equation indicates the procedure to compute the luminance from the CFA-sampled
image using the proposed adaptive method. The resulting scheme is depicted in Figure 6.5,
where G` is the space-varying filter designed in Section 6.4.1 and the filter F̀ is obtained
by matrix F`. Filters Sh and Sv are the horizontal and vertical high-pass filters represented
by matrices S1h and S1v, respectively.3

6.5 Performance Comparisons

This section presents experimental results and performance comparisons of various
regularization-based approaches. Twenty test images (Figure 6.6) from the Kodak dataset,
each with resolution of 512×768 pixels coded using 24 bits per pixel were sampled using
selected CFAs and the full color representation is reconstructed using several demosaick-
ing approaches. The demosaicked images are evaluated by comparing them to the original
image using the color peak signal-to-noise ratio (CPSNR):

CPSNR = 10log10
2552

1
3N1N2

∑
X

∑
n1

∑
n2

(
X̂(n1,n2)−X(n1,n2)

)2
, (6.42)

where N1 and N2 denote image dimensions, X = R,G,B denotes the color channel, and
n1 = 1,2, ...,N1 and n2 = 1,2, ...,N2 denote the pixel coordinates.

Performance of regularization-based algorithms was tested with four different acquisition
models to produce: i) noise-free Bayer CFA data, ii) noise-free CFA data generated using
the CFA with panchromatic sensors from Reference [4], iii) the Bayer CFA data corrupted

3In Figure 6.5, it is assumed that filters Sh and Sv are even-symmetric since in this case ST
1h = S1h and ST

1v = S1v.
Instead, if Sh and Sv are odd-symmetric, that is, ST

1h = −S1h and ST
1v = −S1v, after the adaptive weighting Sh

and Sv have to be replaced with −Sh and −Sv, respectively.
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FIGURE 6.6

The test images of the Kodak dataset used in the experiments. c© 2009 IEEE

by Gaussian noise, and iv) CFA data generated using the Bayer pattern and sensors with a
non-ideal impulse response. In addition to these simulated scenarios, raw images acquired
by a Pentax *ist DS2 digital camera are also used for performance comparisons.

6.5.1 Bayer CFA Images

Various demosaicking methods are first tested on images sampled with the popular Bayer
CFA (see Figure 6.1a). This comparison includes some well-known methods [9], [10], [11],
[14] and regularization-based methods [19], [20], [21] described in the previous sections.
In the approach presented in Reference [21], the adaptive estimate of the luminance is ob-
tained using the procedure depicted in Figure 6.5 and bilinear interpolation is performed to
obtain full color information. The complete procedure of the proposed adaptive reconstruc-
tion method from the CFA samples is depicted in Figure 6.7. The regularization parameters
λk and the filter dimensions are set as reported in Reference [21].

Table 6.1 presents CPSNR values of demosaicked images. As can be seen, the method
proposed in References [20] achieves the highest average CPSNR value. Visual inspection
of the restored images shown in Figure 6.8 reveals that regularization-based approaches
preserve edges and finest details during demosaicking.

bilinear

interpolation

of R - L,

G - L, B - L

quadratic

luminance

estimation

adaptive

luminance

estimation

Is LLq
R

G

B

^

^

^

^

^

^ ^

^

FIGURE 6.7

Complete scheme of the adaptive color reconstruction described in Section 6.4.2. c© 2009 IEEE
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(a) (b) (c)

(d) (e) (f)

FIGURE 6.8

Portion of the image #6 of the Kodak set: (a) original image, and (b-f) demosaicked images obtained using

the methods presented in (b) Reference [9], (c) Reference [10], (d) Reference [19], (e) Reference [20], and (f)

Reference [21]. c© 2009 IEEE

TABLE 6.1
CPSNR (dB) evaluation of demosaicking methods using images sam-
pled by the Bayer CFA shown in Figure 6.1a.

Method / Reference

Image [9] [10] [11] [14] [19] [20] [21]

1 38.36 38.58 36.91 37.58 39.04 39.32 38.04
2 40.42 40.18 40.16 40.26 37.98 40.66 38.16
3 38.05 38.08 37.44 38.12 36.17 38.67 38.17
4 40.03 40.10 39.24 38.11 38.56 39.98 39.66
5 42.03 42.15 41.61 42.69 39.73 42.70 42.39
6 35.96 36.50 35.42 35.37 35.17 36.39 36.01
7 42.76 43.11 42.34 42.72 41.26 43.03 42.38
8 41.77 42.60 42.14 42.69 40.44 42.64 42.46
9 40.10 40.07 39.30 39.47 38.38 40.16 39.78
10 42.81 43.54 42.95 42.77 41.93 43.38 43.07
11 34.73 35.03 33.33 33.89 36.05 35.27 34.62
12 39.17 39.61 39.01 39.53 38.28 40.14 39.18
13 43.26 43.87 43.05 41.30 42.01 43.47 43.28
14 41.43 41.74 40.77 41.58 40.44 41.84 41.59
15 36.48 36.97 36.10 36.76 35.88 37.47 37.01
16 40.46 40.65 39.82 40.01 39.08 41.14 39.97
17 37.80 41.06 39.87 40.54 38.22 40.86 40.63
18 38.93 39.37 37.93 38.70 39.12 39.69 39.16
19 38.55 38.38 37.74 38.64 36.91 38.83 38.47
20 34.91 35.07 34.21 34.64 33.53 35.59 35.30

Ave. 39.40 39.83 38.97 39.27 38.41 40.06 39.47

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
11

 0
9 

M
ay

 2
01

6 



168 Computational Photography: Methods and Applications

TABLE 6.2
CPSNR (dB) evaluation of demosaicking
methods using images sampled by the
panchromatic CFA shown in Figure 6.1d.
c© 2009 IEEE

Method / Reference

Image [33] [21] quad [21] adap

1 38.97 39.71 39.53
2 38.96 37.47 37.86
3 36.76 36.33 36.93
4 40.13 40.69 40.63
5 41.40 40.12 40.97
6 36.87 37.19 37.29
7 42.10 41.42 41.88
8 42.21 41.83 42.20
9 39.82 39.81 40.02
10 43.00 42.42 42.86
11 34.58 36.38 35.69
12 39.42 38.56 38.92
13 44.00 44.33 44.29
14 41.11 41.84 41.72
15 36.77 36.69 36.83
16 40.63 40.57 40.67
17 40.47 40.01 40.35
18 39.77 39.76 39.81
19 38.73 38.04 38.40
20 35.91 36.09 36.12

Ave. 39.58 39.46 39.65

6.5.2 Panchromatic CFA Images

This section focuses on demosaicking performance on the data obtained using the CFA
with panchromatic filters, that is, color filters which allow acquiring the light corresponding
to a linear combination of the red, green and blue components. A number of demosaicking
approaches proposed for the Bayer pattern cannot be extended to deal with the panchro-
matic data. Reference [4] presents a few panchromatic CFAs; the demosaicking procedure
suitable for such CFAs is proposed in Reference [33]. Table 6.2 compares the performances
of this approach and the algorithms presented in Sections 6.4.1 and 6.4.2 for the CFA data
generated using the pattern shown in Figure 6.1d. It can be seen that the adaptive reg-
ularization method improves the quality of the reconstructed images by obtaining higher
average CPSNR value.

6.5.3 Noisy Bayer CFA Images

In a digital camera, the image acquisition process is rarely noise-free. To demonstrate
the robustness of the different demosaicking methods, various demosaicking algorithms are
now tested on Bayer CFA images corrupted with Gaussian noise η with standard deviation
ση = 5. Table 6.3 summarizes achieved numerical results. As expected, the CPSNR val-
ues are lower than the results obtained in the noise-free case reported in Table 6.1. The
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TABLE 6.3
CPSNR (dB) evaluation of demosaicking methods using images sam-
pled by the Bayer CFA shown in Figure 6.1 and subsequently cor-
rupted with Gaussian noise of ση = 5. c© 2009 IEEE

Method / Reference

Image [9] [10] [11] [14] [19] [20] [21]

1 33.06 33.01 32.26 32.91 33.20 33.40 32.95
2 33.62 33.41 33.13 33.67 32.97 33.57 33.42
3 33.03 32.88 32.48 33.15 32.29 33.23 33.17
4 33.54 33.44 33.02 33.21 33.19 33.62 33.59
5 33.97 33.79 33.44 34.20 33.47 34.04 34.33
6 32.19 32.33 31.73 32.00 31.86 32.42 32.06
7 34.07 33.94 33.53 34.18 33.78 34.07 34.30
8 33.92 33.89 33.52 34.21 33.62 33.98 34.33
9 33.52 33.40 32.96 33.54 33.11 33.58 33.63
10 34.07 34.02 33.67 34.24 33.92 34.16 34.40
11 31.71 31.72 30.71 31.33 32.20 31.95 31.29
12 33.48 33.53 33.13 33.70 33.27 33.72 33.74
13 34.05 33.96 33.57 33.93 33.88 34.12 34.29
14 33.89 33.79 33.33 34.03 33.61 33.92 34.16
15 32.52 32.56 32.02 32.71 32.22 32.82 32.73
16 33.62 33.56 33.12 33.63 33.30 33.74 33.69
17 33.53 34.43 33.96 34.49 33.73 34.38 34.68
18 33.31 33.28 32.64 33.37 33.30 33.49 33.46
19 33.19 32.99 32.58 33.35 32.63 33.26 33.41
20 31.85 31.75 31.23 31.80 31.07 32.09 32.05

Ave. 33.31 33.28 32.80 33.38 33.03 33.48 33.48

regularization-based techniques described in Sections 6.3 and 6.4 produce high average
CPSNR values and seem to be more robust on noisy images than edge-adaptive approaches
which tend to fail due to inaccurate edge detection on noisy data. The quality of the de-
mosaicked images can be improved by applying a denoising procedure. An alternative
strategy [34] could be to use techniques that perform demosaicking jointly with denoising.

6.5.4 Blurry and Noisy Images

The quality of demosaicked images strongly depends on the sensor’s characteristics. In
fact, sensors with a bandlimited frequency response reduce aliasing and high-frequency
content of an image, thus making it easier for demosaicking. Therefore, a deblurring and/or
sharpening step is included in the imaging pipeline to sharpen the demosaicked image. The
techniques presented in this chapter can overcome this problem since the design of the fil-
ters used for color reconstruction takes into account the impulse response of the sensor (see
Section 6.2), thus adapting demosaicking to its characteristics and performing deblurring
jointly with demosaicking.

Table 6.4 reports the performances of different approaches in scenarios where the sensor
is equipped with the Bayer CFA and pixels have a Gaussian impulse response with stan-
dard deviation σs = 0.5. In this experiment, the demosaicking methods proposed in Ref-
erences [9] and [10] followed by various deblurring algorithms are directly compared with
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TABLE 6.4
CPSNR (dB) evaluation of demosaicking methods using images sampled by the Bayer CFA shown
in Figure 6.1 and the sensor with a Gaussian impulse response of σs = 0.5. c© 2009 IEEE

Method / Reference

Image [9] [9]+[35] [9]+[36] [10] [10]+[35] [10]+[36] [21] quad [21] adap

1 33.47 38.26 38.85 33.44 38.70 38.71 37.03 38.07
2 38.06 40.42 39.78 38.03 39.41 39.37 37.86 38.24
3 33.24 38.08 37.05 33.12 36.86 36.60 36.98 38.16
4 34.81 40.03 39.83 34.85 39.43 39.51 37.58 39.81
5 39.08 42.03 40.77 39.03 39.90 40.34 41.20 42.71
6 30.97 35.90 36.19 31.08 36.26 36.17 33.66 36.32
7 39.16 42.76 42.04 39.19 42.11 42.07 41.02 42.59
8 38.50 41.77 41.06 38.70 41.52 41.47 41.38 42.60
9 35.81 40.10 39.74 35.80 39.18 39.25 38.56 39.78
10 39.41 42.81 42.03 39.56 42.12 42.46 41.33 43.35
11 30.29 34.59 35.06 30.32 34.75 34.75 34.28 34.25
12 36.87 39.17 38.41 36.98 38.46 38.48 38.28 39.37
13 38.37 43.26 42.95 38.58 43.10 43.12 40.79 43.50
14 37.95 41.43 40.98 38.00 40.93 40.90 41.01 41.54
15 33.54 36.45 36.13 33.62 35.93 36.03 36.55 36.72
16 35.49 40.46 40.23 35.46 39.15 39.61 38.14 40.33
17 35.89 37.80 37.43 37.33 39.53 40.33 39.11 40.72
18 35.10 38.93 39.07 35.15 38.69 38.98 38.20 39.12
19 36.02 38.56 37.77 35.90 36.98 37.09 37.69 38.53
20 32.14 34.91 34.59 32.23 33.98 34.44 34.90 35.15

Ave. 35.71 39.39 39.00 35.82 38.85 38.98 38.28 39.54

the total variation-based image deconvolution [35] and the deconvolution using a sparse
prior [36] method.4 The performance of these methods is also compared with the results
obtained with the non-iterative regularization method described in Section 6.4.

Using no deblurring, the methods presented in References [9] and [10] produce im-
ages with a poor quality. Employing the restoration method after the demosaicking step
considerably improves performance, providing average CPSNR improvements up to 3.6
dB. The adaptive approach is able to produce sharp demosaicked images, thus making
use of enhancement procedures unnecessary. The average CPSNR value obtained by the
regularization-based method is higher compared to values achieved using the demosaick-
ing methods [9], [10] followed by computationally demanding deblurring methods of Ref-
erences [35] and [36]. Figure 6.9 allows visual comparisons of different methods, with
the original image shown in Figure 6.8a. As can be seen, the image shown in Figure 6.9a
reconstructed without sharpening is blurred. Figure 6.9b shows the image with demosaick-
ing artifacts amplified by the deblurring algorithm. The image shown in Figure 6.9c is
excessively smoothed in the homogeneous regions. The best compromise between sharp-
ness and absence of demosaicking artifacts demonstrated by the regularization approach of
Reference [21], with output image shown in Figure 6.9d.

4The source codes of the deblurring algorithms presented in References [35] and [36] are available
at http://www.lx.it.pt/∼bioucas, and http://groups.csail.mit.edu/graphics/
CodedAperture/DeconvolutionCode.html, respectively.
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(a) (b)

(c) (d)

FIGURE 6.9

Portion of the image #6 of the Kodak set: (a) image reconstructed using the method of Reference [9] and

without deblurring, (b) image reconstructed using the method of Reference [9] and sharpened using the method

of Reference [35], (c) image reconstructed using the method of Reference [9] and sharpened with the method

of Reference [36], (d) image reconstructed by the adaptive method of Reference [21]. c© 2009 IEEE

6.5.5 Raw CFA Data

In addition to experiments with simulated CFA data, real raw CFA images captured us-
ing a Pentax *ist DS2 camera equipped with a 6.1 megapixel CCD sensor and the Bayer
CFA were used. Figure 6.10 shows a portion of an image demosaicked using the methods
presented in References [9], [14], and [21]. As can be seen, the regularization approach
excels also in the edge regions, since it avoids introducing the zipper effect and produces
images which are sharper than those produced using other methods.

6.6 Conclusion

This chapter presented demosaicking methods based on the concept of regularization.
Demosaicking is considered as an inverse problem and suitable regularization terms are
designed using the characteristics of natural images. As demonstrated in this chapter, tak-
ing advantage of assumptions based on the smoothness of the color components and the
high-frequency correlation between the color channels allows the design of efficient algo-
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(a) (b)

(c) (d)

FIGURE 6.10

Portion of an image captured using a Pentax *ist DS2 camera: (a) CFA image; (b-d) images reconstructed

using the method of (b) Reference [9], (c) Reference [14], and (d) Reference [21].

rithms. The regularization-based methods are easily applicable to any CFA and can demo-
saick efficiently images acquired with sensors having a non-ideal impulse response, since
the characteristics of the PSF are taken into account in the reconstruction method. More-
over, the regularization-based strategy permits coupling demosaicking with other frequent
problems in image reconstruction and restoration.
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7.1 Introduction

Super-resolution (SR) image restoration is the process of producing a high-resolution im-
age (or a sequence of high-resolution images) from a set of low-resolution images [1], [2],
[3]. The process requires an image acquisition model that relates a high-resolution image
to multiple low-resolution images and involves solving the resulting inverse problem. The
acquisition model includes aliasing, blurring, and noise as the main sources of information

175
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FIGURE 7.1

A subset of 21 low-resolution input images.

(a) (b)

FIGURE 7.2

Interpolation vs. super-resolution: (a) one of the input images resized with bilinear interpolation, and (b)

high-resolution image obtained with the SR restoration algorithm presented in Reference [3].

loss. A super-resolution algorithm increases the spatial detail in an image, and equivalently
recovers the high-frequency information that is lost during the imaging process.

There is a wide variety of application areas for SR image restoration. In biomedical
imaging, multiple images can be combined to improve the resolution, which may help in
diagnosis. In surveillance systems, the resolution of a video sequence can be increased
to obtain critical information, such as license plate or facial data. High-definition televi-
sion (HDTV) sets may utilize SR image restoration to produce and display higher quality
video from a standard definition input signal. High-quality prints from low-resolution im-
ages can be made possible with SR image restoration. Imaging devices such as video
cameras and microscopes might be designed to create intentional sensor shifts to produce
high-resolution images [1]. Similarly, super-resolution projectors can be realized by super-
imposing multiple shifted images on a screen [2]. Other application areas include satellite
and aerial imaging, astronomy, video coding, and radar imaging. Figure 7.1 shows a num-
ber of low-resolution images. A set of these images is used to create a high-resolution
image; Figure 7.2 shows that the restored image is de-aliased and more legible than the
bilinearly interpolated input.
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high

resolu tion

input image

+downsamplingwarping blurring
f(u,v) g (x,y)

k

k
n (x,y)

noise

f(M (x,y))
k

b(u,v)* f (M (x,y))
k

FIGURE 7.3

Imaging model.

SR image restoration has been an active research field for more than two decades. As
revealed in various survey studies [4], [5], [6], [7], [8], [9], there are both well-established
methods and open problems to be addressed.

This chapter aims to serve as an introductory material for SR imaging, and also provide
a comprehensive review of SR methods. Section 7.2 describes a commonly used imaging
model and two implementation approaches. Section 7.3 presents the main SR methods.
Registration and parameter estimation issues are discussed in Section 7.4. Variations on SR
imaging model are presented in Section 7.5. Finally, conclusions and research directions
are given in Section 7.6.

7.2 Observation Model

There are two main factors that cause loss of detail in images. The first factor is blurring,
which may be due to atmospheric blur, optical blur (out-of-focus, diffraction, and lens
aberrations), sensor blur (spatial averaging on photosensitive pixel sites on sensor), and
motion blur (which is pronounced when the exposure time is long considering the motion in
the scene). The blurring effects are typically combined into a space-invariant point spread
function (PSF) and implemented as the convolution of the ground truth image with the
PSF. Most SR algorithms do not consider motion blur, and use an isotropic convolution
kernel. An exception to this model is presented in Reference [10], where motion blur is
included in the model, resulting in a space-variant PSF. The second factor that reduces
resolution in images is aliasing, which is due to spatial sampling on the sensor. Spatial
sampling is modeled as downsampling in image formation. In addition to these factors,
noise also corrupts the observed data, and is included in most imaging models. There are
several causes of noise, such as charges generated in the sensor independent of the incoming
photons, and quantization of signals in the electronics of the imaging device. Observation
noise is typically modeled as an additive term.

In SR image restoration, the goal is to improve the resolution of an image by combining
multiple images. Therefore, the imaging model relates a high-resolution (unobserved) im-
age to multiple low-resolution observations. Mathematically, the imaging process can be
formulated as follows (Figure 7.3):

gk(x,y) = D[b(u,v)∗ f (Mk(x,y))]+nk(x,y), (7.1)

where gk is the kth low-resolution image, D is the downsampling operator, b is the PSF,
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f

warp to kth observation

DBM f
k

*

M f
k

BM f
k

downsample

convolve with

a discrete PSF

FIGURE 7.4

The high-resolution image is warped onto the kth frame, convolved with a discrete PSF, and downsampled to

form the observation.

f is the high-resolution image, Mk is geometric mapping between f and the kth observa-
tion, and nk denotes observation noise. The term Mk(x,y) relates the coordinates of the
kth observation and the high-resolution image; in other words, f (Mk(x,y)) is the warped
high-resolution image and is the higher resolution version of gk. This model makes several
assumptions, including a shift-invariant PSF, additive noise, and constant illumination con-
ditions. Later in the chapter, three enhancements of this model, through motion modeling,
photometric modeling, and modeling of color filter array sampling, will be discussed.

The discretized imaging model can be written in matrix form as follows:

gk = Hkf+nk, (7.2)

where f is the vectorized version of the high-resolution image, gk is the kth vectorized
observation, nk is the kth vectorized noise, and Hk is the matrix that includes the linear
operations, that is, geometric warping, convolution with the PSF, and downsampling.

Sometimes, all N observations are stacked to form a simplified representation of the
problem: 



g1
g2
...

gN




︸ ︷︷ ︸
g

=




H1
H2
...

HN




︸ ︷︷ ︸
H

f+




n1
n2
...

nN




︸ ︷︷ ︸
n

=⇒ g = Hf+n (7.3)

There are two main approaches to implement the forward imaging process. In the first
method, the high-resolution image is warped to align with the low-resolution observation,
convolved with a discrete PSF, and downsampled to simulate the observation. This method
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continuous PSF

high-resolu tion image

M (x, y)
k

weighed sum of

high-resolu tion image samples

simulated

low-resolu tion image

FIGURE 7.5

For a low-resolution position (x,y), a continuous PSF is placed at location (u,v) on the high-resolution image

based on the geometric mapping Mk(x,y). The weights of the PSF corresponding to the high-resolution pixels

under the kernel support are calculated. The weighted sum of the high-resolution pixels produces the intensity

at low-resolution image position (x,y). This process is repeated for all low-resolution image locations.

is illustrated in Figure 7.4 and basically corresponds to consecutive application of three
matrices:

Hk = DBMk, (7.4)

where D denotes the downsampling matrix, B denotes the matrix for convolution with the
discrete PSF, and Mk is the matrix for geometric mapping from f to kth observation.

In the second method, a continuous PSF is placed on the high-resolution image using
the motion vector from a low-resolution sample location. Then, the weights of the PSF
corresponding to the high-resolution image samples are obtained, and finally the weighted
sum of the high-resolution samples is calculated to simulate the low-resolution sample. By
repeating this process for all low-resolution sample locations, the low-resolution image is
obtained. This method is illustrated in Figure 7.5.

7.3 Super-Resolution Methods
7.3.1 Frequency Domain Approach

One of the earliest SR methods is the frequency domain method presented in Refer-
ence [11]. This method relates the discrete Fourier transform (DFT) coefficients of the
low-resolution images and the continuous Fourier transform (CFT) of the high-resolution
image, and constructs a linear system in terms of the Fourier coefficients.

A continuous band-limited high-resolution image f (u,v) is shifted by (δu,δv) to produce
a shifted version fk(u,v) = f (u+δu,v+δv). The shifted image is then sampled with period
(Tx,Ty) to produce the discrete low-resolution image gk[nx,ny] = fk(Txnx,Tyny), where nx =
0, ...,Nx−1 and ny = 0, ...,Ny−1. The DFT of gk and CFT of fk are related as follows:

Gk [mx,my] =
1

TxTy
∑
px

∑
py

Fk

(
mx +Nx px

NxTx
,
my +Ny py

NyTy

)
(7.5)
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low-resolu tion

observations

register and interpolate

FIGURE 7.6

Low-resolution observations are registered and interpolated on a high-resolution grid. This process is followed

by a deconvolution process.

Combining this equation with the shifting property of Fourier transform Fk (wx,wy) =
e j2π(Txwx+Tywy)F (wx,wy) results in a set of linear equations relating the DFT of the observa-
tions with the samples of the CFT of the high-resolution image. The CFT samples are then
solved to form the high-resolution image.

This frequency domain algorithm was later extended to include blur and noise in the
model [12]. A total least squares version was presented in Reference [13] for regulariz-
ing against registration errors; and a DCT domain version was presented in Reference [14]
to reduce the computational cost. The frequency domain approach has the advantage of
low-computational complexity and an explicit dealiasing mechanism. Among the disad-
vantages are the limitation to global translational motion, limitation to shift-invariant blur,
and limited capability of incorporating spatial domain priors for regularization.

7.3.2 Interpolation-Deconvolution Method

In the interpolation-deconvolution method, all observations are first registered and inter-
polated on a high-resolution grid as illustrated in Figure 7.6. This requires interpolation
from nonuniformly distributed samples. A simple nonuniform interpolation algorithm is
to take a weighted sum of the samples at each grid location, where the weights are in-
versely proportional to the distance between the grid location and the sample location [15],
[16]. The weights can be chosen as exp(−αδ ), where δ is the distance between the grid
and sample locations, and α is a constant that controls the decay of the weights. Another
nonuniform interpolation-based SR algorithm is presented in Reference [17], where the
interpolation method is based on the Delaunay triangulation. The methods presented in
References [18] and [19] are among those that do nonuniform interpolation. The interpola-
tion step is followed by a deconvolution step to create a high-resolution image. While the
interpolation-deconvolution method does not limit the type of motion among the images,
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Super-Resolution Imaging 181

the optimality of separating the interpolation and deconvolution steps is an open question.
A general observation is that the interpolation-deconvolution method does not perform as
well as the methods that do not separate interpolation from deconvolution.

7.3.3 Least Squares Estimation

A high-resolution image can be obtained by solving the imaging model given in Equa-
tion 7.2 by least squares estimation. The least squares solution fls minimizes the cost func-
tion C(f) = ∑

k
||gk−Hkf||2, and it can be calculated directly by setting the derivative of the

cost function to zero:
∂C(f)

∂ f
=−2∑

k
HT

k (gk−Hkf) = 0, (7.6)

resulting in the following:

fls =

(
∑
k

HT
k Hk

)−1 (
∑
k

HT
k gk

)
. (7.7)

In practice, the direct solution is not computationally feasible due to the sizes of the ma-
trices involved. If Hk was a block-circulant matrix, which is not the case in general, an
efficient frequency domain implementation would be possible. Therefore, iterative meth-
ods, such as the steepest descent and conjugate gradient methods, are adopted. These
methods start with an initial estimate and update it iteratively until a convergence criterion
is reached. The convergence criterion could be, for instance, the maximum number of iter-
ations or the rate of change between two successive iterations. An iteration of the steepest
descent method is the following:

f(i+1) = f(i)−α
∂C(f)

∂ f

∣∣∣∣
f(i)

,

= f(i) +2α ∑
k

HT
k

(
gk−Hkf(i)

)
, (7.8)

where f(i) is the ith estimate. The step size α should be small enough to guarantee conver-
gence; on the other hand, the convergence would be slow if it is too small. The value of α
could be fixed or adaptive, changing at each iteration. A commonly used method to choose
the step size is the exact line search method. In this method, defining d = ∂C(f)/∂ f|f(i) at
the ith iteration, the step size that minimizes the next cost C

(
f(i+1)

)
=C

(
f(i)−αd

)
is given

by

α =
dT d

dT

(
∑
k

HT
k Hk

)
d
. (7.9)

The algorithm suggested by Equation 7.8 can be taken literally by converting images
to vectors and obtaining the matrix forms of warping, blurring, and downsampling opera-
tions. There is an alternative implementation, which involves simple image manipulations.
The key is to understand the image domain operations implied by the transpose matrices
HT

k = (DBWk)T = WT
k BT DT . Through the analysis of the matrices, it can be seen that
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(a) (b)

FIGURE 7.7 (See color insert.)

Least square method-based image restoration: (a) bilinearly interpolated observation from a sequence of 50

frames, and (b) restored image using the least squares SR algorithm.

DT corresponds to upsampling by zero insertion; BT corresponds to convolution with the
flipped PSF kernel; and finally, since Wk corresponds to warping from reference frame
to kth frame, WT

k is implemented by back warping from kth frame to reference frame. It
should be noted that WT

k is not exactly equal to W−1
k unless Wk is a permutation matrix.

This is not surprising because an image warp operation involves interpolation, which is a
lossy process. Also note that the adaptive step size α in Equation 7.9 can be calculated
with similar image operations as well [20].

A sample result is shown in Figure 7.7. The iterative least squares algorithm is essentially
identical to the iterated backpropagation algorithm presented in Reference [21]. The main
difference in the iterated backpropagation algorithm is that the backprojection PSF is not
necessarily the flipped version of the forward imaging PSF. Reference [22] proposes to
take the median of the backprojections coming from different images in order to eliminate
outliers.

One issue with the least squares approach is the sensitivity to small perturbations in the
data. SR restoration is an ill-posed inverse problem; small perturbations, such as noise
and registration errors, could get amplified and dominate the solution. Regularization is
therefore needed to make the least squares approach more robust. Tikhonov regulariza-
tion [23], [24] is a commonly used technique; the cost function to be minimized is modi-
fied to C(f) = ∑k ||gk−Hkf||2 +λ ||Lf||2, where λ is the regularization parameter, and L is
an identity matrix or a high-pass filter matrix used to impose smoothness on the solution.
The maximum entropy [23], total variation [25], and Lp norm [26] are some of the other
regularization approaches.

7.3.4 Bayesian Approach

Bayesian estimation provides an elegant statistical perspective to the SR image restora-
tion problem. The unknown image, noise, and in some cases other parameters, such as
motion vectors, are viewed as random variables. The maximum likelihood (ML) estimator
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Super-Resolution Imaging 183

seeks the solution that maximizes the probability P(g|f), while the maximum a posteri-
ori (MAP) estimator maximizes P(f|g). Using the Bayes rule, the MAP estimator can be
written in terms of the conditional probability P(g|f) and the prior probability of P(f) as
follows:

fmap = argmax
f

P(f|g) = argmax
f

P(g|f)P(f)
P(g)

. (7.10)

In most SR restoration problems, image noise is modeled to be a zero-mean indepen-
dent identically distributed (iid) Gaussian random variable. Thus, the probability of an
observation given the high-resolution image can be expressed as follows:

P(gk|f) = ∏
x,y

1√
2πσ

exp
(
− 1

2σ2 (gk(x,y)− ĝk(x,y))
2
)

,

=
1

(√
2πσ

)M exp
(
− 1

2σ2 ‖gk−Hkf‖2
)

, (7.11)

where σ is the noise standard deviation, ĝk(x,y) is the predicted low-resolution pixel value
using f and the forward imaging process Hk, and M is the total number of pixels in the
low-resolution image.

The probability of all N observations given the high-resolution image can then be ex-
pressed as

P(g|f) =
N

∏
k=1

P(gk|f) =
1

(√
2πσ

)NM exp

(
− 1

2σ 2 ∑
k
‖gk−Hkf‖2

)
,

=
1

(√
2πσ

)NM exp
(
− 1

2σ2 ‖g−Hf‖2
)

. (7.12)

(7.13)

Substituting this into Equation 7.10, and by taking the logarithm and neglecting the irrele-
vant terms, provides the following:

fmap = argmax
f
{logP(g|f)+ logP(f)} ,

= argmax
f

{
− 1

2σ 2 ‖g−Hf‖2 + logP(f)
}

. (7.14)

This MAP approach has been used in many SR algorithms, including those in Refer-
ences [27], [28], and [29]. The main difference is the prior model chosen. A commonly
used prior model is the Gaussian model:

P(f) ∝ exp
(−(f−µ)T Q(f−µ)

)
, (7.15)

where µ is the average image and Q is the inverse of the covariance matrix. When both the
data fidelity and the prior terms are quadratic, a straightforward analytical implementation
is possible. Another popular quadratic model is P(f) ∝ exp(−‖Lf‖2), which leads to the
following optimization problem:

fmap = argmin
f

{
‖g−Hf‖2 +λ ‖Lf‖2

}
, (7.16)
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where L is typically a discrete approximation of a derivative operator, Laplacian or identity
matrix. With L being a high-pass filter, the ‖Lf‖ term penalizes the high-frequency content
and leads to a smoother solution. The regularization parameter λ controls the relative
contribution of the prior term.

The MAP estimate in Equation 7.16 is equivalent to the least squares estimation solution
with Tikhonov regularization; and the direct solution is fmap = (HT H+λLT L)−1HT g. As
discussed earlier, this direct solution is not feasible in practice due to the sizes of the matri-
ces involved. Instead, an iterative approach should be taken.

Another commonly used prior model is the Gibbs distribution [30]:

P(f) =
1
Z

exp(−βE (f)) =
1
Z

exp

(
−β ∑

c∈C

Vc (f)

)
, (7.17)

where Z is a normalization constant, β is a positive constant that controls the peakiness of
the distribution, E(·) is the energy function, c is a clique, C is the set of all cliques, and
Vc (·) is the potential function of clique c. A clique is a single site or a set of site pairs in a
neighborhood. Through the way the cliques and the clique potentials are defined, different
structural properties can be modeled. The Gibbs distribution is an exponential distribution;
the resulting optimization problem can be expressed as follows:

fmap = argmin
f

{
‖g−Hf‖2 +λ ∑

c∈C

Vc (f)

}
. (7.18)

A sample potential function at a pixel location is defined as

Vc (f) =
4

∑
n=1

d2
n(x,y) (7.19)

with
d1(x,y) = f (x+1,y)−2 f (x,y)+ f (x−1,y),
d2(x,y) = f (x,y+1)−2 f (x,y)+ f (x,y−1),
d3(x,y) = f (x+1,y+1)/2− f (x,y)+ f (x−1,y−1)/2,
d4(x,y) = f (x+1,y−1)/2− f (x,y)+ f (x+1,y−1)/2,

(7.20)

where the clique potentials dn(x,y) measure the spatial activity in horizontal, vertical and
diagonal directions using second order derivatives. This prior is an example of the Gauss
Markov Random Field (GMRF). For this model, the energy function can be obtained by
linear filtering; for example, the clique potentials for d1(x,y) can be obtained by convolving
the image with the filter [1,−2,1]. Therefore, the energy can be written as

E (f) = ∑
c∈C

Vc (f) =
4

∑
n=1

‖Φnf‖2 = ‖Φf‖2 , (7.21)

where Φn is the convolution matrix for dn(x,y), and Φ =
[
ΦT

1 ΦT
2 ΦT

3 ΦT
4

]T is constructed
by stacking Φn. Substituting Equation 7.21 into Equation 7.18 reveals that the implemen-
tation approaches discussed previously for quadratic cost functions can be applied here as
well.
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Super-Resolution Imaging 185

A criticism of the GMRF prior is the over-smoothing effect. In Reference [28], the Huber
function is used to define the Huber Markov Random Field (HMRF), with clique potentials

Vc (f) =
4

∑
n=1

ρφ (dn(x,y)), (7.22)

where the Huber function is

ρφ (z) =
{

z2 if |z| ≤ φ ,
2φ |z|−φ 2 otherwise.

(7.23)

The resulting optimization problem is nonquadratic:

fmap = argmin
f

{
‖g−Hf‖2 +λ1T ρφ (Φf)

}
, (7.24)

where 1 is a vector of ones. This optimization problem can be solved using a gradient
descent algorithm, which requires the gradient of the cost function:

∂
∂ f

{
‖g−Hf‖2 +λ1T ρθ (Φf)

}
=−2HT (g−Hf)+λΦT ρ ′θ (Φf) , (7.25)

where the derivative of the Huber function is

ρ ′φ (z) =
{

2z if |z| ≤ φ ,
2φsign(z) otherwise.

(7.26)

The GMRF and HMRF prior formulations above lead to efficient analytical implementa-
tions. In general, the use of Gibbs prior requires numerical methods, such as the simulated
annealing and iterated conditional modes, for optimization.

Another commonly used prior model is based on total variation, where the L1 norm (i.e.,
the sum of the absolute value of the elements) is used instead of the L2 norm:

P(f) ∝ exp(−‖Lf‖1) . (7.27)

The total variation regularization has been shown to preserve edges better than the
Tikhonov regularization [25]. A number of SR algorithms, including those presented in
References [31] and [32], have adopted this prior. Recently, Reference [33] proposed a
bilateral total variation prior:

P(f) ∝ exp

(
−

R

∑
l=−R

R

∑
m=−R

γ |m|+|l|‖f−Sl
xSm

y f‖1

)
, (7.28)

where γ is a regularization constant in the range (0,1), Sl
x and Sm

y shift an image by integer
amounts l and m in x and y directions, respectively, and R is the maximum shift amount.
This prior term penalizes intensity differences at different scales, and γ gives a spatial decay
effect. The gradient descent solution requires the derivative of the prior, which is

∂ logP(f)
∂ f

∝ ∑
l

∑
m

γ |l|+|m|
(

I−S−m
y S−l

x

)
sign

(
f−Sl

xSm
y f

)
(7.29)

where Sy
−mSx

−l are the transposes of Sy
mSx

l , respectively.
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It should be noted that in case of the iid Gaussian model, the MAP estimation could be
interpreted under the regularized least estimation context, and vice versa. However, there
are non-Gaussian cases, where the MAP approach and the least squares approach lead to
different solutions. For example, in tomographic imaging, the observation noise is better
modeled with a Poisson distribution; and the MAP approach works better than the least
squares approach. Another advantage of the MAP approach is that it provides an elegant
and effective formulation when some uncertainties (for example, in registration or PSF
estimation) are modeled as random variables.

7.3.5 Projection onto Convex Sets

Another SR approach is based on the projection onto convex sets (POCS) technique [34]
which consists of iterative projection of an initial estimate onto predefined constraint sets.
When the constraint sets are convex and not disjoint, the technique guarantees convergence
to a solution that is consistent with all the constraint sets. The solution is not unique;
depending on the initial estimate and the order of the projections, the iterations may lead
to different solutions. One advantage of the POCS technique is the ease of incorporating
space-variant PSF into the restoration [10].

Data fidelity constraint set is a commonly used constraint set to ensure consistency with
observations. The set is defined at each observation pixel and constrains the difference
between the predicted pixel value and the actual pixel value:

CD [gk(x,y)] = { f : |rk(x,y)| ≤ Tk(x,y)} , (7.30)

where
rk(x,y) = gk(x,y)− ∑

u,v∈Sxy

hk(x,y;u,v) f (u,v) (7.31)

is the residual, Sxy is the set of pixels in the high-resolution image that contributes to the
pixel (x,y) in the kth observation, hk(x,y;u,v) is the contribution of the pixel f (u,v), and
Tk(x,y) is the threshold value that controls the data fidelity constraint. The threshold should
be chosen considering the noise power [35]. If the noise power is small, the threshold
could be chosen small; otherwise it should be large to allow space for disturbances caused
by the noise. The projection operation onto the data fidelity constraint set is illustrated in
Figure 7.8, and formulated as follows [10], [35]:

f (i+1)(u,v) =





f (i)(u,v)+ (rk(x,y)−Tk(x,y))hk(x,y;u,v)
∑

u,v∈Sxy
h2

k(x,y;u,v)
for rk(x,y) > Tk(x,y),

f (i)(u,v) for |rk(x,y)| ≤ Tk(x,y),
f (i)(u,v)+ (rk(x,y)+Tk(x,y))hk(x,y;u,v)

∑
u,v∈Sxy

h2
k(x,y;u,v)

for rk(x,y) <−Tk(x,y),
(7.32)

where Sxy is the set of pixels under the support of the PSF, centered by the mapping Mk(x,y).
The projection operation is repeated for all low-resolution pixels.

In addition to the data fidelity constraint set, it is possible to define other constraint sets.
For example, the amplitude constraint set, CA = { f : 0≤ f (u,v)≤ 255}, ensures that the
resulting image has pixel values within a certain range. A smoothness constraint set could
be defined as CS =

{
f :

∣∣ f (u,v)− f̄ (u,v)
∣∣≤ δS

}
, where f̄ (u,v) is the average image and δS

is a nonnegative threshold.
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high resolu tion
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M (x, y)
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S h (x, y; u, v) f(u, v)
ku,v

T (x, y)
k

r (x, y)
k

determine update

amounts

update pixels

FIGURE 7.8

POCS implementation.

7.3.6 Training-Based Super Resolution

Training-based SR has recently become popular mainly because it is possible to design
algorithms that do not require motion estimation, and class specific priors can be incorpo-
rated into the restoration. Motion estimation is a computationally demanding and probably
the most critical part of a traditional super-resolution algorithm. Methods that do not re-
quire motion estimation are more appropriate for real-time applications. These methods
are mostly single-image methods; however, extension to multiple frames is possible. Class
specific priors, when usable, are more powerful than generic image priors. If the image to
be restored is from a certain class, for example a face image or a text, class specific priors
could be utilized. Three main training-based approaches are discussed below.

7.3.6.1 Constraining Solution to a Subspace

Suppose that the image to be restored is a face image, and there is a set of training images
f1, ..., fM . Using the principal component analysis (PCA) technique, a low-dimensional rep-
resentation of the face space can be obtained. Specifically, a face image f can be represented
in terms of the average image µ and the basis vectors Λ = [v1, ...,vK ] as follows:

f̃ = µ +Λe, (7.33)

where e keeps the contributions of the basis vectors and is calculated by taking the inner
product with the basis vectors as follows:

e = ΛT (f−µ) . (7.34)

The size of the vector e is typically much smaller than the total number of pixels in f. The
difference between the image f and its subspace representation f̃ can be made as small as
needed by increasing the number of basis vectors.

With the subspace representation, the SR problem can be formulated in terms of the
representation vector e. For example, the least squares approach finds the optimal repre-
sentation vector [36]:
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g (1,0)
P1

g (-1,1)
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g (0,1)
P1

g (1,1)
P1

low-resolu tion image patch high-resolu tion pixel f (0,0)
P1

FIGURE 7.9

High-resolution pixel and the corresponding local patch in Reference [38].

els = argmin
e
‖ g−H(µ +Λe) ‖2, (7.35)

from which the high-resolution image is obtained as follows:

fls =µ +Λels. (7.36)

With this approach, the solution is constrained to the subspace spanned by the average
image µ and the basis vectors [v1, ...,vK ]. Noise that is orthogonal to the subspace is elimi-
nated automatically. This may turn out to be very helpful in some applications, for example,
face recognition from low-resolution surveillance video [37].

7.3.6.2 Subspace-Based Regularization

Unlike the previous method, the subspace-based regularization approach restores the im-
age in image space without constraining it to a subspace. However, it forces the difference
between the solution and its representation in the subspace to be small. That is, the training-
based prior is still used, but the solution can be outside the subspace. For the same problem
defined in the previous section, the least squares solution in this case is as follows [36]:

fls = argmin
f
‖ g−Hf ‖2 +λ ‖ f− f̃ ‖2, (7.37)

where f̃ is the subspace representation as in Equation 7.33. Using Equations 7.33 and 7.34,
the estimator in Equation 7.37 becomes

fls = argmin
f
‖ g−Hf ‖2 +λ ‖ (

I−ΛΛT)
(f−µ) ‖2 . (7.38)

7.3.6.3 SR Pixel Estimation in Local Patches

The previous two approaches work on the entire image and are limited to certain im-
age classes. The approach presented in this section works on local image patches and
can be generically applied to any image. An example of such a method is presented
in Reference [38], where image patches are classified based on adaptive dynamic range
coding (ADRC), and for each class, the relation between the low-resolution pixels and
the corresponding high-resolution pixels is learned. Referring to Figure 7.9, suppose a
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Super-Resolution Imaging 189

low-resolution patch [gp1(−1,−1), gp1(0,−1), · · · , gp1(1,1)] and a corresponding high-
resolution pixel fp1(0,0). The low-resolution patch is binarized with ADRC as follows:

ADRC (gp1(x,y)) =
{

1 if gp1(x,y)≥ ḡp1 ,
0 otherwise,

(7.39)

where ḡp1 is the average of the patch. Applying ADRC to the entire patch, a binary code-
word is obtained. This codeword determines the class of that patch. That is, a 3×3 patch
is coded with a 3× 3 matrix of ones and zeroes. There are, therefore, a total of 29 = 512
classes. During training, each low-resolution patch is classified; and for each class, lin-
ear regression is applied to learn the relation between the low-resolution patch and the
corresponding high-resolution pixel. Assuming M low-resolution patches and correspond-
ing high-resolution pixels are available for a particular class c, the regression parameters,
[ac,1 ac,2 · · · ac,9], are then found by solving:




fp1(0,0)
fp2(0,0)
...
fpM(0,0)


 =




gp1(−1,−1) gp1(0,−1) · · · gp1(1,1)
gp2(−1,−1) gp1(0,−1) · · · gp1(1,1)
...
gpM(−1,−1) gpM(0,−1) · · · gpM(1,1)







ac,1
ac,2
...
ac,9


 (7.40)

During testing, for each pixel, the local patch around that pixel is taken and classified.
According to its class, the regression parameters are taken from a look-up table and applied
to obtain the high-resolution pixels corresponding to that pixel. This single-image method
can be extended to a multi-image method by including local patches from neighboring
frames. This would, however, increase the dimensionality of the problem significantly and
requires a much higher volume of training data. For example, if three frames were taken,
the size of the ADRC would be 3× 3× 3 = 27; and the total number of classes would be
227.

There are also other patch-based methods. In Reference [39], a feature vector from a
patch is extracted through a nonlinear transformation, which is designed to form more edge
classes. The feature vectors are then clustered to form classes. And, as in the case of
Reference [38], a weighted sum of the pixels in the patch is taken to get a high-resolution
pixel; the weights are learned during training. Reference [40] uses a Markov network to
find the relation between low- and high-resolution patches. Given a test patch, the best
matching low-resolution patch is determined and the corresponding high-resolution patch
learned from training is obtained. In Reference [41], a multi-scale decomposition is applied
to an image to obtain feature vectors, and the solution is forced to have feature vectors close
to ones learned during training.

7.3.7 Other Methods and Applications

In addition to the methods already discussed in this chapter, there are other SR methods
and application-specific formulations. An example application is restoration from com-
pressed video. Most image and video compression standards are based on transforming an
image from spatial domain to discrete cosine transform (DCT) domain. The DCT coeffi-
cients are then quantized and encoded. Denoting T as the matrix that performs block-DCT,
the image acquisition process is modified as follows:
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d̃k = Q{THkf+Tnk}= THkf+Tnk +qk, (7.41)

where Q{·} is the quantization operation, d̃k is the vector of quantized DCT coefficients,
and qk is the quantization error vector. While the exact value of the quantization error qk
is not known, the quantization step size is available from the data stream; therefore, the
bounds on qk can be obtained. In Reference [42], the additive noise term Tnk is neglected,
and a POCS algorithm is proposed based on the convex sets defined using the quantization
bounds. In Reference [20], nk and qk are modeled as random variables, the probability
density function (PDF) of the overall noise Tnk +qk is derived, and a Bayesian algorithm is
proposed. References [43] and [44] also propose a Bayesian algorithm, with regularization
terms explicitly defined to penalize compression artifacts.

Other noteworthy SR methods include adaptive filtering approaches [45], [46], SR from
multi-focus images [47], and combined POCS with Bayesian methods [48]. Reference [49]
not only improves the resolution but also estimates albedo and height in the scene using a
Bayesian framework. As an extension to SR restoration, Reference [50] investigates space-
time super-resolution, where the idea is to improve both spatial and temporal resolution
by combining videos captured at different frame rates or sample times. Finally, Refer-
ences [51] and [52] investigate the resolution enhancement limits of SR.

7.4 Other Issues
7.4.1 Image Registration

SR imaging requires subpixel accurate registration of images to improve the spatial reso-
lution. There are several surveys on image registration, including References [53] and [54].
Image registration techniques can be categorized as parametric and nonparametric. Para-
metric techniques have the advantage of low computational cost; on the other hand, they
cannot be directly applied to scenes where motion is not parametric. Parametric techniques
can be classified as frequency domain methods and spatial domain methods.

• Frequency domain methods. A linear shift in spatial domain corresponds to a phase
shift in frequency domain. This leads to efficient frequency domain motion esti-
mation algorithms. References [55], [56], and [57] estimate translational motion
vectors. Planar rotation and scaling can also be added to these algorithms [58], [59].
Some frequency domain methods [55], [60], [61] explicitly address the aliasing issue
that may affect the results adversely.

• Spatial domain methods. The registration parameters may also be determined in spa-
tial domain. Reference [62] assumes a parametric model (translation and rotation),
applies Taylor series expansion to linearize the problem, and employs an iterative
scheme to find the optimum parameters. Reference [63] extracts and matches fea-
tures to find homography between images; the RANSAC (RANdom SAmple Con-
sensus) technique [64] is utilized to eliminate the outliers in parameter estimation.
The homography-based method can model perspective projection and be applied to
a wider variety of image sequences.
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Nonparametric techniques are not limited to video sequences with global geometric
transformations. Their disadvantage is the high computational cost. Among the nonpara-
metric image registration techniques are:

• Block matching methods. A block around the pixel in question is taken, and the
best matching block in the other frame is found based a criterion, such as the mean
squared error or sum of absolute difference. References [10] and [28] are among the
methods that utilize the hierarchical block matching technique to estimate motion
vectors. Reference [65] evaluates the performance of block matching algorithms for
estimating subpixel motion vectors in noisy and aliased images. It is shown that a
(1/p)-pixel-accurate motion estimator exhibits errors bounded within ±1/(2p), for
p≥ 1; however, for real data the accuracy does not increase much beyond p > 4.

• Optical flow methods. These methods assume brightness constancy along the motion
path and derive the motion vector at each pixel based on a local or global smoothness
model. References [31], [66], [67] and [68] are among the methods that use optical
flow based motion estimation. A comparison of optical flow methods is presented in
Reference [69].

It is possible that there are misregistered pixels, and these may degrade the result dur-
ing restoration. Such inaccurate motion vectors can be detected and excluded from the
restoration process. In References [70], two threshold values, one for regions of low local
variance and the other for regions of high local variance, are applied on the motion com-
pensated pixel residuals to determine the unreliable motion vectors, and the corresponding
observed data are excluded from the POCS iterations.

Most SR algorithms, including the ones mentioned above, perform registration and
restoration in two separate successive steps. There are a few SR algorithms that do joint
registration and restoration. A popular approach is the Bayesian approach, where the high-
resolution image f and the registration parameters p are calculated to maximize the condi-
tional probability P(f,p|g):

{fmap,pmap}= argmax
f,p

P(f,p|g) = argmax
f,p

P(f)P(p|f)P(g|f,p) . (7.42)

An example of such an algorithm is presented in Reference [71], which models both the
SR image and the registration parameters as Gaussian random variables, and employs an
iterative scheme to get the estimates.

7.4.2 Regularization Parameter Estimation

The regularization parameter controls the trade-off between the data fidelity and the prior
information fidelity. With a bad choice of the regularization parameter, the solution might
be degraded with excessive noise amplification or over-smoothing. Therefore, selection of
an appropriate regularization parameter is an important part of the overall SR restoration
process. The most commonly used methods for choosing the regularization parameter are
reviewed below.
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FIGURE 7.10

L-curve.

Visual inspection. When the viewer has considerable prior knowledge on the scene, it is
reasonable to choose the regularization parameter through visual inspection of results with
different parameter values. Obviously, this approach is not appropriate for all applications.

L-curve method [72]. Since the regularization parameter controls the trade-off between
the data fidelity and prior information fidelity, it makes sense to determine the parameter
by examining the behavior of these fidelity terms. Assuming that f(λ ) is the solution with
a particular regularization parameter λ , the data fidelity is measured as the norm of the
residual ‖g−Hf(λ )‖, and the prior information fidelity is measured as the norm of the prior
term, for example, ‖Lf(λ )‖ in case of the Tikhonov regularization. The plot of these terms
as λ is varied forms an L-shaped curve (Figure 7.10). For some values of λ , the residual
changes rapidly while the prior term does not change much; this is the over-regularized
region. For some other values of λ , the residual changes very little while the prior term
changes significantly; this is the under-regularized region. Intuitively, the optimal λ value
is the one that corresponds to the corner of the L-curve. The corner point may be defined
in a number of ways, including the point of maximum curvature, and the point with slope
−1. A sample application of the L-curve method in SR is presented in Reference [73].

Generalized cross-validation (GCV) method [74]. GCV is an estimator for the predictive
risk ‖Hf−Hf(λ )‖2. The underlying idea is that the solution that is obtained using all but
one observation should predict that left-out observation well if the regularization parameter
is a good choice. The total error for a particular choice of the parameter is calculated by
summing up the prediction errors over all observations. The optimal parameter value is the
one that minimizes the total error. A search technique or an optimization method could be
used to determine the optimal value.

Discrepancy principle [75]. If the variance of the noise is known, then the bound on the
residual norm ‖g−Hf(λ )‖ can be determined. Since under-regularization causes excessive
noise amplification, one can choose the regularization parameter so that the residual norm
is large but not larger than the bound. That is, if the bound is δ , then it is needed to find λ
such that ‖g−Hf(λ )‖= δ .

Statistical approach. As already discussed, the statistical methods look for the image f
by maximizing the conditional probability p(g|f) (maximum likelihood solution) or p(f|g)
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(maximum a posteriori solution). These statistical approaches can be extended by in-
corporating the regularization parameter into the formulation. That is, for the maximum
likelihood solution, p(g|f,λ ) is maximized; whereas for the maximum a posteriori solu-
tion, p(f,λ |g) is maximized. The resulting optimization problems can be solved using
a gradient-descent technique or the expectation-maximization (EM) technique [76]. The
EM technique involves iterative application of two steps. Namely, in the expectation step,
the image is restored given an estimate of the parameter. In the maximization step, a new
estimate of the parameter is calculated given the restored image.

7.4.3 Blur Modeling and Identification

A number of components contribute to the overall blur of an imaging system:

• Diffraction depends on the shape and size of the aperture, wavelength of the incoming
light, and focal length of the imaging system. For a circular aperture, the diffraction-
limited PSF is the well-known Airy pattern.

• Atmospheric turbulence blur is especially critical in remote sensing applications.
While there is a variety of factors, such as temperature, wind, and exposure time,
that affect the blur, the PSF can be modeled reasonably well with a Gaussian func-
tion.

• Out-of-focus blur can be modeled as a disk, also known as the circle of confusion, if
the aperture of the camera is circular. The diameter of the disk depends on the focal
length, size of the aperture, and the distance between the object and the camera.

• Sensor blur is due to the spatial integration on the photosensitive region of a pixel.
The shape of the PSF depends on the shape of the photosensitive region.

• Motion blur occurs when the exposure time is not small enough with respect to the
motion in the scene. In that case, the projected imagery is smeared over the sensor
according to the motion.

Overall, an imaging system may have a space- and time-variant blur. Due to the diffi-
culty of estimating the shift-variant blur and the resulting complexity, most SR algorithms
assume a linear shift-invariant PSF. Such modeling is sufficient for a majority of SR prob-
lems. Even with a shift-invariant PSF, a SR algorithm usually does not have information
on the exact shape of the PSF. When the PSF estimate is not good enough, the restored
image image would be either blurry or likely to suffer from ringing artifacts. Blur iden-
tification methods that have been developed for blind image deconvolution [77] over the
years can be adopted for SR. Two commonly used blur identification methods are the gen-
eralized cross validation [74], [78] and maximum likelihood [79] methods. These methods
assume a parametric model for the PSF, and estimate the parameters of the model. The
techniques that were discussed for regularization parameter estimation can be used for blur
parameter estimation as well. In References [80] and [81], the generalized cross validation
technique is used for SR. The maximum likelihood approach is adopted in Reference [82].
Reference [83] takes a Bayesian approach and jointly estimates the SR image, PSF, and
registration parameters.
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7.5 Variations and Advances on Imaging Model
7.5.1 Motion Blur Modeling

The model in Section 7.2 assumes that the exposure time is relatively short (effectively
zero) with respect to the motion in the scene. In other words, motion blur is not a part of the
model. It is, of course, possible that image sequences are degraded with motion blur; and in
such cases, the performance would be poor if motion blur is not modeled. Reference [10]
presents an imaging model that explicitly takes exposure time into account. The model
assumes a spatially and temporally continuous video signal. Given that f is the reference
signal at time 0 and ft is the signal at time t, these two signals are related to each other
through a motion mapping Mt :

ft (u,v) = f (Mt(u,v)) . (7.43)

During image acquisition, the signal ft is blurred with a linear shift-invariant PSF b,
which is due to optical and sensor blurs:

b(u,v)∗ ft (u,v) =
∫

b((u,v)− (ξ1,ξ2)) ft (ξ1,ξ2)dξ1dξ2. (7.44)

By making the change of variables (ur,vr) = (Mt (ξ1,ξ2)), Equation 7.44 becomes

b(u,v)∗ ft (u,v) =
∫

b
(
(u,v)−M−1

t (ur,vr)
)

f (ur,vr) |J (Mt)|−1 durdvr,

=
∫

b(u,v;ur,vr; t) f (ur,vr)durdvr, (7.45)

where |J (Mt)| is the determinant of the Jacobian of Mt , M−1
t is inverse motion mapping,

and b(u,v;ur,vr; t) is defined as follows:

b(u,v;ur,vr; t) = b
(
(u,v)−M−1

t (ur,vr)
) |J (Mt)|−1 . (7.46)

Note that b(u,v;ur,vr; t) is not invariant in space or time. The video signal in Equation 7.45
is then integrated during the exposure time tk to obtain

f̂k (u,v) =
1
tk

tk∫

0

∫
b(u,v;ur,vr; t) f (ur,vr)durdvrdt,

=
∫

bk (u,v;ur,vr) f (ur,vr)durdvr, (7.47)

where bk (u,v;ur,vr) is the linear shift- and time-variant blur defined as follows:

bk (u,v;ur,vr) =
1
tk

tk∫

0

b(u,v;ur,vr; t)dt. (7.48)
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Finally, f̂k (u,v) is downsampled to obtain the kth observation gk(x,y). Discretizing this
continuous model, one can write gk = Hkf + nk and apply the techniques (that do not re-
quire linear shift-invariant PSF) as before. The only difference would be the construction
of the matrix Hk which is no longer block circulant. In Reference [10], the POCS tech-
nique, which is very suitable for shift-variant blurs, is utilized; the algorithm is successfully
demonstrated on real video sequences with pronounced motion blur.

7.5.2 Geometric and Photometric Registration

Most SR algorithms assume that input images are captured under the same photometric
conditions. When there is photometric diversity among input images, these algorithms
would not be able to handle them correctly. Photometric diversity in image sequences is
not uncommon; exposure time, aperture size, gain, and white balance may vary during
video capture since many modern cameras have automatic control units. There may also
be changes in external illumination conditions. An SR algorithm, therefore, should have a
photometric model and incorporate it in the restoration process. In photometric modeling,
the camera response function (CRF) should also be considered. The CRF, which is the
response of a sensor to incoming light, is not necessarily linear.

To address SR under photometric diversity, Reference [63] models photometric changes
as global gain and offset parameters among image intensities. This affine model is success-
ful when photometric changes are small. When photometric changes are large, nonlinearity
of camera response function should be taken into consideration [3], [84].

7.5.2.1 Affine Photometric Model

Suppose that N images of a static scene are captured and these images are geometrically
registered. Given that q denotes the irradiance of the scene and gi is the ith measured image,
then according to the affine model the following holds:

gi = aiq+bi, (7.49)

where the gain (ai) and offset (bi) parameters can model a variety of things, including global
external illumination changes and camera parameters such as gain, exposure rate, aperture
size, and white balancing.

The ith and the jth image are related to each other as follows:

g j = a jq+b j = a j

(
gi−bi

ai

)
+b j =

a j

ai
gi +

aib j−a jbi

ai
. (7.50)

Defining α ji ≡ a j/ai and β ji ≡ (aib j−a jbi)/ai, Equation 7.50 can be rewritten as follows:

g j = α jigi +β ji. (7.51)

The affine relation given in Equation 7.51 is used in Reference [63] to model photometric
changes among the images to be used in SR reconstruction. Namely, the images are first
geometrically registered to the reference image to be enhanced. The registration method is
based on feature extraction and matching; the matching criteria is normalized cross correla-
tion which is invariant to affine changes. After geometric registration, the relative gain and
offset terms with respect to the reference image are estimated in order to photometrically
correct each image. This is followed by SR reconstruction.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 7.11 (See color insert.)

Comparison of the affine and nonlinear photometric conversion using differently exposed images. The images

are geometrically registered: (b) is photometrically mapped on (a), and (g) is photometrically mapped on (f).

Images in (c) and (h) are the corresponding residuals when the affine photometric model is used. Images in (d)

and (i) are the residuals when the nonlinear photometric model is used. Images in (e) and (j) are the residuals

multiplied by the weighting function.

7.5.2.2 Nonlinear Photometric Model

Although the affine transformation handles moderate photometric changes, the conver-
sion accuracy decreases drastically in case of large changes. A typical image sensor has
a nonlinear response to the amount of light it receives. Estimation of this nonlinear CRF
thus becomes critical in various applications. For example, in high-dynamic range (HDR)
imaging, images captured with different exposure rates are combined to produce an HDR
image; this requires an accurate estimate of the CRF [85], [86], [87]. Another example is
mosaicking, where border artifacts occur when CRF is not estimated accurately [88].

In nonlinear photometric modeling, the image gi is related to the irradiance q of the scene
as follows:

gi = ϕ (aiq+bi) , (7.52)

where ϕ(·) is the camera response function (CRF), and ai and bi are the gain and offset
parameters as in Equation 7.49. Then, two images are related to each other as follows:

g j = ϕ
(

a j

ai
ϕ−1 (gi)+

aib j−a jbi

ai

)
= ϕ

(
α jiϕ−1 (gi)+β ji

)
. (7.53)

The function ψ ji = ϕ
(
α jiϕ−1(·)+β ji

)
is known as the intensity mapping function

(IMF) [89]. This nonlinear photometric modeling is adopted in Reference [84] for SR. Let
f be the (unknown) high-resolution version of the reference image gr, and define ψri (gi) as
the intensity mapping function that takes gi and converts it to the photometric range of gr.
Then, the cost function to be minimized is [84]:

C(f) = ∑
i

(ψri (gi)−Hif)T Wi (ψri (gi)−Hif), (7.54)

where Hi includes geometric warping, blurring, and downsampling as before, and Wi is
a diagonal matrix that is a function of gi. Reference [84] shows that the error in tonal
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FIGURE 7.12 (See color insert.)

A subset of 22 input images showing different exposure times and camera positions.

(a) (b)

(c) (d)

FIGURE 7.13 (See color insert.)

Image restoration using the method in Reference [84]: (a,c) input images, and (b,d) their restored versions.

conversion increases in the lower and higher parts of the intensity range. This is mainly
due to low signal-to-noise ratio in the lower parts and saturation in the higher parts. Less
weight should be given to pixels (with intensities in the lower and higher parts of the range)
in constructing the cost function; and the diagonal matrix Wi reflects that.

Figure 7.11 compares the affine and nonlinear photometric models. It is clear that the
nonlinear model works better than the affine model. One may notice that the residual in
Figure 7.11d is not as small as the residual in Figure 7.11i. The reason is the saturation
in Figure 7.11b; some pixels in Figure 7.11a cannot be estimated in any way from Fig-
ure 7.11b. As seen in Figure 7.11e, the weighting Wi would suppress these pixels and
prevent them from degrading the solution.
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FIGURE 7.14 (See color insert.)

High-dynamic-range high-resolution image obtained using the method in Reference [3].

Figure 7.12 shows a number of input images from a dataset consisting of images captured
at different exposure times and camera positions. These images are processed with the
algorithm of Reference [84] to produce higher resolution versions. Two of these high-
resolution images are shown in Figure 7.13. The resulting high-resolution images can then
be processed with a HDR imaging algorithm to produce an image of high resolution and
high dynamic range. Reference [3] combines these steps; the tone-mapped image for this
dataset is given in Figure 7.14.

7.5.3 Color Filter Array Modeling

To produce color pictures, at least three spectral components are required. Some digital
cameras use a beam-splitter to split the incoming light into several optical paths, and use a
different spectral filter on each path to capture these color components. This approach re-
quires three precisely aligned sensors. However, most digital cameras use a mosaic of color
filters, commonly known as a color filter array (CFA), placed on top of the sensor. This
second approach requires only one sensor and is often preferred due to its simplicity and
lower cost. One issue with this approach is the need to interpolate the missing color sam-
ples. Because of the mosaic pattern of the color samples, the CFA interpolation problem
is also referred to as demosaicking. If demosaicking is not performed well, the captured
image will have visible color artifacts. A comprehensive survey of demosaicking methods
is given in Reference [90].

The demosaicking research has revealed that estimation of the missing pixels can be per-
formed much better if the correlation among different color components are exploited. This
should, of course, be reflected to SR restoration since most images in real life are captured
with CFA cameras. The imaging model in Section 7.2 can be updated as follows. Let f (S)

be a color channel of a high-resolution image; there are typically three color channels, red
( f (R)), green ( f (G)), and blue ( f (B)). The kth low-resolution color channel, g(S)

k , is obtained
from this high-resolution image through spatial warping, blurring, and downsampling op-
erations as follows:

g(S)
k = DBMk f (S), for S = R,G,B, (7.55)
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tI

tS

FIGURE 7.15

The spatio-intensity neighborhood of a pixel illustrated for a one-dimensional case. The gray region is the

neighborhood of the pixel in the middle.

where Mk is the warping operation to account for the relative motion between observations,
B is the convolution operation to account for the point spread function of the camera, and D
is the downsampling operation. Note that in Section 7.2, these operations were represented
as matrices DBMk.

The full-color image (g(R)
k ,g(G)

k ,g(B)
k ) is then converted to a mosaicked observation zk

according to a CFA sampling pattern as follows:

zk(x,y) = ∑
S=R,G,B

PS(x,y)g
(S)
k (x,y), (7.56)

where PS(x,y) takes only one of the color samples at a pixel according to the CFA pattern.
For example, at red pixel location, [PR(x,y),PG(x,y),PB(x,y)] is [1,0,0].

There are a number of SR papers utilizing the ideas developed in demosaicking research.
In Reference [91], the alternating projection method of Reference [92] is extended to mul-
tiple frames. In addition to the data fidelity constraint set, Reference [92] defines two more
constraint sets; namely, the detail constraint set and the color consistency constraint set.

The detail constraint set is based on the observation that the high-frequency contents of
color channels are similar to each other for natural images. Since the green channel is more
densely sampled and therefore less likely to be aliased, the high-frequency contents of the
red and blue channels are constrained to be close to the high-frequency content of the green
channel. Let Wi be an operator that produces the ith frequency subband of an image. There
are four frequency subbands (i = LL,LH,HL,HH) corresponding to low-pass filtering and
high-pass filtering permutations along horizontal and vertical dimensions [93]. The detail
constraint set, Cd , that forces the details (high-frequency components) of the red and blue
channels to be similar to the details of the green channel at every pixel location (x,y), is
defined as follows:

Cd =
{

g(S)
k (x,y) :

∣∣∣
(
Wig

(S)
k

)
(x,y)−

(
Wig

(G)
k

)
(x,y)

∣∣∣≤ Td(x,y)
}

, (7.57)

where i = LH,HL,HH, and S = R,B. The term Td(x,y) is a nonnegative threshold that
quantifies the closeness of the detail subbands to each other.

Color consistency constraint set: It is reasonable to expect pixels with similar green
intensities to have similar red and blue intensities within a small spatial neighborhood.
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tI

tS

tI

tS

corresponding points

FIGURE 7.16

Extension of the spatio-intensity neighborhood of a pixel for multiple images. The corresponding point of

a pixel is found using motion vectors; using the parameters τS and τI , the neighborhood (gray regions) is

determined.

This leads to the concept of spatio-intensity neighborhood of a pixel. Suppose that the
green channel g(G)

k of an image is already interpolated and the goal here is to estimate the
red value at a particular pixel (x,y). Then, the spatio-intensity neighborhood of the pixel
(x,y) is defined as follows:

N (x,y) =
{
(u,v) : ‖(u,v)− (x,y)‖ ≤ τS and

∣∣∣g(G)
k (u,v)−g(G)

k (x,y)
∣∣∣≤ τI

}
, (7.58)

where τS and τI determine the extents of the spatial and intensity neighborhoods. Fig-
ure 7.15 illustrates the spatio-intensity neighborhood for a one-dimensional signal. Note
that this single-frame spatio-intensity neighborhood can be extended to multiple images
using motion vectors. The idea is illustrated in Figure 7.16.

The spatio-intensity neighbors of a pixel should have similar color values. One way to
measure color similarity is to inspect color differences between the red and green channels
and between the blue and green channels. These differences are expected to be similar
within the spatio-intensity neighborhood N (x,y). Therefore, the color consistency con-
straint set can be defined as follows:

Cc =
{

g(S)
k (x,y) :

∣∣∣∣
(

g(S)
k (x,y)−g(G)

k (x,y)
)
−

(
g(S)

k (x,y)−g(G)
k (x,y)

)∣∣∣∣≤ Tc (x,y)
}

,

(7.59)
where S = R,B. The term (·) denotes averaging within the neighborhood N (x,y), and
Tc(x,y) is a nonnegative threshold. It should be noted here that the spatio-intensity neigh-
borhood concept is indeed a variant of the bilateral filter [95] with uniform box kernels
instead of Gaussian kernels.

The method starts with an initial estimate and projects it onto the constraint sets defined
over multiple images iteratively to obtain the missing pixels. If the blur function is set
to a delta function and the downsampling operation is not included, only the missing color
samples are obtained; this is called multi-frame demosaicking. Figure 7.17 provides sample
results. As seen, single-frame interpolation methods do not produce satisfactory results.
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(a) (b)

(c) (d)

FIGURE 7.17 (See color insert.)

Image demosaicking: (a) bilinear interpolation, (b) edge-directed interpolation [94], (c) multi-frame demo-

saicking [91], and (d) super-resolution restoration [91].

The multi-frame demosaicking can get rid of most of the color artifacts. And finally, SR
restoration deblurs the image and increases the resolution further [92].

Another method combining demosaicking and super-resolution is presented in Refer-
ences [6] and [33]. This method is based on least squares estimation with demosaicking
related regularization terms. Specifically, there are three regularization terms. The first
regularization term is the bilateral total variation regularization as in Equation 7.28 applied
on the luminance channel. The second regularization term is the Tikhonov regularization
applied on the chrominance channels. And the third regularization term is orientation regu-
larization, which basically forces different color channels to have similar edge orientations.
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7.6 Conclusions

This chapter presented an overview of SR imaging. Basic SR methods were described,
sample results were provided, and critical issues such as motion estimation and parameter
estimation were discussed. Key references were provided for further reading. Two recent
advances in modeling, namely, photometric modeling and color filter array modeling were
discussed. While there are well-studied issues in SR imaging, there are also open problems
that need further investigation, including real-time implementation and algorithm paral-
lelization, space-variant blur identification, fast and accurate motion estimation for noisy
and aliased image sequences, identifying and handling occlusion and misregistration, im-
age prior modeling, and classification and regression in training-based methods.

As cameras are equipped with more computational power, it is becoming possible to
incorporate specialized hardware with associated software and exceed the performance of
traditional cameras. The jitter camera [1] is a good example; the sensor is shifted in hori-
zontal and vertical directions during video capture, and the resulting sequence is processed
with a SR algorithm to produce a higher-resolution image sequence. Imagine that the pix-
els in the jitter camera have a mosaic pattern of ISO gains; in that case, not only a spatial
diversity but also a photometric diversity could be created. Such a camera would have the
capability of producing a high-dynamic range and high-resolution image sequence. This
joint hardware and software approach will, of course, bring new challenges in algorithm
and hardware design.
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8.1 Introduction

Image blur arises when a single object point spreads over several image pixels. This phe-
nomenon is mainly caused by camera motion during exposure or a lens that is out-of-focus.
The conventional approach to image deblurring is to construct an image degradation model
and then solve the ill-posed inverse problem of this model. A new approach takes advan-
tage of recent advances in image sensing technology which enable splitting or controlling
the exposure time [1], [2], [3]. This approach exploits the mutually different pieces of
information from multi-exposed images of the same scene to produce the deblurred image.

This chapter presents a general framework of image deblurring using multi-exposed im-
ages. The objective of this approach is to reconstruct an image that faithfully represents a
real scene by using multi-exposed images of the same scene. The multi-exposed images
are assumed to be captured by a single camera or multiple cameras placed at the different
locations. It is often further assumed that the multiple captured images do not have any
grid mismatch, as they can be aligned at the same grid by applying image registration algo-
rithms. With these assumptions, the various applications and recent endeavors in this field
are provided in detail.

This chapter is organized as follows. In Section 8.2, the characteristics of the multi-
exposed images are analyzed. The typical camera architecture for capturing multi-exposed
images is described in Section 8.2.1. Section 8.2.2 focuses on the characteristics of multi-
exposed images captured by various methods. Section 8.3 presents various techniques for
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FIGURE 8.1

Block diagram of the camera system.

image deblurring using multi-exposed images. Section 8.3.1 describes the basic concept
of multi-exposed image deblurring, Section 8.3.2 presents an approach that relies on the
degradation model while using multi-exposed images, and Section 8.3.3 introduces a new
approach which does not require a deconvolution operation. Finally, conclusions are drawn
in Section 8.4.

8.2 Multi-Exposed Images
8.2.1 Multi-Exposure Camera Architectures

A charge-coupled device (CCD) or complementary metal oxide semiconductor (CMOS)
sensor is used to capture real-life scenes electronically. Figure 8.1 shows a typical example
of the camera system. In such a system, the digitized frames are consecutively stored in
the buffer which is accessed by the digital signal processor (DSP). The exposure time,
which is the main concern here, is controlled by the timing generator. Recent advances
in image sensor technology have enabled high-speed capture of up to thousands of frames
per second. When capturing multi-exposed images, the timing generator creates regular
impulses to either produce multi-exposed images with similar characteristics, or irregular
impulses to generate multi-exposed images with different characteristics.

8.2.2 Characteristics of Multi-Exposed Images

In general, the exposure time is manually controlled by the user or automatically deter-
mined by a certain algorithm. In this section, it is assumed that a suitable exposure time for
capturing an image is known in advance. By taking an image with a known exposure time,
it is possible to represent the brightness and the color of a real scene. However, a problem
arises when the camera or the objects in the scene move during the exposure time, resulting
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FIGURE 8.2

Example of images captured with (left) a long exposure time, and (right) a short exposure time. c© 2008 IEEE

in a captured image with incomplete information about the scene. In order to extract more
useful visual information in such situations, images are captured multiple times. Then,
mutually different pieces of the information are merged into the final image.

To design a deblurring algorithm which can take advantage of multi-exposed images, the
characteristics of these images need to be known. Multi-exposed images can be catego-
rized as i) images taken with the same exposure time and ii) images taken with different
exposure times. Before comparing these two, the basic relationship between the exposure
time and image quality factors such as blur, noise, brightness, and color distortion should
be discussed. Figure 8.2 shows a simple example of images taken with different exposure
times. Namely, the image on the left is captured with a long exposure time and exhibits
strong motion blur characteristics due to camera shake that often occurs in such scenar-
ios. This is not the case of the image on the right which is taken with a short exposure
time for which camera shake is negligible, resulting in sharp edges as well as undesired
high-frequency content such as noise and brightness distortion. In short, a long exposure
time is a source of image blur. Setting the exposure time short enough reduces blur while
introducing noise, color artifacts, and brightness loss. Due to this relationship, the expo-
sure time setting plays an important role in multi-exposed deblurring. Figure 8.3 illustrates
three possible exposure time settings.

As shown in Figure 8.3a, using uniform long exposure intervals results in multiple
blurred images. Since the speed and direction of the camera or object motion usually
change during the exposure time, multiple blurred images tend to contain different infor-
mation about the original scene. In other words, the point spread function (PSF) applied to
the ideal image varies amongst the multi-exposed images.

Figure 8.3b shows the effect of short and uniformly split exposure intervals. As can be
seen, image blur is inherently reduced and multiple noisy images are obtained instead. In
this case, the deblurring problem becomes a denoising problem. Since noise is generally
uncorrelated among these images, the denoising problem can be solved by accumulating

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
16

 0
9 

M
ay

 2
01

6 



212 Computational Photography: Methods and Applications

total exposure time

split time

(a)

(b)

(c)

FIGURE 8.3

Three possible methods of exposure time splitting: (a) uniform long intervals, (b) uniform short intervals, and

(c) nonuniform intervals.

multiple noisy images. Unfortunately, this can result in various color and brightness degra-
dations, thus necessitating image restoration methods to produce an image with the desired
visual quality.

Finally, Figure 8.3c shows the effect of nonuniform exposure intervals. Unlike the above
two methods, multi-exposed images of different characteristics are taken by partitioning
the exposure time into short and long intervals, thus producing both noisy and blurred im-
ages. Color and brightness information can be acquired from blurred images, whereas edge
and detail information can be derived from noisy images. This image capturing method
has recently gained much interest since difficult denoising or deblurring problems can be
reduced into a simpler image merging problem. Moreover, the method allows focusing on
the deblurring problem by using noisy images as additional information or the denoising
problem by extracting brightness and color information from blurred images.
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8.3 Image Deblurring Using Multi-Exposed Images
8.3.1 Basic Concept

Image deblurring is a challenging problem in the field of image and video processing.
Though there has been a great deal of progress in the area in the last two decades, this
problem remains unsolved. The main difficulty comes from the problem itself. In general,
image degradation can be modeled as follows:

g = h∗ f +n, (8.1)

where g, h, f , and n denote the blurred image, the PSF, the original image, and the ob-
servation noise term, respectively. The objective here is to estimate the original image f
using the observed image g. The most classical approach is to estimate h and n from g, and
solve f by applying the image deconvolution algorithms [4] such as Richardson-Lucy (RL)
deconvolution [4]. However, the estimation of h and n is also a very demanding problem
and the estimation error is unavoidable in most practical cases. To this end, joint opti-
mization of blur identification and image restoration has been considered [5]. Though this
approach performs relatively well, it is computationally complex and does not guarantee
robust performance when the images are severely blurred. Since the basic difficulties of the
conventional methods originate from the lack of sufficient knowledge about a real scene,
the performance is inherently limited. The reader can refer to References [4], [6], [7], [8],
[9], and [10] for details on image deblurring using a single image.

Recently, many researchers have devoted their attention to a new approach that utilizes
multi-exposed images. Unlike the conventional approach, multiple images of the same
scene are captured and used together to reconstruct an output image. Since the amount of
available information about the original scene is increased by taking images multiple times,
the difficulty of the original deblurring problem is significantly alleviated.

The degradation model for multi-exposed images can be expressed as follows:

gi = hi ∗ f +ni, for i = 1,2, ...,N, (8.2)

where gi, hi, and ni denote the ith blurred image, and its corresponding PSF and observa-
tion noise, respectively. The amount of the noise and blur of N multi-exposed images is
dependent on the image capturing methods mentioned in Section 8.2.2. The multi-exposed
deblurring techniques can be divided into two groups. The first group includes techniques
which preserve the classical structure of single image deblurring and use multi-exposed im-
ages to enhance deblurring performance. The techniques in the second group convert the
deblurring problem to a new formulation and use a specific solution for this new problem
at hand. These two approaches are discussed in detail below.

8.3.2 Image Deblurring by Image Deconvolution

Since the classical image deconvolution algorithms and their variations are not a main
concern of this chapter, only the difference between the techniques which use multi-
exposed images and the techniques which use a single-exposed image will be discussed.
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In particular, this section focuses on deconvolution-based multi-exposed image deblurring
algorithms presented in References [11], [12], and [13].

Reference [11] describes the case where the motion blur function differs from image to
image. Multi-exposed (commonly two) images are obtained by the method in Figure 8.2a,
and they are assumed to be blurred by different directional motion blurs. The ith blurred
image gi is obtained as follows:

gi = f ∗θi hi, (8.3)

where hi is the ith directional blur PSF and θi is its angle. When two blurred images
are considered, the following condition is satisfied due to the commutative property of
convolution:

g1 ∗θ2 h2 = g2 ∗θ1 h1. (8.4)

Then, h1 and h2 are estimated by minimizing the following error function:

E(h1,h2) = ∑
x,y

[(
g1 ∗θ2 h2

)
(x,y)−

(
g2 ∗θ1 h1

)
(x,y)

]2
, (8.5)

where x and y denote the image coordinates. By pessimistically setting the support of h1
and h2 to a large number, K1 and K2, respectively, the derivatives of Equation 8.5 provide
K1 +K2 linear equations. By solving these equations, the PSFs can be obtained. Additional
constraints can be included in Equation 8.5 to stabilize the solution [11].

After estimating the PSFs, the deblurred image f̂ is obtained by minimizing the following
error function:

E =
2

∑
i=1

∥∥∥gi− f̂ ∗θi hi

∥∥∥
2
+λ

[(∥∥∥ f̂x

∥∥∥
p

)p

+
(∥∥∥ f̂y

∥∥∥
p

)p]
), (8.6)

where λ controls the fidelity and stability of the solution. The regularization term is com-
puted using the p-norm of the horizontal and vertical derivatives of f̂ , f̂x, and f̂y. Then, the
solution, f̂ , is iteratively estimated as follows:

f̂ (k+1) = f̂ (k) +
2

∑
i=1

hT
i ∗θi

(
gi− f̂ (k) ∗θi hi

)
−λ

∂L
∂ f

∣∣∣∣
f̂
, (8.7)

where f̂ (k) is the deblurred image at the kth iteration and hT
i denotes the flipped version of

hi. Equations 8.5, 8.6, and 8.7 are almost the same as those used in conventional single
image deconvolution except for the summation term required for the two images. How-
ever, by using two blurred images, the ill-posed problem can move onto the direction of the
well-posed problem and therefore this approach can improve the quality of the restored im-
ages. This straightforward generalization indicates that deblurring based on multi-exposed
images can outperform its single-exposed image counterpart.

Reference [12] focuses on the fundamental relationship between exposure time and im-
age characteristics discussed in Section 8.2. It introduces an imaging system shown in
Figure 8.4 which can be seen as an alternative to the system shown in Figure 8.3c. The
image obtained by the primary detector truly represents the color and brightness of the
original scene but the details are blurred. On the other hand, the image taken by the sec-
ondary detector possesses the image details which allow robust motion estimation. The
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primary detector

secondary detector

FIGURE 8.4

A conceptual design of a hybrid camera.

algorithm first estimates the global motion between successive frames by minimizing the
following optical flow-based error function [14]:

arg min
(u,v)

∑
(

u
∂g
∂x

+ v
∂g
∂y

+
∂g
∂ t

)2

, (8.8)

where g is the image captured by the secondary detector, ∂g/∂x and ∂g/∂y are the spatial
partial derivatives, ∂g/∂ t is the temporal derivative of the image, and (u,v) is the instanta-
neous motion at time t. Each estimated motion trajectory is then interpolated and the PSF
is estimated with an assumption that the motion direction is the same as the blur direction.
Then, the RL deconvolution, an iterative method that updates the estimation result at each
iteration as follows:

f̂ (k+1) = f̂ (k) ·hT ∗ g

h∗ f̂ (k)
, (8.9)

is applied to the image captured by the primary camera. In the above equation, ∗ is the
convolution operator, h is the PSF estimated using the multiple images from the secondary
detector, and hT is the flipped version of h. The initial estimate, f̂ (0), is set to g. Exper-
imental results reveal good deblurring performance even in situations where the camera
moves in an arbitrary direction [12]. Moreover, significant performance improvements can
be achieved using special hardware, suggesting no need to cling to the conventional camera
structures. Introducing a new or modified hardware structure allows efficiently solving the
problem. Additional examples can be found in Reference [15].

Reference [13] presents a multi-exposed image deblurring algorithm that requires only
two images, blurred and noisy image pairs as shown in Figure 8.5. The blurred image, gb,
is assumed to be obtained as follows:

gb = f ∗h, (8.10)

which indicates that noise in the blurred image is negligible. On the contrary, when the
original image is captured within a short exposure time, the original image f can be repre-
sented as:
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(a) (b) (c)

FIGURE 8.5 (See color insert.)

Image deblurring using a blurred and noisy image pair: (a) blurred input image, (b) noisy input image, and (c)

output image obtained using two input images.

f = gn +∆ f , (8.11)

where gn is the noisy image and ∆ f is called the residual image. It should be noted here that
gn is not the captured noisy image but the scaled version of that image. The scaling is re-
quired to compensate the exposure difference between the blurred and noisy images. Based
on the above modeling, h is first estimated from Equation 8.10 using the Landweber iter-
ative method [16] with Tikhonov regularization [17]. Unlike the conventional approaches,
gn can be used here as an initial estimate of f since gn is a very close approximation of f
compared to gb. Therefore, the PSF estimation accuracy is significantly improved.

The estimated PSF is not directly used for the image deconvolution. Instead of recov-
ering f , the residual image ∆ f is first recovered from the blurred image gb. Combining
Equations 8.5 and 8.6 results in the following:

∆gb = gb−gn ∗h = ∆ f ∗h. (8.12)

Then, the estimated h is used to reconstruct ∆ f , as this method tends to produce fewer
deconvolution artifacts than estimating f directly. Also, the conventional RL deconvolution
is modified to suppress the ringing artifacts in smooth image regions. As can be seen in
Figure 8.5, this algorithm produces a clear image without ringing artifacts.

In summary, the key advantage of multi-exposed image deconvolution is the increased
accuracy of the PSF. When estimating the PSF, the noisy, but not blurred, images play an
important role. Using a more accurate PSF significantly improves the output image qual-
ity compared to the classical single-image deconvolution. The three techniques described
above represent the main directions in the area of multi-exposed image deconvolution. A
method of capturing multi-exposed images is still an open issue, and a new exposure time
setting associated with a proper deconvolution technique can further improve the perfor-
mance of conventional approaches.

It should be also noted that the conventional multi-exposed image deconvolution algo-
rithms still have some limitations. First, when the objects in a scene move, the linear shift
invariant (LSI) degradation model does not work any longer. In this case, the piecewise
LSI model [18], [19] or the linear shift variant degradation model (LSV) [20] should be
adopted instead of the LSI model. Second, even though the accuracy of the PSF is signif-
icantly improved by using information from multi-exposed images, the estimation error is
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inevitable in most cases. Therefore, the deblurred output image is still distinguishable from
the ground truth image. Finally, the computational complexity of the PSF estimation and
image deconvolution methods is demanding, thus preventing these methods to be widely
used in practical applications.

8.3.3 Image Deblurring without Image Deconvolution

The objective of multi-exposed image deconvolution in Section 8.3.2 was deblurring, that
is, eliminating blur by solving the inverse problem. Instead of directly performing image
deblurring, this section introduces an approach that merges the meaningful information
of a scene from multi-exposed images. The four representative techniques, introduced in
References [21], [22], [23], and [24], are described below.

Namely, Reference [21] presents a simple method based on the assumption that the de-
noising problem is much easier than the deblurring problem. From this viewpoint, the
exposure time can be uniformly split and multiple noisy images can be captured as shown
in Figure 8.3b. Since noise among the multi-exposed image frames is generally uncorre-
lated, it can be eliminated by simply averaging the multi-exposed images. Experimental
results show that the the most effective number of splits is in the range of five to ten. Due
to the simplicity of the algorithm, the visual quality is unsatisfactory. On the other hand,
it is guaranteed that the blur is almost completely eliminated. A similar approach can be
found in Reference [25].

The method in Reference [22] requires both a blurred image and a noisy image, which
is similar to Reference [13]. However, the solution is completely different. The blurred
image taken with a long exposure time can faithfully represent the brightness and color of
the original scene whereas the noisy underexposed image usually contains the clear object
shape and detail information while having unacceptable color and brightness. The goal is
to preserve the object shape and detail information of the noisy image gl and reproduce the
color and brightness of the blurred image gh. To this end, the transformation function, F ,
can be defined as follows:

gh = F(gl). (8.13)

The basic assumption behind this transformation function is that the color characteristics
of the blurred image are close, if not identical, to that of the original image. Therefore, by
finding a suitable transformation function, the damaged color values in the underexposed
image can be recovered.

However, there are some color differences between the blurred image and the original
image. As shown in Figure 8.6, the color information is similar in a global sense. However,
pixels located around the edges may not find their corresponding color due to edge blur. In
other words, a simple global mapping such as adaptive histogram equalization can produce
annoying color artifacts. Therefore, a spatial constraint is utilized to improve the accuracy
of the mapping function. The basic intuition is that the color is not severely damaged in
the smooth region as shown in Figure 8.6c. Consequently, it can be constrained so that the
pixels in gl are mapped to the same locations in gh in smooth regions. In order to realize
this constraint, image segmentation is performed at gh, followed by region matching. After
finding matching pairs, the mapping function is estimated by the Bayesian framework. The
mathematical derivations are omitted here and can be found in Reference [22].

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
16

 0
9 

M
ay

 2
01

6 



218 Computational Photography: Methods and Applications

(a) (b) (c)

FIGURE 8.6

Color variations due to image blur: (a) original image, (b) blurred image, and (c) difference between the

original image and the blurred image.

The above constitutes a novel approach that converts the deblurring problem into a color
mapping problem. However, this method does not carefully address noise in an underex-
posed image. Since an image captured using a short exposure time tends to contain noise,
the color mapping result can still be noisy. Therefore, a robust mapping function needs to
be devised to improve the performance.

Reference [23] presents an image merging algorithm that requires three multi-exposed
images. The first image and the third image are captured using a long exposure time to
preserve brightness and color information, whereas the second image is captured with a
short exposure time to preserve edges and details. The objective of this technique is to
compensate the color and brightness loss of the second image using the other two images.
The flow of this algorithm is shown in Figure 8.7.

The algorithm starts with global motion estimation to find the corresponding regions be-
tween successively captured images. Since the camera or objects can move during the time
needed to capture three images, this step is necessary to remove a global mismatch between
images. A single parametric model is adopted to estimate global motion as follows:




xl
yl
sl


 =




h11 h12 h13
h21 h22 h23
h31 h32 h33







xh
yh
sh


 , (8.14)

where (xl,yl) and (xh,yh) are pixel positions in the underexposed image and the blurred
images, respectively. A scaling parameter sl(sh) is used to represent the position by the
homogeneous coordinate. Nine unknown parameters, h11 to h33, are then estimated by
minimizing the intensity discrepancies between two images. However, since the brightness

bilateral optical

flow estimation

color

correction

global image

registration

image

merging

FIGURE 8.7

The block diagram of the image merging-driven deblurring algorithm.
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blurred image underexposed image blurred image

v
hl

v
hl

FIGURE 8.8

Bilateral optical flow estimation.

differences between the underexposed image and the two blurred images are usually sig-
nificant, the direct motion estimation between differently exposed images is not desired.
Therefore, the global motion is estimated using two blurred images as these are captured
using the same exposure time setting. Then, the motion between the first blurred image
and the underexposed image is simply assumed to be half of the estimated motion. Since
optical flow estimation follows this global motion estimation, the loss of accuracy by this
simplified assumption is not severe.

Since the color distribution of the underexposed image tends to occupy low levels, his-
togram processing is used to correct the color of the underexposed image based on the color
distribution of the corresponding regions in the long-exposed (blurred) images. However,
the noise in the underexposed image still remains. Therefore, for each pixel in the under-
exposed image, bilateral motion estimation is used to search for the correlated pixels in
the blurred images. This estimation is based on the assumption of linear motion between
two intervals. Unlike conventional optical flow estimation, the motion trajectory passing
through a point in the intermediate frame is found by comparing a pixel at the shifted posi-
tion in the first blurred image and one at the opposite position in the other blurred image as
shown in Figure 8.8. Finally, the output image is obtained by averaging the pixel values of
two corresponding pixels in the blurred images and the one in the underexposed image as
follows:

f̂ (u) = λ ĝl(u)+
1−λ

2
(gh,1(u−v)+gh,2(u+v)) , (8.15)

where f̂ denotes the resultant image, ĝl denotes the the scaled underexposed image, and gh,1
and gh,2 denote the two blurred images. The terms u and v are the vector representation
of the pixel position and its corresponding motion vector. The weighting coefficient λ is
determined by the characteristics of the image sensor.

This algorithm, which can be seen as the first attempt to use motion estimation and com-
pensation concepts for deblurring, produces high-quality images. Since the output image is
generated by averaging two blurred images and one noisy image, most noise contributions
are reduced, if not completely eliminated. Although the computational complexity for esti-
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(a) (b) (c)

(d) (e)

FIGURE 8.9 (See color insert.)

Comparison of two deblurring approaches: (a-c) three test images, (d) output produced using two first input

images, and (e) output produced using all three input images.

mating global and local motion is demanding, this technique does not require any hardware
modifications, and produces a natural output image without visually annoying artifacts.

Figure 8.9 allows some comparison of the methods in References [22] and [23]. Three
test images, shown in Figures 8.9a to 8.9c, are respectively captured with a long, a short,
and a long exposure time. As mentioned above, the method in Reference [22] uses two
differently blurred images shown in Figures 8.9a and 8.9b, whereas the method in Refer-
ence [23] combines all three input images. As can be seen, the images output by both of
these algorithms do not suffer from image blur or restoration artifacts, which is a signifi-
cant advantage of this deconvolution-free approach. It can be further noted that the color
in Figure 8.9d is different from that of Figure 8.9a or Figure 8.9c. This is because noise in
Figure 8.9b prevents finding the optimal color mapping function.

Reference [24] approaches multi-exposed image deblurring using the assumption that
the multi-exposed images are captured within a normal exposure time and these images
are differently blurred. In other words, unlike previously cited techniques which rely on
noisy data for image details and edge information, this method uses only blurred images.
Figure 8.10 illustrates the basic concept. The original image is blurred in the diagonal, hor-
izontal, and vertical directions, respectively. Then, the frequency spectra of these blurred
images are found by applying the fast Fourier transform (FFT). Since motion blur behaves
as a directional low-pass filter, each spectrum loses high frequency components depending
on blur direction. In other words, each spectrum tends to have mutually different partial
information of the original image spectrum. Therefore, it is possible to gather this informa-
tion for compensating the loss of frequency components.

The merging operation is performed in the frequency domain via fuzzy projection onto
convex sets (POCS). Based on the fact that image blur exhibits the low-pass characteristics
in the frequency domain regardless of the blur type, the reliability of frequency coefficients
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FIGURE 8.10

Frequency spectra of blurred images: (top) three differently blurred images, and (bottom) magnitude of their

frequency spectra.

initial

estimate

FIGURE 8.11

Procedure of the projection onto the fuzzy convex sets. c© 2009 IEEE

reduces as the frequency increases. Therefore, only low-frequency regions of each spec-
trum are considered as convex sets. However, projection onto these sets cannot recover
enough high-frequency parts. To this end, the convex sets can be expanded through fuzzi-
fication [26], [27]. The fuzzification process is illustrated in Figure 8.11. Each ellipse
represents the convex set and the arrow indicates a projection operation. Both projection
and fuzzification are repeated until the predefined criterion is reached. By this approach,
the mutually different information about the scene can be efficiently combined. Since this
method merges all the available information from multi-exposed images, the quality im-
provement is limited if multi-exposed images are strongly correlated to each other.
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(a) (b)

(c) (d)

FIGURE 8.12

Deblurring using real-life blurred images: (a-c) three test images, and (d) the deblurred image.

Figure 8.12 shows the performance of the method in Reference [24] on real-life images.
For the sake of visual comparison, small patches of 400× 400 pixels were cropped from
1024×1024 test images. The image registration algorithm from Reference [28] is applied
to all test images to match the image grids. Figure 8.12d shows the combined result when
Figure 8.12a is used as a reference image for image registration. As can be seen, the output
image successively merges available information from multi-blurred images.

This section explored various multi-exposed image deblurring algorithms. Since each
algorithm uses its own experimental conditions, the direct comparison of these algorithms
is not applicable. Instead, the conceptual differences and the characteristics of the output
images need to be understood. In multi-exposed image deconvolution, the underexposed
(noisy) image is used to estimate the PSF with higher accuracy. By using additional im-
ages, the parametric assumption of the PSF [9], [29] and computationally complex blind
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deconvolution [30], [31] are not necessary. Also, all the existing techniques developed for
single-image deconvolution can be generalized for multi-exposed image deconvolution. In
multi-exposed image deblurring without deconvolution, no typical degradation model is
required. Therefore, this approach can be more generally used in practical applications.
Compared to the first approach, it has a lot of room for improvement. For example, by
changing the image capturing method and/or applying the techniques used in other fields,
such as histogram mapping and motion compensated prediction, the performance can be
further improved.

8.4 Conclusion

For several decades, researchers have tried to solve a troublesome deblurring problem.
Due to the fundamental difficulty — the lack of available information — the performance
of conventional single image deblurring methods is rather unsatisfactory. Therefore, multi-
exposed image deblurring is now considered a promising breakthrough. Thanks to recent
advances in image sensing technology, the amount of available information about the orig-
inal scene is significantly increased. The remaining problem is how to use this information
effectively. By referring to the image capturing methods and conventional multi-exposed
deblurrig algorithms described in this chapter, the reader can freely develop a new solution,
making no need to adhere to the classical deblurring approach any longer.

Other camera settings such as ISO and aperture can be also tuned to generate images
with different characteristics. Therefore, more general image capturing methods and de-
blurring solutions can be designed by considering these additional factors. In addition to
deblurring, multi-exposed images have another application. Based on the fact that a set of
multi-exposed images can capture a wider dynamic range than a single image, a dynamic
range improvement by using multi-exposed images is also a promising research topic. By
jointly considering these two image processing operations, the ultimate goal of truly repro-
ducing the real scene can be reached in the near future.

Acknowledgment

Figure 8.2 is reprinted from Reference [23] and Figure 8.11 is reprinted from Refer-
ence [24], with the permission of IEEE.

References
[1] E.R. Fossum, “Active pixel sensors: Are CCDs dinosaurs,” Proceedings of SPIE, vol. 1900,

pp. 2–14, February 1993.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
16

 0
9 

M
ay

 2
01

6 



224 Computational Photography: Methods and Applications

[2] N. Stevanovic, M. Hillegrand, B.J. Hostica, and A. Teuner, “A CMOS image sensor for high
speed imaging,” in Proceedings of the IEEE International Solid-State Circuits Conference,
San Francisco, CA, USA, February 2000, pp. 104–105.

[3] O. Yadid-Pecht and E. Fossum, “Wide intrascene dynamic range CMOS aps using dual sam-
pling,” IEEE Transactions on Electron Devices, vol. 44, no. 10, pp. 1721–1723, October 1997.

[4] P.A. Jansson, Deconvolution of Image and Spectra. New York: Academic Press, 2nd edition,
October 1996.

[5] Y.L. You and M. Kaveh, “A regularization approach to joint blur identification and image
restoration,” IEEE Transactions on Image Processing, vol. 5, no. 3, pp. 416–428, February
1996.

[6] M.R. Banham and A.K. Katsaggelos, “Digital image restoration,” IEEE Signal Processing
Magazine, vol. 14, no. 2, pp. 24–41, March 1997.

[7] R.L. Lagendijk, J. Biemond, and D.E. Boekee, “Identification and restoration of noisy blurred
images using the expectation-maximization algorithm,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 38, no. 7, pp. 1180–1191, July 1990.

[8] A.K. Katsaggelos, “Iterative image restoration algorithms,” Optical Engineering, vol. 28,
no. 7, pp. 735–748, July 1989.
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9.1 Introduction

Dynamic range is the term used in many fields to describe the ratio between the highest
and the lowest value of a variable quantity. In imaging and especially in display technology,
dynamic range is also known as the contrast ratio or, simply contrast, which denotes the
brightness ratio between black and white pixels visible on the screen at the same time. For
natural scenes the dynamic range is the ratio between the density of luminous intensity
of the brightest sunbeam and the darkest shadow. In photography, the unit of luminance,
cd/m2 (candelas per square meter), is also known as a “nit.”

The problem of high-dynamic range (HDR) imaging is two-fold: i) how to capture the
true luminance and the full chromatic information of an HDR scene, possibly with a captur-
ing device with a dynamic range smaller than the scene’s, and ii) how to faithfully represent
this information on a device that is capable of reproducing the actual luminances of neither
the darkest nor the brightest spots, nor the true colors. The first half of the issue is com-
monly referred to as high-dynamic range composition or recovery and the latter as com-
pression or, more commonly, tone mapping. In this chapter the terms used are composition
for the acquisition process and tone mapping for the displaying part.

Figure 9.1 illustrates the HDR imaging problem. Namely, Figure 9.1a shows that the
conventional low-dynamic range (LDR) snapshot has a very limited dynamic range, which
is seen as clipped bright parts as well as underexposed dark parts. The HDR representation
shown in Figure 9.1b has all the information but only a fraction of it is visible on an LDR
media, such as the printout. The tone mapped HDR image shown in Figure 9.1c boasts the
greatest amount of visible information.

HDR images can be acquired by capturing real scenes or by rendering three-dimensional
(3D) computer graphics, using techniques like radiosity and ray tracing. HDR images of
natural scenes can be acquired either by capturing multiple images of the same scene with
different exposures or utilizing only recently introduced special cameras able to directly
capture HDR data [1]. The multiple exposure method relies on combining the different
exposures into a single image, spanning the whole dynamic range of the scene [2], [3]. The
image composition step requires a preliminary calibration of the camera response [3], [4].

(a) (b) (c)

FIGURE 9.1 (See color insert.)

HDR imaging: (a) single exposure from a clearly HDR scene, (b) HDR image linearly scaled to fit the normal

8-bit display interval — the need for tone mapping is evident, and (c) tone mapped HDR image showing a

superior amount of information compared with the two previous figures.
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Though HDR capture and display hardware are both briefly discussed, the focus of this
chapter is on the approach of multiple capture composition.

The second part of the problem is to appropriately tone map the so-obtained HDR image
back to an LDR display. Tone mapping techniques range in complexity from a simple
gamma-curve to sophisticated histogram equalization methods and complicated lightness
perception models [5], [6], [7]. Recently, display devices equipped with extended dynamic
range have also started to appear [8].

HDR imaging methods have been originally developed for RGB color models. However,
techniques working in luminance-chrominance spaces seem more meaningful and prefer-
able for a number of reasons:

• Decorrelated color spaces offer better compressibility. As a matter of fact, the
near totality of image compression techniques store images in some luminance-
chrominance space. When one starts with already-compressed multiple-exposure
LDR images, it is more efficient to compose the HDR image directly in the same
color space. The resulting HDR image is then better suited for compression and, if
to be displayed, it can be mapped to sRGB during the tone mapping stage.

• Any HDR technique operating in RGB space requires post-composition white bal-
ancing since the three color channels undergo parallel transformations. While the
white balancing would yield perceptually convincing colors, they might not be the
true ones. For the sake of hue preservation and better compression, it is beneficial
to opt for a luminance-chrominance space, even if the input data is in RGB (for
instance, an uncompressed TIFF image).

• The luminance channel, being a weighted average of the R, G, and B channels, enjoys
a better signal-to-noise ratio (SNR), which is crucial if the HDR imaging process
takes place in noisy conditions. In this chapter, the problem of HDR imaging in
a generic luminance-chrominance space is addressed, efficient algorithms for HDR
image composition and tone mapping are presented, and the functionality of such an
approach under various conditions is studied.

In this chapter, Section 9.2 provides general information concerning color spaces and
the notation used in the chapter. Techniques essential to HDR acquisition, namely camera
response calibration, are discussed in Section 9.3. A brief overview of HDR sensors is also
included in Section 9.3. Section 9.4 focuses on the creation of HDR images; techniques for
both monochromatic and color HDR are presented. Section 9.5 deals with displaying HDR
images; display devices capable of presenting HDR content are also discussed. Section 9.6
contains examples and discussion. Conclusions are drawn in Section 9.7.

9.2 Color Spaces

Generally speaking, the retina has three types of color photo-receptor cells, known as
cones. These respond to radiation with a different spectral response, that is, different cones
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generate the physical sensation of different colors, which is combined by the human visual
system (HVS) to form the color image. From this it is intuitive to describe color with
three numerical components. All the possible values of this three-component vector form a
space called a color space or color model. The three components can be defined in various
meaningful ways, which leads to definition of different color spaces [1], [9].

9.2.1 RGB Color Spaces

An RGB tristimulus color space can be defined as the Cartesian coordinate system-based
model with red, green and blue primary spectral components [10]. All the standardized
RGB (Red, Green, Blue) color spaces can be defined by giving the CIE XYZ chromaticities
(x and y) of each primary color and the white reference point. The reference white point
serves to define white inside the gamut of the defined color space. RGB model is the
most often used representation in computer graphics and multimedia, and different RGB
spaces (primary color and white point combinations) have been standardized for different
applications [11]. What they all have in common is the idea to mix red, green and blue
primaries in different relations to produce any given color inside the gamut of that space.
All the RGB color models can be categorized under the definition physiologically inspired
color models because the three primaries have been designed with the idea of matching the
three different types of cones in the human retina. For implementation simplicity, the RGB
coordinates are usually limited to [0 1]3 (floating point) or [0 255]3 (8-bit unsigned integer).

9.2.2 Luminance-Chrominance Color Spaces

Even though technology has steered the selection of the color model used in computer
graphics toward the RGB models, that is not the psychophysical color interpretation. Per-
ceptual features, namely brightness (luminance), saturation and hue, form the color sen-
sation in the human visual system (HVS). These features can be intuitively formalized
through the introduction of luminance-chrominance color models.

Consider a generic luminance-chrominance color space linearly related to the RGB
space. Loosely speaking, such a space is characterized by an achromatic luminance com-
ponent, which corresponds to the grayscale part of the image, and two chrominance com-
ponents, which are orthogonal to gray.

Throughout the chapter, Roman letters are used to denote images in RGB and the
corresponding Greek letters to denote images in luminance-chrominance space. Thus,
z =

[
zR,zG,zB

]
denotes an image in the RGB space and ζ =

[
ζY ,ζU ,ζV

]
be the same

image in the luminance-chrominance space where the luminance and the two chrominance
channels are denoted by Y , U , and V , respectively. Transformation of the image from
RGB to luminance-chrominance is defined in matrix form as ζ = zA where the matrix A
is normalized in such a way that if z(·) ∈ [0,1]3 then ζ(·) ∈ [0,1]× [−0.5,0.5]2. Because
of this constraint, the first column of A has all elements positive, a j,1 ≥ 0. It is further
assumed that ∑3

j=1 a j,1 = 1, thus ensuring that the [0,1] range of the luminance component
is fully utilized. Examples of such luminance-chrominance spaces are the opponent, the
YUV/YCbCr, and the YIQ color spaces [9].
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Luminance-chrominance transformations become particularly significant when the im-
age z is corrupted by some independent noise. In fact, because of the typical correlation
among zR, zG, and zB, one can observe that the luminance ζY has noticeably higher signal-
to-noise ratio (SNR) than the two chrominance values ζU and ζV , as well as any of the
individual RGB components zR, zG, and zB.

It is well known that natural color images exhibit a high correlation between the R, G,
and B channels. Thus, it can be observed that the luminance Y contains most of the valuable
information (edges, shades, objects, texture patterns, etc.) and the chrominances U and V
contain mostly low-frequency information (considering compressed data, these channels
very often come from undersampled data).

9.2.2.1 Opponent Color Space

The opponent color space, presented for example in Reference [9], is based on the 1964
color opponency theory by a German physiologist Ewald Hering. The theory suggests two
pairs of opponent colors, red-green and yellow-blue, that cannot be perceived simultane-
ously. This theory was supported by color naming experiments where reddish-green and
yellowish-blue tones were not identified. This led Hering to presume three opponent chan-
nels; red-green, yellow-blue, and black-white (achromatic luminance). In fact, Hering was
one of the first to separate luminance and two chrominances in a color model. Unlike the
RGB tristimulus model, driven by an intent of modeling the retinal color stimulus response,
the opponent color space is based on more central mechanisms of the brain. The opponent
processes are acquired through a transformation of the cone responses.

The transformation matrices for the opponent color space are

Aopp =




1/3 1/2 1/4
1/3 0 −1/2
1/3 −1/2 1/4


 and Bopp = A−1

opp =




1 1 2/3
1 0 −4/3
1 −1 2/3


 . (9.1)

It can be noted that the second and third columns of matrix Aopp have zero mean. This is
equivalent to the inner product between the chrominance basis vectors and a vector corre-
sponding to a gray pixel (for which zR = zG = zB) always being zero. It means that gray is
orthogonal to the chrominance components and that the inverse color transformation matrix
B = A−1 has the elements of its first row all equal, b1,1 = b1,2 = b1,3. Since 1 = ∑3

j=1 a j,1b1, j

and ∑3
j=1 a j,1 = 1, it is given that b1,1 = b1,2 = b1,3 = 1. This means that the luminance

component ζY can be directly treated as a grayscale component of the RGB image z, be-
cause the inverse transformation of the luminance component,

[
ζY 0 0

]
B = zgray(x), is a

grayscale image.
Luminance-chrominance transformations can be considered as special color decorrelat-

ing transforms. In particular, up to a diagonal normalization factor, the matrix Aopp is
nothing but a 3×3 DCT transform matrix. Further, it is noted that the columns of Aopp are
respectively a mean filter, a finite derivative filter, and a second derivative filter.

9.2.3 YUV Color Space

The YUV color space was first designed for the purposes of television broadcasting with
the intent of minimizing the bandwidth requirements. Similar to the YIQ color space which
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is also used in television broadcasting, it fills the definition of an opponent color space
because it consists of a luminance channel and two color difference channels. As a side note
it can be mentioned that the usual scheme for compressing a YUV signal is to downsample
each chromatic channel with a factor of two or four so that chromatic data occupies at most
half of the total video bandwidth. This can be done without apparent loss of visual quality
as the human visual system is far less sensitive to spatial details in the chrominances than
in the luminance. The same compression approach is also utilized among others in the
well-known JPEG (Joint Photographic Experts Group) image compression standard.

The transformation matrices for YUV color space are

AYUV =




0.30 −0.17 0.50
0.59 −0.33 −0.42
0.11 0.50 −0.08


 and BYUV = A−1

YUV =




1 0 1.4020
1 −0.3441 −0.7141
1 1.7720 0


 . (9.2)

Because of the similar nature of the color models, the orthogonality properties given in
the previous section for opponent color space hold also for the YUV space. One should note
that these properties do not depend on the orthogonality of the matrix A (in fact the three
columns of AYUV are not orthogonal), but rather on the orthogonality between a constant
vector and the second and third columns of the matrix.

9.2.3.1 HSV Color Space

The HSV color space is a representative of the class of perceptual color spaces. The name
stands for the three components that form the space; hue, saturation and value (intensity,
brightness). This type of color models is categorized under the umbrella of perceptual color
spaces for a reason; while an untrained observer can hardly form an image of a color based
on individual RGB tristimulus components, everybody can form a color based on its hue
(tint, tone) and saturation.

The hue can be defined as H = arctan(ζU/ζV ) and the saturation as S =√
(ζU)2 +(ζV )2, or normalized with the value ζY as S =

√
(ζU)2 +(ζV )2/ζY . These

can be interpreted as the angular component and the length of a planar vector. Thus the
triplet Y , H, and S corresponds to a luminance-chrominance representation with respect to
cylindrical coordinates. It is noted that multiple definitions of both hue and saturation can
be found in the literature [12] and while the presented ones are among the more frequently
noted ones, they are chosen here first and foremost for the sake of simplicity.

9.3 HDR Acquisition

In this section, techniques essential for successful HDR acquisition are presented. As
imaging devices directly capable of capturing HDR content are scarcely available on the
consumer market, the means for capturing HDR content with a normal camera are given.
In addition, a quick cross-section of the fast-evolving field of imaging sensor technologies
directly capable of capturing HDR scenes is presented.
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9.3.1 Camera Response Function

The most essential step in HDR image acquisition is the definition of the camera response
function. This function defines the relation between the scene irradiance and the camera
pixel output and can therefore be used to linearize the output data. Conversely, knowing
the camera response is crucial for determining the irradiance of the source scene from the
given image data.

Essentially two techniques exist for the response calibration. The approach defined in
Reference [3] extends the previous work presented in Reference [2]. The basic principle
of this approach is that by capturing frames of a still scene in different exposures, one is
actually sampling the camera response function at each pixel. The technique is relatively
simple and robust, and is described later in this section in detail.

The other calibration method is presented in Reference [4]. Instead of filling an enumer-
ated table as in the previous approach, this method approximates polynomial coefficients
for the response function. This not only enables one to find the solution of a camera re-
sponse function, but it also allows exact exposure ratios which are essential in combining
HDR images from source sequences whose aperture and shutter speed are not known ex-
actly.

With the pixel exposure e(x) defined as the product between exposure time ∆t and irra-
diance E (x), that is, e(x) = E (x)∆t, the generic pixel output z(x) is given by

z(x) = f (e(x)) = f (E (x)∆t) , (9.3)

where f is the function describing the response of the output to the given exposure. There-
fore, the irradiance can be obtained from the pixel output by the formal expression as
follows [3]:

lnE(x) = g(z(x))− ln∆t, (9.4)

where g(·) = ln f−1(·) is the inverse camera response function. This function can be esti-
mated from a set of images of a fixed scene captured with different exposure times. Images
for the calibration sequence are assumed to be perfectly aligned, shot under constant il-
lumination, and contain negligible noise. For the camera response function calibration, a
much larger set of images (i.e., a denser set of exposures) than typically available for the
HDR composition, is used. The camera response function is estimated (calibrated) only
once for each camera. The estimated function can then be used for the linearization of the
input values in all subsequent HDR compositions of the same device.

Because of underexposure (which produces dramatically low SNR) and overexposure
(which results in clipping the values which would otherwise exceed the dynamic range)
not all pixels from the given set of images should be used for the calibration of the camera
response function, nor for the subsequent composition, with equal weights. Near the min-
imum of the value interval of an imaging device, the information is distorted by numerous
noise components, most influential of which is the Poisson photon shot noise [13]. As the
number of photons hitting a well on the sensor within a given time interval is a random
process with Poisson distribution, at low light levels the variations in the number of pho-
tons become substantial in comparison to the mean levels, effectively rendering the current
created in the well completely unreliable. In addition to this, components like thermal and
read-out noise play some role in corrupting the low-level sensor output. In the vicinity of
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FIGURE 9.2

Weight function used for the luminance values in the camera response function definition.

the maximum of the value interval, clipping starts to play its role. Naturally a saturated
pixel can only convey very limited amount of information about the scene. The described
phenomena motivate the penalization of underexposed and overexposed pixels in both the
camera response calibration and the HDR image composition phase. Additionally, only
pixels having monotonically strictly increasing values between underexposure and over-
exposure, throughout the sequence, can be considered to be valid in the camera response
calibration. This is a natural idea, since the pixels used for response calibration are assumed
to come from a sequence shot with increasing exposure time. As the scene is assumed to
be static and the pixel irradiance constant, the only aberration from the strict monotonical
increase in pixel value can come from noise. Noisy pixels should not be used for camera
response calibration, as erroneous response function would induce a systematic error in the
subsequent HDR compositions. Using these criteria for pixel validity, the function g can
be fitted by minimizing the quadratic objective function [3]

P

∑
j=1

N

∑
i=1

wcam(ζY
i (x j))

[
g(ζY

i (x j))− lnEi− ln∆ti
]2 +λ

∫ 1

0
wcam(ζ )g′′(ζ )2dζ , (9.5)

where P is the number of pixels used from each image and wcam is a weight function lim-
iting the effect of the underexposed and overexposed pixels. The regularization term on
the right-hand side uses a penalty on the second derivative of g to ensure the smoothness
of the solution. In this chapter, the preference is to use a relatively high pixel count (e.g.,
1000 pixels) in order to minimize the need for regularization in the data fitting. The system
of equations is solved by employing singular-value decomposition, in a fashion similar to
that of Reference [3]. If instead of processing directly one of the sensor’s RGB outputs,
a combination ζY

i , (e.g., luminance) is considered, it should be noted that some pixels in
this combination can include overexposed components without reaching the upper limit
of the range of the combination. Such pixels have to be penalized in the processing. To
ensure a more powerful attenuation of the possibly overexposed pixels, instead of a sim-
ple triangular hat function (e.g., as in Reference [3]) an asymmetric function of the form
wcam(ρ) = ρα(1−ρ)β where 0 ≤ ρ ≤ 1 and 1 ≤ α < β , is used. An example of such a
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FIGURE 9.3

The estimated inverse response function g for the luminance channel of Nikon COOLPIX E4500.

weight function is given in Figure 9.2. An example of a camera response function for the
luminance solved with this method is illustrated in Figure 9.3. When looking at the camera
response one can observe an abrupt peak towards the right end of the plot. This is a result
of the instability of the system for overexposed pixels. It becomes evident that such pixels
cannot be directly included in the subsequent composition step. Instead, they have to be
penalized with weights. As discussed in Reference [14] the issue of overexposure being
present also in pixels whose value is lower than the maximum is not absent even for the
conventional approaches dealing in the RGB space.

9.3.2 HDR Sensors

The importance and the potential of HDR imaging are further highlighted by the intro-
duction of HDR hardware. Novel camera sensor technologies have recently been unveiled
by a few companies. For the direct capture of HDR data several sensor designs exist [1],
[15], [16]. Most HDR sensor designs focus on enhancing the dynamic range by adding
to the maximum amount of light the sensor can capture without saturating, rather than en-
hancing sensitivity for low light levels. Reference [15] studies four different architectures:
time-to-saturation, multiple capture, asynchronous self-reset with multiple capture, and
synchronous self-reset with residue readout. Time-to-saturation and multiple capture offer
extended dynamic range by various methods of varying exposure time. Varying exposure
time does exactly what one would assume; it adapts the pixelwise integration time to pixel
photocurrent enabling the use of long exposure times for small photocurrents and shorter
exposure times for larger ones. In asynchronous self-reset the pixel voltage is sampled at
regular intervals and pixels reset autonomously on saturation. Synchronous self-reset re-
quires on-pixel counter to keep track of reset count. At the end of integration, the number
of resets is combined with the residual voltage to estimate the total photocurrent.

None of the above-mentioned technologies have yet been made available to the general
public. A couple of digital single-lens reflex (DSLR) cameras, however, have been intro-
duced to the market. Fujifilm’s S5 Pro and its new sensor is the first attempt of bringing
direct extended dynamic range sensors to consumer, albeit professional, cameras. It im-
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proves the dynamic range of the captured photograph by including two sensor wells for
each pixel on the sensor. The two wells have different sensitivities, where the less sensitive
well starts reacting only when the normal well is saturated. The dynamic range improve-
ment takes place at the bright end of the scene and the total dynamic range is according
to Fuji comparable to traditional film. Another example of HDR imaging in a consumer
camera is the Pentax K-7. Though not featuring a true HDR sensor, their 2009 released
DSLR is probably the first commercial camera to provide in-camera HDR capture and tone
mapping. An automated bracketing and composition program is made available, and the
user is presented with a tone mapped HDR image.

9.4 Algorithms for HDR Composition

The history of HDR imaging is relatively short. The first articles dealing with the cre-
ation of HDR images were published in the beginning of the 1990s; see, for example,
References [2] and [17]. Partially based on these previous efforts, the core of HDR imag-
ing in RGB space was defined in Reference [3]. The vast majority of research done in
the field has focused on optimizing the parameters (number of exposures, exposure times,
etc.) [18] or developing different tone mapping methods [6]. Though parallel treatment of
the RGB channels causes color distortion [3], with examples presented in Section 9.6, only
very limited attention has been focused on addressing these problems. In one of these few
studies, International Color Consortium (ICC) color profiles are suggested to be used in
attempt to reach more realistic color reproduction in context with RGB HDR imaging [19].
While HDR composition techniques have practically been at a standstill, tone mapping has
become a popular research topic after the introduction of Reference [3].

9.4.1 Monochromatic HDR Composition

The problem of HDR imaging and the state-of-the-art techniques proposed to solve this
problem are discussed in Reference [1]. These techniques employ the same underlying
concept of multiple exposure HDR. The starting point is an image sequence that fills the
qualifications discussed in Section 9.3.1. With this prerequisite filled, the general line-up
of the process, illustrated in the block diagram of Figure 9.4, is as follows:

• A response curve for each color channel of the camera needs to be solved. This needs
to be done only once for a given imaging device.

• Based on this response curve and the exposure time, the different exposures can be
linearized and the radiance map acquired utilizing a weighted average of the lin-
earized data.

• The acquired HDR data needs to be stored in an efficient manner. This step is not
necessary if the data is composed only for direct display.

• The HDR data needs to be compressed so that it can be displayed on a conventional
LDR display or for example a printout. The compression of the visual range, gen-
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FIGURE 9.4

The block diagram of the general multiple exposure HDR imaging pipeline. Different paths indicate alter-

natives in the process, such as displaying a tone mapped HDR image on a normal display or alternatively

displaying an HDR image on an HDR capable display.

erally known as tone mapping, can be skipped if the image is to be displayed on an
HDR display device.

With the camera response function solved as described in Section 9.3.1 and the exposure
times for each captured frame known, the logarithmic HDR radiance map for a monochro-
matic channel C can then be composed as a weighted sum of the camera output pixels
values as follows:

lnEC
i =

∑N
i=1 wC(zi(x j))(gC(zi(x j))− ln∆ti)

∑N
i=1 wC(zi(x j))

In case of color images, the RGB channels are treated in parallel. This assumes that the
interactions between channels are negligible, which is, as admitted in Reference [3], prob-
lematic to defend. As a result to the parallel treatment of the three channels, color distor-
tions are in many cases introduced to the composed image. These have to be corrected by
post-composition white-balancing which in turn may lead to colors that are not faithful to
the original ones. Nevertheless, the approach works well enough to produce satisfactory
results provided that the source sequence is very well aligned and noise is negligible.

9.4.2 Luminance-Chrominance HDR Composition

An alternative approach to parallel processing of the three RGB channels is rooted in
the psychophysically inspired color models where the image is formed based on one com-
ponent describing luminance and two components containing the chromatic information.
Alone the luminance channel forms a grayscale representation of the scene, and as such,
contains most of the information associated with an image. The two chrominance channels
are nearly meaningless alone, and as such contain complementary information that is not
per se crucial. This fact is also exploited in color image compression where the chromatic
components are often downsampled compared to the luminance. The completely different
nature of the luminance and the chrominance motivates a new approach for HDR composi-
tion. The method described here treats the luminance channel similarly to the conventional
approach for a single channel of the RGB triplet and presents a more sound method for the
composition of color.
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FIGURE 9.5

Weight function wY used for the luminance channel composition.

9.4.2.1 Problem Statement

Let ζi = [ζ Y
i ,ζ U

i ,ζ V
i ], for i = 1,2, ...,N, be a set of images in a luminance-chrominance

space, captured with different exposure times ∆ti and with LDR, for ζ(x) ∈ [0,1]×
[−0.5,0.5]2 where x = [x1,x2] is a pixel coordinate. The goal is to obtain a single HDR
image ζ̃ = [ζ̃ Y , ζ̃ U , ζ̃ V ] in the same color space. In the setting, the luminance and chromi-
nance channels are treated separately. A precalibrated camera response function is used for
the luminance channel, whereas a saturation-driven weighting is used for the chrominance
channels.

9.4.2.2 Luminance Component Composition

The HDR luminance component is obtained by a pixelwise weighted average of the pixel
log irradiance values defined according to Equation 9.4 as lnEi(x) = g(ζY

i (x))− ln∆ti. As
observed in the previous section, pixels whose value is close to zero or unity carry little
valuable information because of low SNR (underexposure) and clipping (overexposure),
respectively. Such pixels are therefore penalized by employing weights during the com-
position. A polynomial function wY (ρ) = ρα(1−ρ)β with 0 ≤ ρ ≤ 1, α = 2, and β = 2
is used as a weight function, thus ensuring a smaller impact of the underexposed or over-
exposed pixels. An example of such a weight function for the luminance is shown in
Figure 9.5. The logarithmic HDR luminance is obtained as follows:

ln ζ̃ Y (x) =
∑N

i=1 wY (ζ Y
i (x))(g(ζ Y

i (x))− ln∆ti)
∑N

i=1 wY (ζ Y
i (x))

. (9.6)

Because of the nature of the camera response function g, the HDR luminance is obtained
in logarithmic scale. After employing the natural exponential, the resulting values are
positive, normally spanning [10−4 104], thus constituting truly a high dynamic range.
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FIGURE 9.6

Weight function wUV used for the composition of the chrominance channels.

9.4.2.3 Chrominance Components Composition

For the chrominance components no camera response is defined. Instead, the chromi-
nance signals are weighted in relation to the level of color saturation. The higher the color
saturation, the more the pixel contains valuable chromatic information, and thus the higher
the weight. This is motivated by the fact that when a pixel is overexposed or underex-
posed it is always less saturated than it would be at the correct exposure. More specifically,
wUV (S) = Sα where α > 1. In exhaustive experiments, α = 1.5 has been found to be a
good choice. A saturation-based chrominance weight function is illustrated in Figure 9.6.
To preserve color information, the same weights are used for both chromatic components
and any chromatic component C ∈ {U,V} is composed as follows:

ζ̃ C(x) =
∑N

i=1 wUV (Si(x))ζ C
i (x)

∑N
i=1 wUV (Si(x))

, (9.7)

where Si denotes the saturation of ζi. It is pointed out that being a convex combination of
the input chrominance signals, the range of ζ̃C(x) is again in [−0.5,0.5]. However, because
of averaging, the possible number of distinct chrominance values is remarkably higher than
in the original source sequence.

Another intuitively interesting approach would be to use the luminance-dependent
weights wY for both the luminance and the chrominance channels. Loosely this approach
would be similar to the proposed saturation-driven weighting because of the fact that color
saturation typically decreases with the luminance moving closer to the extremes. However,
in experiments it was found that saturation-based weighting provides a better reproduction
of color especially for saturated highly exposed or low-lit details.

9.4.2.4 HDR Saturation Control

After the composition, the luminance component, or more precisely the radiance map,
has a range much higher than the original [0 1]. The newly acquired pixel irradiance values
span an extended range, while the chrominance component composition, being a convex
combination of the components, results in a denser sampling of the original range. This
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FIGURE 9.7

The illustration of the desaturating effect of the luminance-chrominance HDR composition.

presents a problem, because luminance-chrominance color spaces represent color as dif-
ference from the gray luminance component. If the HDR image were directly mapped to
RGB for display, the result would be an effectively grayscale image because the differences
represented by chrominance spanning [−0.5 0.5] cannot form saturated colors in relation to
a luminance component with maximum values up to 105. This can be practically demon-
strated with the following example.

A red pixel in the RGB color space defined as z = [1 0 0] is transformed into the opponent
color space using the matrix Aopp defined in Section 9.2.2, thus providing its luminance-
chrominance representation ζ = [1/3 1/2 1/4]. Assuming that the HDR composition pro-
cess results in a pixel irradiance of 100 and the chrominances of ζ , the HDR pixel is defined
in opponent color space as ζ̃ = [100 1/2 1/4]. The application of the inverse transforma-
tion leads to an RGB pixel z̃ = [100 2

3 99 2
3 99 2

3 ]. The resulting values form a gray pixel,
as the relative differences between components are not transmitted through the luminance
increase. This is of course unwanted, as the correct result would be z̃ = [100 0 0]. The
phenomenon is illustrated in Figure 9.7.

Obviously, if one wants to display or process the HDR data on a device with RGB HDR
input, a saturation control method has to be introduced. For this purpose the following
approach can be used. Let µ (x) defined as follows:

µ (x) =
ζ̃Y ∑N

i=1 wUV (Si (x))
∑N

i=1 wUV (Si (x))ζY
i (x)

. (9.8)

be the scalar proportionality factor between the HDR luminance ζ̃Y and the weighted av-
erage of the LDR luminances ζY

i (x) with weights wUV (Si (x)). In other words, µ (x) is a
pixelwise scaling parameter defining the ratio between the weighted average of the original
pixel values and the pixel irradiance values obtained through the HDR composition pro-
cess. The HDR image in RGB space can now be obtained by the normalized inverse color
transformation

z̃(x) = ζ̃ (x)




1 0 0
0 µ (x) 0
0 0 µ (x)


B.
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(a) (b)

FIGURE 9.8 (See color insert.)

The HDR image is composed in luminance-chrominance space and transformed: (a) directly to RGB for tone

mapping, (b) to RGB utilizing the presented saturation control, with subsequent tone mapping is done in RGB.

where the normalization is realized by multiplication against the diagonal matrix
diag(1,µ (x) ,µ (x)) which scales the two chrominances ζ̃U and ζ̃V yielding a value of
saturation which matches the full dynamic range achieved by ζ̃Y . Indeed, the weights
wUV (Si (x)) in Equations 9.7 and 9.8 are exactly the same. From the diagonal scaling ma-
trix it can be observed that the value of µ (x) does not have any influence on the luminance
of z̃(x). Likewise, from the definition of hue, H = arctan ζU

ζV , it is clear that the hue is left
intact and the only thing altered is the saturation.

Though the need for saturation control cannot be visualized on conventional displays
let alone printout, in full HDR, the issue can be conveyed through the chain of RGB tone
mapping. This is visualized in Figure 9.8a which shows an image composed in luminance-
chrominance space and transformed to RGB for tone mapping. Due to reasons explained
above, virtually all color is lost in the transformation. In Figure 9.8b, the same luminance-
chrominance HDR image is transformed into RGB utilizing the saturation control described
here. The colors are reproduced faithfully underlining the hue preservation properties of
the luminance-chrominance method.

9.5 Algorithms for HDR Display

The dynamic range of an HDR image often spans more than five orders of magnitude,
of which a conventional display is able to visualize a maximum of two orders of magni-
tude. This presents a problem, because while HDR images are becoming more and more
available, HDR displays lag behind. The problem is then to fit the greater dynamic range
of an HDR image into the limited gamut of a display device. The simplest solution is to
linearly scale the data and while a simple linear scaling very rarely produces acceptable re-
sults, applying gamma curves or some more sophisticated mapping procedures will likely
do better.
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(a) (b)

FIGURE 9.9 (See color insert.)

An HDR image of a stained glass window from Tampere Cathedral, Finland: (a) the image is linearly scaled

for display, and (b) the tone mapping was done with the method described in Section 9.5.2.1.

The problem of tone mapping is essentially one of compression with preserved visibility.
A linear scene-to-output mapping of an HDR image produces results similar to the image
shown in Figure 9.9a. The tone mapped version of the same scene, using the method
described in Section 9.5.2.1, is shown in Figure 9.9b. As can be seen, an HDR image is
useless on an LDR display device without tone mapping.

The history of tone mapping dates back to much longer than the introduction of HDR
imaging. As the dynamic range of the film has always exceeded that of the photographic
paper of the era, manual control has been necessary in the development process. The
darkroom was introduced in the late 19th century and since that time, a technique called
dodging and burning has been used to manipulate the exposures of the photographic print.

The same idea has later been transported into controlling the visibility of digital HDR
images. In this context the operation is known as tone mapping. The very basic aim of tone
mapping or tone reproduction (the two terms are interchangeable) is to provoke the same
response through the tone mapped image that would be provoked by the real scene. In other
words, matching visibility. In the darkroom the procedure was of course done manually,
but for digital purposes the ideal solution would fit every problem and not need any human
interaction. So far the optimal tone mapping method has not been invented and one has
to choose the method dependent on the problem. Many of the methods require parameter
adjustment, while some are automatic. The results of the tone mapping depend highly
on the chosen method as well as the parameters used. New tone mapping approaches are
introduced almost monthly and the aim of the scientific community is, as usual, to develop
more and more universal approaches well suited for the majority of problems. Some of the
major tone mapping algorithms were reviewed in Reference [6].

9.5.1 Tone Mapping of Monochromatic HDR

Tone mapping methods can be divided in various ways. One of the most frequently
used divisions is the local versus global division. Additionally, methods operating in some
transform domain can be classified in their own classes. Reference [1] distinguished global,
local, frequency domain, and gradient domain operators.
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The global methods are the most simple class of tone mapping operators (TMOs). They
all share a couple of inherent properties; the same mapping is applied for all the pixels and
the tone mapping curve is always monotonic in nature. The mapping has to be monotonic
in order to avoid disturbing artifacts. This imposes a great limitation on the compression
/ visibility preservation combination. As the usual target is to map an HDR scene into the
range of standard eight-bit representation, only 256 distinct brightness values are available.
Global methods excel generally in computational complexity, or the lack-thereof. As the
same mapping is applied on all the pixels, the operations can be done very efficiently. On
the other hand, for scenes with very high dynamic range, the compression ability of the
global class may not be sufficient.

The local methods are able, to an extent, to escape the limitations met with global TMOs.
In general, local methods do not rely on image-wide statistics. Instead, every pixel is com-
pressed depending on its luminance value and the values of a local neighborhood. Often
local methods try to mimic properties of the HVS; the eye is known to focus locally on an
area of a scene forming an independent adaptation based on the local neighborhood con-
tents. As a result, the cost of more flexible compression is in the computational complexity.
The number of necessary computations goes up with the number of local adaptation neigh-
borhoods. Also the higher, local compression of scene brightness may at times lead to
halo-like artifacts around objects.

The transform domain operators are distinguished from global as well as local meth-
ods by the fact that they operate on the data in some domain other than the conventional
spatial one. Frequency domain operators compress data, as the name suggests, utilizing
a frequency-dependent scheme. The first digital tone mapping operator was already pub-
lished in 1968 and it was a frequency domain one [20]. Many of the properties of modern
frequency domain operators are inherited from this approach. Gradient domain operators
rely on the notion that a discrimination between illuminance and reflectance is for many
scenes relatively well approximated by the gradient approach. This is supported by the
notion that an image area with a high dynamic range usually manifests a large gradient
between neighboring pixels. The follow-up is a tone mapping operator functioning on the
differentiation domain, using gradient manipulation for dynamic range reduction.

The majority of tone mapping methods work on the spatial domain and are therefore cat-
egorized under either local or global umbrella, depending on the nature of the compression.
Finally it is noted that as there are numerous methods for tone mapping of HDR scenes and
their basic functionality is, apart from the core idea of range compression, very different
from one method to another, it is not meaningful to give a detailed description of an exam-
ple implementation. All the methods are well described in the literature and the methods
implemented for the luminance-chrominance approach of this thesis are described in detail
in Section 9.5.2.

9.5.2 Tone Mapping of Luminance-Chrominance HDR

A number of tone mapping methods working in RGB space exist. These techniques
can easily be adapted for the luminance range reduction. However, the term tone mapping
would be questionable in this context, as tone is usually used in connection with color.
In this chapter such a luminance range reduction operator is denoted as T . Its output
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FIGURE 9.10

The block diagram of the anchoring-based tone mapping process. The blocks represent the four central stages

of the procedure.

is a luminance image with range [0,1], that is, T (ζ̃Y )(·) ∈ [0,1]. As for the chromatic
channels, a simple, yet effective approach is presented.

For the compression of the luminance channel, two global luminance range reduction
operators are presented. The selection is limited to global operations simply because thus
far, local operators have not been able to produce results faithful to the original scene. It
should be noted that the majority of tone mapping methods developed for RGB can be
applied more or less directly for the compression of the luminance channel as if it were a
grayscale HDR image. As such, the continuous development of tone mapping methods for
RGB HDR images also benefits the compression of luminance-chrominance HDR data.

9.5.2.1 Anchoring-Based Compression

The first method is based on an anchoring theory of lightness perception and was pre-
sented for RGB in Reference [7]. The core idea of the method is to divide the luminance
image into frameworks based on the theory of lightness perception [21]. This theory states
that in order to relate the luminance values to perceived lightness, one or more mappings
between the luminance and perceived values on the grayscale, an anchor, have to be de-
fined. A block diagram of the method is depicted in Figure 9.10.

The division into frameworks is done utilizing the standard K-means algorithm and is
based on the histogram of log10 luminance. Preliminary centroids are based within one
log10 unit of each other. In subsequent steps the clusters based on these centroids are fused
if the distance between two centroids becomes less than one and the cluster contains no
pixels at all or no pixels with probability more than 0.6 of belonging to that cluster. The
probability is calculated as a function of distance from the cluster centroid. When this algo-
rithm is left to converge, the result is a division into usually no more than three frameworks
with similar intensities. At the last stage of the framework division the acquired frameworks
are articulated based on the dynamic range of an individual framework. A framework with
a high dynamic range (above one log10-unit) has the maximum articulation, and the artic-
ulation goes down to zero as the dynamic range goes down to zero. The articulation is
imposed on the frameworks to make sure a framework consisting of background does not
play a significant role in the computation of the net lightness. At the penultimate stage the
frameworks are anchored so that in an individual framework, the 95th percentile is mapped
as white. Ultimately the reduced range luminance is calculated by subtracting the anchored
frameworks from the original luminance.

In terms of detail visibility, the anchoring-based method is superior to some other meth-
ods. Even scenes with extremely high contrast are squeezed into the range of a consumer
level liquid crystal display (LCD) display. For some scenes this may lead to results ap-
pearing slightly unnatural, as global contrast is reduced very severely. The fact that the
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described method allows no manual tuning serves as both a drawback and a benefit; for
most images the majority of the scene is brought visible in a believable manner but for
images containing extremely high dynamic range, the lack of global contrast may at times
lead to results appearing slightly too flattened.

9.5.2.2 Histogram-Based Compression

Another method is based on a relatively simple histogram adjustment technique. It
coarsely approximates the method described in Reference [5]. It is noted, however, that
most of the sophisticated ideas introduced in Reference [5] are sacrificed in the implemen-
tation for speed and simplicity. In the histogram adjustment method the first step is to clip
the HDR luminance image values to the lower limit of the HVS (10−4cd/m2). Then the
luminance image can be downsampled with a factor of eight (the downsampling has to be
preceded by a corresponding low-pass filtering to avoid aliasing). The downsampling is
a simplistic approximation of the foveal fixation phenomenon encountered in adaptation
of the eye. Then a luminance histogram is calculated from the downsampled image. A
cumulative distribution is then defined as P(b) = ∑bi<b f (bi)/∑bi f (bi), where f (bi) is the
frequency count for the bin number i. Now if the goal were to equalize the probability of
each brightness value, this could be achieved by histogram equalization

Bdisp = log(Ldmin)+ [log(Ldmax)− log(Ldmin)]P(b),

where Ldmax and Ldmin are, respectively, the maximum and minimum display luminance
values and Bdisp is the output display brightness. However, while histogram equalization
compresses dynamic range in sparsely populated regions of the histogram, it also expands
contrast in highly populated zones resulting in exaggerated contrast. This can be avoided
by imposing a linear ceiling on the contrast produced by the method. The linear ceiling can
be defined as follows:

f (b)≤ ∑bi f bi∆b
log(Ldmax)− log(Ldmin)

,

where ∆b is the histogram bin stepsize. This ceiling has to be imposed on the histogram
equalization in an iterative manner, because when values exceeding the ceiling are trun-
cated, the histogram sample count ∑bi f bi is altered thus altering also the ceiling. The
display mapping is then obtained by using the newly acquired luminance histogram (or its
cumulative distribution) in the histogram equalization formula defined above.

9.5.2.3 Chrominance Component Compression

The sRGB gamut does not allow the rendition of very dark or very bright vivid and satu-
rated colors which exist in real scenes and which are captured in HDR images. Therefore,
there exists a need for chromatic tone mapping. In this approach, in order to get faithful
colors that fit into the sRGB gamut the hue is kept intact by sacrificing saturation. Intro-
ducing a scaling factor δ for the two chrominance values will then not change the hue, but
will scale down the saturation. The scheme that is used to guarantee legal sRGB values is
embedded in the color space transformation itself and described below.

Let B = A−1 be the luminance-chrominance to RGB transformation matrix. Let us also
define the gray (achromatic) image and its chromatic complement image in RGB space as
follows:
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FIGURE 9.11

Illustration of the definition of the chromatic tone mapping parameter δ .

z̊gray(x) =
[
z̊R
gray(x) z̊G

gray(x) z̊B
gray(x)

]
=




T
(

ζ̃Y
)

(x)
0
0




T

B, (9.9)

zchrom(x) =
[
zR
chrom(x) zG

chrom(x) zB
chrom(x)

]
=




0
ζ̃U(x)
ζ̃V(x)




T

B. (9.10)

It can be noted that z̊gray(x) is truly a gray image because in RGB to luminance-
chrominance transforms b1,1 = b1,2 = b1,3. Then a map δ ≥ 0 is needed, such that

z̊(x) = z̊gray(x)+δ (x)zchrom(x) ∈ [0,1]3 . (9.11)

It can be defined by δ (x) = min
{

1,δ R (x) ,δ G (x) ,δ B (x)
}

, where

δ R (x) =





z̊R
gray(x)/−zR

chrom(x) if zR
chrom(x) < 0,

(1− z̊R
gray(x))/zR

chrom(x) if zR
chrom(x) > 0,

1 if zR
chrom(x) = 0,

(9.12)

and δ G and δ B are defined analogously. Thus, δ (x) is the largest scalar smaller or equal
to one, which allows the condition in Equation 9.11 to hold. Figure 9.11 illustrates the
definition of δ (x). From the figure it is easy to realize that the hue, that is, the angle of the
vector, of z̊(x) is not influenced by δ , whereas the saturation is scaled proportionally to it.
Roughly speaking, the low-dynamic range image z̊(x) has colors which have the same hue
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as those in the HDR image ζ̃ and which are desaturated as little as is needed to fit within
the sRGB gamut.

It is now obvious that the tone mapped LDR image can be defined in luminance-
chrominance space as follows:

ζ̊(x) =
[
T

(
ζ̃Y

)
(x) δ (x) ζ̃U(x) δ (x) ζ̃V(x)

]
. (9.13)

The tone mapped luminance-chrominance image ζ̊ can be compressed and stored directly
with an arbitrary method (for example, DCT-based compression, as in JPEG), and for dis-
play transformed into RGB using the matrix B. It is demonstrated that this approach yields
lively, realistic colors.

9.5.3 HDR Display Hardware

Obviously even the most elaborate tone mapping algorithms cannot match the sensation
of directly viewing a HDR scene. The limitations in dynamic range of modern displays
relate to the limited maximum presentable intensity and more importantly the minimum
presentable intensity. Conventional LCDs and even plasma screens both suffer from the
phenomenon of some light being present in pixels that should in fact be completely black.
For LCDs this is due to the LCD screen not being able to completely block the backlight
from reaching the observer. For plasma screens grayish blacks are caused by the precharge
induced in the plasma needed to achieve an acceptable response time.

In recent years some advances have been made in display technology. Reference [8]
presents the fundamentals of a conceptual adaptive backlight LCD display. In this display,
the backlight is implemented with an light emitting diode (LED) matrix. Such backlight
can then be locally dimmed and areas of the backlight can even be completely turned off to
achieve true black in some image areas while simultaneously displaying maximum intensity
in others, yielding a theoretical infinite contrast ratio. The adaptive backlight was later
formulated into two technology packages by Dolby. Dolby Contrast and Dolby Vision offer
different levels of backlight control and accuracy and are at the time of writing waiting to
be licensed by the first display manufacturer. Meanwhile numerous display manufacturers
have introduced LED-based LCD screens of their own, significantly extending the dynamic
range (contrast ratio) of the conventional LCD television. Many of the caveats of current
display technologies will be antiquated by the maturation of organic light-emitting diode
(OLED) technology and similar technologies where all pixels control their own intensity
and can be turned on or off independently of neighboring image elements.

FIGURE 9.12 (See color insert.)

Four exposures from the real LDR sequence used to compose an HDR image. The exposure times of the frames

are 0.01, 0.0667, 0.5, and 5 seconds.
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FIGURE 9.13 (See color insert.)

The histograms of the HDR image composed in luminance-chrominance space and transformed into RGB.

Histogram is displayed in logarithmic scale.

9.6 Examples

This section presents examples of HDR scenes imaged and visualized with methods de-
scribed in this chapter. In the experiments, both real and synthetic images are used. Special
attention is focused on the effects of noise and misalignment, both realistic components of
distortion when HDR scenes are imaged with off-the-shelf components. Extensive perfor-
mance comparisons against state-of-the-art RGB methods can be found in Reference [14].

9.6.1 HDR from Real LDR Data

To display the basics of luminance-chrominance HDR composition, a sequence of 28
frames was captured with a remotely operated Canon EOS 40D set on a tripod. The images
were captured with ISO 100, thus having very low noise. The image sequence is composed
into HDR in opponent color space with the methods described in this chapter. First a
response function is solved for the camera as described in Section 9.3.1. Using the solved
response function an HDR image in luminance-chrominance space is acquired as described
in Section 9.4.2. The exposure times for the captured sequence range from 0.01s to 5.00s;
Figure 9.12 shows extracts of this sequence. The histogram for the R, G, and B channels
of the HDR image is shown on logarithmic axis in Figure 9.13. Figures 9.14a and 9.14b
show the tone mapping results achieved using the two methods described in this chapter.
Figure 9.14c shows an adaptive logarithmic tone mapping result of the RGB transformed
HDR image achieved with the method described in Reference [22]. Note that this tone
mapping method was implemented as in Reference [23], with exposure adjustment, bias,
shadow luminance, and contrast parameters set to 0.64, 0.77, 1.00, and 0.00, respectively.

9.6.2 HDR from Synthetic LDR Data

The HDR image acquired as described in Section 9.6.1 can also be transformed into RGB
space using the approach discussed in Section 9.4.2.4. The HDR image transformed into
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(a) (b)

(c)

FIGURE 9.14 (See color insert.)

The HDR image composed in luminance-chrominance space from real data and tone mapped using: (a) the

histogram adjustment technique presented in Section 9.5.2.2, (b) the anchoring technique presented in Sec-

tion 9.5.2.1, and (c) the adaptive logarithmic technique presented in Reference [22] applied in RGB.

RGB space can be used as ground truth for subsequent synthetic composition examples.
The HDR image is assumed to represent the true scene irradiance E, with an HDR pixel
value E (x) = 1 equal to a scene irradiance of 1 W/m2. Where comparison with RGB
techniques is provided, the tone mapping method described in Reference [22] is used to
process the images composed both in RGB and in luminance-chrominance to allow for
relevant visual comparison of the results.

9.6.2.1 Generating Synthetic LDR Data

In practice, the LDR frames are captured sequentially, one after the other, each time with
a different exposure time. Particularly with a hand-held camera, this results in some mis-
alignment between the frames. Unless the scene is perfectly static, misalignment can occur
even when the camera is held on a tripod, simply because of minor changes in the scene
content (movement of the subjects, etc.). In simulations, to create realistic misalignment of
the LDR frames, the HDR image has been sampled using linear interpolation after a set of
geometrical deformations. These include rotation, translation, as well as parabolic stretch,
faithfully mimicking the apparent nonrigid deformation produced by the optical elements
of the camera. Although using random deformation parameters to generate each frame, the
actual misalignment is quantified by tracking the position of the three light-emitting diodes
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TABLE 9.1
Average LED position variances σ2

LED for
the source image sequences of Figures 9.16
and 9.18.

Sequence σ2
LED

Reference 0
1st degraded, no noise 0.2289
2nd degraded, added noise 0.2833
Only added noise 0
3rd degraded, no noise 2.4859
4th degraded, added noise 1.5339

(LEDs, used as markers in the HDR scene) over the sequence of frames. In particular,
for each sequence of LDR frames, the standard deviation of the position of the center of
each of the three LEDs was computed. The numbers reported in Table 9.1 are the average
variances for position of the three LEDs.

A synthetic LDR image sequence is obtained by simulating acquisition of the above
HDR image into LDR frames. The LDR frames are produced using Equations 9.3 and 9.4
applied separately to the R, G, and B channels. The camera response function f used in the
equations is defined as follows:

f (e(x)) = max
{

0,min
{

1,
⌊(

28−1
)

κe(x)
⌉(

28−1
)−1

}}
. (9.14)

where κ = 1 is a fixed factor representing the acquisition range of the device (full well) and
the b·e brackets denote the rounding to the nearest integer, thus expressing 8-bit quantiza-
tion. This is a simplified model which, modulo the quantization operation, corresponds to
a linear response of the LDR acquisition device.

Noise is also introduced to the obtained LDR images using a signal-dependent noise
model of the sensor [24], [25]. More precisely, noise corrupts the term κe(x) in the acqui-
sition formula, Equation 9.14, which thus becomes

f (e(x)) = max
{

0,min
{

1,
⌊(

28−1
)

ε (x)
⌉(

28−1
)−1

}}
, (9.15)

where ε (x) = κe(x)+
√

aσ (κe(x))+bη (x) and η is standard Gaussian noise, η (x) ∼
N (0,1). In the experiment, parameters a=0.004 and b=0.022 are used; this setting cor-
responds to the noise model of a Fujifilm FinePix S9600 digital camera at ISO1600 [25].
Note that the selected noise level is relatively high and intentionally selected to clearly
visualize the impact of noise on the HDR compositions.

9.6.2.2 Composition from Synthetic LDR Frames

Generating the LDR frames synthetically provides exact knowledge of the camera re-
sponse. Thus, the logarithmic inverse g of the camera response function f used in the com-
position is the logarithm g(x) = lnx. In the case of synthetic LDR frames, when processing
in RGB, this response is used for all channels, processed in parallel, to compose the origi-
nal scene. When processing synthetic LDR frames in a luminance-chrominance space, the
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FIGURE 9.15

The four synthetic LDR frames used to create the HDR images shown tone mapped in the first row of Fig-

ure 9.16. The exposure times used in creating the frames are 0.064, 0.256, 1.024, and 4.096 seconds.

same inverse response function is used for the luminance channel, while chrominance chan-
nels are processed as described in Section 9.4.2.3. Since RGB composition is essentially an
inverse of the acquisition process followed to obtain the synthetic LDR frames, the RGB
composition result is, apart from some minute quantization-induced differences, perfect.
For luminance-chrominance this cannot be expected, since the luminance channel is always
obtained as a combination of the RGB channels, which due to clipping reduces the accuracy
of the response. As will be shown, however, the reduced accuracy does not compromise
the actual quality of the composed HDR image. Instead, the luminance-chrominance ap-
proach leads to much more accurate composition when the frames are degraded by noise
or misaligned.

Because of noisy image data, the normalized saturation definition given in Section 9.2.3.1
modified with a regularization term τ is employed. The regularized saturation is then ob-
tained as S =

√
(ζU)2 +(ζV )2/

√
(ζY )2 + τ2 with τ = 0.1. Without regularization, such

saturation would become unstable at low luminance values, eventually resulting in miscal-
culation of the weights for the composition of the chrominance channels.

9.6.2.3 Experiments and Discussion

The trivial case of HDR composition from perfect synthetic frames shown in Figure 9.15
is provided for reference. Further, two different levels of misalignment are presented with
and without added noise. Also, a perfectly aligned case is considered with added noise.
For every case, images composed in both LCR and RGB space and tone mapped with the
method of Reference [22] (exposure adjustment 0.64, bias 0.77, shadow luminance 1.00,
contrast 0.00) in RGB space are presented. This demonstrates the ability of luminance-
chrominance composition to function under imperfect conditions.

As can be seen in Figures 9.16a and 9.16b, the HDR compositions obtained using uncor-
rupted frames are, except a slight overall tonal difference, identical. Both LCR and RGB
perform very well with synthetic frames with no degradation. Figures 9.16c and 9.16d show
tone mapped HDR images composed using frames subjected to simulated camera shake.
The average variance of the LED positions used to measure sequence stability is 0.2289 pix-
els, as shown in Table 9.1. The luminance-chrominance composed frame is again visually
pleasing whereas in its RGB counterpart some significant color artifacts, such as reddish
and blueish artifacts on the upper edge of the color chart, can be seen. This is further illus-
trated in Figure 9.17, which displays magnified fragments of Figure 9.16. Similar artifacts
can also be seen on the upper-right edge of the white-screen. These artifacts are caused by
parallel processing of the RGB channels. Figures 9.16e and 9.16f show composition results
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(a) (b)

(c) (d)

(e) (f)

FIGURE 9.16

Experiments with synthetic data: (a,b) luminance-chrominance and RGB images composed using synthetic

LDR data subject to no degradation, (c,d) images composed using sequence subject to misalignment with

measured average LED position variance of 0.2289, and (e,f) images composed using sequence subject to

misalignment with measured average LED position variance of 0.2833 as well as noise.

for images degraded by misalignment (average LED position variance 0.2833 pixels) and
noise. Though masked somewhat by the noise, color artifacts can again be witnessed, for
example in the upper right corner of the color chart and in the vertical shelf edge found in
the left side of the scene. It is also evident that both these compositions suffer from noise,
which is particularly obvious in dark regions.

Figure 9.18 shows similar behavior as discussed above. Figures 9.18a and 9.18b show
composition results for a synthetic sequence degraded by noise; again, the comparison
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(a) (b)

(c) (d)

(e) (f)

FIGURE 9.17

Magnified details extracted from the images of Figure 9.16: (a,b) luminance-chrominance and RGB images

composed using synthetic LDR data subject to no degradation, (c,d) images composed using sequence subject

to misalignment with measured average LED position variance of 0.2289, and (e,f) images composed using

sequence subject to misalignment with measured average LED position variance of 0.2833 as well as noise.

favors the luminance-chrominance composed image. Figures 9.18c and 9.18d show com-
posed images obtained using the source sequence degraded by camera shake with the av-
erage variance of 2.6858 pixels. The luminance-chrominance composed image, apart from
slight blurriness, seems visually acceptable whereas the RGB image suffer from color ar-
tifacts present at almost all of the edges. Among the worst are the greenish artifacts at the
upper-right edge of the white-screen and red distortion on the wires of the LED at the upper
part of the scene, as further illustrated in Figure 9.19 which displays magnified fragments of
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(a) (b)

(c) (d)

(e) (f)

FIGURE 9.18

Experiments with synthetic data: (a,b) luminance-chrominance and RGB images composed using synthetic

LDR data subject to noise, (c,d) images composed using sequence subject to misalignment with measured

average LED position variance of 2.4859, and (e,f) images composed using sequence subject to misalignment

with measured average LED position variance of 1.5339 as well as noise.

Figure 9.18. Figures 9.18e and 9.18f show the composition results for a sequence degraded
by noise and camera shake with average variance of 1.5339 pixels. Again, both noise and
color artifacts are very much present in the RGB composed image, whereas the luminance-
chrominance composed image handles the imperfect conditions visibly significantly better.

It is interesting to comment about the blueish colored noise visible on the darker parts
of the HDR images produced by the RGB composition of noisy LDR frames. First, as
can be seen in Figure 9.15, these are areas which remain rather dark even in the frame
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(a) (b)

(c) (d)

(e) (f)

FIGURE 9.19

Magnified details extracted from the images of Figure 9.18: (a,b) luminance-chrominance and RGB images

composed using synthetic LDR data subject to noise, (c,d) images composed using sequence subject to mis-

alignment with measured average LED position variance of 2.4859, and (e,f) images composed using sequence

subject to misalignment with measured average LED position variance of 1.5339 as well as noise.

with the longest exposure (∆t = 4.096 s). Second, as can be observed in Figure 9.14c, the
scene is dominated by a cream yellow cast, mainly due to the tone of the lamp used for
lighting. Thus, in each LDR frame, in these areas the blue component is the one with both
the lowest intensity and the poorest signal-to-noise ratio. Because of the way weights are
defined for the composition of these dark areas, only the longest exposed frame contributes
with significant weights. This situation is quite different from that of the other parts of the
image, which are instead produced as an average of two or more frames, one of which is
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properly exposed. In particular, for the darkest components, it is the right tail of the noise
distribution which is awarded larger weights (see Figure 9.5). Moreover, because of the
clipping at zero in Equation 9.15, the noise distribution itself is asymmetric. This results in
a positive bias in the composition of the darker parts, which causes the blueish appearance
of the noise over those parts.

9.7 Conclusions

This chapter presented methods for capture, composition, and display of color HDR im-
ages. In particular, composition techniques which effectively allow to produce HDR images
using LDR acquisition devices were considered. Composition in luminance-chrominance
space is shown to be especially suitable for the realistic imaging case where the source
LDR frames are corrupted by noise and/or misalignment. In addition to being more robust
to degradations, the luminance-chrominance approach to HDR imaging focuses special at-
tention on the faithful treatment of color. As opposed to traditional methods working with
the RGB channels, this method does not suffer from systematic color artifacts in cases of
misaligned data nor color balancing errors usually induced among other things by imper-
fectly calibrated camera response.

With the ongoing introduction of HDR acquisition and display hardware, HDR imaging
techniques are set to gain an even more important role in all parts of computational pho-
tography and image processing. With new applications, both industrial and commercial,
introduced nearly daily, it is not farfetched to say that HDR will in more than one meaning
be “the new color television.”
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10.1 Introduction

Computational photography makes it possible to enhance traditional photographs digi-
tally [1]. One of its branches is high-dynamic range imaging, which enables access to a
wider range of color values than traditional digital photography. Typically, a high-dynamic
range (HDR) image stores RGB color values as floating point numbers, enlarging the con-
ventional discretized RGB format (8-bit per color channel) used for low-dynamic range
(LDR) images [2]. It is possible to visualize the HDR images through a specifically-built
HDR display [3], [4] or to perceptually adapt them for LDR displays using tone map-
ping [5], [6], [7].
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(a) (b) (c)

(d) (e)

FIGURE 10.1 (See color insert.)

Example of a dynamic scene illustrated on a sequence of LDR images taken at different exposures. On the

quay, pedestrians stroll. The boat, floating on the water, oscillates with the water movement. The water and the

clouds are subjected to the wind. Therefore water wrinkles change from one image to another.

HDR imaging revolutionized digital imaging. Its usage became popular to the profes-
sional and amateur photographer after its inclusion in software such as HDRShop [8], Pho-
togenics [9] and Cinepaint [10]. The autobracketing functionality nowadays available on
many mainstream digital cameras makes the HDR capture less cumbersome and hence
more attractive. Its dissemination is becoming common in press articles on photography.
Besides becoming a must-have in digital photography, it is also used for scientific activities
such as computer graphics, image processing and virtual reality. With its larger range of
luminance values it provides a much more detailed support for imagery. Showing none or
fewer saturated areas ensures more accurate calculations and more realistic simulations.

While HDR imaging becomes more mature in its use, its development is still at an early
stage. This chapter will show that most HDR capture methods only work well when scenes
are static, meaning that no movement or changes in the scene content is allowed during
the capture process. The real world, however, is made of dynamic scenes (Figure 10.1),
with objects in movement during the capture process. In indoor scenes this can be people
moving, doors or windows opening, and objects being manipulated. In outdoor scenes this
dynamic character is even more prominently present as pedestrians walk through the scene,
leaves and trees move due to wind, and cloud movement or reflection on water change the
lighting in the scene. The camera itself may also be in motion. Thus, in order to consider
HDR imaging for a wider range of applications, motion and dynamic scenes need to be
integrated in HDR technology targeting both HDR photographs and movies.

In this chapter, Section 10.2 presents the definition of HDR images. Section 10.3 de-
scribes how to create an HDR image from multiple exposures. Section 10.4 explores new
approaches that extend the types of possible scenes. Section 10.5 presents a vision on future
HDR imaging development for generic scenes. Conclusions are drawn in Section 10.6.
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10.2 High-Dynamic Range Images: Definition

In conventional photography saturation occurs when the light quantity reaching the sen-
sors exceeds the range of allowed values. In order to capture higher illumination values
without saturation effects one often reduces the shutter speed or the aperture of the camera.
A similar saturation effect occurs with dark areas in a scene. In Figure 10.1a, parts of the
boat and the harbor are underexposed but brighter parts such as the water or the sky are
represented by the colors in the appropriate range. In Figure 10.1d, the sky is overexposed
and its color representation is saturated. However, color information is well represented in
the areas of the harbor and the boat.

Dark parts of a scene are typically captured using a decreased shutter speed or larger
aperture of the camera, which is the exact opposite of what is used when capturing a bright
scene. It seems impossible to capture bright and dark areas in a scene simultaneously using
conventional methods. Furthermore when storing the image digitally, illumination values
are clamped to fit within a fixed range. Conventional photographs are therefore called low-
dynamic range images. A high-dynamic range image stores a wider range of color values,
enabling more precision and preventing the risk of overexposed or underexposed areas.

Each pixel of an image contains color information that can be viewed as the amount of
light reaching the camera’s sensors. With conventional cameras, this color is encoded in a
restricted range of values and color space, and processed initially by the capture sensors of
the equipment, then to represent pleasing observed colors and to have a controlled storage
space. Typically, color contrast and white balance are adjusted and color values are tone
mapped. Color processing may present a problem when one wants full control over the
image. Recently, manufacturers started offering the possibility of storing images in a RAW
format which directly reflects sensor data, in which pixel values contain supposedly no
compression and no color postprocessing.

In an HDR image, the stored data corresponds to a physical quantity of light called
radiance. This quantity can be viewed as the amount of light reaching an observer’s eye
or leaving a surface in a certain direction. It is directly linked to the color intensity found
in video or photographs. An HDR image therefore stores radiance information in an RGB
extended format. Several formats exist, such as HDR or OpenEXR, usable within different
software and presenting different compression algorithms. Often, HDR values are stored
between 16 bits to 32 bits per channel.

10.3 HDR Image Creation from Multiple Exposures

Although some HDR cameras [11] or other hardware technology [12] exist, HDR images
are usually created by combining information coming from a set of LDR images (minimum
of three) that capture the scene using different exposures [2]. The idea is that some of the
LDR images contain clear information on the darkest parts of the scene, while others con-
tain information on the brightest parts. This ensures that information from darker areas as
well as brighter ones can be recovered. Recently, some methods work on extending the high
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TABLE 10.1
A regular interval for exposures values (EV ) with
a fixed aperture (N = 1.0) and varying time t.

t 4s 2s 1s 1/2s 1/4s

EV -2 -1 0 1 2

dynamic range of one LDR image only [13], [14]. These methods extrapolate information
in underexposed or overexposed areas by either using user intervention or neighboring parts
of the image. Although this approach can produce reasonable results, it is generally more
accurate to recover information using several exposures of the same scene.

10.3.1 Capture with Still Cameras

The LDR pictures are usually taken sequentially at regular EV (exposure value) intervals
that link the aperture of the camera to the exposure time. In order to better control the
quality of the acquired LDR images, it is preferable to have a manual camera on which one
can set the white balance and the focus. In addition, the use of a tripod to minimize the
movement between each picture is highly encouraged.

To compute EV , the following equation is used:

EV = log2(N2/t), (10.1)

where N is the f-number (aperture value) and t is the exposure time (shutter speed). It is
usually preferred to fix the aperture and vary the exposure time to prevent traditional photo-
graphic effects associated with aperture changes, such as depth of field variation. Table 10.1
lists regular or linear intervals of EV for N = 1.0 and the required shutter speed. Having
regular intervals for EV is not compulsory but makes it easier for future computations.

The auto-bracketing function of existing cameras is very useful to capture a set of LDR
images at regular EV intervals. The camera chooses the best EV0 exposure value by cal-
culating what combination of aperture and shutter speed introduces the least saturation
in the image. Once this EV0 is established, darker and brighter pictures are taken by re-
spectively decreasing and increasing the shutter speed while keeping the aperture width
fixed. As an example, if 2n+1 is the number of pictures taken, EV varies along the range
EV−n, ...EV−1,EV0,EV1, ...,EVn. The number of pictures taken varies with the camera,
three, five or nine pictures (n = 1,2,4) being the standard. An example of a series of five
pictures is shown in Figure 10.2.

FIGURE 10.2 (See color insert.)

A series of five LDR images taken at different exposures.
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transform intensity

to radiance

N LDR images
N aligned

LDR images

camera response

curve

generate HDR

image

N aligned HDR

images
final HDR image

image alignment

FIGURE 10.3

The different steps needed to create an HDR image from several LDR images in traditional methods.

10.3.2 Processing the Data

Several steps are needed in order to combine the LDR images into one HDR image. The
process is described in the diagram in Figure 10.3.

Alignment: Even when using a tripod, there may be misalignments between the input im-
ages. The image alignment could be done by an automatic procedure but is not always easy
to achieve. Typically, transformations are recovered for translational and rotational move-
ments in the image plane. However, some images may require non linear transformation
such as warping or scaling in case of rotations or translations of the camera during the cap-
ture. Image features are used in order to perform the alignment. They can be found using a
medium bitmap transform [15], [16], [17] or the scale invariant feature transform [18]. For
video content, warping is also used [19] or a combination between feature matching and
optical flow [20].

Recovery of the inverse camera response function: The image saved by the camera is
very different from the actual scene in terms of its colors. The manufacturer’s choice of
sensors as well as postprocessing have a large influence on the final image. It is said
that each camera has its own response curve that transforms radiance values into image
pixel values. In order to retrieve the radiance value it is compulsory to retrieve the inverse
camera function. Considering the irradiance E reaching the camera sensor, there is a linear
transform

E = Lt (10.2)

that links linearly the irradiance with the scene radiance L, often with the exposure time t.
The brightness or intensity value M stored in the picture corresponds to the transformation
f , such as M = f (E). To retrieve the irradiance, and therefore the radiance, we need to find
the inverse response function g = f−1. In general, the procedure is to select corresponding
pixels in the LDR images captured with different exposures, plot the various brightness
values for each pixel, and deduce the best fitting curve separately for each channel R, G,
and B. Several methods exist to retrieve this function, often making an assumption on the
curve. Firstly, it is reasonable to make the assumption that f is monotonic and increasing
(ensuring that it can be inverted). Also, assumptions are made on its shape: log shape [21],
polynomial shape [22], or a gamma shape [23]. The function can also be reconstructed
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(a) (b)

FIGURE 10.4 (See color insert.)

The HDR image obtained using traditional methods, (a) from the images shown in Figure 10.2 after alignment,

(b) from the image sequence shown in Figure 10.1. (Images built using HDRShop [8].)

from other known functions [24]. The procedure is very sensitive to the chosen pixels and
to the input images. If the camera parameters do not change, the same curve is often reused
for other sets of LDR images.

Converting the intensity values of the LDR images to radiance values: The inverse re-
sponse function f is applied to each pixel of the LDR images to convert the RGB color
value into an HDR radiance value.

Generating the HDR image: The radiance values stored in the LDR images are combined
using a weighted average function into a single value for each pixel that will form the final
HDR image. The weights are used to eliminate saturated values, or misaligned pixels.
Examples of a resulting image are shown in Figure 10.4; namely, Figure 10.4a shows the
output image obtained using the input images in Figure 10.2 after alignment (translation and
rotation) whereas Figure 10.4b shows the image resulting from the aligned image sequence
shown in Figure 10.1. Traditional methods calculate the final radiance E(i, j) of an HDR
image for pixel (i,j) such as:

E(i, j) =
∑R

r=1 w(Mr(i, j))(g−1(Mr(i, j))
∆tr

)

∑R
r=1 w(Mr(i, j))

, (10.3)

where Mr(i, j) is the intensity of pixel (i, j) for the image r of R images, w its associated
weight and ∆tr the exposure time. In traditional combining methods, w often only takes
into account overexposure or underexposure. A hat function can be used [25], illustrated in
Figure 10.5, to select well-exposed values.

10.3.3 Limitations

Limitations occur at different stages of the construction of an HDR image from several
LDR images. The existing alignment procedures often used in HDR generation methods
rarely consider nonlinear transformations (such as zooming or warping) which are much
more computationally expensive and difficult to recover. Moreover, the alignment can eas-
ily be perturbed when object movement is present in the scene.
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FIGURE 10.5

The hat function used to clamp values underexposed or overexposed in Reference [25].

The currently known algorithms that retrieve the camera response function work reason-
ably well for many cases, but there is no guarantee that these will always work. Firstly, the
chosen shape (e.g., log, gamma or polynomial) may not fit the original curve; secondly, it is
very dependent on the chosen pixels; thirdly a large dataset of curves is required to ensure a
reasonable success in the procedure used in Reference [24]. In practice, since the response
curve estimation is unstable, it is often preferable to calculate it once for a certain setting
of the camera, and use this retrieved curve for other sets of LDR images.

The reconstruction of an HDR image from aligned LDR images works only if the scene is
static. Ghosting effects or other types of wrongly recovered radiance values will be present
for dynamic scenes. Such effects are illustrated in Figure 10.6. The time to take an HDR
image is at the minimum the sum of the exposure times. For certain scenes, such as exterior
scenes or populated scenes, it is almost impossible to guarantee complete stillness during
this time. An ignored problem in the literature is the changes in illumination or covering
objects in movement during the shoot. This happens for example on a cloudy day which
may lead to rapid changes in illumination. It may also happen that an object moves fast

(a) (b)

FIGURE 10.6

Example of ghosting effects in the HDR image due to movement in the input LDR image sequence: (a) a

zoomed portion of the HDR image shown in Figure 10.4 with hosting effects due to people walking near the

bridge, (b) a zoomed portion of the HDR reconstructed image from the sequence shown in Figure 10.1, with

ghosting effects present in the zone with pedestrians and on the platform floating on the water.
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and changes position reaching both shaded and illuminated areas. This leads to radiance
incoherence in the LDR input images.

10.4 High-Dynamic Range Images for Dynamic Scenes

Dynamic scenes are actually the most encountered scenes where movement is not con-
trolled. During the capture of the multiple exposures objects may move in the scene. As
shown in Section 10.3.3, this leads to difficulties and errors at different stages of the recon-
struction procedure: during the alignment procedure, the inverse camera curve retrieval,
and the combining of the LDR image sequence. To compensate for this, effort is made to
choose static pixels for the alignment procedure and the inverse curve retrieval. Also, re-
gions showing movement can be detected before being treated during the final combining.
Some existing methods are discussed below with respect to their approach to detecting and
managing movement in images.

10.4.1 Movement Detection and Feature Insertion in the Final Image

Reference [16] presents two methods used to detect movement in a sequence of LDR ex-
posures. The first method, movement removal using variance, uses the irradiance variation
across these exposures as an indicator. Similar methods can also be found in Reference [2].
The second method measures uncertainty using entropy as an indicator of potential move-
ments. Both methods are described below.

10.4.1.1 Movement Removal Using Variance

Using the camera response curve an HDR image called Ei is calculated for each of the
2n + 1 LDR exposures Ii. The pixels affected by movement will show a large irradiance
variation over the different Ei. Therefore, the variance of a pixel over the different Ei’s can
be used as a likelihood measure for movement. The movement cluster is derived from a
variance image (V I), which is created by storing the variance of a pixel over the different
exposures in a matrix with the same dimensions as the LDR images.

Some pixels in the Ii’s can be saturated, others underexposed. Compared to their counter-
parts in the other exposures, such pixels do not contain any reliable irradiance information.
When calculating the variance of a pixel over a set of images it is important to ignore the
variance introduced by saturated or underexposed pixels. This can be achieved by calculat-
ing the variance V I(.) of a pixel (k, l) as a weighted variance [2]

V I(k, l) =

N

∑
i=0

Wi(k, l)Ei(k, l)2/
N

∑
i=0

Wi(k, l)

(
N

∑
i=0

Wi(k, l)Ei(k, l))2/(
N

∑
i=0

Wi(k, l))2

−1. (10.4)

The weights Wi(k, l) are the same as those used during the HDR image generation as de-
scribed in Reference [2]. The variance image can be calculated for one color channel or as
the maximum of the variance over three color channels.
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(a)

(b) (c)

(d) (e)

FIGURE 10.7 (See color insert.)

Movement removal using variance and uncertainty [16]: (a) sequence of LDR images captured with different

exposure times; several people walk through the viewing window, (b) variance image V I, (c) uncertainty

image UI, (d) HDR image after object movement removal using the variance image, and (e) HDR image

after movement removal using the uncertainty image. c© 2008 IEEE

The assumption is made that in general, moving objects cover a wide range of adjacent
pixel clusters, called movement clusters, rather than affecting isolated pixels solely. The
movement clusters are derived by applying a threshold TV I on V I, resulting in a binary
image V IT . For well-defined and closed movement clusters, the morphological operations
erosion and dilation are applied to the binary image V IT . In Reference [16] a suitable
threshold value for TV I is stated to be 0.18. The HDR reconstruction is done using the
weighted sum as in Equation 10.3 except for the identified movement clusters. In those
regions, pixels are replaced by the ones of the best exposed LDR radiance image.
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268 Computational Photography: Methods and Applications

An example is shown in Figure 10.7. Namely, Figure 10.7a shows a set of four exposures
in which people walk through the viewing window. Figure 10.7b presents the variance
image used to detect this movement. The HDR image generated using this variance image
is shown in Figure 10.7d.

This method defines that highly variant pixels in V I indicate movement. Other influences
exist, besides remaining camera misalignments, that might result in a highly variant V I
value:

• Camera curve: The camera curve might fail to convert the intensity values to irradi-
ance values correctly. This influences the variance between corresponding pixels in
the LDR images and might compromise the applicability of the threshold to retrieve
movement clusters.

• Weighting factors: Saturation and underexposure of pixels in an LDR image can
result in incorrect irradiance values after transformation to irradiance values using
the camera curve. Defining the weighting factors is not straightforward and various
different methods exist to define the weights [2].

• Inaccuracies in exposure speed and aperture width used: In combination with the
camera curve this produces incorrect irradiance values after transformation. Chang-
ing the aperture width causes change in depth of field, which influences the quality
of the irradiance values.

10.4.1.2 Movement Removal Using Entropy

The second method described in Reference [16] detects movement across a sequence of
LDR exposures using a statistical, contrast-independent measure based on the concept of
entropy. In information theory, entropy is a scalar statistical measure defined for a statistical
process. It defines the uncertainty that remains about a system, after having taken into
account the observable properties. Let X be a random variable with probability function
p(x) = P(X = x), where x ranges over a certain interval. The entropy H(X) of a variable X
is given by

H(X) =−∑
x

P(X = x) log(P(X = x)). (10.5)

To derive the entropy of an image I, written as H(I), the intensity of a pixel in an image
is thought of as a statistical process. In other words, X is the intensity value of a pixel, and
p(x) = P(X = x) is the probability that a pixel has intensity x. The probability function
p(x) = P(X = x) is the normalized histogram of the image. Note that the pixel intensities
range over a discrete interval, usually defined as the integers in [0,255], but the number of
bins M of the histogram used to calculate the entropy can be less than 256.

The entropy of an image provides some useful information and the following remarks
can be made:

• The entropy of an image has a positive value between [0, log(M)]. The lower the
entropy, the less different intensity values are present in the image; the higher the
entropy, the more different intensity values there are in the image. However, the
actual intensity values do not have an influence on the entropy.
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• The actual order or organization of the pixel intensities in an image does not influ-
ence the entropy. As an example, consider two images with equal amounts of black
and white organized in squares as in a checkerboard. If the first image has only 4
large squares and the second image consists of 100 smaller squares they still contain
the same amount of entropy.

• Applying a scaling factor on the intensity values of an image does not change its
entropy, if the intensity values do not saturate. In fact, the entropy of an image does
not change if an injective function is applied to the intensity values. An injective
function associates distinct arguments to distinct values, examples are the logarithm,
exponential, scaling, etc.

• The entropy of an image gives a measure of the uncertainty of the pixels in the image.
If all intensity values are equal, the entropy is zero and there is no uncertainty about
the intensity value a randomly chosen pixel can have. If all intensity values are
different, the entropy is high and there is a lot of uncertainty about the intensity value
of any particular pixel.

The movement detection method discussed in this section shares some common ele-
ments with the one presented in References [26] and [27]. Both methods detect movement
in a sequence of images, but restrict this sequence to be captured under the same condi-
tions (illumination and exposure settings). The method presented here can be applied to
a sequence of images captured under different exposure settings. It starts by creating an
uncertainty image UI, which has a similar interpretation as the variance image V I used in
Section 10.4.1.1; pixels with a high UI value indicate movement. The following explains
how the calculation of UI proceeds.

For each pixel with coordinates (k, l) in each LDR image Ii the local entropy is calculated
from the histograms constructed from the pixels that fall within a two-dimensional window
V with size (2v + 1)× (2v + 1) around (k, l). Each image Ii therefore defines an entropy
image Hi, where the pixel value Hi(k, l) is calculated as follows:

Hi(k, l) =−
M−1

∑
x=0

P(X = x) log(P(X = x)), (10.6)

where the probability function P(X = x) is derived from the normalized histogram con-
structed from the intensity values of the pixels within the two-dimensional window V, or
over all pixels p in

{p ∈ Ii(k− v : k + v, l− v : l + v)}. (10.7)

From these entropy images a final uncertainty image UI is defined as the local weighted
entropy difference:

UI(k, l) =
N−1

∑
i=0

j<i

∑
j=0

wi j
N−1

∑
i=0

j<i

∑
j=0

vi j

hi j(k, l), (10.8)

hi j(k, l) = |Hi(k, l)−H j(k, l)|, (10.9)

wi j = min(Wi(k, l),Wj(k, l)). (10.10)
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It is important that the weights Wi(k, l) and Wj(k, l) remove any form of underexposure
or saturation to ensure the transformation between the different exposures is an injective
function. Therefore they are slightly different from those used during the HDR generation.
In Reference [16] a relatively small hat function with lower and upper thresholds equal to
0.05 and 0.95 for normalized pixel intensities is used. The weight wi j is created as the
minimum of Wi(k, l) and Wj(k, l), which further reflects the idea that underexposed and
saturate pixels do not yield any entropic information.

The reasoning behind this uncertainty measure follows from the edge enhancement that
the entropy images Hi provide. The local entropy is high in areas with edges and details.
These high entropic areas do not change between the images in the exposure sequence, ex-
cept when corrupted by a moving object or saturation. The difference between the entropy
images therefore provides a measure for the difference in features, such as intensity edges,
between the exposures. Entropy does this without the need to search for edges and corners
which can be difficult in low contrast areas. In fact, the entropy images are invariant to
the local contrast in the areas around these features. If two image regions share the exact
same structure, but with a different intensity, the local entropy images will fail to detect this
change. This can be considered a drawback of the entropic movement detector as it also
implies that when one homogenous colored object moves against another homogeneously
colored object, the uncertainty measure would only detect the boundaries of the moving ob-
jects of having changed. Fortunately, real-world objects usually show some spatial variety,
which is sufficient for the uncertainty detector to detect movement. Therefore the indif-
ference to local contrast is only an advantage, particularly in comparison to the variance
detector discussed previously in this section.

The difference in local entropy between two images induced by the moving object, de-
pends on the difference in entropy of the moving object and the background environment.
Though the uncertainty measure is invariant to the contrast of these two, it is not invariant
to the entropic similarity of the two. For instance, if the local window is relatively large, the
moving object is small relative to this window, and the background consists of many static
objects that are small and similar, then the entropic difference defined in Equation 10.8
might not be large. Decreasing the size of the local window will result in an increased
entropic difference, but a too small local window might be subject to noise and outliers. It
was found in Reference [16] that a window size of 5×5 pixels returned good results.

Similarly to the variance-based method [2], [16], the movement clusters are now defined
by applying a threshold TUI on UI, resulting in a binary image UIT . For well-defined,
closed, movement clusters, the morphological operations erosion and dilation are applied
to UIT . A threshold TUI equal to 0.7 for M = 200 provides satisfactory results, although it
does not seem to be as robust as the threshold for the variance detector. As for the variance-
based method, for the HDR reconstruction, pixels in a detected movement area are replaced
by the pixels of only one LDR image chosen to have least saturation in this area.

An example is shown in Figure 10.7. Namely, Figure 10.7a shows a set of four exposures
that indicate object movement. Figure 10.7c presents the uncertainty image. The resulting
HDR image after movement removal using this uncertainty image is shown in Figure 10.7e.

The creation of UI is independent from the camera curve calibration. As mentioned ear-
lier, this has as an extra advantage that the detection of movement clusters could potentially
be used in the camera calibration phase.
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(a) (b) (c)

FIGURE 10.8

HDR reconstruction using the background estimation method of Reference [28]: (a) input LDR images, (b)

computed labeling, and (c) reconstructed HDR image. Courtesy of Granados et al. [28].

10.4.2 HDR Reconstruction of Background Information

Background reconstruction is related to the HDR reconstruction of dynamic scenes and
is the complementary action to movement detection.

10.4.2.1 Background Estimation

Reference [28] proposes a solution to background estimation from a non-time sequence
of images, meaning that a sequence of images from a same viewpoint can be taken at differ-
ent times and therefore contain different objects while maintaining the same background.
The input images are LDR, taken under the same camera setting and lighting conditions.
Background pixels are determined by minimizing a cost function, built on ideas presented
in References [29] and [30]. The method works under the assumption that background
regions constitute the majority of the image, have a high occurrence count in the set of
images, and are motionless in the set of images.

The cost function is represented by an energy function associated to each pixel sum-
ming a data term with a smoothness term and a hard constraint. The data term represents
a weighted sum of the likelihood of the pixel to belong to the background and its station-
ariness. The weight is assigned using an entropy measure to preserve the most reliable
information. The smoothness term is used to select regions in images that are labeled dif-
ferently but present similarities in intensities, to minimize discontinuities at the different
labeled regions. It also leads to fewer labeled regions. The hard constraint term helps to
keep image semantic consistency by keeping whole parts of objects. This method can be
applied to HDR reconstruction with a set of aligned LDR images with radiance values and
a selection of valid pixels, that is, not presenting overexposed and underexposed values.

10.4.2.2 Probabilistic Computation of Background Estimation

Reference [25] proposes to reconstruct HDR images directly from the LDR images with-
out motion estimation, movement detection or other motion representation. Instead, the
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272 Computational Photography: Methods and Applications

final HDR image is directly built from the input LDR images. Weights are calculated
through an iterative process to represent the chance of each pixel to belong to the static part
of the scene together with its chance of being correctly exposed. A specific weight w, that
takes into account not only exposure quality but also the chance of being static, is obtained.
Calculations are made in the Lαβ color space.

An iterative process is set to calculate the weights wpqs of a pixel (p,q) in image s with
an intensity Z. All weights are first initialized to the average over the color space of a
hat function which is low for values close to the extremes 0 and 255. This hat function is
represented in Figure 10.5 and defined as follows:

w(Z) = 1− (2.
Z

255
−1)12. (10.11)

Reference [25] uses the set N that contains neighboring pixels ypqs of pixel xi jr with
(p,q) 6= (i, j), where x and y denote vectors in R5 representing the Lαβ color space and
the two-dimensional position. In practice, the neighboring pixels are located inside a 3×3
window. The neighboring pixels help to evaluate the likelihood of the pixel to belong to the
background. New weights are calculated at iteration t +1 as follows:

wpqs,t+1 = w(Zs(p,q))P(xpqs | F). (10.12)

The probability function P(·) is defined as

P(xi jr | F) =
∑pqsεN(xi jr) wpqsKH(xi jr−ypqs)

∑pqsεN(xi jr) wpqs
, (10.13)

where
KH(x) = |H| 1

2 (2Π)
d
2 exp(−1

2
xT H−1x) (10.14)

for a d-variate Gaussian, with H being a symmetric, positive definite, d × d bandwidth
matrix. For example, H can be an identity matrix.

By performing 10 to 15 iterations, the method can effectively remove ghosting effects;
it works particularly well if the background is predominant in the image [25]. When there
is some overlap in the region in movement in most images, the object in movement is still
present in the reconstructed image. This is shown in Figure 10.9.

This method is extended in Reference [31]. The color values of the input images are
calibrated through a histogram matching; however, a more robust radiometric alignment
could be used instead. The matrix H used in Equation 10.13 is set to

H =




σ̃L(Ni, j) 0 0
0 σ̃α(Ni, j) 0
0 0 σ̃β (Ni, j)


 , (10.15)

with the weighted standard deviation σ̃ calculated for L, α , and β . This matrix is used
instead of the identity matrix chosen in Reference [25]. To prevent objects from being
segmented in the final reconstruction, a weight propagation algorithm is proposed to cover
regions that are likely to belong to the same object in each image. This algorithm requires
fewer iterations than the algorithm described in Reference [25], using often only one itera-
tion for improved results. An example is shown in Figure 10.10.
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High-Dynamic Range Imaging for Dynamic Scenes 273

(a) (b) (c) (d)

FIGURE 10.9

HDR reconstruction using the background estimation method of Reference [25]: (a,b) two of the input LDR

images, (c) HDR reconstruction with traditional methods, and (d) HDR reconstruction after 10 iterations.

Courtesy of Khan et al. [25]. c© 2006 IEEE

(a) (b) (c)

FIGURE 10.10

Comparison of various HDR image reconstruction methods: (a) HDR image reconstructed without any move-

ment identification, (b) results obtained using the method in Reference [25] after six iterations, and (c) results

obtained using the method in Reference [31] using only one iteration. Courtesy of Pedone et al. [31].

10.4.3 Calculation of Errors to Detect Moving Regions

Reference [32] proposes an approach to manage object movement in images using the
mathematical relation between images. It uses the linear relation between the exposure
value and the radiance with the exposure time (see Equation 10.2) to identify inconsistent
pixels. For an exposure value X of pixel pi in the ith image, and with a relative exposure
evi j between the ith and the jth images, the exposure value of p j should satisfy

X(p j) = X(pi)evi j. (10.16)
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(a) (b) (c) (d) (e)

(f) (g)

FIGURE 10.11

(a-e) LDR sequence of images showing walking pedestrians, (f) HDR reconstruction using traditional methods,

and (g) HDR reconstruction after ghost removal [32]. Image courtesy of Nokia, copyright 2009. c© 2009 IEEE

To identify inconsistent pixels, the algorithm actually looks at the offset of the logarith-
mic relation

ln(X(p2)) = ln(X(p1))+ ln(ev12) (10.17)

for two patches, 1 and 2, of two different exposures. A measure of outliers gives the
percentage of ghosting in each patch. This measure is used when combining the exposures
together to stitch the final HDR image. Patches found inconsistent are not considered in
the stitching. A significant advantage of the approach is that if the movement occurs only
in parts of the images, the radiance of a moving object can still be reconstructed from input
images where this object was still. Only the largest set I of patches with consistent values
is considered. Reconstruction of the radiance around a moving object is done so that no
seams will be visible. A reconstruction based on a Poisson equation is used to create valid
values around the moving area from the identified set I of consistent images for each area.
An example of the method is shown in Figure 10.11.

A similar approach is employed in Reference [17] which identifies errors in pixels be-
tween images using the computation of a predicted color from Equation 10.2 as follows:

z̃i,k = f (
∆tk
∆t j

f−1(zi, j)), (10.18)

where ∆t j and ∆tk denote the exposures, i denote the pixel, and f (·) is the camera response
function, with f−1(zi,. j) = Xi, j = Ei.∆t j. Errors are computed by comparing z̃i,k with zi,k.
If an error is identified, the pixel is not used in the final HDR combination. The final image
is built using a selected region showing least saturation in the region of detected invalid
pixels. Unlike Reference [32], this method aims to have all moving objects appearing in
images, although this requires the user to interact manually with the picture.
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FIGURE 10.12

HDR stitching procedure of Reference [19] for an image sequence S−, L, and S+.

10.4.4 Motion Detection Using Optical Flow

It is possible to address HDR video using optical flow to detect motion. Two approaches
were developed that retrieve HDR content for video data. In those two cases, optical flow
alone is shown to be insufficient due to the complexity of the different motion paths and
scene details. The two optical flow-driven approaches are described below; namely, one
based on hierarchical homography and warping [19] and the other one based on feature
point matching [20].

10.4.4.1 HDR Video Capture, Reconstruction, and Display

Reference [19] proposes an early solution for HDR video. The video is captured using
a Lady Bug Firewired point gray camera, that is programmed to store alternatively a low
exposure value with a high exposure value. The ratio between exposures can range from 1
to a maximum set by the user (16 in Reference [19]). The exposure settings vary automati-
cally depending on the scene content. Since frame content varies temporally and spatially,
both need to be treated for HDR reconstruction. Neighboring frames are used to recon-
struct intermediate exposure content as well as the scene and object motion. The process
of transferring radiance information from neighboring frames is called HDR stitching.

Figure 10.12 summarizes the process for a sequence of images with short (S−), long
(L), and short (S+) exposures. The process for L−, S, and L+ is shown to be similar. It
is considered that S−, L, and S+ have different scene content due to motion. In order to
reconstruct the radiance map of L as HDR content, the information contained in S− and S+
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FIGURE 10.13

HDR video reconstruction: (top) input photographs of an video sequence, and (bottom) HDR reconstruction.

Courtesy of Kang et al. [19]. c© 2003 ACM

needs to be used, but is incoherent with what is contained in L. New images are created,
S−U , S+

U and S−B , S+
B , that match the content of L for the HDR reconstruction. All images are

converted to new images with radiance values (Ŝ−U , Ŝ+
U ,Ŝ−B , Ŝ+

B , L̂) using a retrieved inverse
camera curve, as proposed in Reference [22]. The reconstructed HDR radiance image L̂HDR

contains pixels with the following values:

• If the considered pixel in L̂ is not saturated, a weighted average is computed using
values in Ŝ−B , Ŝ+

B and L, with the weights being low for overexposed or underexposed
values and representing a plausibility map (Hermite cubic).

• If the considered pixel in L̂ is saturated, the value in Ŝ−B is used if it is not overexposed
or underexposed, and Ŝ+

B otherwise.

The main difficulty relies on computing S−U , S+
U , S−B , and S+

B . Motion estimation between
S−, L, and S+ is calculated combing optical flow [33], [34] with hierarchical homography
for more accuracy. Residual flow vectors are computed between two warped images from
the source images and are accumulated in a pyramid. A global affine flow is also added.
This estimate is used to generate (S−U , S+

U ) for a unidirectional warping (unidirectional flow
field) and (S−B , S+

B ) for a bidirectional warping. To display the final video, a temporal tone-
mapper is proposed. Figure 10.13 show some results. This technique can also be applied
to produce a still HDR photograph. One extremely interesting aspect of this method is that
camera motion and scene content movements are treated together with the same method.

10.4.4.2 Optical Flow Used for Video Matching

There is a need for image alignment for sequences taken at different moments which,
however, share spatial and temporal content where differences may be found in object po-
sitions or scene illumination. Reference [20] proposes a method to image alignment using
optical flow-based warping and feature point matching to allow robust image registration.

A weight wi is associated to the ith correspondence between two pixels, which is the
product of two computed values; a pixel matching probability Pi and a motion consistency
probability Mi. The computation of Pi is inspired by a technique which allows small spatial
variations, including changes in scale, rotations and skew in an image region [35]. The
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algorithm runs on each pair of images to match. If images contain substantial intensity
differences (illumination or exposure), images are normalized. For each pixel of an image,
the algorithm analyzes the surrounding of its corresponding pixel in its pair image using a
3×3 window. A score is defined based on the maximum and minimum intensities found. If
the pixel value is outside this range, it receives a penalty. A pixel intensity dissimilarity is
calculated averaging the scores over a region, which then serves to compute a probability on
pixel matching. The computation of Mi uses weights that measure a correspondence field
between matched feature points, vector fields using locally weighted linear regression, and
a predicted locally weighted regression.

This technique is shown to have an application to HDR video for aligning several image
sequences taken at different exposures before the HDR reconstruction is done, for example,
with the method of Reference [19].

10.4.5 Limitations

The methods presented in this section show that it is possible to address the problem of
dynamic scenes in HDR imaging. They all seem to work well for some typical scenes,
where some small parts are in movement, but cannot be considered generic for all types of
scenes. In particular, most of the methods require a well-defined background region with
foreground moving objects. Only the entropy-based method [16] can differentiate well
moving objects to a similar background. Most methods assume that the moving objects are
located in a cluster that is small compared to the static background in the image. This is a
strong limitation, since scenes with a predominant moving area cannot be treated.

Certain methods only work for background reconstruction [17], [25], [28], [32]. As a
consequence, objects in movement disappear from the reconstructed HDR image or can
be cut [25], [32] during the reconstruction process. When the moving areas of the image
are conserved in the final HDR reconstruction, they are often represented by the associated
region of a chosen LDR radiance image [16], [17] or their HDR representation is limited
by the amount of valid data [25], [31]. Depending on the algorithm, this may imply du-
plication of some objects and overexposed or underexposed areas still present in the final
HDR reconstruction. Warping, as presented in References [19] and [20], can solve the re-
construction problem particularly for nonrigid movement but it is difficult to have optical
flow-based methods to be robust. In particular, the method in Reference [19] relies strongly
on proximity of the moving object in the image sequence.

An interesting point is that some methods solve directly for image alignment and move-
ment detection [19], [20]. Finally, none of the above methods propose solutions to the
retrieval of the inverse camera response function when scenes are dynamic. All assume
that the camera curve was previously precomputed.

10.5 A Vision of Future Developments

It can be considered for now that it becomes less important to have a good calibration
procedure to retrieve the inverse curve of the camera. In fact, most digital cameras now
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propose to store the captured image directly in a RAW format that most of the time stores
pixel values without any processing. The RAW format also uses more bits, typically be-
tween 12 to 14 bits against the 8 bits per color channel for more traditional formats, to store
the intensity information increasing thus the range of intensities. The RAW format stores
all the necessary information to convert its uncompressed stored image into the final image.
While the RAW format helps to acquire more precise information for HDR photography,
its storage size makes it impractical for HDR video. Therefore, more research needs to be
undertaken to calculate the inverse camera curves for camera acquired dynamic scenes, so
that a natural extension could be made to HDR video capture.

For a more accurate and robust camera inverse curve retrieval, it is crucial to develop
methods that make no assumption on the camera curve shape; as mentioned in Refer-
ence [24], the shape of the curve varies a lot from one camera to another. A function
built with no assumption on the shape will be more robust and should lead to more accu-
rate reconstructed radiance values. Further improvements can be achieved by identifying
well viewpoint / object movement; it is vital to develop methods that take movement into
account rather than ignoring pixels in motion, as it may occur in some pictures that most
pixels in the image are in movement.

The reconstruction of the radiance in moving areas is important when the required recon-
structed HDR image needs to be faithful to the input scene so that all objects of the scene
and only those are present in the final image and are represented only with valid radiance
values. Methods based on HDR reconstruction from only one LDR image may be used to
fill in missing areas of the reconstructed HDR image.

Another issue is to guarantee the accuracy of the captured radiance. Reference [36]
presents a method to characterize color accuracy in HDR images. Up to now, methods
have rather focused on plausible radiance results. Some applications may require physi-
cally accurate or perceptually accurate radiance values, and it is important to develop HDR
methods that take this into account.

Finally, hardware implementation can reduce the need of postprocessing [19], [12]. Mul-
tiple camera systems could be used, although image registration and synchronization will
be a crucial determinant in the HDR reconstruction. It is also expected that manufactur-
ers will develop new sensors that will capture higher ranges of values as it is currently the
trend. New storage and compression formats will probably be designed to fit with HDR
video requirements.

10.6 Conclusion

HDR imaging is a growing field already popular in its use. However, up to now, it
was mostly restricted to static scenes. This chapter identified the issues linked to dynamic
scenes and described the methods recently presented in the literature that contribute to a
significant step in solving HDR imaging for dynamic scenes. Nevertheless, some work
is still needed to address some of their limitations and improve their robustness to more
generic scenes. There is also a need for postprocessing approaches for image calibration
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and HDR reconstruction in moving scenes as well as hardware development of new HDR
capture systems and sensors to capture a higher range in a shorter time.

The research field in HDR imaging is extremely active, both in computer vision and
computer graphics communities, and important advances should continue to appear in the
near future.

Acknowledgment

This work is funded by a grant given by the Spanish ministry of education and science
(MEC) for the project TIN2008-02046-E/TIN “High-Dynamic Range Imaging for Uncon-
trollable Environments.” It is also supported by the Ramon y Cajal program of the Spanish
government. We would like to thank authors of References [19], [25], [28], [31], and [32]
for allowing us to use their images for illustration. We would also like to thank Florent
Duguet (Altimesh) for his valuable advice.

Figure 10.7 is reprinted from Reference [16], Figure 10.9 is reprinted from Refer-
ence [25], Figure 10.11 is reprinted from Reference [32], with the permission of IEEE.
Figure 10.13 is reprinted from Reference [19], with the permission of ACM.

References
[1] R. Raskar and J. Tumblin, Computational Photography: Mastering New Techniques for

Lenses, Lighting, and Sensors. A K Peters Ltd., December 2009.

[2] E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic Range Imaging: Acquisi-
tion, Display, and Image-Based Lighting. San Francisco, CA: Morgan Kaufmann Publishers,
August 2005.

[3] BrightSide Technologies, “High dynamic range displays.” www.brightsidetech.com.

[4] P. Ledda, A. Chalmers, and H. Seetzen, “HDR displays: A validation against reality,” in
Proceedings of IEEE International Conference on Systems, Man and Cybernetics, The Hague,
Netherlands, October 2004, vol. 3, pp. 2777–2782.

[5] P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen, “Evaluation of tone mapping operators
using a high dynamic range display,” ACM Transactions on Graphics, vol. 24, no. 3, pp. 640–
648, August 2005.
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11.1 Introduction

Shadow detection is an important preprocessing task and a hot topic in computer vision.
There exist numerous applications which vary in their motivations to address shadows in
acquired digital images and video. For example, in video surveillance [1], [2], aerial ex-
ploitation [3], and traffic monitoring [4] shadows are usually mentioned as harmful effects,
because they make it difficult to separate and track moving objects via background sub-
traction (Figure 11.1). In remote sensing, shadows may reduce the performance of change
detection techniques [5]. Similarly, in scene reconstruction it is a fundamental problem to
distinguish surface edges from illumination differences [6]. It should also be noted that
shadow-free images are commonly required for purely visual purposes [6].
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FIGURE 11.1 (See color insert.)

Results of background subtraction using the algorithm of Reference [7]. Object silhouettes are strongly cor-

rupted, and multiple moving objects cannot be separated due to cast shadows.

FIGURE 11.2 (See color insert.)

Built-in area extraction using cast shadows: (left) input image, (middle) output of a color-based shadow filter

with red areas indicating detected shadows, and (right) built-in areas identified as neighboring image regions

of the shadows’ blobs considering the sun direction.

On the other hand, shadows may be helpful phenomena in many situations. The so-called
shape from shading [8] methods derive the three-dimensional (3D) parameters of objects
based on estimated shadowing effects. Shadows also provide general descriptors for the
illumination conditions in scenes, which can be used for image and video indexing or event
analysis [9]. For example, the darkness of a shadow indicates whether an outdoor shot was
taken in sunlit or overcast weather; meanwhile the size and orientation of the shadow blobs
are related to the time and date of frame capture. If multiple shadows are observable with
different darkness, several light sources in the scene can be expected. Object extraction in
still images can also be facilitated by shadow detection. In aerial image analysis, it is often
necessary to detect static scene objects, such as buildings [10], [11] and trees [12], which
constitute a challenging pattern recognition problem. Note that even a noisy shadow map
is a valuable information source, because the object candidate regions can be estimated
as image areas lying next to the shadow blobs in the sun direction as demonstrated in
Figure 11.2.

As suggested above, shadow detection is a wide concept; different classes of approaches
should be separated depending on the environmental conditions and the exact goals of the
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systems. This chapter focuses on the video surveillance problem; demonstrating some
challenges and solutions related to shadow detection in digital video. In surveillance video
streams, foreground areas usually contain the regions of interest, moreover, an accurate
object-silhouette mask can directly provide useful information for several applications, for
instance, people detection [13], [14], [15], vehicle detection [4], tracking [16], [17], bio-
metrical identification through gait recognition [18], [19], and activity analysis [7]. How-
ever, moving cast shadows on the background make it difficult to estimate shape [20] or
behavior [14] of moving objects, because they can be erroneously classified as part of the
foreground mask. Considering that under some illumination conditions more than half of
the nonbackground image areas may belong to cast shadows, their filtering has a crucial
role in scene analysis.

This chapter will build upon a few assumptions for the scene and the input data. First, the
camera is fixed and has no significant ego-motion. Expected are static background objects
(for example, there is no running river or flickering object in the background); therefore,
all motions are caused either by moving objects or by shadows. Moreover, a topically
valid image is expected in each moment; this can be obtained by the conventional Gaussian
mixture method [7]. There is one emissive light source in the scene (the sun or an artificial
source), but the presence of additional effects (for example, reflection), is considered; such
effects may change the spectrum of illumination locally. It is assumed that the estimated
background values of the pixels correspond to the illuminated surface points.

On the other hand, several properties of real situations are considered. The background
may change over time, due to varying lighting conditions and changes of static objects.
Crowded and empty scenarios may alternate, and background or shadow colored object
parts are expected. Due to the daily changes of the sun position and weather, shadow
properties may strongly alter as well.

11.2 Shadow Detection in Video Surveillance: An Overview

The shadow filtering problem has been handled in various ways in the literature.
Geometry-based approaches estimate the spatial transform between the objects and their
cast shadows in the projected image plane [21], [22]. However, these methods are highly
restricted to specific conditions and object types; color filtering techniques are therefore
more commonly used. Methods can also be distinguished based on the requirement for
their input. Methods for still images [6], [23], which attempt to find and remove shadows
in the single frames independently, are usually used for high quality photos where the back-
ground has a uniform color or texture pattern. On the other hand, these methods are less
efficient in video surveillance, where images with poor quality and resolution [6] are often
expected and the computational complexity should be kept low to allow real-time process-
ing [23]. Some approaches focus on the discrimination of shadow edges and edges due to
object boundaries [24], [25]. However, it may be difficult to extract connected foreground
regions from a ragged edge map of a noisy video frame [24]. Complex scenes containing
several small objects or shadow parts may be disadvantageous for these methods.
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Considering the above discussion, this chapter focuses on video and region-based shadow
modeling techniques. These techniques can be categorized with respect to the description
of the shadow-background color transform, which can be nonparametric and paramet-
ric [26]. Nonparametric techniques are often referred to as shadow invariant approaches,
since instead of detecting the shadows they remove them by converting the pixel values
into an illuminant invariant feature space. Usually a conventional color space transfor-
mation is applied to fulfill this task; the normalized RGB (or rg) [27], [28] and C1C2C3
spaces [29] purely contain chrominance color components which are less dependent on lu-
minance. Similar constancy of the hue channel in HSV space is exploited in Reference [30].
However, as Reference [29] points out, illumination invariant approaches have several lim-
itations regarding reflective surfaces and the lighting conditions of the scenes. Outdoors,
shadows will have a blue color cast (due to the sky), while lit regions have a yellow cast
(sunlight), hence the chrominance color values corresponding to the same surface point
in shadow and sunlight [25] may differ significantly. It was also found that the shadow
invariant methods often fail in outdoor scenes and are more usable in indoor scenes. More-
over, by ignoring the luminance components of the color, these models become sensitive to
noise.

Consequently, parametric models will be of interest in this chapter. First, the mean
background values of the individual pixels are estimated using a statistical background
model [7], then feature vectors from the actual and the estimated background values of the
pixels are extracted in order to model the feature domain of shadows in a probabilistic way.
Parametric shadow models may be categorized as local or global.

In a local shadow model [31], independent shadow processes are proposed for each
pixel. The local shadow parameters are trained using a second mixture model similar to
background-based training [7]. This way, the differences in the light absorption / reflection
properties of the scene points can be taken into account. However, each pixel should be
shadowed several times till its estimated parameters converge under unchanged illumina-
tion conditions; a hypothesis often not satisfied in surveillance videos.

In this chapter, Section 11.3 introduces a novel statistical shadow model. This model
follows an approach which characterizes shadows in an image using global parameters;
this approach describes the relation of the corresponding background and shadow color
values. Since this transformation is considered here as a random transformation affected
by a perturbation, illumination artifacts are taken into consideration. On the other hand, the
shadow parameters are derived from global image statistics; therefore, the model perfor-
mance is reasonable also on image regions where motion is rare.

Color space choice is a key issue in a number of methods; this problem will be intensively
studied in Section 11.4. The initial model presented in Section 11.3 will be extended to the
CIE L*u*v* space which allows measuring the perceptual distance between colors using
Euclidean distance [32] and in which the color components are approximately uncorrelated
with respect to camera noise and changes in illumination [33]. Since the model parameters
will be derived statistically, there is no need for accurate color calibration and the CIE D65
standard can be used. It is also not critical to consider an exact physical meaning of the
color components, which is usually environment-dependent [29], [34]; only an approximate
interpretation of the L, u, v components will be used and the validity of the model will be
shown via experiments.
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TABLE 11.1
Comparison of various methods.

Reference Shadow detection Adaptive Scenes

[35] global, constant ratio no outdoor
[27] illumination invariant no indoor
[29] illumination invariant no both
[31] local process yes indoor
[36] no — both
[37] global, constant ratio no indoor
[1] global, probabilistic yes both

Section 11.4 presents a detailed qualitative and quantitative study of the color space se-
lection problem of shadow detection. In this sense, this section can be considered both
as the premise and generalization of Section 11.3. The choice of the CIE L*u*v* space
will be justified here, but on the other hand, experiments will refer to the previously in-
troduced model elements, extending their validity to various color spaces. The reason for
dedicating an independent part to this issue is that statistical feature modeling and color
space analysis are two different and, in themselves, composite aspects of shadow detec-
tion. Although interaction between the two approaches will be emphasized several times,
a separate discussion can help the clarity of presentation. Due to the various experiments,
the consequences of Section 11.4 may be more generally usable than in the context of the
proposed statistical model framework.

For validation, both real surveillance video shots and test sequences from a well-known
benchmark set [26] will be used. Table 11.1 summarizes the different goals and tools
regarding some of the above mentioned state-of-the-art methods and the proposed model.
For a detailed comparison see also Section 11.3.6.

11.3 A Bayesian Approach for Modeling Shadows in Video Scenes

The shadow detection problem will be solved here using a Bayesian image segmenta-
tion framework which separates foreground, background and shadow regions in the video
frames. Assuming the two dimensional pixel grid S and using a first ordered neighborhood
system on S, the procedure assigns a label ω(s) to each pixel s ∈ S to form the label-set
Φ = {fg,bg,sh} which corresponds to three possible classes: foreground (fg), background
(bg), and shadow (sh). The label field is modeled by a Markov random field (MRF) [38];
the segmentation is equivalent to a global labeling ω = {[s,ω(s)] | s ∈ S} and the probabil-
ity of a given ω ∈ Ω follows Gibbs distribution [38].

The observation at pixel s is the three dimensional color vector, expressed here in the
CIE L*u*v* space as o(s) = [oL(s),ou(s),ov(s)]T . Set O = {o(s)| s ∈ S} refers to the
global image data. The key point in the model is to define the conditional density functions
pφ (s) = P(o(s)| ω(s) = φ), for all φ ∈ Φ and s ∈ S. For example, pbg(s) is the probability
that the background process generates the observed feature value o(s) at s.
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Note that foreground modeling is not addressed in this chapter, since it has been exten-
sively covered in the literature. The simplest approach is using uniform foreground distri-
butions pfg = u [35] which is equivalent to outlier detection. More sophisticated models are
based on temporal foreground descriptions [36] or pixel state transition probabilities [37].
The model described below uses the spatial foreground calculus [1] which is insensitive
to the frame rate parameter of a video stream, thus ensuring robustness in surveillance
environments.

The background’s and shadow’s conditional density functions are defined in Sec-
tions 11.3.1 to 11.3.4, and the segmentation procedure will be presented in detail in Sec-
tion 11.3.6. Note that minimization will be done using the minus-logarithm of the global
probability term. Therefore, εφ (s) = − log pφ (s) will be used to denote the local energy
terms in order to simplify the notation.

11.3.1 General Probabilistic Models

The distribution of feature values in the background and in the shadow is mod-
eled here by Gaussian density functions, similarly to References [26], [37], and [39].
For simplicity, the joint distribution of the color components is approximated by a
three dimensional Gaussian density function with diagonal covariance matrix Σk(s) =
diag{σ 2

k,L(s),σ
2
k,u(s),σ

2
k,v(s)} for k ∈ {bg,sh}. Accordingly, the distribution parameters

are the mean vectors µk(s) = [µk,L(s),µk,u(s),µk,v(s)]T and the standard deviation vec-
tors σ k(s) = [σk,L(s),σk,u(s),σk,v(s)]T . Using this diagonal model avoids matrix inver-
sion and determinant recovering during the calculation of the probabilities, and the term
εk(s) =− log pk(s) can be derived directly from the one dimensional marginal probabilities
as follows:

εk(s) = C + ∑
i={L,u,v}

logσk,i(s)+
1
2

(
oi(s)−µk,i(s)

σk,i(s)

)2

, (11.1)

with C = 2log2π . According to Equation 11.1, each feature contributes with its own addi-
tional term to the energy calculus. Therefore, the model is modular; the one dimensional
model parameters, [µk,i(s),σ2

k,i(s)], can be estimated separately.
The use of a Gaussian distribution to model the observed color of a single background

pixel is well established in the literature, the corresponding parameter estimation proce-
dures can be found in References [7] and [40]. The components of the background pa-
rameters [µbg(s),σ bg(s)] can be trained in a similar manner to the conventional online
K-means algorithm [7]. The vector [µbg,L(s),µbg,u(s),µbg,v(s)]T estimates the mean back-
ground color of pixel s measured over the recent frames, whereas σbg(s) is an adaptive
noise parameter. An efficient outlier filtering technique [7] excludes most of the nonback-
ground pixel values from the parameter estimation process, which works without user in-
teraction.

As stated in Section 11.2, shadows are characterized by describing the background-
shadow color value transformation in the images. The shadow calculus is based on the
illumination-reflection model [41] introduced in Section 11.3.2. This model assumes con-
stant lighting, along with flat and Lambertian reflecting surfaces; however, video surveil-
lance scenes do not usually fulfill these requirements. Therefore, a probabilistic approach
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FIGURE 11.3

Illustration of two illumination artifacts using the frame extracted from the Entrance am test sequence: (left)

input frame with “1” indicating the dark shadow part between the legs (more object parts change the reflected

light) and “2” indicating penumbra artifact near the edge of the shadow, (middle) segmented image using the

constant ratio model which causes errors, (right) segmented image using the proposed model which is more

robust.

presented in Section 11.3.3 will be used to describe the deviation of the scene from the
ideal surface assumptions in order to obtain more robust shadow detection (Figure 11.3).

11.3.2 Shadow Description by Lambertian Color Features

According to the illumination model [41] the response g(s) of a given image sensor
placed at pixel s can be written as

g(s) =
∫

e(λ ,s)ρ(λ ,s)ν(λ )dλ , (11.2)

where e(λ ,s) is the illumination function at a given wavelength λ , the term ρ(s) depends
on the surface albedo and geometry, and ν(λ ) denotes the sensor sensitivity. Accordingly,
the difference between the shadowed and illuminated background values of a given surface
point is caused only by the different local value of e(λ ,s). In outdoor scenes, the illu-
mination function observed in sunlight is the composition of the direct component (sun),
the Rayleigh scattering (sky), resulting in a blue tinge to ambient light [42], and residual
light components reflected from other objects. On the other hand, the effect of the direct
component is missing in the shadow.

Although the validity of Equation 11.2 is already limited by several scene assump-
tions [41], it is in general still too difficult to exploit appropriate information about the
corresponding background-shadow values since the components of the illumination func-
tion are unknown. Therefore, further strong simplifications are used in the applications.
According to Reference [6], the camera sensors must be exact Dirac delta functions
ν(λ ) = q0 · δ (λ − λ0) and the illumination must be Planckian [43]. In this case, Equa-
tion 11.2 implies the well-known constant ratio rule. Namely, the ratio of the shadowed
gsh(s) and illuminated value gbg(s) of a given surface point is considered to be constant
over the image, that is, gsh(s)/gbg(s) = A.

The constant ratio rule has been used in several applications [35], [37], [39]. Here the
shadow and background Gaussian terms corresponding to the same pixel are related via
a globally constant linear density transform. In this way, the results may be reasonable
when all the direct, diffused and reflected light can be considered constant over the scene.
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1.10.5 0.8 1.4

1.10.5 0.8 1.4

(a)

0.6-1.8 -0.6 1.8

0.6-1.8 -0.6 1.8

(b)

0.6-1.8 -0.6 1.8

0.6-1.8 -0.6 1.8

(c)

FIGURE 11.4

Histograms of (a) ψL, (b) ψu, and (c) ψv values for (top) shadowed and (bottom) foreground points collected

over a 100-frame period of the video sequence Entrance pm (frame rate 1 fps).

However, the reflected light may vary over the image in case of several static or moving
objects, and the reflecting properties of the surfaces may differ significantly from the Lam-
bertian model (see Figure 11.3). The efficiency of the constant ratio model is also restricted
by several practical reasons, like quantization errors of the sensor values, saturation of the
sensors, imprecise estimation of gbg(s) and A, or video compression artifacts. Based on the
experiments presented in Section 11.3.6, these inaccuracies cause poor detection rates in
some outdoor scenes.

11.3.3 Proposed Shadow Model

The previous section suggests that the ratio of the shadowed and background luminance
values of the pixels may be useful, but not powerful enough as a descriptor of the shadow
process. Instead of constructing a more difficult illumination model, for example in 3D
with two cameras, the problems can be overcome using a statistical model. Each pixel s
can be associated with the variable ψL(s) defined as:

ψL(s) =
oL(s)

µbg,L(s)
, (11.3)

where, as defined earlier, oL(s) is the observed luminance value at s, and µbg,L(s) is the
mean value of the local Gaussian background term estimated over the previous frames [7].

Thus, if the ψL(s) value is close to the estimated shadow darkening factor, s is more likely
to be a shadowed point. More precisely, in a given video sequence, the distribution of the
shadowed ψL values can be estimated globally in the video parts. Based on experiments
with manually generated shadow masks, a Gaussian approximation seems to be reasonable
regarding the distribution of shadowed ψL values. Figure 11.4 shows the global ψ statistics
regarding a 100-frame period of one outdoor test sequence. For comparison, this figure also
shows the statistics for the foreground points which follow a significantly different, more
uniform distribution.

Due to the spectral differences between the direct and ambient illumination, cast shadows
may also change the u and v color components [25]. An offset between the shadowed and
background u values of the pixels can be efficiently modeled by a global Gaussian term in
a given scene (similarly for v component). Hence, ψu(s) (and ψv(s)) can be defined as:
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(a) (b) (c) (d)

FIGURE 11.5 (See color insert.)

Different parts of the day on Entrance sequence with the corresponding segmentation results: (a) morning am,

(b) noon, (c) afternoon pm, and (d) wet weather.

ψu(s) = ou(s)−µbg,u(s). (11.4)

Note that as shown in Figure 11.4, the shadowed ψu(s) and ψv(s) values follow approxi-
mately normal distributions.

Consequently, the shadow color process is characterized by a three dimensional Gaussian
random variable:

∀s ∈ S : ψ(s) = [ψL(s),ψu(s),ψv(s)]T ∼ N[µψ ,σψ ]. (11.5)

Using Equations 11.3 and 11.4, the color values in the shadow at a given pixel position are
also generated by a Gaussian distribution, that is,

[oL(s),ou(s),ov(s)]T ∼ N[µsh(s),σ sh(s)] (11.6)

with the following parameters:

µsh,L(s) = µψ,L ·µbg,L(s), (11.7)

σ 2
sh,L(s) = σ2

ψ,L ·µ2
bg,L(s). (11.8)

For the u (and similarly v) component, the following can be written:

µsh,u(s) = µψ,u + µbg,u(s), σ 2
sh,u(s) = σ2

ψ ,u. (11.9)

11.3.4 Parameter Settings

The proposed method, built into a 24-hour surveillance system of a university campus
(Figure 11.5), works with scene-dependent and condition-dependent parameters. Scene-
dependent parameters can be considered constant in a specific field, and are influenced
by, for example, camera settings and prior knowledge about the appearing objects or re-
flection properties. Strategies on how to set these parameters if a surveillance environ-
ment is given will be provided later. Condition-dependent parameters vary in time in a
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scene; therefore, adaptive algorithms should be used in this case. Note that as discussed
in Section 11.3.1, only the one dimensional marginal distribution parameters should be es-
timated for the background and shadow processes. The background parameter estimation
and update procedure are automated, based on the work in Reference [7] which presents
reasonable results and it is computationally more effective than the standard expectation-
maximization algorithm.

As shown in Figure 11.5, changes in global illumination significantly alter the shadow
properties. Moreover, changes can occur rapidly; in indoor scenes due to switching on/off
different light sources and in outdoor scenes due to the appearance of clouds. Regarding
the shadow parameter settings, parameter initialization and re-estimation are discriminated.
From a practical point of view, initialization may be supervised by marking shadowed re-
gions in a few video frames by hand, once after switching on the system. Maximum likeli-
hood estimates of the shadow parameters can be calculated based on the training data. On
the other hand, there is usually no opportunity for continuous user interaction in an auto-
mated surveillance environment; thus, the system must adapt to illumination changes by
initiating a claim to an automatic re-estimation procedure. Therefore, supervised initializa-
tion is used here. The parameter adaptation process will be described later.

According to Section 11.3.3, the shadow process has six parameters, stored in three-
component vectors µψ and σψ . Figure 11.6a shows the one-dimensional histograms for the
ψL, ψu and ψv values of shadowed points for each video shot. It can be observed that while
the variation of parameters σψ , µψ,u and µψ ,v are low, µψ,L varies in time significantly.
Therefore, the parameters should be updated in two different ways.

11.3.4.1 Re-Estimation of the Chrominance Parameters

The update procedure for parameters [µψ ,u,σψ ,u] and [µψ,v,σψ ,v] is similar to the one
presented in Reference [44]. The procedure will be shown for the u component only, as the
v component is updated in the same way.

The parameters are re-estimated at fixed time-intervals T , set as T = 60 sec. Parameters
at time t are denoted here by µψ ,u[t],σψ,u[t]. The term

Wt2 = {ψ [t]
u (s)|t = t1, . . . , t2−1, ω [t](s) = sh, s ∈ S} (11.10)

denotes the set containing the observed ψu values collected over the pixels detected as
shadows between time t1 = t2−T and t2. In the above equation, the upper index [t] refers
to time, |Wt2 | is the number of the elements in Wt2 , and Mt2 and Dt2 are the empirical mean
and the standard deviation values of Wt2 . The parameters are updated as follows:

µψ,u[t2] = (1−ξ [t2]) ·µψ,u[t1]+ξ [t2] ·Mt2 , (11.11)

σ2
ψ,u[t2] = (1−ξ [t2]) ·σ 2

ψ ,u[t1]+ξ [t2] ·D2
t2 . (11.12)

Parameter ξ [t], for 0 ≤ ξ [t] ≤ 1, is a weighting term depending on |Wt |. Namely, ξ [t] and
the influence of the Mt and D2

t terms increase with the number of detected shadow points.

11.3.4.2 Re-Estimation of the Luminance Parameters

The parameter µψ ,L corresponds to the average background luminance darkening factor
of the shadow. Except from windowless rooms with constant lighting, µψ,L is strongly
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0.90.5 0.7 1.1 0.3-0.9 -0.3 0.9 0-1.8 -0.9 0.9

0.5 0.90.7 1.1 0.3-0.9 -0.3 0.9 0-1.8 -0.9 0.9

0.90.5 0.7 1.1 0.3-0.9 -0.3 0.9 0-1.8 -0.9 0.9

0.90.5 0.7 1.1 0.3-0.9 -0.3 0.9 0-1.8 -0.9 0.9

(a)

0.90.5 0.7 1.1 0.3-0.9 -0.3 0.9 0-1.8 -0.9 0.9

0.90.5 0.7 1.1 0.3-0.9 -0.3 0.9 0-1.8 -0.9 0.9

0.90.5 0.7 1.1 0.3-0.9 -0.3 0.9 0-1.8 -0.9 0.9

0.90.5 0.7 1.1 0.3-0.9 -0.3 0.9 0-1.8 -0.9 0.9

(b)

FIGURE 11.6

Extracted ψ statistics from four sequences recorded by the entrance camera of the university campus: (a)

shadow statistics, (b) nonbackground statistics, (left) ψL, (middle) ψu, and (right) ψv. Rows correspond to

video shots from different parts of the day.

condition dependent. In outdoor scenes, it can vary between 0.6 in direct sunlight and 0.95
in overcast weather. The simple re-estimation from the previous section does not work in
this case, since the illumination properties between time t and t + T may change a lot,
which would result in absolutely false detected shadow values in set Wt presenting false Mt

and Dt parameters for the re-estimation procedure.
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For this reason, the actual µψ,L value is obtained using the statistics of all nonbackground
ψL values (with background filtering performed using the Stauffer-Grimson algorithm).
Figure 11.6b shows that the peaks of the nonbackground ψL-histograms are approximately
in the same location as they were in Figure 11.6a. The videos of the first and second rows
were recorded around noon, where the shadows were relatively small, but the peak is still
in the right location.

The previous experiments encourage identifying µψ ,L with the location of the peak on
the nonbackground ψL-histograms for the scene. The µψ,L value is updated as depicted
in Algorithm 11.1. Namely, using a data structure [ψL, t] which contains a ψL value with
its timestamp, the latest occurring [ψL, t] pairs of the nonbackground points in a set Q are
stored, and the histogram hL of the ψL values in Q are continuously updated. The key
point is the management of set Q; therefore, two parameters, MAX and MIN, are defined
to control the size of Q.

ALGORITHM 11.1 Algorithm for updating the µψ ,L shadow parameter.

1. For each frame t determine Ψt = { [ψ [t]
L (s), t] | s ∈ S, ω [t](s) 6= bg}.

2. Append Ψt to Q.

3. Remove elements from Q as follows:

• if |Q|< MIN, keep all the elements,

• if |Q| ≥ MIN, find the oldest timestamp te in Q and remove all the ele-
ments from Q with time stamp te.

4. If |Q| > MAX after step 3: in order of their timestamp remove further “old”
elements from |Q| till |Q| ≤ MAX is reached.

5. Update the histogram hL regarding Q and apply µ [t+1]
ψ ,L = argmax{hL}

Consequently, Q always contains the latest available ψL values. The algorithm keeps
the size of Q between prescribed bounds MAX and MIN ensuring the topicality and rele-
vancy of the data contained. The actual size of Q is around MAX in the case of cluttered
scenarios. In the case of few or no motions in the scene, the size of Q decreases until it
reaches MIN. This increases the influence of the forthcoming elements, and causes quicker
adaptation, since it is faster to modify the shape of a smaller histogram.

The parameter σψ ,L is updated similarly to σψ,u but only in the time periods when µψ,L

does not change significantly. Note that the above update process may fail in shadow-free
scenarios. However, that case occurs mostly under artificial illumination conditions, where
the shadow detector can be switched off.

11.3.5 MRF Optimization

The MAP estimator is realized by combining a conditional independent random field of
signals and an unconditional Potts model [45]. The optimal segmentation corresponds to
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TABLE 11.2
Computational efficiency comparison of various methods
(using published frame-rates).

Method / Reference

Criterion [31] [36] [37] Proposed

Classes 3 2 3 3
MRF Opt — graph cut ICM ICM
Frame-rate 10 fps 11 fps 1-2 fps 3 fps

the global labeling, ω̂ , defined as follows:

ω̂ = arg min
ω∈Ω





∑
s∈S
− logP

(
o(s) | ω(s)

)
︸ ︷︷ ︸

εω(s)(s)

+ ∑
r,s∈S

Θ(ω(r),ω(s))





, (11.13)

where the minimum is searched over all the possible segmentations (Ω) of a given input
frame. The first part of Equation 11.13 contains the sum of the local class-energy terms
regarding the pixels of the image (see Equation 11.1). The second part is responsible for
the smooth segmentation; with Θ(ω(r),ω(s)) = 0 if s and r are not neighboring pixels,
and

Θ(ω(r),ω(s)) =
{−δ if ω(r) = ω(s),

+δ if ω(r) 6= ω(s).
(11.14)

As for optimization, the deterministic modified Metropolis (MMD) [46] relaxation
method was found similarly efficient but significantly faster for this task than the original
stochastic algorithm [47]. Namely, it runs about 1 fps when processing 320×240 images
whereas the running speed of the ICM method [48] with the proposed model is 3 fps in
exchange for some degradation in the segmentation results. For comparison, frame-rates of
three latest reference methods are shown in Table 11.2. It can be observed that the proposed
model has approximately the same complexity as [37]. Although the processing speed of
methods in References [31] and [36] is notably higher, one should consider that the method
in Reference [31] does not use any spatial smoothing (like MRF), thus requiring a separate
noise filter in the postprocessing phase. On the other hand, the method in Reference [36]
performs only a two-class segmentation (background and foreground). That simplification
enables using the quick graph-cut based MRF optimization techniques, which is not the
case for three classes [49].

11.3.6 Experimental Results

The goal of this section is to qualitatively and quantitatively demonstrate the benefit
of using the novel shadow model introduced in this chapter. The proposed method was
validated on several test sequences; here, the results are shown for following videos:

• Laboratory test sequence from the ATON benchmark set [26]. This shot contains
a simple environment where previous methods [37] have produced already accurate
results.
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(a) (b) (c) (d)

FIGURE 11.7

Shadow model validation: (a) video image, (b) C1C2C3 space-based illumination invariants [29], (c) constant

ratio model of Reference [35] without object-based postprocessing, and (d) proposed statistical shadow model.

Test image sequences: (top) Laboratory, (middle) Highway, and (bottom) Entrance am.

• Highway video (ATON benchmark set). This sequence contains dark shadows
but homogenous background without illumination artifacts. In contrast to Refer-
ence [35], the proposed method reaches the appropriate results without postprocess-
ing, which is strongly environment-dependent.

• Corridor indoor surveillance video. Although it is a simple office environment the
bright objects and background elements often saturate the image sensors and it is
hard to accurately separate the white shirts of the people from the white walls in the
background.

• Four surveillance video sequences captured by the entrance (outdoor) camera of the
university campus in different lighting conditions (Figure 11.5: Entrance am, En-
trance noon, Entrance pm, and Entrance overcast). These sequences contain difficult
illumination and reflection effects and suffer from sensor saturation (dark objects and
shadows). Here, the presented model improves the segmentation results significantly
versus previous methods.

Figure 11.7 shows the results of different shadow detectors. For the sake of comparison,
an illumination invariant method based on Reference [29] and a constant ratio model [35]
were implemented in the same framework. It was observed that the performance differ-
ences between the previous and the proposed methods increase with surveillance scene
complexity. In the Laboratory sequence, the constant ratio and the proposed method are
similarly accurate. For the Highway video, the illumination invariant and constant ratio
methods approximately find objects without shadows; these results are, however, much
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TABLE 11.3
Overview of the evaluation parameters.

Test video Frames∗ fre∗∗ Duration (min) ∗∗∗

Laboratory 205 2-4 fre† 1:28
Entrance am 160 2 fre 1:20
Entrance pm 75 1 fre 1:15
Entrance noon 251 1 fre 4:21
Highway 170 5-8 fre† 0:29

∗The number of frames in the ground truth set, ∗∗fre – the number of frames with ground-truth within one
second of the video, ∗∗∗Length of the evaluated video part, †fre was higher in busy scenarios.

noisier compared to that of the proposed model. The illumination invariant method fails
completely on the Entrance am surveillance video, as shadows are not removed while the
foreground component is noisy due to the lack of using luminance features in the model.
The constant ratio model also produces poor results; due to the long shadows and various
field objects the constant ratio model becomes inaccurate. The proposed model handles
these artifacts in a robust way.

The quantitative evaluations are done through manually generated ground-truth se-
quences. Since the application’s goal is foreground detection, the crossover between
shadow and background does not account for errors. Denoting the number of correctly
identified foreground pixels by TP, misclassified background pixels by FP, and misclassi-
fied foreground pixels of evaluation images by FN, the evaluation metrics consisting of the
Recall rate, Rc, and the Precision of the detection, Pr, can be defined as follows:

Recall =
TP

TP+FN
, Precision =

TP
TP+FP

. (11.15)

In addition to these measures, the so-called F-measure (FM) [50]

FM =
2 ·Rc ·Pr
Rc+Pr

. (11.16)

which combines Rc and Pr in a single efficiency measure (it is the harmonic mean of Rc
and Pr) will be also used. It should be noted that while Rc and Pr have to be used jointly
to characterize a given algorithm, FM constitutes a stand-alone evaluation metrics.

TABLE 11.4
Quantitative evaluation results.

Recall Rc Precision Pr FM-measure

Dataset CR SS CR SS CR SS

Laboratory 0.950 0.941 0.883 0.929 0.915 0.935
Highway 0.886 0.890 0.644 0.805 0.746 0.845
Entrance am 0.946 0.968 0.596 0.774 0.731 0.861
Entrance noon 0.980 0.963 0.742 0.833 0.845 0.894
Entrance pm 0.972 0.961 0.621 0.830 0.756 0.891

CR – constant ratio model, SS – proposed statistical shadow model.
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(a) (b)

0.5 1.10.8 1.4

(c)
-1.8 0.6-0.6 1.8

(d)
-1.8 0.6-0.6 1.8

(e)

0.5 1.10.8 1.4

(f)
-1.8 0.6-0.6 1.8

(g)
-1.8 0.6-0.6 1.8

(h)

FIGURE 11.8

Distribution of the shadowed ψ values in simultaneous sequences from a street scenario recorded by differ-

ent CCD cameras: (a,c-e) three-sensor camera recorder, (b,f-h) digital camera with the Bayer CFA; (c,f) L

component, (d,g) u component, and (e,h) u component.

For numerical validation, 861 frames were used from the Laboratory, Highway, Entrance
am, Entrance noon, and Entrance pm sequences. Table 11.3 lists some details about these
test sets. Table 11.4 compares the detection results of the proposed method and the constant
ratio model, showing that the proposed shadow calculus improves the precision rate as
it significantly decreases the number of false negative shadow pixels and simultaneously
preserves the high foreground recall rate. Consequently, the proposed model outperforms
the constant ratio method on all test sequences in terms of the FM-measure.

11.3.6.1 Influence of CCD Selection on the Shadow Domain

A statistical shadow model was introduced without any knowledge about the technical
details and embedded control of the different cameras. However, to explore the influence of
various camera technologies on the performance of shadow detection methods, test videos
were simultaneously recorded for a street scenario using a three charge-coupled device
(CCD) digital video camcorder and a conventional digital camera equipped with a Bayer
color filter array (CFA). By examining the corresponding shadow domains in Figure 11.8, it
can be observed that the distributions of the shadowed ψ values are very similar. However,
stronger noise in the Bayer CFA camera results in higher variance parameters associated
with the u and v components.
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11.4 Color Space Selection in Cast Shadow Detection

This section focuses on a particular aspect of shadow detection, that is, improving seg-
mentation performance through color space selection. Note that for practical purposes, the
number of free parameters of the method should be kept low. Experimentation will be
conducted to obtain some knowledge about: i) the performance improvement due to using
color images instead of grayscale images, ii) the performance gain resulting from using
uncorrelated spaces instead of the standard RGB space, iii) efficiency of chrominance (illu-
mination invariant), luminance, or mixed spaces, and iv) the relation between performance
of the methods and the type of visual scenes. In the experiment, color-based clustering of
the individual pixels and Bayesian foreground-background-shadow segmentation through
the generalization of the model introduced in Section 11.3 will be considered. It will be
shown that that CIE L*u*v* color space is the most effective choice in both cases.

11.4.1 Color Spaces: Significance of the Right Choice

Appropriate color space selection is a crucial step for many image processing prob-
lems [25], [54], [55]. Since the shadow model proposed in Section 11.3 is primarily based
on describing the shadow’s color domain, issues of color spaces should also be investigated
in this case. Although shadow detection is a well examined problem and some compara-
tive works [26], [56] have also been published on this topic, previous reviews classify and
compare the existing methods based on their model structures. It is noted in Reference [26]
that the methods work in different color spaces, like RGB [35] and HSV [51]. However,
it remains open-ended, how important is the appropriate color space selection, and which
color space is the most effective regarding shadow detection. Reference [39] uses only gray
levels for shadow segmentation, whereas other approaches deal with CIE L*u*v* [31] and
CIE L*a*b* [52]. An overview is provided in Table 11.5. Note that experimental evalua-

TABLE 11.5
Color space selection in the state-of-the-art
methods.

Reference Color space PPCC

[28] rg invariant
[29] C1C2C3 invariant
[27] rg invariant
[35] RGB 1
[39] grayscale 2
[37] grayscale 2
[51] HSV 1.33
[31] CIE L*u*v* 2
[52] CIE L*a*b*/HSV —
[53] RGB — ‡

[2] all from above 2

PPCC – the average number of shadow parameters for one color channel in parametric methods; ‡ proportional
to the number of support vectors after training.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
53

 0
9 

M
ay

 2
01

6 
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tion of color spaces for shadow edge classification can be found in Reference [25] and that
this chapter addresses detection of the shadowed and foreground regions, which is a fairly
different problem.

For the above reasons, this section aims to experimentally compare different color mod-
els for the purpose of cast shadow detection in digital video. Since the validity of such
experiments is limited to the examined model structures, it is important to make the com-
parison in a relevant framework. Taking a general approach, the task is considered as a
classification problem in the space of the extracted features, describing the different cluster
domains with relatively few free parameters. Note that most models in Table 11.5 use two
parameters for each color channel; drawbacks of methods which use fewer parameters were
discussed in Section 11.3.

Popular models can be categorized as deterministic (per pixel) [51] or statistical (prob-
abilistic) [35]. Up to now, this chapter has only dealt with statistical models, since these
models have proved to be advantageous considering the whole segmentation process. A de-
terministic method will be introduced here; the pixels are classified independently before
the rate of the correct pixel-classification is investigated. In this way, a relevant quanti-
tative comparison of the different color spaces can be achieved, because the decision for
each pixel depends only on the corresponding local color-feature value. Note that post-
processing and prior effects whose efficiency may be environment-dependent will not be
considered. A probabilistic interpretation of this model will be given and used in the MRF
framework which was introduced in Section 11.3. The results after MRF optimization will
be compared both qualitatively and quantitatively.

11.4.2 Generalized Feature Vector of Shadow Separation

Feature extraction is done similarly to Section 11.3, although here a generalization of
the ψ shadow features will be used to handle different color spaces. It should be remem-
bered that the constant ratio model introduced in Section 11.3.2 assumes that the ratio of the
shadowed and illuminated sensor values is nearly constant over the entire image(s). To han-
dle various artifacts, one can prescribe a domain [53] or a distribution (see Section 11.3.3)
instead of a single value for the ratios, which results in a powerful detector.

The following examines how one can use this approach in different color systems. It is
assumed here that the camera output the frames in the RGB space, and for the different
color space conversions the formulas presented in Reference [57] will be applied. The ITU
D65 standard is used again for the calibration of the CIE L*u*v* and L*a*b* spaces.

Following the strategy used in the CIE L*u*v*-based model, the color components di-
rectly related to the brightness of the pixels will be handled separately from the remain-
ing ones which correspond to chrominances of the observed colors. In this way, the color
spaces can be classified as chrominance spaces (e.g., the normalized rg and C1C2C3 spaces),
luminance spaces (e.g., grayscale and RGB), and mixed spaces (e.g., HSV, CIE L*u*v* and
L*a*b*). Table 11.6 shows classification of channels for different color spaces.

The shadow descriptor is derived in an analogous manner to the approach of Sec-
tion 11.3.3. Namely, the probabilistic ratio method is used for the luminance components,
while the offsets between the shadowed and illuminated chrominance values of the pixels
are modeled by a Gaussian additive term. For a pixel expressed in a given color space
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FIGURE 11.9

One dimensional projection of histograms of ψ values in the Entrance pm test sequence: (top) shadow, (bot-

tom) foreground; (a) C1C2C3, (b) HSV, (c) RGB, and (d) L*u*v*.

as a three-component vector [o0,o1,o2] and its estimated (illuminated) background value
expressed as [µbg,0,µbg,1,µbg,2], the shadow descriptor ψ = [ψ0,ψ1,ψ2] can be defined as

ψi(s) =
oi(s)

µbg,i(s)
, for i = 0,1,2, (11.17)

if i being the index of a luminance component, and

ψi(s) = oi(s)−µbg,i(s), for i = 0,1,2, (11.18)

if i is the index of a chrominance component. The descriptor in grayscale and in the rg space
are defined similarly to Equations 11.17 and 11.18 considering that ψ will be a scalar and
a two-dimensional vector, respectively.

The efficiency of the proposed feature selection regarding three color spaces is demon-
strated in Figure 11.9 on the plots of one-dimensional marginal histograms of the ψ0,
ψ1, and ψ2 values for manually marked shadowed and foreground points of a 75-frame
long outdoor surveillance video sequence, Entrance pm. Apart from some outliers, the
shadowed ψi values lie for each color space and each color component in a short inter-
val, while the difference between the upper and lower bounds of the foreground values is
usually greater.

TABLE 11.6
Luminance and chrominance channels in different color spaces.

Color space

Channel gray rg C1C2C3 HSV RGB L*a*b* L*u*v*

Luminance g — — H R,G,B L* L*
Chrominance — r,g C1,C2,C3 S,V — a*,b* u*,v*
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11.4.3 Quantitative Comparison through a Deterministic Classifier

In this section, the MRF concept will temporarily be put aside. Using a deterministic
approach instead, the shadow detection problem is considered as a simple classification
task in the ψ-feature space. As shown in Figure 11.9, while the ψ statistics characterize
the scene and illumination conditions, the foreground ψ histograms only correspond to the
occurring foreground objects in the evaluated sequence. On the other hand, an efficient
shadow model is also expected to work with differently colored objects. Therefore, the
upcoming discrimination process will follow a one-class-classification approach. Namely,
the pixel s will be classified as a shadowed point, if its ψ(s) value lies in the estimated
shadow domain, and the outlier points will be labeled as foreground. As usual, the shadow
domain is defined by a manifold having a prescribed number of free parameters which fit
the model to a given scene/situation. For grayscale images the shadowed ψ features should
be included by an interval [37], while for color scenes different domain models can be used.
These models include a three-dimensional rectangular bin [51] (ratio/difference values for
each channel lie between defined threshold), an ellipsoid [35], or the domain may have a
general shape [53]. In the latter case a support vector domain description is proposed in the
RGB color ratio space.

For each domain selection, an overlap between the classes should be considered; for
example, foreground points may appear whose feature values lie in the shadow domain.
Therefore, the optimal domain should be as narrow as possible while containing almost
all the feature values corresponding to the shadowed points. Accordingly, if one only pre-
scribes that a shadow descriptor should be accurate, the most general domain shape seems
to be the most appropriate. However, in practice, issues related to parameter estimation
and adaptation have to be considered (see Section 11.3.4). Therefore, the domains with
relatively few free parameters, for which an automatic update strategy can be constructed,
are generally preferred.

It can be observed that according to Figure 11.9, the shadowed ψ0, ψ1, and ψ2 values fol-
low approximately normal distributions. Therefore, a 3D joint normal representation of the
ψ features in shadows is straightforward (similar to Section 11.3). Since the equipotential
surfaces of the 3D Gaussian density functions are ellipsoids, a natural choice is to use an
elliptical shadow domain boundary. Here, the equation of a standard ellipsoid body having
parallel axes with the coordinate axes in the ψ0−ψ1−ψ2 Cartesian coordinate system will
be used:

Pixel s is shadowed⇔
2

∑
i=0

(
ψi(s)−ai

bi

)2

≤ 1, (11.19)

where [a0,a1,a2] is the coordinate of the ellipsoid center and (b0,b1,b2) are the semi-axis
lengths. In other words, [a0,a1,a2] is equivalent to the mean ψ(s) value of shadowed pixels
in a given scene, while b0, b1, and b2 depend on the spatiotemporal variance of the ψ(s)
measurements under shadows. It will be shown later that the similarity to the µψ and σψ
parameters from Section 11.3 is not by chance; thus, parameter adaptation can also be done
in a similar manner.

Note that with the SVM method [53], the number of free parameters is related to the
number of support vectors, which can be much greater than the six scalars of the proposed
model. Moreover, for each situation, a novel SVM should be trained. Also note that one
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 11.10 (See color insert.)

Two dimensional projection of foreground (dark) and shadow (bright) ψ values in the Entrance pm test se-

quence: (a) C1−C2, (b) H−S, (c) R−G, (d) L−u, (e) C2−C3, (f) S−V , (g) G−B, and (h) u−v. The ellipse

denotes the projection of the optimized shadow boundary.

could use an arbitrarily oriented ellipsoid, but compared to Equation 11.19, it is more diffi-
cult to define since it needs the accurate estimation of nine parameters. The domain defined
by Equation 11.19 becomes an interval for grayscale images and a two dimensional ellipse
for the rg space.

Figure 11.10 shows the two dimensional scatter plots about the foreground and shadow
ψ values. It can be observed that the components of vector ψ are strongly correlated in
RGB space (and also in C1C2C3) and that the previously defined ellipse cannot present a
narrow boundary. In HSV space, the shadowed values are not within a convex hull, even
if the hue component is considered periodic (hue = 2kπ means the same color for each
k = 0,1, . . .). Based on the above facts, the CIE L*u*v* space seems to be a good choice.
In the following, this statement will be supported by numerical results.

11.4.3.1 Evaluation of the Deterministic Model

The evaluations were done using manually generated ground-truth versions of the test
video Laboratory, Highway, Entrance am, Entrance noon and Entrance pm, with the same
test parameters as before (Table 11.3).

This section will show the tentative limits of the elliptical shadow domain defined by
Equation 11.19. The goal of these experiments is to compare the foreground-shadow dis-
criminating ability of the different color spaces purely based on the extracted per pixel ψ
features. Therefore, the parameters are set here manually and do not take into consideration
local connectivity or postprocessing. In the experiments, two sets of ψ values correspond-
ing respectively to manually marked foreground and shadowed pixels are collected for each
test sequence.

Figure 11.11 shows the plots of the Precision (Pr) and Recall (Rc) values achieved for
some optimized ellipse parameters using the Laboratory and Entrance pm test sequences.
It can be observed that the CIE L*a*b* and L*u*v* spaces produce the best results (highest
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FIGURE 11.11

Evaluation of the deterministic model using recall-precision curves corresponding to different parameter-

settings for (a) Laboratory and (b) Entrance pm sequences.

Pr/Rc curves) in both cases. However, the relative performance of the other color systems
strongly varies for these two test videos. In the indoor scene, the grayscale and RGB
segmentation procedures are less efficient than the other ones, whereas for the outdoor
scenes the performance of the chrominance spaces is prominently poor.

Table 11.7 shows the achieved FM rates. Also here, it can be seen that the CIE L*a*b*
and L*u*v* spaces are the most efficient. As for the other color systems, in sequences
containing dark shadows (Entrance pm, Highway), the chrominance spaces produce poor
results, while the luminance and mixed spaces are similarly effective. Performance of
the chrominance spaces is reasonable for brighter shadows (Entrance am, Laboratory),
whereas the luminance spaces are relatively poor. In the latter case, the color constancy
of the chrominance channels seems to be more relevant than the luminance-darkening do-
main. It was also observed that the hue coordinate in HSV is very sensitive to illumination
artifacts (see also Figure 11.9), thus the HSV space is more efficient in the case of light
shadows. Table 11.8 summarizes the relationship between the darkness of shadows and the
performance of various color spaces. In this table, darkness is characterized by the mean
of the grayscale ψ0 values of shadowed points.

TABLE 11.7
Evaluation of the deterministic model (Equation 11.16) using the FM measure.

Color space

Test video gray rg C1C2C3 HSV RGB Lab Luv

Laboratory 0.860 0.889 0.883 0.912 0.863 0.922 0.933
Highway 0.849 0.766 0.761 0.835 0.850 0.851 0.855
Entrance am 0.849 0.920 0.926 0.931 0.861 0.954 0.956
Entrance noon 0.916 0.898 0.890 0.936 0.941 0.946 0.953
Entrance pm 0.817 0.774 0.758 0.814 0.845 0.862 0.882

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
53

 0
9 

M
ay

 2
01

6 



Shadow Detection in Digital Images and Videos 305

TABLE 11.8
Indication of the most and least successful color spaces for vari-
ous test sequences based on the experiments in Section 11.4.3.1.
For numerical evaluation refer to Figure 11.11 and Table 11.7.

Test video Scene Dark† Worst Best

Laboratory indoor 0.73 gray, RGB Luv, Lab
Entrance am outdoor 0.50 gray, RGB Luv, Lab
Entrance pm outdoor 0.39 C1C2C3, rg Luv, Lab
Entrance noon outdoor 0.35 C1C2C3, rg Luv, Lab
Highway outdoor 0.23 C1C2C3, rg Luv, Lab

†The mean darkening factor of shadows in grayscale.

11.4.4 Segmentation with Different Color Spaces

The results in the previous section show that when using the elliptical shadow domain
defined by Equation 11.19, the CIE L*u*v* color space gives the most efficient separation
of shadowed and foreground pixels. However, those experiments needed manually evalu-
ated training data to set the parameters. In the following, the above model will be suited to
the adaptive Bayesian model-framework (Section 11.3) to demonstrate that the advantage
of using the appropriate color space can be also measured directly in the applications.

First, a probabilistic interpretation is added to the shadow classification step defined in
Section 11.4.3. By rewriting Equation 11.19, the current ψ(s) value of pixel s is matched
to a probability density function f (ψ(s)). Its class is decided as follows:

pixel s is shadowed⇔ f (ψ(s))≥ t. (11.20)

Based on the one-dimensional marginal histograms in Figure 11.9, f (ψ(s)) is modeled
by a multivariate Gaussian density function, similar to the CIE L*u*v* case introduced in
Section 11.3. To keep the six-parameter shadow model, a diagonal covariance matrix will
be used, requiring the definition of a three element-mean value vector and the three diag-
onal components of the covariance matrix. In this way, the variety of ψ values observed
in shadows is modeled. This variety is caused by camera noise, fine alterations in illumi-
nation, and differences in albedo and geometry of the different surface points. However,
the changes in the different color components are considered to be independent, exploiting
the fact that many color spaces, for example, CIE L*u*v*, CIE L*a*b*, and HSV have
approximately uncorrelated basis [33]. As for the RGB space, this diagonal approach is
less accurate. However, it will be shown that for most of the sequences the performance of
this oversimplified RGB model is reasonable.

Note that as shown in Reference [2], if f is a Gaussian density function (η), the domains
defined by Equations 11.19 and 11.20 are equivalent:

f (ψ(s)) = η(ψ(s),µψ ,Σψ) (11.21)

=
1

(2π)
3
2

√
detΣψ

exp
[
−1

2
(ψ(s)−µψ)T Σ

−1
ψ (ψ(s)−µψ)

]
, (11.22)
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FIGURE 11.12

MRF segmentation results with different color models: (a) input video frame, (b) grayscale, (c) C1C2C3, (d) HSV, (e) RGB, and (f) CIE L*u*v*. Test sequences from top

to bottom: Laboratory, Highway, Entrance am, Entrance pm, and Entrance noon.D
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where

µψ = [a0,a1,a2]T , Σψ = diag{b2
0,b

2
1,b

2
2}, t = (2π)−

3
2 (b0b1b2)−1e−

1
2 . (11.23)

In the following, the previously defined probability density functions will be used in the
MRF model in a straightforward way, as psh(s) = f (ψ(s)). The flexibility of this MRF
model comes from the fact that ψ(s) shadow descriptors are defined for different color
spaces differently (see Section 11.4.2).

11.4.4.1 Test Results

Figure 11.12 shows the MRF segmentation results of two frames from each test sequence
using five color spaces: grayscale, C1C2C3, HSV, RGB and CIE L*u*v*. Note that since
the results of the CIE L*a*b* space were very similar to the L*u*v* outputs while rg
worked similarly to C1C2C3, they are skipped in this comparison. It can be observed that
the CIE L*u*v* space outperforms the other ones significantly and that the largest errors
were produced using C1C2C3, especially in the case of sharp shadows. A typical problem of
the HSV and RGB spaces is the foreground halo effect that may appear around some dark
shadowed parts due to the penumbra of cast shadows [29] and video compression. These
erroneous areas correspond to shadows, but they are lighter than the central areas, thus they
lie outside of the shadow domain in the feature space. On the other hand, the proposed
color space-based probabilistic model removes these artifacts.

Hereinafter, quantitative evaluations are performed using the MRF model. Sec-
tion 11.4.3.1 measured the ability to discriminate foreground and shadowed pixels. Since
the present model uses three classes and the goal here is accurate foreground detection, the
confusion rate between foreground and background should be also considered. However,
similarly to Section 11.3.6, the crossover between shadow and background does not count
for errors (both of them are nonforeground areas).

Table 11.9 shows the clear superiority of the CIE L*u*v* space. However, the relative
performance of the color spaces does not show exactly the same tendencies as measured in
Section 11.4.3.1. The differences between Tables 11.7 and 11.9 are caused by effects of the
composite foreground model, MRF neighborhood conditions and errors in parameter esti-
mation, since the artifacts may appear different in the different sequences. Therefore, the
numerical results from Section 11.4.3.1 can be considered to be more relevant to character-
izing the capabilities of the color spaces for shadow separation. However, the experiments

TABLE 11.9
Evaluation of the MRF model using F∗ coefficients.

Color space

Test video gray C1C2C3 HSV RGB Luv

Laboratory 0.855 0.844 0.918 0.893 0.930
Highway 0.685 0.688 0.712 0.768 0.832
Entrance am 0.845 0.834 0.813 0.849 0.861
Entrance noon 0.825 0.843 0.689 0.827 0.892
Entrance pm 0.770 0.610 0.740 0.790 0.895
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described in this section confirm that appropriate color space selection is also crucial in the
applications, and the CIE L*u*v* space is preferred for this task.

11.5 Conclusion

This chapter examined the color modeling problem of cast shadows, focusing on video
surveillance applications. A novel adaptive model for shadow segmentation without strong
restrictions on a priori probabilities, image quality, objects’ shapes and processing speed
was introduced. The proposed modeling framework was generalized for different color
spaces and used to compare these color spaces in detail. It was observed that the appro-
priate color space selection is an important issue in classification, and the CIE L*u*v*
space is the most efficient both color-based clustering of the individual pixels and in the
case of Bayesian foreground-background-shadow segmentation. The proposed method
was validated on various video shots, including well-known benchmark videos and real-
life surveillance sequences, indoor and outdoor shots, which contain both dark and light
shadows. Experimental results showed the advantages of the proposed statistical approach
over earlier methods.
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12.1 Introduction

Digital cameras have several advantages, for instance, portability and fast response, over
flatbed scanners. Therefore, there have been a number of attempts to replace flatbed scan-
ners with digital cameras. Unfortunately, camera captured images often suffer from per-
spective distortions due to oblique shot angle, geometric distortions caused by curved book
surfaces, specular reflections, and unevenness of brightness due to uncontrolled illumina-
tion and vignetting. Hence their visual quality is usually inferior to flatbed scanned images,
and the optical character recognition (OCR) rate is also low. Camera captured document
images thus need to be enhanced to alleviate these problems and to widen the area of
valuable text processing tools (for example, OCR and text-to-speech (TTS) for the visu-
ally impaired, automatic translation of books, and easy digitization of printed material) for
the camera captured inputs. This chapter focuses on removing perspective and geomet-
ric distortions in captured document images, operations that are referred to as document
dewarping or document rectification.

(a) (b)

(c)

FIGURE 12.1

Document image rectification using a stereo-pair by an algorithm presented in Section 12.2: (a,b) input stereo

pair, and (c) rectified result with specular reflection removal. c© 2009 IEEE
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12.1.1 Overview

To rectify document images, many methods directly estimate a three-dimensional (3D)
structure. A straightforward method is to use depth-measuring hardware, such as structured
light or a laser scanner. Since the inferred surface may not be isometric to the plane,
several methods for modifying the surface have been proposed [1], [2], [3]. Although these
approaches can be used in a wide range of paper material including old documents damaged
by aging or water, it is burdensome to use depth-measuring equipment.

To overcome this problem, 3D structure can be estimated from multiple images without
using depth measuring devices. For example, a specialized stereo vision system is proposed
in Reference [4]. However, this method still needs hardware, although it is much simpler
than the depth acquisition hardware. A stereo vision method presented in Reference [5]
has a disadvantage in that it requires reference points. A more recent document dewarp-
ing algorithm presented in Reference [6] alleviates the problems by using video sequences.
However, the algorithm requires hundreds of input images which are the results of scanning
the entire book surface carefully. Section 12.2 presents a method [7] which rectifies docu-
ments using a stereo pair. The method needs no special hardware; as shown in Figure 12.1,
it uses just two images captured from different viewpoints.

Although using multiple images has several desirable properties, such as content inde-
pendence and the ability to remove specular reflection, such methods suffer from com-
putational complexity in 3D reconstruction. Therefore, a number of single-view methods
that do not require 3D reconstruction have also been proposed [8], [9], [10], [11]. Most
of these methods avoid the 3D reconstruction problem by exploiting the clues from the
two-dimensional text line structure with some additional assumptions. These methods are
usually computationally efficient and easy-to-use; however, they are limited to the rectifi-
cation of text regions due to their dependencies on text lines.

Unlike the text region, the rectification of figures using a single image requires deter-
mining the boundaries of distorted figures. Given the distorted boundaries, the rectification
can be done by using applicable surface assumptions [12] or simple boundary interpola-
tion [13], [14], [15]. However, it is burdensome to extract the boundaries. Section 12.3
presents a method that segments figures from a single view using a bonding box inter-
face [16], which substantially facilitates the segmentation process. A new boundary inter-
polation method that can improve the visual quality of the output image (Figure 12.2) is
also presented. The overall process is very efficient, so that a rectified result is obtained
within a few seconds, whereas the stereo methods require almost a minute.

12.2 Document Rectification from a Stereo Pair

This section presents a document rectification algorithm which uses two images taken
from two different views [7]. In the method, the surface of a book is reconstructed from
the corresponding points in two images, I1 and I2, and the geometric correction is per-
formed using the reconstructed book surface. Finally, the geometrically corrected images
are stitched for a visually better composite.
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(a)

(b)

FIGURE 12.2

Document image rectification using a single image by an algorithm presented in Section 12.3: (a) input image

with a user-provided bounding box, (b) segmented and rectified result.

12.2.1 Assumptions

The framework operates under three assumptions. The first is that book surfaces satisfy
the cylindrical surface model (CSM) assumption, which is known to be sufficient for many
kinds of document surfaces including the unfolded books [17]. The second assumption is
that the intrinsic matrix of a camera is known. More precisely, a standard pin-hole camera
(image coordinates are Euclidean coordinates having equal scales in both directions and
the principal point is at the center of the image) is assumed, and it is also assumed that the
estimated focal length is available from Exchangeable Image File Format (EXIF) tags of
image files; most current digital cameras satisfy these assumptions. The third assumption
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Y

u
v

Z

XO

[x g(x) v]T

FIGURE 12.3

A book coordinate system and a modeled book surface. c© 2009 IEEE

is that the contents of a book are quite distinctive compared to the background (that is,
most of correspondences are found on the book surface), which can be easily achieved by
placing the document on the relatively homogeneous background or capturing a book as
large as possible.

12.2.2 Book Surface Model

Suppose a uv-plane on which the imaginary flat book surface lies. By assuming that the
book’s binding lies on the v axis, the unfolded (curved) book surface can be considered as
the warping of this flat imaginary plane. This is illustrated in Figure 12.3, where a mapping
from (u,v) to a point in the world coordinate is defined as

S(u,v) = [x g(x) v]T (12.1)

using the CSM assumption. That is, a point (u,v) on a flat surface goes to [x g(x) v] in the
world coordinate space when the surface is warped, where g(x) is the height of the book
surface from the uv plane. The relation between u, x and g(x) is given by

u =
∫ x

0

√
1+

(
dg
dt

)2

dt, (12.2)

because u is the arc length of the curve g(x). Although the center O of the world coordinate
is located at the top of the book as shown in Figure 12.3, its position is not important as
long as it is located on the book’s binding.

12.2.3 Cost Function

If the surface function g and the camera matrix P1 and P2 ∈ℜ3×4 of two images I1 and
I2 are given, the flattened book surface on the uv-plane can be obtained by using back-
projection. Hence, document dewarping is equivalent to finding P1, P2, and g from I1
and I2. For this purpose, the corresponding points between two images are detected using
scale invariant feature transform (SIFT) [18], denoted as {xi

1 ↔ xi
2}N

i=1 where xi
j is the i-th

corresponding point in the j-th image ( j = 1,2). Then, P1, P2, and 3D points {Xi}N
i=1 can

be reconstructed from the corresponding points up to similarity when the intrinsic matrix
of a camera is known [19]. In other words, P′1, P′2, and {X ′

i } can be computed from the
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corresponding points which satisfy the similarity relation with P1,P2, and {Xi} for some
similarity transformation H ∈ℜ4×4, as follows:

P′1 = P1H−1, (12.3)

P′2 = P2H−1, (12.4)

X̃ ′
i = HX̃i, (12.5)

where X̃i ∈ℜ4 and X̃ ′
i ∈ℜ4 are homogeneous representation of Xi and X ′

i , respectively. The
similarity transform H can be represented as

H =
[

sR t
01×3 1

]
, (12.6)

where s is a scale factor, R = [r1 r2 r3] is a 3×3 rotation matrix, and t is a 3×1 translation
vector. By setting s = 1, Equation 12.5 reduces to

X ′
i = RXi + t. (12.7)

Note that Xi represents a point on the book surface in the book (world) coordinate system
shown in Figure 12.3 and X ′

i means a point on the book surface in the camera coordinate
system. By applying proper rotation and translation, {X ′

i } are transformed to {Xi}, and a
surface function g(x) can be estimated from them. The cost function for finding R, t and g
can be expressed as follows:

(R, t,g) = argmin
R,t,g

N

∑
i=1

d2(S(g),Xi) = argmin
R,t,g

N

∑
i=1

d2(S(g),RT (X ′
i − t)), (12.8)

where S(g) is the surface induced from a function g, and d(·, ·) is the distance between a
surface and a point. Intuitively, this cost function can be seen as finding the best surface
that fits 3D points {Xi}.

Although a surface induced from any g(x) is isometric to the plane (flat surface), the class
of g(x) can be restricted using a priori knowledge that the book surface is smooth except
at the binding. Specifically, two polynomials are used for the modeling of g(x) as follows:

g(x) =





g+(x) if x > 0,
0 if x = 0,
g−(x) if x < 0,

(12.9)

where g+(x) is for the right side and g−(x) is for the left side of book binding. Although
a small number of parameters for g(x) should be estimated, the direct minimization of
Equation 12.8 is intractable due to highly nonlinear nature of the function and the presence
of outliers.

12.2.4 Shape Reconstruction

This section presents the method that minimizes Equation 12.8. The method consists of
two steps; one is the initial parameter estimation with outlier rejection and the other is the
minimization of Equation 12.8 using initial estimation. More precisely, R is estimated from
the general property of books and the projection analysis, and then g and t are estimated
from the estimated R.
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Document Image Rectification Using Single-View or Two-View Camera Input 319

FIGURE 12.4

Points on the book surface and their projection in the direction of r3. c© 2009 IEEE

12.2.4.1 Estimation of Rotation Matrix

The initial estimate of R = [r1 r2 r3] comes from the geometric properties of book
surfaces. Because the variance along the Y axis (see Figure 12.3) is the smallest among all
possible one-dimensional variances of {Xi}, the value of r2 indicates the minimum variance
direction of {X ′

i }. This direction can be computed by the eigenvalue decomposition. When
the eigenvectors of C′ = 1

N ∑N
i=1 X ′

i X ′T
i are denoted as v1, v2, and v3 in the increasing order

of their corresponding eigenvalues, r2 = v1. Moreover, since v2, v3, and r3 are placed on
the same plane, r3 can be represented as a linear combination of v2 and v3 for some θ̂ , as
follows:

r3 =
v2

|v2| cos θ̂ +
v3

|v3| sin θ̂ . (12.10)

The value of θ̂ is estimated using projection analysis. As can be seen in Figure 12.4, the
projection of a surface onto the XY -plane forms a curve y = g(x), and the projection of the
points {X ′

i } onto the plane whose normal vector is r3 (see Figure 12.4) provides points on
the surface curve. Therefore

θ̂ = argmin
θ

µ({Pr(θ)(X
′
i )}), (12.11)

where
r(θ) =

v2

|v2| cosθ +
v3

|v3| sinθ . (12.12)

The term Pr(X ′
i ) denotes the projected point of X ′

i on the plane whose normal vector is r,
and µ(·) is a measure of area that the distributed points occupy. Since a finite number of
noisy points are available, the area measure µ(·) is approximated to a discrete function.
By changing θ with predefined steps, θ̂ that minimizes µ({Pr(X ′

i )}) is found and r3 is
computed from Equation 12.10. Finally, r1 can be obtained from r1 = r2× r3. In imple-
mentation, a coarse-to-fine approach is adopted for the efficiency and the estimation of R
is refined by a local two-dimensional search around the current estimate.
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Although the 3D projection analysis for r3 is robust to outliers, the estimate of r2 using
eigenvalue decomposition may fail in the presence of a single significant outlier. For the
rejection of such outliers, samples whose distances from the center of mass are less than 3σ
are only used, where σ is the standard deviation of distances from the center to the points.
In this outlier rejection step, only significant outliers are rejected, as a refined rejection
process is addressed in the following stage.

12.2.4.2 Estimation of the Curve Equation and Translation Vector

Because the surface is isometric, Z-directional components of RT (X ′
i − t) in Equa-

tion 12.8 can be ignored:

(R, t,g) = argmin
R,t,g

N

∑
i=1

d2(S(g),RT (X ′
i − t)), (12.13)

= argmin
R,t,g

N

∑
i=1

d2(g,(xi−a,yi−b)), (12.14)

where (xi,yi) = (rT
1 X ′

i ,r
T
2 X ′

i ) and (a,b) = (rT
1 t,rT

2 t). The term d(·, ·) in Equation 12.13 is
a distance function between a point and a surface, whereas d(·, ·) in Equation 12.14 is a
distance function between a point and a curve. Since (xi−a,yi−b) should be on the curve
g, the parameters of g, that is, coefficients of a polynomial, can be estimated using the
least squares method. In this case, the problem in Equation 12.8 reduces to the following
minimization problem:

M

∑
i=1

(g(xi−a)− (yi−b))2 (12.15)

where M is the number of points. The curve in the left side (x < a) and the right side (x > a)
are represented by different polynomials as g−(x−a)+b and g+(x−a)+b, where g+(x) =
∑K

k=1 pkxk, g−(x) = ∑K
k=1 qkxk, and K is the order of polynomials which is empirically set

to four [7].
In order to find pk, qk, and (a,b), a set of candidates for a is determined from the his-

togram of {xi}M
i=1. A point is chosen as a candidate if its corresponding bin is the local

minimum in the histogram, which is based on the fact that there is a relatively small number
of features around the book’s binding. Then for each a, a total of m samples are randomly
selected on both sides and an overdetermined system is solved to get 2K + 1 unknowns
(p1, p2, · · · , pk, q1,q2, · · · ,qK , and b). Differing from the conventional random sample con-
sensus (RANSAC), the criterion used here is to find the minimum of

M

∑
i=1

φT (g(xi−a)− (yi−b)), (12.16)

where

φT (x) =
{

x2 if x < T ,
T 2 otherwise,

(12.17)

is a truncated square function and T is set to ten percent of the range of {xi}, which is
equivalent to MSAC (M-estimator sample consensus) in Reference [20]. After iteration,
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Document Image Rectification Using Single-View or Two-View Camera Input 321

the hypothesis that minimizes Equation 12.16 is selected, and a rough estimate of a and
inliers are obtained, where the inlier criterion is |g(xi− a)− (yi− b)| < T . Finally, two
polynomials g+(x) and g−(x) on each side are estimated using a standard curve fitting
method and their intersection point is determined as (a,b).

12.2.5 Image Stitching and Blending

As described in the previous section, two geometrically rectified images J1 and J2
are obtained from I1 and I2, respectively. In the case that each image contains sufficient
information, either of J1 and J2 is sufficient for OCR and other purposes. However,
in general, there may be out-of-focus blur and specular reflection that deteriorate image
quality. Although these effects are often ignored in the literature, an image stitching process
is needed for high quality output generation, especially for nontextual items such as natural
photos. However, since the image alignment is imperfect, a simple blending (average)
approach would result in double images. Moreover, the geometry of the stitching boundary
cannot be determined in advance because the camera position is not fixed. In order to
handle the challenges, a photomontage approach presented in Reference [21] is adopted as
discussed below.

12.2.5.1 Image Stitching Based on Energy Minimization

Due to the asymmetry of the amount of information, better parts from each of the images
are selected and stitched into a single image. The stitching is formulated as a labeling
problem that assigns a label L(p) ∈ {0,1} for each pixel p ∈P , where P is a set of sites.
Precisely, L(p) = j means that the pixel at the site p comes from J j, for j = 1,2.

In this formulation, two requirements are encoded in the cost function; one is to select
more informative pixel and the other is to create a seamless mosaic. The cost function is
defined as follows:

C(L) = ∑
p∈P

Cd(p,L(p))+η ∑
p∈P

∑
q∈Np

Ci(p,q,L(p),L(q)), (12.18)

where Np is the set of first order neighborhoods at the site p and the data penalty Cd repre-
sents the sharpness of the pixel p in JL(p), which will be explained in the next subsection.
The interaction penalty term Ci is expressed as follows:

Ci(p,q,L(p),L(q)) = ‖JL(p)(p)−JL(q)(p)‖+‖JL(p)(q)−JL(q)(q)‖, (12.19)

where J j(p) means the pixel value of J j at p. Note that this cost function is the same
as that of Reference [21]. The optimal labeling can be found using the graph-cut tech-
nique [22].

12.2.5.2 Data Penalty

In the case of specular-free documents, it is ideal to define the data penalty to reflect the
sharpness, for instance, using a measure of the high-frequency components. Thus, the data
penalty term can be expressed as

C(1)
d (p,L(p)) =−cosθ(p,L(p)), (12.20)
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where θ(p,L(p)) is the angle between the line of sight and the surface normal at the point
p in JL(p). Because a small value of θ(p,L(p)) means that the tangential surface at point
p is closer to the perpendicular surface of the line of sight, it is approximately proportional
to sharpness and naturally handles the problems caused by a little misalignment.

Since the surface and camera matrices were estimated during the 3D reconstruction pro-
cess, the algorithm can handle the specular reflection without any device, whereas the exist-
ing algorithm dealt with it using some hardware [23]. Assuming that the distance from the
flash to the camera center is small compared to the distance between the camera and a docu-
ment, the possible glare regions can be determined. It comes from the specular distribution
function model that this follows cosn φ , where φ is the angle between the line of sight and
principal reflected ray [23]. Hence, specular reflection can be removed by discarding the
region with small φ . This can be done by modifying Equation 12.20 as follows:

C(2)
d (p,L(p)) =

{−cosθ(p,L(p)), if θ(p,L(p))≥ θ0,
B otherwise,

(12.21)

where θ0 = 10◦ and B is set to be a sufficiently large number so that specular-suspected
regions (points with small φ ) are rejected. If both θ(p,0) < θ0 and θ(p,1) < θ0 hold
for some p, the specular reflection at p cannot be removed. Therefore, the directions and
positions of cameras should be different for specular reflection removal, that is, glare spots
should be placed separately.

12.2.5.3 Switching Criterion

In order to select a proper data penalty function between Equations 12.20 and 12.21, the
presence of specular reflection should be determined. This can be resolved by counting
the number of saturated pixels in the region that satisfies θ(p,L(p)) < θ0, which is the
region where specular reflections can occur. Namely, S = max{n(S1),n(S2)} is used for
this purpose, with

S j = {p |J j(p) > Ithres,θ(p, j) < θ0}, for j = 1,2, (12.22)

where n(·) is the number of elements in a set. It is experimentally found for images with
dimensions 1600×1200 pixels that S > 1000 in the presence of noticeable specular reflec-
tion, otherwise S < 100.

12.2.5.4 Image Blending

For a seamless result, image blending along the stitch boundary is indispensable. For
blending, a multiresolution blending technique presented in Reference [24] is used. Exper-
iments show that the blending algorithm works well for the complex boundaries generated
by Equation 12.21 as well as for the boundaries found using Equation 12.20.

12.2.6 Experimental Results

Two digital cameras, a Canon PowerShot A630 and a Canon EOS 30D, were used to ac-
quire images. The software tool OmniPage Pro 14 was used for OCR with no preprocessing
or postprocessing for input images of 1600×1200 pixels with 150 dpi.
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(a) (b) (c)

(d) (e) (f)

FIGURE 12.5 (See color insert.)

Document rectification from a stereo pair: (a,d) input stereo pair, (b,e) rectified images, and (c,f) stitching

boundary using Equations 12.20 and 12.21. c© 2009 IEEE

(a) (b)

FIGURE 12.6 (See color insert.)

Composite image generation: (a) without blending, and (b) with blending (final result). c© 2009 IEEE

Figures 12.5 and 12.6 show experimental results for the glossy papers with flash illumi-
nation. The stitching boundaries resulting from two data penalty terms (Equations 12.20
and 12.21) are shown in Figures 12.5c and 12.5f. As expected, the boundaries in Fig-
ure 12.5c are more complex than those present in Figure 12.5f. Hence, the text misalign-
ment is sometimes observed, which seldom occurs in the case of using Equation 12.20 due
to its simple boundary. However, specular reflections and illumination inconsistency are
successfully removed as shown in Figure 12.6b.

The character recognition rate (CRR) is commonly measured by counting the number
of correctly recognized characters or words. However, it is not an accurate measure in the
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(a) (b)

(c) (d)

FIGURE 12.7

Images used in Table 12.1. c© 2009 IEEE

sense that this number does not faithfully reflect the amount of hand-labor needed to fix
incorrect characters or words after OCR. To faithfully reflect the amount of hand-labor,
that is, deleting and/or inserting characters, a new CRR measure is defined here as follows:

CRR = 100× n(match)
n(match)+n(insertion)+n(deletion)

. (12.23)

For example, if “Hello, World!” is recognized as “Helmo, Wold!!”, there are 9 matches.
Also note that two deletions (“m” and “!”) and two insertions (“l” and “r”) are re-
quired for the correction of recognition result. Hence, the CRR of that text is CRR =
100×9/(9+2+2)' 69%. In the computation of CRR, dynamic programming is used to
find correspondences between recognized text and ground truth.

Because OCR performance depends on the line of sight and the types of content and
material, quantitative evaluation is actually not a simple task. Thus, experiments in four
different situations (Figure 12.7) are conducted, with results summarized in Table 12.1.
Namely, Figure 12.7a represents the situation when the images are taken rather perpen-
dicularly to the book surface; in this case the CRRs of I1 and I2 are relatively high
and the CRR of rectified images is close to that of an image from flatbed scanner. Fig-
ure 12.7b represents the situation when images are captured obliquely. Although the OCR
improvement is very high, the final recognition rate for Figure 12.7b is less than that of
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(a) (b) (c)

FIGURE 12.8 (See color insert.)

Additional experimental results: (a,b) input stereo pairs, and (c) final results. c© 2009 IEEE

TABLE 12.1
CRR for several image pairs (I1 and I2 are image pairs before dewarp-
ing, J1 and J2 are image pairs after dewarping, “composite” denotes a
stitched image obtained from J1 and J2, and “scan” denotes an image
from a flatbed scanner).

pair I1 I2 J1 J2 composite scan

Figure 12.7a 85.92 81.54 99.57 99.67 99.57 99.85
Figure 12.7b 43.35 31.51 93.01 92.73 94.26 97.69
Figure 12.7c 78.78 73.78 90.75 87.82 94.56 96.36
Figure 12.7d 78.43 88.93 95.76 95.54 99.38 99.74

the image pair shown in Figure 12.7a, due to out-of-focus blur. Figures 12.7c and 12.7d
correspond to the cases where each image does not have complete information due to blur
and specular reflection. The problem is alleviated only after combining the information
of two images. Figure 12.8 shows more results, additional examples can be found at
http://ispl.snu.ac.kr/∼hikoo/documents.html.
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(a) (b) (c)

(d) (e) (f)

FIGURE 12.9 (See color insert.)

Single-view rectification procedure: (a) user interaction, the inner box is displayed just for the intuitive under-

standing of the system and is ignored after user interaction, (b) feature extraction, one of three feature maps

is shown, (c) result of the presented segmentation method, (d) result of References [13] and [27] using the

segmented image, aspect ratio 2.32, (e) result of the presented rectification method using the segmented image,

aspect ratio 1.43, and (f) figure scanned by a flatbed scanner for comparison, aspect ratio 1.39.

12.3 Figure Rectification from a Single View

Although the method in the previous section provides a unified approach to document
rectification, it requires long processing times. Moreover, it suffers from skew and curved
boundaries due to various imperfections in 3D reconstruction caused, for instance, by radial
distortion, incorrect focal length, and model error. These imperfections do not usually
constitute a severe problem for OCR; however, they become critical when users try to
digitize figures and photos in documents.

This section introduces a method which provides a high quality rectified image from a
single-view image. In this method, a user draws a bounding box on a target figure by drag-
ging the mouse (Figure 12.9a). Then, the algorithm automatically segments the figure and
generates a rectified image (Figure 12.9e). The method tolerates roughly placed bound-
ing boxes, and it provides an easy-to-use interface for the digitization of printed figures
compared to conventional methods. Along with the new scenario that simplifies user in-
teraction, another main feature of the algorithm is its fast response. Unlike conventional
methods, including the one presented in Section 12.2, the algorithm proposed here can seg-
ment and rectify megapixel size figures within one to two seconds, depending on the user’s
bounding box. This efficiency is achieved by developing a segmentation algorithm that
fully exploits the properties of printed figures. Namely, low curvature edge maps are ex-
tracted from an input image, and a small number of line segments are found from the maps
(Figure 12.9b). Since the curvature of the figure boundaries is not large, the extracted line
segments can be used to construct a set of candidate boundaries. Then, the optimal one in

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
19

 0
9 

M
ay

 2
01

6 



Document Image Rectification Using Single-View or Two-View Camera Input 327

g
R

g
L

g
T

g
B

R(G)

R

FIGURE 12.10

Bounding box definition: R denotes the bounding box given by the user, Γ represents four bounding curves

(γL,γT ,γR and γB), and R(Γ) indicates the region corresponding to the printed figure.

this set is searched by using an alternating optimization scheme. After boundary extraction,
the extracted figure is rectified. The rectification method is the combination of the metric
rectification method used for planar documents [25], [26] and the boundary interpolation
methods used for curved documents [13], [27].

12.3.1 Assumptions and Notations

The framework operates under three assumptions. The first is that images are acquired so
that two side curves γL and γR are roughly parallel with y-axis, as depicted in Figure 12.10.
The second assumption is that the surfaces of documents on which the figure lies satisfy
CSM conditions [13], [17], so that two side curves are modeled as straight lines and the
rectification method based on boundary interpolation is justified [13]. The third assumption
is that γT and γB are low curvature curves. The low curvature condition means that the
curves can be approximated by piecewise linear segments. Although EXIF information
improves the rectification performance, its availability is not an essential requirement.

From the first assumption, top and bottom curves are represented as y = γT (x) and y =
γB(x), where γT and γB are fourth-order polynomials which can be justified by the third
assumption. Two side curves are represented as x = γL(y) and x = γR(y), where γL and γR

are first-order polynomials from the second assumption. These constraints will be relaxed
to second-order polynomials in a refinement step for the compensation of nonlinearities in
the imaging system such as radial distortions. Let Ω denote a domain where a given image
is defined, and R be a bounding box given by the user. Also, let ∂R denote the boundary of
R, and Γ be used to represent four curves, that is, Γ = (γL,γR,γT ,γB). The region enclosed
by Γ is denoted as R(Γ). Figure 12.10 shows a graphical representation of this scenario.

12.3.2 Figure Segmentation

In this section, the figure segmentation is formulated as an energy minimization problem.
The energy function is the sum of the regional and boundary terms, which can be seen as the
analogies of likelihood and smoothness terms in conventional MRF-based methods [16].
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12.3.2.1 Energy Formulation

Since the region of a figure is described via Γ as four bounding curves, the segmentation
problem can be formulated as follows:

Γ̂ = argminΦ(Γ,Θ), (12.24)

where
Φ(Γ,Θ) = ΦL(Γ,Θ)+ΦS(Γ) (12.25)

is defined as the sum of two terms; the first one encodes data fidelity and the second one
encodes the energy of the boundaries. Finally, Θ represents the parameters of a probabilistic
model that is explained later in this chapter.

12.3.2.2 Encoding Data Fidelity

The term ΦL(Γ,Θ) is similar to the data term in conventional MRF-based methods [16].
It is defined as follows:

ΦL(Γ,Θ) = ∑
(x,y)∈R(Γ)

VF(x,y;Θ)+ ∑
(x,y)∈R−R(Γ)

VB(x,y;Θ). (12.26)

To design VF(x,y;Θ) and VB(x,y;Θ), a Gaussian mixture model (GMM) of color distribu-
tions [16] is used. Therefore, Θ represents the GMM parameters of two distributions and
the pixelwise energies are defined as the negative log of probabilities which are given by
GMM.

The estimate of Θ is obtained from user-provided seed pixels. Although the method
of user interaction is the same as that of Reference [16], there is a subtle difference in
the estimation process. In the conventional object segmentation problem, a given image
usually consists of an object and background, and it is reasonable to consider the pixels in
a box (R) as seeds for the object, and the pixels outside the box (Ω\R) as seeds for the
background. However, typical documents contain several figures, and it is very likely that
other figures (especially those having similar color distributions) exist outside the box as
can be seen in Figure 12.9a. Hence the initialization method that considers all pixels in
Ω\R as seeds for the background is often problematic. Rather, the pixels around the outer
box (∂R) are used as seeds for the background, and the pixels inside the box (R\∂R) are
used as seeds for the figure. The modified initialization method not only provides better
performance but also improves efficiency due to a small number of seeds. This method will
be used in the Grabcut algorithm [16] for fair comparison in the experimental section.

12.3.2.3 Encoding the Energy of the Boundaries

For the explanation of ΦS(Γ), it is assumed that two binary random fields, EH for hori-
zontal and EV for vertical edges are given. Namely, EH(x,y) = 1 when a low slope and low
curvature curve passes through (x,y), and EH(x,y) = 0 otherwise. The term EV is similarly
defined. The construction of EH and EV is explained in the next section.

Using the estimated EH and EV , the term ΦS(Γ) can be expressed as follows:

ΦS(Γ) = λ×
{

ψH(γT )+ψH(γB)+ψV (γL)+ψV (γR) if all curves are plausible,
∞ otherwise,

(12.27)
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support

upper support

lower support

FIGURE 12.11

Support areas used to obtain the statistics for low curvature edge extraction.

where
ψH(γ) = ∑

EH(x,y)=1
φT (y− γ(x)) . (12.28)

Here φT (·) is a truncated square function defined in Equation 12.17. Note that ψV (·) is
similarly defined. Intuitively, both functions are minimized when the curve passes as many
as all the possible edge points. In all experiments, λ = 100 and T = 3.

Plausible curves in Equation 12.27 are the ones that satisfy several hard constraints. Hard
constraints are imposed on the slope of curves, the intersection point of γL and γR (that is,
the position of the vanishing point), and so on. However, these restrictions are not critical
because any Γ violating these conditions is likely to have high energy. These conditions
are instead used to reject unlikely candidates at the early stage.

12.3.2.4 Edge Extraction Using Separability between Two Regions

Given a point, the presence of a horizontal edge can be determined by analyzing the
statistics of three supports in Figure 12.11. In Reference [28], the edge is detected based
on the separability of two regions, which is defined as follows:

µ =
(m̂1− m̂)2 +(m̂2− m̂)2

2 σ̂2 , (12.29)

where m̂1 and m̂2 are the empirical means of pixels in upper and lower supports, respec-
tively, The terms m̂ and σ̂ denote the empirical mean and standard deviations of pixels on
the support.

Low curvature edges can be detected in a scale invariant manner by evaluating Equa-
tion 12.29 for several types of supports. The scale-invariant separability at (x,y) is defined
as

µ(x,y) = max(µ1(x,y),µ2(x,y), . . . ,µl(x,y)) , (12.30)

where µi(x,y) is the separability evaluated by Equation 12.29 using the i-th support. The
horizontal edge field EH is defined as follows

EH(x,y) =
{

1 if µ(x,y) > T and µ(x,y) > µ(x,y+ k),
0 otherwise,

(12.31)

where k =±1,±2, . . . ,±m and T is the threshold.
Direct implementation of the multiscale scheme is computationally expensive because

support size and image size are usually large in this application. However, this scheme can
be efficiently implemented by using integral images [29], [30].
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12.3.2.5 Optimization

Since minimizing the term in Equation 12.25 is not a simple task, a new optimization
method is presented. This method consists of four steps: i) clustering edges (EH and EV )
into line segments A , ii) constructing a candidate boundary set C from A , iii) finding
a coarse solution in the candidate set C as Γ̂ = argminΓ∈C Φ(Γ,Θ), and iv) refining the
coarse estimate Γ̂. In this section, the width and height of R are respectively denoted as W
and H.

12.3.2.6 Clustering Edge Points into Line Segments

The points in EH and EV are clustered into line segments. Although a number of robust
line segment extraction algorithms have been proposed, a simple progressive probabilistic
Hough transform (PPHT) is sufficient for this purpose [31]. The sets of horizontal and
vertical line segments are denoted as AH and AV , which are extracted from EH and EV ,
respectively. Another set, A L

V ⊂ AV , consists of vertical line segments which are placed
on the left half of R (they are used as proposals for the left boundary) whereas the set of
line segments on the right half is denoted as A R

V ⊂AV (for the right boundary). Similarly,
A T

H ⊂AH and A B
H ⊂AH imply horizontal line segments on the upper half and lower half

of R respectively.

12.3.2.7 Candidate Set Construction

Since the two side curves are straight lines, it is relatively easy to find the candidates
for them; u ∈ A L

V becomes a candidate for γL and u ∈ A R
V becomes a candidate for γR.

However, the problem becomes complicated when finding the candidates for γT and γB

because these are not straight lines in general. In order to handle this problem, A T
H ×

A T
H is considered as a candidate set for γT and similarly A B

H ×A B
H as a candidate set

for γB. Specifically, (u,v) ∈ A T
H ×A T

H becomes a straight line when u = v as illustrated
in Figure 12.12a. Otherwise, (u,v) is considered as a curve passing u and v. Precisely,
the curve that tries to pass the leftmost, center, and the rightmost points of u and v is
modeled as a third-order polynomial and an overdetermined system is solved to get four
unknowns of the curve hypothesis. As illustrated in Figures 12.12b and 12.12c, the curve
becomes very close to the figure boundaries where both u and v are line segments on the
curve; otherwise it severely deviates from the curve. In summary, the candidate set for Γ is
C = A L

V ×A R
V × (A T

H ×A T
H )× (A B

H ×A B
H ). Even if the size of each set is not large (for

example, |A | ' 102), the set of candidates can be a very large set since |C | ∝ |A |6.

12.3.2.8 Finding a Coarse Solution in the Candidate Set

A coarse solution Γ̂ can be found by minimizing Equation 12.25 over C as follows:

Γ̂ = arg min
Γ∈ C

(ΦL(Γ,Θ)+ΦS(Γ)) . (12.32)

Unfortunately, the direct minimization process requires O(|A |6 ×W ×H) operations.
Since the computational load of direct evaluations is prohibitively large, an efficient mini-
mization method based on the alternating optimization scheme is developed. Namely, from
the initial estimates for top and bottom curves (γT (x) and γB(x) are, respectively, top and
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(a)

(b)

(c)

FIGURE 12.12

Three choices of (u,v) ∈A T
H ×A T

H .

bottom sides of R), two side curves are estimated. Then, these estimated two side curves
are used to estimate top and bottom curves. Thus, the problem in Equation 12.32 reduces
to two subproblems, namely

(γ̂L, γ̂R) = arg min
(γL,γR)

(ΦL(Γ,Θ)+ΦS(Γ)) (12.33)

fixing (γT ,γB), and
(γ̂T , γ̂B) = arg min

(γT ,γB)
(ΦL(Γ,Θ)+ΦS(Γ)) (12.34)

fixing (γL,γR). Since the minimization methods for Equations 12.33 and 12.34 are similar,
only the method for Equation 12.33 is presented. When γT and γB are fixed, ΦL(Γ,Θ) can
be represented as follows:

ΦL(Γ,Θ) = ηL(γL)+ηR(γR)+ constant, (12.35)
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where

ηL(γL) =
H−1

∑
y=0

(
γL(y)

∑
x=0

V ′
B(x,y)+

W−1

∑
x=γL(y)

V ′
F(x,y)

)
(12.36)

and

ηR(γR) =
H−1

∑
y=0

W−1

∑
x=γR(y)

(
V ′

B(x,y)−V ′
F(x,y)

)
. (12.37)

Here, V ′
F and V ′

B are obtained from VF and VB by setting the outside of the top and bottom
curves as 0. By constructing the following tables:

T1(y,z) =
z

∑
x=0

V ′
B(x,y), (12.38)

T2(y,z) =
W−1

∑
x=z

V ′
F(x,y), (12.39)

T3(y,z) =
W−1

∑
x=z

(
V ′

B(x,y)−V ′
F(x,y)

)
, (12.40)

the term ΦL(Γ,Θ) can be evaluated in O(H) operations using the tables. Moreover, ΦS(Γ)
is also represented via ψV (γL) + ψV (γR) + constant. Putting it all together into Equa-
tion 12.33 provides

(γ̂L, γ̂R) = arg min
γL∈A L

V ,γR∈A R
V

(ηL(γL)+ψV (γL)+ηR(γR)+ψV (γR)) . (12.41)

The computational cost for this scheme can be summarized as i) W ×H operations re-
quired for the construction of tables, ii) |A | ×H operations required for the precompu-
tations of ηL(γL) and ψV (γL) for all γL ∈ A L

V , iii) |A | ×H operations required for the
precomputations of ηR(γR) and ψV (γR) for all γR ∈ A R

V , and iv) |A |2 operations used for
the test of hard constraints and the minimization of Equation 12.41. This results in total
O(W ×H + |A | ×H + |A |2) computations. The computational cost of Equation 12.34
can be reduced in a similar manner. Experiments show that Equations 12.33 and 12.34
converge to their optimal solutions very quickly; they are repeated only twice.

12.3.2.9 Coarse Solution Refinement

Starting from the coarse solution Γ̂, the boundary is refined using randomly generated
proposals. In the refinement process, a fourth-order polynomial model is adopted for top
and bottom curves, and second-order model is used for two side curves so that the nonlin-
earity in the imaging system can be compensated.

12.3.3 Rectification

This section introduces a rectification algorithm which improves conventional boundary
interpolation methods. Using the boundaries in Figures 12.9c and 12.13a the conventional
methods yield distorted results, as shown in Figures 12.9d and 12.13c. In order to alleviate
this distortion, a new rectification method is presented. The method consists of two steps.
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(a)

(b) (c) (d) (e)

FIGURE 12.13

Figure rectification: (a) segmentation result, (b) transformed result, note that the four corners of the figure

compose a rectangle, (c) rectification of the segmentation result using boundary interpolation, aspect ratio

1.02, (d) rectification of the the transformed result using boundary interpolation, aspect ratio 0.614, and (e)

ground truth, scanned image with aspect ratio 0.606.

The first is the rectification process for an imaginary rectangle consisting of four corners
of a figure, which is the same as metric rectification methods for planar documents used in
References [25] and [26] except that the rectangle is an imaginary one. Boundary interpo-
lation is then applied to the transformed image [13]. Figure 12.13 illustrates this process.
In the proposed method, boundary interpolation is applied to Figure 12.13b to produce the
result shown in Figure 12.13d. For completeness, conventional methods are applied to Fig-
ure 12.13a to produce the result shown in Figure 12.13c. As can be seen, the proposed
method can largely remove distortions. In metric rectification of an imaginary rectangle,
the focal length is obtained from EXIF (if available) [7].

12.3.4 Experimental Results

The performance of the proposed segmentation algorithm is compared with that of the
Grabcut method because it is an interactive image segmentation system that uses the same
interface [16]. As can be seen in Figure 12.14, the Grabcut method does not work well
because there are a number of high-contrast edges in an object and the data fidelity term
has limited power in discriminating figures from the background. However, this is not the
case when the proposed method is used, as successfully segmented results are produced. In
rectification, the proposed method is based on Coons patch [27]. As shown in the exam-
ples presented in Figures 12.9 and 12.13, simple modification of the rectification method
substantially improves subjective quality. The robustness and efficiency of the system are
also demonstrated at http://ispl.snu.ac.kr/∼hikoo/Research.htm.

For comparison purposes, Figures 12.15a and 12.15b are used as an input stereo pair
to the method presented in Section 12.2. Figure 12.16 shows the rectification results of
the stereo algorithm, the results achieved using the method presented in this section, and
the results produced through image scanning. In subjective comparison, the visual quality
is similar when the image is captured in a perpendicular direction as illustrated in Fig-
ure 12.16a to 12.16c. However, camera-based methods show degraded results when the
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(a) (b)

(c) (d)

FIGURE 12.14

Comparison of the Grabcut algorithm and the proposed segmentation method: (a) user interaction-based input,

(b) light pixels stand for figures and dark pixels stand for blank in feature space, (c) Grabcut output, and (d)

presented method output.

scene is obliquely captured as illustrated in the bottom row in Figure 12.16. In such cases,
although both camera-driven methods suffer from blur caused by perspective contraction
and shallow depths of field, the stereo method is less affected by geometric distortions than
the method presented in this section. On the other hand, the latter method has advantages
on the boundaries because the algorithm forces the boundaries of restored images to be
straight, while skews and boundary fluctuations are usually observed in the method pre-
sented in Section 12.2 (an image was manually deskewed and cropped in order to obtain
Figures 12.16a and 12.16d).

In terms of computational complexity, the stereo system usually requires about one
minute to produce a 1600×1200 output image. The method presented in this section takes
4.8 seconds in feature extraction, 1.3 seconds for segmentation, and 0.5 seconds in rectifi-
cation for handling a 3216×2136 image. By taking about five seconds in user interaction,
this method produces an output within two seconds even for seven Megapixel images.
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(a) (b)

(c) (d)

FIGURE 12.15

Evaluation of the method in Section 12.2: (a,b) stereo pair, and (c,d) magnified and cropped images with user

interactions.

12.4 Conclusion

This chapter presented two camera-driven methods for geometric rectification of docu-
ments. One is a stereo-based method using explicit 3D reconstruction. The method works
irrespective of contents on documents and provides several advantages, such as specular
reflection removal. Therefore, this method can be used for OCR and digitization of figures
and pictures in indoor environment. The other one is a single-view method which recti-
fies a figure from a user-provided bounding box. This method is shown to be efficient,
robust, and easy-to-use. It should be noted that the camera captured images often suffer
from photometric and geometric distortion. Therefore, removal of uneven illumination and
motion/out-of-focus blur are also essential in enhancing camera captured document images,
although these operations are not discussed in this chapter. Nevertheless, as demonstrated
in this chapter, digital camera-driven systems for document image acquisition, analysis,
and processing have the potential to replace flatbed scanners.
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(a) (b) (c)

(d) (e) (f)

FIGURE 12.16 (See color insert.)

Performance comparison of the two approaches: (a,d) results of the method presented in Section 12.2 with

aspect ratio 1.52 and 1.50, (b,e) results of the method presented in Section 12.3 with aspect ratio 1.52 and

1.53, and (c,f) scanned images with aspect ratio 1.54 and 1.51.
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13.1 Introduction

The bilateral filter is a nonlinear weighted averaging filter, where the weights depend
on both the spatial distance and the intensity distance with respect to the center pixel.
The main feature of the bilateral filter is its ability to preserve edges while doing spatial
smoothing. The term bilateral filter was introduced in Reference [1]; the same filter was
earlier called the SUSAN (Smallest Univalue Segment Assimilating Nucleus) filter [2].
The variants of the bilateral filter have been published even earlier as the sigma filter [3]
and the neighborhood filter [4].
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FIGURE 13.1

Illustrative application of the bilateral filter. The range kernel and the spatial kernel are placed at I(x = 260).
The product of Kr(·) and Kd(·) determines the weights of the pixels in a local neighborhood. As seen in the

overall weights subplot, pixels on the left side of the edge have zero weights in getting the output at x = 260

even though they are spatially close.

At a pixel location x = (x1,x2), the output of the bilateral filter is calculated as follows:

Î(x) =
1

C(x) ∑
y∈N (x)

Kd (‖y−x‖)Kr (|I(y)− I(x)|) I(y), (13.1)

where Kd(·) is the spatial domain kernel, Kr(·) is the intensity range kernel, N (x) is a
spatial neighborhood of x, and C(x) is the normalization constant expressed as

C(x) = ∑
y∈N (x)

Kd (‖y−x‖)Kr (|I(y)− I(x)|). (13.2)

The kernels Kd(·) and Kr(·) determine how the spatial and intensity differences are
treated. The most commonly used kernel is the Gaussian kernel1 defined as follows:

Kd (‖y−x‖) = exp

(
−‖y−x‖2

2σ 2
d

)
, (13.3)

1In the text, the Gaussian kernel is the default kernel unless otherwise stated.
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FIGURE 13.2

Top: Input signal. Middle: Output of the Gaussian filter with σd = 10. Bottom: Output of the bilateral filter

with σd = 10 and σr = 1.5.

Kr (|I(y)− I(x)|) = exp

(
−|I(y)− I(x)|2

2σ 2
r

)
. (13.4)

The contribution (weight) of a pixel I(y) is determined by the product of Kd(·) and Kr(·).
As illustrated in Figure 13.1, the range kernel pulls down the weights of the pixels that are
not close in intensity to the center pixel even if they are in close spatial proximity. This
leads to the preservation of edges. Figure 13.2 demonstrates this property of the bilateral
filter and compares it with the Gaussian low-pass filter which blurs the edge.

While the Gaussian kernel is the choice for both Kd(·) and Kr(·) in References [1] and [2],
the sigma filter [3] and the neighborhood filter [4] use different kernels. The sigma filter [3]
calculates the local standard deviation σ around I(x) and uses a thresholded uniform kernel

Kr (|I(y)− I(x)|) =
{

1 if |I(y)− I(x)| ≤ 2σ
0 otherwise

(13.5)

This range kernel essentially eliminates the use of outliers in calculating the spatial average.
The spatial kernel of the sigma filter, on the other hand, is a uniform box kernel with a
rectangular or a circular support. For a circular support with radius ρd , the spatial kernel is
defined as follows:

Kd (‖y−x‖) =
{

1 if ‖y−x‖ ≤ ρd
0 otherwise

(13.6)

In case of the neighborhood filter [4], the range kernel is Gaussian as in Equation 13.3
and the spatial kernel is a uniform box as in Equation 13.6. Among these kernel options,
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(a) (b) (c) (d)

FIGURE 13.3

Output of the bilateral filter for different values of σd and σr: (top) σd = 1, (middle) σd = 3, (bottom) σd = 9;

(a) σr = 10, (b) σr = 30, (c) σr = 90, and (d) σr → ∞.

the Gaussian kernel is the most popular choice for both the range and spatial kernels, as it
gives an intuitive and simple control of the behavior of the filter with two parameters.

The Gaussian kernel parameters σd and σr control the decay of the weights in space
and intensity. Figure 13.3 demonstrates the behavior of the bilateral filter for different
combinations of σd and σr. It can be seen that the edges are preserved better for small
values of σr. In fact, an image is hardly changed as σr → 0. As σr → ∞, Kr(·) approaches
to 1 and the bilateral filter becomes a Gaussian low-pass filter. On the other hand, σd
controls the spatial extent of pixel contribution. As σd → 0, the filter acts on a single pixel.
As σd → ∞, the spatial extent of the filter will increase, and eventually, the bilateral filter
will act only on intensities regardless of position, in other words, on histograms.

Denoting H(·) as the histogram over the entire spatial domain, the filter becomes:

Î(x) =
1

C(x) ∑
y

exp

(
−|I(y)− I(x)|2

2σ2
r

)
I(y)

=
1

C(x)

255

∑
i=0

iH(i)exp

(
−|i− I(x)|2

2σ2
r

)
(13.7)

where the normalization constant is defined as
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FIGURE 13.4

Iterative application of the bilateral filter with σd = 12 σr = 30. Left: Input image. Middle: Result of the first

iteration. Right: Result of the third iteration.

1000
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1000 50 250200150
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500

0

3rd iteration

input image

FIGURE 13.5

Histograms of the input image and the output image after the third iteration of the bilateral filter.

C(x) = ∑
y

exp

(
−|I(y)− I(x)|2

2σ 2
r

)

=
255

∑
i=0

H(i)exp

(
−|i− I(x)|2

2σ 2
r

)
. (13.8)

Considering the histogram H(i) as the probability density function (pdf) of intensities,
H(i)exp(−|i− I(x)|2/(2σ 2

r )) is the smoothed pdf, and Equation 13.7 can be interpreted
as finding the expected value of the pixel intensities. When σr also goes to infinity, the
bilateral filter returns the expected (average) value of all intensities.

From the histogram perspective, the bilateral filter can be interpreted as a local mode
filter [5], returning the expected value of local histograms. This effect is demonstrated
through iterative application of the bilateral filter in Figures 13.4 and 13.5. As seen, the
filtered image approaches the modes of the distribution through the iterations. The output
histogram has certain peaks, and in-between values are reduced.

Using the bilateral filter, an image can be decomposed into its large-scale (base) and
small-scale (detail) components. The large-scale component is a smoothed version of the
input image with main edges preserved, and the small-scale component is interpreted as
having the texture details or noise, depending on the application and parameter selection.
The small-scale component is obtained by subtracting the filtered image from the original
image. Figure 13.6 shows the effect of the σr value on extracting detail components.
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(a) (b)

(c) (d)

FIGURE 13.6

A detail component is obtained by subtracting the filtered image from the original image. In this figure, σd = 3

and (a) σr = 10, (b) σr = 30, (c) σr = 90, and (d) σr → ∞ in raster scan order.

13.2 Applications

The bilateral filter has found a number of applications in image processing and computer
vision. This section reviews some popular examples of using bilateral filter in practice.

13.2.1 Image Denoising

The immediate application of the bilateral filter is image denoising, because this filter
can do spatial averaging without blurring edges. The critical question is how to adjust
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FIGURE 13.7

Average MSE values between original images and denoised images for different values of σd , σr, and the noise

standard deviation σn: (a) σ = 5, (b) σ = 10, (c) σ = 15, and (d) σ = 20.

the parameters of the bilateral filter as a function of noise or local texture. Reference [6]
presents an empirical study on optimal parameter selection. To understand the relation
among σd , σr, and the noise standard deviation σn, zero-mean white Gaussian noise is
added to some test images and the bilateral filter is applied with different values of the
parameters σd and σr. The experiment is repeated for different noise variances and the
mean squared error (MSE) values are recorded. The average MSE values are given in
Figure 13.7. These MSE plots indicate that the optimal σd value is relatively insensitive
to noise variance compared to the optimal σr value. It appears that σd could be chosen
around two regardless of the noise power; on the other hand, the optimal σr value changes
significantly as the noise standard deviation σn changes. This is an expected result because
if σr is smaller than σn, noisy data could remain isolated and untouched, as in the case of the
salt-and-pepper noise problem of the bilateral filter [1]. That is, σr should be sufficiently
large with respect to σn.

To see the relation between σn and the optimal σr, σd is set to some constant values,
and the optimal σr values (minimizing MSE) are determined as a function of σn. The
experiments are again repeated for a set of images; the average values and the standard
deviations are displayed in Figure 13.8. It can be observed that the optimal σr is linearly
proportional to σn. There is obviously no single value for σr/σn that is optimal for all
images and σd values; and in fact, future research should investigate spatially adaptive
parameter selection to take local texture characteristics into account. On the other hand,
these experiments give us some guidelines in selection of the parameters.

Reference [6] further suggests a multiresolution framework for the bilateral filter. In
this way, different noise components (fine-grain and coarse-grain noise) can be determined
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FIGURE 13.8

The optimal σr values plotted as a function of the noise standard deviation σn based on the experiments with

a number of test images [6]: (a) σd = 1.5, (b) σd = 3.0, and (c) σd = 5.0. The data points are the mean of

optimal σr values that produce the smallest MSE for each σn value. The vertical lines denote the standard

deviation of the optimal σr for the test images. The least squares fits to the means of the optimal σr/σn data

are plotted as diagonal lines. The slopes of these lines are, from left to right, 2.56, 2.16, and 1.97.
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FIGURE 13.9

Illustration of the multiresolution denoising framework [6]. The analysis and synthesis filters (La, Ha, Ls, and

Hs) form a perfect reconstruction filter bank.
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(a) (b)

(c) (d)

FIGURE 13.10

Image denoising using the bilateral filter: (a) input image, (b) bilateral filtering [1] with σd = 1.8 and σr =
3×σn, (c) bilateral filtering [1] with σd = 5.0 and σr = 20×σn, and (d) multiresolution bilateral filtering [6]

with σd = 1.8 and σr = 3×σn at each resolution level.

and eliminated at different resolution levels for better results. The proposed framework
is illustrated in Figure 13.9. A signal is decomposed into its frequency subbands with
wavelet decomposition; as the signal is reconstructed back, bilateral filtering is applied to
the approximation subbands and wavelet thresholding is applied to the detail subbands. At
each level, the noise standard deviation σn is estimated, and the bilateral filter parameter
σr is set accordingly. Unlike the standard single-level bilateral filter [1], this multiresolu-
tion bilateral filter has the potential of eliminating coarse-grain noise components. This is
demonstrated in Figure 13.10.

13.2.2 Tone Mapping of High-Dynamic Range Images

Because a real scene can have much wider dynamic range than a camera can capture,
images often suffer from saturation. By changing the exposure rate, it is possible to get in-
formation from different parts of the same scene. In high-dynamic range (HDR) imaging,
multiple low-dynamic range (LDR) images captured with different exposure rates are com-
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HDR image
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large-scale detail

reduce dynamic range

tone mapped image

FIGURE 13.11

The tone-mapping method of Reference [10].

bined to produce a HDR image [7], [8], [9]. This process requires estimation or knowledge
of the exposure rates and camera response function. Geometric registration, lens flare and
ghost removal, vignetting correction, compression and display of HDR images are some of
the other challenges in HDR imaging.

After an HDR image is generated, it has to be tone-mapped to display on a screen, which
typically has less dynamic range than the HDR image. The bilateral filter has been suc-
cessfully used for this purpose [10]. As illustrated in Figure 13.11, the intensity and color
channels of a HDR image are first extracted. The intensity channel is then decomposed
into its large-scale and detail components using the bilateral filter. The dynamic range of
the large-scale component is reduced (using, for instance, linear or logarithmic scaling) to
fit into the dynamic range of the display; it is then combined with the detail component
to form the tone-mapped intensity, which is finally combined with the color channel to
form the final image. The detail component preserves the high frequency content of the
image. Since bilateral filtering is used to obtain the large-scale component, the edges are
not blurred and the so-called halo artifacts are avoided. Figure 13.12 demonstrates this
framework in a practical situation.

13.2.3 Contrast Enhancement

A commonly used model in image formation is such that an intensity S = LR is the
product of an illumination component L and a reflectance component R. Retinex meth-
ods try to remove the illumination component based on the assumption that illumina-
tion changes slowly compared to reflectance. Taking the logarithm of S = LR results in
s = log(S) = log(L)+ log(R) = l + r. By low-pass filtering s, the illumination component
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(a)

(b) (c)

FIGURE 13.12 (See color insert.)

High definition range imaging using the bilateral filter: (a) a set of four input images, (b) linearly scaled HDR

image, and (c) image obtained using the tone-mapping method of Reference [10].

l can be estimated.
Reference [11] uses two bilateral filters, one for extracting the illumination component

and the other for denoising the reflectance component. Since the reflectance R is in the
range [0,1], it holds that l ≤ s. Therefore, in calculating the illumination component l, only
the pixels with value larger than the value of the center pixel are included in the bilateral
filter. Once l is calculated, s− l gives the reflectance component r. Reference [11] uses a
second bilateral filter to remove noise from the reflectance component. As the noise is more
pronounced in the darker regions, the bilateral filter is adapted spatially through the range
parameter as σr(x) = (c1s(x)c2 + c3)

−1, where c1, c2, and c3 are some constants. With this
adaptation, larger σr (therefore, stronger filtering) is applied for smaller s.

Another contrast enhancement algorithm where bilateral filtering is utilized is presented
in Reference [12]. Similar to Reference [10], an image is decomposed into its large-scale
and detail components using the bilateral filter. The large-scale component is modified with
a histogram specification; the detail component is modified according to a textureness mea-
sure, which quantifies the degree of local texture. The textureness measure TI is obtained
by cross (or joint) bilateral filtering the high-pass filtered image HI as follows:

TI(x) =
1

C(x) ∑
y∈N (x)

Kd (‖y−x‖)Kr (|I(y)− I(x)|) |HI(y)|, (13.9)

where |·| returns the absolute values, and the cross bilateral filter smooths |HI| without
blurring edges. The term cross (or joint) bilateral filter [13], [14] is used because input to
the kernel Kr(·) is I, but not |HI|. In other words, the edge information comes from I while
|HI| is filtered.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
31

 0
9 

M
ay

 2
01

6 



350 Computational Photography: Methods and Applications

no-flash

color color

detail large-scale

fused image

flash

intensity intensity

detail large-scale

FIGURE 13.13

Flowchart for the fusion of flash and no-flash images.

(a) (b) (c)

FIGURE 13.14 (See color insert.)

Image fusion using the bilateral filter: (a) no-flash image, (b) flash image, and (c) fusion of the flash and

no-flash images.

13.2.4 Image Fusion

Another application of a bilateral filter is the fusion of different image modalities, such
as flash and no-flash images [13], [14], and visible spectrum and infrared spectrum im-
ages [15]. A flash image has high signal-to-noise ratio; however, it has unpleasing direct
flash lighting. The no-flash version of the same scene, on the other hand, suffers from low
signal-to-noise ratio. As illustrated in Figure 13.13, the color and detail components of the
flash image and the large-scale component of the no-flash image are combined. The result-
ing image has the sharpness of the flash image and the tonal characteristics of the no-flash
image. A sample result is given in Figure 13.14. One potential problem in combining flash
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FIGURE 13.15

Bilateral filtering is applied on a step edge signal to illustrate the effects of the filter parameters σr and σd on

blocking artifacts.

and no-flash images is the flash shadows. In Reference [13], shadow regions are detected
and excluded from bilateral filtering in extracting the detail layer. The same work also
proposes the use of the cross bilateral filter in obtaining the large-scale component of the
no-flash image when it is too dark and thus suffers from a low signal-to-noise ratio:

Îno− f lash(x) =
1

C(x) ∑
y∈N (x)

Kd (‖y−x‖)Kr
(∣∣I f lash(y)− I f lash(x)

∣∣) Ino− f lash(y) (13.10)

Similarly, in Reference [15], the large-scale component of a (noisy) visible-spectrum im-
age is combined with the detail component of the corresponding infrared image. To obtain
the large-scale component of the visible-spectrum image, the infrared image is utilized:

ÎS(x) =
1

C(x) ∑
y∈N (x)

Kd (‖y−x‖)Kr1 (‖IRGB(y)− IRGB(x)‖)Kr2 (|IIR(y)− IIR(x)|) IS(y),

(13.11)
where Kr1 and Kr2 are range kernels for the visible-spectrum and the infrared images,
IIR(x) is the infrared image, IS(·) denotes a color channel with S ∈ {red,green,blue},
and IRGB(x) = [Ired(x), Igreen(x), Iblue(x)]. Reference [15] argues that the dual kernel
Kr1(·)Kr2(·) detects edges better because it is sufficient if an edge appears in the RGB image
or the IR image.

13.2.5 Compression Artifact Reduction

Block-based discrete cosine transform (DCT) is adopted by various image and video
compression standards, such as JPEG, MPEG, and H.26x. One problem associated with
the block-based processing is the blocking artifacts, the discontinuities along the block
boundaries caused by the coarse quantization of the DCT coefficients. The blocking ar-
tifacts and other compression artifacts, such as the mosquito or ringing artifacts, become
more severe with higher compression rates.

Reference [16] presents a spatially adaptive version of the bilateral filter to reduce block
discontinues and ringing artifacts effectively while avoiding over-smoothing of texture re-
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output
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bilateral
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input
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calculate s
d

calculate s
r

FIGURE 13.16

The block diagram of the method in Reference [16]. Discontinuity and texture detection modules produce

space varying maps that are used to compute the range and domain parameters of the bilateral filter. The

bilateral filter is then applied to the image based on these parameters.

(a) (b) (c)

FIGURE 13.17

Discontinuity and texture map generation: (a) input compressed image, (b) texture map, and (c) block discon-

tinuity map produced by the method of Reference [16].

gions. The parameters of the bilateral filter should be carefully chosen for this purpose.
As illustrated in Figure 13.15, when the σr value is less than the discontinuity amount, the
filter is basically useless for eliminating the discontinuity. When σr is larger than the dis-
continuity amount, the discontinuity can be eliminated. The extent of the smoothing can
be controlled by the σd value. The larger the σd value, the wider the extent of smoothing
is. On the other hand, if σr value is less than the discontinuity amount, elimination of the
discontinuity is impossible no matter the value of σd .

Figure 13.16 shows the flowchart of this method. The block discontinuity amounts are
detected at the block boundaries, and then spatially interpolated to obtain a discontinuity
map. The σr value at each pixel is adjusted accordingly; specifically, σr at a pixel is linearly
proportional to the discontinuity map value. On the other hand, the σd value is adjusted
according to the local texture to avoid over-smoothing. A texture map is obtained by calcu-
lating the local standard deviation at every pixel; the σd value is set inversely proportional
to the texture map value at each pixel. Figure 13.17 shows discontinuity and texture maps
for a compressed image. Figure 13.18 compares the results of the standard bilateral filter
and the spatially adaptive bilateral filter.
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(a) (b)

(c) (d)

FIGURE 13.18

Compression artifact reduction using the bilateral filter: (a) original image, (b) compressed image, (c) result of

the standard bilateral filter with σr = 20 and σd = 3, and (d) result of the adaptive bilateral filter [16].

13.2.6 Mesh Smoothing

Since three-dimensional (3D) scanning devices may produce noisy observations, de-
noising of 3D meshes is necessary in many computer graphics applications. In Refer-
ence [17], each vertex point of a mesh is denoised along its normal direction; this would
change the geometric shape information but not any other parametric information of the
mesh. Let S be the noise-free surface, and M be the noisy observed mesh. A vertex point
x = (x1,x2,x3) ∈M is updated along the surface normal nx as follows [17]:

x̂ = x+dnx. (13.12)

The update amount d is calculated through the application of the bilateral filter within a
local neighborhood:
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FIGURE 13.19

Illustration of the mesh denoising methods of References [17] and [18].

d =
1

C(x) ∑
y

Kd (‖y−x‖)Kr (〈nx,(y−x)〉)〈nx,(y−x)〉, (13.13)

where the inner product 〈nx,(y−x)〉 gives the projection of the difference (y−x) onto the
surface normal nx, and thus the bilateral filter smooths the projections within a local space
and updates the vertex as a weighted sum of the projections.

Reference [18] takes a different approach to mesh smoothing. Suppose that q is a surface
within a neighborhood of the vertex x, cq is the centroid of the surface, and aq is the area
of the surface. The prediction pq(x) of the vertex x based on the surface q is the projection
of x to the plane tangent to the surface q. Then the vertex x is updated as follows:

x̂ =
1

C(x) ∑
q

aqKd
(∥∥cq−x

∥∥)
Kr

(∥∥pq(x)−x
∥∥)

pq(x). (13.14)

The inclusion of the area aq is to give more weight to predictions coming from larger
surfaces. Figure 13.19 illustrates the methods of References [17] and [18].

13.2.7 Image Interpolation

Since the bilateral filter adapts its filter coefficients to preserve edges, it can be used in
image interpolation. A very good fit is the demosaicking problem. In single-sensor digi-
tal cameras, a color filter array is placed on the sensor to capture one spectral component
at each pixel. The mosaic of color samples is then interpolated to obtain full-color chan-
nels. The interpolation process is known as demosaicking [19]. The popular Bayer pattern
repeats a green-red-green-blue pattern to form the color filter array; the number of green
samples is twice the number of red/blue samples. Therefore, the edge information coming
from the green channel can be utilized to interpolate the red and blue channels.

In Reference [20], the red channel IR is updated using the cross bilateral filter as follows:

ÎR(x) =
1

C(x) ∑
y

MR(y)Kd (‖y−x‖)Kr (|IG(y)− IG(x)|) IR(y), (13.15)

where MR is a mask of ones and zeros, indicating the locations of red samples, and
Kr (|IG(y)− IG(x)|) captures the edge information from the green channel. The blue chan-
nel is updated similarly.
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(a) (b) (c)

FIGURE 13.20

Demosaicking using the bilateral filter: (a) bilinear interpolation of a Bayer sampled data, (b) the standard

POCS interpolation method of Reference [22], (c) the POCS method with the addition of the bilateral constraint

set [21].

In Reference [21], the green channel is again used as a reference to interpolate the red and
blue channels. Instead of applying the bilateral filter directly, the interpolation problem is
formulated as an optimization problem, and solved using the projections onto convex sets
(POCS) technique [22]. The POCS technique starts with an initial estimate and updates
it iteratively by projecting onto constraint sets. Denoting BF(·) as the bilateral filter, the
constraint set SR on the red (or blue) channel to limit the deviation from the green channel
is defined as follows:

SR = {IR(x) : |(IR(x)− IG(x))−BF (IR(x)− IG(x))| ≤ T} , (13.16)

where T is a positive threshold. For an object in the scene, the difference IR− IG should be
constant or change smoothly. This constraint set guarantees that IR− IG changes smoothly
in space; and the bilateral filter prevents crossing edges. Reference [21] defines additional
constraint sets, including data fidelity and frequency similarity constraint sets, and uses the
POCS technique to perform the interpolation. A sample result is shown in Figure 13.20.

13.2.8 Other Applications

In addition to the applications mentioned so far, the bilateral filter has been utilized in var-
ious other applications, including optical flow estimation [23], depth map estimation [24],
video stylization [25], texture and illumination separation [26], orientation smoothing [27],
medical imaging [28], and video enhancement [29]. The main underlying idea in all these
applications is the use of multiple kernels, where spatial distance as well as range distance
are taken into account to preserve discontinuities in the signal. The specific choice of ker-
nels and parameters depends on the application.
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13.3 Fast Bilateral Filter

The direct implementation of the bilateral filter is presented in Algorithm 13.1 which
shows the flow of operations performed for each pixel x ∈ S , where S is the set of all
pixels in the image. The computational complexity of this implementation is O (|S ||N |),
where |S | is the number of pixels in the entire image and |N | is the number of pixels in
the neighborhood N . The local neighborhood is typically chosen such that ‖y−x‖ ≤ 3σd ;
therefore the neighborhood size |N | is proportional to σ 2

d . While the overall complexity
O

(|S |σ2
d

)
is bearable for small σd , it quickly becomes restrictive with increasing σd .

To address this issue, a number of fast implementation/approximation methods have been
proposed.

ALGORITHM 13.1 Bilateral filter implementation.

1. Initialize Î(x) = 0 and C(x) = 0.
2. For each y in the local neighborhood N of x:
• Calculate the weight w = Kd (‖y−x‖)Kr (|I(y)− I(x)|).
• Update Î(x) = Î(x)+w∗ I(y).
• Update C(x) = C(x)+w.

3. Normalize Î(x) = Î(x)/C(x).

13.3.1 Kernel Separation

One method of speeding up the bilateral filter is to separate the two-dimensional (2D)
filter kernel into two one-dimensional (1D) kernels: first, the rows of an image are fil-
tered, the result is then filtered along the columns [30]. This reduces the complexity to
O (|S |σd). Although its performance is good in smooth regions and horizontal/vertical
edges, the algorithm does not perform satisfactorily on texture regions and slanted edges.

13.3.2 Bilateral Grid

Another fast bilateral filter algorithm is obtained through representing an image in a 3D
space, where the signal intensity is added to the spatial domain as the third dimension [31].
First, note that the bilateral filter can be represented in a vector form:

(
C(x)Î(x)

C(x)

)
= ∑

y∈N (x)
Kd (‖y−x‖)Kr (|I(y)− I(x)|)

(
I(y)

1

)
. (13.17)

This vector representation can be used to interpret the bilateral filter as linear filtering of
the entries of a vector-valued image separately, followed by division of the first entry by
the second.

More explicitly, the bilateral filter is implemented by defining the 3D grids, Γ1 and Γ2,
of a 2D image I as follows:

Γ1 (x1,x2,r) =
{

I (x1,x2) if r = I (x1,x2) ,
0 otherwise.

(13.18)
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Γ2 (x1,x2,r) =
{

1 if r = I (x1,x2) ,
0 otherwise.

(13.19)

These grids are then convolved with a 3D Gaussian, Kd,r, whose standard deviation is σd
in the 2D spatial domain and σr in the 1D intensity domain, providing the following:

Γ̂1 (x1,x2,r) = Kd,r ∗Γ1 (x1,x2,r) , (13.20)

Γ̂2 (x1,x2,r) = Kd,r ∗Γ2 (x1,x2,r) . (13.21)

Finally, the result of the bilateral filter at position (x1,x2) with input intensity I(x1,x2) is
obtained as follows:

Î(x1,x2) =
Γ̂1 (x1,x2, I(x1,x2))
Γ̂2 (x1,x2, I(x1,x2))

. (13.22)

Since Γ̂1 and Γ̂2 are obtained through lowpass filtering, they are bandlimited and can
be represented well with their low-frequency components. Therefore, the grids Γ1 and Γ2
can be downsampled without losing much performance to speed up the algorithm. Refer-
ence [31] proposes downsampling of the spatial domain S by σd and the intensity range
R by σr. The complexity of the algorithm then becomes O(|S |+ |S ||R|/(σdσr)).

13.3.3 Local Histogram-Based Bilateral Filter with Uniform Spatial Kernel

With the uniform box kernel, the bilateral filter can be written in terms of local his-
tograms:

Î(x) =
1

C(x) ∑
y∈N (x)

Kr (|I(y)− I(x)|) I(y)

=
1

C(x)

255

∑
i=0

iHx(i)Kr (|i− I(x)|), (13.23)

where

C(x) = ∑
y∈N (x)

Kr (I(y)− I(x))

=
255

∑
i=0

Hx(i)Kr (i− I(x)) (13.24)

and Hx is the histogram in a local neighborhood of x.
There are few advantages of this formulation [32]. Namely, Kr (|i− I(x)|) can be cal-

culated for all values of i and at all locations x independently and therefore in parallel.
Similarly, Hx(i) and iHx(i) can be calculated independent of Kr (|i− I(x)|). The term Hx(i)
can be calculated in constant time using the integral histogram technique [33]. Finally, the
algorithm can be further speeded up by quantizing the histogram. As a result, the bilateral
filter can be implemented in constant time, that is, independent of the image size or the
kernel size. A similar histogram-based method was proposed in Reference [34] although
the histogram computation is not as efficient as the one presented in Reference [32].
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13.3.4 Polynomial Representation of Range Filter

In addition to the histogram-based approach, Reference [32] presents another approach,
where there is no restriction on the domain filter, but the range kernel is approximated with
a polynomial. Doing a first-order Taylor series expansion on the Gaussian range filter, the
following is obtained:

Î(x) =
1

C(x) ∑
y∈N (x)

Kd (‖y−x‖)e
−|I(y)−I(x)|2

2σ2r I(y)

' 1
C(x) ∑

y∈N (x)
Kd (‖y−x‖)

(
1− 1

2σ2
r
|I(y)− I(x)|2

)
I(y)

=
1

C(x) ∑
y∈N (x)

Kd (‖y−x‖)
(

1− 1
2σ2

r
I2(y)+

2
2σ2

r
I(y)I(x)− 1

2σ2
r

I2(x)
)

I(y)

=
1

C(x)

[
∑

y∈N (x)
Kd (‖y−x‖) I(y)− 1

2σ 2
r

∑
y∈N (x)

Kd (‖y−x‖) I3(y)

+
I(x)
σ2

r
∑

y∈N (x)
Kd (‖y−x‖) I2(y)− I2(x)

2σ 2
r

∑
y∈N (x)

Kd (‖y−x‖) I(y)

]
. (13.25)

This equation reveals that the bilateral filter could be approximated from spatially filtered
I, I2, and I3. Defining zn as the convolution of Kd(·) with In:

zn(x) = ∑
y∈N (x)

Kd (‖y−x‖) In(y), (13.26)

the bilateral filtered image is

Î =
1
C

[(
1− 1

2σ 2
r

I2
)

z1 +
(

1
σ 2

r
I
)

z2−
(

1
2σ 2

r

)
z3

]
, (13.27)

where

C =
(

1− 1
2σ 2

r
I2

)
+

(
1

σ2
r

I
)

z1−
(

1
2σ2

r

)
z2. (13.28)

In other words, the bilateral filter is implemented through linear filtering and element-
by-element multiplication / division of pixel intensities. The performance of this algorithm
is good for small σr, but it degrades quickly for large σr since the polynomial representa-
tion does not approximate the Gaussian well. The use of higher-order polynomials should
improve the results.

13.4 Theoretical Foundations

Although the bilateral filter was first proposed as an intuitive tool, recent research has
pointed out the connections with some well-established techniques.
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13.4.1 Relation to Robust Estimation and Weighted Least Squares

In an inverse problem (e.g., denoising, restoration, interpolation), one can impose
smoothness or any other prior information on the solution by adding a regularization term
to the cost function. In robust estimation, the regularization term includes a robust function
to reduce the effects of outliers. Consider the following regularization term:

Φ(I(x)) = ∑
y

Kd (‖y−x‖)ρ (I(y)− I(x)), (13.29)

where ρ(·) is a robust function that penalizes the difference between I(x) and I(y). The reg-
ularization term also includes Kd (‖y−x‖) to give more weight to the pixels that are close
to x. If ρ(·) is differentiable, the solution that minimizes the cost function can be found
iteratively using a gradient descent technique. For instance, an iteration of the steepest
descent algorithm is

Î(x) = I(x)−µ
∂Φ(I(x))

∂ I(x)

= I(x)+ µ ∑
y

Kd (‖y−x‖)ρ ′ (I(y)− I(x)), (13.30)

where µ is the step size.
By expressing ρ ′(·) as ρ ′ (I(y)− I(x)) = Kr (|I(y)− I(x)|)(I(y)− I(x)), the iteration in

Equation 13.30 becomes equivalent to the bilateral filter:

Î(x) = I(x)+ µ ∑
y

Kd (‖y−x‖)Kr (|I(y)− I(x)|)(I(y)− I(x))

= I(x)−µ ∑
y

Kd (‖y−x‖)Kr (|I(y)− I(x)|) I(x)

+µ ∑
y

Kd (‖y−x‖)Kr (|I(y)− I(x)|) I(y)

=
1

C(x) ∑
y

Kd (‖y−x‖)Kr (|I(y)− I(x)|) I(y), (13.31)

where µ is set to 1/C(x). This means that different versions of the bilateral filter can be
defined based on robust estimation with the range kernel Kr (α) = ρ ′ (α)/α . For example,
using ρ (α) = 1− exp(α2/(2σ2)) provides the standard Gaussian kernel. Other possible
choices include the Tukey function

ρ(α) =
{

(x/σ)2− (x/σ)4 + 1
3 (x/σ)6 if |x| ≤ σ ,

1
3 otherwise,

(13.32)

and the Huber function

ρ(α) =
{

x2/2σ +σ/2 if |x| ≤ σ ,
|x| otherwise.

(13.33)

Also note that, as seen in Equation 13.30, the contribution of an input to the update is
proportional to ρ ′(·), the so-called influence function [10]. The influence function, in other
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FIGURE 13.21

Example robust functions with their corresponding influence functions and kernels: (top) Gaussian function,

(middle) Tukey function, (bottom) Huber function; (a) ρ , (b) Kr, and (c) ρ ′.

words, can be used to analyze the response of the filter to outliers. The Gaussian, Tukey,
and Huber robust functions, with corresponding influence functions and kernels are given
in Figure 13.21.

The bilateral filter is also related to the weighted least squares estimation [35]. Defining
v as the vectorized version of the image I, the regularization term in weighted least squares
estimation as given by

Φ(v) = ∑
m

(v−Dmv)T W(v−Dmv), (13.34)

where Dm operator shifts a signal by m samples, and W is a weighting matrix. With proper
choice of weighting matrix (in particular, choosing the weighting matrix such that it penal-
izes the pixel intensity differences and shift amounts with Gaussian functions), an iteration
of the weighted least squares estimation becomes equivalent to the bilateral filter [35].

13.4.2 Relation to Partial Differential Equations

The behavior of the bilateral filter can be analyzed from the perspective of partial dif-
ferential equations [36], [37]. Reference [37] examines the asymptotical behavior of the
bilateral filter with a uniform spatial kernel. Specifically, the continuous version of the
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bilateral filter:

Î(x) =
1

C(x)

x+σd∫

x−σd

e
−|I(y)−I(x)|2

2σ2r I(y)dy, (13.35)

is considered to show that the evolution (or temporal derivative) of the signal It(x)≡ Î(x)−
I(x) is proportional to its second derivatives Iηη(x) in the gradient direction and Iξ ξ (x) in
the orthogonal direction of the gradient:

It(x)∼= a1Iξ ξ (x)+a2Iηη(x), (13.36)

where a1 and a2 are functions of σd , σr, and the gradient of I(x). The signs of a1 and a2
determine the behavior of the filter.

Namely, if σr À σd , both a1 and a2 become equal positive constants, the sum a1Iξ ξ (x)+
a2Iηη becomes the Laplacian of the signal and the bilateral filter becomes a lowpass filter.
If σr and σd have the same order of magnitude, the filter behaves like a Perona-Malik
model [38] and shows smoothing and enhancing characteristics. Since a1 is positive and
decreasing, there is always diffusion in the tangent direction Iξ ξ . On the other hand, a2 is
positive when the gradient is less than a threshold (which is proportional to σd /σr), and the
filter is smoothing in the normal direction Iηη . The term a2 is negative when the gradient
is larger than the threshold; in this case, the filter shows an enhancing behavior. Finally, if
σr ¿ σd , then a1 and a2 both tend to zero, and the signal is hardly altered.

Reference [37] also shows that, when σr and σd have the same order of magnitude,
the bilateral filter and the Perona-Malik filter can be decomposed in the same way as in
Equation 13.36, and produce visually very similar results even though their weights are
not identical. Similar to the Perona-Malik filter, the bilateral filter can create contouring
artifacts, also known as shock or staircase effects. These shock effects occur at signal lo-
cations where the convex and concave parts of the signal meet, in other words, at inflection
points where the second derivative is zero (see Figure 13.22). Reference [37] proposes to
do linear regression to avoid these artifacts. With linear regression, the weights a1 and a2
in Equation 13.36 become positive in smooth regions, and no contours or flat zones are
created.

7050 60 130 140
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FIGURE 13.22

The shock effect is illustrated through iterative application of the bilateral filter with σr = 4 and σd = 10.
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bilateral

filter

trilateral

filter

FIGURE 13.23

The trilateral filter [39] adapts to local slope.

13.5 Extensions of the Bilateral Filter

There are various extensions of the bilateral filter. One possible extension is the cross (or
joint) bilateral filter, where the filter kernel uses one image to filter another. This is helpful
when the image used in the kernel provides better information on large-scale features than
the image to be filtered. Sample applications are fusion of flash and no-flash images, and
multispectral images as discussed in Section 13.2. Other extensions of the bilateral filter
include trilateral, temporal, and non-local means filtering.

The trilateral filter adapts to local slope and extends the effective range of the bilateral
filter [39]. As illustrated in Figure 13.23, this is achieved by tilting the filter according to
the local slope. Reference [39] also proposes to adapt the local neighborhood by extending
the neighborhood up to where the local slope differences are within a threshold.

The bilateral filter can be extended to process video sequences. A video frame It0 is
updated using the weighted sum of pixels from both the actual and the neighboring frames:

Ît0(x) =
1

C(x) ∑
y∈N (x)

∑
t

Kd (‖y−x‖)Kr (|I(y)− I(x)|)Kt (|t− t0|) It(y), (13.37)

where the temporal kernel could be chosen as a Gaussian:

Kt (t− t0) = exp

(
−|t− t0|2

2σ 2
t

)
(13.38)

The non-local means filter [40] uses the norm of the residual between I(x), which is a
vectorized version of a local region around I(x), and I(y) instead of |I(x)− I(y)|:

Î(x) =
1

C(x) ∑
y∈N (x)

Kd (‖y−x‖)Kr (‖I(y)− I(x)‖) I(y). (13.39)

Apparently, the bilateral filter is a specific case of the non-local means filter. The non-
local means filter has been shown to perform better than the bilateral filter since it can
be used with a larger spatial support σd as it robustly finds similar regions through
Kr (‖I(y)− I(x)‖). The disadvantage is, however, its high computational cost.
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In addition to the kernels that have mentioned so far (e.g., uniform box kernel, Gaus-
sian kernel, and kernels derived from robust functions in Section 13.4.1), it is possible to
use other kernel types and modifications. For example, salt-and-pepper noise cannot be
eliminated effectively with the standard bilateral filter because a noisy pixel is likely to be
significantly different from its surrounding, resulting in Kr(·) to be zero. By using the me-
dian value Imed(x) of the local neighborhood around x, the impulse noise can be eliminated:

Kr (|I(y)− Imed(x)|) = exp

(
−|I(y)− Imed(x)|2

2σ2
r

)
. (13.40)

A different extension is presented in Reference [37]. Instead taking a weighted average
within a neighborhood, a plane is fit to the weighted pixels in the neighborhood, and the
center value of the plane is assigned as the output. This regression filter was shown to
reduce the staircase artifacts.

13.6 Conclusions

This chapter surveyed the bilateral filter-driven methods and their applications in image
processing and computer vision. The theoretical foundations of the filter were provided; in
particular, the connections with robust estimation, weighted least squares estimation, and
partial differential equations were pointed out. A number of extensions and variations of
the filter were discussed. Since the filter is nonlinear, its fast implementation is critical
for practical applications; therefore, the main implementation approaches for fast bilateral
filter were discussed as well.

The bilateral filter has started receiving attention very recently, and there are open prob-
lems and room for improvement. Future research topics include optimal kernel and param-
eter selection specific to applications, fast and accurate implementations for multidimen-
sional signals, efficient hardware implementations, spatial adaptation, and modifications to
avoid staircase artifacts.
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14.1 Introduction

For centuries, artists have been developing different tools and various styles to produce
artistic images, which are usually in a way more interesting than mere representations of
scenes from the real world. While classical tools, such as brushes, ink pens or pencils,
require skills, effort and talent, science and technology can make more advanced tools that
can be used by all people, not only artists, to produce artistic images with little effort.

Recently, scientists have been showing increasing interest in visual arts. On one side,
psychologists and neurophysiologists attempt to understand the relation between the way
artists produce their works and the function of the visual system of the brain. Examples
of such studies include the use of principles of gestalt psychology to understand and de-
scribe art [1], [2], [3], deriving spatial organization principles and composition rules of
artwork from neural principles [1], [4], or understanding the biological basis of aesthetic
experiences [5], [6], [7]. A recent overview of these findings is presented in Reference [8].
On the other side, computer scientists and engineers are developing painterly rendering al-
gorithms which imitate painting styles. There is a large variety of such algorithms, both
unsupervised [9], [10], [11], [12] and interactive [13], [14], [15], [16]. Much effort has
been made to model different painterly styles [17], [18], [19], [20] and techniques [21],
[22], [23], [24], [25], [26], especially watercolor [27], [21], [28], [29], [30], [31], [32],
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[33], [34], and to design efficient interactive user interfaces [14], [35], [36], some of which
deploy special-purpose hardware [35]. An overview of these techniques can be found in
Reference [37]. The importance of such algorithms is two-fold; computers have the poten-
tial to help the non-specialist to produce their own art and the artist to develop new forms
of art such as impressionistic movies [9], [38], [39] or stereoscopic paintings [40], [41].

This chapter focuses on unsupervised painterly rendering, that is, fully automatic algo-
rithms which convert an input image into a painterly image in a given style. This problem
has been faced in different ways; for example, artistic images can be generated by simulat-
ing the process of putting paint on paper or canvas. A synthetic painting is represented as a
list of brush strokes which are rendered on a white or canvas textured background. Several
mathematical models of a brush stroke are proposed, and special algorithms are developed
to automatically extract brush stroke attributes from the input image. Another approach
suggests abstracting from the classical tools that have been used by artists and focusing on
the visual properties, such as sharp edges or absence of natural texture, which distinguish
painting from photographic images. These two classes of algorithms will be explored and
discussed in the next sections. The existence of major areas of painterly rendering, in which
the input is not a photographic image and whose treatment goes beyond the purpose of this
chapter, will also be acknowledged. Important examples are painterly rendering on video
sequences and the generation of artistic images from three-dimensional models of a real
scene.

The chapter is organized as follows. Section 14.2 describes brush stroke oriented
painterly rendering algorithms, including physical models of the interaction of a fluid pig-
ment with paper or canvas. More specifically, Section 14.2.1 focuses on imitating the
appearance of a single brush stroke in a given technique, such as watercolor, impasto, or
oil-painting, when all its attributes are given. Section 14.2.2 presents algorithms for ex-
tracting the brush stroke attributes from an input image. Section 14.3 describes methods
which aim at simulating the visual properties of a painting regardless of the process that
artists perform. Conclusions are drawn in Section 14.4.

14.2 Painterly Rendering Based on Brush Stroke Simulation

This section surveys brush stroke oriented approaches which generate synthetic painterly
images by attempting to mimic classical tools and the painting process performed by artists.
In these approaches, a painting is represented as a list L of brush strokes to be rendered in
a given order on a white or canvas-textured background. Each brush stroke is character-
ized by some attributes, such as position, shape, size, orientation, color, and texture, which
completely define its appearance in the painting. These parameters are listed and briefly
described in Table 14.1. The general scheme of this class of algorithms is shown in Fig-
ure 14.1; the image is first analyzed to extract the values of the brush stroke attributes and
to generate L, each brush stroke in the list L is then rendered based on the values of its de-
scriptive attributes. An example of a result obtained with one of these techniques is shown
in Figure 14.2.
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TABLE 14.1
Most important brush stroke attributes encountered in the literature.

Attribute Meaning

Position r = (x,y) Position of the center of the stroke
Shape Rectangle, rectangloid, or more general shape
Size (length, width) The length l and width w of the brush stroke
Orientation Single valued for rectangular strokes, multivalued for curved strokes
Color Average color of the stroke
Transparency Determines the superposition of more brush strokes on the same point
Texture The texture pattern of the stroke

14.2.1 Brush Stroke Rendering

Algorithms to render a brush stroke can be divided into two classes. The first class
includes approaches based on a physical simulation of the process of transferring ink from
a brush to a physical mean such as paper or canvas. The second class includes techniques
which try to imitate the appearance of a brush stroke while ignoring the physics behind it.

Reference [42] presents a simple and intuitive brush stroke model based on cubic B-
splines; a brush stroke is represented by a list of control points r1, ...,rN and pressure
values p1, ..., pN , which indicate the pressure at which the brush touches the paper. Let
B(r1, ...,rN) indicate a B-spline associated to points r1, ...,rN , which is a piece-wise cubic
curve with smooth derivatives until the second order. Let u1, ...,uN be unit vectors orthog-
onal to B(r1, ...,rN) at points r1, ...,rN . Both control points and pressure values are used
to compute the trajectory of each bristle of the brush and to draw a colored curve for each

brush stroke

attribute extraction

I(r)

input

image

L

list of brush

strokes

brush stroke

rendering

y(r)

output

image

FIGURE 14.1

Schematic representation of brush stroke-based painterly rendering.

(a) (b)

FIGURE 14.2

Brush stroke-based painterly rendering using the approach described in Reference [9]: (a) input image and (b)

output image.
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bristle trajectory. Specifically, the trajectory T of the brush is computed as B(r1, ...,rN).
The trajectory of the kth bristle is computed as B(r1 + δ (k)

1 u1, ...,rN + δ (k)
N uN), where the

coefficient δ (k)
i is associated to the i-th control and the k-th bristle is proportional to the

pressure vale pi. This takes into account the fact that when a brush is pushed against the
paper with higher pressure, the bristles will spread out more. Once the trajectory Bk of each
bristle is determined, it is rendered by changing the color of those pixels which are crossed
by Bk. The color of the trace left out by each bristle can be determined in different ways.
The simplest one would be to assign a constant color to all bristles of a given brush stroke.
A more complex diffusion scheme can change the color across the brush stroke; the color
ck(t) of the k-th bristle at time t can be computed from the diffusion equation

ck(t +∆t) = (1−λ )ck(t)+λ
ck−1(t)+ ck+1(t)

2
, (14.1)

where the coefficient λ ∈ [0,1] is related to the speed of diffusion. Another aspect taken
into the account is the amount of ink of each bristle. Specifically, the length of the trace left
by each bristle is made proportional to the amount of ink of that bristle. This influences the
appearance of the resulting brush stroke, as it will be more “compact” at its starting point
and more “hairy” at is end point. In Reference [42], the speed at which bristles become
empty is made proportional to the local pressure of the brush.

More sophisticated models perform fluid simulation by means of cellular automata. Cel-
lular automation is described by the following components:

• A lattice L of cells; here a two-dimensional square lattice is considered, but other
geometries, such as hexagonal, could be used as well. Each cell in the lattice is
identified by an index i , (i1, i2), which indicates the position of that cell in the
lattice.

• A set S of states in which each cell can be. The state of the cell in position i is
defined by a set of state variables ai, bi, ci, etc.

• A neighborhood Ni, which is a set of cells surrounding the cell in position i. Nor-
mally, the neighborhood is translation invariant, that is, Ni+v = Ni + v, where v is a
2D vector.

• A state transition function which determines the evolution of the cellular automata
over (discretized) time. Specifically, the state si(n+1) of the cell i at time n+1 is a
function F of the states of all cells k in the neighborhood Ni of i, that is, si(n+1) =
F [sk(n) : k ∈ Ni]. The transition function is the most important part of a cellular
automata, since it determines the state of the entire cellular automata at any time for
every initial condition.

The notion of coupled cellular automata is also needed; two cellular automata C1 and C2
are coupled if the evolution of each one of them is determined by the states of both C1

and C2. In other words, for s(1)
i and s(2)

i denoting the states of the i-th cell of C1 and C2,
respectively, the state transition functions of C1 and C2 can be written as follows:

s(u)
i (n+1) = F(u)[s(1)

k1
(n),s(2)

k2
(n) : k1,k2 ∈ Ni], (14.2)
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Painterly Rendering 371

with u = 1,2. The following focuses on cellular automata with a deterministic state tran-
sition function, that is, A for which a given configuration of states at time n will always
produce the same configuration at time n + 1. Stochastic cellular automata could be con-
sidered as well, which are well known in the literature as discrete Markov random fields. In
general, cellular automata are capable of modeling any phenomenon in which each part in-
teracts only with its neighbors1. Moreover, their structure makes them suitable for parallel
implementations. A deeper treatment of the subject can be found in Reference [43].

Cellular automata are used in painterly rendering to simulate the diffusion process that
occurs when a fluid pigment is transferred from a brush to the paper [44]. A brush stroke
simulation system based on cellular automata consists of a cellular automata that models
the paper, a cellular automata that models the brush, and a coupling equation. In the case
of a cellular automata that models the paper, the state of every cell describes the amount
of water W (p)

i and ink I(p)
i that are present in each point of the paper. The state transition

function Fp is designed to take into account several phenomena, such as the diffusion of
water in paper, the diffusion of ink in water, and water evaporation. The diffusion of water
in paper can be isotropic, that is, water flows in all directions at equal speed, or anisotropic.
Anisotropy can be due to several factors, such as local directionality in the structure of
the paper, or by the effect of gravity, so that water flows downward at higher speed than
upward. In the case of a cellular automata that models the brush, the state of every cell
describes the amount of water W (b)

i and ink I(b)
i that are present locally at each bristle of

the brush. The state transition function Fb regulates the amount of fluid that is transferred
to the paper, the flow of fluid from the tip of the brush to the contact point with the paper,
the diffusion of fluid between bristle, and the rate at which each bristle gets empty. The last
element, a coupling equation, relates the states of the paper cellular automata to the state of
the brush A. In the simplest case, this is just a balancing equation between the amount of
fluid that leaves the brush and the amount of fluid that comes into the paper at the contact
point between paper and brush.

In this framework, a brush stroke is simulated as described below. Let i(n) be the dis-
cretized position of the brush at time n, which is supposed to be given as input to the brush
stroke simulation system, and let 0 be the index of the cell of the brush cellular automata
that touches the paper (as shown in Figure 14.3 for a one-dimensional example). First, all
cells of the paper cellular automata are initialized to the value zero (no water or ink) and
the cells of the brush cellular automata are initialized to a value that is proportional to the
amount of pigment the brush has been filled with. Then, the states of both cellular automata
are iteratively updated according to their state transition functions. Specifically, at each it-
eration, given amounts ∆W and ∆I of water and ink are transferred from the brush to the
paper at position i(n):

[W (p)
i(n) +∆W, I(p)

i(n) +∆I]⇒ [W (p)
i(n), I

(p)
i(n)], [W

(b)
0 −∆W, I(b)

0 +∆I]⇒ [W (b)
0 , I(b)

0 ]. (14.3)

Diffusion is simulated by updating the state of all cells of the paper cellular automata and
brush cellular automata according to the respective transition functions Fp and Fb.

1Due to the maximum speed at which information can be conveyed, namely, the speed of light, one can argue
that cellular automata can model every phenomenon in the real word.
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FIGURE 14.3

Brush stroke simulation by means of cellular automata.

Once convergence is reached, the state of the paper cellular automata must be converted
into an image. The simplest approach is to modify the color of each pixel in proportion to
the amount of ink that is present in each cell of the paper cellular automata. Specifically, let
cb be the color of the ink and cp(i) the color of the paper at position i before the application
of the brush stroke. Then, the color of the paper at position i after the application of the
brush stroke is given by Iicb + (1− Ii)cp(i). Such a linear combination of cb and cp(i)
allows the simulation of the transparency of brush strokes which are placed on top of each
other. A more sophisticated approach, consists of determining the color of each pixel of
the image by simulating the interaction between white light and a layer of dry pigment of a
given thickness. Specifically, it can be proved that the reflectance of the pigment layer can
be expressed as

Rx = 1+
K
S

+

√
(
K
S

)2 +2
K
S

, (14.4)

where K and S are the adsorption and scattering coefficients of the pigment [45] and [46].
Reference [21] proposes a more sophisticated fluid simulation model for synthetic water-

color generation. In this approach, the interaction between water, ink, and paper is modeled
by means of three layers, each one of which is associated with a cellular automata. Namely,
a shallow water layer which models the motion of water, a pigment deposition layer which
models the absorption and desorption of pigment from paper, and a capillarity layer which
models the penetration of water into the pores of the paper. This model takes into account a
large number of factors, such as the fluid velocity in the x and y directions, water pressure,
the effect of gravity due to the inclination of the paper with respect to the vertical direction,
and physical properties of the solution of ink and water, such as viscosity and viscous drag.
As a result, the brush stroke obtained with this system is virtually indistinguishable from
true watercolor brush stroke.

14.2.2 Extraction of Brush Stroke Attributes

Size and elongation of the brush strokes are important distinctive features of many paint-
ing styles. For example, in Pointillism (Figure 14.4a), artists use very short brush strokes,
while in other styles, such as Impressionism (Figure 14.4b), paintings are rendered by
means of a few coarse touches and fine details are neglected. Other painters, such as Van
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Painterly Rendering 373

(a) (b) (c)

FIGURE 14.4

Example painting styles: (a) Seurat’s painting La Parade de Cirque from 1889, (b) Monet’s painting Impres-

sion, Sunrise from 1872, and (c) Van Gogh’s painting Road with Cypress and Star from 1890.

Gogh, used elongated brush strokes to add to a painting a geometric structure which makes
it more vibrant (Figure 14.4c). Therefore, length l and width w of brush strokes are usu-
ally determined by the desired painting style rather than automatically extracted from the
input image. In a number of algorithms, the values of l and w are the same for all brush
strokes and are specified by the user depending on the desired effect. In some cases, an
interface is provided in which the user selects the painting style and the values of l and w
are determined accordingly. Other approaches take into account the fact that artists often
render different areas of the paintings at different levels of detail. In particular, artists first
make a simplified sketch of their painting by using coarse brush strokes, and then paint on
top of it with smaller brushes to render finer details. The so-called coarse-to-fine rendering
algorithms [17], [38] produce a final synthetic painting as the superposition of different
layers to be rendered on top of each other. On the lowest layers, coarse brush strokes are
rendered, while at the highest layers finer brush strokes are present only on those regions
which need to be rendered at finer detail. The success of such an approach depends on the
strategies deployed to identify which regions of the painting should be present in each layer.
In Reference [17], such areas are determined iteratively; specifically, the coarsest layer is
initialized by rendering brush strokes on the whole image. Then, in the k-th layer, brush
strokes are rendered only in those regions for which the difference in color between the
input image and the painting rendered until the (k−1)-th layer is below a given threshold.
A different approach is presented in Reference [38]; regions to be rendered at a higher level
of detail are detected by looking at the frequency content of each edge. In Reference [19],
the level of detail in different areas of the painting is determined by a measure of saliency,
or visual interest, of the different areas of the painting. Specifically, a saliency map is com-
puted by looking at how frequently the local pattern around each pixel occurs in the image
and assigning high saliency to the most rare patterns; afterwards, high saliency areas are
rendered with smaller brush strokes.

The simplest method to compute the position of each brush stroke is to place them on a
square lattice, whose spacing is less than or equal to the width of the brush stroke. This
guarantees that every pixel of the output image is covered by at least one brush stroke.
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(a) (b) (c)

FIGURE 14.5 (See color insert.)

The effect of v(r)⊥ ∇I(r) on image quality: (a) input image, (b) synthetic painting obtained by imposing the

condition v(r) ⊥ ∇I(r) on the whole image, and (c) synthetic painting obtained by imposing the condition

v(r)⊥ ∇I(r) only on high contrast edge points.

The main disadvantage of this approach is that it works well only with brush stroke of fixed
size. In more sophisticated approaches [10], the position of each brush stroke is determined
by its area. Specifically, an area map A(r) is first extracted from the input image; then, a
random point set S is generated, whose local density is a decreasing function of A(r). Each
point S is the position of a brush stroke. One possible way to compute the function A(r),
proposed in Reference [10], is to analyze the moments up to the second order of regions
whose color variation is below a given threshold.

Orientation is another attribute to consider. A vector field v(r) is introduced such that
that a brush stroke placed at point r0 is locally oriented along v(r0) [9], [17], [38], [47]. The
simplest approach to automatic extraction of a suitable vector field from the input image
consists of orienting v(r) orthogonally to the gradient of the input image. This simulates
the fact that artists draw brush strokes along the object contours. However, the gradient
orientation is a reliable indicator only in the presence of very high contrast edges and tends
to be random on textures as well as on regions with slowly varying color. Therefore, the
other approach is to impose v(r)⊥ ∇I(r) only on points for which the gradient magnitude
is sufficiently high, and to compute v(r) on the other pixels by means of diffusion or in-
terpolation processes [38]. On the one hand, this simple expedient considerably improves
the appearance of the final output (Figure 14.5); on the other hand, these gradient-based
approaches for extracting v(r) only look at a small neighborhood of each pixel while ne-
glecting the global geometric structure of the input image. A global method for vector
field extraction, inspired on fluid dynamics is proposed in Reference [39]. Specifically, the
input image is first partitioned into N regions Rk, k = 1, ...,N by means of image segmen-
tation. Then, inside each region Rk, the motion of a fluid mass is simulated by solving
the Bernoulli equation of fluid dynamics with the constraint that the fluid velocity v(r) is
orthogonal to Rk on the boundary of Rk. This approach has the advantages of deriving
the vector field from general principles, taking into account the global structure of the in-
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Painterly Rendering 375

(a) (b) (c)

FIGURE 14.6

Illustration of the superiority of tensor hyperstreamlines with respect to vector streamlines: (a) topological con-

figuration of hyperstreamlines, called trisector, which cannot be reproduced by the streamlines of a continuous

vector field, (b) streamlines of a vector field, and (c) hyperstreamlines of a tensor field, also oriented along the

edges of an eye which form a trisector configuration.

put image, and allowing an easy control of interesting geometric features of the resulting
vector field, such as vorticity (the presence of vortices in v(r) results in whirls in the final
output which resemble some Van Gogh paintings). Unfortunately, the fluid dynamic model
introduces several input parameters which do not have a clear interpretation in the context
of painterly rendering and for which is not obvious how to choose their value (for example,
the mixture parameter [39]).

More recently, it has been suggested to locally orient brush strokes along the so-called
hyperstreamlines of a symmetric tensor field T (r) rather than along a vector field. Hy-
perstreamlines are defined as lines locally oriented along the eigenvector associated to the
largest eigenvalue of T (r). Hyperstreamlines are not defined on points for which the two
eigenvalues of T (r) are equal. The main difference between hyperstreamlines of a tensor
field and streamlines of a vector field is that the former are unsigned. Consequently, tensor
fields offer a larger variety of topologies compared to vector fields. An example is given
in Figure 14.6. The geometric structure shown in Figure 14.6c, which is more natural for
painting an eye, can be reproduced by tensor fields but not by vector fields. On the other
hand, both geometric structures in Figures 14.6b and 14.6c can be synthesized by using
tensor fields.

The simplest approach to assigning a shape to each brush stroke is to fix a constant shape
for all brush strokes. The most common choices are rectangles [9], [10], [11], [12]. In
the system developed in Reference [38], the user can choose among a larger set of shapes,
including irregular rectangloid brush strokes, irregular blob-like shaped brush strokes, and
flower shaped brush strokes. While these approaches are simple, they do not take into ac-
count the fact that in true paintings artists draw brush strokes of different shapes depending
on the image content. A first step toward brush strokes of adaptive shape is made in Refer-
ence [17], where curved brush strokes with fixed thickness are generated. Specifically, the
shape of each brush stroke is obtained by thickening a cubic B-spline curve with a disk of a
given radius. The control points ri of the spline are obtained in two steps. First, the starting
point r0 is calculated by means of one of the methods for determining the position. Then,
each point is obtained from the previous by moving orthogonally to the gradient of a fixed
spacing h as follows:

ri+1 = ri +hδδδ i, (14.5)

where δδδ i is a unit vector oriented orthogonally to the gradient of the input image in ri. Fully
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376 Computational Photography: Methods and Applications

adaptive procedures to determine the brush stroke shape are presented in References [15]
and [18]. The idea is to presegment the input image into a large number of components,
and to generate brush strokes by merging segments of similar colors. In Reference [15],
morphological techniques are used to prevent brush strokes with holes.

In all approaches discussed so far, the algorithms deployed to extract the brush stroke
attributes from the input image are not derived from general principles. As a result, all such
algorithms can imitate a very limited number of painting styles and need the introduction
of many additional parameters whose values are not theoretically justified. To overcome
these limitations, the task of computing the brush stroke attributes can be formulated as an
optimization problem [19], [48]. Specifically, let b be a vector whose components are the
attributes of all brush strokes in the painting, and let Pb be the image obtained by rendering
the brush stroke of B with one of the techniques reviewed in Section 14.2.1. Let also E(b)
be an energy function which measures the dissimilarity between Pb a painting in a given
style. Then, the brush stroke attributes are computed in order to minimize E(b).

The most challenging aspects of this approach are the definition of a suitable energy func-
tion and the development of search algorithms able to minimize an energy in the extremely
high dimensional space in which b is set. Reference [48] proposes an energy function
which is a weighted sum of four terms:

E(b) , Eapp +wareaEarea +wnstrEnstr +wcovEcov, (14.6)

where the coefficients warea, wnstr, and wcov are different for each painting style. The term
Eapp ,

∫
w(app(r)[I(r)− pb(r)]2d2r measures the dissimilarity between the input image

I(r) and the resulting painting pb(r). The term Earea is proportional the total area of all
brush strokes and reflects the total amount of paint that is used by the artist. Since brush
strokes overlap on top of each other, this term could be much higher than the total area
of the painting. Therefore, minimizing Earea corresponds to minimizing the brush stroke
overlap and reflects the principle of economy that is followed in art. The term Enstr is
proportional to the number of brush strokes in the painting. A high number of brush strokes
will result in a very detailed image, while a low number will give rise to very coarse and
sketchy representation. Therefore, the weight assigned to Enstr influences the painting style
in terms of the level of detail at which the image is rendered. The term Ecov is proportional
to the number of pixels that are not covered by any brush stroke. Assigning a high weight
to this term will prevent areas of the canvas to remain uncovered by brush strokes. As can
be seen, the minimization of E(b) results in a trade off between competing goals, such as
the amount of details in the rendered image and the number of brush strokes. If, following
Reference [48], one assumes that painting styles differ for the importance that is given to
each subgoal, it results that different styles can be imitated by simply changing the weights
of each one of the four terms in E(b). An important advantage of energy minimization-
driven painterly rendering algorithms is that new painting styles can be included by simply
modifying the cost function.

Once a suitable energy function E(b) is found, there is still the problem of developing
procedures to minimize it. At the current state of the art, this problem is very far from being
solved, especially due to the extremely high dimensionality of the search space in which
b is set and the huge number of local minima in which a search algorithm can be trapped.
Reference [48] addresses this problem by means of a relaxation algorithm in combination
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with heuristic search. Specifically, the algorithm is initialized by an empty painting. Then,
a trial-and-error iterative procedure is followed. At each iteration, several modifications
of the painting are attempted (such as adding or removing a brush stroke, or modifying
the attributes of a given brush stroke), and the new painting energy is computed. Changes
which result in an energy decrease are adopted and the entire process is reiterated until
convergence. Unfortunately, the algorithm is tremendously slow and, in general, converges
neither to a global optimum nor even to a local minimum. A more principled approach
to minimize E(b) can be found in Reference [19], where genetic algorithms are deployed
with some strategies to avoid undesired local minima.

14.3 Filtering-Based Painterly Rendering

The previous section described techniques which simulate the process performed by
artists and the classical tools used in art. This section will focus on a different class of
algorithms, which only look at the visual properties that distinguish a painting from a
photographic image, irrespective of the tools and the techniques used to generate them.
This class of algorithms can be categorized into approaches based on edge preserving and
edge enhancing smoothing, techniques which add a synthetic texture to the input image to
simulate the geometric pattern induced by brush strokes, and algorithms based on image
analogies.

14.3.1 Edge Preserving and Enhancing Smoothing

Two important visual properties of many painting styles are the absence of texture details
and the increased sharpness of edges as compared to photographic images. This suggests
that painting-like artistic effects can be achieved from photographic images by filters that
smooth out texture details, while preserving or enhancing edges and corners. However,
practice shows that not all the existing algorithms for edge preserving smoothing are suit-
able for this purpose. The following describes some simple edge preserving smoothers
which are useful in painterly rendering.

Let f (x,y) be a function defined on R2 which, for the moment, is interpreted here as
an altitude profile. Let us now imagine filling every valley with water until the area of
water surface on each cavity is not greater than a given value A. Informally speaking, a
new altitude profile fC(x,y;A) is considered which is equal to the original profile f (x,y)
on points (x,y) that are not reached by water, and equal to the water level on the other
points. Using the area closing operator CA produces fC(x,y;A) as output by taking in input
f (x,y) and A, that is, fC(x,y;A) , CA{f(x,y)}. Dually, area opening OA can be defined
as the negative of the result of an area closing applied to the function − f (x,y), that is,
OA{ f (x,y)} , −CA{− f (x,y)}. Two other operators, area open-closing and area close-
opening, can be introduced as the results, respectively, of the application of an area opening
followed by an area closing, and an area closing followed by an area opening. These
operators are illustrated in Figure 14.7 for a one-dimensional case. As can be seen, area
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(a) (b) (c)

FIGURE 14.7

Morphological operators applied to a one-dimensional signal: (a) input f (x), (b) output fC(x) of area opening,

and (c) output fCO(x) of area close-opening.

(a) (b)

FIGURE 14.8 (See color insert.)

Morphological color image processing: (a) input image and (b) output image obtained via close-opening ap-

plied separately to each RGB component.

closing flattens local minima to a certain area, while area opening flattens local maxima.
The combined application of a closing and an opening reduces the amount of texture in a
signal while preserving edges. Figure 14.8 shows the result of an area open-closing applied
independently to each RGB component of a photographic image, this operator effectively
adds an artistic effect to the input image. The rationale beyond it is that area open-closing
induces flat zones with irregular shapes which simulate irregular brush strokes. A more
formal introduction to these operators, as well as efficient algorithms for their computation,
can be found in Reference [49].

The following describes the Kuwahara filter and its variants. Let us consider a gray level
image I(x,y) and a square of length 2a centered around a point (x,y) which is partitioned
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FIGURE 14.9

Kuwahara filtering: (a) regions Qi on which local averages and standard deviations are computed, and (b)

the square with the smallest standard deviation, delineated by a thick line, determines the output of the filter.
c© 2007 IEEE

into four identical squares Q1, ...,Q4 (Figure 14.9a). Let si(x,y) and mi(x,y) be the local
average and the local standard deviation, respectively, computed on each square Qi(x,y),
for i = 1, ...,4. For a given point (x,y), the output Φ(x,y) of the Kuwahara filter is given
by the value of mi(x,y) that corresponds to the i-th square providing the minimum value of
mi(x,y) [50]. Figure 14.9b shows the behavior of the Kuwahara operator in the proximity of
an edge. When the central point (x,y) is on the dark side of the edge (point A), the chosen
value of mi corresponds to the square that completely lies on the dark side (Q4 here), as this
is the most homogeneous area corresponding to minimum si. On the other hand, as soon
as the point (x,y) moves to the bright side (point B), the output is determined by the square
that lies completely in the bright area (Q2 here), since now it corresponds to the minimum
standard deviation si. This flipping mechanism guarantees the preservation of edges and
corners, while the local averaging smooths out texture and noise.

One limitation of Kuwahara filtering is the block structure of the output, particularly evi-
dent on textured areas (Figure 14.9), that is due to the square shape of the regions Q1 to Q4
and to the Gibbs phenomenon [51]. This problem can be avoided by using different shapes
for the regions Qi and by replacing the local averages with weighted local averages. For ex-
ample, the squares Qi can be replaced by pentagons and hexagons [52]. Reference [53] uses
circular regions whereas References [54] and [55] take into account a larger set of overlap-
ping windows. Namely, Reference [55] avoids the Gibbs phenomenon by using Gaussian
weighted local averages (Gaussian Kuwahara filtering) instead of the local averages. Other
solutions are based on smoothed circular [56] and elliptical [57] sectors. Specifically, in
Reference [56] local averages and standard deviations are computed as follows:

mi(x,y) = wi(x,y)? I(x,y), s2
i (x,y) = wi(x,y)? I2(x,y)−m2

i (x,y), (14.7)

where the weighting functions wi(x,y) are given by the product of a two-dimensional
isotropic Gaussian function with an angular sector.

A more serious problem is that the Kuwahara filter is not a mathematically well defined
operator; every time the minimum value of si is reached by two or more squares, the output
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FIGURE 14.10

Sector selection in various situations. The sectors selected to determine the output are delineated by a thick

line. c© 2007 IEEE

cannot be uniquely determined because it is unclear which subregion should be chosen. To
solve this problem, Reference [56] replaces the minimum standard deviation criterion with
a weighted sum of the values mi, where the weights are decreasing functions of the values
si. Specifically, the output is expressed as

Φq(x,y) =
∑i mi(x,y)s

−q
i (x,y)

∑i s−q
i (x,y)

, (14.8)

where q > 0 is an input parameter which controls the sharpness of the edges. For q = 0
this reduces to linear filtering which has high stability to noise but poor edge preservation;
conversely, for q → ∞, only the term in the sum with minimum si survives, thus reducing
to the minimum standard deviation criterion of Kuwahara filtering which has high edge
preserving performance but poor noise stability. This operator is thus an intermediate case
between linear filtering and Kuwahara-like filtering, taking on the advantages of both.

Another advantage of this combination criterion is that it automatically selects the most
interesting subregions. This is illustrated in Figure 14.10 for the circular sectors deployed
in Reference [56]. On areas that contain no edges (case a), the si values are very similar
to each other, therefore the output q is close to the average of the mi values. The operator
behaves very similarly to a Gaussian filter; texture and noise are averaged out and the Gibbs
phenomenon is avoided. On the other hand, in presence of an edge (case b), the sectors
placed across it give higher si values with respect to the other sectors. If q is sufficiently
large (for instance, q = 4) the sectors intersected by the edge (S5 - S8) give a negligible
contribution to the value of q. Similarly, in presence of corners (case c) and sharp corners
(case d), only those sectors which are placed inside the corner (S6, S7) for case c and S1 for
case d give an appreciable contribution to value of q whereas the others are negligible.

In all methods described so far, the values of mi and si are computed over regions with
fixed shapes. In Reference [57], adaptive anisotropic subregions are deployed. Specifically,
an ellipse of a given size is placed on each point of the input image, where orientation
and ellipticity of each ellipse are determined by means of the structure tensor of the input
image [58]. Then, the concerned subregions are sectors of such ellipses. Deploying sectors
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(a) (b)

(c) (d)

FIGURE 14.11

Painterly rendering by edge preserving smoothing: (a) input image, (b) output of the Kuwahara filter [50],

(c) output of the isotropic operator proposed in Reference [56], and (d) output of the anisotropic approach

deployed in Reference [57].

of adaptable ellipses instead of circles results in better behavior in the presence of elongated
structures and in a smaller error in the presence of edges, since it does not deal with a small
number of primary orientations. On the other hand, this makes the algorithm much slower,
since spatially variant linear filters cannot be evaluated in the Fourier domain.

A comparison is shown in Figure 14.11. The blocky structure and the Gibbs phe-
nomenon, well visible in the Kuwahara output (Figure 14.11b), are avoided by the ap-
proaches proposed in Reference [56] (Figure 14.11c) and Reference [57] (Figure 14.11d).
Moreover, the use of adaptable windows better preserves elongated structures, such as the
whiskers of the baboon.
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382 Computational Photography: Methods and Applications

(a) (b) (c) (d)

FIGURE 14.12

Glass patterns obtained by several geometric transformations: (a) isotropic scaling, (b) expansion and compres-

sion in the horizontal and vertical directions, respectively, (c) combination of rotation and isotropic scaling, and

(d) translation. c© 2009 IEEE

14.3.2 Adding Synthetic Texture

The methods described in the previous subsection produce artistic images by removing
natural texture from photographic images. A method, based on the theory of glass patterns,
which modifies the texture of the input image in order to imitate various painting styles, is
presented below. After the introduction of the glass pattern theory, the formalism will be
extended to the continuous case, and finally a way to produce artistic images by transferring
the microstructure of a glass pattern to the input image will be described.

14.3.2.1 Glass Patterns

Glass patterns [59], [60], [61] are defined as the superposition of two random point sets,
one of which is obtained from the other by means of a small geometric transformation
(Figure 14.12). More formally, let v(r) be a vector field defined on R2 and dr/dt = v(r) be
the corresponding differential equation. The solution of this equation can be expressed as
follows:

r(t) = Φv(r0, t), (14.9)

with the initial condition r(0) = r0. For a fixed value of t, the term Φv denotes a map from
R2 to R2, which satisfies the condition Φv(r,0) = r. Let S = {r1, ...,rN} be a random point
set and Φv(S, t) , {Φv(r, t)|r ∈ S}. Using this notation, the glass pattern Gv,t(S) associated
with S, v, and t is defined as Gv,t(S) , S

⋃
Φv(S, t). In general, the geometrical structure

exhibited by a glass pattern is related to the streamlines of v(r).
Due to their randomness and geometric structure, glass patterns capture the essence of

the motives induced by brush strokes in several impressionistic paintings, and provide cor-
responding mathematical models (Figure 14.13). The following will show that transferring
the microstructure of a glass pattern to an input image results in outputs perceptually similar
to paintings.

14.3.2.2 Continuous Glass Patterns

The first step toward painterly rendering based on the theory of glass patterns is the ex-
tension of the related formalism to the continuous case [47]. A binary field bS(r) associated
with a point set S can be defined as a function which takes the value 1 for points of S and
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(a) (b)

FIGURE 14.13

Comparison of the real and synthesized painting styles: (a) Vincent Van Gogh’s painting Road with Cypress

and Star, and (b) manually generated glass pattern. The two images exhibit similar geometric structures.

the value 0 for other points. Clearly, the binary field associated with the superposition of
two point sets S1 and S2 is equal to

bS1
⋃

S2(r) = max[bS1(r),bS2(r)], (14.10)

the binary field associated with a glass pattern is thus equal to bGv,t(S)(r) =
max{bS(r),bS[Φv(r, t)]}. With this notation, generalizing glass patterns to the continu-
ous case is straightforward. Namely, a continuous set of patterns bS[Φ(r,τ)] with τ ∈ [0,1]
is considered instead of only two patterns, and any real valued random image z(r) can be
used instead of bS(r). Specifically, a continuous glass pattern Gv(r) is defined as follows:

Gv(r) , max
τ∈[0,1]

{z[Φv(r,τ)]}. (14.11)

This formula can be rewritten more compactly as

Gv(r) = max
ρρρ∈Av(r)

{z(ρρρ)}, (14.12)

where Av(r) is the arc of streamline r(t) = Φv(r, t) with t ∈ [0,1], that is, Av(r) ,
{Φv(r, t)|t ∈ [0,1]}.

Given a vector field v(r) and a random image z(r), the glass pattern can easily be com-
puted by integrating the differential equation dr/dt = v(r) with the Euler algorithm [62]
and by taking the maximum of z(r) over an arc of the solving trajectory Φv(r, t). Examples
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384 Computational Photography: Methods and Applications

FIGURE 14.14

Random image z(r) and examples of continuous glass patterns obtained from it. Their geometrical structure is

analogous to the discrete case. c© 2009 IEEE

of continuous glass patterns are shown in Figure 14.14, with the histograms of all images
being equalized for visualization purposes. As can be seen, these patterns exhibit similar
geometric structures to the corresponding discrete patterns.

A simple way to obtain painterly images from continuous glass patterns is depicted in
Figures 14.15 and 14.16. The first step is edge preserving smoothing with the output
IEPS(r), which can be obtained using the techniques described above. The second step
is the generation of synthetic painterly texture USPT (r) which simulates oriented brush
strokes (Figure 14.16c). This is simply a continuous glass pattern associated with a vector
field which forms a constant angle φ with the color gradient of the input image. An ex-
ample of such a texture is shown in Figure 14.16c for θ0 = π/2 and a = 18, for an image
of size 320× 480 pixels. It can be seen that the geometric structure of USPT (r) is similar
to the elongated brush strokes that artists use in paintings. For θ0 = π/2, such strokes are
oriented orthogonally to ∇σ IEPS(r). This mimics the fact that artists usually tend to draw

edge preserving

smoothing

I(r)

input

image

l

y(r)

output

image

CGP painterly

texture

U (r)
SPT

E (r)
SPT

+

FIGURE 14.15

Schematic representation of artistic image generation by means of continuous glass patterns.
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(a) (b) (c) (d)

FIGURE 14.16 (See color insert.)

Artistic image generation for the example of Figure 14.15: (a) input image I(r), (b) edge preserving smoothing

output IEPS(r), (c) associated synthetic painterly texture, and (d) final output y(r). c© 2009 IEEE

brush strokes along object contours. Moreover, it is easy to prove that for θ0 = π/2 the
streamlines of V (r, t) are closed curves [47]. Thus, the brush strokes tend to form whirls
which are typical of some impressionist paintings.

Finally, the artistic effect is achieved by adding the synthetic texture to the smoothed im-
age, thus obtaining the final output y(r) , IEPS(r)+λUSPT (r) (Figure 14.16d). The param-
eter λ controls the strength of the synthetic texture. Comparing Figures 14.16a and 14.16d

(a) (b)

(c) (d)

FIGURE 14.17 (See color insert.)

Comparison of various artistic effects: (a) input image, (b) glass pattern algorithm, (c) artistic vision [15], and

(d) impressionistic rendering [9]. c© 2009 IEEE
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386 Computational Photography: Methods and Applications

reveals that natural texture of the input image is replaced by USPT (r). Such a simple texture
manipulation produces images which look like paintings.

An example of how well this approach performs is shown in Figure 14.17, in compari-
son with two of the most popular brush stroke-based artistic operators described previously:
namely, the impressionist rendering algorithm [9] and the so-called artistic vision [15] tech-
nique. It can be seen that the glass pattern operator effectively mimics curved brush strokes
oriented along object contours while the whirls present in contourless areas resemble some
impressionist paintings. As to artistic vision, though simulation of curved brush strokes is
attempted, several artifacts are clearly visible. Impressionistic rendering does not produce
artifacts, but it tends to render blurry contours and small object details are lost. Moreover,
impressionistic rendering is less effective in rendering impressionist whirls.

14.3.2.3 Pattern Transfer

An important limitation of the approach described above is a possible mismatch between
the streamlines of v(r) and the actual object contours, which can result in unrealistic ef-
fects (Figure 14.18). This can be avoided using an operator called cross continuous glass
patterns [47], [63], [64]. The idea is to generate a colored continuous glass pattern which
already contains the color profile of the input image, rather than superimposing a graylevel
texture to I(r). In order to do this, a cross continuous glass pattern can be defined as fol-
lows [47]:

Cv{z(r),I(r)}, I{ρρρ0(r)} , (14.13)

with ρρρ0(r) , argmaxρρρ∈Av(r){z(ρρρ)}. In other words, instead of directly considering the
maximum of z(r) over Av(r), the point ρρρ0(r) which maximizes z(ρρρ) is first identified, and
the value of I(r) at that point is taken. It is easy to see that if the input image I(r) coincides
with z(r), then the output coincides with a continuous glass pattern Cv{z(r),z(r)}= Gv(r)
defined above. An efficient implementation of cross continuous glass patterns can be found
in References [47] and [63].

Examples of cross continuous glass patterns are given in Figure 14.19, which are re-
spectively related to the vector fields v(r) = [x,y]/

√
x2 + y2, v(r) = [−y,x]/

√
x2 + y2,

and v(r) ⊥ ∇I(r). Figures 14.19b and 14.19c show similar microstructure whereas Fig-

FIGURE 14.18

Artifact that arises with the approach proposed in Reference [47] when the streamlines of v(r) do not match the

object contours of the input image (marked by arrows). This happens especially in presence of sharp corners.
c© 2009 IEEE
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Painterly Rendering 387

(a) (b)

(c) (d)

FIGURE 14.19 (See color insert.)

Examples of cross continuous glass patterns: (a) input image, (b) output corresponding to v(r) =
[x,y]/

√
x2 + y2, (c) output corresponding to v(r) = [−y,x]/

√
x2 + y2, and (d) output corresponding to v(r)⊥

∇I(r). The last image is perceptually similar to a painting.

ure 14.19d is perceptually similar to a painting. Other examples are shown in Figure 14.18.
In Figure 14.20b the vector field v(r) is orthogonal to the color gradient of the input image,
while in Figure 14.20c it forms an angle of 45◦ with ∇I. As can be seen, though the stream-
lines of v(r) strongly mismatch the object contours, no artifacts similar to those shown in
Figure 14.18 are present (see also Figures 14.19b and 14.19c). It can also be observed
that this approach, as well as all techniques based on vector fields, is very versatile since
substantially different artistic images can be achieved by varying a few input parameters.
Specifically, when the angle between v(r) and the gradient direction is equal to θ = π/2,
the strokes follow the object contours and form whirls in flat areas, while for θ = π/4, the
strokes are orthogonal to the contours and build star-like formations in flat regions.

14.4 Conclusions

The classical approach to generate synthetic paintings consists in rendering an ordered
list of brush strokes on a white or canvas textured background. Alternatively, the possi-
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(a) (b)

(c)

FIGURE 14.20

Cross continuous glass patterns generated using different values of θ : (a) input image, (b) output for θ = π/4,

and (c) output for θ = π/2. c© 2009 IEEE

bility to render strokes on top of an image instead of a white background (underpainting)
is explored in Reference [15]. The advantages of this class of algorithms are high realism
and the possibility to imitate different painting styles by changing the values of some input
parameters [17], [38], [48]. Moreover, a brush stroke-based representation of a synthetic
painterly image results in a (lossless) compression ratio with respect to well established
general purpose (lossy) image compression methods [12]. Another advantage of represent-
ing a synthetic painting as a list of brush strokes is that true brush strokes can be rendered
on a true canvas by means of a robot [65].

These systems for painterly rendering consist of two major components; namely, tech-
niques to render a digital brush stroke with given descriptive attributes and algorithms
which automatically extract a list of brush stroke attributes from an input image. As to
the former, the physical simulation of artistic media [21], [66] gives rise to excellent re-
sults in terms of realism; however, it comes at the cost of high computational complexity
because many iterations of a complex cellular automaton need to be made for each brush
stroke. Physical simulation is perfectly suitable for interactive applications in which the
user draws each brush stroke by hand on an electric canvas; in such applications, computa-
tion time is not a pressing issue while high realism is imperative. Conversely, for automatic
painterly rendering applications, where hundreds or thousands of brush strokes need to be
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Painterly Rendering 389

(a) (b)

FIGURE 14.21

Painterly rendering using simpler brush strokes models: (a) input image and (b) output of the algorithm pre-

sented in Reference [15] which does not perform physical brush stroke simulation. Small brush strokes are

rendered properly, such as on the trees. On the other hand, visible undesired artifacts are present on large brush

strokes, such as on the sky.

rendered for each image, simpler brush stroke models based on predefined intensity and
texture profiles are usually deployed [9], [38]. Such simpler models still give acceptable
results for small brush strokes but might produce visible artifacts for larger brush strokes
(Figure 14.21). Extracting brush stroke attributes from an input image is a much harder
task, because it involves some knowledge about how artists see the world. The basic idea
behind this approach is to look for regions where the color profile of the input image is con-
stant or slowly varying, and then to extract position, shape, and orientation of each brush
stroke. There exist a large variety of complex algorithms, with many predetermined param-
eters and without a general guiding principle. To overcome this problem, the extraction of
brush stroke attributes can be formulated as an optimization problem. However, this leads
to cost functions defined on an extremely high dimensional space, thus making such an
optimization extremely difficult carry out in practice. Moreover, it is not obvious that every
artistic effect can be achieved by the mere modification of a cost function.

Due to these intrinsic difficulties, some authors propose to focus on the visual properties
which distinguish a painting from a photographic image while abstracting from the process
deployed by an artist to generate them. Examples of such properties are sharp edges, ab-
sence of natural texture, or presence of motives induced by brush strokes in several impres-
sionistic paintings (see, for instance, Figure 14.13a). An effective and efficient approach
to painterly rendering is smoothing the input image while preserving or sharpening edges.
It should be noted, however, that not all existing smoothing operators which preserve and
enhance edges produce satisfactory artistic images. Examples are bilateral filtering, median
filtering, and structural opening and closing [67]. Area open-closing can produce artistic
effects, but only on images that are rich in texture and with sharp edges. In presence of
blurry edges and relatively flat areas, area opening does not modify the input image sub-
stantially. In contrast, the approach proposed by Kuwahara and the subsequent extensions
are much more effective for every input image. Another interesting way to produce artistic
images is based on glass patterns. The theory of glass patterns naturally combines three
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390 Computational Photography: Methods and Applications

essential aspects of painterly artwork: perception, randomness, and geometric structure.
Therefore, it constitutes a suitable framework for the development of mathematical models
of the visual properties that distinguish paintings from photographic images. Transferring
the microstructure of a glass pattern to an input image produces outputs that are percep-
tually similar to a painting. The related algorithms have low computational complexity
and do not require predetermined parameters. Usually, filtering-driven painterly rendering
leads to conceptually and computationally simpler algorithms with respect to approaches
based on brush stroke simulation. Algorithms are more efficient and are expressed in a
more compact mathematical form, which makes them suitable for further theoretical anal-
ysis. Moreover, the input parameters are typically easy to interpret. However, it is difficult
to imitate specific painting styles with these algorithms.

In general, at the current state of the art, it can be said that the output of painterly render-
ing algorithms will differ from the input image only in the textural details. Moreover, such
an output does not give the sense of three-dimensionality that is observed in true paintings,
for instance, due to the variable thickness of the paint or the non-flatness of the paper in
watercolor paintings. It can be concluded that a larger step in painterly rendering can be
achieved by introducing operators which perform a more radical modification of the input
image, such as some form of exaggeration seen in caricatures.
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15.1 Introduction

Automatic image colorization is the task of adding colors to a grayscale image without
any user intervention. This problem is ill-posed in the sense that there is not a unique
colorization of a grayscale image without any prior knowledge. Indeed, many objects can
have different colors. This is not only true for artificial objects, such as plastic objects
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FIGURE 15.1 (See color insert.)

Failure of standard colorization algorithms in the presence of texture: (left) manual initialization, (right) result

of Reference [1] with the code available at http://www.cs.huji.ac.il/∼yweiss/Colorization/. Despite the general

efficiency of this simple method, based on the mean and the standard deviation of local intensity neighborhoods,

the texture remains difficult to deal with. Hence texture descriptors and learning edges from color examples

are required.

which can have random colors, but also for natural objects such as tree leaves which can
have various nuances of green and brown in different seasons, without significant change
of shape.

The most common color prior in the literature is the user. Most image colorization meth-
ods allow the user to determine the color of some areas and extend this information to the
whole image, either by presegmenting the image into (preferably) homogeneous color re-
gions or by spreading color flows from the user-defined color points. The latter approach
involves defining a color flow function on neighboring pixels and typically estimates this
as a simple function of local grayscale intensity variations [1], [2], [3], or as a predefined
threshold such that color edges are detected [4]. However, this simple and efficient frame-
work cannot deal with texture examples of Figure 15.1, whereas simple oriented texture
features such as Gabor filters can easily overcome these limitations. Hence, an image
colorization method should incorporate texture descriptors for satisfactory results. More
generally, the manually set criteria for the edge estimation are problematic, since they can
be limited to certain scenarios. The goal of this chapter is to learn the variables of image
colorization modeling in order to overcome the limitations of manual assignments.

User-based approaches have the advantage that the user has an interactive role, for exam-
ple, by adding more color points until a satisfactory result is obtained or by placing color
points strategically in order to give indirect information on the location of color bound-
aries. The methods proposed in this chapter can easily be adapted to incorporate such
user-provided color information. Predicting the colors, that is, providing an initial fully au-
tomatic colorization of the image prior to any possible user intervention, is a much harder
but arguably more useful task. Recent literature investigating this task [5], [6], [7], [8]
yields mixed conclusions. An important limitation of these methods is their use of local
predictors. Color prediction involves many ambiguities that can only be resolved at the
global level. In general, local predictions based on texture are most often very noisy and
not reliable. Hence, the information needs to be integrated over large regions in order
to provide a significant signal. Extensions of local predictors to include global informa-
tion has been limited to using automatic tools (such as automatic texture segmentation [7])
which can introduce errors due to the cascaded nature of the process or incorporating small
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neighborhood information, such as a one-pixel-radius filter [7]. Hence, an important de-
sign criterion in learning to predict colors is to develop global methods that do not rely on
limited neighborhood texture-based classification.

The color assignment ambiguity also occurs when the shape of an object is relevant for
determining the color of the whole object. More generally, it appears that the boundaries of
the object contain useful information, such as the presence of edges in the color space, and
significant details which can help to identify the whole object. This scenario again states
the importance of global methods for image colorization so that the colorization problem
cannot be solved at the local level of pixels. Another source of prior information is the
motion and time coherency as in the case of the video sequences to be colored [1]. Hence,
a successful automatic color predictor should be general enough to incorporate various
sources of information in a global manner. Section 15.2 briefly discusses related work.

Machine learning methods, in particular nonparametric methods such as Parzen window
estimators and support vector machines (SVMs), provide a natural and efficient way of
incorporating information from various sources. This chapter reformulates the problem
of automatic image colorization as a prediction problem and investigates applications of
machine learning techniques for it. Although colors are continuous variables, considering
color prediction as a regression problem is problematic due to the multimodal nature of the
problem. In order to cope with the multimodality, both the color space discretization and
multiclass machine learning methods are investigated in this chapter. Section 15.3 outlines
the limitations of the regression approach and describes representation of the color space
as well as the local grayscale texture space.

Three machine learning methods are proposed for learning local color predictions and
spatial coherence functions. Spatial coherency criteria are modeled by the likelihood of
color variations which is estimated from training data. The Parzen window method is a
probabilistic, nonparametric, scalable, and easy to implement machine learning algorithm.
Section 15.4 describes an image colorization method which uses Parzen windows to learn
local color predictors and color variations given a set of colored images. Section 15.5
outlines the second approach for automatic image colorization. This approach is based on
SVMs, which constitute a more sophisticated machine learning method that can learn a
more general class of predictive functions and has stronger theoretical guarantees.

Once the local color prediction functions along with spatial coherency criteria are
learned, they can be employed in graph-cut algorithms. Graph-cut algorithms are optimiza-
tion techniques commonly used in computer vision in order achieve optimal predictions on
complete images. They combine local predictions with spatial coherency functions across
neighboring pixels. This results in global interaction across pixel colorings and yields the
best coloring for a grayscale image with respect to both predictors. The details of using
graph-cuts for image colorization are given in Section 15.6.

One shortcoming of the approaches outlined above is the independent training of the two
components; the local color predictor and the spatial coherency functions. It can be argued
that a joint optimization of these models can find the optimal parameters, whereas indepen-
dent training may yield suboptimal models. The third proposed approach investigates this
issue and uses structured output prediction techniques where the two models are trained
jointly. Section 15.7 provides the details of applying structured SVMs to automatic image
colorization.
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Section 15.8 focuses on an experimental analysis of the proposed machine learning meth-
ods on datasets of various sizes. All proposed approaches perform well with a large num-
ber of colors and outperform existing methods. It will be shown that the Parzen window
approach provides natural colorization, especially when trained on small datasets, and per-
forms reasonably well on big datasets. On large training data, SVMs and structured SVMs
leverage the information more efficiently and yield more natural colorization, with more
color details, at the expense of longer training times. Although experiments presented in
this chapter focus on colorization of still images, the proposed framework can be readily
extended to movies. It is believed that the framework has the potential to enrich existing
movie colorization methods that are suboptimal in the sense that they heavily rely on user
input. Further discussion on the future work and conclusions are offered in Section 15.9.

15.2 Related Work

Colorization based on examples of color images is also known as color transfer in the
literature. A survey of this field can be found in Reference [9]. The first results [5], [6] in
the field of fully automatic colorization, though promising, seem to deal with only a few
colors and many small artifacts can be observed. These artifacts can be attributed to the
lack of a suitable spatial coherency criterion. Indeed, References [5] and [6] deal with the
colorization process which is iterative and consists of searching for each pixel, in scan-
line order, as the best match in the training set. These approaches are thus not expressed
mathematically; in particular, it is not clear whether an energy function is minimized.

Reference [7] proposes finding landmark points in the image where a color prediction al-
gorithm reaches the highest confidence and applying the method presented in Reference [1]
as if these points were given by the user. This approach assumes the existence of a train-
ing set of colored images, that is segmented by the user into regions. The new image is
automatically segmented into locally homogeneous regions whose texture is similar to one
of the colored regions in the training data, and the colors are transferred. The limitations
of this approach relate to preprocessing and spatial coherency. The preprocessing step in-
volves segmentation of images into regions of homogeneous texture either by the user or
by automatic segmentation tools. Given that fully automatic segmentation is known to be a
difficult problem, an automatic image colorization method that does not rely on automatic
segmentation, such as the approaches described in this chapter, can be more robust. Ref-
erence [7] incorporates spatial coherency at a local level via a one-pixel-radius filter and
automatic segments. The proposed approach can capture global spatial coherency via the
graph-cut algorithm which assigns the best coloring to the global image.

15.3 Model for Colors and Grayscale Texture

In the image colorization problem, two important quantities to be modeled are i) the out-
put space, that is, the color space, and ii) the input space, that is, the feature representation
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of the grayscale images. Let I denote a grayscale image to be colored, p the location of one
particular pixel, and C a colorization of image I. Hence, I and C are images of the same
size, and the color of the pixel p, denoted by C(p), is in the standard RGB color space.
Since the grayscale information is already given by I(p), the term C(p) is restricted such
that computing the grayscale intensity of C(p) yields I(p). Thus, the dimension of the color
space to be explored is intrinsically two rather than three.

This section presents the model chosen for the color space, the limitations of a regres-
sion approach for color prediction, and the proposed color space discretization method. It
also discusses how to express probability distributions of continuous valued colors given a
discretization and describes the feature space used for the description of grayscale patches.

15.3.1 Lab Color Space

In order to measure the similarity of two colors, a metric on the space of colors is needed.
This metric is also employed to associate a saturated color to its corresponding gray level,
that is, the closest unsaturated color. It is also at the core of the color coherency problem.
An object with uniform reflectance shows different colors in its illuminated and shadowed
parts since they have different gray levels. This behavior creates the need of a definition
that is robust against changes of lightness. More precisely, the modeling of the color space
should specify how colors are expected to vary as a function of the gray level and how a
dark color is projected onto the subset of all colors that share a specific brighter gray level.

There are various color models, such as RGB, CMYK, XY Z, and Lab. Among these, the
Lab space is chosen here because its underlying metric has been designed to express color
coherency. Based on psychophysical experiments, this color space was designed such that
the Euclidean distance between the coordinates of any colors in this space approximates the
human perception of distances between colors as accurately as possible. The L component
expresses the luminance or lightness and consequently denotes the grayscale axis. The two
other components, a and b, stand for the two orthogonal color axes. The transformation
from standard RGB colors to Lab is achieved by applying first the gamma correction, then
a linear function in order to obtain the XY Z color space, and finally a highly nonlinear
function which is basically a linear combination of the cubic roots of the coordinates in
XY Z. More details on color spaces can be found in Reference [10]. In the following, L and
(a,b) are referred to as gray level and two-dimensional (2D) color, respectively. Since the
gray level I(p) of the color C(p) at pixel p is given, the search can be done only for the
remaining 2D color, denoted by ab(p).

15.3.2 Need for Multimodality

In automatic image colorization using machine learning methods, the goal is to learn a
function that associates the right color for a pixel p given a local description of grayscale
patches centered at p. Since colors are continuous variables, regression tools such as sup-
port vector regression or Gaussian process regression [11] can be employed for this task.
Unfortunately, a regression approach performs poorly and there is an intuitive explanation
for this performance. Namely, many objects with the same or similar local descriptors can
have different colors. For instance, balloons at a fair could be green, red, blue, etc. Even

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
50

 0
9 

M
ay

 2
01

6 



400 Computational Photography: Methods and Applications

if the task of recognizing a balloon was easy and it is known that that the observed balloon
colors should be used to predict the color of a new balloon, a regression approach would
recommend using the average color of the observed balloons. This problem is not specific
to objects of the same class, but also extends to objects with similar local descriptors. For
example, the local descriptions of grayscale patches of skin and sky are very similar. Hence,
a method trained on images including both objects would recommend purple for skin and
sky, without considering the fact that this average value is never probable. Therefore, an
image colorization method requires multimodality, that is, the ability to predict different
colors if needed, or more precisely, the ability to predict scores or probability values of
every possible color at each pixel.

15.3.3 Discretization of the Color Space

Due to the multimodal nature of the color prediction problem, the machine learning
methods proposed in this chapter first infer distributions for discrete colors given a pixel
and then project the predicted colors to the continuous color space. The following discusses
a discretization of the 2D color space and a projection method for continuous valued colors.

There are numerous ways of discretization, for instance via K-means. Instead of setting
a regular grid in the color space, a discretization can be defined which adapts to the colors
in the training dataset such that each color bin contains approximately the same number
of pixels. Indeed, some zones of the color space are useless for many real image datasets.
Allocating more color bins to zones with higher density allows the models to have more
nuances where it makes statistical sense. Figure 15.2 shows the densities of colors cor-
responding to some images, as well as the discretization of the color space into 73 bins
resulting from these densities. This discretization is obtained by using a polar coordinate
system in ab, cutting color bins recursively with highest numbers of points at their average
color into four parts, and assigning the average color to each bin.

Given the densities in the discrete color space, the densities for continuous colors on the
whole ab plane can be expressed via interpolation. In order to interpolate the information
given by each color bin i continuously, Gaussian functions are placed on the average color
µi, with standard deviation proportional to the empirical standard deviation σi (see last
column of Figure 15.2). The interpolation of the densities d(i) in the discrete color space
to any point x in the ab plane is given by

dG(x) = ∑
i

1
π(ασi)2 e

− ‖x−µi‖2

2(κσi)2 d(i).

It is observed that κ ≈ 2 yields successful experimental results. For better performance, it
is possible to employ cross-validation for the optimal κ value for a given training set.

15.3.4 Grayscale Patches and Features

As discussed in Section 15.1, the gray level of one pixel is not informative for color
prediction. Additional information such as texture and local context is necessary. In order
to extract as much information as possible to describe local neighborhoods of pixels in the
grayscale image, SURF descriptors [12] are computed at three different scales for each
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(a) (b) (c) (d) (e)

FIGURE 15.2 (See color insert.)

Examples of color spectra and associated discretizations: (a) color image, (b) corresponding 2D colors, (c) the

location of the observed 2D colors in the ab-plane (a red dot for each pixel) and the computed discretization in

color bins, (d) color bins filled with their average color, and (e) continuous extrapolation with influence zones

of each color bin in the ab-plane (each bin is replaced by a Gaussian, whose center is represented by a black

dot; red circles indicate the standard deviation of colors within the color bin, blue ones are three times larger).

pixel. This leads to a vector of 192 features per pixel. Using principal component analysis
(PCA), only the first 27 eigenvectors are kept, in order to reduce the number of features
and to condense the relevant information. Furthermore, as supplementary components, the
pixel gray level as well as two biologically inspired features are included. Namely, these
feature are a weighted standard deviation of the intensity in a 5× 5 neighborhood (whose
meaning is close to the norm of the gradient), and a smooth version of its Laplacian. This
30-dimensional vector, computed at each pixel q, is referred to as local description. It is
denoted by v(q) or v, when the text uniquely identifies q.

15.4 Parzen Windows for Color Prediction

Given a set of colored images and a new grayscale image I to be colored, the color
prediction task is to extract knowledge from the training set to predict colors C for the new
image. This knowledge is represented in two models, namely a local color predictor and a
spatial coherency function. This section outlines how to use the Parzen window method in
order to learn these models, based on the representation described in Section 15.3.

15.4.1 Learning Local Color Prediction

Multimodality of the color prediction problem creates the need of predicting scores or
probability values for all possible colors at each pixel. This can be accomplished by mod-
eling the conditional probability distribution of colors knowing the local description of the
grayscale patch around the considered pixel. The conditional probability of the color ci at
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pixel p given the local description v of its grayscale neighborhood can be expressed as the
fraction, amongst colored examples e j = (w j,c( j)) whose local description w j is similar
to v, of those whose observed color c( j) is in the same color bin Bi. This can be estimated
with a Gaussian Parzen window model

p(ci|v) =
(

∑
{ j:c( j)∈Bi}

k(w j,v)
)/

∑
j

k(w j,v), (15.1)

where k(w j,v) = e−‖w j−v‖2/2σ2
is the Gaussian kernel. The best value for the standard

deviation σ can be estimated by cross-validation on the densities. Parzen windows also
allow one to express how reliable the probability estimation is; its confidence depends
directly on the density of examples around v, since an estimation far from the clouds of
observed points loses significance. Thus, the confidence on a probability estimate is given
by the density in the feature space as follows:

p(v) ∝ ∑
j

k(w j,v).

Note that both distributions, p(ci|v) and p(v), require computing the similarities k(v,w j)
of all pixel pairs, which can be expensive during both training and prediction. For computa-
tional efficiency, these can be approximated by restricting the sums to K-nearest neighbors
of v in the training set with a sufficiently large K chosen as a function of the σ and the
Parzen densities can be estimated based on these K points. In practice, K = 500 is chosen.
Using fast nearest neighbor search techniques, such as kD-tree in the TSTOOL package
available at http://www.physik3.gwdg.de/tstool/ without particular optimization, the time
needed to compute the predictions for all pixels of a 50×50 image is only 10 seconds (for
a training set of hundreds of thousands of patches) and this scales linearly with the number
of test pixels.

15.4.2 Local Color Variation Prediction

Instead of choosing a prior for spatial coherence, based either on detection of edges, the
Laplacian of the intensity, or pre-estimated complete segmentation, it is possible to directly
learn how likely it is to observe a color variation at a pixel knowing the local description of
its grayscale neighborhood, based on a training set of real color images. The technique is
similar to the one detailed in the previous section. For each example w j of a colored patch,
the norm g j of the gradient of the 2D color (in the Lab space) is computed at the center of
the patch. The expected color variation g(v) at the center of a new grayscale patch v is then
given by

g(v) =
∑ j k(w j,v)g j

∑ j k(w j,v)
.

15.5 Support Vector Machines for Color Prediction

The method proposed in Section 15.4 is an improvement of existing image colorization
approaches by learning color variations and local color predictors using the Parzen win-
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dow method. Section 15.6 outlines how to use these estimators in a graph-cut algorithm in
order to get spatially coherent color predictions. Before describing the details of this tech-
nique, further improvements over the Parzen window approach are proposed, by employing
support vector machines (SVMs) [13] to learn the local color prediction function.

Equation 15.1 describes the Parzen window estimator for the conditional probability of
the colors given a local grayscale description v. A more general expression for the color
prediction function is given by

s(ci|v;αi) = ∑
j

αi( j)k(w j,v), (15.2)

where the kernel k satisfies k(v,v′) = 〈f(v), f(v′)〉 for all v and v′ in a certain space of
features f(v), embedded with an inner product 〈·, ·〉 between feature vectors (more details
can be found in Reference [11]). In Equations 15.1 and 15.2, the expansions for each
color ci are linear in the feature space. The decision boundary between different colors,
which tells which color is the most probable, is consequently an hyperplane. The αi can
be considered as a dual representation of the normal vector λi of the hyperplane separating
the color ci from other colors. The estimator in this primal space can then be represented
as

s(ci|v;λi) = 〈λi, f(v)〉. (15.3)

In the Parzen window estimator, all α values are nonzero constants. In order to overcome
computational problems, Section 15.4 proposes a restriction of α parameters of pixels p j

that are not in the neighborhood of v to be zero. A more sophisticated classification ap-
proach is obtained using SVMs which differ from Parzen window estimators in terms of
patterns whose α values are active (i.e., nonzero) and in terms of finding the optimal val-
ues for these parameters. In particular, SVMs remove the influence of correctly classified
training points that are far from the decision boundary, since they generally do not improve
the performance of the estimator and removing such instances (setting their corresponding
α values to 0) reduces the computational cost during prediction. Hence, the goal in SVMs
is to identify the instances that are close to the boundaries, commonly referred as support
vectors, for each class ci and find the optimal αi. More precisely, the goal is to discriminate
the observed color c( j) for each colored pixel e j = (w j,c( j)) from the other colors as much
as possible while keeping a sparse representation in the dual space. This can be achieved
by imposing the margin constraints

s(c( j)|w j;λc( j))− s(ci|w j;λi)≥ 1, ∀ j,∀ci 6= c( j), (15.4)

where the decision function is given in Equation 15.3. If these constraints are satisfiable,
one can find multiple solutions by simply scaling the parameters. In order to overcome this
problem, it is common to search for parameters that satisfy the constraints with minimal
complexity. This can be accomplished by minimizing the norm of the solution λ. In
cases where the constraints cannot be satisfied, one can allow violations of the constraints
by adding slack variables ξ j for each colored pixel e j and penalize the violations in the
optimization, where K denotes the trade-off between the loss term and the regularization
term [14]:

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
50

 0
9 

M
ay

 2
01

6 



404 Computational Photography: Methods and Applications

1
2 ∑i ||λi||2 +K ∑ j ξ j, subject to (15.5)

s(c( j)|w j;λc( j))− s(c|w j;λc)≥ 1−ξ j, ∀ j,∀c 6= c( j)
ξ j ≥ 0, ∀ j.

If the constraint is satisfied for a pixel e j and a color ci, SVM yields 0 for αi( j). The pixel-
color pairs with nonzero αi( j) are the pixels that are difficult (and hence critical) for the
color prediction task. These pairs are the support vectors and these are the only training
data points that appear in Equation 15.2.

The constraint optimization problem of Equation 15.5 can be rewritten as a quadratic
program (QP) in terms of the dual parameters αi for all colors c(i). Minimizing this
function yields sparse αi, which can be used in the local color predictor function (Equa-
tion 15.2). While training SVMs is more expensive than training Parzen window estima-
tors, SVMs yield often better prediction performance. More details on SVMs can be found
in Reference [11]. Note that in the experiments, an SVM library publicly available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm/ was used. A Gaussian kernel was used in both
Parzen windows and SVMs.

15.6 Global Coherency via Graph Cuts

For each pixel of a new grayscale image, it is possible now to estimate scores of all pos-
sible colors (within a large finite set of colors due to the discretization of the color space
into bins) using the techniques outlined in Section 15.4 and in Section 15.5. Similarly,
it is possible to estimate the probability of a color variation for each pixel. If the spatial
coherency criterion given by the color variation function is incorporated into the color pre-
dictor, the choice of the best color for a pixel is affected by the probability distributions
in the neighborhood. Since all pixels are connected through neighborhoods, it results in a
global interaction across all pixels. Hence, in order to get spatially coherent colorization
the solution should be computed globally, since any local search can yield suboptimal re-
sults. Indeed it may happen that, in some regions that are supposed to be homogeneous,
a few different colors may seem to be the most probable ones at a local level, but that the
winning color at the scale of the region is different, because in spite of its only second rank
probability at the local level, it ensures a good probability everywhere in the whole region.
On the opposite end of this spectrum are the cases where a color is selected in a whole
homogeneous region because of its very high probability at a few points with high confi-
dence. The problem is consequently not trivial, and the issue is to find a global solution. It
is proposed here to use local predictors and color variation models in graph cuts in order to
find spatially coherent colorization.

15.6.1 Energy Minimized by Graph Cuts

The graph cut or max flow algorithm is an optimization technique widely used in com-
puter vision [15], [16] because it is fast, suitable for many image processing problems, and
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guarantees to find a good local optimum. In the multilabel case with α-expansion [17], it
can be applied to all energies of the form ∑iVi(xi)+ ∑i∼ j Di, j(xi,x j) where xi are the un-
known variables that take values in a finite set L of labels, Vi are any functions, and Di, j

are any pairwise interaction terms with the restriction that each Di, j(·, ·) should be a metric
on L . For the swap-move case, the constraints are weaker [18]:

Di, j(α,α)+Di, j(β ,β )≤ Di, j(α,β )+Di, j(β ,α) (15.6)

for a pair of labels α and β .
The image colorization problem can be formulated as an optimization problem

∑
p

Vp(c(p))+ρ ∑
p∼q

|c(p)− c(q)|Lab
gp,q

, (15.7)

where Vp(c(p)) is the cost of choosing color c(p) locally for pixel p (whose neighboring
texture is described by v(p)) and where gp,q = 2

(
g(v(p))−1 +g(v(q))−1

)−1 is the har-
monic mean of the estimated color variation at pixels p and and q. An eight-neighborhood
is considered for the interaction term, and p∼ q denotes that p and q are neighbors.

The interaction term between pixels penalizes color variation where it is not expected,
according to the variations predicted in the previous paragraph. The hyper-parameter ρ en-
ables a trade-off between local color scores and spatial coherence score. It can be estimated
using cross validation.

Two methods that yield scores to local color prediction were described earlier in this
chapter. These can be used to define Vp(c(p)). When using the Parzen window estimator,
the local color cost Vp(c(p)) can be defined as follows:

Vp(c(p)) =− log
(

p
(
v(p)

))
p
(
c(p)|v(p)

)
. (15.8)

Then, Vp penalizes colors which are not probable at the local level according to the proba-
bility distributions obtained in Section 15.4.1, with respect to the confidence in the predic-
tions.

When using SVMs, there exist two options to define Vp(c(p)). Even though SVMs
are not probabilistic, methods exist to convert SVM decision scores to probabilities [19].
Hence, the p(c(p)|v(p)) term in Equation 15.8 can be replaced with the probabilistic SVM
scores and the graph cut algorithm can be used to find spatially coherent colorization. How-
ever, since V is not restricted to be a probabilistic function, Vp(c(p)) can be directly used as
−s(c(p)|v(p)). This way does not require to get the additional p(v(p)) estimate in order to
model the confidence of the local predictor; s(c(p)|v(p)) already captures the confidence
via the margin concept and renders the additional (possibly noisy) estimation unnecessary.

The graph cut package [18] available at http://vision.middlebury.edu/MRF/code/ was
used in the experiments. The solution for a 50× 50 image and 73 possible colors is ob-
tained by graph cuts in a fraction of second and is generally satisfactory. The computation
time scales approximately quadratically with the size of the image, which is still fast, and
the algorithm performs well even on significantly downscaled versions of the image so that
a good initial colorization can still be given quickly for very large images as well. The
computational costs compete with those of the fastest colorization techniques [20] while
achieving more spatial coherency.
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406 Computational Photography: Methods and Applications

15.6.2 Refinement in the Continuous Color Space

The proposed method so far makes color predictions in the discrete space. In order to
refine the predictors in the continuous color space, some smoothing should be performed.
This can be achieved naturally for the Parzen window approach. Once the density estima-
tion is achieved in the discrete space, probability distributions p(ci|v(p)) estimated at each
pixel p for each color bin i are interpolated to the whole space of colors with the technique
described in Section 15.3. This renders Vp(c) well defined for continuous color values as
well. The energy function given in Equation 15.7 can consequently be minimized in the
continuous space of colors. In order to do so, the solution obtained by graph cuts is refined
with a gradient descent. This refinement step generally does not introduce large changes
such as changing the color of whole regions, but introduces more nuances.

15.7 Structured Support Vector Machines for Color Prediction

The methods described above improve existing image colorization approaches by learn-
ing color variations and the local color predictors separately and combining them via graph-
cut algorithm. It is now proposed to learn the local color predictor and spatial coherence
jointly, as opposed to learning them independently as described in Sections 15.4 and 15.5.
This can be accomplished by structured prediction methods. In particular, this section
describes the application of structured support vector machines (SVMstruct) [21] for au-
tomatic image colorization. SVMstruct is a machine learning method designed to predict
structured objects, such as images where color prediction for each pixel is influenced by
the prediction of neighboring pixels as well as the local input descriptors.

15.7.1 Joint Feature Functions and Joint Estimator

The decision function of SVMstruct is computed with respect to feature functions that
are defined over the joint input-output variables. The feature functions should capture the
dependency of a color to the local characteristics of the gray scale image as well as the
dependency of a color on the colors of neighboring pixels. The feature functions were
already defined for local dependencies in Section 15.3.4; these features were denoted by
v. Furthermore, Section 15.6 outlined an effective way of capturing color dependencies
across neighboring pixels,

f̄ (c,c′) =
∣∣c− c′

∣∣
Lab , (15.9)

which are later scaled with respect to the color variations g. It is conceivable that this de-
pendency is more pronounced for some color pairs than others. In order to allow the model
to learn such distinctions in case of their existence, feature functions given in Equation 15.9
will be defined and a parameter λ̄cc′ will be learned for each color pair c,c′.

The decision function of SVMstruct can now be defined with respect to v and the f̄
function as follows:

s(C|I) = ∑
p
〈λC(p),v(p)〉+ ∑

p∼q
λ̄C(p)C(q) f̄ (C(p),C(q)), (15.10)
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where C refers to a color assignment for image I and C(p) denotes its restriction to pixel
p, hence the color assigned to the pixel. As in the case of standard SVMs, there is a kernel
expansion of the joint predictor given by

s(C|I) = ∑p ∑ j αC(p)( j)k(w j,v(p))+∑p∼q λ̄C(p)C(q) f̄ (C(p),C(q)). (15.11)

The following discusses this estimator with respect to the previously considered func-
tions. Compared to the SVM-based local prediction function given in Equation 15.2, this
estimator is defined over a full grayscale image I and its possible colorings C as opposed
to the SVM case which is defined over an individual grayscale pixel p and its colorings c.
Furthermore, the spatial coherence criteria (the second term in Equation 15.11) are incor-
porated directly rather than by two-step approaches used in the Parzen window and SVM-
based methods. It can be also observed that the proposed joint predictor, Equation 15.11,
is simply a variation of the energy function used in the graph-cut algorithm given in Equa-
tion 15.7, where different parameters for spatial coherence can now be estimated by a joint
learning process as opposed to learning color variation and finding λ in the energy via
cross-validation. With the additional symmetry constraint λ̄cc′ = λ̄c′c for each color pair
c,c′, the energy function can be optimized using the graph cuts swap move algorithm.
Hence, SVMstruct provides a more unified approach for learning parameters and removes
the necessity of the hyper-parameter ρ .

15.7.2 Training Structured SVMs

Given the joint estimator in Equation 15.11, the learning procedure is now defined to
estimate optimal parameters αi for all colors ci and λ̄cc′ for all color pairs c,c′. The training
procedure is similar to SVMs where the norm of the parameters is minimized with respect
to margin constraints. Note that the margin constraints are now defined on colored images
(I j,C j) for all images j in the training data,

s(C j|I j)− s(C|I j)≥ 1−ξ j, ∀ j,∀C 6= C j.

As in SVMs, the goal is to separate the observed coloring C j of an image I j from all
possible colorings C of I. This formulation can be extended by quantifying the quality
of a particular coloring with respect to the observed coloring of an image. If a coloring
C is similar to the observed coloring C j for the training image I j, the model should relax
the margin constraints for C and j. In order to employ this idea in the proposed joint
optimization framework, a cost function ∆(C,C′), that measures the distance between C
and C′ and imposes margin constraints with respect to this cost function, is defined as:

s(C j|I j)− s(C|I j)≥∆(C j,C)−ξ j,∀ j,∀C 6= C j.

The incorporation of ∆ renders the constraints of colorings similar to C j essentially in-
effective and leads to more reliable predictions. This cost function can be defined as the
average perceived difference between two colors across all pixels:

∆(C,C̄) = ∑
p

||C(p)−C̄(p)||
maxc,c′ ||c− c′|| . (15.12)

The normalization term ensures that the local color differences are between 0 and 1.
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(a) (b) (c)

(d) (e) (f)

FIGURE 15.3 (See color insert.)

Coloring a painting given another painting by the same painter: (a) training image, (b) test image, (c) image

colored using Parzen windows — the border is not colored because of the window size needed for SURF

descriptors, (d) color variation predicted — white stands for homogeneity and black for color edge, (e) most

probable color at the local level, and (f) 2D color chosen by graph cuts.

(a) (b) (c)

(d) (e) (f) (g)

FIGURE 15.4 (See color insert.)

Landscape example with Parzen windows: (a) training image, (b) test image, (c) output image, (d) predicted

color variation, (e) most probable color locally, (f) 2D color chosen by graph cuts, (g) colors obtained after

refinement step.
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There are efficient training algorithms for this optimization [21]. In this chap-
ter, the experiments were done using the SVMstruct implementation available at
http://svmlight.joachims.org/ with a Gaussian kernel.

15.8 Experiments

This section presents experimental results achieved using the proposed automatic col-
orization methods on different datasets.

15.8.1 Colorization Based on One Example

Figure 15.3 shows a painting colored using the Parzen window method given another
painting by the same painter. The two paintings are significantly different and textures are
relatively dissimilar. The prediction of color variation performs well and helps significantly
to determine the boundaries of homogeneous color regions. The multimodality framework
proves extremely useful in areas such as Mona Lisa’s forehead or neck where the texture of
skin can be easily mistaken for the texture of sky at the local level. Without the proposed
global optimization framework, several entire skin regions would be colored in blue, dis-
regarding the fact that skin color is the second probable colorization for these areas. This
makes sense at the global level since they are surrounded by skin-colored areas, with low
probability of edges. Note that the input of previous texture-based approaches is very simi-
lar to the “most probable color” prediction, whereas the proposed framework considers the
probabilities of all possible colors at all pixels. This means that given a certain quality of
texture descriptors, the proposed framework handles much more information.

Figure 15.4 shows the outcome of similar experiments with photographs of landscapes.
The effect of the refinement step can be observed in the sky where nuances of blue vary
more smoothly. Both SVMs and SVMstruct produce only slightly different results, hence
the colorization results are not presented.

The proposed Parzen window method is now compared with the method of Reference [7],
on their own example. Figure 15.5 shows the results; the task is easier and therefore results
are similar. The method of Reference [7] colored a several pixel wide band of grass around
the zebra’s legs and abdomen as if it were part of the zebra. The boundaries of color regions
produced using the proposed method fit better to the zebra contour, as seen in Figure 15.6.
However, grass areas near the zebra are colored according to the grass observed at similar
locations around the zebra in the training image, thus creating color halos which are visually
not completely satisfactory. It is expected that this bias will disappear with larger training
sets since the color of the background becomes independent of zebra’s presence.

15.8.2 Colorization Based on a Small Set of Different Images

In the following, a very difficult task is considered. Namely, an image to be colored is
from a Charlie Chaplin movie, with many different objects and textures, such as a brick
wall, a door, a dog, a head, hands, and a loose suit. Because of the number of objects and
because of their particular arrangement, it is unlikely to find a single color image with a
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(a) (b) (c)

(d) (e)

FIGURE 15.5

Comparison with the method of Reference [7]: (a) color zebra example, (b) test image, (c) proposed method

output, (d) 2D colors predicted using the proposed method, and (e) output using Reference [7] with the as-

sumption that this is a binary classification problem. c© Eurographics Association 2005

(a) (b) (c)

FIGURE 15.6

Zoomed portion of images in Figure 15.5: (a) method of Reference [7], (b) proposed method, and (c) colors

predicted using the proposed method.

similar scene that can be used as a training image. Therefore, a small set of three different
images is considered; each image from this set shares a partial similarity with the Charlie
Chaplin image. The underlying difficulty is that each training image also contains parts
which should not be reused in this target image. Figure 15.7 shows the results obtained
using Parzen windows. The result is promising considering the training set. In spite of the
difficulty of the task, the prediction of color edges and of homogeneous regions remains
significant. The brick wall, the door, the head, and the hands are globally well colored. The
large trousers are not in the training set; the mistakes in the colors of Charlie Chaplin’s dog
are probably due to the blue reflections on the dog in the training image and to the light
brown of its head. Dealing with larger training datasets increases the computation time
only logarithmically during the kD-tree search.
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(a)
(b) (c)

(d) (e) (f)

FIGURE 15.7 (See color insert.)

Image colorization using Parzen windows: (a) three training images, (b) test image, (c) colored image, (d)

prediction of color variations, (e) most probable colors at the local level, and (f) final colors.

(a) (b) (c)

(d) (e) (f)

FIGURE 15.8 (See color insert.)

SVM-driven colorization of Charlie Chaplin frame using the training set of Figure 15.7: (a,d) SVM, (b,e) SVM

with spatial regularization — Equation 15.7, and (c,f) SVMstruct.

Figure 15.8 shows the results for SVM-based prediction. In the case of SVM coloriza-
tion, the contours of Charlie Chaplin and the dog are well recognizable in the color-only
image. Face and hands do not contain nonskin colors, but the abrupt transitions from very
pale to warm tones are visually not satisfying. The dog contains a large fraction of skin col-
ors; this could be attributed to a high textural similarity between human skin and dog body
regions. The large red patch on the door frame is probably caused by a high local similarity
with the background flag in the first training image. Application of the spatial coherency
criterion from Equation 15.7 yields a homogeneous coloring, with skin areas being well

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

3:
50

 0
9 

M
ay

 2
01

6 



412 Computational Photography: Methods and Applications

FIGURE 15.9

Eight of 20 training images from the Caltech Pasadena Houses 2000 collection available at

http://www.vision.caltech.edu/archive.html. The whole set can be seen at http://www-sop.inria.fr/members/

Guillaume.Charpiat/color/houses.html.

represented. The coloring of the dog does not contain the mistakes from Figure 15.7, and
appears consistent. The door is colored with regions of multiple, but similar colors, which
roughly follow the edges on the background. The interaction term effectively prevents tran-
sitions between colors that are too different, when the local probabilities are similar. When
colorizing with the interaction weights learned using SVMstruct, the overall result appears
less balanced; the dog has patches of skin color and the face consists of two not very similar
color regions. Given the difficulty of the task and the small amount of training data, the
result is presentable, as all interaction weights were learned automatically.

15.8.3 Scaling with Training Set Size

Larger-scale experiments were performed on two datasets. The first dataset is based on
the first 20 images of the Pasadena houses Caltech database (Figure 15.9). This training
data was used to predict colors for the 21st and 22nd images. Figure 15.10 illustrates
colorization using Parzen windows. The colorization quality is relatively similar to the one
obtained for the previous small datasets. In order to remove texture noise (for example the
unexpected red dots in trees in Figure 15.10), a higher spatial coherency weight is required,
which explains the lack of nuances. The use of more discriminative texture features can
improve texture identification, reduce texture noise and consequently allow more nuances.

Figure 15.11 shows images colored using SVMs and SVMstruct. In order to reduce the
training time, every 3rd pixel on a regular grid was used for all training images.

The shapes of the windows, doors, and stairs can be identified from the color-only image,
which is not the case for the Parzen window method, demonstrating the ability of SVM to
discriminate between fine details on local level. The colorization of the lawn is irregular,
the local predictor tends to switch between green and gray, which would correspond to a
decision between grass or asphalt. This effect does not occur in the Parzen window classi-
fier and can be attributed to the subsampling of the training data, leading to a comparatively
low number of training points for lawn areas. Application of spatial regularization indeed
leads to the effect of the lawn becoming completely gray. When the spatial coherency crite-
rion from Equation 15.7 is applied, the coloring becomes homogeneous and is comparable
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(a) (b)

(c) (d) (e)

FIGURE 15.10 (See color insert.)

Colorization of the 21st and 22nd images from the Pasadena houses Caltech dataset: (a) 21st image colored,

(b) 22nd image colored, (c) predicted edges, (d) most probable color at the pixel level, and (e) colors chosen.

to the results from the Parzen window method, but with a higher number of different color
regions and thus a more realistic appearance. SVMstruct-based colorization preserves a
much higher number of different color regions while removing most of the inconsistent
color patches and keeping finer details. It is able to realistically color the small bushes
in front of the second house. The spatial coherency weights for transitions between dif-
ferent colors were learned from training data without the need for cross validation for the
adjustment of the hyper-parameter λ . These improvements come at the expense of longer
training time, which scales quadratically with the training data.

Finally, an ambitious experiment was performed to evaluate how the proposed approach
deals with quantities of different textures on similar objects; that is, how it scales with the
number of textures observed. A portrait database of 53 paintings with very different styles
(Figure 15.12) was built. Five other portraits were colored using Parzen windows (Fig-
ure 15.13) and the same parameters. Although given that red color is indeed the dominant
color in an important proportion of the training set, the colorizations sometimes appears
rather reddish. The surprising part is the good quality of the prediction of the colored
edges, which yields a segmentation of the test images into homogeneous color regions.
The boundaries of skin areas in particular are very well estimated, even in images which
are very heavily textured. The good estimation of color edges helped the colorization pro-
cess to find suitable colors inside the supposedly-homogeneous areas, despite locally noisy
color predictions. Note that neither SVM nor SVMstruct were evaluated in this experiment
due to their expensive training.
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(a) (b) (c)

(d) (e) (f)

FIGURE 15.11 (See color insert.)

SVM-driven colorization of the 21st and 22nd images from the Pasadena houses Caltech dataset; results and

colors chosen are displayed: (a-c) 21st image, (d-f) 22nd image; (a,d) SVM, (b,e) SVM with spatial regular-

ization, and (c,f) SVMstruct.

15.9 Conclusion

This chapter presented three machine learning methods for automatic image colorization.
These methods do not require any intervention by the user other than the choice of rela-
tively similar training data. The color prediction task was formally stated as an optimization
problem with respect to an energy function. Since the proposed approaches retain the mul-
timodality until the prediction step, they extract information from training data effectively
using different machine learning methods. The fact that the problem is solved directly at
the global level with the help of graph cuts makes the proposed framework more robust to
noise and local prediction errors. It also allows resolving large scale ambiguities as opposed
to previous approaches. The multimodality framework is not specific to image colorization
and could be used in any prediction task on images. For example, Reference [22] outlines
a similar approach for medical imaging to predict computed tomography scans for patients
whose magnetic resonance scans are known.
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FIGURE 15.12

Some of 53 portraits used as a training set. Styles of paintings vary significantly, with different kinds

of textures and different ways of representing edges. The full training set is available at http://www-

sop.inria.fr/members/Guillaume.Charpiat/color/.

The proposed framework exploits features derived from various sources of information.
It provides a principal way of learning local color predictors along with spatial coherence
criteria as opposed to the previous methods which chose the spatial coherence criteria man-
ually. Experimental results on small and large scale experiments demonstrate the validity
of the proposed approach which produces significant improvements over the methods in
References [5] and [6], in terms of the spatial coherency formulation and the large number
of possible colors. It requires less or similar user-intervention than the method in Refer-
ence [7], and can handle cases which are more ambiguous or have more texture noise.

Currently, the proposed automatic colorization framework does not employ decisive in-
formation which is commonly used in user-interactive approaches. However, the proposed
framework can easily incorporate user-provided information such as the color c at pixel p in
order to modify a colorization that has been obtained automatically. This can be achieved
by clamping the local prediction to the color provided by the user with high confidence.
For example, in the Parzen window method, p(c|v(p)) = 1 and the confidence p(v(p)) is
set to a very large value. Similar clamping assignments are possible for SVM-based ap-
proaches. Consequently, the proposed optimization framework is usable for further inter-
active colorization. A recolorization with user-provided color landmarks does not require
the re-estimation of color probabilities, and therefore requires only a fraction of second.
This interactive setting will be addressed in future work.
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FIGURE 15.13

Portrait colorization: (top) result, (middle) colors chosen without grayscale intensity, and (bottom) predicted

color edges. Predicted color variations are particularly meaningful and correspond precisely to the boundaries

of the principal regions. Thus, the color edge estimator can be seen as a segmentation tool. The background

colors cannot be expected to be correct since the database focuses on faces. The same parameters were used

for all portraits.

Figures 15.1 to 15.5, and 15.7 are reprinted with permission from Reference [8]. Fig-
ure 15.5 is reprinted from Reference [7], with the permission of Eurographics Associ-
ation. Figure 15.9 contains photos from the Caltech Pasadena Houses 2000 collection
(http://www.vision.caltech.edu/archive.html), reproduced with permission.
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16.1 Introduction

Beauty, particularly of the human face, has fascinated human beings from the very dawn
of mankind, inspiring countless artists, poets, and philosophers. Numerous psychological
studies find high cross-cultural agreement in facial attractiveness ratings among raters from
different ethnicities, socioeconomic classes, ages, and gender [1], [2], [3], [4], indicating
that facial beauty is a universal notion, transcending the boundaries between different cul-
tures. These studies suggest that the perception of facial attractiveness is data-driven; the
properties of a particular set of facial features are the same irrespective of the perceiver.

419
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FIGURE 16.1

Digital face beautification: (left) input facial images, and (right) the modified images generated using the

proposed method. The changes are subtle, yet their impact is significant. Notice that different modifications

are applied to men and women, according to preferences learned from human raters. c© 2008 ACM

The universality of the notion of facial attractiveness along with the ability to reliably
and automatically rate the facial beauty from a facial image [5], [6] has motivated this
work. Specifically, this chapter presents a novel tool capable of automatically enhancing
the attractiveness of a face in a given frontal portrait. It aims at introducing only sub-
tle modifications to the original image, such that the resulting beautified face maintains a
strong, unmistakable similarity to the original, as demonstrated in Figure 16.1 by the pairs
of female and male faces. This is a highly nontrivial task, since the relationship between the
ensemble of facial features and the degree of facial attractiveness is anything but simple.

Professional photographers have been retouching and deblemishing their subjects ever
since the invention of photography. It may be safely assumed that any model present on
a magazine cover today has been digitally manipulated by a skilled, talented retouching
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FIGURE 16.2

The proposed digital face beautification process.

artist. Since the human face is arguably the most frequently photographed object on earth,
a tool such as the one described in this chapter would be a useful and welcome addition to
the ever-growing arsenal of image enhancement and retouching tools available in today’s
digital image editing packages. The potential of such a tool for motion picture special
effects, advertising, and dating services, is also quite obvious.

Given a face, a variety of predetermined facial locations are identified to compute a set of
distances between them. These distances define a point in a high-dimensional face space.
This space is searched for a nearby point that corresponds to a more attractive face. The
key component in this search is an automatic facial beauty rating machine, that is, two
support vector regressors trained separately on a database of female and male faces with
accompanying facial attractiveness ratings collected from a group of human raters. Once
such a point is found, the corresponding facial distances are embedded in the plane and
serve as a target to define a two-dimensional (2D) warp field which maps the original facial
features to their beautified locations. The process is schematically depicted in Figure 16.2.

Experimental results indicate that the proposed method is capable of effectively im-
proving the facial attractiveness of most images of female faces used in experiments. In
particular, its effectiveness was experimentally validated by a group of test subjects who
consistently found the beautified faces to be more attractive than the original ones.

The proposed beauty regressor was trained using frontal portraits of young Caucasian
males and females with neutral expression and roughly uniform lighting. Thus, it currently
can only be expected to perform well on facial images with similar characteristics. How-
ever, it may be directly extended to handle additional ethnic groups, simply by using it with
beauty regressors trained on suitable collections of portraits.

16.1.1 Overview

Section 16.2 describes psychological findings related to perception of human facial
beauty, that accumulated in the past three decades. These notions are important for un-
derstanding the reasoning behind the proposed methods. Section 16.3 discusses how to
construct a model of facial beauty using supervised learning methods. The models are
based on sets of face images of females and males, rated by human raters. This section also
describes the features used to represent facial geometry, that are based on psychological
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research as well as detailed empirical tests. Section 16.4 presents two alternative methods
of face beautification. The first uses direct optimization of a beauty function and the other
is based on heuristics motivated by well-known psychological effects of beauty perception.

The next two sections describe techniques and methods related to the process of face
beautification. Namely, Section 16.5 presents the methods used to locate facial features and
identify 84 canonical points on a face, including points at specific locations on the mouth,
nose, eyes, brows, and the contour of the face, which provide a succinct description of the
geometry of a face. These points are the anchors for warping a faces to a beautified version
thereof. Section 16.6 describes distance embedding required to carry out the warping, and
the warping process, modified for the specific task of warping human faces.

Section 16.7 presents examples of beautified faces of both females and males. An empir-
ical validation based on a large set of faces is described, showing that face images produced
by the process are indeed significantly more pleasing than the original images. This section
concludes by pointing out some applications of face beautification. Finally, conclusions are
offered in Section 16.8 which also discusses some ideas for extending the proposed method
to handle nonfrontal portraits and nonneutral expressions.

16.2 Background

Philosophers, artists and scientists have been trying to capture the nature of beauty since
the early days of philosophy. Although in modern days a common laymans notion is that
judgments of beauty are a matter of subjective opinion alone, recent findings suggest that
people share a common taste for facial attractiveness and that their preferences may be
an innate part of our primary constitution. Indeed, several rating studies have shown high
cross-cultural agreement in attractiveness rating of faces of different ethnicities [1], [2], [3].

Other experimental studies demonstrated consistent relations between attractiveness and
various facial features, which were categorized as neonate (features such as small nose
and high forehead), mature (e.g., prominent cheekbones) and expressive (e.g., arched eye-
brows). They concluded that beauty is not an inexplicable quality which lies only in the
eye of the beholder [7], [8].

Further experiments have found that infants ranging from two to six months of age prefer
to look longer at faces rated as attractive by adults than at faces rated as unattractive [9],
[10]. They also found that twelve month old infants prefer to play with a stranger with an
attractive face compared with a stranger with an unattractive face.

Such findings give rise to the quest for common factors which determine human facial
attractiveness. Accordingly, various hypotheses, from cognitive, evolutional, and social
perspectives, have been put forward to describe and interpret the common preferences for
facial beauty. Inspired by the photographic method of composing faces presented in Ref-
erence [11], Reference [12] proposed to create averaged faces (Figure 16.3) by morphing
multiple images together. Human judges found these averaged faces to be attractive and
rated them with attractiveness ratings higher than the mean rating of the component faces
composing them, proposing that averageness is the answer for facial attractiveness [12],
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Machine Learning for Digital Face Beautification 423

FIGURE 16.3 (See color insert.)

Female and male face-composites, each averaging sixteen faces. It has been empirically shown that average

faces tend to be considerably more attractive than the constituent faces.

[13]. Investigating symmetry and averageness of faces, it was found that symmetry is more
important than averageness in facial attractiveness [14]. Other studies have agreed that av-
erage faces are attractive but claim that faces with certain extreme features, such as extreme
sexually dimorphic traits, may be more attractive than average faces [4].

Many contributors refer to the evolutionary origins of attractiveness preferences [15].
According to this view, facial traits signal mate quality and imply chances for reproductive
success and parasite resistance. Some evolutionary theorists suggest that preferred features
might not signal mate quality but that the “good taste” by itself is an evolutionary adapta-
tion (individuals with a preference for attractiveness will have attractive offspring that will
be favored as mates) [15]. Another mechanism explains attractiveness preferences through
a cognitive theory — a preference for attractive faces might be induced as a by-product
of general perception or recognition mechanisms [16]. Attractive faces might be pleasant
to look at since they are closer to the cognitive representation of the face category in the
mind. It was further demonstrated that not just average faces are attractive but also birds,
fish, and automobiles become more attractive after being averaged with computer manip-
ulation [17]. Such findings led researchers to propose that as perceivers can process an
object more fluently, aesthetic response becomes more positive [18]. A third view suggests
that facial attractiveness originates in a social mechanism, where preferences may be de-
pendent on the learning history of the individual and even on his social goals [16]. Other
studies have used computational methods to analyze facial attractiveness. In several cases
faces were averaged using morphing tools [3]. Laser scans of faces were put into com-
plete correspondence with the average face in order to examine the relationship between
facial attractiveness, age, and averageness [19]. Machine learning methods have been used
recently to investigate whether a machine can predict attractiveness ratings by learning a
mapping from facial images to their attractiveness scores [5], [6]. The predictor presented
by the latter achieved a correlation of 0.72 with average human ratings, demonstrating that
facial beauty can be learned by a machine with human-level accuracy.
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16.2.1 Previous Work

Much of the research in computer graphics and computer vision has concentrated on
techniques and tools specifically geared to human faces. In particular, there is an extensive
body of literature on facial modeling and animation [19], [20], [21], [22], [23], [24], face
detection [25], [26], and face recognition [27]. Among these previous works, the most rele-
vant to the proposed approach are the different methods for 2D facial image morphing [28],
[29] and the three-dimensional (3D) morphable facial models [30].

Similarly to image morphing methods, the proposed approach also makes use of 2D
image warping to transform the input face into a beautified one. However, the goals of these
two approaches are very different. In image morphing, the goal is typically to produce a
continuous transformation between two very different faces (or other pairs of objects). The
challenge there lies mainly in finding the corresponding features of the two faces, and
defining an appropriate warp. In the proposed approach, the challenge lies in finding the
target shape into which the source image is to be warped, such that the changes are subtle
yet result in a noticeable enhancement of facial attractiveness.

Perceptual psychologists also often use image compositing, morphing, and warping to
gain a better understanding of how humans perceive various facial attributes. For example,
warping towards, and away from average faces has been used to study facial attractiveness
and aging [31], [32]. Again, in this case the target shape for the morph, or the direction of
the warp, is predefined.

Reference [30] presents a 3D morphable face model suitable to manipulate a number of
facial attributes such as masculinity or fullness, or even to generate new facial expressions.
This morphable model is formed by a linear combination of a set of prototype faces. Its
underlying working assumption is that the markedness of the attribute of interest is a linear
function. Consequently, increasing or decreasing the markedness is achieved by moving
along a single optimal direction in the space of faces. At first glance, it may appear that the
beautification task could be carried out using such a method (indeed, such an attempt was
made in Reference [33]). However, as demonstrated in this chapter, facial attractiveness is
a highly nonlinear attribute.

The proposed approach does not require fitting a 3D model to a facial image in order
to beautify it; rather, it operates directly on the 2D image data. The approach relies on
the availability of experimental data correlating facial attractiveness with 2D distances in a
facial image, while no equivalent data exists yet for distances between landmarks on a 3D
facial mesh. The beautification process could, however, assist in obtaining a beautified 3D
model, by applying the proposed beautification technique to an input image in a preprocess,
followed by fitting a 3D morphable model to the beautified result.

Reference [34] focuses on performance-driven animation. This approach transfers ex-
pressions, visemes, and head motions from a recorded performance of one individual to
animate another, and is not concerned with synthesizing new faces or with modifying the
appearance of a face. A genetic algorithm-driven approach, guided by interactive user se-
lections to evolve a “most beautiful” female face, is presented in Reference [35]. However,
although there are several insights about the constituents of facial beauty (e.g., golden ratios
and averageness hypothesis), the first successful attempt at an automatic, software guided
beautification of faces was carried out in Reference [36].
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16.3 Machine Learning of Facial Beauty
16.3.1 Face Datasets

As shown in Figure 16.2, the beautification engine is based on a beauty predictor, which
is trained on a set of rated human faces. Since the characteristics of facial beauty differ in
males and females, a separate dataset for each gender should be used.

The female dataset was composed of 91 facial images of American females. All 91 sam-
ples were frontal color photographs of young Caucasian females with a neutral expression.
The subjects’ portraits had no accessories or other distracting items such as jewelry, and
minimal makeup was used.

The male dataset consisted of 32 facial images [37]. All images were frontal color pho-
tographs of young Caucasian males with a neutral expression. All samples were of similar
age, skin color and gender. Subjects’ facial hair was restricted to allow precise determina-
tion of facial features such as lips, lower jaw, and nostrils.

16.3.2 Collection of Ratings

The facial images in the datasets were rated for attractiveness by 28 human raters (15
males, 13 females) on a 7-point Likert scale (1 = very unattractive, 7 = very attractive) [6].
Ratings were collected with a specifically designed html interface. Each rater was asked to
view the entire set before rating in order to acquire a notion of attractiveness scale. There
was no time limit for judging the attractiveness of each sample and raters could go back and
adjust the ratings of previously rated samples. The images were presented to each rater in
a random order and each image was presented on a separate page. The final attractiveness
rating of each sample (male or female) was its mean rating across all raters.

The following tests were made to validate that the number of ratings collected adequately
represented the collective attractiveness rating:

• For the females dataset, an independent average rating from Reference [38] was ob-
tained. The Pearson correlation between the two sets of ratings was 0.92.

• Increasing the number of ratings to 60, with approximately the same ratio of males
to female raters, introduced no significant modification of the average ratings.

• The raters were divided into two disjoint groups of equal size. The mean rating for
each facial image in each group was calculated to determine the Pearson correlation
between the mean ratings of the two groups. This process was repeated 1000 times.
This procedure was taken separately for the male and female datasets. The mean
correlation between two groups for both datasets was higher than was 0.9, with a
standard deviation of σ < 0.03. It should be noted that the split-half correlations
reported were high in all 1000 trials (as evident from the low standard deviation) and
not only over the average. Experimental results show that there is a greater agreement
on human ratings of female faces while male face preferences are more variable, in
accordance with Reference [39]. This correlation corresponds well to the known
level of consistency among groups of raters reported in the literature [1].
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(a) (b) (c)

FIGURE 16.4 (See color insert.)

An example of the eight facial features (two eyebrows, two eyes, the inner and outer boundaries of the lips, the

nose, and the boundary of the face), composed of a total of 84 feature points, used in the proposed algorithm:

(a) output feature points from the active shape model search, (b) scatter of the aligned 84 landmark points of

92 sample training data and their average, and (c) 234 distances between these points. c© 2008 ACM

Hence, the mean ratings collected are stable indicators of attractiveness that can be used
for the learning task. The facial set contained faces in all ranges of attractiveness. Final
attractiveness ratings range from 1.42 to 5.75, with the mean rating equal to 3.33 and σ =
0.94.

16.3.3 Data Representation and Preprocessing

Experimentations with various ways of representing a facial image [5], [6] have system-
atically shown that features based on measured proportions, distances, and angles of faces
are most effective in capturing the notion of facial attractiveness. Other representation of
faces, such as the eigenface decomposition [40], were found significantly inferior. The
representation adopted here is specifically designed to capture the facial geometry.

To extract facial features, an automatic engine was developed to identify 84 feature points
located on the outlines of eight different facial features: two eyebrows, two eyes, the in-
ner and outer boundaries of the lips, the nose, and the boundary of the face; as shown in
Figure 16.4a. Feature points were selected in accordance with facial attributes shown to be
strongly related with facial attractiveness for both males and females: size of eyes and lips,
distance between eyes, height of forehead, width of lower jaw, distance between the lower
lip and the chin etc.

Several regions are automatically suggested for sampling nongeometric characteristics
of faces that are known to be related with facial beauty: mean hair color, mean skin color,
and skin texture. These features are not manipulated by the beautification process, but are
used to adjust average beauty scores (see Section 16.4). The feature extraction process was
basically automatic but some coordinates needed to be manually adjusted in some of the
images.
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The mean (normalized) positions of the extracted feature points, see Figure 16.4b, are
used to construct a Delaunay triangulation. The triangulation consists of 234 edges, and the
lengths of these edges in each face form its 234-dimensional distance vector. Figure 16.4c
is an example for face triangulation and the associated distance vector. The distances are
normalized by the square root of the face area to make them invariant of scale. The pro-
posed method works with distances between feature points, rather than with their spatial
coordinates, as such distances are more directly correlated with the perceived attractiveness
of a face. Furthermore, working with a facial mesh, rather than some other planar graph,
imposes some rigidity on the beautification process, preventing it from generating distances
which may possess a high score but do not correspond to a valid face.

16.4 Face Beautification
16.4.1 Support Vector Regression

Support vector regression (SVR) [41] is an induction algorithm for fitting multidimen-
sional data (see Appendix). Being based on the ideas of structural risk minimization, it has
excellent generalization performance. By using various kernels, SVR can fit highly non-
linear functions. An SVR model is constructed by training it with a sparse set of samples
(~xi,yi), where~xi ∈ Rd and yi ∈ R.

In the proposed method,~xi is made of features that represent the geometry of the ith face
and yi are the corresponding averaged beauty scores. Specifically, the mean (normalized)
positions of the extracted feature points (Figure 16.4b) were used to construct a Delaunay
triangulation. The triangulation consists of 234 edges, and the lengths of these edges in
each face form its 234-dimensional distance vector, ~x (Figure 16.4c). The distances are
normalized by the square root of the face area to make them invariant of scale. The resulting
regressor defines a smooth function fb : Rd → R used to estimate the beauty scores of
distance vectors corresponding to faces outside the training set.

Following extensive preliminary experimentation, a radial basis function kernel was cho-
sen to model the nonlinear behavior expected for such a problem. Further model selection
was performed by a grid search using ten-fold cross-validation over the width of the ker-
nel σ , the slack parameter C, and the the tube width parameter ε (see Appendix for more
details). A soft margin SVR implemented in SVMlight [42] is used throughout this work.

Notice that in contrast to the regressors described in References [5] and [6] which at-
tempted to use all relevant features, the proposed regressor makes no use of nongeometric
features, such as hair color, and skin texture. The proposed beautification engine is thus
designed to modify only the geometry of the face, thereby making nongeometric features
irrelevant to the process.

It was therefore necessary to adjust the beauty scores so as to discount the effect of the
nongeometric features. Specifically, linear regression was used to model the effect of the
nongeometric features. To this end, the nongeometric features, ~zi, whose Pearson corre-
lation with the beauty score is significant to a level of 0.01 were selected to calculate the
regression line ylin

i = a +~b ·~z. The proposed regressor was then trained on the difference
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y = yorig− ylin, where yorig are the original beauty scores and ylin is the regression hyper-
plane, based on the nongeometrical features above.

16.4.2 Performance of Facial Beauty Predictors

Machine attractiveness ratings of female images obtained a high Pearson correlation of
0.56 (Pvalue = 3.2× 10−9) with the mean ratings of human raters (the learning targets).
For the male dataset, the correlation was much lower, 0.34 (Pvalue = 0.0197). The reason
for the inferior performance of the male predictor is twofold: i) the small size of the male
dataset is in particularly unfavorable due to the large number of features, and ii) it is well
known that the notion of male beauty is not as well defined as that of the female, and
probably learning it by a machine might be a considerably harder task.

16.4.3 Beautification Process

Let ~x denote the normalized distance vector extracted from an input facial image. The
goal of the beautification process is to generate a nearby vector~x′ with a higher beauty score
fb(~x′) > fb(~x). Since many points in the proposed 234-dimensional feature space do not
correspond to distance vectors of faces at all, the main challenge is to keep the synthesized
vectors ~x′ inside the subspace of valid faces. Many vectors in this space could possess a
higher score, but any such vector must be projected back into the subspace of valid faces,
and the score might be reduced in the process. The assumption here is that fb is smooth
enough to allow climbing it incrementally using local optimization techniques.

Two complementary techniques based on weighted K-nearest neighbors (KNN) search
(Section 16.4.4) and SVR-driven optimization (Section 16.4.5) were used to achieve this
objective. Assuming that face space is locally convex, the KNN-based method guarantees
that the resulting beautified faces lie within this space. The SVR-based method optimizes a
given face according to the beauty function, fb. Since the latter method does not assume lo-
cal convexity, it has a more fundamental flavor. However, since the problem is very sparse,
and since the SVR is trained on a rather small set of samples, the regression function could
exhibit strong artifacts away from the regions populated by the training samples. Therefore,
the search is constrained to a compact region in face space by applying regularization.

16.4.4 KNN-Based Beautification

Psychological experiments demonstrate that average faces are generally considered at-
tractive [9], [14]. While this may be true as a general rule of thumb, this was shown to be
an oversimplification in later studies. For example, it was also found that composites of
beautiful faces were rated as more attractive than an average composite face [3], [43].

Experiments with the proposed SVR regressor also showed that there are many more
local maxima for which the beauty score is higher than the global average. It was further
found that an effective way of beautifying a face while maintaining a close resemblance
to the original is to modify the distance vector of the face in the direction of the beauty-
weighted average of the K nearest neighbors of that face. In agreement with the literature,
the beauty scores of faces modified in this manner are typically higher than those resulting
from moving towards the global unweighted average.
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FIGURE 16.5

The beauty score plotted as a function of K in the proposed KNN-based technique applied to one of the faces in

the test database. The optimal value of K is 5 with an associated SVR beauty score of 5.03. The initial beauty

score for this face is 4.38, and the simple average score, K→∞, is 4.51. The proposed SVR-based beautifier

succeeds in finding a distance vector with a higher score of 5.20. c© 2008 ACM

More specifically, let ~xi and yi denote the set of distance vectors corresponding to the
training set samples and their associated beauty scores, respectively. Now, given a distance
vector~x, the beauty-weighted distances wi can be defined as follows:

wi =
yi

‖~x−~xi‖ .

Notice that yi gives more weight to the more beautiful samples, in the neighborhood of~x.
The best results are obtained by first sorting {~xi} in descending order, such that wi ≥ wi+1,
and then searching for the value of K maximizing the SVR beauty score fb of the weighted
sum

~x′ = ∑K
i=1 wi~xi

∑K
i=1 wi

. (16.1)

The chart in Figure 16.5 shows how the beauty score changes for different values of
K. Note that the behavior of the beauty score is nontrivial. However, generally speaking,
small values of K tend to produce higher beauty scores than that of the average face. Some
examples of KNN-beautified faces with different choices of K are shown in Figure 16.6.

Rather than simply replacing the original distances ~x with the beautified ones ~x′, more
subtle beautification effects can be produced. This can be achieved through trading-off the
degree of the beautification for resemblance to the original face, by linearly interpolating
between~x and~x′ before performing the distance embedding described in Section 16.6.

16.4.5 SVR-Based Beautification

The SVR-based beautification is a numerical optimization treating the SVR beauty func-
tion as a potential field over the feature space constructed by distance vectors. Thus, fb is
used directly to seek beautified feature distance vectors. Whereas the KNN-based approach
only produces convex combinations of the training set samples, SVR-based optimization
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(a) (b) (c) (d)

FIGURE 16.6

Face beautification using KNN and SVR: (a) original faces, (b) KNN-beautified images with K = 3, (c) KNN-

beautified images with optimal K, and (d) SVR-beautified images. c© 2008 ACM

is limited by no such constraint. Figure 16.6 demonstrates the differences between KNN-
based and SVR-based beautification.

Formally, the beautified distance vector~x′ is defined as follows:

~x′ = argmin
~x

E(~x) = argmin
~x

(− fb(~x)) . (16.2)

Here, the standard no-derivatives direction set method [44] is used to numerically perform
this minimization. To accelerate the optimization, principal component analysis (PCA) is
performed on the feature space to reduce its dimensionality from 234 to 35. Thus, the
minimization process can be applied in the low dimensional space, with ~u denoting the
projection of~x on this lower dimensional space.

For the majority of the facial images in the test database using only the beauty function as
a guide produces results with higher beauty score than the KNN-based approach. However,
for some samples, the SVR-based optimization yields distance vectors which do not corre-
spond to valid human face distances. To constrain the search space, the energy functional,
Equation 16.2, can be regularized by adding a log-likelihood term (LP):

E(~u) = (α−1) fb(~u)−αLP(~u),

where α controls the importance of the log-likelihood term, with α = 0.3 being sufficient
to enforce probable distance vectors. This technique is similar to the one used in Refer-
ence [24].
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The likelihood function P is approximated by modeling face space as a multivariate
Gaussian distribution. When projected onto PCA subspace, P may be expressed as fol-
lows:

P(~u) =
1

(2π)N/2|Σ|1/2 exp
(
−1

2
(~u−~µ)>Σ−1(~u−~µ)

)
,

where ~µ is the expectation value of~u and Σ is its covariance matrix.
Since ~u is already a projection on PCA space, the covariance matrix Σ, is already diago-

nal and the log-likelihood term becomes

LP(~u) =−
d′

∑
j=1

(~u−~µ)2

2Σ j j
+ const,

where the constant term is independent of~u and d′ denotes the dimensionality of~u.

16.5 Facial Feature Extraction

The extraction of the distance vector from a facial image involves the nontrivial task of
automatically identifying the facial feature points. As shown in Figure 16.4, the feature
points are located on the prominent facial features. Each of these features is approximated
by a spline. There is extensive literature that deals with the task of snapping such splines
to their corresponding facial features. The reader is referred to Reference [27] for a survey
of these techniques.

The proposed method uses the Bayesian tangent shape model (BTSM) [45], a technique
that improves the well-known active shape model (ASM) [46]. ASM consists of a point
distribution model capturing shape variations of valid object instances, and a set of gray
gradient distribution models which describe local texture of each landmark point. The
model is constructed using a training set and its parameters are actively updated as new
examples are added. This bootstrapping process is semiautomatic. At the early stages of
the training, considerable user intervention is necessary, but as the training set increases,
user assistance is only required in rare cases. The major advantage of ASM is that the model
can only deform in the ways learnt. That is, it can accommodate considerable variability
and it is still specific to the class of objects it intends to represent.

The facial analysis process requires aligning and normalizing the 2N-dimensional space
of feature data, where N is the number of landmarks. This process takes advantage of
the correlated nature of the landmarks based on PCA (in ASM) or through a Bayesian
framework (in BTSM).

Given a new facial image, the ASM algorithm requires an initial guess for the locations
of the landmarks. The average shape is a good choice, yet finding the initial scale and
orientation greatly improves the accuracy of the detected locations and reduces the need
for manual adjustments. For this purpose, the OpenCV Haar classifier cascade [47] is used.

In the proposed method, the ASM training set consists of 92 samples, each containing
84 landmarks. The distribution of these landmarks is illustrated in Figure 16.4b over one
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of the facial images in the training set. To beautify a new facial image, this new image is
first analyzed and its feature landmarks are extracted in the same way as was done for the
training images. In most cases, the input image analysis is fully automatic. In rare cases
some user intervention is required, typically, when large parts of the face are occluded by
hair.

16.6 Distance Embedding and Warping

The beautification engine yields a beautified distance vector~v′. These distances have to
be now converted to a set of new facial landmarks. Since~v′ is not guaranteed to correspond
to distances of edges in a planar facial mesh, the goal is to find the target landmark positions
qi = (xi,yi) that provide the best fit, in the least squares sense, for the distances in ~v′.
Formally, it is possible to define

E(q1, . . . ,qN) = ∑
ei j

αi j
(‖qi−q j‖2−d2

i j
)2

, (16.3)

where ei j denotes the facial mesh connectivity matrix. To reduce nonrigid distortion of
facial features, αi j is set to 1 for intra-feature edges (edges that connect two feature points
from different facial features), and to 10 for inter-feature edges. The target distance term
di j is the entry in~v′ corresponding to the edge ei j.

The target landmark positions qi are obtained by minimizing E. This kind of optimization
has been recently studied in the context of graph drawing [48]. It is referred to as a stress
minimization problem, originally developed for multidimensional scaling [49]. Here, the
Levenberg-Marquardt (LM) algorithm is used to efficiently perform this minimization [50],
[51], [52]. The LM algorithm is an iterative nonlinear minimization algorithm which re-
quires reasonable initial positions. However, in this case, the original geometry provides a
good initial guess, since the beautification always modifies the geometry only a little.

The embedding process has no knowledge of the semantics of facial features. However,
human perception of faces is extremely sensitive to the shape of the eyes. Specifically,
even a slight distortion of the pupil or the iris into a noncircular shape significantly detracts
from the realistic appearance of the face. Therefore, a postprocess that enforces a similarity
transform on the landmarks of the eyes, independently for each eye, should be performed.
A linear least squares problem in the four free variables of the similarity transform

S =




a b tx
−b a ty

0 0 1


 ,

can be solved by minimizing ∑‖Spi− qi‖2 for all feature points of the eyes, where pi are
original landmark locations and qi are their corresponding embedded positions (from Equa-
tion 16.3). Then Spi replaces qi to preserve the shape of the original eyes. The embedding
works almost perfectly with an average beauty score drop of only 0.005, before applying
the above similarity transform correction to the eyes. However, there is an additional small
loss of 0.232 on average in beauty score after the similarity correction.
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FIGURE 16.7 (See color insert.)

The warp field is defined by the correspondence between the source feature points (in dark gray) and the

beautified geometry (in black). c© 2008 ACM

The distance embedding process maps the set of feature points {pi} from the source
image to the corresponding set {qi} in the beautified image. Next, a warp field that maps
the source image into a beautified one according to this set of correspondences is computed.
For this purpose, the multilevel free-form deformation (MFFD) technique [53] is adapted.
The warp field is illustrated in Figure 16.7, where the source feature points are shown using
dark gray and the corresponding beautified positions are indicated using black.

The MFFD consists of a hierarchical set of free-form deformations of the image plane
where, at each level, the warp function is a free-form deformation defined by B-spline
tensor products. The advantage of the MFFD technique is that it guarantees a one-to-one
mapping (no foldovers). However, this comes at the expense of a series of hierarchical
warps [53]. To accelerate the warping of high resolution images, the explicit hierarchical
composition of transformations is first unfold into a flat one by evaluating the MFFD on
the vertices of a fine lattice.

16.7 Results

To demonstrate performance of the proposed digital beautification technique, a simple
interactive application, which was used to generate all of the examples in this chapter, has
been implemented. After loading a portrait, the application automatically detects facial
features, as described in Section 16.5. The user is able to examine the detected features,
and adjust them if necessary. Next, the user specifies the desired degree of beautification, as
well as the beautification function used, fb (males or females) and the application computes
and displays the result.
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FIGURE 16.8 (See color insert.)

Beautification examples: (top) input portraits and (bottom) their beautified versions. c© 2008 ACM

Figure 16.8 shows a number of input faces and their corresponding beautified versions.
The degree of beautification in all these examples is 100 percent, and the proposed beauti-
fication process increases the SVR beauty score by roughly 30 percent. Note that in each of
these examples, the differences between the original face and the beautified one are quite
subtle, and thus the resemblance between the two faces is unmistakable. Yet the subtle
changes clearly succeed in enhancing the attractiveness of each of these faces.

The faces shown in Figure 16.8 are part of the set of 92 faces, which were photographed
by a professional photographer, and used to train the SVR, as described in Section 16.4.
However, the resulting beautification engine is fully effective on faces outside that set. This
is demonstrated by the examples in Figure 16.9 for females and Figure 16.10 for males.
All images are part of the AR face database [54]. Note that the photographs of this open
repository appear to have been taken under insufficient illumination.

In some cases, it is desirable to let the beautification process modify only some parts of
the face, while keeping the remaining parts intact. This mode is referred to as beautification
by parts. For example, the operator of the proposed application may request that only the
eyes should be subject to beautification, as shown in Figure 16.11. These results demon-
strate that sometimes a small local adjustment may result in an appreciable improvement in
the facial attractiveness. Figure 16.12 is another example of beautification by parts, where
all of the features except the rather unique lips of this individual were subject to adjustment.

Performing beautification by parts requires only those distances where at least one end-
point is located on a feature designated for beautification. This reduces the dimensionality
of the feature space and enables the algorithm to search only among the beautified features.
This technique implicitly assumes that features that are part of a beautiful face are beautiful
on their own.

As mentioned earlier, it is possible to specify the desired degree of beautification, with
0 percent corresponding to the original face and 100 percent corresponding to the face
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FIGURE 16.9

Beautification of female faces that were not part of the 92 training faces set for which facial attractiveness

ratings were collected: (top) input portraits, and (bottom) their beautified versions. c© 2008 ACM

FIGURE 16.10

Beautification of male faces that were not part of the male training faces: (top) input portraits, and (bottom)

their beautified versions.

defined by the beautification process. Degrees between 0 and 100 are useful in cases where
the fully beautified face is too different from the original, as demonstrated in Figure 16.13.

16.7.1 Process Validation

The proposed techniques can improve the facial attractiveness of a majority of the faces
used in experiments. However, there are also cases where the beautifier does not introduce
any appreciable change. To objectively validate the proposed beautification procedure, an
experiment was conducted in which human raters were presented with 93 pairs of faces
(original and beautified), of males (45 faces) and females (48 faces). The raters were asked
to indicate the more attractive face in each pair. The positions of the faces in each pair (left
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(a) (b) (c)

FIGURE 16.11

Beautification by parts: (a) original image, (b) full beautification, and (c) only the eyes are designated for

beautification. c© 2008 ACM

(a) (b) (c)

FIGURE 16.12

Beautification by parts: (a) original image, (b) full beautification, and (c) the mouth region is excluded from

beautification. c© 2008 ACM

or right) were determined randomly, and the 93 pairs were shown in random order. All of
the 93 original faces were obtained from the AR face database [54]. In total, 37 raters, both
males and females aged between 25 and 40, participated in the experiment.

As could be expected, the agreement between raters is not uniform for all portraits. Still,
for all 48 female portraits, the beautified faces were chosen as more attractive by most
raters, and in half of the portraits the beautified versions were preferred by more than 80
percent of the raters. Finally, on average, in 79 percent of the cases the raters chose the
beautified version as the more attractive face. This result is very significant statistically (P-
value = 7.1× 10−13), proving that on average the proposed tool succeeds in significantly
improving the attractiveness of female portraits.
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(a) (b) (c)

FIGURE 16.13

Varying the degree of beautification: (a) original image, (b) 50 percent, and (c) 100 percent, where the differ-

ences with respect to the original image may be too conspicuous. c© 2008 ACM

As for the male portraits, 69 percent of the beautified versions were chosen as more
attractive. Notice that this result, although not as striking as that for females, is still statis-
tically significant (P-value = 0.006). The possible reasons for the different strengths of the
female and male validation are twofold: i) the male training set was considerably smaller
than that for females; and ii) the notion of male attractiveness is not as well defined as
that of females, so the consensus in both training set ratings and ratings of beautified im-
ages versus original images is not as uniform. Both issues are also reflected in the lower
performance of the males’ beauty regressor.

16.7.2 Applications

Professional photographers have been retouching and deblemishing their subjects ever
since the invention of photography. It may be safely assumed that any model that appears
on a magazine cover today has been digitally manipulated by a skilled, talented retouching
artist. It should be noted that such retouching is not limited to manipulating color and
texture, but also to wrinkle removal and changes in the geometry of the facial features.
Since the human face is arguably the most frequently photographed object on earth, face
beautification would be a useful and welcome addition to the ever-growing arsenal of image
enhancement and retouching tools available in today’s digital image editing packages. The
potential of such a tool for motion picture special effects, advertising, and dating services,
is also quite obvious.

Another interesting application of the proposed technique is the construction of facial
collages when designing a new face for an avatar or a synthetic actor. Suppose a collection
of facial features (eyes, nose, mouth, etc.) originating from different faces to synthesize
a new face with these features. The features may be assembled together seamlessly using
Poisson blending [55], but the resulting face is not very likely to look attractive, or even
natural, as demonstrated in Figure 16.14. Applying the proposed tool to the collage results
in a new face that is more likely to be perceived as natural and attractive.
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(a) (b) (c)

FIGURE 16.14

Beautification using a collection of facial features: (a) a collage with facial features taken from a catalog, (b)

result of Poisson-blending the features together, and (c) result after applying the proposed technique to the

middle image. c© 2008 ACM

16.8 Conclusions

A face beautification method based on an optimization of a beauty function modeled by
a support vector regressor has been developed. The challenge was twofold: first, the mod-
eling of a high dimensional nonlinear beauty function, and second, climbing that function
while remaining within the subspace of valid faces. It should be emphasized that the syn-
thesis of a novel valid face is a particularly challenging task, since humans are extremely
sensitive to every single nuance in a face. Thus, the smallest artifact may be all that is
needed for a human observer to realize that the face he is looking at is a fake. Currently,
the proposed method is limited to beautifying faces in frontal views and with a neutral ex-
pression only. Extending this technique to handle general views and other expressions is a
challenging direction for further research.

In the proposed method, beautification is obtained by manipulating only the geometry
of the face. However, as was mentioned earlier, there are also important nongeometric
attributes that have a significant impact on the perceived attractiveness of a face. These
factors include color and texture of hair and skin, and it would be interesting to investigate
how changes in these attributes might be incorporated in the proposed digital beautification
framework.

Finally, it should be noted that the goal of this research was not to gain a deeper under-
standing of how humans perceive facial attractiveness. Thus, no specific explicit beautifi-
cation guidelines, such as making the lips fuller or the eyes larger, were proposed. Instead,
this work aimed at developing a more general methodology that is based on raw beauty
ratings data. It is hoped, however, that perceptual psychologists will find the proposed
technique useful in their quest to better understanding of the perception of beauty.
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Appendix

Suppose l examples {~xi,yi}, with ~xi ∈ Rd and yi ∈ R for all i = 1,2 . . . l. Let us also
assume that ε-support vector regression (SVR) [41] finds a smooth function f (~x) that has
at most ε deviation from the actual values of the target data yi, and at the same time is as
flat as possible. In other words, errors are ignored as long as they are less than ε . In the
simplest case, f is a linear function, taking the form f (~x) = ~w ·~xi + b where ~w ∈ Rd and
b ∈ R. In the linear case flatness simply means small ‖~w‖.

Formally one can write this as constraint optimization problem [41] requiring

minimize
1
2
‖~w‖2 +C

l

∑
i=1

(ξi +ξ ∗i ),

subject to yi−~w ·~xi−b≤ ε +ξi,

~w ·~xi +b− yi ≤ ε +ξ ∗i ,

ξi,ξ ∗i ≥ 0.

(16.4)

This formulation, referred to as soft margin SVR, introduced the slack variables ξi and ξ ∗i
in order to allow for some outliers. Figure 16.15 illustrates the ε-insensitive band as well as
the meaning of the slack variables for a one-dimensional regression problem. The positive
constant C determines the trade off between the flatness of f and the tolerance to outliers.

Nonlinear functions f can be elegantly incorporated into the SVR formalism by using
a mapping ~Φ from the space of input examples Rn into some feature feature space and
then applying the standard SVR formulation. The transformation ~Φ(~x) need not be carried
out explicitly, due to the fact that the SVR algorithm depends only on inner products be-
tween various examples. Therefore, it suffices to replace all inner products in the original
formulation by a kernel function k(x,x′) = ~Φ(~x) ·~Φ(~x′). This forms a quadratic optimiza-
tion problem and therefore allows efficient numeric solutions. Not surprisingly, there are
constraints on kernel functions, which are known as Mercer’s conditions [41], [56].

e

x

FIGURE 16.15

ε-insensitive regression. The ξ and ξ ∗i variables are nonzero only for examples that reside outside the region

bounded between the dashed lines.
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The solution of Equation 16.4 usually proceeds via the dual formulation. Each constraint
is associated by a Lagrange multiplier, in terms of which one obtains a quadratic optimiza-
tion problem, which is easy to solve [57].

The radial basis function kernel k(x,x′) = exp(−‖~x−~x′‖2/(2σ2)) is especially useful
since it smoothly interpolates between linear models obtained with σ →∞ and highly non-
linear models obtained for small values of σ .

Acknowledgment

Figures 16.1, 16.4 to 16.9, and 16.11 to 16.14 are reprinted from Reference [36], with
the permission of ACM.

References
[1] M.R. Cunningham, A.R. Roberts, C.H. Wu, A.P. Barbee, and P.B. Druen, “Their ideas of

beauty are, on the whole, the same as ours: Consistency and variability in the cross-cultural
perception of female attractiveness,” Journal of Personality and Social Psychology, vol. 68,
no. 2, pp. 261–279, February 1995.

[2] D. Jones, Physical Attractiveness and the Theory of Sexual Selection: Results from Five Pop-
ulations, Ann Arbor: University of Michigan Press, June 1996.

[3] D.I. Perrett, K.A. May, and S. Yoshikawa, “Facial shape and judgements of female attractive-
ness,” Nature, vol. 368, pp. 239–242, March 1994.

[4] D.I. Perrett, K.J. Lee, I.S. Penton-Voak, D.A. Rowland, S. Yoshikawa, M.D. Burt, P. Henzi,
D.L. Castles, and S. Akamatsu, “Effects of sexual dimorphism on facial attractiveness,” Na-
ture, vol. 394, pp. 884–887, August 1998.

[5] Y. Eisenthal, G. Dror, and E. Ruppin, “Facial attractiveness: Beauty and the machine,” Neural
Computer, vol. 18, no. 1, pp. 119–142, January 2006.

[6] A. Kagian, G. Dror, T. Leyvand, I. Meilijson, D. Cohen-Or, and E. Ruppin, “A machine learn-
ing predictor of facial attractiveness revealing human-like psychophysical biases,” Vision Re-
search, vol. 48, no. 2, pp. 235–243, January 2008.

[7] M.R. Cunningham, “Measuring the physical in physical attractivenes: Quasi experiments
on the sociobiology of female facial beauty,” Journal of Personality and Social Psychology,
vol. 50, no. 5, pp. 925–935, May 1986.

[8] M.R. Cunningham, A.P. Barbee, and C.L. Philhower, Facial Attractiveness: Evolutionary,
Cognitive, and Social Perspectives, ch. Dimensions of facial physical attractiveness: The in-
tersection of biology and culture, G. Rhodes and L.A. Zebrowitz (eds.), Westport, CT: Ablex
Publishing, October 2001, pp. 193–238.

[9] J.H. Langlois, L.A. Roggman, R.J. Casey, J.M. Ritter, L.A. Rieser-Danner, and V.Y. Jenkins,
“Infant preferences for attractive faces: Rudiments of a stereotype?,” Developmental Psychol-
ogy, vol. 23, no. 5, pp. 363–369, May 1987.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
02

 1
0 

M
ay

 2
01

6 



Machine Learning for Digital Face Beautification 441

[10] A. Slater, C.V. der Schulenberg, E. Brown, G. Butterworth, M. Badenoch, and S. Parsons,
“Newborn infants prefer attractive faces,” Infant Behavior and Development, vol. 21, no. 2,
pp. 345–354, 1998.

[11] F. Galton, “Composite portraits,” Journal of the Anthropological Institute of Great Britain and
Ireland, vol. 8, pp. 132–142, 1878.

[12] J.H. Langlois and L.A. Roggman, “Attractive faces are only average,” Psychological Science,
vol. 1, no. 2, pp. 115–121, March 1990.

[13] A. Rubenstein, J. Langlois, and L. Roggman, Facial Attractiveness: Evolutionary, Cognitive,
and Social Perspectives, ch. What makes a face attractive and why: The role of averageness in
defining facial beauty, G. Rhodes and L.A. Zebrowitz (eds.), Westport, CT: Ablex Publishing,
October 2001, pp. 1–33.

[14] K. Grammer and R. Thornhill, “Human facial attractiveness and sexual selection: The role of
symmetry and averageness,” Journal of Comparative Psychology, vol. 108, no. 3, pp. 233–
242, September 1994.

[15] R. Thornhill and S.W. Gangsted, “Facial attractiveness,” Trends in Cognitive Sciences, vol. 3,
no. 12, pp. 452–460, December 1999.

[16] L.A. Zebrowitz and G. Rhodes, Facial Attractiveness: Evolutionary, Cognitive, and Social
Perspectives, ch. Nature let a hundred flowers bloom: The multiple ways and wherefores of
attractiveness, G. Rhodes and L.A. Zebrowitz (eds.), Westport, CT: Ablex Publishing, October
2001, pp. 261–293.

[17] J.B. Halberstadt and G. Rhodes, “It’s not just average faces that are attractive: Computer-
manipulated averageness makes birds, fish, and automobiles attractive,” Psychonomic Bulletin
and Review, vol. 10, no. 1, pp. 149–156, March 2003.

[18] R. Reber, N. Schwarz, and P. Winkielman, “Processing fluency and aesthetic pleasure: Is
beauty in the perceiver’s processing experience?,” Personality and Social Psychology Review,
vol. 8, no. 4, pp. 364–382, 2004.

[19] A.J. O’Toole, T. Price, T. Vetter, J.C. Bartlett, and V. Blanz, “3D shape and 2D surface textures
of human faces: The role of “averages” in attractiveness and age,” Image Vision Computing,
vol. 18, no. 1, pp. 9–19, December 1999.

[20] F.I. Parke and K. Waters, Computer Facial Animation, Wellesley, MA: A K Peters, September
1996.

[21] Y. Lee, D. Terzopoulos, and K. Waters, “Realistic modeling for facial animation,” in Proceed-
ings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, New
York, USA, August 1995, pp. 55–62.

[22] B. Guenter, C. Grimm, D. Wood, H. Malvar, and F. Pighin, “Making faces,” in Proceedings
of the 25th Annual Conference on Computer Graphics and Interactive Techniques, New York,
USA, July 1998.

[23] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. H. Salesin, “Synthesizing realistic facial
expressions from photographs,” in Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques, New York, USA, July 1998, pp. 75–84.

[24] V. Blanz and T. Vetter, “A morphable model for the synthesis of 3d faces,” in Proceedings of
the 26th Annual Conference on Computer Graphics and Interactive Techniques, New York,
USA, August 1999, pp. 187–194.

[25] P.A. Viola and M.J. Jones, “Robust real-time face detection,” International Journal of Com-
puter Vision, vol. 57, no. 2, pp. 137–154, May 2004.

[26] M.H. Yang, D. Kriegman, and N. Ahuja, “Detecting faces in images: A survey,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 24, no. 1, pp. 34–58, January 2002.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
02

 1
0 

M
ay

 2
01

6 



442 Computational Photography: Methods and Applications

[27] W. Zhao, R. Chellappa, P.J. Phillips, and A. Rosenfeld, “Face recognition: A literature survey,”
ACM Computing Surveys, vol. 35, no. 4, pp. 399–458, December 2003.

[28] T. Beier and S. Neely, “Feature-based image metamorphosis,” in Proceedings of the 19th
Annual Conference on Computer Graphics and Interactive Techniques Conference, New York,
USA, July 1992, pp. 35–42.

[29] S.Y. Lee, G. Wolberg, and S.Y. Shin, “Scattered data interpolation with multilevel B-splines,”
IEEE Transactions on Visualization and Computer Graphics, vol. 3, no. 3, pp. 228–244, July-
September 1997.

[30] V. Blanz and T. Vetter, “A morphable model for the synthesis of 3D faces,” in Proceedings of
the 26th Annual Conference on Computer Graphics and Interactive Techniques, New York,
USA, August 1999, pp. 187–194.

[31] D.I. Perrett, D.M. Burt, I.S. Penton-Voak, K.J. Lee, D.A. Rowland, and R. Edwards, “Symme-
try and human facial attractiveness,” Evolution and Human Behavior, vol. 20, no. 5, pp. 295–
307, September 1999.

[32] A. Lanitis, C.J. Taylor, and T.F. Cootes, “Toward automatic simulation of aging effects on
face images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 4,
pp. 442–455, April 2002.

[33] V. Blanz, “Manipulation of facial attractiveness.” Available nnline http://www.mpi-
inf.mpg.de/ blanz/data/attractiveness/, 2003.

[34] D. Vlasic, M. Brand, H. Pfister, and J. Popovic, “Face transfer with multilinear models,” ACM
Transactions on Graphics, vol. 24, no. 3, pp. 426–433, July 2005.

[35] V.S. Johnston and M. Franklin, “Is beauty in the eye of the beholder?,” Ethology and Sociobi-
ology, vol. 14, pp. 183–199, May 1993.

[36] T. Leyvand, D. Cohen-Or, G. Dror, and D. Lischinski, “Data-driven enhancement of facial
attractiveness,” ACM Transactions on Graphics, vol. 27, no. 3, pp. 1–9, August 2008.

[37] C. Braun, M. Gruendl, C. Marberger, and C. Scherber, “Beautycheck - ur-
sachen und folgen von attraktivitaet.” Available online: http://www.uni-regensburg.
de/Fakultaeten/phil Fak II/Psychologie/Psy II/beautycheck/english/2001.

[38] B. Fink, N. Neave, J. Manning, and K. Grammer, “Facial symmetry and judgements of at-
tractiveness, health and personality,” Personality and Individual Differences, vol. 41, no. 3,
pp. 491–499, August 2006.

[39] A.C. Little, I.S. Penton-Voak, D.M. Burt, and D.I. Perrett, Facial Attractiveness: Evolutionary,
Cognitive, and Social Perspectives, ch. Evolution and individual differences in the perception
of attractiveness: How cyclic hormonal changes and self-perceived attractiveness influence
female preferences for male faces, G. Rhodes and L.A. Zebrowitz (eds.), Westport, CT: Ablex
Publishing, October 2001, pp. 68–72.

[40] M.A. Turk and A.P. Pentland, “Face recognition using eigenfaces,” in Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition, Maui, HI, USA, June
1991, pp. 586–591.

[41] V. Vapnik, The Nature of Statistical Learning Theory, New York: Springer, 1995.

[42] T. Joachims, Advances in Kernel Methods: Support Vector Learning, ch. Making large-scale
SVM learning practical, Cambridge, MA: MIT Press, 1999, pp. 169–184.

[43] T.R. Alley and M.R. Cunningham, “Averaged faces are attractive, but very attractive faces are
not average,” Psychological Science, vol. 2, no. 2, pp. 123–125, March 1991.

[44] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes: The Art
of Scientific Computing, Cambridge, UK: Cambridge University Press, 2nd Edition, 1992.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
02

 1
0 

M
ay

 2
01

6 

http://www.uni-regensburg.de/Fakultaeten/phil Fak II/Psychologie/Psy II/beautycheck/english/2001
http://www.uni-regensburg.de/Fakultaeten/phil Fak II/Psychologie/Psy II/beautycheck/english/2001
http://www.mpiinf.mpg.de/blanz/data/attractiveness/,2003
http://www.mpiinf.mpg.de/blanz/data/attractiveness/,2003


Machine Learning for Digital Face Beautification 443

[45] Y. Zhou, L. Gu, and H.J. Zhang, “Bayesian tangent shape model: Estimating shape and pose
parameters via Bayesian inference,” in Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition 2003, Los Alamitos, CA, USA, June 2003,
pp. 109–118.

[46] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham, “Active shape models - Their training
and their applications,” Computer Vision and Image Understanding, vol. 61, no. 1, pp. 38–59,
January 1995.

[47] G. Bradski, “The OpenCV library,” Dr. Dobb’s Journal, vol. 25, no. 11, pp. 120–125, Novem-
ber 2000.

[48] J.D. Cohen, “Drawing graphs to convey proximity: An incremental arrangement method,”
ACM Transactions on Computer-Human Interaction, vol. 4, no. 3, pp. 197–229, September
1997.

[49] J.W. Sammon, “A nonlinear mapping for data structure analysis,” IEEE Transactions on Com-
puters, vol. C-18, no. 5, pp. 401–409, May 1969.

[50] K. Levenberg, “A method for the solution of certain problems in least squares,” The Quarterly
of Applied Mathematics, vol. 2, pp. 164–168, 1944.

[51] D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM
Journal of Applied Mathematics, vol. 11, no. 2, pp. 431–441, June 1963.

[52] M. Lourakis, “Levmar: Levenberg-Marquardt non-linear least squares algorithms in C/C++.”
Available online http://www.ics.forth.gr/ lourakis/levmar, 2004.

[53] S.Y. Lee, G. Wolberg, K.Y. Chwa, and S.Y. Shin, “Image metamorphosis with scattered fea-
ture constraints,” IEEE Transactions on Visualization and Computer Graphics, vol. 2, no. 4,
pp. 337–354, December 1996.

[54] A.M. Martinez and R. Benavente, “The AR face database,” Tech. Rep. 24, CVC, 1998.
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17.1 Introduction

Computational photography is changing the way of capturing images. While traditional
photography simply captures two-dimensional (2D) projection of three-dimensional (3D)
world, computational photography captures additional information by using generalized
optics. The captured image may not be visually attractive, but together with the additional
information, it enables novel postprocessing that can deliver quality images and, more im-
portantly, generate data such as scene geometry that were unobtainable in the past. These
new techniques overwrite the concept of traditional photography and transform a normal
camera into a powerful device.
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Light field acquisition is of fundamental importance among all aspects of computational
photography. A complete four-dimensional (4D) light field contains most visual informa-
tion of a scene and allows various photographic effects to be generated in a physically
correct way. However, existing light field cameras [1], [2], [3], [4] manipulate the light
rays by means of lens arrays or attenuating masks that trade the spatial resolution for the
angular resolution. Even with the latest sensor technology, one can hardly generate a light
field with mega-pixel spatial resolution. Moreover, the light field captured by light field
cameras appears to have a common photometric distortion and aliasing that, if not properly
managed, may render the data useless.

This chapter presents the hardware and software approaches to address those issues.
First, a new device is described, called programmable aperture [5], [6], for high resolu-
tion light field acquisition. It exploits the fast multiple-exposure feature of digital sensors
without trading off sensor resolution to capture light field sequentially, which, in turn, en-
ables the multiplexing of light rays. In summary, the programmable aperture has several
advantages over the previous devices:

• It can capture a light field at full spatial resolution, that is, the same as the sensor
resolution of the camera.

• It has better acquisition efficiency due to the multiplexing technique.

• It has adjustable angular resolution and prefilter kernel. When the angular resolution
is set to one, the light field camera becomes a conventional camera.

• The device is compact and economic. The programmable aperture can be placed in,
and nicely integrated with, a conventional camera.

Second, two algorithms are presented to enhance the captured light field. The first is a
calibration algorithm to remove the photometric distortion unique to a light field without
using any reference object. The distortion is directly estimated from the captured light field.
The other is a depth estimation algorithm utilizing the multi-view property of the light field
and visibility reasoning to generate view-dependent depth maps for view interpolation.

This chapter also presents a simple light transport analysis of the light field cameras. The
device and algorithms constitute a complete system for high quality light field acquisition.
In comparison with other light field cameras, the spatial resolution of the proposed cam-
era is increased by orders of magnitude, and the angular resolution can be easily adjusted
during operation or postprocessing. The photometric calibration enables more consistent
rendering and more accurate depth estimation. The multi-view depth estimation effectively
increases the angular resolution for smoother transitions between views and makes depth-
aware image editing possible.

In the remaining part of this chapter, Section 17.2 presents the relevant work in light field
rendering and computational photography. Section 17.3 shortly discusses the light trans-
port process in image acquisition and Section 17.4 describes the programmable aperture,
including the concepts and the implementations. Section 17.5 presents the novel postpro-
cessing algorithms for the light field data. Section 17.6 presents experimental results and
Section 17.7 discusses the limitations and future work. Finally, the conclusions are drawn
in Section 17.8.
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17.2 Related Work

This chapter is inspired by previous research in light field acquisition, computational
photography, and illumination multiplexing. This section reviews the remarkable progress
in these areas. The work related to the postprocessing is briefly reviewed in Section 17.5.

17.2.1 Light Field Acquisition

4D light field representation of the ray space was first proposed for image-based render-
ing and then applied to various fields [7], [8]. There are several ways to capture the light
field. The simplest method uses a single moving camera whose position for each exposure
is located by a camera gantry [7] or estimated by a structure-from-motion algorithm [8].
This method is slow and only works in a controlled environment. Another method simulta-
neously captures the full 4D dataset by using a camera array [9], [10], which is cumbersome
and expensive.

The third method, which is most related to the proposed approach, inserts additional op-
tical elements or masks in the camera to avoid the angular integration of the light field. The
idea dates back to nearly a century ago, called integral photography or parallax panoram-
agrams and realized using a fly-eye lens (i.e., lenslet) array or a slit plate [11], [12], [13].
Compact implementations and theoretical analysis of this method have been recently devel-
oped. In a plenoptic camera, for example, a microlens array is placed at the original image
plane inside the camera [1], [14]. The resulting image behind each microlens records the
angular distribution of the light rays. Alternatively, one can place a positive lens array in
front of the camera [2]. Along the same line, the slit plate can be replaced with a cosine
mask to improve efficiency [4]. To this end, these devices manipulate the 4D light field
spectrum by modulation or reparameterization to fit in a 2D sensor slice [3].

All these devices have the following common drawbacks. First, the spatial resolution, or
spectrum bandwidth, is traded for the angular resolution. Although high resolution sensors
can be made, capturing a light field with high spatial and high angular resolutions is still
difficult. Second, inserting masks or optical elements in a camera automatically imposes a
fixed sampling pattern. These components are usually permanently installed and cannot be
easily removed from the camera to capture regular pictures.

Recently, a focused plenoptic camera was presented [15], in which each lenslet is focused
on the virtual image plane. This design provides a better tradeoff between the angular and
spatial resolution, as discussed in the next section. However, the other drawbacks of the
plenoptic camera remain. The proposed device can be configured in that way to achieve
the similar result.

17.2.2 Computational Photography

Two popular techniques, coded aperture and multiple capturing, are closely related to
the proposed work. The former treats the aperture (or shutter) as an optical modulator to
preserve the high-frequency components of motion-blurred images [16] to provide high-
dynamic-range or multispectral imaging [17], [18], to split the field of view [19], or to
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capture stereoscopic images [20]. Reference [21] uses a coded aperture to estimate the
depth of a near-Lambertian scene from a single image. Similar results can be obtained by
placing a color-filter array at the aperture [22]. In contrast to those methods, the proposed
method directly captures the 4D light field and estimates the depth from it when possible.

The multiple capturing technique captures the scene many times sequentially, or simul-
taneously by using beam splitters and camera arrays. At each exposure the imaging pa-
rameters, such as lighting [23], exposure time, focus, viewpoints [24], or spectral sensitiv-
ity [19], are made different. Then a quality image or additional information, for instance,
alpha matte, is obtained by computation. This technique can be easily implemented in digi-
tal cameras since the integration duration of the sensor can be electronically controlled. For
example, Reference [25] splits a given exposure time into a number of time steps and sam-
ples one image in each time step. The resulting images are then registered for correcting
hand-shaking.

17.2.3 Illumination Multiplexing

Capturing the appearances of an object under different lightings is critical for image-
based relighting and object recognition. Since the dimensionality of the signal (a 4D in-
cident light field) is higher than that of the sensor (a 2D photon sensor array), the signal
must be captured sequentially, one subset of the signal at a time. Multiplexing can be used
to reduce the acquisition time and improve the signal-to-noise ratio by turning on multiple
light sources at each exposure and recovering the signal corresponding to a single light
source [26], [27], [28].

Both the coded aperture and multiple capturing techniques are exploited in the proposed
system. More specifically, multiple exposures are used to avoid the loss of spatial reso-
lution whereas coded aperture are employed to perform multiplexing for quality improve-
ment. Although the proposed method requires sequential multiple exposures, capturing a
clear light field dataset takes the same amount of time as capturing a clear image with a
conventional camera.

17.3 Light Transport in Photography

This section gives a brief review of the light field representation and the light transport
theory of the photography process. For simplicity, only 2D geometry is considered here,
although the result can be easily extended to 3D. A similar analysis focusing on the defocus
effect can be found in Reference [29].

A light field can be represented as a function that maps the geometric entities of a light
ray in free space to the radiance along the light ray. Each light ray is specified by the
intersections of two planes with the light ray [7], [8]. There are several ways to define the
two planes, see Figure 17.1. For example, one plane can be located on the object surface of
interest, and the other at unit distance from, and parallel to, the first one. The coordinates
of the intersection of a light ray with the second plane are defined with respect to the
intersection of the light ray with the first plane (x and u on the left in Figure 17.1) [30].
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FIGURE 17.1

Light field and light transport. A light ray emitting from a point on an object surface at Z can be represented by

l0([x u]T ) or l([x u]T ) after refraction by lens. These two representations only differ by a linear transformation

(Equation 17.1).

Another common representation places the two planes at the lens and the film (sensor) of a
camera and defines independent coordinate systems for these two planes [31] (x and u on
the right in Figure 17.1).

Suppose there is a light ray emitting from an object surface point and denote its radiance
by the light field l0([x u]T ), where x and u are the intersections of the light ray with the
two coordinate planes. The light ray first traverses the space to the lens of the camera at
distance Z from the emitting point, as illustrated in Figure 17.1. According to the light
transport theory, this causes a shearing to the light field [30]. Next, the light ray changes its
direction after it leaves the lens. According to the matrix optics, this makes another shearing
to the light field [3]. As the light ray traverses to the image plane at distance F from the
lens plane, one more shearing is produced. Finally, the light field is reparameterized into
the coordinate system used in the camera. Since the shearings and the reparameterization
are all linear transformations, they can be concatenated into a single linear transformation.
Hence, the transformed light field l([x u]T ) can be represented by

l([x u]T ) = l0(M[x u]T ) = l0

([
− Z

F Z∆
1
F

1
f − 1

F

][
x
u

])
, (17.1)

where f is the focal length of the lens and ∆ = 1/Z +1/F−1/ f . This transformation, plus
modulation due to the blocking of the aperture [4], describes various photographic effects
such as focusing [3].

In traditional photography, a sensor integrates the radiances along rays from all directions
into an irradiance sample and thus loses all angular information of the light rays. The goal
of this work is to capture the transformed light field l([x u]T ) that contains both the spatial
and the angular information. In other words, the goal is to avoid the integration step in the
traditional photography.

In capturing the light field, although the sampling grids on the lens plane and the sensor
plane are usually fixed, the camera parameters, F and f , can be adjusted to modify the
transformation in Equation 17.1, thus changing the actual sampling grid for the original
light field l0. For example, it is well-known that in natural Lambertian scenes, while the
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(a) (b) (c)

FIGURE 17.2

Configurations of the programmable aperture: (a) capturing one single sample at a time, (b) aggregating several

samples at each exposure for quality improvement, and (c) adjusting the prefilter kernel without affecting the

sampling rate.

spatial information is rich (i.e, complex structures, texture, shadow, etc.), the angular in-
formation is usually of low-frequency. Therefore, setting a high sampling rate along the
angular axis u is wasteful. By properly adjusting F , the spatial information can be moved
to the angular domain to better utilize the sample budget, as shown in Reference [15].

17.4 Programmable Aperture Camera

This section describes how a programmable aperture camera captures the light field and
how multiplexing improves the acquisition efficiency. The prototypes of the camera are
described, as well.

17.4.1 Sequential Light Field Acquisition

In a traditional camera, only the size of the aperture can be adjusted to change the depth
of field. The captured image is always a 2D projection of the 3D scene, and the angular
information is unrecoverably lost. However, if the shape of the aperture is modified so that
only the light rays arriving in a small specified region of the aperture can pass through the
aperture, the angular integration can be avoided. More specifically, if the aperture blocks
all light rays but those around u, the resulting image is a subset of the light field. Denote
such a light field image by Iu:

Iu(x) = l([x u]T ). (17.2)

By capturing images with different aperture shapes (Figure 17.2a), a complete light field
can be constructed. However, unlike previous devices that manipulate the light rays after

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
09

 1
0 

M
ay

 2
01

6 



High-Quality Light Field Acquisition and Processing 451

they enter the camera [1], [3], [4], the proposed method blocks the undesirable light rays
and captures one subset of the data at a time. The spatial resolution of the light field is thus
the same as the sensor resolution. For the method to take effect, a programmable aperture
is needed. Its transmittance has to be spatially variant and controllable.

An intuitive approach to such a programmable aperture is to replace the lens module with
a volumetric light attenuator [19]. However, according to the following frequency analysis
of light transport, it can be found that the lens module should be preserved for efficient
sampling. Let L0([ fx fu]T ) and L([ fx fu]T ) denote the Fourier transform of l0([x u]T ) and
l([x u]T ), respectively. By Equation 17.1 and the Fourier linear transformation theory, L0
and L are related as follows:

L([ fx fu]T ) = |det(M)|−1L0(M−T [ fx fu]T )

=
1

|det(M)|L0

([
1− F

f 1
FZ∆ Z

][
fx

fu

])
. (17.3)

Consider the case where the scene is a Lambertian plane perpendicular to the optical
path at Z = 3010, f = 50, and the camera is focused at Z = 3000 (so F = 50.8475). If the
lens module is removed, f →∞ and the sampling rate along the fu axis has to be increased
by a factor of 18059 to capture the same signal content. As a result, millions of images
need to be captured for a single dataset, which is practically infeasible. Therefore, the lens
module must be preserved. The light rays are bent inwards at the lens due to refraction
and consequently the spectrum of the transformed light field is compressed. With the lens
module and by carefully selecting the in-focus plane, the spectrum can be properly reshaped
to reduce aliasing. A similar analysis is developed for multi-view displays [32].

17.4.2 Light Field Multiplexing

A light field with angular resolution N requires N exposures, one for each angular co-
ordinate u. Compared with traditional photography, the light collection efficiency of this
straightforward acquisition is decreased because only a small aperture is open at each expo-
sure and each exposure time is only 1/N of the total acquisition time. As a result, given the
same acquisition time, the captured images are noisier than those captured by conventional
cameras. To solve this problem, the light field images should be multiplexed at each expo-
sure. Specifically, because the radiances of the light rays are additive, multiple light field
samples should be aggregated at each exposure by opening multiple regions of the aperture
and individual signals should be recovered afterwards.

By opening multiple regions of the aperture, each captured image Mu is a linear combi-
nation of N light field images (Figure 17.2b):

Mu(x) =
N−1

∑
k=0

wukIk(x). (17.4)

The weights wuk ∈ [0,1] of the light field images can be represented by a vector wu =
[wu0,wu1, ... ,wu(N−1)] and is referred to as a multiplexing pattern since wu is physically
realized as a spatial-variant mask on the aperture. After N captures with N different mul-
tiplexing patterns, the light field images can be recovered by demultiplexing the captured
images, if the chosen multiplexing patterns form an invertible linear system.
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(a) (b) (c)

(d)

FIGURE 17.3 (See color insert.)

Performance improvement by multiplexing: (a) light field image captured without multiplexing, (b) demulti-

plexed light field image, (c) image captured with multiplexing, that is, Mu(x) in Equation 17.4, and (d) enlarged

portions of (a) and (b). The insets in (a-c) show the corresponding multiplexing patterns.

Intuitively, one should open as many regions as possible, that is, maximize ‖wu‖, to
allow the sensor to gather as much light as possible. In practice, however, noise is always
involved in the acquisition process and complicates the design of the multiplexing patterns.
In the case where the noise is independent and identically-distributed (i.i.d.), Hadamard
code-based patterns are best in terms of the quality of the demultiplexed data [5], [26],
[33]. However, noise in a digital sensor is often correlated with the input signal [34], [35].
For example, the variance of the shot noise grows linearly with the number of incoming
photons. In this case, using the Hadamard code-based patterns actually degrades the data
quality [27]. Another drawback of the Hadamard code-based patterns is that they only exist
for certain sizes.

Instead, multiplexing patterns can be obtained through optimization. Given the noise
characteristics of the device and the true signal value, the mean square error of the demul-
tiplexed signal is proportional to a function E(W):

E(W) = Trace((WT W)−1), (17.5)

where W is an N×N matrix and each row of W is a multiplexing pattern wu. Finding a
matrix W? that minimizes E(W) can be formulated as a constrained convex optimization
problem and solved by the projected gradient method [36] or brute-force search when the
size of W is small. Because most entities (wuk) of the W? thus obtained are either ones or
zeros and because binary masks can be made more accurately in practice, all the entities
of W? can be enforced to be binary. This only slightly affects the performance. A result
of multiplexing is given in Figure 17.3 which shows that the demultiplexed image is much
clearer than the one captured without multiplexing.
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FIGURE 17.4

Prototypes of the programmable aperture cameras: (top) with aperture patterns on an opaque slip of paper and

(bottom) on an electronically controlled liquid crystal array.

17.4.3 Prototypes

Two prototypes of the programmable aperture camera shown in Figure 17.4 were imple-
mented using a regular Nikon D70 digital single-lens reflex (DSLR) camera and a 50mm
f/1.4D lens module. For simplicity, the lens module was dismounted from the Nikon cam-
era to insert the programmable aperture between this module and the camera. Hence the
distance (F in Figure 17.1) between the lens and the sensor is lengthened and the focus
range is shortened as compared to the original camera.

The optimization of the multiplexing patterns requires information of the noise charac-
teristics of the camera and the scene intensity. The former is obtained by calibration and
the latter is assumed to be one half of the saturation level. Both prototypes can capture the
light field with or without multiplexing. The maximal spatial resolution of the light field is
3039×2014 and the angular resolution is adjustable.

In the first prototype, the programmable aperture is made up of a pattern scroll, which
is an opaqued slit of paper used for film protection. The aperture patterns are manually
cut and scrolled across the optical path. The pattern scroll is long enough to include tens
of multiplexing patterns and the traditional aperture shapes. This quick and dirty method
is simple and performs well except one minor issue; the blocking cell (wuk = 0) cannot
stay on the pattern scroll if it loses support. This is solved by leaving a gap between cells.
Since the pattern scroll is movable, its position may drift out of place. However, this can
be simply solved in the industrial level manufacture.

In the second prototype, the programmable aperture is made up of a liquid crystal array
(LCA) controlled by a Holtek HT49R30A-1 micro control unit that supports C language.
Two different resolutions, 5×5 and 7×7, of the LCA are made. The LCA is easier to pro-
gram and mount than the pattern scroll, and the multiplexing pattern is no longer limited
to binary. However, the light rays can leak from the gaps (used for routing) in between the
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liquid crystal cells and from the cells that cannot be completely turned off. To compen-
sate for the leakage, an extra image with all liquid crystal cells turned off is captured and
subtracted from other images.

17.4.4 Summary

The proposed light field acquisition scheme does not require a high resolution sensor.
Therefore, it can even be implemented on web, cell-phone, and surveillance cameras, etc.
The image captured by previous light field cameras must be decoded before visualization.
In contrast, the image captured using the proposed device can be directly displayed. Even
when the multiplexing is applied, the in-focus regions remain sharp (Figure 17.3c).

It should be noted that multiplexing cannot be directly applied to the existing methods
like a single moving camera, a plenoptic camera, or a camera array. These methods use a
permanent optical design and cannot dynamically select the light rays for integration.

Another advantage of the proposed device is that the sampling grid and the prefilter
kernel are decoupled. Therefore, the aperture size can be chosen regardless of the sampling
rate (Figure 17.2c). A small prefilter is chosen to preserve the details and remove aliasing
by view interpolation. Also the sampling lattice on the lens plane in the proposed device is
not restricted to rectangular grids. These parameters, including the number of samples, the
sampling grid, and the size of the prefilter kernel, can all be adjusted dynamically.

17.5 Postprocessing Algorithms

The photometric distortion and aliasing due to undersampling have to be addressed be-
fore the captured light field can be applied.

17.5.1 Photometric Calibration

The light fields captured by either the proposed programmable aperture or other light field
cameras have a noticeable photometric distortion. The light field images corresponding
to the boundary of the aperture would appear very different from that corresponding to
the center of the aperture, as shown in Figure 17.5. While being termed as vignetting
collectively, this photometric distortion is attributed to several sources, such as the cosine
fall-off [37], the blocking of the lens diaphragm [38], and pupil aberrations [39]. Because
this distortion breaks the common photometric consistency assumption, it must be removed
or it can obstruct view interpolation, depth estimation, and many other applications.

The exact physical model of the vignetting effect is difficult to construct. In general, a
simplified model that describes the ratio between the distorted light field image Id

u (x) and
the clean image Iu(x) by a 2(D−1)-degree polynomial function fu(x) is adopted:

Id
u (x) = fu(x)Iu(x) =

(D−1

∑
i=0

aui‖x− cu‖2i
2

)
Iu(x), (17.6)

where {aui} are the polynomial coefficients, cu is the vignetting center, and ‖ · ‖2 is the
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FIGURE 17.5 (See color insert.)

The effect of the photometric distortion. The images shown here are two of the nine light field images of a

static scene. The insets show the corresponding aperture shape.

Euclidean distance (the coordinates are normalized to (0,1)). The function fu, called vi-
gnetting field, is a smooth field across the image. It is large when the distance between x
and cu is small and gradually decreases as the distance increases.

Since the number of unknown variables in Equation 17.6 is larger than the number of
observations, the estimation problem is inherently ill-posed. A straightforward method
is to capture a uniformly lit object so the distortion-free image Iu(x) becomes a priori.
However, the vignetting field changes when the camera parameters, including the focus,
aperture size, and lens module, are adjusted. It is impractical to perform the calibration
whenever a single parameter is changed.

Existing photometric calibration methods that require no specific reference object gener-
ally use two assumptions to make the problem tractable [38], [40]. First, the scene points
have multiple registered observations with different levels of distortions. This assumption
is usually valid in panoramic imaging where the panorama is stitched from many images
of the same view point. Second, the vignetting center cu. This assumption is valid in most
traditional cameras, where the optics and the sensors are symmetric along the optical path.
Some recent methods remove the first assumption by exploiting the edge and gradient priors
in natural images [41], but the second assumption is still needed.

However, both assumptions are inappropriate for the light field images for two reasons.
First, the registration of the light field images taken from different view points requires
an accurate per-pixel disparity map that is difficult to obtain from the distorted inputs.
Second, in each light field image, the parameters, {aui} and cu, of the vignetting function,
are image-dependent and coupled. Therefore, simultaneously estimating the parameters
and the clean image is an under-determined nonlinear problem. Another challenge specific
to the proposed camera is that the vignetting function changes with the lens and the aperture
settings (such as the size of the prefilter kernel) and hence is impossible to tabulate.

An algorithm is proposed here to automatically calibrate the photometric distortion of
the light field images. The key idea is that the light field images closer to the center of the
optical path have less distortion. Therefore, it can be assumed that Id

0 ≈ I0 and then other
Iu’s can be approximated by properly transforming I0 to estimate the vignetting field. This
way, the problem is greatly simplified. The approach can also be generalized to handle the
distortions of other computational cameras, particularly previous light field cameras.
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Delaynay
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FIGURE 17.6

The photometric calibration flow.

Figure 17.6 depicts the flowchart of the proposed algorithm, with example images shown
in Figure 17.7. First, the scale-invariant feature transform (SIFT) method, which is well
immune to local photometric distortions [42], is used to detect the feature points in an
input Id

u and find their valid matches in I0 (Figures 17.7a and 17.7b). Next, the Delaunay
triangulation is applied to the matched points in Id

u to construct a mesh (Figure 17.7c).
For each triangle A of the mesh, the displacement vectors of its three vertices are used to
determine an affine transform. By affinely warping all triangles, an image Iw

u from I0 is
obtained (Figure 17.7d).

The warped image Iw
u is close enough to the clean image Iu unless there are triangles in-

cluding objects of different depths or incorrect feature matchings. Such erroneous cases can
be effectively detected and removed by measuring the variance of the associated displace-
ment vectors. By dividing the distorted image Id

u with the warped image Iw
u and excluding

the outliers, an estimated vignetting field is obtained (Figure 17.7e). Comparing this image
with the vignetting field estimated from the image without warping (Figure 17.7f) reveals
that the warping operation effectively finds a rough approximation of the smooth vignetting
field and the outliers around the depth discontinuities are successfully excluded.

After the approximation of the vignetting field is obtained, the parametric vignetting
function (Equation 17.6) is estimated by minimizing an objective function E({aui},cu):

E({aui},cu) = ∑
x

( Id
u (x)

Iw
u (x)

− fu(x)
)2

. (17.7)

Since {aui} and cu are coupled, this objective function is nonlinear and can be minimized
iteratively. Given an initial estimate, the vignetting center cu is fixed first, as this makes
the Equation 17.7 linear in {aui}, which can be easily solved by a least square estimation.
Then, {aui} can be fixed and cu can be updated. This is done by a gradient descent method.
The goal is to find a displacement du such that E({aui},cu +du) is minimal.

Specifically, let ri denote the distance between the i-th pixel at (xi,yi) and cu = (cu,x,cu,y),
the N-D vector r = [r1,r1, ...,rN ]T denote the distances between all points and cu, and
Iu denote the estimated vignetting field, that is, the ratio Id

u /Iw
u . Since cu is the only

variable, the vignetting function fu(x) can be redefined as a vector function f(cu) =
[ fu(x1), fu(x2), ..., fu(xN)]T . Equation 17.7 is then equivalent to the l2 norm of the error
vector ε , that is, ‖ε‖= ‖Iu− f(cu)‖. The optimal displacement du at iteration t can then be
obtained by solving the normal equation:
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(a) (b) (c)

(d) (e) (f)

(g) (h)

original image

calibrated image

(i)

FIGURE 17.7 (See color insert.)

Photometric calibration results: (a) input image Id
u to be corrected — note the darker left side, (b) reference

image I0, (c) triangulation of the matched features marked in the previous two images, (d) image Iw
u warped

using the reference image based on the triangular mesh, (e) approximated vignetting field with suspicious

areas removed, (f) vignetting field approximated without warping, (g) estimated parametric vignetting field,

(h) calibrated image Iu, and (i) intensity profile of the 420th scanline before and after the calibration.

JT Jdu =−JT εt−1, (17.8)

where J is the Jacobian matrix (J = df
dcu

) and εt−1 is the error vector of the previous iteration.
By setting D = 4, the Jacobian is defined as:

df
dcv

=




−(x0− cu,x)(2a1 +4a2r2
0 +6a3r4

0) −(y0− cu,y)(2a1 +4a2r2
0 +6a3r4

0)
−(x1− cu,x)(2a1 +4a2r2

1 +6a3r4
1) −(y1− cu,y)(2a1 +4a2r2

1 +6a3r4
1)

...
...

−(xN − cu,x)(2a1 +4a2r2
N +6a3r4

N) −(yN − cu,y)(2aN +4a2r2
N +6a3r4

N)


 .

(17.9)
Note that this Jacobian is evaluated using the vignetting center obtained in the previous
iteration and the coefficients estimated in this iteration. In this way the convergence speed
is increased. Since the number of parameters is small, the image can be subsampled to
reduce the computation. Usually 1000 to 2000 inlier samples are sufficient. For each
image, 50 iterations are performed and the parameters with minimal objective value are
chosen here as the result. One obtained vignetting field is shown in Figure 17.7g.
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depth map
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FIGURE 17.8

Overview of the proposed multi-view depth estimation algorithm.

Finally, Id
u is divided by fu to recover the clean image Iu, as shown in Figure 17.7h.

One scanline profile is also shown in Figure 17.7i for comparison. It can be seen that the
recovered image has much less distortion.

17.5.2 Multi-View Depth Estimation

Images corresponding to new viewpoints or focus settings can be rendered from the
captured light field by resampling. However, the quality of the rendered image is dictated by
the bandwidth of the light field, which strongly depends on the scene geometry [43], [44].
Generally speaking, a scene with larger depth range requires a higher angular resolution for
aliasing-free rendering. When the sampling rate is not enough, aliasing effect is observed
in rendered images (see Section 17.6).

Traditionally, the aliasing is removed by prefiltering [7] or postfiltering [45]. In this way
the out-of-focus object are blurred. These methods implicitly require the depth range of the
scene but do not fully utilize this information. The image can be segmented into blocks,
each assigned an optimal depth value [43]. If the user wants the best visual quality, this
method would require the per-pixel depth value. Finally, although one can adjust the angu-
lar resolution of the programmable aperture camera, a high angular sampling rate requires
a long capture duration and a large storage, which may not be always affordable.

To solve this problem, a multi-view depth estimation algorithm (Figure 17.8) is pro-
posed here to generate view-dependent depth maps for view interpolation. By depth-
dependent view interpolation, the angular sampling rate can be greatly reduced for the
near-Lambertian scene. The estimated depth maps can also benefit other applications, such
as z-keying, matting [22], and robot vision.
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(a) (b) (c)

(d) (e) (f)

FIGURE 17.9

(a,d) Two images of a simple scene with different viewpoints, (b,e) the corresponding depth maps, and (c,f) the

occlusion maps. The black region is unoccluded and white region is occluded.

The multi-view depth estimation problem is similar to the traditional stereo correspon-
dence problem [46]. However, the visibility reasoning is extremely important for multi-
view depth estimation since the occluded views should be excluded from the depth esti-
mation. Previous methods that determine the visibility by hard constraint [47] or greedy
progressive masking [48] can easily be trapped in local minima because they cannot recover
from incorrect occlusion guess. Inspired by the symmetric stereo matching algorithm [49],
this problem can be alleviated by iteratively optimizing a view-dependent depth map Du

for each image Iu and an occlusion map Ouv for each pair of neighboring images Iu and
Iv. If a scene point projected onto a point x in Iu is occluded in Iv, it does not have a valid
correspondence. When this happens, Ouv(x) is set to one to exclude it from the matching
process (x1 in Figure 17.9). On the other hand, if the estimated correspondence x′ of xu in
Iv is marked as invisible, that is, Ovu(x′) = 1, the estimate is unreliable (x2 in Figure 17.9).

The depth and occlusion estimation are now reformulated as a discrete labeling problem.
For each pixel xu, a discrete depth value Du(x) ∈ {0,1, ...,dmax} and a binary occlusion
value Ouv(x) ∈ {0,1} need to be determined. More specifically, given a set of light field
images I = {Iu}, the goal is to find a set of depth maps D = {Du} and a set of occlusion
maps O = {Ouv} to minimize the energy functional defined as follows:

E(D ,O|I ) = ∑
u

{
Edd(Du|O,I )+Eds(Du|O,I )

}

+ ∑
u

∑
v∈N (u)

{
Eod(Ouv|Du,I )+Eos(Ouv)

}
, (17.10)

where Edd and Eds are, respectively, the data term and the smoothness (or regularization)
term of the depth map, and Eod and Eos denote, respectively, the data term and the smooth-
ness term of the occlusion map. The term N (u) denotes the set of eight viewpoints that are
closest to u. The energy minimization is performed iteratively. In each iteration, first the
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occlusion maps are fixed and Edd + Eds is minimized by updating the depth maps. Then,
the depth maps are fixed and Eod + Eos are minimized by updating the occlusion maps.
Figure 17.8 shows the overview of the proposed algorithm for minimizing Equation 17.10.

The following describes the definitions of energy terms and the method used to minimize
these terms. Let α , β , γ , ζ , and η denote the weighting coefficients and K and T the
thresholds. These parameters are empirically determined and fixed in the experiments. The
data term Edd is a unary function:

Edd(Du|O,I ) = ∑
x

{
∑

v∈N (u)

(
Ōuv(x)C

(
Iu(x)− Iv(ρ)

)
+αOvu(ρ)

)}
, (17.11)

where ρ = x + Duv(x) and Ōuv(x) = 1−Ouv(x). The term Ōuv(x) = 1−Ouv(x), Duv(x)
denotes the disparity corresponding to the depth value Du(x) and C(k) = min(|k|,K) is a
truncated linear function. For each pixel xu, the first term measures the similarity between
the pixel and its correspondence in Iv, and the second term adds a penalty to an invalid
correspondence.

The pairwise smoothness term Eds is based on a generalized Potts model:

Eds(Du|O,I ) = ∑
(x,y)∈P,

Ou(x)=Ou(y)

βmin(|Du(x)−Du(y)|,T ), (17.12)

where P is the set of all pairs of neighboring pixels and Ou =
⋂

Ouv, which is true only
when xu is occluded in all other images. This term encourages the depth map to be piece-
wise smooth.

Since the depth maps D are fixed in the second step of each iteration, the prior of an
occlusion map can be obtained by warping the depth map. Specifically, let Wuv denote a
binary map. The value of Wuv(x) is one when the depth map Dv warped to the viewpoint u
is null at xu, and zero otherwise. If Wuv(x) = 1, xu might be occluded in Iv. With this prior
and for ρ = x+Duv(x), the data term Eod is formulated as:

Eod(Ouv|Du,I ) = ∑
x

(
Ōuv(x)C

(
Iu(x)− Iv(ρ)

)
+ γOuv(x)+ζ |Ouv(x)−Wuv(x)|

)
. (17.13)

The first term above biases a pixel to be non-occluded if it is similar to its correspondence.
The second term penalizes the occlusion (O = 1) to prevent the whole image from being
marked as occluded, and the third term favors the occlusion when the prior Wuv is true.
Finally, the smoothness term Eos is based on the Potts model:

Eos(Ouv) = ∑
(x,y)∈P

η |Ouv(x)−Ouv(y)|. (17.14)

The solution of the energy minimization problem is a maximum a posteriori estimate of
a Markov random field (MRF), for which high-performance algorithms have been recently
developed. The MRF optimization library [50] is used here to address this problem. Three
leading algorithms in the library, the alpha-expansion graph cut [51], the asynchronous
belief propagation [52], and the tree-reweighted message passing [53] perform well. The
latter two methods give slightly better results at the cost of execution time. Finally, a
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FIGURE 17.10

Digital refocusing without depth information. The angular resolution is 4×4.

modified cross bilateral filtering is applied to the depth maps at the end of each iteration to
improve their quality and make the iteration converge faster [54]. When the resolution of
the light field is too large to fit in the memory, the tile-based belief propagation [55], which
requires much smaller memory and bandwidth than the previous methods, is used.

17.5.3 Summary

The light field images captured using the proposed programmable aperture camera have
several advantages for depth estimation. First, the viewpoints of the light field images
are well aligned with the 2D grid on the aperture, and thus the depth estimation can be
performed without camera calibration. Second, the disparity corresponding to a depth value
can be adjusted by changing the camera parameters without any additional rectification as
required in camera array systems. Finally, unlike depth-from-defocus methods [21], [56],
there is no ambiguity in the scene points behind and in front of the in-focus object.

Finally, when the scene is out-of-focus, only the disparity cue between the light field
images are used for depth estimation. It is possible to combine the defocus cue and further
remove the defocus blur, as in Reference [57]. Also, it is possible to iteratively estimate the
vignetting fields and depth maps to obtain better results.

17.6 Results

All data in the experiments are captured indoors. Images shown in Figures 17.10
and 17.11 are captured using the first prototype and the rest are captured using the second
one. The shutter speed of each exposure is set to 10ms for images shown in Figures 17.3,
17.11, and 17.14, and 20ms for the rest. These settings are chosen for the purpose of fair
comparison. For example, it takes 160ms with an aperture setting of f/8 to capture a clean
and large depth of field image for the scene in Figure 17.11; therefore 10ms is chosen for
the proposed device.

All the computations are performed on a Pentium IV 3.2GHz computer with 2GB mem-
ory. Demultiplexing one light field dataset takes three to five seconds. To save the compu-
tational cost, the light field images are optionally downsampled to 640×426 after demulti-
plexing. The photometric calibration takes 30 seconds per image, and the multi-view depth
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(a)

(b) (c) (d)

FIGURE 17.11 (See color insert.)

(a) Two demultiplexed light field images generated by the proposed system; the full 4D resolution is 4× 4×
3039× 2014. (b) The estimated depth map of the left image of (a). (c,d) Postexposure refocused images

generated from the light field and the depth maps.

estimation takes around 30 minutes. The following demonstrates still images with various
effects generated from the captured light field and the associated depth maps. The video
results are available on the project website http://mpac.ee.ntu.edu.tw/ chiakai/pap.

Figure 17.10 shows a scene containing a transparent object in front of a nearly uniform
background. The geometry of this scene is difficult to estimate. However, since the pro-
posed acquisition method does not impose any restriction on the scene, the light field can
be captured with 4× 4 angular resolution and faithful refocused images can be generated
through dynamic reparameterization [44].

The dataset shown in Figure 17.11 is used to evaluate the performance of the proposed
postprocessing algorithms. Here a well-known graph cut stereo matching algorithm with-
out occlusion reasoning is implemented for comparison [51]. The photo-consistency as-
sumption is violated in the presence of the photometric distortion, and thus poor result
is obtained (Figure 17.12a). With the photometric calibration, the graph cut algorithm
generates a good depth map but errors can be observed at the depth discontinuities (Fig-
ure 17.12b). On the contrary, the proposed depth estimation algorithm can successfully
identify these discontinuities and generate a more accurate result (Figure 17.11b).

Both the light field data and the postprocessing algorithms are indispensable for gener-
ating plausible photographic effects. To illustrate this, a single light field image and its
associated depth map are used as the input of the Photoshop Lens Blur tool to generate a
defocused image. The result shown in Figure 17.12c contains many errors, particularly at
the depth discontinuities (Figure 17.12d). In contrast, the results of the proposed algorithm
(Figures 17.11c and 17.11d) are more natural. The boundaries of the defocused objects are
semitransparent and thus the objects behind can be partially seen.

Figure 17.13 shows the results of view interpolation. The raw angular resolution is 3×3.
If a simple bilinear interpolation is used, ghosting effect due to aliasing is observed (Fig-
ure 17.13b). While previous methods use filtering to remove the aliasing [7], [44], a mod-
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(a) (b) (c)

(d) (e)

FIGURE 17.12

(a) Depth map estimated without photometric calibration and occlusion reasoning, (b) depth map estimated

without occlusion reasoning, and (c) defocusing by the Photoshop Lens Blur tool. (d) Close-up of (b) and (c).

(e) Corresponding close-up of Figures 17.11b and 17.11c.

(a) (b) (c)

(d) (e)

FIGURE 17.13 (See color insert.)

(a) An estimated depth map. (b) Image interpolated without depth information. (c) Image interpolated with

depth information. (d-e) Close-up of (b-c). The angular resolution of the light field is 3×3.

ified projective texture mapping [58] is used here instead. Given a viewpoint, three clos-
est images are warped according to their associated depth maps. The warped images are
then blended; the weight of each image is inversely proportional to the distance between
its viewpoint and the given viewpoint. This method greatly suppresses the ghosting ef-
fect without blurring (Figure 17.13c). Note that unlike the single-image view morphing
method [21], hole-filling is not performed here due to the multi-view nature of the light
field. In most cases, the region occluded in one view is observed in others.
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(a) (b) (c)

(d) (e)

FIGURE 17.14 (See color insert.)

(a) An estimated depth map. (b) Digital refocused image with the original angular resolution 4×4. (c) Digital

refocused image with the angular resolution 25×25 boosted by view interpolation. (d-e) Close-up of (b-c).

(a) (b) (c)

FIGURE 17.15

Application of the postprocessing algorithms to the dataset in Reference [4]: (a) original image, (b) estimated

vignetting field, and (c) processed image. Image courtesy of Ashok Veeraraghavan.

Figure 17.14 shows another digital refocusing result. The raw angular resolution is 4×4.
Though the in-focus objects are sharp, the out-of-focus objects are subject to the ghost ef-
fect due to aliasing (Figure 17.14b). With the estimated depth maps, the angular resolution
is first increased to 25×25 by view interpolation described above and then digital refocus-
ing is performed. As can be seen in Figure 17.14c, the out-of-focus objects are blurry while
the in-focus objects are unaffected.

Finally, to illustrate the robustness of the proposed algorithms, these algorithms are ap-
plied to the noisy and photometrically distorted data captured by the heterodyned light field
camera [4]. Four clear images are selected from the data to perform photometric calibration
and multi-view depth estimation and synthesize the whole light field by view interpolation.
As seen in Figure 17.15, the interpolated image is much cleaner than the original one.
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17.7 Discussion

This section discusses the performance and limitations of the proposed camera and the
directions of future research.

17.7.1 Performance Comparisons

Three different devices, a conventional camera, a plenoptic camera [1], [14], and a pro-
grammable aperture camera, are compared. Because no light ray is blocked or attenuated
in the plenoptic camera, it is superior to other mask-based light field cameras [4], [12].
Without loss of generality, it is assumed that the default number of sensors in these devices
is M2, and the angular resolution of the two light field cameras is N2. The total exposure
duration for capturing a single dataset is fixed. Therefore, each exposure in the proposed
device is 1/N2 of the total exposure.

A signal-to-noise ratio (SNR) analysis of these devices is performed using a simple noise
model. There are typically two zero-mean noise sources in the imaging process; one with a
constant variance σ2

c and another with a variance σ2
p proportional to the received irradiance

P of the sensor. The results of the SNR analysis are listed in Table 17.1. The image captured
by a conventional camera with a large aperture has the best quality, but it has a shallow
depth of field. A light field image is equivalent to the image captured by a conventional
camera with a small aperture and thus its quality is lower. However, this can be improved
by digital refocusing. Light rays emitted from an in-focus scene point are recorded by N2

light field samples. The refocusing operation averages these samples and thus increases the
SNR by N.

TABLE 17.1
Performance comparison between the conventional camera, the plenoptic camera, and the programmable
aperture camera.†

Device AS #shot SED SNRLFS SNRRI A× SR

CCSA A 1 T P/
√

σ2
p +σ2

c — 1×M2

CCLA N2A 1 T N2P/
√

N2σ2
p +σ2

c — 1×M2

PCAM N2A 1 T N2P/
√

N2σ2
p +σ2

c N3P/
√

N2σ2
p +σ2

c N2×M2/N2

PCAMS N2A 1 T P/
√

σ2
p +σ2

c NP/
√

σ2
p +σ2

c N2×M2

PAC A N2 T/N2 N−2P/
√

σ2
p/N2 +σ2

c N−1P/
√

σ2
p/N2 +σ2

c N2×M2

PACM ≈ N2A/2 N2 T/N2 ≈ NS1/2 ≈ N2S1/2 N2×M2

† CCSA – conventional camera with small aperture, CCLA – conventional camera with large aperture, PCAM

– plenoptic camera, PCAMS – plenoptic camera with N2M2 sensors, PAC – programable aperture camera,

PACM – programable aperture camera with multiplexing, AS – aperture size, SED – single exposure duration,

SNRLFS – SNR of the light field samples, SNRRI – SNR of the refocused image, A×SR – angular × spatial

resolution.
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Though the light field data is noisier then the normal picture, it enables better postpro-
cessing abilities. Because the image from the light field can be simply refocused, there is
no longer need for setting up the focus and aperture size. In traditional photography much
longer time is usually spent on these settings than on the exposure.

The plenoptic camera is slightly better than the programmable aperture camera at the
same angular and spatial resolutions. Nevertheless, it requires N2M2 sensors. To capture a
light field of the same resolution as the dataset shown in Figure 17.11, the plenoptic camera
requires an array of nearly 100 million sensors, which is expensive, if not difficult, to make.

17.7.2 Limitation and Future Direction

The proposed device has great performance and flexibility, but it requires that the scene
and the camera be static because the data are captured sequentially. However, as mentioned
in Section 17.4.4, the sharpness of in-focus objects is unaffected by multiplexing. Hence
the proposed system can capture a moving in-focus object amid static out-of-focus objects
and then recover the light field and scene geometry of the static objects.

On the other hand, other devices capture the light field in one exposure at the expense
of spatial resolution. However, it should be pointed out that the proposed method is com-
plementary to the existing ones. A cosine mask or a microlens array can be placed near
the image plane to capture a coarse angular resolution light field and the programmable
aperture can be used to provide the fine angular resolution needed.

Multiplexing a light field is equivalent to transforming the light field to another represen-
tation by basis projection. While the goal here is to obtain a reconstruction with minimal
error from a fixed number of projected images (Mu(x) in Equation 17.4), an interesting
research direction is to reduce the number of images required for reconstruction. The com-
pressive sensing theory states that if a signal of dimension n has a sparse representation,
less than n projected measurements can be used to recover the full signal [59]. Finding a
proper set of bases to perform compressive sensing is worth pursuing in the future.

The light field captured by light field cameras can be applied to many different applica-
tions, with only a few basic ones demonstrated here. For example, using the 4D frequency
analysis to the light transport process given in Section 17.3, it is possible to detect the ma-
jor objects of the scene at different depths without estimating the per-pixel depth map [60].
Given this information, it is possible to perform refocusing to the major objects or all-
focused rendering without any user intervention. It is also possible to combine the multi-
view nature of the light field and the active light sources for photometric stereo. Moreover,
since the light field images of different viewpoints capture the sub-pixel movement of the
scene, this information can be utilized for creating super-resolution images.

17.8 Conclusion

This chapter described a system for capturing light field using a programmable aperture
with an optimal multiplexing scheme. Along with the programmable aperture, two post-
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processing algorithms for photometric calibration and multi-view depth estimation were
developed. This system is probably the first single-camera system that generates light field
at the same spatial resolution as that of the sensor, has adjustable angular resolution, and
is free of photometric distortion. In addition, the programmable aperture is fully backward
compatible with conventional apertures.

While this work focused on the light field acquisition, the programmable aperture camera
can be further exploited for other applications. For example, it can be used to realize a com-
putational camera with a fixed mask. It is believed that by replacing the traditional aperture
with the proposed programmable aperture, a camera will become much more versatile than
before.
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18.1 Introduction

Being able to look freely through a scene has long been an active research topic in the
computer graphics community. Historically, computer graphics research has been focused
on rendering. That is, given a three-dimensional (3D) model, how to generate new images
faster, better, and more realistically. View synthesis addresses a typically more challenging
problem. It is aimed to generate new images using only a set of two-dimensional (2D)
images, instead of 3D models.

There are many different ways to categorize and introduce the vast variety of existing
view synthesis methods. For example, these methods can be categorized based on the type
of scenes they can handle, the number of input images required, or the level of automation.
In this chapter, existing methods are categorized using their internal representations of the
scene. Based on this criterion, there is a continuum of view synthesis methods shown in
Figure 18.1. They vary on the dependency of images samples vs. geometric primitives.

Approaches on the left side of the continuum are categorized as geometry-based. Given
a set of input images, a 3D model is extracted, either manually or algorithmically, and can
then be rendered from novel viewing angles using computer graphics rendering techniques.
In this category, the primary challenge is in the creation of the 3D model. Automatic
extraction of 3D models from images has been one of the central research topics in the
field of computer vision for decades. Although many algorithms and techniques exist, such
as the extensively studied stereo vision techniques, they are relatively fragile and prone to
error in practice. For instance, most 3D reconstruction algorithms assume a Lambertian
(diffuse) scene, which is only a rough approximation of real-world surfaces.

By contrast, approaches on the right side of the continuum are categorized as image-
based modeling and rendering (IBMR) — a popular alternative for view synthesis in re-
cent years. The basic idea is to synthesize new images directly from input images, partly
or completely bypassing the intermediate 3D model. In other words, IBMR methods typ-
ically represent the scene as a collection of images, optionally augmented with additional
information for view synthesis. Light field rendering (LFR) [1], [2] represents one extreme
of such techniques; it uses many images (hundreds or even thousands) to construct a light
field function that completely characterizes the flow of light through unobstructed space
in a scene. Synthesizing different views becomes a simple lookup of the light field func-
tion. This method works for any scene and any surface; the synthesized images are usually
so realistic that they are barely distinguishable from real photos. But the success of this
method ultimately depends on having a very high sampling rate, and the process of captur-
ing, storing, and retrieving many samples from a real environment can be difficult or even
impossible.

In the middle of the continuum are some hybrid methods that represent the scene as
a combination of images samples and geometrical information. Typically these methods
require a few input images as well as some additional information about the scene, usually
in the form of approximate geometric knowledge or correspondence information. By using
this information to set constraints, the input images can be correctly warped to generate
novel views. To avoid the difficult shape recovery problem, successful techniques usually
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FIGURE 18.1

The continuum for view synthesis methods. Relative positions of some well-known methods are indicated. The two subfigures show two main subgroups for view

synthesis. Note that the boundary between these two groups is blurry.
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require a human operator to be involved in the process and use a priori domain knowledge
to constrain the problem. Because of the required user interaction, these techniques are
typically categorized under the IBMR paradigm. For example, in the successful Façade
system [3] designed to model and render architecture from photographs, an operator first
manually places simple 3D primitives in rough positions and specifies the corresponding
features in the input images. The system automatically optimizes the location and shape of
the 3D primitives, taking advantage of the regularity and symmetry in architectures. Once
a 3D model is generated, new views can be synthesized using traditional computer graphics
rendering techniques.

This chapter briefly reviews various image-based modeling methods, in particular light
field-style rendering techniques. Then, an extension of LFR for dynamic scenes, for which
the notion of space-time LFR is introduced, is discussed in detail. Finally, reconfigurable
LFR is introduced, in which not only the scene content, but also the camera configurations,
can be dynamic.

18.2 Related Work in Image-Based Modeling and Rendering

As pioneered in References [4] and [5], the basic idea of image-based modeling and
rendering (IBMR) is to use a large number of input images to (partly) circumvent the
difficult 3D reconstruction problems. IBMR has been one of the most active research topics
in computer graphics for the past few years.

Within the IBMR paradigm, there are a large number of methods that use many images
to generate novel views without relying on geometric information [1], [2], [6], [7], [8],
[9], [10], [11], [12], [13], [14]. They are collectively called light field-style rendering
techniques, which are the focus of this chapter.

18.2.1 Light Field-Style Rendering Techniques

Light field style rendering techniques are formulated around the plenoptic function (from
the Latin root plenus, meaning complete or full, and optic, pertaining to vision). The notion
of plenoptic functions was first proposed in Reference [15]. A plenoptic function describes
all of the radiant energy that can be perceived by an observer at any point in space and
time. Reference [15] formalizes this functional description by providing a parameter space
over which the plenoptic function is valid, as shown in Figure 18.2. Imagine that one
wants to look at a scene freely. The location of an idealized eye can be at any point in
space (Vx,Vy,Vz). From there one can perceive a bundle of rays defined by the range of the
azimuth and elevation angles (θ ,φ), as well as a band of wavelengths λ . The time t can
also be selected if the scene is dynamic. This results in the following form for the plenoptic
function:

ρ = P(θ ,φ ,λ ,Vx,Vy,Vz, t). (18.1)

This seven-dimensional function can be used to develop a taxonomy for evaluating mod-
els of low-level vision [15]. By introducing the plenoptic function to the computer graphics
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q

f

FIGURE 18.2

The plenoptic function describes all of the image information visible from any given viewing position.

community, all image-based modeling and rendering approaches can be cast as attempts to
reconstruct the plenoptic function from a sample set of that function [4].

From a computer graphics standpoint, one can consider a plenoptic function as a scene
representation that describes the flow of light in all directions from any point at any time.
In order to generate a view from a given point in a particular direction, one would merely
need to plug in appropriate values for (Vx,Vy,Vz) and select from a range of (θ ,φ ,λ ) for
some constant t.

This plenoptic function framework provides many venues for exploration, such as the
representation, optimal sampling, and reconstruction of the plenoptic function. The fol-
lowing sections discuss several popular parameterizations of the plenoptic function under
varying degrees of simplification.

18.2.1.1 5D Light Field

Assuming that there is a static scene and that the effects of different wavelengths can
be ignored, the representation of the reduced five-dimensional (5D) plenoptic function can
be seen as a set of panoramic images at different 3D locations [4], [5]. In this imple-
mentation, computer vision techniques are employed to compute stereo disparities between
panoramic images to avoid a dense sampling of the scene.1 After the disparity images are
computed, the input images can be interactively warped to new viewing positions. Visi-
bility is resolved by forward-warping [16] the panoramic images in a back-to-front order.
This hidden-surface algorithm is a generalization of a visible line method [17] to arbitrary
projected grid surfaces.

18.2.1.2 4D Light Field

Reference [1] points out that the 5D representation offered in References [4] and [5]
can be reduced to the four-dimensional (4D) representation in free space (regions free of

1References [4], [5] could be included in the second category, in which geometry information is used. However,
they are presented here, since the plenoptic function theory presented in these references paved the way for
subsequent light field rendering techniques.
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FIGURE 18.3

Light field rendering: the light slab representation and its construction.

occluders2) [1]. This is based on the observation that the radiance along a line does not
change unless blocked. In Reference [1], the 4D plenoptic function is called the light field
function which may be interpreted as a functions on the space of oriented light rays. Such
reduction in dimensions has been used to simplify the representation of radiance emitted
by luminaries [18], [19].

Reference [1] parameterizes light rays based on their intersections with two planes (see
Figure 18.3). The coordinate system is (u,v) on the first plane, and (s, t) on the second
plane. An oriented light ray is defined by connecting a point on the uv plane to a point on
the st plane; this representation is called a light slab. Intuitively, a light slab represents the
beam of light entering one quadrilateral and exiting another quadrilateral. To construct a
light slab, one can simply take a 2D array of images. Each image can be considered a slice
of the light slab with a fixed (u,v) coordinate and a range of (s, t) coordinates.

Generating a new image from a light field is quite different than previous view interpo-
lation approaches. First, the new image is generally formed from many different pieces of
the original input images, and does not need to look like any of them. Second, no model
information, such as depth values or image correspondences, is needed to extract the image
values. The second property is particularly attractive since automatically extracting depth
information from images is a very challenging task. However, many image samples are
required to completely reconstruct the 4D light field functions. For example, to completely
capture a small Buddha as shown in Figure 18.3, hundreds or even thousands of images are
required. Obtaining so many images samples from a real scene may be difficult or even im-
possible. Reference [2] augments the two-plane light slab representation with a rough 3D
geometric model that allows better quality reconstructions using fewer images. However,
recovering even a rough geometric model raises the difficult 3D reconstruction problem.

2Such reduction can be used to represent scenes and objects as long as there is no occluder between the desired
viewpoint and the scene. In other words, the effective viewing volume must be outside the convex hull of the
scene. A 4D representation cannot thus be used, for example, in architecture workthroughs to explore from
one room to another.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
12

 1
0 

M
ay

 2
01

6 



Dynamic View Synthesis with an Array of Cameras 477

Reference [8] presents a more flexible parameterization of the light field function. In
essence, one of the two planes of the light slab is allowed to move. Because of this ad-
ditional degree of freedom, it is possible to simulate a number of dynamic photograph
effects, such as depth of field and apparent focus [8]. Furthermore, this reparameterization
technique makes it possible to create integral photography-based [20], auto-stereoscopic
displays for direct viewing of light fields.

Besides the popular two-plane parameterization of the plenoptic function, there is the
spherical representation introduced in Reference [6]. The object-space algorithm presented
in the same work can easily be embedded into the traditional polygonal rendering system
and accelerated by 3D graphics boards.

Light field rendering is the first image-based rendering method that does not require any
geometric information about the scene. However, this advantage is acquired at the cost
of many image samples. The determination of the minimum number of samples required
for light field rendering involves complex relationships among various factors, such as
the depth and texture variation of the scene, the input image resolutions, and the desired
rendering resolutions. Details can be found in Reference [21].

18.2.1.3 3D Plenoptic Function: Line Light Field and Concentric Mosaic

If camera (viewing) motion is further constrained to a continuous surface or curved man-
ifold, the plenoptic function can be reduced to a 3D function. Reference [9] presents a
3D parameterization of the plenoptic function. By constraining camera motion along a
line, the 4D light field parameterization can be reduced to a 3D function. Such reduction
is necessary for time-critical rendering given limited hardware resources. A (u,s, t) rep-
resentation is used where u parameterizes the camera motion, and (s, t) parameterizes the
other plane. Moving along the line provides parallax in the motion direction. To achieve
complete coverage of the object, the camera can move along four connected perpendicular
lines, for instance, a square.

Reference [10] presents an alternative parameterization for a 3D plenoptic function called
concentric mosaics. This is achieved by constraining camera motion to planar concentric
circles and creating concentric mosaics through the composition of slit images taken at dif-
ferent locations along each circle. Concentric mosaics index all input image rays naturally
according to three parameters: radius, rotation angle, and vertical elevation. Compared to a
4D light field, concentric mosaics have much smaller file sizes because only a 3D plenop-
tic function is constructed. Concentric mosaics allow a user to move freely in a circular
region and observe significant parallax without recovering the geometric and photometric
scene models. Compared to the method in Reference [9], concentric mosaics offer uniform
and continuous sampling of the scene. However, rendering with concentric mosaics could
produce some distortions in the rendered images, such as bending of straight lines and dis-
torted aspect ratios. Detailed discussion about the causes of and possible corrections for
these problems can be found in Reference [10].

18.2.1.4 2D Plenoptic Function: Environment Map (Panoramas)

An environment map records the incident light arriving from all directions at a point.
Under the plenoptic function framework, a 2D plenoptic function in which only the gaze
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direction (θ ,φ) varies can be reconstructed from a single environment map. While the orig-
inal use of environment maps is to efficiently approximate reflections of the environment
on a surface [22], [23], environment maps can be used to quickly display any outward-
looking view of the environment from a fixed location but at a variable orientation — this
is the basis of the Apple QuickTimeVR system [24]. In this system, environment maps are
created at key locations in the scene. A user is able to navigate discretely from one location
to another and, while at each location, continuously change the viewing direction.

While it is relatively easy to generate computer-generated environmental maps [23], it is
more difficult to capture panoramic images from real scenes. A number of techniques have
been developed. Some use special hardware [25], [26], [27], such as panoramic cameras
or cameras with parabolic mirrors; others use regular cameras to capture many images that
cover the whole viewing space, then stitch them into a complete panoramic image [28],
[29], [30], [31], [32].

18.3 Space-Time Light Field Rendering for Dynamic Scenes

With technological advancement, it is now possible to build camera arrays to capture
a dynamic light field for moving scenes [33], [34], [35], [36]. However, most existing
camera systems rely on synchronized input, thus treating each set of images taken at the
same instant as a separate light field. The only exception is the high-performance light
field array presented in Reference [37]. It uses customized cameras that can be triggered
in a staggered pattern to increase the temporal sampling rate. Nevertheless, even with an
increased temporal sampling rate, a viewer can explore the temporal domain in a discrete
way.

Reference [38] presents the notion of space-time light field rendering (ST-LFR) that al-
lows continuous exploration of a dynamic light field in both the spatial and temporal do-
main. A space-time light field is defined as a collection of video sequences captured by a
set of tightly packed cameras that may or may not be synchronized. The basic goal of ST-
LFR is to synthesize novel images from an arbitrary viewpoint at an arbitrary time instant t.
Traditional LFR is therefore a special case of ST-LFR at some fixed-time instant.

As shown in Figure 18.4, the ST-LFR approach has the following major steps: image
registration, temporal offset estimation (optional), synchronized image generation (tempo-
ral interpolation), and light field rendering (spatial interpolation). In the first step (Sec-
tion 18.3.1), spatial-temporal optical flow algorithm is developed to establish feature cor-
respondences among successive frames for each camera’s video sequence. In cases when
video sequences are not synchronized or relative temporal offsets are unknown, the relative
time stamp for each frame needs be estimated (Section 18.5). Once feature correspondences
are established, new globally synchronized images are synthesized using an edge-guided
image morphing method (Section 18.3.3). Synchronized video sequences are eventually
used as inputs to synthesize images in the spatial domain using traditional LFR techniques
(Section 18.3.4).
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The structure of the proposed space-time light field rendering algorithm. c© 2007 IEEE
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The registration process of the two-camera case. c© 2007 IEEE

18.3.1 Image Registration

The ST-LFR framework starts with computing the temporal optical flow between two
successive frames for each camera. The spatial optical flow between different camera se-
quences is also computed to remove outliers, assuming the relative temporal offset between
them is known. The following presents the algorithm with a two-camera setup, and then
shows how this algorithm can be extended to handle multiple camera inputs. Figure 18.5
illustrates the two-camera registration process.
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18.3.1.1 Spatial-Temporal Flow Computation

Let Ii,t and Ii,t+∆ti be two consecutive frames captured from camera Ci at time t and
t +∆ti, respectively. Let I j,t ′ be a frame captured from camera C j at time t ′ (t ′ ∈ [t, t +∆ti]),
the temporal flow be defined from Ii,t to Ii,t+∆ti and the spatial flow from Ii,t to I j,t ′ . Frame
time steps, ∆ti and ∆t j, respectively associated with camera Ci and C j are not necessarily
equivalent.

The procedure first selects corners with large eigenvalues on Ii,t as feature points using
Harris corner detector [39]. A minimum distance is enforced between any two feature
points to prevent them from gathering in a small high gradient region. Then, the sparse
optical flow are calculated using tracking functions in OpenCV [40], which is based on the
classic Kanade-Lucas-Tomasi (KLT) feature tracker [41], [42].

It chosen here not to calculate a dense, per-pixel flow since it is difficult to calculate in
certain areas such as occlusion boundaries and textureless regions. A sparse flow formula-
tion, which includes salient features important for view synthesis, is not only more robust,
but also more computationally efficient.

18.3.1.2 Flow Correction by Epipolar Constraint

Since image interpolation quality depends mostly on the accuracy of feature point cor-
respondences, it is proposed here to use the epipolar constraint in order to detect temporal
point correspondence errors.

Given two images captured at the same instant from two cameras, the epipolar constraint
states that if a point ~pi = [ui,vi,1]T (expressed in image homogeneous coordinates) from
one camera and a point ~p j = [u j,v j,1]T from another camera correspond to the same sta-
tionary 3D point in the physical world, they must satisfy the following:

~pT
j F~pi = 0, (18.2)

where F is the fundamental matrix encoding the epipolar geometry between the two im-
ages [43]. In fact, F~pi can also be considered as an epipolar line in the second image,
Equation 18.2 thus means that ~p j must lie on the epipolar line F~pi, and vice versa.

The epipolar constraint is incorporated to verify the temporal flow from Ii,t to Ii,t+∆ti ,
given the help of the spatial flow from Ii,t to I j,t ′ . Let ~pi,t and ~pi,t+∆ti be the projection
of a moving 3D point on camera Ci at time t and ∆t + ti, respectively; the projection of
this 3D point forms a trajectory connecting between ~pi,t and ~pi,t+∆ti . Given the spatial
correspondence ~p j,t ′ of ~pi,t from camera C j at time t ′, the epipolar constraint is described
as follows:

~pT
j,t ′Fij~pi,t ′ = 0, (18.3)

where Fij is the fundamental matrix between camera Ci and C j. Since ~pi,t ′ is not actually
observed by camera Ci at time t ′, it can be estimated assuming that the 3D point moves
locally linear in the image space, as follows:

~pi,t ′ = t+∆ti−t ′
∆ti

~pi,t + t ′−t
∆ti

~pi,t+∆ti . (18.4)

Therefore, in order to evaluate the correctness of ~pi,t’s temporal correspondence ~pi,t+∆ti ,
the procedure first estimates ~pi,t ′ using the linear motion assumption and then verifies ~pi,t ′
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(a) (b) (c)

FIGURE 18.6

Feature points and epipolar line constraints: (a) ~pi,t on image Ii,t , (b) ~pi,t+∆ti on image Ii,t+∆ti , and (c) ~p j,t ′

and ~pi,t ′ ’s epipolar lines on image I j,t ′ . c© 2007 IEEE

by the epipolar constraint using the spatial correspondence ~p j,t ′ . If both spatial and tem-
poral correspondences are correct, the epipolar constraint should be closely satisfied. This
is the criterion used to validate the spatial-temporal flow computation. Figure 18.6 shows
that a correct correspondence satisfies the epipolar constraint, while a wrong temporal cor-
respondences causes an error in ~pi,t ′ , which leads to a wrong epipolar line that ~p j,t ′ fails to
meet with.

The fundamental matrix is directly computed from cameras’ world position and projec-
tion matrices. Due to various error sources such as camera noise, inaccuracy in camera
calibration or feature localization, a band of certainty is defined along the epipolar line. For
each feature point ~pi,t , if the distance from ~p j,t ′ to ~pi,t ′’s epipolar line is greater than a cer-
tain tolerance threshold, either the temporal or the spatial flow is considered to be wrong.
This feature will then be discarded. In the experiment, three pixels are used as the distance
threshold.

It should be noted that the proposed correction scheme for unsynchronized input is only
reasonable when the motion is roughly linear in the projective space. Many real world
movements, such as rotation, do not satisfy this requirement. Fortunately, when cameras
have a sufficiently high rate with respect to the 3D motion, such a locally temporal lin-
earization is generally acceptable [44]. Achieved experimental results also support this
assumption. In Figure 18.6, correct feature correspondences satisfy the epipolar constraint
well even though the magazine was rotating fast. This figure also demonstrates the amount
of pixel offset casual motion could introduce: in two successive frames captured at 30fps,
many feature points moved more than 20 pixels — a substantial amount that cannot be
ignored in view synthesis.

18.3.2 Multi-Camera Flow Correction

In a multi-camera system, more than one reference camera or multiple frames can be used
to justify a particular temporal flow using the epipolar constraint. Since the spatial flow
itself can contain errors, there exists a trade-off between accurate temporal correspondences
and the number of false-negatives, that is, correct temporal correspondences are removed
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because of erroneous spatial correspondences. Therefore, a selection scheme is needed
to choose the best frame(s) to compare. Intuitively, closer cameras are relatively good
candidates because of fewer occlusions.

Another factor to consider is the ambiguity along the epipolar line, that is, the correspon-
dence error along the direction of the epipolar line cannot be detected. Many light field
acquisition systems put cameras on a regular grid, in which the epipolar lines for cameras
in the same row or column are almost aligned with each other. In this case, using more
reference cameras does not necessarily improve error detection.

Given a reference camera, one can prefer to choose reference frames captured close to
time t + ∆ti. Those frames can fully reveal the temporal flow error since the error only
exists in the temporal correspondence ~pi,t+∆ti associated with ~pi,t . Note that ~pi,t is always
assumed to be the correct image location of some 3D point ~mt .

A selection function Wj is employed here to determine whether camera C j should be used
to test Ci’s temporal flow from Ii,t to Ii,t+∆ti :

Wj = Close(i, j)+d min
t ′:I j,t′∈

C j sequence

∣∣t ′− (t +∆ti)
∣∣ (18.5)

and the reference frame I j,t ′ from C j is selected as follows:

t ′ = argmin
t ′:I j,t′∈C j sequence

∣∣t ′− (t +∆ti)
∣∣ , (18.6)

where d is a constant to balance the influence from the camera spatial closeness and the
capture time difference. If the multi-camera system is constructed regularly as a camera
array, the closeness Close(i, j) can be simply evaluated according to the array indices. A
single best camera is chosen along the row and the column respectively to provide both
horizontal and vertical epipolar constraints. If all cameras have an identical frame rate, the
same camera will always be selected using Equation 18.5.

18.3.3 Temporal Interpolation with Edge Guidance

Once the temporal correspondence between two successive frames from one camera is
obtained, intermediate frames need to be generated at any time for this camera so that
synchronized video sequences can be produced for traditional light field rendering. One
possible approach is to simply triangulate the whole image and blend two images by texture
mapping. However, the resulting quality is quite unpredictable since it depends heavily
on the local triangulation of feature points. Even a single feature mismatch can affect a
large neighboring region on the image. A better interpolation scheme is to use the image
morphing method [45], which incorporates varying weights using the image gradient. In
essence, line segments are formed automatically from point correspondences to cover the
entire image. Segments aligned with image edges will gain extra weights to preserve edge
straightness — an important visual cue. Therefore, this robust view synthesis method can
synthesize smooth and visually appealing images even in the presence of missing or wrong
feature correspondence.
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FIGURE 18.7

Real feature edges: (left) the gradient magnitude map and (right) feature edges detected by testing feature

points pairwise. c© 2007 IEEE

18.3.3.1 Extracting Edge Correspondences

Segments can be constructed by extracting edge correspondences. Given a segment et

connecting two feature points on image It and a segment et+∆t connecting the correspond-
ing feature points on It+∆t from the same camera, it is desirable to know whether this
segment pair (et ,et+∆t) are both aligned with image edges, that is, forming an edge corre-
spondence. The decision is based on two main factors: edge strength and edge length.

Regarding edge strength, the algorithm examines whether a potential edge matches
with both image gradient magnitude and orientation, similar to the Canny edge detection
method [46]. On a given segment, a set of samples s1,s2, ...,sn are uniformly selected to
calculate the fitness function for this segment as follows:

f (e) = min
sk∈e

(|∇I(sk)|+β
∇I(sk)
|∇I(sk)| •N(e)). (18.7)

The first term in Equation 18.7 gives the gradient magnitude and the second term indi-
cates how well the gradient orientation matches with the edge normal direction N(e). The
parameter β is used to balance the influence between two terms. The fitness values are
calculated for both et and et+∆t . If both values are greater than a threshold, it means that
both et and et+∆t are in strong gradient regions and the gradient direction matches the edge
normal. Therefore, et and et+∆t may represent a real surface or texture boundary in the
scene. Figure 18.7 shows a gradient magnitude map and detected feature edges.

The second factor is the edge length. It can be assumed that the edge length is nearly
a constant from frame to frame, provided that the object distortion is relatively slow com-
pared with the frame rate. This assumption is used to discard edge correspondences if
|et+∆t | changes too much from |et |. Most changes in edge length are caused by wrong tem-
poral correspondences. Nevertheless, the edge length change may be caused by reasonable
point correspondences as well. For instance, in Figure 18.8, the dashed arrows show the
intersection boundaries between the magazine and the wall. They are correctly tracked,
however, since they do not represent real 3D points, they do not follow the magazine mo-
tion at all. Edges ended with those points can be detected from length changes, and be
removed to avoid distortions during temporal interpolation. Similarly, segments connect-
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FIGURE 18.8

The optical flow: (left) before applying the epipolar constraint and (right) after applying the epipolar constraint.

Correspondence errors on the top of the magazine are detected and removed. c© 2007 IEEE

FIGURE 18.9

The edge map constructed after constraining Delaunay triangulation. c© 2007 IEEE

ing one static point (that is, a point that does not move in two temporal frames) with one
dynamic point should not be considered.

18.3.3.2 Forming the Edge Set

Since the real edge correspondences generated as described in the above section may
not be able to cover the whole region sometimes, virtual edge correspondences to the edge
set are added to avoid distortions caused by sparse edge sets. Virtual edges are created
by triangulating the whole image region using constrained Delaunay triangulation [47].
Existing edge correspondences are treated as edge constraints, and four image corners are
added. Figure 18.9 shows a sample triangulation result.
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FIGURE 18.10

Interpolation results: (left) without virtual feature edges and (right) with virtual feature edges. c© 2007 IEEE

18.3.3.3 Morphing

The image morphing method [45] is extended to interpolate two frames temporally. Real
edges are allowed to have more influence weights than virtual edges since real edges are
believed to have physical meanings in the real world. In Reference [45], the edge weight is
calculated using the edge length L and the point-edge distance D as follows:

weight0 =
(

Lρ

(a+D)

)b

, (18.8)

where a, b, and ρ are constants to affect the line influence.
The weight for both real and virtual feature edge is calculated here using the formula

above. The weight for real edge is then further boosted as follows:

weight = weight0 · (1+
f (e)− fmin(e)

fmax(e)− fmin(e)
)τ , (18.9)

where f (e) is the edge samples’ average fitness value from Equation 18.7. The terms
fmin(e) and fmax(e) denote the minimum and maximum fitness value among all real feature
edges, respectively. The parameter τ is used to scale the boosting effect exponentially.

Two frames are temporally interpolated using both the forward temporal flow from Ii,t

to Ii,t+∆ti and the backward temporal flow from Ii,t+∆ti to Ii,t . The final pixel intensity is
calculated by linear interpolation as follows:

Pt ′ =
t +∆ti− t ′

∆ti
·Pf orward +

t ′− t
∆ti

·Pbackward, (18.10)

where Pf orward is the pixel color calculated only from frame Ii,t and Pbackward is only from
frame Ii,t+∆ti . This reflects more confidence in features associated with Ii,t in the forward
flow and features associated with Ii,t+∆ti in the backward flow. These features are selected
directly on images.

Figure 18.10 shows the results without and with virtual edges. Figure 18.11 shows the
results using different interpolation schemes. Since some features are missing on the top of
the magazine, the interpolation quality improves when real feature edges get extra weights
according to Equation 18.9. Even without additional weights, image morphing generates
more visually pleasing images in the presence of bad feature correspondences.
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(a) (b)

(c) (d)

FIGURE 18.11

Interpolated results using different schemes: (a) image morphing without epipolar test, (b) direct image tri-

angulation with epipolar test, (c) image morphing with epipolar test, but without extra edge weights, and (d)

image morphing with both epipolar test and extra edge weights. c© 2007 IEEE

18.3.4 View Synthesis (Spatial Interpolation)

Once synchronized images for a given time instant are generated, traditional light field
rendering techniques can ne used to synthesize views from novel viewpoints. To this end,
the unstructured lumigraph rendering technique [48], which can utilize graphics texture
hardware to blend appropriate pixels together from nearest cameras in order to compose
the desired image, is adopted here as discussed below.

This technique requires an approximation of the scene (a geometric proxy) as an input.
Two options are implemented. The first is a 3D planar proxy in which the plane’s depth can
be interactively controlled by the user. Its placement determines which region of the scene
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FIGURE 18.12

Reconstructed 3D mesh proxy: (left) oblique view and (right) front view. c© 2007 IEEE

proxy

original

sequence

temporal

flow

spatial flow

corrected

temporal flow

edge

map

temporal

interpolation

spatial

interpolation

FIGURE 18.13

The space-time light field rendering pipeline. c© 2007 IEEE

is in focus. The second option is a reconstructed proxy using the spatial correspondences.
Every pair of spatial correspondences defines a 3D point. All the 3D points, plus the four
corners of a background plane, are triangulated to create a 3D mesh. Figure 18.12 shows
an example mesh.

Whether to use a plane or a mesh proxy in rendering depends mainly on the camera
configuration and scene depth variation. The planar proxy works well for scenes with
small depth variations. On the other hand, using a reconstructed mesh proxy improves both
the depth of field and the 3D effect for oblique-angle viewing.

18.3.5 Results

This section presents some results from the space-time light field rendering framework.
Figure 18.13 shows a graphical representation of the entire processing pipeline. To facilitate
data capturing, two multi-camera systems were developed. The first system uses eight Point
Grey dragonfly cameras [49]. This system can provide a global time stamp for each frame
in hardware. The second system includes eight SONY color digital fire-wire cameras, but
the global time stamp is not available. In both systems, the cameras are approximately 60
mm apart, limited by their form factor. Based on the analysis from Reference [21], the
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FIGURE 18.14

Synthesized results using a uniform blending weight, that is, pixels from all frames are averaged together: (left)

traditional LFR with unsynchronized frames and (right) space-time LFR. c© 2007 IEEE

effective depth of field is about 400 mm. The cameras are calibrated, and all images are
rectified to remove lens distortions.

Since the cameras are arranged in a horizontal linear array, only one camera for the
epipolar constraint is selected according to the discussion in Section 18.3.2. The closeness
is just the camera position distance. The results are demonstrated using data tagged with a
global time stamp, that is, the temporal offsets are known. The final images are synthesized
using either a planar proxy or a reconstructed proxy from spatial correspondences.

18.3.5.1 View Synthesized with a Planar Proxy

To better demonstrate the advantage of ST-LFR over traditional LFR, this section first
shows some results using a planar proxy for spatial interpolation. The datasets used in
this section are captured by the Point Grey camera system with known global time stamps.
The first dataset includes a person waving the hand, as shown in Figure 18.10. Since the
depth variation from the hands to the head is slightly beyond the focus range (400 mm),
some tiny horizontal ghosting effects in the synthesized image can be observed, which are
entirely different from vertical mismatches caused by the hand’s vertical motion. It will be
shown later that these artifacts can be reduced by using a reconstructed proxy.

The importance of virtual synchronization is emphasized in Figure 18.14, where the
image is synthesized with a constant blending weight (1/8) for all eight cameras. The scene
contains a moving magazine. Without virtual synchronization, the text on the magazine
cover is illegible. This problem is rectified by registering feature points and generating
virtually synchronized images.

The next dataset is a moving open book. In Figure 18.15, several views are synthesized
using traditional LFR and ST-LFR. Results from ST-LFR remain sharp from different view-
points. The noticeable change of intensity is due to the mixed use of color and grayscale
cameras.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
12

 1
0 

M
ay

 2
01

6 



Dynamic View Synthesis with an Array of Cameras 489

FIGURE 18.15

Synthesized results of the book image: (top) traditional LFR with unsynchronized frames and (bottom) space-

time LFR. c© 2007 IEEE

FIGURE 18.16

Synthesized results of the book sequence: (left) plane proxy adopted and (right) 3D reconstructed mesh proxy

adopted. c© 2007 IEEE

18.3.5.2 View Synthesized with a Reconstructed Proxy

As mentioned in Section 18.3.4, building a 3D mesh geometry proxy improves the syn-
thesis results for scenes with large depth range. This method is adopted in the following
two datasets and the results are compared with plane proxy. The first dataset is the open
book as shown in Figure 18.16. It is obvious that the back cover of the book in this exam-
ple is better synthesized with the 3D mesh proxy for its improved depth information. The
second example shown in Figure 18.17 is a human face viewed from two different angles.
The face rendered with the planar proxy shows some noticeable distortions in side views.
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FIGURE 18.17

Synthesized results of a human face from two different angles: (top) plane proxy adopted and (bottom) 3D

mesh proxy adopted. c© 2007 IEEE

18.4 Reconfigurable Array

This section presents a self-reconfigurable camera array system which captures video
sequences from an array of mobile cameras. In other words, not only the scene is dynamic,
the cameras are moving around, too. The benefit of such a mobile array is that it can
reconfigure the camera positions on the fly in order to achieve better rendering quality. An
overview of the camera array is presented below, together with a multi-resolution mesh-
based algorithm for view synthesis and a related algorithm for camera self-reconfiguration.

18.4.1 System Overview

As shown in Figure 18.18, the self-reconfigurable camera array system is composed of 48
(8×6) Axis 205 network cameras placed on six linear guides. The linear guides are 1600
mm in length, thus the average distance between cameras is about 200 mm. Vertically the
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FIGURE 18.18

A self-reconfigurable camera array system with 48 cameras. c© 2007 IEEE

platform
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network
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servo

gear wheel

FIGURE 18.19

The mobile camera unit. c© 2007 IEEE

cameras are 150 mm apart. They can capture up to 640×480 pixel2 images at maximally
30 fps. The cameras have built-in HTTP servers, which respond to HTTP requests and
send out motion JPEG sequences. The JPEG image quality is controllable. The cameras
are connected to a central computer through 100 Mbps Ethernet cables.

The cameras are mounted on a mobile platform, as shown in Figure 18.19. Each camera
is attached to a standard pan servo capable of rotating for about 90 degrees. They are
mounted on a platform which is equipped with another sidestep servo. The sidestep servo
is a hacked one, and can rotate continuously. A gear wheel is attached to the sidestep
servo which allows the platform to move horizontally with respect to the linear guide. The
gear rack is added to avoid slippery during the motion. The two servos on each camera
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virtual

point
2D mesh on

the imaging plane resticted 3D mesh

(2D mesh with depth)

FIGURE 18.20

The multi-resolution 2D mesh with depth information on its vertices.

unit allow the camera to have two degrees of freedom: pan and sidestep. However, the 12
cameras at the leftmost and rightmost columns have fixed positions and can only pan.

The servos are controlled by the Mini SSC II servo controller [50]. Each controller is
in charge of no more than eight servos (either standard servos or hacked ones). Multiple
controllers can be chained, thus up to 255 servos can be controlled simultaneously through
a single serial connection to a computer. The current system uses altogether 11 Mini SSC
II controllers to control 84 servos (48 pan servos, 36 sidestep servos).

The system is controlled by a single computer with an Intel Xeon 2.4 GHz dual pro-
cessor, 1 GB of memory and a 32 MB NVIDIA Quadro2 EX graphics card. As will be
detailed later, the proposed rendering algorithm is so efficient that the region of interest
(ROI) identification, JPEG (Joint Photographic Experts Group) image decompression, and
camera lens distortion correction, which were usually performed with dedicated computers
in previous systems, can all be conducted during the rendering process for a camera array
in the considered system. On the other hand, it is not difficult to modify the system and
attribute ROI identification and image decoding to dedicated computers, as is done in the
distributed light field camera described in Reference [51].

The system software runs as two processes, one for capturing and the other for render-
ing. The capturing process is responsible for sending requests to and receiving data from
the cameras. The received images (in JPEG compressed format) are directly copied to
some shared memory that both processes can access. The capturing process is often lightly
loaded, consuming about 20% of one of the processors in the computer. When the cam-
eras start to move, their external calibration parameters need to be calculated in real-time.
Since the internal parameters of the cameras do not change during their motion, they are
calibrated offline. To calibrate the external parameters on the fly, a large planar calibration
pattern is placed in the scene and the algorithm presented in Reference [52] is used for the
calibrating the external parameters. The calibration process runs very fast on an employed
processor (150 to 180 fps at full speed).

18.4.2 Real-Time Rendering

The real-time rendering algorithm reconstructs the geometry of the scene as a 2D multi-
resolution mesh (MRM) with depths on its vertices, as shown in Figure 18.20. The 2D mesh
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FIGURE 18.21

The flow chart of the rendering algorithm.

is positioned on the imaging plane of the virtual view, thus the geometry is view-dependent
(similar to that in References [53], [54], and [55]). The MRM solution significantly re-
duces the amount of computation spent on depth reconstruction, making it possible to be
implemented efficiently in software.

The flow chart of the rendering algorithm is shown in Figure 18.21. A novel view is
rendered when there is an idle callback or the user moves the viewpoint. An initial sparse
and regular 2D mesh on the imaging plane of the virtual view are constructed first. For
each vertex of the initial 2D mesh, the procedure looks for a subset of images that will
be used to interpolate its intensity during the rendering. Once such information has been
collected, it is easy to identify the ROIs of the captured images and decode them when
necessary. The depths of the vertices in the 2D mesh are then reconstructed through a plane
sweeping algorithm. During plane sweeping, a set of depth values are hypothesized for a
given vertex, and the color consistency verification (CCV) score for the projections on the
nearby images is computed based on the mean-removed correlation coefficient as follows:

ri j =
∑k(Iik− Īi)(I jk− Ī j)√[

∑k(Iik− Īi)2
][

∑k(I jk− Ī j)2
] , (18.11)

where Iik and I jk are the kth pixel intensity in the projected small patches of nearby image
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(a) (b) (c) (d) (e)

FIGURE 18.22 (See color insert.)

Scenes captured and rendered with the proposed camera array: (a) rendering with a constant depth at the

background, (b) rendering with a constant depth at the middle object, (c) rendering with a constant depth

at the closest object, (d) rendering with the proposed method, and (e) multi-resolution 2D mesh with depth

reconstructed on-the-fly, brighter intensity means smaller depth. Captured scenes from top to bottom: toys,

train, girl and checkerboard, and girl and flowers.

#i and #j, respectively. The terms Īi and Ī j denote the mean of pixel intensities in the
two patches. Equation 18.11 is widely used in traditional stereo matching algorithms [56].
The overall CCV score of the nearby input images is one minus the average correlation
coefficient of all the image pairs. The depth plane resulting in the lowest CCV score will
be selected as the scene depth.

If a certain triangle in the mesh bears large depth variation, subdivision is performed to
obtain more detailed depth information. After the depth reconstruction, the novel view can
be synthesized through multi-texture blending, similar to that in the unstructured lumigraph
rendering (ULR) [48]. Lens distortion is corrected in the last stage, although the procedure
also compensates distortion during the depth reconstruction stage.

The proposed camera array system is used to capture a variety of scenes, both static and
dynamic. The speed of rendering process is about four to ten fps. The rendering results of
some static scenes are shown in Figure 18.22. Note that the cameras are evenly spaced on
the linear guide. The rendering positions are roughly on the camera plane but not too close
to any of the capturing cameras. Figures 18.22a to 18.22c show results rendered with the
constant depth assumption. The ghosting artifacts are very severe due to the large spacing
between the cameras. Figure 18.22d shows the result from the proposed algorithm. The
improvement is significant. Figure 18.22e shows the reconstructed 2D mesh with depth
information on its vertices. The grayscale intensity represents the depth; the brighter the
intensity, the closer the vertex. Like many other geometry reconstruction algorithms, the
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(a) (b) (c) (d)

FIGURE 18.23 (See color insert.)

Real-world scenes rendered with the proposed algorithm: (top) scene train, (bottom) scene toys; (a,c) used

per-pixel depth map to render, and (b,d) the proposed adaptive mesh to render.

geometry obtained using the proposed method contains some errors. For example, in the
background region of scene toys, the depth should be flat and far, but the achieved results
have many small “bumps.” This is because part of the background region has no texture,
which is prone to error for depth recovery. However, the rendered results are not affected
by these errors because view-dependent geometry is used and the local color consistency
always holds at the viewpoint.

Figure 18.23 gives the comparison of the rendering results using a dense depth map and
the proposed adaptive mesh. Using adaptive mesh produces rendering images at almost the
same quality as using dense depth map, but with a much smaller computational cost.

18.4.3 Self-Reconfiguration of the Cameras

Intuitively, the CCV score mentioned above quantitatively measures the potential render-
ing error around a vertex in the 2D mesh. When the score is high, the reconstructed depth
tends to be wrong (usually in occluded or non-Lambertian regions), and the rendered scene
tends to have low quality, as shown in the first and third line of Figure 18.24c. Therefore,
to improve the rendering quality, one shall move the cameras closer to these regions. In
theory, such a camera self-reconfiguration problem can be formulated and solved with a
recursive weighted vector quantization scheme [57]. The following briefly presents an ad-
hoc algorithm for the mobile array in Figure 18.18, where the cameras are are constrained
on the linear guides.

1. Locate the camera plane and the linear guides (as line segments on the camera plane).
The camera positions in the world coordinate are obtained through the calibration process.
Although they are not strictly on the same plane, an approximated one is used here, which
is parallel to the checkerboard pattern in the scene. The linear guides are located by av-
eraging the vertical positions of each row of cameras on the camera plane. As shown in
Figure 18.25, the vertical coordinates of the linear guides on the camera plane are denoted
as Yj, for j = 1,2, ...,6.
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(a) (b) (c) (d)

FIGURE 18.24 (See color insert.)

Scenes rendered by reconfiguring the proposed camera array: (a) the camera arrangement, (b) reconstructed

depth map, brighter intensity means smaller depth, (c) CCV score of the mesh vertices and the projection of

the camera positions to the virtual imaging plane denoted by dots — darker intensity means better consistency,

and (d) rendered image. Captured scenes from top to bottom: flower with cameras evenly spaced, flower

with cameras self-reconfigured (6 epochs), Santa with cameras are evenly spaced, and Santa with cameras

self-reconfigured (20 epochs). c© 2007 IEEE

31B

Y1

Y2

Y6

Y5

Y4

Y3
32B 3kB 37B

the virtual

viewpoint

the virtual

imaging plane

camera plane

capturing cameras

(x ,y )ji

FIGURE 18.25

Self-reconfiguration of the cameras. c© 2007 IEEE
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2. Back-project the vertices of the mesh model to the camera plane. In Figure 18.25,
one mesh vertex is back-projected as (xi,yi) on the camera plane. Note that such back-
projection can be performed even if there are multiple virtual views to be rendered, thus the
proposed algorithm is applicable to situations where there exist multiple virtual viewpoints.

3. Collect CCV score for each pair of neighboring cameras on the linear guides. The
capturing cameras on each linear guide naturally divide the guide into seven segments. Let
these segments be B jk, where j is the row index of the linear guide, k is the index of bins
on that guide, 1≤ j ≤ 6, 1≤ k ≤ 7. If a back-projected vertex (xi,yi) satisfies

Yj−1 < yi < Yj+1 and xi ∈ B jk, (18.12)

the CCV score of the vertex is added to the bin B jk. After all the vertices have been back-
projected, the procedure obtains a set of accumulated CCV scores for each linear guide,
denoted as S jk, where j is the row index of the linear guide and k is the index of bins on
that guide.

4. Determine which camera to move on each linear guide. Given a linear guide j, the
procedure looks for the largest S jk, for 1≤ k ≤ 7. Let it be denoted as S jK . If the two cam-
eras forming the corresponding bin B jK are not too close to each other, one of them will be
moved towards the other (thus reducing their distance). Note that each camera is associ-
ated with two bins. To determine which one of the two cameras should move, the procedure
checks their other associated bin and moves the camera with a smaller accumulated CCV
score in its other associated bin.

5. Move the cameras. Once the moving cameras are decided, the procedure issues them
commands such as “move left” or “move right.” Once the cameras are moved, the process
waits until it is confirmed that the movement is finished and the cameras are re-calibrated.
Then it jumps back to Step 1 for the next epoch of movement.

Some results of the proposed self-reconfiguration algorithm are shown in Figure 18.24.
In the first and third line of this figure, the capturing cameras are evenly spaced on the
linear guide; note that scene flower is rendered behind the camera plane whereas Santa
is rendered in front of the camera plane. Due to depth discontinuities, some artifacts can
be observed in the corresponding rendered images shown in Figure 18.24d along the ob-
ject boundaries. Figure 18.24b shows the reconstructed depth of the scene at the virtual
viewpoint. Figure 18.24c depicts the CCV score obtained during the depth reconstruction.
It is obvious that the CCV score is high along the object boundaries, which usually means
wrong or uncertain reconstructed depth, or bad rendering quality. The dots in Figure 18.24c
are the projections of the capturing camera positions to the virtual imaging plane.

The second and fourth line in Figure 18.24 show the rendering result after reconfigura-
tion; note that the result for scene flower is achieved using six epochs of camera movement,
whereas the results for scene Santa is after twenty epochs. It can be seen from the CCV
score map (Figure 18.24c) that the consistency generally gets better after the camera move-
ment (indicated by the dots). The cameras move towards the regions where the CCV score
is high, which effectively increases the sampling rate for the rendering of those regions.
Figure 18.24d shows that the rendering results after self-reconfiguration are much better
than those obtained using evenly spaced cameras.

The major limitation of the self-reconfigurable camera array is that the motion of the
cameras is generally slow. During the self-reconfiguration of the cameras, it is necessary to
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FIGURE 18.26

An illustration of various cases of the temporal offset t̃ between two frames: (a) a feature point in camera C j at

time t ′, (b-d) its epipolar line in Ci can intersect the feature trajectory, from t to t +∆ti, in Ci in three ways.

assume that the scene is either static or moving very slowly, and the viewer is not changing
his/her viewpoint all the time. A more practical system might be to have a much denser
set of cameras, and limit the total number of cameras actually used for rendering the scene.
The camera selection problem can be solved in a similar fashion as the recursive weighted
vector quantization scheme in Reference [57].

18.5 Estimation of Temporal Offset

Low-cost commodity cameras, such as these used in the system presented in the previ-
ous section, usually provide no means of intra-camera synchronization or time-code. With
unsynchronized input, it is necessary to estimate the temporal offset from the video se-
quences. A robust technique to estimate the temporal offset in software is presented below.
Based on the epipolar constraint, this technique is similar to the temporal flow correction
method described in Section 18.3.1.2, except that now the temporal offset is treated as an
unknown.

Given ~pi,t’s temporal correspondence ~pi,t+∆ti from camera Ci and spatial correspondence
~p j,t ′ from camera C j, the temporal offset t̃ = t ′− t satisfies the following:

~pi,t ′ ·Fij ·~p j,t ′ = 0, ~pi,t ′ = ∆ti−t̃
∆ti

~pi,t + t̃
∆ti

~pi,t+∆ti , (18.13)

where Fij is the fundamental matrix between Ci and C j and ~pi,t ′ is the estimated location
at time t ′, assuming temporary linear motion. If all feature correspondences are correct,
the equation system above can be organized as a single linear equation of one unknown
t̃. Geometrically, this equation finds the intersection between ~p j,t ′’s epipolar line and the
straight line defined by ~pi,t and ~pi,t+∆ti . As shown in Figure 18.26, if the intersection
happens between ~pi,t and ~pi,t+∆ti , then 0 < t̃ < ∆t; if the intersection happens before ~pi,t ,
then t̃ < 0; and if beyond pi,t+∆ti , then t̃ > ∆t.

Ideally given frames Ii,t , Ii,t+∆ti and I j,t ′ , the offset t̃ can be calculated using just a single
feature by Equation 18.13. Unfortunately, the flow computation is not always correct in
practice. To provide a more robust and accurate estimation of the temporal offset, the
following procedure is used:
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FIGURE 18.27

Temporal offset estimation error using synthetic tracked features. The ratio of outliers varies from 10% to 90%.

Using three variations of the proposed techniques, the relative errors to the ground truth are plotted. The error

is no greater than 15% in any test case.

1. Select salient features on image Ii,t , calculate the temporal flow from Ii,t to Ii,t+∆ti
and the spatial flow from Ii,t to I j,t ′ using the technique described in Section 18.3.1.1.

2. Calculate the time offset t̃[1], t̃[2], ... t̃[N] for each feature P[1], P[2], ... P[N] using
Equation 18.13.

3. Detect and remove time offset outliers using the random sample consensus
(RANSAC) algorithm [58], assuming that outliers are primarily caused by random
optical flow errors.

4. Calculate the final time offset using a weighted least squares (WLS) method, given
the remaining inliers from RANSAC. The cost function is defined as follows:

C =
M

∑
k=1

wk(t̃− t̃k)2, (18.14)

where M is the total number of remaining inliers and the weight factor wk is defined
as:

wk = eγ|t̃−t̃k|, γ ≥ 0. (18.15)

The last step (WLS) is repeated several times. During each regression step, the weight
factor is recalculated for each inlier in order to recalculate the weighted average offset t̃.
Since RANSAC has already removed most outliers, the weighted least squares fitting can
converge fast.

18.5.1 Experiments on Temporal Offset Estimation

This section presents some experimental evaluation of the estimation procedure. The
procedure was first tested with a simulated dataset in which feature points are moving
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FIGURE 18.28

Estimated time offset using real image sequences (containing 11 frames). Exact time offset (0.3 frame time, or

10 ms) is also shown.
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FIGURE 18.29

Weighted average epipolar distance (in pixels) from a pair of real sequences 11 frames long. The distance of

each feature ~p is from ~p j,t ′ ’s epipolar line on camera C j to ~pi,t ′ that is calculated using the estimated offset.

randomly. Random correspondences (outliers) are added and the ground-truth feature cor-
respondences (inliers) are perturbed by adding a small amount of Gaussian noise. Fig-
ure 18.27 plots the accuracy with various outlier ratios. It shows that the technique is
extremely robust even when 90% of the offsets are outliers.

The second dataset is a pair of video sequences with the ground-truth offset. Each se-
quence, captured at 30 fps, contains 11 frames. The temporal offset between the two is 10
ms, that is, 0.3 frame time. Figure 18.28 shows the estimated temporal offset, the error is
typically with in 0.05 frame time. Figure 18.29 plots the weighted average epipolar dis-
tance using the estimated time offset. Ideally, the epipolar line should go right through the
linearly interpolated feature point (as in Equation 18.13). Figure 18.29 shows that subpixel
accuracy can be achieved.

From the above experiments with known ground truth, it can be seen that the proposed
approach can produce very accurate and robust estimation of the temporal offset. In ad-
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FIGURE 18.30

Verifying estimated time offset using epipolar lines: (a) temporal optical flow on camera Ci and (b) the epipolar

line of ~pi,t ′ , which is linearly interpolated based on the temporal offset, and ~p j,t ′ on camera C j .

dition, combining RANSAC and weighted least squares fitting yields better results than
either of these techniques alone.

18.5.1.1 View Synthesis Results

The last experiment uses a dataset without a global time stamp. It contains a swinging toy
ball. All cameras are started simultaneously to capture a set of roughly aligned sequences.
The temporal offset for each sequence pair is estimated, using the sequence from the middle
camera as the reference. Since the ground truth offset is unknown, one can only verify
the offset accuracy by looking at the epipolar distances for temporally interpolated feature
points. Figure 18.30a shows the temporal optical flow seen on a frame Ii,t and Figure 18.30b
shows the ~pi,t ′’s epipolar lines created using the estimated time offset on the frame I j,t ′ .
Note that the spatial correspondences ~p j,t ′ are right on the epipolar lines, which verifies the
correctness of the estimated temporal offset. Using a planar proxy, the synthesized results
are shown in Figure 18.31. A visualization of the motion trajectory of the ball can be found
in the last row of Figure 18.32.

18.6 Conclusion

This chapter provided a brief overview of an important branch for view synthesis, namely
methods based on the concept of light field rendering (LFR). The technical discussions were
focused on extending traditional LFR to the temporal domain to accommodate dynamic
scenes. Instead of capturing the dynamic scene in strict synchronization and treating each
image set as an independent static light field, the notion of a space-time light field simply
assumes a collection of video sequences. These sequences may or may not be synchronized
and they can have different capture rates.
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FIGURE 18.31 (See color insert.)

Synthesized results of the toy ball sequence: (top) traditional LFR with unsynchronized frames and (bottom)

space-time LFR using estimated temporal offsets among input sequences. Note that the input dataset does not

contain global time stamps.

FIGURE 18.32 (See color insert.)

Visualization of the trajectory.

In order to be able to synthesize novel views from any viewpoint at any time instant, fea-
ture correspondences are robustly identified across frames. They are used as land markers
to digitally synchronize the input frames and improve view synthesis quality. Furthermore,
this chapter presented a reconfigurable camera array in which the cameras’ placement can
be automatically adjusted to achieve optimal view synthesis results for different scene con-
tents. With the ever-decreasing cost of web cameras and the increased computational and
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communication capability of modern hardware, it is believed that light field rendering tech-
niques can be adopted in many interesting applications such as 3D video teleconferencing,
remote surveillance, and tele-medicine.
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