15MAT31

Third Semester B.E. Degree Examination, July/August 2022 Engineering Mathematics – III

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the Fourier series expansion of $f(x) = 2x - x^2$ in (0, 3).

(08 Marks)

b. The turning moment T is given for a series of values of the Crank angle $\theta^{\circ} = 75^{\circ}$

 θ°
 0
 30
 60
 90
 120
 150
 180

 T
 0
 5224
 8097
 7850
 5499
 2626
 0

Obtain the first four terms in a series of sires to represent T. Also calculate T for $\theta = 75^{\circ}$.

(08 Marks)

OR

2 a. Obtain Fourier series for the function f(x) given by

$$f(x) = \begin{cases} \pi + x & -\pi < x < 0 \\ \pi - x & 0 \le x < \pi \end{cases}$$
 Hence deduce $\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$. (08 Marks)

b. i) Define Half range Fourier sine series of f(x)

(02 Marks)

ii) Find the half range Cosine series of $f(x) = x^2$ in the range $0 \le x \le \pi$.

(06 Marks)

Module-2

3 a. Find the Fourier transform of $f(x) = \frac{1}{0} \frac{|f(x)| < 1}{|f(x)| > 1}$. Hence evaluate $\int_{0}^{\infty} \left(\frac{\sin x}{x}\right) dx$.

(06 Marks)

b. Find the inverse sine transform of
$$F_s(\alpha) = \begin{cases} 1 & 0 \le \alpha < 1 \\ 2 & 1 \le \alpha < 2 \\ 0 & \alpha \ge 2 \end{cases}$$
 (05 Marks)

c. Find the inverse Z- transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$

(05 Marks)

OR

4 a. Find the Fourier Sine transform of $f(x) = e^{-|x|}$ and hence show that

$$\int_{0}^{\infty} \frac{x \sin mx}{1 + x^{2}} dx = \frac{\pi}{2} e^{-m}, m > 0.$$

(06 Marks)

b. Find the Z-transform of i) Coshnθ ii) Sinhnθ.

(05 Marks)

c. Using the Z- transform, solve $u_{n+2} + u_n = 0$ given $u_0 = 1$, $u_1 = 2$.

(05 Marks)

Module-3

5 a. Find the correlation coefficient between x and y

X	2	4	6	8	10
у	5	7	9	8	11

(06 Marks)

15MAT31

b. Fit the curve of the form $y = a + bx + cx^2$ to the following data:

X	0	1	2	3	4
V	-4	-1	4	11	20

(05 Marks)

Find the root of the equation $2x - \log_e x = 7$ using Regula-Falsi method. Carry out 3 iteration. (05 Marks)

If θ is the angle between the two regression lines, show that $\tan \theta = \left(\frac{1-r^2}{r}\right) \left|\frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}\right|$.

Explain the significance when r = 0 and $r = \pm 1$.

Use the method of least squares fit a curve of the form $y = a e^{bx}$ for the following data :

X	0	2	4	6	8
У	150	63	28	12	5.6

(05 Marks)

Find the real root of the equation $x^4 - x = 10$ by using Newton –Raphson method, carryout (05 Marks) 3 iteration.

Find f(x), using Newton's interpolation formula

X	0	1.	2	3	4
f(x)	-5	-10	-9	4	35

(06 Marks)

b. Find f(g): Using Newton's divided difference formula

X	5	7	11	13	17
f(x)	150	392	1452	2366	5202

(05 Marks)

 $\int \sqrt{\sin x} \, dx$ by taking 6 intervals. Evaluate, using Simpson's (05 Marks)

- a. A curve passing through the points (0, 18) (1, 10) (3, -18) and (6, 90). Find f(x), using 8 Lagrange's interpolation formula. (05 Marks)
 - b. Evaluate, using Weddle's rule $\int_{0}^{\infty} \frac{e^{x}}{1+x} dx$ by taking 7 ordinates. (05 Marks)
 - The area 'A' of a circle of diameter 'd' is given for the following values

d	80	85	90	95	100
A	5026	5674	6362	7088	7854

Calculate the area of a circle of diameter 105.

(06 Marks)

Module-5

- 9 a. By using Green's theorem, evaluate $\int_C [(y \sin x)dx + \cos x dy]$ where C is the plane triangle enclosed by the lines y = 0; $x = \frac{\pi}{2}$ and $y = \frac{2\pi}{2}$. (06 Marks)
 - b. Apply Stoke's theorem evaluate $\int_C (x+y)dx + (2x-z)dy + (y+z)dz$ where C is the boundary of the triangle with vertices (2,0,0) (0,3,0) and (0,0,6). (05 Marks)
 - c. Find the curve on which the functional $\int_{0}^{1} (y')^{2} + 12xy \, dx$ with y(0) = 0 and y(1) = 1 can be extremized. (05 Marks)

OR

- 10 a. Derive the Euler's equation in the form $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$. (06 Marks)
 - b. Show that the geodesics on a plane are straight lines. (05 Marks)
 - c. Evaluate $\iint_S \vec{F} \cdot \hat{n}$ ds where $\vec{F} = 4xz \, \hat{i} + y^2 \, \hat{j} + yz \, \hat{k}$ and S in the surface of the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. (05 Marks)

* * * * *